
N95- 14171

..,/5 - _ /

?

.f

SOFTWARE DEVELOPMENT FOR SAFETY-CRITICAL MEDICAL

APPLICATIONS

John C. Knight

ABSTRACT

There are many computer-based medical applications in which safety and not reliability

is the overriding concern. Reduced, altered, or no functionality of such systems is acceptable
as long as no harm is done. A precise, formal definition of what software safety means is
essential, however, before any attempt can be made to achieve it. Without this definition, it is

not possible to determine whether a specific software entity is safe. A set of definitions
pertaining to software safety will be presented and a case study involving an experimental
medical device will be described. Some new techniques aimed at improving software safety

will also be discussed,

BIOGRAPHY

Dr. Knight is a professor of computer science at the University of Virginia. He joined

the university in 1981 after spending seven years at NASA's Langley Research Center. His
current research interests are in the development of techniques to support software production

for safety-critical computer systems.

/

/

SOFTWARE DEVELOPMENT

FOR

SAFETY-CRITICAL MEDICAL APPLICATIONS

John C. Knight

Department of Computer Science
University of Virginia

Charlottesville

Virginia 22903

\ ® UVA /
DeDartment of Computer Science

f
OUTLINE

What?

What Is Software Safety Exactly?

A Framework Of Def'mitions

Why?

Why Is Software Safety Important?

Who Should Care And Why Should They Care?

How?

How Can Software Safety Be Achieved?

What Process, Techniques, And Tools Are Needed?

What Questions Remain?

Case Study:

Evaluation Of Proposed Ideas

Safety-Critical, Medical Application

Research Status And Plans

®
I

I

I

UVA __
Deoartment o/Comouter Sc_ooce

/
SOFTWARE SAFETY

Public Exposure To Digital Systems Increasing - Serious Problem

Several Standards Written Or Being Written, E.g. MoD Def. Std 0055

Lots Of Papers On Software Safety:

- Extremely Valuable And Important Contributions To The Topic

But, They Tend To Stress System Safety

Some Important Questions:

- Precisely When Should Software Be Considered Safe?

- What Is The Role And Responsibility Of The Software Engineer?

- What Is "Good Engineering Practice" In This Case?

- Exactly Who Has Legal Responsibility For What?

Distinguish Between Safety And Reliability, And Between Safety And Availability

:] UVA jDepartmentof ComouterScience

f
WHY IS PRECISION IMPORTANT?

• Concept Is Intuitive And Informal In General - I Know What It Means

• Something Is "Safe" If It Does No Harm - It Had Better Not Harm Me

Precise Framework Of Def'mitions Is Important For:

Software Engineers

Regulatory Agencies

Legal System

Me

Software Engineers Need To Know:

What Is Required Of Them, Why, And When

When Software Is "Good Enough"

Regulatory Agencies:

Responsibility To Protect The Public - FDA, FAA, Etc

Legal System:

- Apportioning Blame After An Accident

Med,_(fm_lwt_ Safe. =

®

\

UVA
Departmentof ComputerScience

/7

SOME TIME-HONORED ANECDOTES

Aircraft Landing Gear Raised While Aircraft On Ground:

Test Pilot Input During Ground Test, Aircraft Damaged

"Operational Profile or Specification In Error"

Computer Controlled Chemical Reactor Seriously Damaged:

Mechanical Alarm Signal Generated

Computer Kept All Controls Fixed - Reactor Overheated

"Systems Engineers Had Not Understood What Went On Inside The Computer"

F18 Missile Clamped To Wing After Engine Ignition:

Aircraft Out Of Control

"Erroneous Assumption Made About Time For Engine To Develop Full Thrust"

All Are Important, Very Serious Incidents - Valuable Insight Gained

What Exactly Is The Safety Issue In Each Case?

What Exactly Is The Responsibility Of The Software Engineer In Each Case.'?

1 Sc,lte SMmtv -
Deoartment of Computer Science

/

\

SYSTEM SAFETY

Informally, System Safety Is Subjective

Systems Engineers Have Formalized The Notion Of Safety:

Def'miti0ns - Hazard, Risk, Acceptable Level Of Risk, Safety

View System As Well-Defined Collection Of Components

Established Practices And Procedures

Software Researchers And Engineers Trying To Do The Same For Software

So Far, Success Is Limited

Within A System:

Software Is Merely Part Just Like Computer Hardware, Sensors, Actuators, Etc.

Software Can Cause Failure

Software Can Prevent Failure

Software Can Stand By And Watch Failure Happen

But So Can Any Other Part

Metl,clt _l.*_t g,tel*

UVA /
Deoactment of Com_uter Sc_erce

SOFTWARE SAFETY vs. SYSTEM SAFETY

Application

Equipment "f

$+$

Power

Supplies

Sensors

Actuators

S

e

n

_ s

0

r

Actuators _ s

A

Med<.el S_fiwe_ SMmv .

Packaging ---

uvA j
Department of Computer Science

f
SYSTEM CONTEXT FOR SOFTWARE

• Common Observation - In Isolation, Software Is Never Unsafe:

True, It Cannot Be Executed In Isolation Either

Software Is Useless In Isolation

• Most Components In Any System Axe Safe In Isolation

• In Isolation, Software Is Removed From The Notion Of Hazard:

This Does Not Imply That Software Safety Is Meaningful Only In The

Context Of The Entire System

• Software Engineers Axe Not Qualified To Deal With Systems Engineering Issues

• Do We Want The Software Engineer:

Deciding Actinn For Unspecified Input7

Implementing Functionality That "Seems Right' '?

• Hazards, Risks, Etc. Should Not Appear In The Software Specification

• The Required Treatment Of Hazard Must Be Present In The Software Specification

UVA
M.'a,cll ¢.,',t)_l,,,e _,f_ N

J
Department of Computer Science

-, <-

f

THE ANECDOTES AGAIN

Aircraft Landing Gear Raised While Aircraft On Ground:

- "Operational Profile or Specification In Error"

- Systems Engineer's Responsibility

Computer Controlled Chemical Reactor Seriously Damaged:

"Systems Engineers Had Not Understood What Went On Inside The Computer"

Systems Engineer's Responsibility

F18 Missile Clamped To Wing After Engine Ignition:

"Erroneous Assumption Made About Time For Engine To Develop Full Thrust"

Probably The Systems Engineer's Responsibility

In General, Software Engineer Is Not Trained To Identify Hazards, Consider:

Computerized Flight-Control System Commands Aircraft To Flare On

Final Approach At Air Speed Of 128 Knots, Height 180 Feet, 15 Knot
Headwind, Throttles At 75%, MI._ On, Fuel At 14%, 1,027 Feet From

Runway Touchdown Point, Undercarriage Down, Flaps At 30%

• Is This A Hazard?

UVA __Department of Computer Science

f
A FRAMEWORK OF DEFINITIONS

\

Definition Component Intrinsic Functionality Specifications

The Required Functionality Of The Component Without Regard To Safety

Definition - Component Failure Interface Specifications

The Required Functionafity That Must Be Provided In The Event That

The Component Is Unable To Provide Its Intrinsic Functionality

Definition - Component Recovery Functionality Specifications

The Required Functionality That Must Be Provided In The Event That
One Or More Other Component Fail

Definition Component Safety Specifications

The Component Failure Interface Specifications Combined With The

Component Recovery Functionality Specifications

Definition - Software Safety

Software Is Safe If It Complies With Its Component Safety Specifications

uvADepartment of Comouter Sc,e_ce

.J
/

f

CONCEPTUAL FRAMEWORK

SPECIFICATIONS

Functional I i_''"'''i_ Implementation _

_ Specification // 1 SpecificatiOnError

_Hazard Analysis "lil ////_

Software

/
Implementation

Error

[_ UVA ._Department of Computer Sctence

SOFTWARE SAFETY

Functional

Specifications

Failure Interface &

Recovery Functionality
Specifications

SOFTWARE

SPECIFICATIONS

:[Implementauon [

s _

t Venficanon .,,,

Software

Software Is Safe To The Extent That It Complies With Its Safety Specification

Safe Software Might Fail - That Is A Subjective Issue, Formally It Was Safe

Software Engineer's Task Now Clear

Responsibility For Accidents Can Be Fairly Assigned

Mul_i So/lw._ Safolv 12

UVA jDepartment of Computer Science

f
FORMAL PLACEMENT OF RESPONSIBILITY

Applications Engineer

Risks

..s;._.c._cat!on...

/

Software Engineer

i
\

(Hmmm?

o©

:/

Concerns

Questions

\

._ Safety Specification Analysis /

UVADeDatlment of Computer Sc,ence

f
A CASE STUDY

\

\

Is This Conceptual Framework Useful? If Not Why Not?

If Useful, How Can Safe Software Be Built And Demonstrated?

Approach:

Case Study Based On Safety-Critical Application

"Gloves Off", No _,ssumptions, Not An Academic Study, Do It Right Or Else

Magnetic Stereotaxis System (Video Tumour Fighter):

Experimental Device For Human Neurosurgery

Complex Physical System, Clearly Safety-Critical

Stringent Safety Requirements

- Minimal Reliability And Availability Requirements

Primary Safety Issues:

- Patient Safety

- Equipment Safety

I

uvA S
Deoanment of Computer Science

,//

MAGNETIC STEREOTAXIS SYSTEM - CONCEPT

Permanent Magnet (Seed) Electromagnet

MId_rll _l_*,t S*(a* . 15

I I

®

S X-Ray Camera

UVA
Department of Computer Science

f
MAGNETIC STEREOTAXIS SYSTEM

... j

Radio Frequ. System

Cryogenic System

m Coil Control System

m X-Ray Imaging System

Operator Display 1

Supercon
X-Ray Source

\

\
R.F. Heating Coil

Patient Therapy Region

-_ Computer Control System

M.R. Images, Patient EtcData,

.vA jDepartment of Computer Science

f
/

f

SOME OF THE MSS/VTF SAFETY ISSUES

External Superconducting Coils:

- Incorrect Current Calculated By Software And Applied

- Coil(s) Fail, Incorrect Coil Shutdown Effected

- Coil Controller(s) Fail, Incorrect Coil Shutdown Effected

Signals Scrambled Between Computer And Coil Controller(s)

X-Ray Subsystem:

Hardware Fails On When Supposed To Be Off Or Vice Versa

Software Commands On Incorrectly

Image Defects - Ghost, Incorrect, Or "Old" Image Used

Incorrect Target Identification - Marker Rather Than Seed

Radio Frequency System:

Hardware Fails On When Supposed To Be Off Or Vice Versa

Software Commands On Incorrectly

Wrong Power Level Administered

MedM:ll _,tJClw*_ _itel) I'P

®

P

f

uvA j
De_oartment of Comouter Sc_erce

MORE OF THE MSS/VTF SAFETY ISSUES

Display System:

- Wrong Seed Location Shown On Magnetic-Resonance Image

- Wrong Magnetic-Resonance Image Displayed

- Other Incorrect Data Displayed

Operator Error:

- Commands Erroneous Movement

- Fails To Observe Error Message

Software System:

- File System Supplied Erroneous Information

- Interference From Non-Safety-Critical Elements

UVA _DeDartment of Comouter Sc,,e_ce

DEVELOPING SAFE SOFTWARE

f

Framework Of Dermitions Is First Step:

Now We Know What We Have To Achieve

Safe Software Is Well-Defmed Target

Also Know Who IsFormally Responsible For What

How Is Safe Software Developed?

There Is No Magic Bullet Is Specified Verification Level Is Very High

For Safety-Critical Software:

- No Dependable Technology Exists

- Many Open Research Areas

- Safety Is "Simpler" Than Reliability, In Many Cases More Important

UVA __Department of Computer Science

\
System

Fault Tree Analysis
Tools

Formal

Specification

PROCESS SUMMARY

_ Implementation

_' '_J

Safety Kernel [

i

__] Tar_tComb?ter!]

UVA
Deoartment of ComDuter Science

SYSTEM FAULT TREES

Patient Injury
I

I I I I

Injured By Seed Injured By X Ray Injured By RF Injured By Operator

Seed Moves At Wrong Time

I

/

I I I
Etc Etc Etc

1
Incorrect Movement Commanded

I 1
AND

Emergency Shutdown System Fails Superconducting System Fails Operator Error

Med,_l S.*fi.._ _.lelv 21

jDeoartment of Cornf_uter Science

SYSTEM FAULT TREE ANALYSIS

• System Fault Trees Are:

- Large And Complex

Very Hard To Get Right

Involve Software In Two Distinct Ways - Software Failure And Software Response

• Tools Needed To:

Manipulate Fault Trees To Facilitate Software Analysis

Permit Rigorous Software Safety Requirements Process

Enable Assurance Of Adequate Coverage By Software

Permit Formal Software Safety Specifications To Be Derived

• Tools Concepts:

Build Hardware-Only Fault Trees

Display, Inspect, Analyze Probabilities, Etc

Add Functional Software Nodes

Mechanically Derive Software Failure Cases And Required Software Responses

Assist With Derivation Of Specifications And Various Property Proofs

OVA
S

Department of Comouter Science

\

f

SAFETY KERNEL CONCEPTS

Verifying Safety Properties Is The Single Design Constraint

Application Services

Display Control]

Equipment Interlocks

Periodic Events]

Duration Control J

Real-Time Monitoring

Soft Shutdown

Hard Shutdown

UVADepartment of Comouter Science

CASE STUDY EXPERIMENTAL APPROACH

• Develop System Fault Tree And Software Specifications (Drafts Completed)

- Specifications Presently Written In 'Z' (Draft Completed)

- Safety Specification Delimited

• Implement Complete, Non-Safe Prototype System Based On UNIX And X

• Add Facilities And Transition To:

- Safety Kernel On Bare Hardware

Progressively "Safer" System

• Verify Safety Properties:

Exhaustive Testing - Carefully Avoiding Butler & Finelli's Result

Formal Proofs Where Possible

Rigorous Argument, Static Analysis, Inspection

• Goal - Repeatable, Dependable Process Providing Assured Software Safety

• Also, A Process That Has Been Evaluated

UVA
J

Department of Comouter Science

,,,.j

SUMMARY

"lnvasive" Computer-Controlled Medical Devices Becoming More Common

Serious Safety Requirements, Often Very Limited Reliability And Availability Needed

Technology To Deliver Software Safety Is Elusive

Formalization Of The Meaning Of Terms And The Role Of The Software Engineer

Software Engineer Is Not Qualified For Anything But Software Engineering

Case Study Being Undertaken To:

Evaluate Definitions, Process Concepts, Tools, Techniques

Demonstrate Workable Process With Realistic Example

Support The MSS Project

UVADepartment of Computer Soence

-....J

