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Abstract

Recent studies of particle localization show that square-integrable positive energy bispinor fields in a

Minkowski space-time cannot be physically distinguished from constrained tensor fields. In this paper

we generalize this result by characterizing all classical tensor systems, which admit Fermi quantiza-

tion, as those having unitary Lie-Poisson brackets. Examples include Euler's tensor equation for a
rigid body and Dirac's equation in tensor form.

1. INTRODUCTION

It is a common misconception that fermions can only be represented in quantum field theory by bis-

pinor fields. Recent studies of particle localization [1], [2], [3], [4] have shown that particle wave

functions cannot vanish in regions of positive measure for any set of times of positive measure. This

demonstrates that gedanken experiments, designed to observe the two-valuedness of bispinors, are not

physically realizable since such experiments require absolute isolation of particle wave functions [4],
[5], [6].

Moreover, in previous work we showed that square-integrable positive energy bispinor fields in a

Minkowski space-time cannot be physically distinguished from constrained tensor fields. That is, the

non-localization of particle wave functions implies that the two-valuedness of bispinors is unobserv-

able in a Minkowski space-time. Thus, beam splitting experiments designed to observe the rotation

properties of bispinors, in fact, describe the rotation properties of constrained tensor fields [4].

Furthermore, it was shown that Dirac's bispinor equation can be expressed, in an equivalent tensor

form, as a constrained Yang-Mills equation in the limit of an infinitely large coupling constant. It was

also shown [4], [7] that the free tensor Dirac equation is a completely integrable classical Hamiltonian

system with (non-canonical) unitary Lie algebra type Poisson brackets, from which Fermi quantiza-
tion can be derived directly without using bispinors.

In this paper we generalize this result by characterizing all classical tensor systems which admit Fermi

quantization. As shown in Section 2, these tensor systems have Lie algebra type Poisson brackets
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associated with a unitary symmetry group acting on the classical phase space. Two examples of clas-

sical tensor systems which admit Fermi quantization are Euler's equations for a rigid body and the

tensor form of Dirac's equation. It is well known that Euler's equation can be Fermi (or Bose) quan-

tized [8]. It is less wedl known that Dirac's eqtration can be written in a classical tensor form which

can be directly Fermi quantized in the same manner as Euler's tensor equation.

2. FERMI QUANTIZATION OF CLASSICAL TENSOR SYSTEMS

In this section, Fermi quantization is derived for the Euler and Dirac tensor equations by representing
their classical Lie-Poisson brackets as commutators of Heisenberg operators on a Fock space of Fermi

occupation states.

We define a Fock space, that is, a Hilbert space H of occupation states of a single field, which is suit-

able for both fermions and bosons, as follows. We suppose that there exists a denumerable set of

operators Ap, where p - 1, 2. 3 ..... such that all Ap and their adjoints A_ are defined on an invari-

ant dense subspace D C H. For the fermion case, the operators Ap and A_, will be bounded, in which

case D - H.

For each pair of indices p and q we define:

Npq ,= A_ Aq (1)

which is an operator defined on D. The following can be taken as a set of axioms which are satisfied

by fermions and bosons alike, when p - 1, 2, 3 .... is interpreted as an index labelling the degrees of

freedom (modes) of a single field, Np - Nm) as the occupation number operator, and A_ and Ap as

creation and annihilation operators for the mode p.

a) There is a zero-occupancy state in D, denoted by I0>, such that for all modes p:

Ap I0> - 0 (2)

Furthermore, there are at least two distinct modes p and q such that Ap :_ Aq, and none of the

operators At,: D _ D are the zero operator.

b) There are no states in H (except O) which are orthogonal to all the occupation states:

In,, n2.... > - ... ,0> (3)

where _ - O, 1, 2 .... is the occupation number for the mode p, and all but a finite number of

np a_ zeiro.

c) For all modes p, q, and r, the operators N m and A_ satisfy the following commutation relation

on D:

[Nvq, A_] - -Aq 8_r (4)
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anditsadjointonD

[Nr,q, A:] - Ap 8_q

where 8pq equals one if p = q and equals zero otherwise.

(5)

Note that axiom (c) is required for a quantum field theory in which field operators (Fermi or

Bose) satisfy Heisenberg's equation [9]. Note also that axiom (c) does not involve any anti-

commutation relations, and hence is applicable to tensor systems. We can prove that any Fock

space satisfying (a), (b), and (c) is either Fermi or Bose, and for a given set of modes, the Fermi

and Bose Fock spaces satisfying axioms (a), (b), and (c) are unique up to isomorphism [10].

Axioms (a) and (c), or equivalent axioms, are assumed in more general Fock spaces which have

been used to derive parastatistics [10]. However, the parastatistical Fock spaces do not assume

axiom (b). That is, in a parastatistical Fock space, there is more than one state for each set of

occupation numbers. Since from the current state of knowledge, one can assume that the occu-

pation numbers nl, n2 .... determine a unique state In_, nz .... >, we do not consider Fock spaces

with alternatives to axiom (b).

For a Fermi Fock space we add:

d) For each mode p, the occupation number np -. 0, 1.

As a consequence of axiom (d), Ap and A_ are bounded operators defined on H (i.e., D = H).

Fermi quantization of tensor fields is derived from the following theorem:

THEOREM 1:

Given any denumerable set of modes p, q, r, s..... there exists a Fermi Fock space H (unique up to

isomorphism) satisfying (a), (b), (c), and (d). Moreover, let lq be a self-adjoint operator whose domain

is a dense subspace of H. Then there exist operators _vq(t) defined on H, indexed by each pair of

modes p an q, and depending on time t E R satisfying:

i)

= (6)

The adjoint relation:

(7)

ii) The (equal time) commutation relation:

- a,,, -a,,,8,,,,

iii) The Heisenberg equation:

- -i fl] (s)
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PROOF:

The(unique)FermiFockspaceexistsby explicitconstruction[10].Since12Iis self-adjoint,wemay
definethefollowingoperatorson '94:

_tpq(t) = e iAt Nme -il:lt (9)

Formulas (6) and (7) follow from formulas (1), (4), and (5). Formula (8) follows by differentiating

formula (9) with respect to time t. Q.E.D.

Note that by formulas (6) and (7), the operators ftr,q(t) generate a unitary Lie algebra [1 1]. For exam-

ple, in the case of two modes, linear combinations of fil,q(t) for p, q -, I, 2 satisfy the commutation

relations of angular momentum operators [12], which allows Euler's tensor equation to be Fermi

quantized [8]. The following corollary of Theorem 1 characterizes all classical systems that can be

Fermi quantized.

COROLLARY:

Classical systems that can be Fermi quantized are described by bimodal complex amplitudes I ar,q(t )
satisfying:

%q(t) - aqp(t) (l 0)

(where the bar denotes ordinary complex conjugation), and a Hamiltonian function H - H(apq) which

depends on the amplitudes a_(t), such that the Hamiltonian equation is given by:

dapq

dt = {apq, H} (11)

where the Lie-Poisson brackets {, } are defined by:

(at,q, a_} ,= -i (av_ 8rq -a_q 8p_)

Furthermore, Fermi quantization of such classical systems is unique up to isomorphism.

(12)

The chief application of Theorem 1 is the Fermi quantization of Dirac's equation in its tensor form.

As previously shown [4], there is a double covering map which takes a bispinor field _ to a con-

strained set of SL(2,C) × U(1) gauge potentials A_ and a complex scalar field p, where Lorentz indi-

ces are denoted by et, 13,_ = 0, 1, 2, 3 and gauge indices by J, K, L = O, 1, 2, 3. Repeated indices will

be contracted using Minkowski metrics g,_a and gJK. Since the Lie algebra of SL(2,C) is regarded as
the complexification of the Lie algebra of SU(2), the gauge potentials A_ for j = 1, 2, 3 are complex,

while the U(1) gauge potential A ° is real. A_ and p satisfy the following constraint:

1 Note that the set of observables {at,q } defines a complex phase space Pc for the classical system,

which is a Lie algebra under the Lie-Poisson brackets (12). In general, the "physical" phase space

P need not coincide with Pc- All that is needed is that P have Lie-Poisson brackets, and there is a

homomorphism of Pc onto P. All observables of P thus become observables of Pc. For a more com-

plete discussion of Lie-Poisson brackets see reference [13].
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AKB - IP [2 gab (13)

With this constraint, Dirac's equation is obtained from the following Yang-Mills Lagrangian Lg in the

limit of an infinitely large coupling constant g:

1 g2
Lg = -_ Re [A_ _ A_]K + (b--_p) (O_p) --_-Ip+2m 14 (14)

where mg is the mass, and the covariant derivative D,, and curvature tensor AK_ are given by:

D_,p = _7o,p + ig A°p

where we denote A_ -- (A ° , A->_,)with A-),_-- (A_, A_, A3=), and _7,_ denotes the space-time partial

derivatives. The tensor form of Dirac's equation L is given by:

L = lim g-a Lg (16)
g---).ac

By standard Yang-Mills formulas, we obtain the energy-momentum tensor T_gB, the spin-polarization

tensor S_'B'¢, and the electric current Jg derived from Lg. The corresponding bispinor observables,

denoted by T _B, S '_I3"Y,and J'_, are given by (see formula (16)):

"l'_B= lim g-i T_gB (17)
g--,),_

and similarly for S '_B'Yand jo,.

For quantum theory in a Minkowski space-time, it suffices [4] to consider tensor fields (A K, p) that:

(i) are enclosed in an arbitrarily large cube K C R 3 and (ii) satisfy periodic boundary conditions for

all times t E R. We quantize (A_K, p) by considering the classical fields to be defined on K × R, and

by defining the classical Hamiltonian H to be:

H =
K (18)

where T aB is the energy-momentum tensor (17), and where points in K C R 3 are denoted byx--) = (x 1,

x2, x3) and-d_x -- dx = dx2 dx 3 denotes the volume measure of K. Note that by conservation of energy,

the Hamiltonian H is independent of time t.

By the map from bispinors to tensors [4], T_, S '_r, and jc, have expansions of the form:

p q (19)
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(andsimilarlyfor S'_I3"yandJ'_)wherethesumis overall pairsof fermionmodesp andq, andthe
amplitudesam(t)arecomplexfunctionsof timesatisfyingthecomplexconjugaterelation(10).The

• 13"-"> • "'>
coefficients of the amphtudes am(t), denoted by "_ (x), are fixed complex functions of x E K. Thus,

at any time t, the amplitudes apq(t) suffice to specify T _13(and similarly, S '_{3"yand J'_), and hence can

be considered as classical phase space variables. Substituting (19) into formula (18), we get:

H= E topavp
p (20)

where top is the frequency of the mode p. The classical Hamiltonian equations (which are equivalent

to the Euler-Lagrange equation for the tensor Dirac Lagrangian (16)) are given by formulas (10), (11 ),

(12), and (20) which, by the corollary to Theorem 1, can be (uniquely) Fermi quantized.

This then reproduces the existing second quantized theory for fermions. This also shows that bispinors

are not more fundamental than the tensor Hamiltonian equations (10), (11), (12), and (20), which we

derived from the tensor Dirac Lagrangian (16).
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SECTION 5

UNCERTAINTY RELATIONS
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