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The small fatigue crack problem is critically reviewed from the perspective of airframe appli-

cations. Different types of small cracks--microstructural, mechanical, and chemical--are carefully

defined and relevant mechanisms identified. Appropriate analysis techniques, including both

rigorous scientific and practical engineering treatments, are briefly described. Important materials

data issues are addressed, including increased scatter in small crack data and recommended small

crack test methods. Key problems requiring further study are highlighted.

INTRODUCTION

"Small" fatigue cracks are sometimes observed to grow faster than traditional "large" cracks at
the same nominal value of the cyclic crack driving force, AK. Small cracks have also been observed

to grow at non-negligible rates when the nominal applied AK is less than the threshold value, AKth,

determined from traditional large crack test methods. These phenomena imply that a structural life

assessment based on large crack analysis methods can be nonconservative if the life is dominated by
small crack growth.

Although the earliest documentation of the small crack effect was motivated by aircraft appli-

cations [1], small cracks have historically not been an important issue for most airframe structures.

Classic damage tolerance analysis (DTA) typically mandates an initial flaw size beyond the small

flaw regime, and other structural integrity assessments based on safe-life logic neglect explicit fatigue

crack growth (FCG) arguments altogether.

However, ongoing developments in the airframe industry appear to be increasing the signifi-

cance of small cracks for fracture control of aircraft structures. It is now recognized that multiple

small flaws associated with multiple-site damage (MSD) can degrade residual strength capability in

aging aircraft [2, 3]. In response to this observation, the Industry Committee on Widespread Fatigue

Damage (WFD) of the Airworthiness Assurance Working Group (AAWG) has recently identified

small cracks as a critical issue requiring further focused research [4]. In applications where durability
analyses are employed, the equivalent initial flaw size (EIFS) which is back-calculated from some

economic total life is often well within the small flaw regime [5]. Ongoing improvements in non-
destructive evaluation (NDE) capabilities may lead to the re-definition of initial flaw sizes for tradi-

tional DTA which are down in the small flaw regime. And in some applications, structural integrity

assessments formerly based on safe-life calculations now must be performed with DTA logic. The

relevant crack sizes for these applications, however, are often much smaller than those historically
associated with the DTA method.

The purpose of this paper is to provide a critical overview of the small crack problem in the

context of airframe applications. Different types of small cracks are carefully defined and relevant

mechanisms identified. Appropriate analysis techniques, including both rigorous scientific and prac-

tical engineering treatments, are briefly described. Important materials data issues are addressed,
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including increasedscatterin small crack dataandrecommendedsmall crack testmethods. Key
problems requiring further study arehighlighted. Although this paper does provide an expert review

of the small crack problem, it is not intended to be an exhaustively complete summary of all impor-

tant research in the field. Many researchers have contributed to the level of understanding outlined in

this paper, and it is not possible or attempted to acknowledge all of them individually.

DIFFERENT TYPES OF SMALL CRACKS

All small cracks are not the same. Different mechanisms are responsible for different types of
"small crack" effects in different settings. Criteria which properly characterize small crack behavior

in one situation may be entirely inappropriate in another situation. It is critical, therefore, to under-
stand the different types of small cracks before selecting suitable analytical treatments. This review

will consider three different types of small cracks: microstructurally-small, mechanically-small, and
chemically-small.

Before beginning, one note on nomenclature is needed. The terms "small crack" and "short

crack" both appear in the literature, and sometimes the two appear to be used interchangeably. In

recent years, however, the two terms have acquired distinct meanings among many researchers. In

the US research community, the currently accepted definition for a "small" crack requires that all

physical dimensions (in particular, both the length and depth of a surface crack) are small in compari-

son to the relevant length scale. In contrast, a crack is defined as being "short" when only one physi-

cal dimension (typically, the length of a through-crack) is small in comparison to the length scale.
These definitions are illustrated in Figure 1. However, it should be noted that this distinction has not

always been observed in the literature, and that some current authors (esp. in Europe) choose to

employ the terms with nearly reverse meanings. Whatever the usage, the reader should carefully

observe which type of "little" crack is present in a given application. Some of the different implica-
tions of short vs. small cracks are discussed later in the paper.

Microstructurally-Small Cracks

A crack is generally considered to be microstructurally-small when all crack dimensions are

small in comparison to characteristic microstructural dimensions. The relevant microstructural fea-

ture which defines this scaling may change from material to material, but the most common micro-

structural scale is the grain size. The small crack and its crack tip plastic zone may be embedded

completely within a single grain, or the crack size may be on the order of a few grain diameters.

small

L

)

Figure 1. Schematic of "small" and "short" cracks, including relationship to microstructure.
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Typical crack growth data for microstructurally-small cracks are shown for a 7075 aluminum

alloy in Figure 2, along with traditional large crack data for the same material [6]. Note that small

crack growth can occur at nominal AK values below the large crack threshold. Small crack growth

rates are often faster than would be predicted by the large crack Paris equation (the dashed line in

Figure 2), and the apparent Paris slope for the small crack data can be smaller than for the large crack

data. Crack arrest (momentary or permanent) can occur m these low AK values, and this arrest is

often observed to occur when the crack size, a, is on the order of the grain size, GS (i.e., when the

crack tip encounters a grain boundary). However, not all small cracks arrest or even slow down at

these microstructural barriers. As the crack continues to grow, the small crack da/dN data often

merge with large crack data.

Why do microstructurally-small cracks behave this way? Several factors are involved, all

related to the loss of microstructural and mechanical similitude. When the crack-tip cyclic plastic

zone size, rp¢, (and sometimes the crack itself) is embedded within the predominant microstructural

unit (e.g., a single grain), the crack-tip plastic strain range is determined by the properties of individ-

ual grains and not by the continuum aggregate. The growth rate acceleration of small cracks

embedded within a single surface grain is primarily due to enhancement of the local plastic strain

range resulting from a lower yield stress for optimum slip in the surface grains [7, 8, 9]. This micro-

plastic behavior also causes (and, in turn, is affected by) changes in crack closure behavior [10].

As a small crack approaches a grain boundary, the fatigue crack may accelerate, decelerate, or

even arrest, depending on whether or not slip propagates into the contiguous grain [7]. The transmis-

sion of slip across a grain boundary in turn depends on the grain orientation, the activities of second-

ary and cross slip, and the planarity of slip. The transition of the small crack from one grain to

another may require a change in the crack path, which may also influence crack closure. The

resulting crack growth behavior is therefore very sensitive to the crystallographic orientation and

properties of individual grains located within the cyclic plastic zone. As the crack grows, the number

of grains interrogated by the crack-tip plastic zone increases and the statistically-averaged material

properties become smoother.

However, it is important to note that the fundamental mechanism of crack growth is the same

for small and large cracks in the near-threshold regime. In both cases, FCG occurs as an intermittent

process involving strain range accumulation and incremental crack extension, followed by a waiting

period during which plastic strain range reaccumulates at the crack tip [ 11 ]. Fatigue striations of

equivalent spacing have been observed on the fracture surfaces of both large and small fatigue cracks
tested under equivalent nominal AK ranges, as shown in Figure 2 for 7075 A1 [11]. The essential

difference between large and small cracks is that the number of fatigue cycles per identical striation is

less for small cracks, due to differences in the local crack driving force.

How can the behavior of microstructurally-small cracks be modeled/predicted analytically?

Several different approaches have been developed, ranging from detailed scientific models to simpli-

fied engineering treatments. At one extreme, complex micromechanical models attempt to address

directly the changes in the local crack driving force. For example, a model derived by Chan and

illustrated in Figure 3 incorporates microplastic grains ahead of a Barenblatt-Dugdale crack [7]. The

nominal AK is modified by influence functions which explicitly describe the effects of microplas-

tic/macroplastic yield strength, large scale yielding at the crack tip, and crack closure.
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Figure 2.
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Figure 3. Predictions of a micromechanical model for microstructurally-small cracks.
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Detailed experimental measurements of near-tip strains and displacements have suggested a

general phenomenological model for microstructurally-small cracks which has been successfully

applied to both engine disc and airframe alloys [ 12, 13]. Small crack growth rates were satisfactorily

correlated with large crack data using a parameter/_eq = (E/_kJ) 1/2 = (E Ao _r) 1/2, where the crack tip

stress range Ao was calculated from the measured crack-tip strain range and _Sris the cyclic crack-tip

opening displacement. The parameter AKeq was found to be simply related to the applied AK accord-

ing to the expression AKeq ---AKp + UAK, where AKp characterizes the plastic contribution to the crack
driving force for small cracks and U is the effective stress range ratio which characterizes crack

closure: U -- AKefe/AK. See Figure 4. Note that crack closure alone was not able to correlate the
small crack data.

Simpler mechanical treatments have also been proposed to address FCG behavior in the

microstructurally-small crack regime. The attractive simplicity of these models is that they avoid

dealing directly with complex microstructural issues. Small crack acceleration effects are incorpo-

rated through simple modifications to mechanical parameters in the expression for the crack driving

force. One such approach is that of E1 Haddad et al. [14], who replaced the actual crack length a by

an effective length a + a0 in order to calculate AK. This enhances the predicted crack growth rate

when a is very small. A much more sophisticated approach has been developed by Newman [15].
The Newman model is based on computed changes in plasticity-induced crack closure for small

cracks growing out of initiation sites simulated as micronotches. Newman has shown reasonably

good success in predicting small crack growth rates and total fatigue lives for several different mate-

dais, including airframe alloys. These practical successes are encouraging, but it should be remem-
bered that the simple mechanical treatments do not address the most fundamental causes of the

microstructurally-small crack effect. Hence, the generality of the models cannot be assured.

Two other types of approaches, summarized in Figure 5, may be useful for some engineering

applications in which it is not possible or practical to address changes in the driving force explicitly.
Stochastic treatments which acknowledge the inherent uncertainties associated with

microstructurally-small crack growth could address this uncertainty through appropriate statistical

techniques. Formulation and calibration of these techniques would require extensive analysis of sta-
tistical-quality small crack data, which is a limitation. Variability of small-crack data is discussed

further below. Empirical engineering treatments may be conservative bounding approaches which

simply draw some upper bound to the crack growth data in the defined small-crack regime and use

that bound as part of a total life computation, or fitting approaches which perform regression on

small-crack data to generate a new set of Paris equation constants. These engineering treatments may
be a useful means of avoiding detailed analysis, especially when small-crack data are available for

materials and load histories representative of service conditions.

Based on these observations and models, several practical suggestions can be offered to predict

growth rates for microstructurally-small cracks. In general, it appears that the large-crack Paris equa-
tion can be extrapolated downward at least to some microstructural limit. This limit is often esti-

mated as about 5-10 grain diameters [16, 17, 18], or as the point at which the cyclic plastic zone size

equals the grain size [ 16], although the actual limit is probably a more complex function of

microplasticity and closure behavior [ 12]. The large-crack threshold should be neglected in this

extrapolation. Some treatment of nominal plasticity and crack closure effects on the crack driving

force (discussed at more length in the next section) is often useful to improve agreement with large

crack data. However, it must be emphasized that some nonconservatism may remain if the true local

microstructural effects have not been addressed. Guidance for addressing these effects can be

obtained from various scientific approaches, although practical considerations may dictate the use of
more general engineering approaches.

467



:i̧ ¸¸ •: • _::: : ::: : _: : :_ :__ _::_I:_: _!ii!_:::::_::::•_:/:•i_¸i̧:_•¸¸¸:¸ :'i:! _!:: !::_%!:_i:!_!!_?!i::•:i!i/ili_:!iii:_i_!_:i:_i!!!_!_!i_!_i_!_i!ii!_:ii_i!_i_:i:_:i!!ii!_!iii_i:_i_ii_ii:i_:_!_ii_iii_iii_iiiii_i!i_i_iiiii!_iiiii_i_iii_i_iiiiii_iii:ii_iiiiii

12

E
t_

10

8

6
v

O"
O

v 4
<3

2

0

7075 AI

A small crack

n large crack

0 2 4 6 8 10 12

AK (MPa•m 1_)

Figure 4. Comparison of _kgeq and nominal AK for large and small fatigue cracks in 7075 A1.

da

dN

= large crack
x small crack

Figure 5. Schematic of potential stochastic and empirical engineering models for

microstructurally-small crack growth.

468



Mechanically-Small Cracks

A crack is generally considered to be mechanically-small when all crack dimensions are small

compared to characteristic mechanical dimensions. The relevant mechanical feature is typically a

zone of plastic deformation, such as the crack tip plastic zone or a region of plasticity at the root of

some mechanical discontinuity (e.g., a notch). The crack may be fully embedded in the plastic zone,

or the plastic zone size may simply be a large fraction of the crack size, as illustrated by Figure 6. As

discussed below, many microstructurally-small cracks are also mechanically-small, but our focus in

this section is on mechanically-small cracks which are microstructurally-large. The "short" crack, as

defined earlier, also behaves in the same manner as the mechanically-small crack. The crack front of

a short crack interrogates many different grains and hence is not subject to strong microstructural
effects.

Typical crack growth data for mechanically-small cracks are shown in Figure 7 for an HSLA

steel [19]. Similar data are available for common airframe alloys [20]. Note again that small crack

growth can occur below the large crack threshold. The slope of the Paris equation often appears to be

roughly the same for small and large crack data, but the small crack data often fall above the large

crack trend line when expressed in terms of nominal AK. Small or short cracks growing in notch

fields often exhibit much faster growth than large cracks at comparable AK values, as shown in Fig-

ure 8 [21]. These small crack growth rates can actually decrease with increasing crack growth until
they eventually merge with large crack data.

Why do mechanically-small cracks grow in this manner? The primary motivation appears to

be that local stresses are significantly larger than those encountered under typical small-scale yielding
(SSY) conditions, especially at near-threshold values of AK. These local stresses may have been ele-

vated by the presence of a stress concentration, or they may simply be large nominal stresses in uni-

form geometries. These large local stresses significantly enhance crack-tip plasticity, which in turn

enhances the crack driving force, either directly through violations of K-dominance, or indirectly
through changes in plasticity-induced crack closure. The appropriate analytical treatment of the

mechanically-small crack, then, primarily involves appropriate treatments of the elastic-plastic crack
driving force and crack closure.

The nominal elastic formulation of AK, gradually becomes less accurate as a measure of the

crack driving force as the applied stresses become a larger fraction of the yield stress. When (_max/(_y s

exceeds about 0.7, a first-order plastic correction to AK may be useful. This correction may be based
on the complete Dugdale formulation for the J-integral, expressed in terms of K [22, 23]. Alterna-

tively, the correction can be based on an effective crack size defined as the sum of the actual crack

size and the plastic zone radius [23, 24]. However, in most cases this first-order correction will

change the magnitude of AK by no more than 10 to 20 percent. When the nominal plastic strain

range becomes non-negligible (typically, when the total stress range approaches twice the cyclic yield

strength), it will generally be necessary to replace AK entirely with some alternative parameter, such

as a complete AJ formulation [24]. A comprehensive practical methodology for elastic-plastic FCG
based on AJ is currently under development [25].

Plasticity-induced crack closure also becomes increasingly significant outside the small-scale

yielding regime [24]. Normalized crack opening stresses are a function of normalized maximum

stress, stress ratio, and stress state, and changes in closure behavior are most pronounced for large
stresses, low stress ratios (R), and plane stress: typical conditions for mechanically-small cracks.

Newman [26] has developed a simple closed-form equation based on a modified-Dugdale closure

model of an infinite center-cracked plate which predicts normalized crack opening stress ((]_open/(];max)

as a function of Omax/O_ow, R, and constraint factor _t. Recent finite element studies [27] have sug-
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Figure 6. Schematicof relationship betweenmechanically-small cracksandplastic zones.
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gested that the Newman model may be extended satisfactorily to other geometries if (Tmax/Oflow is

replaced by Km_/Ko, where Ko -- anow 0T-a) _/z. The Newman equation and the finite element results are

illustrated in Figure 9 for plane stress, R = -1. Changes in closure behavior are also significant for

crack growth at notches, and simple models are available to predict these changes [21].

If appropriate revisions to the crack driving force based on plasticity and crack closure consid-

erations are carried out, the growth rates of mechanically-small cracks can usually be predicted suc-

cessfully by extrapolating the large-crack Paris equation and neglecting the large-crack threshold.

This implies that if plastic corrections to AK are relatively minor, and if the closure behavior of the

small crack does not differ significantly from the large cracks used to derive the Pads equation, that

the small crack growth rates may be essentially the same as for the large cracks at the same nominal

AK. It is not entirely clear under what conditions the large crack threshold will be observed by the

small cracks, and in the absence of contradicting data, it is probably prudent to neglect the threshold

for all mechanically-small cracks. If a complete crack closure analysis is not possible or practical, it

may be sufficient to predict the growth rates of mechanically-small cracks using closure-free (high

stress ratio) large crack data [28].

As noted earlier, the regimes of mechanically-small and microstructurally-small cracks can

overlap. A more complete organizational scheme for large and small cracks from both microstruc-

tural and mechanical perspectives is given in Table 1 [29]. The "microstructurally-small" crack dis-

cussed earlier in this paper is often both microstructurally- and mechanically-small, although it is also

possible to have a crack which is microstructurally-small and mechanically-large (cracks in single

crystals, or cracks in very large grained materials). The traditional "mechanically-small" (or "short")

crack discussed in this paper is typically microstructurally-large. Traditional large cracks are both

microstructurally and mechanically large. The table also includes some suggestions for approximate

size criteria based on comparisons of the crack size with either the crack-tip plastic zone size, rp, or
the microstructural unit size, M.
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Table 1. Classification of Crack Size According to Mechanical and Microstructural Influences

Mechanical

Large
a/M > 5-10

(rv/M >> 1)

Small

a/M < 5-10

(rr/M _ 1)

Large

a/rp > 4-20

(SSY)

Mechanically and

Microstructurally Large

(LEFM valid)

Mechanically Large/

Microstructurally Small

(single crystal)

Small

a/rp > 4-20

(ISY and LSY)

Mechanically Small/

Microstructurally Large

(may need EPFM)

Mechanically and

Microstructurally Small

(inelastic, anisotropic,

stochastic)

Chemically-Small Cracks

Experiments on a variety of ferritic and martensitic steels in aqueous chloride environments

have shown that under corrosion-fatigue conditions, small cracks can also grow significantly faster

than large cracks at comparable AK values [30, 31, 32]. This phenomenon is believed to result from

the influence of crack size on the occluded chemistry which develops at the tip of fatigue cracks. The

specific mechanism responsible for this "chemical crack size effect" is believed to be the enhanced

production of embrittling hydrogen within small cracks resulting from a crack size dependence of one
or more factors which control the evolution of the crack-tip environment--specifically, convective

mixing, ionic diffusion, or surface electrochemical reactions [33, 34]. This mechanism is distinctly

different from that responsible for the enhanced rate of crack growth in microstructurally- or

mechanically-small fatigue cracks.

The chemical crack size effect is clearly illustrated by the data of Gangloff [31] for 4130 steel

in an aqueous NaC1 environment (see Figure 10). Note that corrosion-fatigue crack growth rates
from small surface cracks (0.1 to 1 mm deep), as well as short through-thickness edge cracks (0.1 - 3

mm), are appreciably faster than corrosion-fatigue crack growth rates from large through-thickness

cracks (25 - 40 mm) in standard compact tension specimens. It is also interesting to note that the

corrosion-fatigue crack growth rates for small surface cracks decrease with increasing applied stress

(at a given AK), and this trend is opposite to the dependence of applied stress on crack growth rates in

small fatigue cracks. Moreover, all of the corrosion-fatigue crack growth rates in NaC1 are enhanced

compared to those in a moist laboratory air environment, even though the latter were generated with

both small and large cracks. Thus, in relation to the fatigue small crack effect, the chemical small

crack effect is of potentially greater importance since it can occur over a much larger range of crack

sizes (up to 3 mm).

The chemical crack size effect in high strength steels is relevant to aircraft structural compo-

nents such as landing gear. Do similar effects occur in high strength aluminum alloys used in air-
frames?
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Figure 10.
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Although data on the aluminum alloys is sparse at this point, preliminary data are available

which enable an initial assessment of the problem. Data of Piascik and Gangloff [35] suggest the

lack of a chemical crack size effect in both 2090 and 7075 aluminum alloys exposed to an aqueous
chloride environment. Recent data from NASA-Langley [36] on 2024-T3 in a similar environment

also support the lack of a chemical crack size effect, as shown in Figure 11. Thus, in contrast to
steels, aluminum alloys may be immune from chemical crack size effects. Further studies are cur-

rently underway to address this question.

Several possible reasons for the apparent difference in the small crack behavior of steel and

aluminum alloys can be hypothesized. First, it should be recognized that the data on steels and alu-

minum alloys have been generated under different environment and loading conditions. Specifically,
the aluminum small crack data have been obtained under deaerated conditions and an electrode

potential of -700 mV (versus the saturated calomel electrode, SCE), while the steel small crack data

have generally been conducted under aerated conditions and, in the case of Ref. [31 ], an electrode

potential of -550 mV SCE. In addition, most of the aluminum small crack data were obtained at high
load ratios (R), particularly in the important low AK regime, while the steel small cracks were

obtained at low load ratios. This difference in load ratios may be significant since it causes differ-

ences in the crack opening displacement. Analytical models for the evolution of the environment
within cracks indicate that the ratio of crack surface area to occluded solution volume is a

fundamental variable affecting the crack-tip environment [34].
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Figure 11.
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Second, the rate controlling process for environment-enhanced FCG may differ in steel and

aluminum alloys. Crack growth rates in steels are controlled by electrochemical reactions on the

freshly created metal at the crack tip [37]. Studies of aluminum alloys exposed to water vapor sug-

gest that the surface reaction in the aluminum-water system is relatively fast, so that transport of

water to the crack tip is the rate controlling process [38]. Unfortunately, specific results on the rate

controlling process for aluminum alloys in liquid water are not yet available. Thus, an assessment of

whether or not these fundamental differences in rate controlling processes account for the observed

differences in chemical crack size effect in these two alloy systems must await further elucidation of
the underlying kinetic mechanism(s).

MATERIALS DATA ISSUES

Scatter in Small Crack Data

Even when suitable analysis techniques are able to predict the central tendencies of small crack

data, the life prediction task may still be difficult. The remaining problem is the large amount of

scatter (sometimes several orders of magnitude) often observed in small crack growth rate data. This

leads to greater uncertainty in life calculations, especially when the small crack regime dominates the

total life. Analytical approaches based on simple upper bounds to the small crack regime, as sug-

gested earlier, may be unacceptably overconservative in some applications.
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At least three major sources of this apparent variability have been identified [ 19]. Some true

variability is due to stochastic microstructural effects: local differences in grain orientation, micro-

plastic yield strength, and grain boundary effects, which may become especially significant when the

crack driving force is small. On the other hand, some apparent variability is actually only an artifact

of measurement error. These errors become significant when the crack growth increment becomes

small relative to the measurement resolution. Finally, some apparent variability can be attributed to

mathematical averaging effects. The normal point-to-point variability is effectively averaged out for

most large cracks, when the crack travels a long distance during the measurement interval. Since the

small crack travels only a short distance during the measurement interval, this normal variability

becomes more evident (as it would be if large cracks were measured at much shorter intervals).

The appropriate treatment for small crack scatter depends, at least in part, on the origin of the

scatter. Some scatter which is only apparent can be effectively reduced with improvements in the

analytical schemes used to process the raw crack growth data, including data filtering and modified

incremental polynomial techniques [39]. However, other forms of scatter may require a formal sto-

chastic treatment of the data. Many stochastic FCG models are available in the literature. Unfortu-

nately, many of these models require extensive data of high statistical quality, which is often difficult

(expensive) to obtain for small cracks. Other stochastic FCG models designed for practical

engineering applications, such as the lognormal random variable (LRV) model, require fewer data

and simpler calculations. However, these models are often not able to address the unique scatter

associated with small cracks on a consistent basis with the reduced scatter associated with large

cracks. New stochastic FCG models are currently being investigated to address these issues. Figure
12 compares a modified LRV model [19] with the standard LRV approach for the HSLA-80 steel

data presented earlier.
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Stochastic treatments of large and small crack data for HSLA-80 steel,

based on conventional and modified lognormal random variable models.
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Small Crack Test Methods

Previous suggestions about practical engineering treatments of small cracks have usually

attempted to derive predictions of small crack growth rates from commonly available large crack

data. In some applications, however, this approach will not be adequate (e.g., for some

microstructurally-small cracks), and in other applications the need may arise to obtain further exper-

imental evidence for small crack behavior. Unfortunately, small crack growth rates cannot usually be

measured with the standard procedures developed for large cracks, such as the current ASTM Test
Method E 647 [40].

To address this dilemma, the Task Group on Small Fatigue Cracks within ASTM Committee

E 8 on Fatigue and Fracture is currently attempting to develop an appendix to Test Method E 647 to
provide guidelines for measuring the growth rates of small fatigue cracks. Since that document is

currently undergoing the balloting process required to become an official ASTM standard and has not

yet been formally approved, it is not prudent to provide specific details at this time. However, a few

general remarks are appropriate.

Complete, detailed test procedures are not prescribed. Instead, the appendix provides general

guidance on the selection of appropriate experimental and analytical techniques and identifies aspects
of the testing process that are of particular importance when fatigue cracks are small. Several differ-

ent crack length measurement techniques are permitted, and detailed descriptions of each are avail-

able in a recent ASTM STP [41]. Several different specimen geometries are suggested, including

rectangular or cylindrical surface crack specimens, comer-crack specimens, and part-through cracks

in edge-notched specimens. Special attention is given to issues such as surface preparation, crack
initiation sites, and calculation of AK and da/dN.

DISCUSSION

The small crack problem is certainly a complex and multidimensional subject. Occasional

confusion on the part of researchers about different types of small cracks and their appropriate exper-

imental or analytical treatment has added further to the complexity of the literature. This short

review paper, while attempting to better organize the complexity and point towards practical

analytical solutions, has inevitably oversimplified some of the intricate details. But that is the inevi-

table limitation of nearly any practical engineering treatment of a complex technical problem. The

goal is not to create universally precise theories, but rather to construct working engineering models
which predict, to a first order, the key characteristics of the phenomena under consideration, based on

fundamental understandings of the relevant scientific mechanisms.

Additional work is needed to develop further the analytical methods identified or proposed

here. Some of these needs have been highlighted in the text: practical engineering methods to

describe microstructurally-small crack growth at the subgrain size, clarification of the chemically-

small crack effect (or lack thereof) in aluminum alloys, statistical treatments of small crack behavior,

etc. Further verification testing and analysis is also required to confirm the applicability of these

methods to common airframe alloys for characteristic geometries and load histories.

Some other unsolved problems have not yet been mentioned in this paper. One challenge of

particular importance is variable amplitude loading. The great majority of previous small crack stu-

dies, including most of those referenced herein, have been limited to constant amplitude loading.

Variable loading effects on small cracks are not well understood as a result, but available studies have

suggested that variable amplitude loading can exacerbate the small crack effect [20, 42]. This may be
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due, at least in part, to changes in crack closure behavior for variable load histories outside the

small-scale yielding regime [43], but other microstructural effects may also be significant. Other out-

standing small crack issues include the proper treatment of crack dwell or crack arrest as an intrinsic

feature of microstructurally-small crack growth, and the characterization of crack closure in practical
airframe geometries such as fastener holes with residual stresses.

The practical relevance of small crack phenomena for engineering analysis of airframe struc.

tures has not yet been fully established. Further study of problems such as MSD in aging aircraft
should provide helpful guidance. In those applications where the growth of small cracks must be

considered, however, reliable analytical and experimental techniques are now available to perform

many of the required computations of damage growth with reasonable confidence.

CONCLUSIONS

. A proper identification of the type of small crack encountered is essential to choosing an appro-
priate analytical treatment.

.

.

Satisfactory scientific explanations for small crack behavior are now available, but some addi-

tional work is needed to develop satisfactory engineering treatments for all applications.

A practical engineering methodology for mechanically-small cracks includes extrapolation of

the large-crack Pads equation, with appropriate attention to changes in crack closure and plas-
ticity modifications to the crack driving force.

. Practical engineering methodologies for microstructurally-small cracks are less complete.

Available simple mechanics approaches may be useful, but will be inadequate in some applica-

tions. Micromechanics and phenomenological approaches provide valuable guidance, but ulti-

mately statistical or simple bounding approaches may be required.

. It is not entirely clear if aluminum alloys commonly used in airframe applications exhibit a sig-
nificant chemically-small crack effect.

.

.

Small cracks often exhibit significantly greater scatter in growth rates than large cracks due to
stochastic variations in the local microstructure, measurement error, and decreased mathemat-

ical averaging. Alternative analytical techniques may be required to address this variability.

Guidelines for small crack test methods are becoming available.
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