"SPACE SCIENCE IN THE 1990'S AND BEYOND"

by

Wesley T. Huntress, Jr.¹
Associate Administrator for Space Science
Office of Space Science
NASA Headquarters
Washington, DC 20546

ABSTRACT

NASA's Office of Space Science is changing its approach to our missions, both current and future. Budget realities are necessitating that we change the way we do business and the way we look at our role in the Federal Government. These challenges are being met by a new and innovative approach that focuses on achieving a balanced world-class space science program that requires less resources while providing an enhanced role for technology and education as integral components of our Research and Development (R&D) programs.

INTRODUCTION

These are exciting times in Space Science. This is a time when the national environment is causing us to rethink many of the fundamental assumptions we've made about Space Science and adjust our program to accommodate to new realities and expectations. In fact, that's what this era in NASA and Government is all about -- adjusting to new realities and expectations.

Space science is in the process of pulling together a new strategic plan, one that is fully integrated into the Agency's new overall strategic plan, and one that brings us forward from the old space science plan that was hashed out at Woods Hole, Massachusetts, in 1991.

A key component of our new strategy is a greater reliance on our industry and research partners. These bold new partnerships are an outgrowth of the Clinton Administration's new priorities and the changing budget environment facing the Federal Government.

¹ with Mary E. Kicza, Assistant Associate Administrator for Space Science (Technology), and T. Jens Feeley, Policy Analyst, NASA Headquarters

They reflect the new reality confronting us all: we must work together and rely on each other more than ever to achieve our goals. Together we are forging a new approach to space exploration that will likely mean the difference between failure and success.

CHANGING BUDGET ENVIRONMENT

The world in which we operate has changed significantly since 1991, and now instead of arguing over how to divide up an ever-increasing budget as it was then, the central issue facing space science now is how to trim our ambitions to deal with a declining projected budget. In the period from fiscal year (FY) 1986 through FY 1991, the space science budget experienced large growth from year to year. In fact, over that timeframe, the overall budget increased by almost 65 percent (in real year dollars). It was during this period of growth that most of our current major missions were approved.

But, things started changing just after Woods Hole. During the period 1992 through 1994, we experienced a transition -- from high growth to arrested growth. In the last few years, we have seen the cancellation of some, and the restructuring of most of our major missions, and we have seen additional losses in supporting programs like tracking and data handling which are so important to the overall success of our missions.

In addition, our plans for new missions have not been realized. When we met at Woods Hole almost 3 years ago, we laid out a new mission queue for space science -- one that was based on a more moderate rate of growth than we had experienced in the years immediately preceding 1991. We were basing our program planning on about 7 percent real growth. This
assumption was almost instantly proven incorrect. It is clear that a declining budget for NASA beyond FY 1995 is possible, though I am not ready to say that it is probable. But, in these tough fiscal times, the best we can realistically hope for is that the NASA budget will remain flat over the next few years.

OTHER NASA PRIORITIES

Within NASA, there are a number of other high priorities that are also searching for outyear funding. The human space flight program, consisting of the Space Shuttle and Space Station, remains one of NASA's highest priorities, and there is concern that there is no cushion left in the Shuttle budget to accommodate further cuts without impacting safety. On top of that, funding is scheduled to increase over the next couple of years for two other high priority areas, namely the Mission to Planet Earth and Aeronautics programs, that are of particular interest to the Clinton administration. Given a flat budget for the agency and the desire to increase MTE and Aeronautics, NASA is facing the likelihood that it will reduce funding in the area of space science.

THE NEW REALITY

The fact is that the principal difference between the space science program of the past decade and the space program of the next decade is the economy. Not only is this new reality constraining the size of our appetites, it is conditioning the expectations of our ultimate customer, the American taxpayer.

The result then of a realistic assessment of the current economic environment yields the following:

- The total size of the Federal investment in R&D will probably not grow in real terms.
- Within NASA, while R&D may grow as a percentage of the budget, some real growth might be expected in some areas (notably Earth Science and Aeronautics consistent with national emphasis on the environment and competitiveness), space science can expect a flat budget at best.

In addition, while the value of the space science program as an element of basic science will continue to be recognized, the expectations of the taxpayer will mandate a change in the way the business of space science is conducted with new emphasis on improvements in education and enhancement of competitiveness.

THREE-PRONGED APPROACH

As a direct response to this new economic reality and new expectations, the Office of Space Science has embarked upon the development of a new strategy for space science that now comes in three parts:

1. A mission/program strategy that continues discovery, exploration, and expansion of knowledge, and provides inspiration and vision, but does it with an emphasis on doing “more with less” and doing missions that are “smaller, quicker and cheaper”;

2. An integrated technology strategy that provides for the formulation of a partnership between the Office of Space Science and Office of Advanced Concepts and Technology (O-ACT) in achieving national objectives for the development and transfer of technologies to industry; and,

3. An integrated education strategy that provides for a partnership between the Office of Space Science and NASA’s Office of Education in achieving national objectives for improving science and math literacy by taking advantage of characteristics intrinsic to the space science programs and its participants.

I would like to say a few words about our current activities and emphasis in each of these three strategic thrust areas.

PROGRAMMATIC STRATEGY

With respect to our program strategy, our focus has been on adjusting the ongoing program to accomplish two objectives:

1) Complete as much as can be afforded
2) Make room for new initiatives
To date, our efforts have focused on adjusting the Advanced X-ray Astrophysics Facility (AXAF) and Cassini missions, where we’ve managed to delete 30 percent of the development cost to go on both missions and more than 50 percent of the projected operations cost on AXAF. In the near future, we will be reviewing the Jet Propulsion Laboratory (JPL) response to our challenge to reduce Mission Operations and Data Analysis (MO&DA) cost for Cassini by 50 percent.

While we have suffered some setbacks in recent years, notably the loss of the Comet Rendezvous Asteroid Flyby (CRAF) mission and the spectroscopy portion (AXAF-S) of the original AXAF mission, we hope to recover much of what was lost through cooperative efforts with Europe and Japan, respectively.

In addition to these adjustments, we have been modifying our strategy for other missions, not yet contained in our program runout, in order to make them more digestible. For example, the Thermosphere, Ionosphere, Mesosphere Energetics and Dynamics or TIMED mission has been restructured from billion dollar class down to Explorer class, while the Pluto flyby and the Space Infrared Telescope Facility or SIRTF missions are now down to one-half billion-class.

TECHNOLOGY’S ROLE

I want to make it clear that when I am talking about lower cost spacecraft in the context of space science, I do not mean lower cost because we use off-the-shelf hardware. There may be good reasons to go this route if you are operationally oriented and use spacecraft only as means to some application — such as communications, weather, or environmental applications. But if you believe that you are a pioneer, an explorer, a developer, then I believe this is precisely the wrong approach to lower the cost of a spacecraft. If you are a pioneer and a developer, then you want to be at the frontier of technology, constantly pushing at the edge to get more capability for less cost.

There is a mentality in the aerospace business which says that low cost necessarily means off-the-shelf because new technology implies high risk or high cost or both. This is one of those mind sets that creeps into an aging, conservative enterprise and becomes dogma. I believe it is wrong. To allay the fear of using new technology, it is only necessary to assure that you have done enough testing to be ready to take prudent risk in utilizing it. The extra cost that it may take in testing new technology should be more than balanced by the savings this new technology enables in the development phase.

In space science we can no longer afford to be conservative if we are to survive. We have to inject additional life and excitement into what we are doing. In my opinion, building spacecraft and instruments out of tinker toys from a box off the shelf is not what NASA was intended to be. Developing new technology, pushing to the edge of what is thought possible, that is what NASA was intended to be.

In the U.S., we have to provide the Nation — our customer — what it wants, and our public needs to perceive that NASA is pushing the frontiers of science and technology and taking prudent risks for major gain. That is why the public has always admired NASA and it is what made NASA stand out from other parts of the Government that are overly mired in the issues of today rather than the promise of tomorrow. If there is no excitement or adventure in what we do, if we are not expanding physical and technological horizons, then NASA will be perceived as uninspiring and nothing more than a burden on the taxpayer.

We in space science need to be developers again, not just assemblers. We need to once again believe in our own ability to take prudent risk and to try the hard things. We need not to be afraid to try new technology. In fact, we should and are seeking the opportunity to do more to assist the Nation in the search for new and better technologies.

TECHNOLOGY STRATEGY

In our efforts to play a more active role in technology, the Office of Space Science recently completed an Integrated Technology Strategy. This strategy identifies four goals for space science to accomplish in partnership with NASA's Office of Advanced Concepts and Technology or OACT:
1) Identification and support of promising new technologies with emphasis on dual use (Government and private sector);

2) Infusion of technologies into space science programs in the interest of more efficient and effective science but also using science missions as a technology validation mechanism;

3) Transfer of technologies to the private sector, and,

4) Development of partnerships among industry, academia and Government to serve both Space Science and private needs.

There are ongoing activities in each of these areas. They include the flight of a commercially provided gyro on the X-ray Timing Explorer (XTE), using XTE as a flight testbed.

Mars Pathfinder will serve as a science and engineering test of the entry, descent, landing, and deployment systems for future small Mars landers. It will combine rough landing techniques developed by the former Soviet Union and the U.S. defense industry with safety ideas derived from the U.S. auto industry. The Mars Pathfinder delivery system will consist of an aeroshell, a parachute, a set of very small retro rockets, and inflatable airbags that deflate after impact on the surface.

Pathfinder’s microrover technology will open new windows on space exploration by using microtechnology, automation, and advances in thermal control technologies. The Mars Pathfinder microrover design combines mobility with sensory perception; it will “see, touch, taste and smell” for us on the surface of Mars. The 40-minute message “trip time” from Earth to Mars makes autonomous operation of the microrover mandatory. Three-dimensional images of the Martian landscape will be sent to Earth. Proposed microrover routes will then be relayed back to the microrover, which will then carry out its instructions as planned. The microrover will be equipped to handle unexpected circumstances, including the use of autonomous “if-then” scenarios to avoid obstacles and unforeseen problems. In the future, we hope to build on what we learn with the Mars Pathfinder microrover to develop even more advanced rovers with increased autonomy and versatility that could be used for sample collection and instrument deployment.

There is also the example of the partnership between Caltech/JPL, NASA and Cray Computers in the development of commercially useful applications on Cray’s new generation of massively parallel processors.

EDUCATION STRATEGY

Our education strategy is in its formative stages but it’s already apparent that it will also articulate a new way of doing business. It will call for a partnership between Space Science and NASA’s Office of Education in achieving NASA’s objectives in support of the national education goals first articulated by the Federal Coordinating Council on Science, Engineering and Technology (FCCSET), Committee on Education and Human Resources and now in preparation by the National Science and Technology Council (NSTC) Committee on Education and Training. It will put renewed emphasis on kindergarten through 12th grade education and on the use of technology to broaden the impact of space science education efforts.

RECENT EVENTS

So, in every instance activities are underway to achieve a new vision for space science. I’m pleased to say that it has already shown results. In the FY 1994 budget, the Discovery program was initiated with the Near Earth Asteroid Rendezvous (NEAR) and the Mars Pathfinder missions, but I believe the FY 1995 budget reflects a true endorsement of the new space science approach with the initiation of the Mars Surveyor Program.

The program is built around the principal of distributed risk and frequent access. It requires a technology investment in order to achieve its low cost and scientific objectives. It will take advantage of industrial capabilities to the extent that they exist and require participation of the private sector for technology transfer and an educational initiative for each element. I believe the inclusion of this initiative in the President’s proposed FY 1995 budget is an endorsement of the new way of doing business.
in space science. I am convinced that if the Congress echoes that endorsement, we in NASA's Office of Space Science as well as our partners in the space science community, are committed to reshaping all of space science for the future.

OUTLOOK

So, specifically, what are the strategic priorities for space science over the next decade? What can we realistically hope to accomplish given our new outlook?

The cornerstones of our approach in the Office of Space Science will include the following:

1) Our highest priority will continue to be the completion of missions currently operating or under development. We will establish a renewed commitment to living within defined cost and performance envelopes, while realizing the full science potential of our existing missions.

2) Where feasible, we will initiate new programs of modest size to maintain U.S. leadership in space science and to continue the rate of discovery and knowledge.

To achieve this first priority we must foster a renewed commitment to a program management discipline that requires us live within defined cost and performance envelopes. Failure to abide by this new cost ethic will be the death of our programs, especially with NASA's new program management directives which mandate a formal Administration-level review whenever a program overruns its initial cost estimate by 15 percent.

Our strategy for future additions to space science will clearly emphasize small missions which will enable frequent access to space for continued exploration and discovery. Our future plan will be to:

1) Maintain the Explorer program;
2) Add the continuation of the Discovery Series; and
3) Initiate the Solar-Terrestrial Probe Series

We currently have approval for only the first two Discovery missions — we must have this important new approach to planetary missions sustained as an on-going, level-of-effort program. We will be working to get approval to launch Discovery follow-on missions (using Delta or smaller expendable launch vehicles) every 12 to 15 months within cost-capped development program of $150 million (in FY1992 dollars) or less per mission. The announcement of opportunity or AO for the third Discovery mission has been released in draft, and we anticipate releasing the formal AO next month.

In the case of the Explorer program, we will be releasing the AO for the next set of Small Explorers later this year. We are moving forward with both of these programs and we will be working to make sure they continue into the future.

While it is not in our 1995 budget request, the Solar-Terrestrial Probes program remains the highest priority for a new start in the outyears. We hope to move forward with this program as early as next year, should funding permit. We hope to launch a series of three Solar Terrestrial Probes by 2001, each with development costs of less than $100 million.

The proposed Mars Surveyor program I mentioned before calls for a start in 1995 of development for a small orbiter that will be launched in November 1996 to study the surface of the Red Planet. This new Mars Surveyor program be an aggressive series of orbiters and landers that will take advantage of launch opportunities about every 2 years as Mars comes into alignment with Earth. The first orbiter will be small enough to be launched on a Delta II and will carry roughly half of the science payload that flew on Mars Observer. Future orbiters and landers will be even smaller, making possible launches on the new Med-lite launch vehicle.

All three of these programs provide a strong base of science, a constant stream of important data, that will serve to maintain the space science research base of our country far into the next century.

We must also provide for major advances in the frontiers of space science. By this I mean that we hope to start an Infrared Astronomy Initiative that would encompass the Stratospheric Observatory for Infrared
Astronomy (SOFIA) and what used to be called the Space Infrared Telescope Facility (SIRTF). We will also be looking to start a Pluto Fast Flyby mission to complete the reconnaissance of the solar system, and a Solar Probe program to complete the reconnaissance of the Sun.

In this regard, we have already agreed to jointly study future Mars, Pluto and Solar Probe missions with the Russians and we will be contacting other nations to foster further discussions for international collaboration on these important missions.

Which brings up another important pillar of our strategic planning, namely, that we must, now more than ever, leverage our investments in space science through international cooperation. Throughout the history of space science, about 70 to 80 percent of our missions have had some sort of international component. In the 1990s and beyond, we need to build on that strong historical base and take advantage of new opportunities to improve scientific return of NASA missions through international cooperation (determined by foreign agency priority and funding availability).

The realities of the 1990s are that all spacefaring nation's are struggling to maintain their programs in these difficult economic times. We must work together if we are to succeed.

Just as an example, we formed the International Mars Exploration Working group (IMEWG) last year. The charter of this group is to serve as discussion forum for various nations interested in Mars exploration. Its goal is to keep everyone informed so that we can avoid duplication of effort and discuss potential areas for collaboration/cooperation on Mars exploration. It is developing into a strong mechanism for exchanging ideas and information, and may well facilitate actual cooperation over the long-run. We have already had two meetings, and we expect that the first recommendations on an international strategy for Mars exploration and a future International Mars Network will be presented to the Committee on Space Research or COSPAR in July 1994.

CONCLUSION

Already, just as our new approach is coming together, we see some positive signs. The FY 1995 budget request is a good first step. I believe the real success of our new strategy will be measured with the start of missions originally conceived as $1 billion plus missions in the past, but are currently reconstituted to fit new economic constraints and yet signal our intention not to relinquish our leadership in Astronomy and Outer Planet Exploration.

While the task may seem daunting, there are clear signs of encouragement from many quarters, both within and outside of NASA. I think we have accomplished a lot already in circumstances that, at the time, appeared very grim. The 1995 Budget is a good budget for space science and I am looking forward to equally good budgets in the future.

In closing, I just want to reiterate that while we do have some challenges before us, space science clearly has a future. By working with our industry and research partners, and by being innovative in our thinking, we can make that future especially bright. Our future lies in a common approach, one that brings all of America's best and brightest groups together. The old ways of getting the job done are not consistent with the new and emerging world we live in. NASA has always been at the forefront -- to remain there we must and will change.
ABES 94
10th Annual

Technical and Business
Exhibition and Symposium

May 10 - 11, 1994
Von Braun Civic Center
Huntsville, Alabama

BRIEFING ON
THE BUSINESS ROUNDTABLE
K - 12 INITIATIVE

BY
CHRISTOPHER T. CROSS
DIRECTOR, EDUCATION INITIATIVE
THE BUSINESS ROUNDTABLE
1615 L STREET N.W.
SUITE 1100
WASHINGTON, DC 20036-5601

TABES Paper
No. 94 - 301

TABES Sponsored Annually by

Huntsville Association of Technical Societies

P.O. Box 1964
Huntsville, Alabama 35807
Telephone: 205-837-4287
Fax: 205-837-4275

For permission to copy or republish, contact HATS at above address.
The Systemic Solution

- All Children Can Learn
- Performance Based Assessment
- Rewards and Penalties
- Site-Based Management
- Staff Development
- Quality Pre-K
- Health and Social Services
- Technology

Essential Components
The Roundtable Education Status
1994

- Launched September 26, 1989
- 180 CEOs
- Activity:
 - 29 States — Significant Activity
 - 13 States — Moderate Activity
 - 7 States — Little Activity
National Education Goals For the Year

All the children will start school ready to learn.

The high school graduation rate will increase to at least 90 percent.

All the children will start school ready to learn.

2000 National Education Goals For theYear
National Education Goals For the Year 2000 (Continued)

- American Students Will Rank First In Mathematics And Science.
- Every Adult American Will Be Literate, With The Knowledge And Skills To Compete In A Global Economy And Exercise The Rights And Responsibilities Of Citizenship.
- Every School Will Be Free Of Drugs And Violence And Offer A Disciplined Environment Conducive To Learning.
The Business Roundtable Education Initiative

Mission

• CEO-Led, 50-State, Decade-Long Initiative
• Join or Establish a Coalition with Governors and Others
• Develop and Implement a Public Policy Agenda to Achieve the National Education Goals
• Address all Essential Components of a Successful Education System
• Provide Ongoing Education, Publications, State Assistance
History

- June 5, 1989: Annual Roundtable Meeting
 Presidential Challenge
- September 26, 1989: Response to the President
- September 27-29: White House Summit with the Governors in Charlottesville
- February 25, 1990: NGA Announces National Goals
- Spring 1993: Reform Legislation Enacted in Ohio, Missouri and Washington
- Summer 1993: Reform Act Signed in Massachusetts
The Business Roundtable Education Task Force Membership

<table>
<thead>
<tr>
<th>Joseph T. Gorman, Chairman</th>
<th>Richard B. Fisher</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRW, Inc.</td>
<td>Morgan Stanley Group</td>
</tr>
<tr>
<td>Paul A. Allaire</td>
<td>H. Laurance Fuller</td>
</tr>
<tr>
<td>Xerox Corporation</td>
<td>Amoco Corporation</td>
</tr>
<tr>
<td>Rand Araskog</td>
<td>Gaynor N. Kelley</td>
</tr>
<tr>
<td>ITT Corporation</td>
<td>Perkin-Elmer Corporation</td>
</tr>
<tr>
<td>John L. Clendenin</td>
<td>Robert D. Kennedy</td>
</tr>
<tr>
<td>BellSouth Corporation</td>
<td>Union Carbide Corporation</td>
</tr>
<tr>
<td>John J. Curley</td>
<td>Reuben Mark</td>
</tr>
<tr>
<td>Gannett Co., Inc.</td>
<td>Colgate-Palmolive Company</td>
</tr>
<tr>
<td>Joseph L. Dionne</td>
<td>Joseph Neubauer</td>
</tr>
<tr>
<td>McGraw-Hill, Inc.</td>
<td>ARA Services, Inc.</td>
</tr>
<tr>
<td>Walter Y. Elisha</td>
<td>Paul H. O’Neill</td>
</tr>
<tr>
<td>Spring Industries, Inc.</td>
<td>Aluminum Company of America</td>
</tr>
</tbody>
</table>
Task Force Membership

The Business Roundtable Education

The Boeing Company
Frank A. Shrontz
CPC International, Inc.
Charles Shoenemate
Northwestern Mutual Life Ins. Co.
Donald J. Schunke
Circuit City Stores, Inc.
Richard Sharp
Cummins Engine Co., Inc.
Henry B. Schacht
The Kroger Company
Joseph Pichler
UNUM Corporation
James Orr III
The Education System has not changed for almost 100 years. Many people know what needs to be done to increase student achievement across the board, yet the system remains resistant to change. The question is, how do we get the change to happen?
REALITY GAP: STUDENTS, PARENTS AND EMPLOYERS DISAGREE

<table>
<thead>
<tr>
<th>Skill</th>
<th>Students</th>
<th>Parents</th>
<th>Employers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Read well</td>
<td>78</td>
<td>67</td>
<td>30</td>
</tr>
<tr>
<td>Write well</td>
<td>66</td>
<td>56</td>
<td>12</td>
</tr>
<tr>
<td>Know math</td>
<td>71</td>
<td>65</td>
<td>22</td>
</tr>
<tr>
<td>Understand instructions</td>
<td>78</td>
<td>70</td>
<td>33</td>
</tr>
<tr>
<td>Solve complex problems</td>
<td>57</td>
<td>48</td>
<td>10</td>
</tr>
<tr>
<td>Motivated to work well</td>
<td>69</td>
<td>69</td>
<td>25</td>
</tr>
<tr>
<td>Dedication to work</td>
<td>73</td>
<td>67</td>
<td>20</td>
</tr>
<tr>
<td>Disciplined work habits</td>
<td>70</td>
<td>54</td>
<td>19</td>
</tr>
</tbody>
</table>

SOURCE: Committee for Economic Development

✓ Students and their parents feel that high school graduates are entering the workforce with the necessary academic skills to succeed on the job.

✓ Employers take nearly the opposite view.
COMPREHENSIVE CHANGE

STUDENT SUCCESS FOCUS

SCHOOL-PARENT-COMMUNITY DECISIONMAKING

NECESSARY HEALTH AND SOCIAL SERVICES

HIGH EXPECTATIONS FOR STUDENTS

MEANINGFUL CURRICULUM

QUALITY PRE-K THROUGH 12 ACADEMICS

ALL CHILDREN CAN LEARN

EXTENSIVE PROFESSIONAL DEVELOPMENT AND TRAINING

ASSESSMENT/BENCHMARKS

SCHOOL INCENTIVES/REWARDS

LEARNING THROUGH TECHNOLOGY

CHILD ADVOCATES

ESSENTIAL COMPONENTS
International Comparisons

Age 13 Science 1991

<table>
<thead>
<tr>
<th>Position</th>
<th>Country</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Switzerland</td>
<td>70.8</td>
</tr>
<tr>
<td>2.</td>
<td>Italy</td>
<td>69.9</td>
</tr>
<tr>
<td>3.</td>
<td>Canada</td>
<td>68.8</td>
</tr>
<tr>
<td>4.</td>
<td>France</td>
<td>68.6</td>
</tr>
<tr>
<td>5.</td>
<td>Scotland</td>
<td>67.9</td>
</tr>
<tr>
<td>6.</td>
<td>Spain</td>
<td>67.6</td>
</tr>
<tr>
<td>7.</td>
<td>United States</td>
<td>67.0</td>
</tr>
<tr>
<td>8.</td>
<td>Ireland</td>
<td>63.3</td>
</tr>
<tr>
<td>9.</td>
<td>Portugal</td>
<td>62.6</td>
</tr>
<tr>
<td>Rank</td>
<td>Country</td>
<td>Score</td>
</tr>
<tr>
<td>------</td>
<td>---------------</td>
<td>-------</td>
</tr>
<tr>
<td>1</td>
<td>Switzerland</td>
<td>70.8</td>
</tr>
<tr>
<td>2</td>
<td>France</td>
<td>64.2</td>
</tr>
<tr>
<td>3</td>
<td>Italy</td>
<td>64.0</td>
</tr>
<tr>
<td>4</td>
<td>Canada</td>
<td>62.0</td>
</tr>
<tr>
<td>5</td>
<td>Scotland</td>
<td>60.6</td>
</tr>
<tr>
<td>6</td>
<td>England</td>
<td>60.6</td>
</tr>
<tr>
<td>7</td>
<td>Ireland</td>
<td>60.5</td>
</tr>
<tr>
<td>8</td>
<td>Spain</td>
<td>55.4</td>
</tr>
<tr>
<td>9</td>
<td>United States</td>
<td>55.3</td>
</tr>
<tr>
<td>10</td>
<td>Portugal</td>
<td>48.3</td>
</tr>
</tbody>
</table>
International Comparisons
Graduation Rank From Upper Secondary School

1. Finland
2. Denmark
3. Japan
4. Norway
5. CSFR
6. Hungary
7. Switzerland
8. Austria
9. Netherlands
10. Sweden
11. France
12. Ireland
13. United Kingdom
14. United States
15. Canada
International Comparisons

Age 14 Reading 1991

1. Finland 545
2. France 531
3. Sweden 529
4. New Zealand 528
5. Switzerland 515
6. Iceland 514
7. United States 514
8. Germany 501
9. Denmark 500
10. Portugal 500
Demographic Data

• 2010 Growth (Under 18)
 - Non-White Up 4.4 Million and Whites Down 3.8 Million
 - 8 Million Immigrants in 1990s from:
 - Mexico
 - Philippines
 - Korea
 - India
 - Cuba
 - D.R.
 - China
 - Jamaica
 - Canada

• 1990 - 2000 Population Growth
 - 0-4 Years = -9%
 - 100+ = +170%
 - 210 People Per Week Reach 100!
Demographic Data

- Rate of Incarceration - U.S. 1980 - 1990:
 - 82% Are High School Drop Outs and Cost $20,000 Per Year

- Two Million Children Are Not Being Raised by Either Parent
 - 450,000 by Grandparents

- 20% of 1986 College Graduates Obtained Jobs Requiring No College Training
Demographic Data

- In California by 1995, 52.1% of High School Graduate Will Be Minority. 41% increase in Total Number of Kids by 2000.

- 1980-1990 Growth:
 - U.S. 9.8%
 - White 6.0%
 - Black 13.25%
 - Asian 107.8%
 - Hispanic 53.6%

- In 1992, More Muslims than Episcopalians.
Demographic Data

• Percentage of Population under 18:
 1970 34%
 1990 26%
 2000 25%

• 1980 - 1990:
 17% Increase in Couples Without Children
 1% Increase in Couples With Children

• Number of Prisoners in U.S. 1980 - 1990:
 1980 466,371
 1990 1,115,111
United States of America Background Information

Percent Children Not Living With A Parent 4.3% 1990
Percent Population Under Age 18 That Is Minority 30.9% 1990
Percent Of Children With Both Or Only Parent In The Labor Force 61.0% 1990
United States of America Background Information (cont’d)

<table>
<thead>
<tr>
<th>Indicators</th>
<th>Percent Change Over Time</th>
<th>Trend Data: 1980 1990</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percent Children in Poverty</td>
<td>22% Worse</td>
<td>16.0 19.5</td>
</tr>
<tr>
<td>Percent Children in Single Parent Families</td>
<td>13% Worse</td>
<td>21.3 24.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Country</th>
<th>As a percent of GDP</th>
<th>Constant 1988-89 U.S. dollars</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canada</td>
<td>3.8</td>
<td>3,508</td>
</tr>
<tr>
<td>Denmark</td>
<td>4.5</td>
<td>4,035</td>
</tr>
<tr>
<td>Finland</td>
<td>4.1</td>
<td>3,688</td>
</tr>
<tr>
<td>Ireland</td>
<td>3.8</td>
<td>1,473</td>
</tr>
<tr>
<td>Luxembourg</td>
<td>4.0</td>
<td>4,911</td>
</tr>
<tr>
<td>Norway</td>
<td>4.3</td>
<td>3,846</td>
</tr>
<tr>
<td>Sweden</td>
<td>4.4</td>
<td>4,899</td>
</tr>
<tr>
<td>Switzerland</td>
<td>3.7</td>
<td>4,737</td>
</tr>
<tr>
<td>United States</td>
<td>3.4</td>
<td>3,917</td>
</tr>
</tbody>
</table>
The Strategy For Putting The Nine Points In Place Is Dictated By Two Forces

Practical Considerations

Political Considerations
Because Of The Relationship Of Each Of The Nine Points To Others

All Of Them Must Be In Place For The System To Work
Lessons Learned

- Need New Model For Business Involvement: Long-Term, Systematic, Political
- Educate Ourselves First, Then Approach Stakeholders
- Defining A Vision Is Easier Than Developing A Strategy
- Stick To The Agenda
- Start With Your Corporation
Communication Objective

- To humanize the problem of America's failure to adequately develop its children and to motivate citizens to take action
Challenges

- Hope vs Helplessness
- Individual Responsibility vs Collective Responsibility
- Them vs Us
Challenges

- "Jolt" the disinterested into concern
- Remind ordinary Americans of their ability to accomplish extraordinary things
TECHNOLOGY REINVESTMENT PROJECT

BY

DR. H. LEE BUCHANAN
ADVANCED RESEARCH PROJECTS
DEFENSE SCIENCE OFFICE
3701 N FAIRFAX DRIVE
ARLINGTON, VA 22203-1414

TABES Paper
No. 94 - 402

TABES Sponsored Annually by

Huntsville Association of Technical Societies

P.O. Box 1964
Huntsville, Alabama 35807
Telephone: 205-837-4287
Fax: 205-837-4275

For permission to copy or republish, contact HATS at above address.
TECHNOLOGY REINVESTMENT PROJECT
DEPLOYMENT ACTIVITY AREAS

LESSONS LEARNED WORKSHOPS
PRESENTATION MATERIALS
AND FINAL ATTENDANCE LISTS

OAKLAND, CA, MARCH 2, 1994
AND
ATLANTA, GA, MARCH 9, 1994

MARCH 28, 1994
CONTENTS

Agenda for Oakland and Atlanta

TRP Deployment - Proposals Selected for Negotiation

Manufacturing Extension Partnership Management Regions

Data on Selection and Selected Proposals and Outcomes of the Selection Process

Selection Process and Criteria

Key Issues of Content

Key Issues of the Process

Partnerships

Example - Georgia Manufacturing Technology Extension Center

Breakout Sessions
 - Manufacturing Extension Service Providers
 - Extension Enabling Services
 - Technology Access Services
 - Alternative Deployment Pilot Projects

Final Attendance Lists for Oakland and Atlanta

List of Others Receiving Proceedings
Agenda

for

Oakland and Atlanta
LESSONS LEARNED WORKSHOP
University of California
300 Lakeside Drive
Oakland, CA
March 2, 1994

There will be opportunities for questions in limited numbers during the morning session. The afternoon break-out sessions are designed to address questions in depth, and ample time is allowed in the afternoon sessions for such discussions.

8:00 - 9:00 am Registration - Kaiser Center, Auditorium, 2nd Floor
9:00 - 9:30 am Welcome Calvin Moore
9:30 - 9:45 am Data on selection and selected proposals Frank Penaranda
Outcomes of the selection process
9:45 - 9:55 am Selection Process and Criteria Phil Nanzetta
10:15 - 10:30 am Key Issues of Process Tom Starke
• Structure of the proposal
• Structure of the site visit

Very brief break by stretching in place - coffee available

10:35 - 10:45 am Partnerships Frank Penaranda
10:45 - 12:00 pm Three Examples
• Georgia Manufacturing Technology Extension Center (MESp)
• Agile Web (ADPP)
• Iowa Metal Casting (EES)

12:00 - 1:00 pm Lunch

1:00 - 4:00 pm Break-out Sessions (coffee available mid-afternoon)
• Manufacturing Extension Service Providers Phil Nanzetta
 (California Room)
• Extension Enabling Services Frank Penaranda
 (Lakeview Club, Treffan Room)
• Technology Access Services Tom Starke
 (Lake Merritt Hotel, Paramount Room)
• Alternative Deployment Pilot Projects John Fenter
 (Auditorium)
Technology Reinvestment Project
Deployment Activity Areas

Lessons Learned Workshop
Georgia Tech Campus
Atlanta, GA
March 9, 1994

There will be opportunities for questions in limited numbers during the morning session. The afternoon break-out sessions are designed to address questions in depth, and ample time is allowed in the afternoon sessions for such discussions.

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
<th>Speaker</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:00-9:00</td>
<td>Registration - Theatre of the Arts Auditorium, Bldg. 63</td>
<td></td>
</tr>
<tr>
<td>9:00-9:30</td>
<td>Welcome</td>
<td>Mike Kelly</td>
</tr>
<tr>
<td>9:30-9:45</td>
<td>Data on selection and selected proposals</td>
<td>Frank Penaranda</td>
</tr>
<tr>
<td></td>
<td>Outcomes of the selection process</td>
<td></td>
</tr>
<tr>
<td>9:45-9:55</td>
<td>Selection Process and Criteria</td>
<td>Phil Nanzetta</td>
</tr>
<tr>
<td>9:55-10:15</td>
<td>Key Issues of Content</td>
<td>Phil Nanzetta</td>
</tr>
<tr>
<td>10:15-10:35</td>
<td>Key issues of process</td>
<td>Tom Starke</td>
</tr>
<tr>
<td></td>
<td>- Structure of the proposal</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Structure of the site visit</td>
<td></td>
</tr>
<tr>
<td>10:35-10:45</td>
<td>Partnerships</td>
<td>Frank Penaranda</td>
</tr>
<tr>
<td>10:45-12:00</td>
<td>Three Examples</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Georgia Manufacturing Technology Extension Center (MESP)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Agile Web (ADPP)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Iowa Metal Casting (EES)</td>
<td></td>
</tr>
<tr>
<td>12:00-1:00</td>
<td>Lunch (Student Center Ballroom)</td>
<td></td>
</tr>
<tr>
<td>1:00-4:00</td>
<td>Break-Out Sessions</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Manufacturing Extension Service Providers</td>
<td>Phil Nanzetta</td>
</tr>
<tr>
<td></td>
<td>(Theatre of the Arts)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Extension Enabling Services</td>
<td>Frank Penaranda</td>
</tr>
<tr>
<td></td>
<td>(Richards Gallery)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Technology Access Services</td>
<td>Tom Starke</td>
</tr>
<tr>
<td></td>
<td>(Westbrook Gallery)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Alternative Deployment Pilot Projects</td>
<td>John Fenter</td>
</tr>
<tr>
<td></td>
<td>(Student Center Theatre)</td>
<td></td>
</tr>
</tbody>
</table>
TRP Deployment
Proposals Selected
for
Negotiation
<table>
<thead>
<tr>
<th>No.</th>
<th>Activity Area</th>
<th>Title</th>
<th>Proposer</th>
<th>City</th>
<th>St.</th>
<th>Executing Agency</th>
<th>Announcement Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TAS</td>
<td>Alaska Technology Transfer Assistance Center (ATTAC)</td>
<td>University of Alaska SBDC</td>
<td>Anchorage</td>
<td>AK</td>
<td>NASA</td>
<td>11/24/93</td>
</tr>
<tr>
<td>2</td>
<td>ADPP</td>
<td>Technology Deployment Through Manufacturing Networks</td>
<td>Arkansas Rural Enterprise</td>
<td>Morrilton</td>
<td>AR</td>
<td>NIST</td>
<td>2/23/94</td>
</tr>
<tr>
<td>3</td>
<td>MESP</td>
<td>Arizona Applied Manufacturing Center</td>
<td>Maricopa County Community College District (MCCCD)</td>
<td>Tempe</td>
<td>AZ</td>
<td>NIST</td>
<td>11/24/93</td>
</tr>
<tr>
<td>4</td>
<td>TAS</td>
<td>Composites Technology Deployment</td>
<td>Cerritos College (CA)/Great Lakes Composite Consortium</td>
<td>Cerritos</td>
<td>CA</td>
<td>DOD</td>
<td>2/23/94</td>
</tr>
<tr>
<td>5</td>
<td>MESP</td>
<td>California MTC to Help 300 Defense Suppliers Diversify to Dual Use</td>
<td>California MTC</td>
<td>Hawthorne</td>
<td>CA</td>
<td>NIST</td>
<td>10/22/93</td>
</tr>
<tr>
<td>6</td>
<td>ADPP</td>
<td>Smart Valley Commerce Net</td>
<td>Enterprise Integration</td>
<td>Palo Alto</td>
<td>CA</td>
<td>DOD</td>
<td>11/24/93</td>
</tr>
<tr>
<td>7</td>
<td>ADPP</td>
<td>Aerogel Commercialization Pilot Project</td>
<td>Aerojet General Corp.</td>
<td>Rancho Cordova</td>
<td>CA</td>
<td>DOE</td>
<td>11/24/93</td>
</tr>
<tr>
<td>8</td>
<td>TAS</td>
<td>Pollution Prevention Center</td>
<td>Institute for Research and Technical Assistance</td>
<td>Santa Monica</td>
<td>CA</td>
<td>NIST</td>
<td>11/24/93</td>
</tr>
<tr>
<td>11</td>
<td>TAS</td>
<td>Rocky Mountain Bio/Medical Conversion & Commercialization Project</td>
<td>Colorado Bio/Medical Venture Center</td>
<td>Lakewood</td>
<td>CO</td>
<td>NSF</td>
<td>11/24/93</td>
</tr>
<tr>
<td>12</td>
<td>TAS</td>
<td>Technology Access Program</td>
<td>Southern Colorado Business and Technology Center</td>
<td>Pueblo</td>
<td>CO</td>
<td>NIST</td>
<td>11/24/93</td>
</tr>
<tr>
<td>13</td>
<td>TAS</td>
<td>Center for Global Competitiveness</td>
<td>Fairfield University</td>
<td>Fairfield</td>
<td>CT</td>
<td>DOE</td>
<td>2/23/94</td>
</tr>
<tr>
<td>15</td>
<td>MESP</td>
<td>Connecticut State Technology Extension Program</td>
<td>Connecticut Department of Economic Development</td>
<td>Rocky Hill</td>
<td>CT</td>
<td>NIST</td>
<td>11/24/93</td>
</tr>
<tr>
<td>16</td>
<td>TAS</td>
<td>CONNECT: The N.E. Alliance for Photonics Technology Deployment</td>
<td>University of Connecticut</td>
<td>Storrs</td>
<td>CT</td>
<td>NASA</td>
<td>11/24/93</td>
</tr>
<tr>
<td>17</td>
<td>ADPP</td>
<td>National Infrastructure for Gear Metrology</td>
<td>ANME</td>
<td>Washington</td>
<td>DC</td>
<td>DOD</td>
<td>11/24/93</td>
</tr>
<tr>
<td>18</td>
<td>MESP</td>
<td>The Delaware Manufacturing Alliance</td>
<td>Delaware Development Office</td>
<td>Dover</td>
<td>DE</td>
<td>NIST</td>
<td>11/24/93</td>
</tr>
<tr>
<td>19</td>
<td>TAS</td>
<td>Gulf Coast Alliance Technology Access</td>
<td>University of Florida</td>
<td>Gainseville</td>
<td>FL</td>
<td>NASA</td>
<td>11/24/93</td>
</tr>
<tr>
<td>No.</td>
<td>Activity Area</td>
<td>Title</td>
<td>Proposer</td>
<td>City</td>
<td>St.</td>
<td>Executing Agency</td>
<td>Announcement Date</td>
</tr>
<tr>
<td>-----</td>
<td>---------------</td>
<td>--</td>
<td>---</td>
<td>-----------------</td>
<td>-----</td>
<td>------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>20</td>
<td>TAS</td>
<td>Moving in a New Direction: Training and Simulation Technology</td>
<td>Naval Training Systems Center</td>
<td>Orlando</td>
<td>FL</td>
<td>NASA</td>
<td>11/24/93</td>
</tr>
<tr>
<td>21</td>
<td>TAS</td>
<td>USF/CNR Technology Deployment Proposal to Provide Microelectronics</td>
<td>University of South Florida</td>
<td>Tampa</td>
<td>FL</td>
<td>NASA</td>
<td>11/24/93</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Technology Consultants to Support Regional Electronics Manufacturing Industry</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>MESP</td>
<td>Georgia Manufacturing Technology Extension Center</td>
<td>Georgia Tech Research Corporation</td>
<td>Atlanta</td>
<td>GA</td>
<td>MIST</td>
<td>10/22/93</td>
</tr>
<tr>
<td>23</td>
<td>MESP</td>
<td>Iowa Manufacturing Technology Center (Iowa MTC)</td>
<td>Iowa State University</td>
<td>Ames</td>
<td>IA</td>
<td>MIST</td>
<td>11/24/93</td>
</tr>
<tr>
<td>24</td>
<td>EES</td>
<td>National Assistance Extension Program for Metal Casting: A Foundation Industry</td>
<td>University of Northern Iowa (ITD) Metal Casting Center</td>
<td>Cedar Falls</td>
<td>IA</td>
<td>DOE</td>
<td>10/22/93</td>
</tr>
<tr>
<td>25</td>
<td>MESP</td>
<td>Chicago Manufacturing Technology Extension Center</td>
<td>Economic Development Commission of the City of Chicago</td>
<td>Chicago</td>
<td>IL</td>
<td>NIST</td>
<td>11/24/93</td>
</tr>
<tr>
<td>27</td>
<td>MESP</td>
<td>NMTIC Colorado Regional Office</td>
<td>Mid-America MTC</td>
<td>Overland Park</td>
<td>KS</td>
<td>NIST</td>
<td>11/24/93</td>
</tr>
<tr>
<td>28</td>
<td>ADPP</td>
<td>Kansas Manufacturers Association</td>
<td>Kansas Manufacturers Association</td>
<td>Wichita</td>
<td>KS</td>
<td>DOD</td>
<td>11/24/93</td>
</tr>
<tr>
<td>29</td>
<td>MESP</td>
<td>Kentucky Technology Service</td>
<td>Kentucky Economic Development Cabinet</td>
<td>Frankfort</td>
<td>KY</td>
<td>MIST</td>
<td>11/24/93</td>
</tr>
<tr>
<td>30</td>
<td>ADPP</td>
<td>Massachusetts Manufacturing Modernisation Partnership</td>
<td>Massachusetts Executive Office of Economic Affairs</td>
<td>Boston</td>
<td>MA</td>
<td>MIST</td>
<td>10/22/93</td>
</tr>
<tr>
<td>31</td>
<td>ADPP</td>
<td>The New England Supplier Institute</td>
<td>BSSC</td>
<td>Boston</td>
<td>NA</td>
<td>DOD</td>
<td>2/23/94</td>
</tr>
<tr>
<td>32</td>
<td>MESP</td>
<td>Maryland Manufacturing Modernisation Network</td>
<td>Maryland Department of Economic and Employment Development</td>
<td>Baltimore</td>
<td>MD</td>
<td>MIST</td>
<td>11/24/93</td>
</tr>
<tr>
<td>33</td>
<td>TAS</td>
<td>University Driven Technology Deployment</td>
<td>University of Maryland</td>
<td>Baltimore</td>
<td>MD</td>
<td>NASA</td>
<td>11/24/93</td>
</tr>
<tr>
<td>34</td>
<td>ADPP</td>
<td>Maryland Healthcare Product Alliance</td>
<td>Maryland DEED</td>
<td>Baltimore</td>
<td>MD</td>
<td>NASA</td>
<td>2/23/94</td>
</tr>
<tr>
<td>35</td>
<td>TAS</td>
<td>Electronic Information Services for the Tooling and Machining Industry</td>
<td>National Tooling and Machining Association</td>
<td>Ft. Washington</td>
<td>MD</td>
<td>DOE</td>
<td>11/24/93</td>
</tr>
<tr>
<td>36</td>
<td>TAS</td>
<td>Environmentally-Conscious Manufacturing</td>
<td>Maine Metal Products Association</td>
<td>Portland</td>
<td>ME</td>
<td>DOE</td>
<td>11/24/93</td>
</tr>
<tr>
<td>37</td>
<td>EES</td>
<td>Developing Common Methods and Training Agents for Industrial Extension</td>
<td>Industrial Technology Institute</td>
<td>Ann Arbor</td>
<td>MI</td>
<td>MIST</td>
<td>11/24/93</td>
</tr>
<tr>
<td>38</td>
<td>TAS</td>
<td>An Energy & Environmental Technology Access Strategy for Small-Medium Manufacturers</td>
<td>Midwest MTC / EPA / Great Lakes MTC</td>
<td>Ann Arbor</td>
<td>MI</td>
<td>MIST</td>
<td>10/22/93</td>
</tr>
</tbody>
</table>

TRP DEPLOYMENT - Proposals Selected for Negotiation

- Page 2 -

(Sorted by State) [3/10/94]
TRP DEPLOYMENT - Proposals Selected for Negotiation

<table>
<thead>
<tr>
<th>No.</th>
<th>Activity Area</th>
<th>Title</th>
<th>Proposer</th>
<th>City</th>
<th>St.</th>
<th>Executing Agency</th>
<th>Announcement Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>39</td>
<td>EES</td>
<td>Cooperative Network for Dual-Use Information Technologies (ConDUIT)</td>
<td>Society of Manufacturing Engineers (SME)</td>
<td>Dearborn</td>
<td>MI</td>
<td>NASA/DOE</td>
<td>2/23/94</td>
</tr>
<tr>
<td>40</td>
<td>EES</td>
<td>Building a Communication Network Linking Knowledge Providers, Small Business Users and Industrial Extension Agents in Michigan</td>
<td>Michigan State University</td>
<td>East Lansing</td>
<td>MI</td>
<td>NASA</td>
<td>11/24/93</td>
</tr>
<tr>
<td>41</td>
<td>NEESP</td>
<td>Planning Grant for Michigan Industrial Extension Partnership</td>
<td>Michigan Department of Commerce</td>
<td>Lansing</td>
<td>MI</td>
<td>NIST</td>
<td>2/23/94</td>
</tr>
<tr>
<td>42</td>
<td>ADPP</td>
<td>Minnesota Consortium for Defense Conversion</td>
<td>Minnesota Technology, Inc.</td>
<td>Minneapolis</td>
<td>MN</td>
<td>DOD</td>
<td>11/24/93</td>
</tr>
<tr>
<td>43</td>
<td>ADPP</td>
<td>Improving Manufacturing Processes in Small and Medium-Sized Minnesota Companies</td>
<td>St. Cloud State University</td>
<td>St Cloud</td>
<td>MN</td>
<td>DOD</td>
<td>11/24/93</td>
</tr>
<tr>
<td>44</td>
<td>TAS</td>
<td>Manufacturers EnterCorp - A Product Realization Access Network</td>
<td>Denatech / Mid-America MTC</td>
<td>Kansas City</td>
<td>MO</td>
<td>NIST</td>
<td>10/22/93</td>
</tr>
<tr>
<td>45</td>
<td>NEESP</td>
<td>MANTC Southern Missouri Regional Office</td>
<td>MO Enterprise Business Assist Ctr</td>
<td>Rolla</td>
<td>MO</td>
<td>NIST</td>
<td>2/23/94</td>
</tr>
<tr>
<td>46</td>
<td>EES</td>
<td>USNet: An Enabling Service for Manufacturing Networks</td>
<td>Regional Technology Services, Inc. / Georgia Tech</td>
<td>Chapel Hill</td>
<td>NC</td>
<td>NIST</td>
<td>11/24/93</td>
</tr>
<tr>
<td>47</td>
<td>NEESP</td>
<td>North Carolina Alliance for Competitive Technologies (NC ACTS)</td>
<td>State of North Carolina</td>
<td>Raleigh</td>
<td>NC</td>
<td>NIST</td>
<td>11/24/93</td>
</tr>
<tr>
<td>48</td>
<td>NEESP</td>
<td>Nebraska Industrial Competitiveness Service (NICS)</td>
<td>Nebraska Department of Economic Development</td>
<td>Lincoln</td>
<td>NE</td>
<td>NIST</td>
<td>2/23/94</td>
</tr>
<tr>
<td>49</td>
<td>NEESP</td>
<td>New Mexico Manufacturing Extension Program</td>
<td>New Mexico Industry Network Corporation</td>
<td>Albuquerque</td>
<td>NM</td>
<td>NIST</td>
<td>11/24/93</td>
</tr>
<tr>
<td>50</td>
<td>TAS</td>
<td>New Mexico Technology Deployment Pilot Project</td>
<td>University of New Mexico</td>
<td>Albuquerque</td>
<td>NM</td>
<td>DOE</td>
<td>12/3/93</td>
</tr>
<tr>
<td>52</td>
<td>NEESP</td>
<td>Manufacturing Outreach Center of New York State Industrial Technology Extension Service Project</td>
<td>New York State Science & Technology Foundation</td>
<td>Albany</td>
<td>NY</td>
<td>NIST</td>
<td>11/24/93</td>
</tr>
<tr>
<td>53</td>
<td>NEESP</td>
<td>New York City Manufacturing Outreach Center</td>
<td>New York State Science & Technology Foundation</td>
<td>Albany</td>
<td>NY</td>
<td>NIST</td>
<td>10/22/93</td>
</tr>
<tr>
<td>54</td>
<td>NEESP</td>
<td>Hudson Valley Manufacturing Outreach Center</td>
<td>New York State Science & Technology Foundation</td>
<td>Albany[New Paltz]</td>
<td>NY</td>
<td>NIST</td>
<td>11/24/93</td>
</tr>
<tr>
<td>55</td>
<td>NEESP</td>
<td>Western New York Manufacturing Outreach Center</td>
<td>New York State Science & Technology Foundation</td>
<td>Albany[Buffalo]</td>
<td>NY</td>
<td>NIST</td>
<td>11/24/93</td>
</tr>
<tr>
<td>56</td>
<td>NEESP</td>
<td>National Standards System Network (NMSN)</td>
<td>ANSI</td>
<td>New York</td>
<td>NY</td>
<td>NIST</td>
<td>11/24/93</td>
</tr>
</tbody>
</table>

(Sorted by State) [3/10/94]
<table>
<thead>
<tr>
<th>No.</th>
<th>Activity Area</th>
<th>Title</th>
<th>Proposer</th>
<th>City</th>
<th>St.</th>
<th>Executing Agency</th>
<th>Announcement Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>58</td>
<td>TAS</td>
<td>Long Island Technology Access</td>
<td>Long Island Research Institute</td>
<td>Brentwood</td>
<td>NY</td>
<td>DOE</td>
<td>11/24/93</td>
</tr>
<tr>
<td>59</td>
<td>EES</td>
<td>Standard MCC/NDC Manufacturer Information Database</td>
<td>Great Lakes MCC / Oak Ridge</td>
<td>Cleveland</td>
<td>OH</td>
<td>NIST</td>
<td>11/24/93</td>
</tr>
<tr>
<td>60</td>
<td>MHSP</td>
<td>Plastics Technology Deployment Center (PTDC)</td>
<td>CAMP/Great Lakes MCC</td>
<td>Cleveland</td>
<td>OH</td>
<td>NIST</td>
<td>11/24/93</td>
</tr>
<tr>
<td>61</td>
<td>MHSP</td>
<td>Expanding Teaching Factory Services in Northeastern Ohio</td>
<td>CAMP/Great Lakes MCC</td>
<td>Cleveland</td>
<td>OH</td>
<td>NIST</td>
<td>11/24/93</td>
</tr>
<tr>
<td>62</td>
<td>ADPP</td>
<td>Alliance for National Excellence Materials Joining</td>
<td>Edison Welding Institute</td>
<td>Columbus</td>
<td>OH</td>
<td>DOD</td>
<td>11/24/93</td>
</tr>
<tr>
<td>63</td>
<td>TAS</td>
<td>Technology Access for Product Innovation (TAP-IN)</td>
<td>Battelle / NASA RTTCs / FLC</td>
<td>Columbus</td>
<td>OH</td>
<td>NASA</td>
<td>10/22/93</td>
</tr>
<tr>
<td>64</td>
<td>TAS</td>
<td>Hotline Expansion</td>
<td>Heat Treating Network</td>
<td>Kettering</td>
<td>OH</td>
<td>DOD</td>
<td>11/24/93</td>
</tr>
<tr>
<td>66</td>
<td>MHSP</td>
<td>The Oklahoma Industrial Extension System</td>
<td>Oklahoma Center for the Advancement of Science & Technology (OCAST)</td>
<td>Oklahoma City</td>
<td>OK</td>
<td>NIST</td>
<td>11/24/93</td>
</tr>
<tr>
<td>68</td>
<td>ADPP</td>
<td>The Agile Web Pilot Program</td>
<td>NET Ben Franklin Technology Center</td>
<td>Bethlehem</td>
<td>PA</td>
<td>DOD</td>
<td>10/22/93</td>
</tr>
<tr>
<td>69</td>
<td>MHSP</td>
<td>Pennsylvania Manufacturing Extension Program: North/East Region</td>
<td>Manufacturers Resource Center</td>
<td>Bethlehem</td>
<td>PA</td>
<td>NIST</td>
<td>11/24/93</td>
</tr>
<tr>
<td>70</td>
<td>TAS</td>
<td>Technology Access Service</td>
<td>Ben Franklin Technology Center of Southeastern Pennsylvania</td>
<td>Philadelphia</td>
<td>PA</td>
<td>DOD</td>
<td>12/3/93</td>
</tr>
<tr>
<td>71</td>
<td>MHSP</td>
<td>Western Pennsylvania Manufacturing Extension Program</td>
<td>Southwestern Pennsylvania Industrial Research Center</td>
<td>Pittsburgh</td>
<td>PA</td>
<td>NIST</td>
<td>11/24/93</td>
</tr>
<tr>
<td>72</td>
<td>TAS</td>
<td>National Technology and Commerce Initiative</td>
<td>Knowledge Express / NTIC</td>
<td>Wayne</td>
<td>PA</td>
<td>DOE</td>
<td>11/24/93</td>
</tr>
<tr>
<td>73</td>
<td>MHSP</td>
<td>Southeastern Environmental Resources Alliance</td>
<td>States of South Carolina & Georgia</td>
<td>Columbia</td>
<td>SC</td>
<td>DOE</td>
<td>2/23/94</td>
</tr>
<tr>
<td>74</td>
<td>EES</td>
<td>Electronic Extension Service</td>
<td>South Dakota School of Mines & Technology</td>
<td>Rapid City</td>
<td>SD</td>
<td>NASA</td>
<td>11/24/93</td>
</tr>
<tr>
<td>76</td>
<td>EES</td>
<td>Texas-One</td>
<td>Texas Department of Commerce</td>
<td>Austin</td>
<td>TX</td>
<td>NIST</td>
<td>11/24/93</td>
</tr>
<tr>
<td>No.</td>
<td>Activity</td>
<td>Title</td>
<td>Proposer</td>
<td>City</td>
<td>St</td>
<td>Executing Agency</td>
<td>Announcement Date</td>
</tr>
<tr>
<td>-----</td>
<td>----------</td>
<td>-------</td>
<td>----------</td>
<td>------</td>
<td>----</td>
<td>------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>77</td>
<td>TAS</td>
<td>The Dual Use Market Place</td>
<td>Texas Innovation Network</td>
<td>Dallas</td>
<td>TX</td>
<td>NIST</td>
<td>11/24/93</td>
</tr>
<tr>
<td>78</td>
<td>EES</td>
<td>Enabling Extension Through WCATC Tools, Linkages, and Professional Development</td>
<td>National Coalition of Advanced Technology Centers</td>
<td>Waco</td>
<td>TX</td>
<td>NIST</td>
<td>11/24/93</td>
</tr>
<tr>
<td>79</td>
<td>HESP</td>
<td>Manufacturing Competitiveness Through Manufacturing Outreach: A Regional Strategy</td>
<td>A.L. Filippot Manufacturing Technology Center</td>
<td>Martinsville</td>
<td>VA</td>
<td>NIST</td>
<td>11/24/93</td>
</tr>
<tr>
<td>81</td>
<td>EES</td>
<td>Manufacturing Outreach System for Achieving International Competitiveness (Mosaic)</td>
<td>Production Technology Inc. / Tufts University</td>
<td>Arlington / Medford</td>
<td>VA / MA</td>
<td>NIST</td>
<td>10/22/93</td>
</tr>
<tr>
<td>82</td>
<td>HESP</td>
<td>Washington Manufacturing Extension Center</td>
<td>Washington Manufacturing Extension Center</td>
<td>Everett</td>
<td>WA</td>
<td>NIST</td>
<td>11/24/93</td>
</tr>
<tr>
<td>83</td>
<td>ADSP</td>
<td>Recycling Technology Assistance Project</td>
<td>Clean Washington Center</td>
<td>Seattle</td>
<td>WA</td>
<td>NIST</td>
<td>10/22/93</td>
</tr>
<tr>
<td>84</td>
<td>TAS</td>
<td>Low-Cost High Volume Manufacturing of High-Performance Composite Material Structures for Infrastructure Applications</td>
<td>Great Lakes Composite Consortium</td>
<td>Kenosha</td>
<td>WI</td>
<td>DOD</td>
<td>11/24/93</td>
</tr>
<tr>
<td>85</td>
<td>HESP</td>
<td>Northwest Wisconsin Manufacturing Outreach Center</td>
<td>University of Wisconsin-Stout</td>
<td>Menomonie</td>
<td>WI</td>
<td>NIST</td>
<td>2/23/94</td>
</tr>
<tr>
<td>86</td>
<td>EES</td>
<td>Creating a National Industrial Extension Agent Curriculum: An Initiative to Foster Dynamic & Interactive Linkages</td>
<td>National Technology Transfer Center / FSU / API</td>
<td>Wheeling</td>
<td>WV</td>
<td>NIST</td>
<td>10/22/93</td>
</tr>
</tbody>
</table>
Manufacturing Extension Partnership

Management Regions
Data on Selection and Selected Proposals

and

Outcomes of the Selection Process
Selection Process and Criteria
TRP Deployment
Selection Process and Criteria
Phil Nanzetta, NIST

Logistical Facts
- 549 deployment proposals
- 65 technical reviewers from DOD, DOC (NIST), DOE, NASA, and NSF
- Each review group had one member from each agency
- Every review decision required a minimum of three qualified reviewers
- Proposals were reviewed in three stages
 - first review by a subpanel
 - second review by a source selection evaluation board (SSEB)
 - site visit or interview or equivalent
- Chairmen of the SSEBs were from different agencies
- All review judgement were based strictly on the 8 selection criteria published in the Green Book

Target Population
- Proposer must clearly define
- Proposer must understand needs of target population in depth
- Proposer must be within working distance of
- Size must be appropriate to size of budget

Defense Conversion, Dual-Use Impacts
- Specifically address needs of defense suppliers and sub-tier
- Increase competitiveness, number of jobs, quality of jobs
- Help convert companies and workers from defense-dependent to dual use
- Does not exclude other companies from service
Technology Sources

- Have in-house capabilities and personnel or
- Have access through partners or
- Have access through systematic linkages

Delivery Mechanisms

- Matches the needs of the target population
- Are effective
- Handles intellectual property issues
- Uses best industrial practices
- Proposed approach has good technical quality

Management Experience and Plans

- Governing or managing entity has clear responsibility and power
- There is significant involvement and support by industry
- Sound organizational structure
- Leadership has experience and quality
- Has sound staffing, evaluation, and training plans

Funding, Budget, and Cost Share

- Spending plan must match delivery mechanisms
- Cost share must be solid and certain
Accessibility of Services and Documentation

- Fair access to services; not restricted to members
- Documentation of results, especially for pilot projects

Coordination and Elimination of Duplication

- Understand and link with related service providers in service region
- If there is a comprehensive state plan, must be consistent with it
- Does not duplicate existing resources
- Does not clash with existing services
Key Issues of Content
Focus on the Customer

- Winning proposals start with the target population (customer) and focus on it throughout.
- Losing proposals focus on what the proposer wants to do.

- Winning proposals are specific, concrete, and demonstrate a believable understanding of the target population and its needs.
- Losing proposals are generic, abstract, and focus on technology push instead of customer need.

Strong Management and Organization

- Winning proposals lay out a clear organization (it may be complex) with a clear point of control and responsibility. A good organization chart helps.
- Losing proposals have a mushy organization, confusing, and with divided control and responsibility. A bad chart hurts.
- Winning proposals identify their limitations and show how they will address them.
- Losing proposals pretend not to have any limitations, but they峰 from behind every paragraph.
- Winning proposals make sense. From the point of view of the customer, participant, and sponsors.
- Losing proposals have no way to attract customers, participants that don’t contribute, and letters of support that don’t make any commitments.

Match

- Winning proposals have a solid commitment of match, all of which clearly contributes to the objective. Cash, of course, is very good.
- Losing proposals have unbelievable or weak match, or match that really doesn’t support the objective. Useless equipment, unrelated in-kind, or small percentages of personnel time are weak.
- Winning proposals have reasonable, soundly based fee schedules (if fees are charged).
- Losing proposals project fee-based income with poor justification at levels contrary to common experience.
- Winning proposals have state match already appropriated in advance, “opportunity” funds that can be tapped, or very firm state commitment of funds.
- Losing proposals have “best wishes” letters from the governor or weasel-worded support.
Technical Capacity

- Winning proposals have sound technical capability which is really available for the project
- Losing proposals are not technically equipped to implement the project

Credibility and Believability

- Winning proposals make reasonable, credible claims which are internally consistent and agree with known facts
- Losing proposals clearly overstate their position and include assertions that do not agree with known facts
- Winning proposals explain why they are the right organization to do the job, that they have considered the alternatives of "somebody else" or "a new entity". Winning proposals show the proposed activities are within (or close to) their mission and range of expertise
- Losing proposals look like they are just trying for some available resources.

Judgeable

- Winning proposals correspond to natural operating entities which can be evaluated as a unit
- Losing proposals bunch together a number of separate entities, some weak and some strong, to make a bundle that is not clearly judgeable.
Key Issues of the Process
Key Issues of the Process

- Proposals
- Site Visits

Tom Starke
Department of Energy (LANL)

Deployment
Lessons Learned Workshop
Atlanta, Georgia
March 9, 1994

Purpose of the Proposal

- Describe the proposed activity:
 - What
 - Who
 - So What
 - How
 - How Much
- How much will the activity further TRP goals
 - In terms of the selection criteria
- Statement of Work

The evaluator is an Information Customer

- Clarity
- Organize for evaluation
 - all proposal information is evaluated against the criteria
- Fact-based arguments
 - Not assertions
 - Relevant facts
 - Arm your advocate
- What exists now, versus what’s proposed
- Know your concept’s backdrop

Purpose of the Site Visit

- Validate Proposal
- Assess Quality of Training
- Proposer’s Relation with Target Population
- Inspect Facilities to be Used
The evaluator is an Information Customer

- Site choice:
 - demonstrations
 - tours
 - availability of key team members
- Understand the instructions, otherwise ask.
- Rehearse
 - Know your team members
 - Know your target population representatives
- Have a simple explanation of your concept

The evaluator is an Information Customer

- Listen as much as you talk
 - Leave time for questions
 - Expect the agenda to be disrupted
 - Anticipate emphasis on the weakest or most critical areas
 - It's often ok to acknowledge you don't have all of the answers
- Expect everything the evaluators see to be included in the site visit evaluation
- Challenge the evaluators if you believe their facts are wrong
Partnerships
PARTNERSHIPS

VALUE TO THE PROPOSAL

0 SIZE
 - How Many Partners?
 - Adequacy for the Job
 - Critical Funding Levels

0 DIVERSITY
 - Complementary Mixture of Partners
 - Skills; Target Group Representation; Geographics

0 COHESIVENESS
 - Delineation of Responsibilities
 - Clear Organization; Firm Agreement; Legal Document

0 LEADERSHIP
 - Clear Management Structure; Who's in Charge?
Example

Georgia Manufacturing Technology
Extension Center
PROPOSAL DEVELOPMENT

- Get started early
- Select experienced proposal team
- Focus on executive summary
- Have outsiders review proposal
- Focus on approach, not the organization
- Include partners in development
- Give proposal quality advantage
- Treat site visit like sales presentation

STRATEGY DEVELOPMENT

- Don't give up after the first try
- Be customer-needs driven
- Gain sponsor endorsement during pre-proposal period
- Seek partnerships
- Deal with cost-sharing early
Breakout Sessions

Manufacturing Extension Services Providers

Extension Enabling Services

Technology Access Services

Alternative Deployment Pilot Projects
Manufacturing Extension Services Providers

Characteristics of Strong Extension Proposals

and

The TRP Process
New York's Experience
Characteristics of Strong Extension Proposals

Phil Nanzetta, NIST

Focus on the Customer

- Strong
 - Focus and clear commitment to helping a target population, with a good understanding of the target population
- Weak
 - Have an existing organization to feed, and only a shallow understanding of a target population
- Red Flag
 - Have an existing organization to feed, and no apparent care for a target population
 - Building an empire, and no apparent care for a target population

Learning Organization

- Strong
 - Organization and management allows for significant change as it learns from experience or from others
- Weak
 - Management personnel are inflexible and doctrinaire, or very weak
 - Organizational structure is set in concrete
 - Couldn’t get the attention of the level above if you wanted to
- Red Flag
 - Management is confrontational and intransigent
 - Level above doesn’t care about results

Relationship to Industry

- Strong
 - Tight ties to industry, understanding of industry needs, as reflected in organization, staffing, and board
- Weak
 - Lip service to industry participation or need
 - Academic or government dominated board
- Red Flag
 - No industry influence visible
Quality of Match

- **Strong**
 - Full match in cash, already appropriated
 - In-kind part of match is economically practical and would be purchased if match were all in cash

- **Weak**
 - High proportion of in-kind match consisting of low percentage shares of staff time, loosely related equipment and facilities, and "white elephants" that are no longer of use to the initial owner

- **Red Flag**
 - Extremely unrealistic projections of fees for service or membership fees
 - Loose indications of appropriations to come in the future

Character of the Proposal

- **Strong**
 - Clear, compactly, honestly written proposal

- **Weak**
 - Sloppy, neglectfully written proposal which does not address the concerns in the selection criteria

- **Red Flag**
 - False statements or exaggeration beyond the bounds of good taste
 - Proposal which clearly skirts issues that are important for the selection criteria

Good Delivery Mechanism

- **Strong**
 - Clear, strong delivery mechanism, described so it makes sense and relies only on partners who have an interest in success of the project

- **Weak**
 - Poorly conceived, poorly described, unfocused delivery mechanism

- **Red Flag**
 - Attention to income and empire building, with little or no focus on the delivery mechanism

Access to Technology

- **Strong**
 - Clearly described, effective means of access to technology

- **Weak**
 - Technology present in the environment of the proposer, but no effective mechanisms of access are described

- **Red Flag**
 - Proposer has a narrow "favorite" technology it's pushing
 - No indication of a means for access to technology
Don't clash, don't duplicate

- Strong
 - Identifies service providers and technology sources in the region and describes effective coordination with them, proven by actual examples from the past

- Weak
 - Defines coordination with some of the service providers and technology sources, but they are new and untested
 - Is not aware of many service providers and technology sources

- Red Flag
 - Proposes to set up shop next door to a service provider with no defined means for coordination
 - Proposes to develop technology which is already available from an existing source
The TRP Process

New York's Experience
THE TRP PROCESS: NEW YORK's EXPERIENCE

TRP DEPLOYMENT
LESSONS LEARNED WORKSHOP

Context for NYS Manufacturing Related TRP Proposals: Defining the Issues

- Manufacturing is important to NYS
- 28,000 firms, nearly all small
- Employ 1 million
- Smaller firms source of new jobs

Context for NYS TRP Proposals: Defining the Problem

- About 2,000 fewer factory establishments than four years ago
- Since 1988, NY has lost nearly 200,000 manufacturing jobs
- 18% decline vs. 7% loss nationally
- Job loss due mainly to overseas competition
- Inability of firms to modernize major factor

NYS Manufacturing Firms by Region

<table>
<thead>
<tr>
<th>REGION</th>
<th>NUMBER OF FIRMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capital</td>
<td>1,000</td>
</tr>
<tr>
<td>Central NY</td>
<td>1,000</td>
</tr>
<tr>
<td>Finger Lakes</td>
<td>1,500</td>
</tr>
<tr>
<td>Long Island</td>
<td>5,000</td>
</tr>
<tr>
<td>Mid-Hudson</td>
<td>2,500</td>
</tr>
<tr>
<td>Mohawk Valley</td>
<td>500</td>
</tr>
<tr>
<td>NY City</td>
<td>13,500</td>
</tr>
<tr>
<td>North Country</td>
<td>500</td>
</tr>
<tr>
<td>Southern Tier</td>
<td>1,000</td>
</tr>
<tr>
<td>Western NY</td>
<td>2,000</td>
</tr>
<tr>
<td>TOTAL:</td>
<td>28,500</td>
</tr>
</tbody>
</table>
Context for NYS TRP Proposals: Defining the Target Population

Characteristics of Typical Small Manufacturers
- Is family owned or sole proprietorship
- Is a supplier of parts to a larger manufacturer
- Has customers that are other business, not end users
- Has less than 50 employees; and sales of under $5 million

Context for NYS TRP Proposals: Defining the Need

- To stay competitive, these manufacturing firms need to:
 - Develop new domestic and export markets in a rapidly changing global economy
 - Engage in strategic planning
 - Speed the adoption of new and rapidly evolving technologies
 - Invest in modern plant and equipment
 - Improve worker productivity, training and involvement in the redesign of manufacturing process

- Should upgrade operational and management capability
- Has limited in-house engineering and technical staff
- Benefits of technology realized but considers them out of reach
- Is in a reactive mode to marketplace changes
- Lacks systematic planning
NYS TRP PROPOSAL: ADDRESSING THE NEED

EXISTING NYS PROGRAM INITIATIVES

- 1982 - Industrial Technology Councils established
 - Local non-profit organizations
 - Industry Led
- 1986,1990 - Industrial Technology Extension Service established state wide
- 1989 - Northeast Manufacturing Technology Center (NEMTC)

NY'S TRP ACTION PLAN

- Work with local TFC's throughout
- Statewide information meetings (Jan. - March '93)
- Attended TRP briefings (April '93)
- Individual regional meetings (May, June '93)
- Proposal review (July '93)

NY'S TRP STRATEGIC APPROACH: MAJOR THEMES

- Manufacturing firm is the customer
- Build on existing programs to serve the customer
- Locally responsive proposals; locally managed
- State coordination
- Access to State and local matching funds
- Leverage local resources

NY'S TRP ACTION PLAN

INDUSTRIAL TECHNOLOGY EXTENSION SERVICE (ITES) PROPOSAL

Concept: Expand NYS manufacturing extension personnel from 17 to 50

- NYSSTF TRP Proposer
- Sub-contract with ITC's
- Target regions with high manufacturing clusters
- TRP funds : 50%
- State funds : 50%
- Managed by NYSSTF
NY's TRP ACTION PLAN:
MANUFACTURING OUTREACH CENTERS (MOC)

Concept: Local centers of special assistance to firms

- Proposals from 6 manufacturing regions
- Local resources tied in
- Integrated with Extension Service and NEMTC
- Part of statewide manufacturing assistance system

NY's TRP ACTION PLAN:
NORTHEAST MANUFACTURING TECHNOLOGY CENTER (NEMTC)

Concept: Develop "tools" and support for extension service and MOC's to help firms

- Proposal developed by NEMTC and RPI
- NYSSTF TRP proposer
- RPI as subcontractor
- TRP funds: 50%
 State funds: 50%

NEW YORK'S MANUFACTURING EXTENSION PARTNERSHIP

CUSTOMER

20,000 SMALL MANUFACTURING FIRMS

GENERALIST / CASE MANAGER

STATEWIDE IES
(50 FIELD AGENTS IN ALL REGIONS)

SPECIALISTS

MANUFACTURING OUTREACH CENTERS
(5 MOC'S IN HIGH DENSITY REGIONS)

NIST / NEMTC
(HIGHER- END SERVICES, TOOL DEVELOPMENT, MANAGEMENT & COORDINATION)
SUMMARY of TRP PROPOSALS
SUBMITTED by NYSSTF and
APPROVED by TRP

<table>
<thead>
<tr>
<th>Proposals Submitted</th>
<th>Proposals Approved</th>
<th>Program Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>Industrial Extension Service</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>MOC's</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>NEMTC Projects</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>High Tech Assistance Projects</td>
</tr>
</tbody>
</table>

| 14 | 6 | |

TRP PROPOSAL PREPARATION TIPS

- Put the "customer" first (target population)
- Make sure you have right context and rationale
- Communicate with team members early and often
- Make a convincing case in the Executive Summary
TRP Proposal Preparation Tips

- Secure reliable sources of matching funds.
- Do you believe in the project?

TRP Site Interviews Preparations and Tips

- Have only key people attend
 - Project leaders and doers
- Meet before the meeting
- Provide organizational context and structure
- Answer reviewers' written questions briefly, but thoroughly

TRP Site Interviews Preparations and Tips

- Use appropriate visuals and demonstrations (video tapes, overheads, etc.)
- Don't be defensive; OK to say "I don't know"

Funding Summary - TRP Projects to NYSSTF

Projects Awarded: 5

<table>
<thead>
<tr>
<th>Source</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Federal TRP Funds</td>
<td>$4,675,000</td>
</tr>
<tr>
<td>NY State Matching Funds</td>
<td>$2,800,000</td>
</tr>
<tr>
<td>Local Cash and Inkind Funds</td>
<td>$1,925,000</td>
</tr>
<tr>
<td>Total Annual Funds</td>
<td>$9,350,000</td>
</tr>
</tbody>
</table>
Extension Enabling Services
TRP DEPLOYMENT -- EXTENSION ENABLING SERVICES

DISTRIBUTION OF AWARDS BY CATEGORIES

<table>
<thead>
<tr>
<th>AREAS SERVED</th>
<th>FOCUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 - National</td>
<td>5 - Elec. Networks</td>
</tr>
<tr>
<td>6 - States</td>
<td>2 - Data Bases</td>
</tr>
<tr>
<td>1 - Industry Sector</td>
<td>5 - Training</td>
</tr>
<tr>
<td></td>
<td>1 - Tools</td>
</tr>
<tr>
<td></td>
<td>2 - States Structures</td>
</tr>
</tbody>
</table>
EXTENSION ENABLING SERVICES

EVALUATION CRITERIA

The selection criteria contained on this sheet apply to extension enabling services activities for technology deployment. They also incorporate the statutory selection criteria for the TRP programs. Each proposal must address these selection criteria. Selection criteria are grouped into eight equally weighted categories. Special selection factors for technology sources, delivery mechanisms, management experience and plans, funding, budget, and cost share, accessibility of services and documentation, and coordination and elimination of duplication [in italics] are given to amplify the general criteria and are not additional criteria.

(1) Target Population

The proposal should target a clearly defined population of beneficiary companies or organizations, and should clearly identify the needs which the proposal addresses. The target population should include a significant number of United States-based small manufacturing firms and/or companies dependent upon Defense expenditures, and should be large enough to justify the proposed expenditure. The approach set forth in the proposal should be reasonable for the needs identified and the defined population. Factors that will be considered include:

(a) Demonstration of a clear definition of the target population, its size, needs, and demographic characteristics.

(b) Demonstration of an understanding of the needs of the target population.

(c) Appropriateness of the plan to address the identified needs of the target population.

(d) Appropriateness of the size of the target population and the anticipated impact for the proposed expenditure.

(2) Defense Conversion, Dual-Use Impacts

The proposal must provide a substantial impact in advancing defense conversion objectives. It should specifically address the needs of defense suppliers and their sub-tier suppliers. It should increase competitiveness, number of jobs, and quality of jobs. Factors that will be considered include:

(a) Degree to which the planned approach will serve a substantial number of defense suppliers and their sub-tier suppliers.

(b) Effectiveness of the proposed approach in increasing competitiveness, number of jobs, and quality of jobs through the target population particularly among displaced defense workers.

(c) Degree to which the proposed approach can serve to convert businesses and their workforces from defense-dependent to capabilities having both defense and non-defense commercial applications.

(3) Technology Sources

For proposals that focus on work directly with small businesses, the proposal should demonstrate that the proposer has adequate access to the technology needed to provide sound service. This access is through a combination of in-house expertise and experience, partnerships with technology sources, and linkages to external technology sources. It is the linkage and understanding of how to gain access to technology that is most important.

Proposals to extract technology will be based on existing core competency, not on an intent to develop in-house expertise. The proposal must set forth a convincing plan for identifying the needed technology within an organization and for "extracting and packaging" the technology. Special factors for each activity expand on these criteria.

Special Selection Factors:

(a) Strength of existing core competency in the proposed area of activity.

(b) Adequacy of plans to identify technology within the proposer's organization and to extract and package it for use by others.

(4) Delivery Mechanisms

The proposal must set forth a clearly defined, effective mechanism for delivery of services to the target population. For extension service providers, this refers to the means for working directly with target companies. For technology sources, this calls for well thought-out plans for formation of linkages to the organizations that work directly with companies. Special factors for each activity expand on these criteria. Factors that will be considered include:

(a) Effectiveness of proposed delivery mechanism.

(c) Demonstration of capacity to form the effective linkages and partnerships necessary for success of the proposed activity.

(c) Adequacy of plans to handle intellectual property issues.

(d) Technical quality of the proposed approach, including knowledge and use of best industrial practices.

Special Selection Factors:

(a) Adequacy of plans for identifying in-house or external sources of technology to meet the needs of target population.
(b) Strength of plans to establish linkages with service providers and demonstrated success in forming and maintaining such linkages.

(5) Management Experience and Plans
The proposal must set forth plans for proper organization, staffing, and management of the activity and must demonstrate that the leadership of the activity has a strong, current experience base to assure success. Special factors for each activity expand on these criteria. Factors that will be considered include:

(a) Appropriateness of the organizational approach for carrying out the proposed activity.

(b) Quality and depth of experience of the proposed leadership and the organization within which they will work.

(c) Soundness of staffing plans, including recruitment, selection, training, and continuing professional development.

(d) Thoroughness of evaluation plans, including internal evaluation for management and control, and external evaluation for assessing outcomes of the activity, and "customer satisfaction" measures of performance.

(e) Presence of a governing or managing entity with clear responsibility for performance of the proposed activity.

(f) Evidence of significant involvement and support by private industry.

Special Selection Factor:
Proposals should identify, treat, and resolve issues regarding selection of beneficiaries of the project. There should be a demonstrated valid public purpose in the distribution of benefits. The approach will not create an unfair technological or competitive advantage for one company or group of companies.

(6) Funding, Budget, and Cost Share
The proposed spending plan must reasonably match the proposer's projected activities. The proposal must contain a reasonable and practical plan for obtaining the cost share; i.e., that part of the budget not covered by the requested federal funds. Special factors for each activity expand on these criteria. Factors that will be considered include:

(a) Reasonableness of the budget, both income and expenses.

(b) Strength of commitment for proposer's cost share.

(c) Effectiveness of management plans for control of the budget.

(d) Appropriateness of in-kind contributions.

(e) Adequacy of plans for out-year funding.

Special Selection Factor:
The likelihood that within five years after award, DoD assistance will not be necessary to sustain the program.

(7) Accessibility of Services and Documentation
Fair access to the services defined in the proposal must be available to all members of the target population. For pilot projects especially, and all projects in general, there must be plans for broadly disseminating the results of the proposed activity. Special factors for each activity expand on these criteria. Factors that will be considered include:

(a) Adequacy of plan for handling requests for diverse services.

(b) Strength of plan for documenting, evaluating, and disseminating information on new approaches taken and on outcomes of activities.

Special Selection Factor:
The proposer's plan will specify the process for documenting the pilot project, analyzing its results, and publishing the analytical case study to help others replicate, modify, or avoid the approach.

(8) Coordination and Elimination of Duplication
It is desired to minimize the creation of services and technology sources which duplicate, overlap, or conflict with existing resources. The proposer must demonstrate understanding of existing organizations and resources within its environment and establish working linkages where appropriate. If there is a comprehensive state plan for technology transfer and extension, the proposer should document that its plan is consistent with the state plan. Special factors for each activity expand on these criteria. Factors that will be considered include:

(a) Understanding of existing organizations and resources related to the proposed target population.

(b) Adequate linkages and partnerships with existing organizations.

(c) Consistency with comprehensive state plans if such plans exist.

Special Selection Factors:

(a) The proposal must demonstrate the extent to which the proposed approach makes use of existing technology resources and service providers, and the extent to which the proposer demonstrates an awareness of other pilot projects with the same structure.

(b) The impact of the proposed approach, if successful, will be large enough to justify the investment. There should be some demonstration that the approach can be replicated elsewhere with large impact.
Extension Enabling Services
SSEB Structure

Extension Enabling Services SSEB
Frank Penaranda, NASA [Chair]
Ron Parsons, DOC/NIST
William Donnelly, DOD
Ehsan Khan, DOE
John Hopps, NSF

SSEB Subpanel #1
Ron Parsons, DOC/NIST, SSEB (Chair)
William Donnelly, DOD
Ralph Bennett, DOE
Janet Lauritsen, NASA

SSEB Subpanel #2
Ehsan Khan, DOE, SSEB (Chair)
Ernest Renner, DOD
Dave Cranmer, DOC/NIST
Greg Manuel, NASA

7/29/93
2:05 AM
Defense Conversion, Dual-Use Impacts

- **Good**
 - Defense impacted firms identified as fraction of target population
 - Special needs of defense impacted firms identified
 - Relation to stimulating employment opportunities for defense displaced workers
 - Appropriateness of technology to dual-use applications

- **Poor**
 - General references to Defense reduction impacts in a geographic area

Technology Sources

- **Good**
 - Appropriate for the target population
 - Technically excellent
 - Committed to and experienced with existing small companies
 - Ability to access technology sources outside the project

- **Poor**
 - Not explicitly identified
 - Insufficient for the target population

Delivery Mechanisms

- **Good**
 - Efficient and cost effective
 - Appropriate for tech sources and target population
 - Already demonstrated
 - Innovative

- **Poor**
 - Generic
 - Intrinsic and complex
 - Too much technology development

Management Experience and Plans

- **Good**
 - An established team
 - A clear statement of work
 - A realistic schedule
 - A budget organized against the statement of work
 - Examples of past success managing deployment activities
 - Project plan aimed at self-sufficiency
 - A plan for effective communication with tech sources and target population

- **Poor**
 - No discussion of risks and mitigation options
Funding, Budget, and Cost Share

- **Good**
 - A clear budget presentation
 - Budget organized against the statement of work and the schedule
 - Cash or donated personnel time cost share
 - Established accounting cost control processes

- **Poor**
 - Too much funding requested for stated deliverables

Accessibility of Services and Documentation

- **Good**
 - Service accessible to every member of target population
 - Project included targeted population outreach activities
 - Project planned for success, planned for proliferation of the approach

- **Poor**
 - Not addressed

Description of Awards

- **Good**
 - Thorough understanding of competing and complementary services and extension systems
 - Established relationships with complementary services
 - Coordinated with state or national extension organizations

- **Poor**
 - Uniqueness asserted
Technology Access Services
Tech Access Services
Lessons Learned Workshop

Tom Starke
Department of Energy (LANL)

Atlanta, Georgia
March 9, 1994

Lessons Learned
Feedback

Global Characteristics of Good Proposals

- Proposed project was an integrated whole
- Every piece of information in the proposal was competitive:
 - Choice of team members
 - Kind of matching funds
 - Relation to existing programs
- Quality was supported by fact-based argument, not just assertions
- Evidence of a well-defined and smooth-functioning team
- Commitment to transition to self-sufficient status

Target Population

- Good
 - Well defined, clearly identified
 - Demonstrated understanding of the needs
 - Representatives of target population on the team
 - Appropriate for funding
 - In need of technology assistance

- Poor
 - Too many companies
 - Insufficient needs articulation
National: All Technologies

- Nationwide systems for organizing access to all technologies

- Total funding: $21.4 million

Examples:
- Knowledge Express Database
- TAP-94, utilizing a partnership of RTTCs
- National Interactive Telecon

National: Single Tech Focus

- Nationwide system for organizing access for a single industry or a specific technology

- Total Funding: $6.2 million

Examples:
- National Hotline for metal heat treatment
- Electronic information service for finishing and machining industry
- Composite tech information for infrastructure applications

Regional: Single Focus

- Regional technology access service organized around a single tech source, technology, or application

- Total Funding: $6.3

Examples:
- CLM
- New England Alliance for Photonics Tech.
- Training and education
- Pollution Free

Regional: All Technologies

- Regional technology access service covering many technologies and industries

- Funding: $10.7 million

Examples:
- Ben Franklin Technology Access Service
- Alaska Tech Transfer Assistance Center
- Long Island Technology Access
Alternative Deployment Pilot Projects
TECHNOLOGY REINVESTMENT PROJECT
TECHNOLOGY DEPLOYMENT

ALTERNATIVE DEPLOYMENT PILOT PROJECTS

JOHN R. PFISTER
AIR FORCE MANUFACTURING TECHNOLOGY
WRIGHT LABORATORY
WRIGHT-PATTERSON AFB, OH

ALTERNATIVE DEPLOYMENT PILOT PROJECTS

Key Participants:

John Fenter
DOE

Phillip Hayes
DOD/AF

John Hoppa
NSF

Gail Morse
NIST

James Thomas
NIST

James Villanvei
NASA

ALTERNATIVE DEPLOYMENT PILOT PROJECTS

- Pilot projects providing nontraditional industrial and manufacturing assistance
- ADPP aims to:
 - Improve the technological strength of defense dependent small businesses
 - Understand and improve the interactions between prime contractors and their suppliers to improve the quality and other requirements of products and their suppliers within an industrial sector
 - Foster adoption of world class best practices throughout the prime-supplier structure
 - Support small company incubators
- Projects are encouraged to address commercialization of new technologies and to pursue disruptive technology applications

Aerogel Commercialization Project
Agile WEB Pilot Project
Alliance for National Excellence in Materials Joining
Connecticut Energy and Environment Technologies Deployment Center
Deployment of a National Infrastructure for Laser Metrology
Improving Manufacturing Processes in SMEs in Minnesota
NASA Manufacturers Association: A Consortium to Accomplish Defense Conversion
Maryland Healthcare Product Alliance
Massachusetts Manufacturing Modernization Partnership (MMP)
Minnesota Consortium for Defense Conversion
New England Suppliers Institute
Recycling Technology Assistance Project
Smart Valley CommercialNet
Technology Deployment: Through Manufacturing Networks
Xerax CAN Plan for Solar Powered Hydrogen Generating Facility
ALTERNATIVE DEPLOYMENT PILOT PROJECTS

Common Aspects:
- The SSEB assessed each project model to determine unique approaches for providing new concepts for enhancing deployment.
- The project model will be evaluated by the awardee and managing agency; full documentation is required.
- Pilots are unproven concepts needing up to three years for model validation.
- Coordination between similar topic area projects will be conducted to assure common protocols and standard applications.

ALTERNATIVE DEPLOYMENT PILOT PROJECTS

Project Models:

- **Technical Strengths**
 - World Class Technology Resource Network
 - State Extension Resource for Reuse and Waste Minimization
 - State-led Cooperation Among Previously Competing Service Providers
 - Manufacturing Assistance to Groups of Companies

- **Prime-Supplier Interactions**
 - Public Nonprofit Product Development/Marketing Network
 - Reconfigurable Customer/Supplier Partnerships
 - Regional, Supplier-Specific, Communication Tool

- **Harmonize Quality Requirements**
 - Multi-State OEM/Supplier Quality Network

ALTERNATIVE DEPLOYMENT PILOT PROJECTS

Project Models:

- **Best Practices**
 - Team-based Methodology for Problem Solving and Process Improvement
 - Critical Industry Technical Resource Service

- **Small Company Incubators**
 - State-led Program Focused on Dual-Use Technology Development

- **Dual-Use Technology Applications**
 - Competitive Network Pursuing New Business
 - Private Sector Commercialization for Fed Lab Technology
 - Conversion of Advanced Defense Technologies
 - Invention of Previously Developed Federal Technology

| Project Models | X | X | X | X | X | X | X | X | X | X |
ALTERNATIVE DEPLOYMENT PILOT PROJECTS EVALUATION CRITERIA

EVALUATION CRITERIA: Target Population
REFERENCE EXAMPLE: Regional Network of Suppliers
RATING: Excellent
RATIONALE: These prime contractors that are served by a common supplier base in a defined geographical region join with the Department of Commerce of the state in which they are located and a group of 30 suppliers to propose a set of activities which will simplify and rationalize the requirements placed by the prime contractors on their suppliers. The proposal was rated Excellent because:

- The target population is well defined and applicable to several prime contractors
- The demographics of the target population are similar in that they have a common customer base and serve a common geographic region
- It addresses the needs of the target population through development of simplified and rationalized requirements from their customer base

ALTERNATIVE DEPLOYMENT PILOT PROJECTS EVALUATION CRITERIA

EVALUATION CRITERIA: Defense Conversion, Dual-Use Impacts
REFERENCE EXAMPLE: Prime Contractor-Supplier Integration
RATING: Above Average
RATIONALE: Prime contractor establishing dual-use teaching factories for suppliers. The proposal is rated Above Average because:

- Prime contractor assists dual-use suppliers in establishing a strategic business plan
- Prime contractor will financially assist supplier in achieving plan's goals

The proposed rating was reduced because:

- Training in commercial practices not provided to suppliers by prime
- Quality technologies not emphasized

ALTERNATIVE DEPLOYMENT PILOT PROJECTS EVALUATION CRITERIA

EVALUATION CRITERIA: Technology Sources
REFERENCE EXAMPLE: Regional Network of Suppliers
RATING: Excellent
RATIONALE: Three prime contractors that are served by a common supplier base in a defined geographical region join with the Department of Commerce of the state in which they are located and a group of 30 suppliers to propose a set of activities which will simplify and rationalize the requirements placed by the prime contractors on their suppliers. The proposal was rated Excellent because:

- The in-house expertise of the prime contractors and suppliers provides an excellent capability to simplify and rationalize requirements
- The project can be completed without the need for external technology sources or consultants

ALTERNATIVE DEPLOYMENT PILOT PROJECTS EVALUATION CRITERIA

EVALUATION CRITERIA: Supplier Chain
REFERENCE EXAMPLE: Supplier Chain
RATING: Above Average
RATIONALE: Contractor XYZ and a group of its principal suppliers are to implement a system of electronic commerce for business and product description activities. The proposal was rated Above Average because:

- A significant group of suppliers (50) are contained in the target population
- The demographics of the target population are well defined, i.e., suppliers to XYZ

The proposal rating was reduced because:

- It fails to demonstrate an understanding of the needs of the target population, i.e., dictates solution without establishing the need
ALTERNATIVE DEPLOYMENT PILOT PROJECTS
EVALUATION CRITERIA

<table>
<thead>
<tr>
<th>EVALUATION CRITERIA:</th>
<th>Delivery Mechanisms</th>
</tr>
</thead>
<tbody>
<tr>
<td>REFERENCE EXAMPLE:</td>
<td>Electronic Commerce</td>
</tr>
<tr>
<td>RATING:</td>
<td>Very Good</td>
</tr>
<tr>
<td>RATIONALE:</td>
<td>University and non-profit consortium proposes to develop a system for electronically linking small firms with large customers. Proposal is rated Very Good because:</td>
</tr>
<tr>
<td></td>
<td>• Letters of commitment executed with 6 major manufacturers and 36 suppliers</td>
</tr>
<tr>
<td></td>
<td>• Participating manufacturers have instituted paperless systems in their factories</td>
</tr>
<tr>
<td></td>
<td>The proposal rating was reduced because:</td>
</tr>
<tr>
<td></td>
<td>• It did not include a demonstration</td>
</tr>
</tbody>
</table>

ALTERNATIVE DEPLOYMENT PILOT PROJECTS
EVALUATION CRITERIA

<table>
<thead>
<tr>
<th>EVALUATION CRITERIA:</th>
<th>Management Experience and Plans</th>
</tr>
</thead>
<tbody>
<tr>
<td>REFERENCE EXAMPLE:</td>
<td>Supplier Chain</td>
</tr>
<tr>
<td>RATING:</td>
<td>Below Average</td>
</tr>
<tr>
<td>RATIONALE:</td>
<td>Prime contractor establishing an electronic link with 50 suppliers for business and product data. Rated Below Average because:</td>
</tr>
<tr>
<td></td>
<td>• Company has not demonstrated a capability in this area</td>
</tr>
<tr>
<td></td>
<td>• No evidence of commitment of suppliers to participate</td>
</tr>
<tr>
<td></td>
<td>• Resulting systems will be considered proprietary</td>
</tr>
</tbody>
</table>

ALTERNATIVE DEPLOYMENT PILOT PROJECTS
EVALUATION CRITERIA

<table>
<thead>
<tr>
<th>EVALUATION CRITERIA:</th>
<th>Delivery Mechanisms</th>
</tr>
</thead>
<tbody>
<tr>
<td>REFERENCE EXAMPLE:</td>
<td>Regional Network of Suppliers</td>
</tr>
<tr>
<td>RATING:</td>
<td>Above Average</td>
</tr>
<tr>
<td>RATIONALE:</td>
<td>An alliance of multiple prime contractors, the Department of Commerce of the state, and 30 suppliers proposes to standardize and streamline flow down requirements and introduce best manufacturing practices. Proposal was rated Above Average because:</td>
</tr>
<tr>
<td></td>
<td>• Prime contractors have established in-place vendor network programs</td>
</tr>
<tr>
<td></td>
<td>• Proposed standardization and streamlining will improve quality, reduce cost and increase competitiveness</td>
</tr>
<tr>
<td></td>
<td>The proposal rating was reduced because:</td>
</tr>
<tr>
<td></td>
<td>• It did not recognize the significant impact of mandatory government specification requirements nor include a plan to address them</td>
</tr>
</tbody>
</table>

ALTERNATIVE DEPLOYMENT PILOT PROJECTS
EVALUATION CRITERIA

<table>
<thead>
<tr>
<th>EVALUATION CRITERIA:</th>
<th>Management Experience and Plans</th>
</tr>
</thead>
<tbody>
<tr>
<td>REFERENCE EXAMPLE:</td>
<td>Regional Network of Suppliers</td>
</tr>
<tr>
<td>RATING:</td>
<td>Above Average</td>
</tr>
<tr>
<td>RATIONALE:</td>
<td>Three prime contractors that are served by a common supplier base in a defined geographical region join with the Department of Commerce of the state in which they are located and a group of 30 suppliers to propose a set of activities which will simplify and rationalize the requirements placed by the prime contractors on their suppliers. The proposal was rated Above Average because:</td>
</tr>
<tr>
<td></td>
<td>• Leadership is provided by three prime contractors which have extensive experience dealing with suppliers</td>
</tr>
<tr>
<td></td>
<td>The proposal rating was reduced because:</td>
</tr>
<tr>
<td></td>
<td>• No single management authority is defined</td>
</tr>
</tbody>
</table>
ALTERNATIVE DEPLOYMENT PILOT PROJECTS
EVALUATION CRITERIA

EVALUATION CRITERIA: Funding, Budget, and Cost Sharing
REFERENCE EXAMPLE: Supplier Chain
RATING: Excellent
RATIONALE: A prime contractor proposes to establish an electronic link with 50 suppliers for business and product data. Proposal is rated Excellent because:

- Significant portion of budget (75%) flows down to suppliers, product vendors, and third-party technical assistance providers
- All matching funds are in cash, i.e., no payment in-kind
- The documented benefits greatly exceed proposed cost (5 to 1)

ALTERNATIVE DEPLOYMENT PILOT PROJECTS
EVALUATION CRITERIA

EVALUATION CRITERIA: Coordination and Elimination of Duplication
REFERENCE EXAMPLE: Commercialization
RATING: Excellent
RATIONALE: A demonstration pilot is proposed to accelerate within Ohio the commercialization of technologies in the electronics industry sector. This proposal is rated Excellent because:

- Demonstrates a solid understanding of existing state plans and organizations related to technology commercialization
- Defines working linkages to assure coordination with state agencies
- Targeted technology sector complements state efforts
- No duplication of existing state or federal activities

ALTERNATIVE DEPLOYMENT PILOT PROJECTS
EVALUATION CRITERIA

EVALUATION CRITERIA: Accessibility of Services & Documentation
REFERENCE EXAMPLE: Regional Network of Suppliers
RATING: Above Average
RATIONALE: An alliance consisting of three prime contractors, a group of 30 common regional suppliers and the regional state Department of Commerce have proposed activities to reduce costs by eliminating non-value added requirements and introducing best management practices. The proposal is rated Above Average because:

- A common shared data base information system is proposed
- Mix of suppliers (large, small, various technologies, etc.) enhances project relevancy for other primes/suppliers
- Proposal rating was reduced because:

 - No definitive plan to disseminate project results outside of the alliance

Aerogel Commercialization Pilot Project

Model: Private Sector Commercialization of Federal Lab Technology

<table>
<thead>
<tr>
<th>Objective</th>
<th>Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Prototype and assess new applications and products using aerogel technologies</td>
<td>- Creates new markets for lightweight, high R-value aerogel products in the automotive, aerospace, appliance industries</td>
</tr>
<tr>
<td>- Commercialize federal lab technology</td>
<td>- Retains jobs in defense dependent companies</td>
</tr>
<tr>
<td></td>
<td>- Utilizes excess capability at Aerojet facilities</td>
</tr>
<tr>
<td></td>
<td>- Successful commercialization of products from federal lab R&D</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data</th>
<th>Approach</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Defense Dual-Use Assistance Extension Program</td>
<td>- Defense prime deploying federal lab technology</td>
</tr>
<tr>
<td>Primary Team Members:</td>
<td>- Produce product samples for demonstration and testing by private sector and users</td>
</tr>
<tr>
<td>- Aerojet - General Corp., LLNL & LBNL</td>
<td>- Disseminate performance and cost data to SMEs through service providers</td>
</tr>
<tr>
<td>- 5 private sector end users and California & Michigan service providers</td>
<td>- Management by for-profit private sector company</td>
</tr>
<tr>
<td>- Total Cost: $2,621K</td>
<td></td>
</tr>
<tr>
<td>- Duration: 15 months</td>
<td></td>
</tr>
<tr>
<td>Model: Industry Technology Transition Center of Excellence for National Infrastructure</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Impact</td>
<td></td>
</tr>
<tr>
<td>- Economic impact of $12.5 billion</td>
<td></td>
</tr>
<tr>
<td>- Increased efficiency and safety of critical infrastructure systems</td>
<td></td>
</tr>
<tr>
<td>- Improved performance of critical infrastructure systems</td>
<td></td>
</tr>
<tr>
<td>- Increased profitability of critical infrastructure companies</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model: Cash and Capital Markets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Opportunity</td>
</tr>
<tr>
<td>- Improved access to capital for infrastructure projects</td>
</tr>
<tr>
<td>- Increased investment in infrastructure projects</td>
</tr>
<tr>
<td>- Improved risk management for infrastructure projects</td>
</tr>
<tr>
<td>- Increased transparency and accountability in infrastructure projects</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model: Navy Combat Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Opportunity</td>
</tr>
<tr>
<td>- Improved combat effectiveness of naval forces</td>
</tr>
<tr>
<td>- Increased interoperability between naval forces</td>
</tr>
<tr>
<td>- Improved training and readiness of naval forces</td>
</tr>
<tr>
<td>- Improved cost-effectiveness of naval forces</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model: Energy Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Opportunity</td>
</tr>
<tr>
<td>- Reduced energy consumption and costs</td>
</tr>
<tr>
<td>- Increased energy efficiency of buildings and facilities</td>
</tr>
<tr>
<td>- Improved comfort and safety for occupants</td>
</tr>
<tr>
<td>- Increased sustainability of buildings and facilities</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model: Regional Economic Development</th>
</tr>
</thead>
<tbody>
<tr>
<td>Opportunity</td>
</tr>
<tr>
<td>- Increased economic growth and development</td>
</tr>
<tr>
<td>- Improved job creation and retention</td>
</tr>
<tr>
<td>- Increased access to capital for small businesses</td>
</tr>
<tr>
<td>- Improved infrastructure for regional development</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model: Advanced Manufacturing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Opportunity</td>
</tr>
<tr>
<td>- Increased productivity and efficiency of manufacturing processes</td>
</tr>
<tr>
<td>- Improved quality and consistency of manufactured products</td>
</tr>
<tr>
<td>- Increased innovation and technology adoption in manufacturing</td>
</tr>
<tr>
<td>- Improved supply chain management and logistics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model: Customized Technology Solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Opportunity</td>
</tr>
<tr>
<td>- Improved customization and fit for customer needs</td>
</tr>
<tr>
<td>- Increased efficiency and effectiveness of technology solutions</td>
</tr>
<tr>
<td>- Improved customer satisfaction and loyalty</td>
</tr>
<tr>
<td>- Increased revenue and profitability for technology providers</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model: The Agile Web Pilot Program</th>
</tr>
</thead>
<tbody>
<tr>
<td>Opportunity</td>
</tr>
<tr>
<td>- Improved agility and responsiveness of web development processes</td>
</tr>
<tr>
<td>- Increased innovation and experimentation in web development</td>
</tr>
<tr>
<td>- Improved collaboration and communication between stakeholders</td>
</tr>
<tr>
<td>- Improved cost-effectiveness and efficiency of web development processes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model: The Alliance for National Excellence in Materials Joining</th>
</tr>
</thead>
<tbody>
<tr>
<td>Opportunity</td>
</tr>
<tr>
<td>- Improved performance and reliability of materials joining processes</td>
</tr>
<tr>
<td>- Increased efficiency and cost-effectiveness of materials joining processes</td>
</tr>
<tr>
<td>- Improved safety and environmental impact of materials joining processes</td>
</tr>
<tr>
<td>- Improved innovation and technology adoption in materials joining processes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model: Lockheed Martin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Opportunity</td>
</tr>
<tr>
<td>- Improved performance and reliability of defense systems</td>
</tr>
<tr>
<td>- Increased efficiency and cost-effectiveness of defense systems</td>
</tr>
<tr>
<td>- Improved safety and environmental impact of defense systems</td>
</tr>
<tr>
<td>- Improved innovation and technology adoption in defense systems</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model: The Aerospace Industry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Opportunity</td>
</tr>
<tr>
<td>- Improved performance and reliability of aerospace systems</td>
</tr>
<tr>
<td>- Increased efficiency and cost-effectiveness of aerospace systems</td>
</tr>
<tr>
<td>- Improved safety and environmental impact of aerospace systems</td>
</tr>
<tr>
<td>- Improved innovation and technology adoption in aerospace systems</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model: The Energy Sector</th>
</tr>
</thead>
<tbody>
<tr>
<td>Opportunity</td>
</tr>
<tr>
<td>- Improved performance and reliability of energy systems</td>
</tr>
<tr>
<td>- Increased efficiency and cost-effectiveness of energy systems</td>
</tr>
<tr>
<td>- Improved safety and environmental impact of energy systems</td>
</tr>
<tr>
<td>- Improved innovation and technology adoption in energy systems</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model: The Healthcare Sector</th>
</tr>
</thead>
<tbody>
<tr>
<td>Opportunity</td>
</tr>
<tr>
<td>- Improved performance and reliability of healthcare systems</td>
</tr>
<tr>
<td>- Increased efficiency and cost-effectiveness of healthcare systems</td>
</tr>
<tr>
<td>- Improved safety and environmental impact of healthcare systems</td>
</tr>
<tr>
<td>- Improved innovation and technology adoption in healthcare systems</td>
</tr>
</tbody>
</table>
Improving Mtg Process in Small & Medium Sized MN Companies

Model: Team-Based Methodology for Problem Solving and Process Improvement

<table>
<thead>
<tr>
<th>Data</th>
<th>Objective</th>
</tr>
</thead>
</table>
| • Regional Technology Alliances Assistance Program
• Primary Team Members: St. Cloud State University, MTI, 3M, Technical Colleges
• Total Cost: $5,679K
• Duration: 36 months | • Improve manufacturing operations of SMEs in central Minnesota
• Use structured process on-site to increase manufacturing efficiency, quality, and productivity |

<table>
<thead>
<tr>
<th>Approach</th>
<th>Impact</th>
</tr>
</thead>
</table>
| • Deploy teams of experts from client and tech sources
• Identify problems & generate solutions from raw material to product shipment
• Involve user to identify problems & generate solutions
• Define, train, implement improvements & transfer responsibility to client
• Clients expected from UMNTC assessments | • Creates long term plant-wide benefits for Minnesota economy
• Provides increased productivity, better product quality, and global competitiveness
• A systems process for implementing effective manufacturing techniques
• Sends new engineers to new jobs with in-plant manufacturing engineering experience |

Kansas Manufacturers Association: A Consortium for Defense Conversion

Model: Competitive Network Pursuing New Business

<table>
<thead>
<tr>
<th>Data</th>
<th>Objective</th>
</tr>
</thead>
</table>
| • Regional Technology Alliances Assistance Program
• Primary Team Members: Kansas Manufacturers Association, Mid America MTC, Wichita State
• Total Cost: $2,000K
• Duration: 36 months | • Provide cooperative methods for sub-tier SMEs in defense industry to convert from defense to commercial business |

<table>
<thead>
<tr>
<th>Approach</th>
<th>Impact</th>
</tr>
</thead>
</table>
| • Implement strategic business plans for consortium members
• Increase competitiveness and capability of consortium as a group by using electronic commerce, design, and engineering services, and quality certification
• Manage J by KMA Board of Directors | • Preserves defense/aerospace capabilities of SMEs
• Sub-tier manufacturers leveraged into virtual enterprises (horizontal and vertical integration)
• Expands manufacturing base, maintains employment levels, creates new jobs |

Maryland Healthcare Product Alliance

Model: Conversion of Advanced Defense Technologies

<table>
<thead>
<tr>
<th>Data</th>
<th>Objective</th>
</tr>
</thead>
</table>
| • Regional Technology Alliances Assistance Program
• Primary Team Members: MD Dept. of Econ & Employment Development, SMITC, SRTC, APL, Westinghouse, Fairchild, IBM
• Total Cost: $11,366K
• Duration: 36 months | • Transfer advanced defense technologies to create viable new healthcare products and businesses |

<table>
<thead>
<tr>
<th>Approach</th>
<th>Impact</th>
</tr>
</thead>
</table>
| • Create nonprofit corporation to facilitate healthcare product applications
• Services include outreach, market assessment, prototyping, intellectual property protection, & venture analysis
• Partners with hospitals for product feedback
• Adapts successful Massachusetts model for deploying healthcare products | • Provides defense companies access to healthcare markets
• Retains high quality jobs at defense dependent companies
• Creates leading-edge healthcare companies in Maryland |

Massachusetts Manufacturing Modernization Partnership

Model: State-led Cooperation Among Previously Competing Service Providers

<table>
<thead>
<tr>
<th>Data</th>
<th>Objective</th>
</tr>
</thead>
</table>
| • Defense Dual-Use Assistance Extension Program
• Primary Team Members: Massachusetts Exec Offices of Econ Affairs, Bay State Skills Corp., Industrial Services Program, Univ. of Massachusetts
• Total Cost: $29,642K
• Duration: 36 months | • Coordinate and supplement existing technology assistance service providers into a comprehensive state-wide system
• Strengthen existing industry
• Retain and upgrade jobs |

<table>
<thead>
<tr>
<th>Approach</th>
<th>Impact</th>
</tr>
</thead>
</table>
| • Establish 5 coordinated regional delivery centers with industry dominated boards
• Provide strong state oversight
• Builds on, and coordinates, existing business and technology services | • Assists 10,000 firms state-wide with focus on defense dependent industry sectors (e.g. electronics, metalsworking)
• Creates centralized points of contacts for industry access to assistance services |
Minnesota Consortium for Defense Conversion

Model: Public Nonprofit Product Development/Marketing Network

<table>
<thead>
<tr>
<th>Data</th>
<th>Objective</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Defense Dual-Use Assistance Extension Program</td>
<td>- Diversify business base of defense subcontractors</td>
</tr>
<tr>
<td>- Primary Team Members: Minnesota Technology Inc.</td>
<td>- Improve communication for defense primes' subcontractors</td>
</tr>
<tr>
<td>- Total Cost: $8,301K</td>
<td>- Improve quality practices of SMEs</td>
</tr>
<tr>
<td>- Duration: 36 months</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Approach</th>
<th>Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Assess members' core capabilities for new product development</td>
<td>- Retains jobs by expanding business base</td>
</tr>
<tr>
<td>- Establish electronic network and database of primes' needs and requirements</td>
<td>- Effective, cooperative commerce between defense primes and suppliers in Minnesota</td>
</tr>
<tr>
<td>- Create information exchange between subcontractors</td>
<td>- Enhance collective ability of consortium members</td>
</tr>
</tbody>
</table>

The New England Suppliers Institute

Model: Multi-State OEM/Supplier Quality Network

<table>
<thead>
<tr>
<th>Data</th>
<th>Objective</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Defense Dual-Use Assistance Extension Program</td>
<td>- Establish industry-led New England consortium to help SMEs meet customer requirements</td>
</tr>
<tr>
<td>- Primary Team Members: Bay State Skills Corp., Mass Institute of Technology, 5 State Partners, Industry Associations</td>
<td>- Upgrade SME quality practices</td>
</tr>
<tr>
<td>- Total Cost: $4,186K</td>
<td>- Strengthen competitiveness of SMEs</td>
</tr>
<tr>
<td>- Duration: 36 months</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Approach</th>
<th>Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Create relationships between OEMs and suppliers</td>
<td>- Improves competitiveness of defense related OEMs and suppliers in 6 New England states</td>
</tr>
<tr>
<td>- Harmonize OEM requirements</td>
<td>- Diversifies business base of defense dependent subcontractors</td>
</tr>
<tr>
<td>- Identify, coordinate and deliver technology and business assistance</td>
<td>- Establishes model for coordinating services across state boundaries</td>
</tr>
</tbody>
</table>

Recycling Technology Assistance Project

Model: State Extension Resource for Reuse and Waste Minimization

<table>
<thead>
<tr>
<th>Data</th>
<th>Objective</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Defense Dual-Use Assistance Extension Program</td>
<td>- Transform production practices to attain greater materials-use efficiency</td>
</tr>
<tr>
<td>- Primary Team Members: Clean Washington Center, National Recycling Coalition, Northwest Policy Center</td>
<td>- Reduce waste and increase materials reuse</td>
</tr>
<tr>
<td>- Total Cost: $10,521K</td>
<td>- Develop new products</td>
</tr>
<tr>
<td>- Duration: 48 months</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Approach</th>
<th>Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Evaluate SME product development and use/reuse of materials</td>
<td>- Cost savings and product development for SMEs</td>
</tr>
<tr>
<td>- Coordinate state-wide delivery system</td>
<td>- Clean-up and cost savings for military installations</td>
</tr>
<tr>
<td>- Managed by state with strong industry involvement</td>
<td>- Increases demand for recycled commodities</td>
</tr>
<tr>
<td>- Collect and disseminate information nationally</td>
<td>- Establishes model for national replication</td>
</tr>
</tbody>
</table>

Smart Valley CommerceNet

Model: Regional, Supplier-specific, Communication Tool

<table>
<thead>
<tr>
<th>Data</th>
<th>Objective</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Regional Technology Alliances Assistance Program</td>
<td>Deploy electronic infrastructure to modernize Silicon Valley's electronics, software, and information services to:</td>
</tr>
<tr>
<td>- Primary Team Members: Enterprise Integration Technologies Corp., Stanford University, BARRNet/WestREN Corp.</td>
<td>- Expedite procurements</td>
</tr>
<tr>
<td>- Total Cost: $11,996K</td>
<td>- Reduce cost of goods</td>
</tr>
<tr>
<td>- Duration: 36 months</td>
<td>- Allow concurrent engineering</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Approach</th>
<th>Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Deploy electronic networking technology to primes, OEM's and their suppliers</td>
<td>- Strengthens linkage between Silicon Valley businesses, high technology companies, and 1800 defense and commercial companies</td>
</tr>
<tr>
<td>- Provide on-line capability for catalogs, product orders, competitive solicitations, and intercompany collaborative engineering</td>
<td>- Diversifies defense dependent businesses and increases competitiveness</td>
</tr>
<tr>
<td>- Provide application and educational services</td>
<td>- Models nationally replicable pilot for electronic commerce and engineering data exchange</td>
</tr>
<tr>
<td>- Free to clients for 18 months</td>
<td></td>
</tr>
</tbody>
</table>
Technology Deployment Through Manufacturing Networks

Model: Manufacturing Assistance to Groups of Companies

<table>
<thead>
<tr>
<th>Data</th>
<th>Objective</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Defense Dual-Use Assistance Extension Program</td>
<td>- Evaluate manufacturing networks as an institutional structure to promote industrial competitiveness</td>
</tr>
<tr>
<td>- Primary Team Members:</td>
<td>- Demonstrate 2 networks' approaches to encourage member-manufacturers to adopt manufacturing technologies</td>
</tr>
<tr>
<td>Wrotek International, Metalworking</td>
<td>- Evaluate implications of a demand-driven entrepreneurial approach to technology development</td>
</tr>
<tr>
<td>Connection, Inc., Woodworks Inc.</td>
<td></td>
</tr>
<tr>
<td>- Total Cost: $2,138K</td>
<td></td>
</tr>
<tr>
<td>- Duration: 18 months</td>
<td></td>
</tr>
</tbody>
</table>

Approach

- Benchmarking member manufacturers to understand their strengths and weaknesses
- Provide in-plant technology demonstrations and assistance to member groups
- Integrate member companies vertically and horizontally for new product development

Impact

- Provides technology assistance to 1200 small manufacturers in Arkansas wood and metal industries
- Revitalizes wood and steel industries within Arkansas to increase sales and open new markets
- Demonstrates impact of multi-firm assistance approaches

Xerox CAN Solar Powered Hydrogen Generation Deployment

Model: Integration of Previously Developed Federal Technology

<table>
<thead>
<tr>
<th>Data</th>
<th>Objective</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Regional Technology Alliances Assistance Program</td>
<td>- Integrate federally sponsored technology for use in clean-air vehicles and fueling stations</td>
</tr>
<tr>
<td>- Primary Team Members:</td>
<td>- Deploy prototype vehicles in California</td>
</tr>
<tr>
<td>Clean Air Now, Xerox, United Technologies, SEA, Praxair, NREL</td>
<td></td>
</tr>
<tr>
<td>- Total Cost: $2,515K</td>
<td></td>
</tr>
<tr>
<td>- Duration: 13 months</td>
<td></td>
</tr>
</tbody>
</table>

Approach

- Integrate existing and pre-commercial technologies to deploy hydrogen in fleet vehicles
- Use 2% efficienct electrolyzer originally developed for submarines and satellites
- Partners provide key technology and other resources

Impact

- Provides method for other companies with fleet vehicles to convert to hydrogen power
- System meets or exceeds anticipated environmental regulations
- Develops new markets
- Transitions technology from Navy & NASA sponsored R&D
- Expedite nationwide deployment of hydrogen as transportation fuel

ALTERNATIVE DEPLOYMENT PILOT PROJECTS Evaluation Criteria

- **Target Population**
 - Well Defined Group of Companies to Benefit from Project
 - Survey of Region or Sector Provides Data for Population
 - Members of Population Included on Team and Helped Define the Program Based on Actual Needs

- **Defense Conversion, Dual-Use Impacts**
 - Included Defense Primes and/or Suppliers
 - Utilized Engineering Expertise to Generate Commercial Markets
 - Assessed Technologies for Commercial Market Share
 - Reasonably Determinable and Realistic Estimates of Project Impacts

- **Technology Sources**
 - Relevant Existing Technical Sources for the Target Population and Project Objectives
 - Agreements Defined for Technology Access and People Available
 - Sources Are Strategically Located or Accessible to Target Population

ALTERNATIVE DEPLOYMENT PILOT PROJECTS Evaluation Criteria

- **Delivery Mechanisms**
 - Effective Linkages for Project Activities and Target Populations
 - Multiple Techniques Available: Reports, Workshops, Classes, Hands-on Training
 - Intellectual Property Issues Were Nonexistent or Resolved

- **Management Experience and Plans**
 - Management Organization Was Efficient and Able to Control Funding, Personnel, and Technical Content
 - Critical Companies in the Target Population Had a Visible, Strong Role and Interacted with the Management Team
 - Project Manager Was Experienced in the Role and Had Authority for Project Success
ALTERNATIVE DEPLOYMENT PILOT PROJECTS
Evaluation Criteria

- Funding, Budget, and Cost Share
 - Project Cost Was Reasonable to Meet Objectives
 - Commitment for Cost Share Was Strong: Cash, Dedicated People, Companies, States
 - Plans Included Approaches Leading to Self-Sufficiency

- Accessibility of Services and Documentation
 - Detailed Approach to Provide Easy Access by Target Population
 - Cost Effective Means to Provide Services
 - Pilot Model Evaluation by 3rd Party for Effectiveness
 - Detailed Data and Documentation to be Sufficient for Replication

- Coordination and Elimination of Duplication
 - State and Regional Plans Do Not Conflict
 - Coordination of Activities and Services to Assure Non-Duplication

TRP 1994

- Two Competitions this Year
 - Tightly Focused Technology Areas – Spring
 - Development, Deployment, Manuf. Ed. Areas – Summer

- Teams Were Better if Management Organization, Program Manager, and SME Roles Were Well Defined

- Project Concept/Plans Must Be Concise, Clear, Well Thought-Out, With Relevant Goals, and Reasonably Priced

- Direct Contact with TRP Team Provided Better Proposals

- Factfinding Trips by Evaluation Team Are Critical
Final Attendance List
for
Oakland
Royanne Boyer
Associate Dean
Utah Valley State College, MATC
Continuing Education
800 West 1200 South
Orem, UT 84058-5999
Phone: (801)222-8000x565
FAX: 374-5473

Mark E. Brown
Engineering Director
Hughes Aircraft
Transportation Communication & Control Systems
Bldg. 676/DD345, F Box 3310
Fullerton, CA 92634
Phone: (714)441-9960
FAX: 732-5377

William Bruno
Program Manager
Utah Research Institute
825 East 4800S.
Salt Lake City, UT 84107
Phone: (801)265-0940
FAX: 263-1554

Jack Campbell
Program Manager
U.S. Small Business Administration
Procurement Assistance
71 Stevenson Street, 18th Floor
San Francisco, CA 94105
Phone: (415)744-8711
FAX: 744-6437

Paul Chann
Procurement Analyst
U.S. Small Business Administration
Procurement Assistance
71 Stevenson Street, 18th Floor
San Francisco, CA 94105
Phone: (415)244-2416
FAX: 244-2440

Belle Cole
Special Assistant
University of California
Office of the President
300 Lakeside Drive
Oakland, CA 94612
Phone: (310)475-6079
FAX: 475-2020

Jay Cooper
Instructor
West Los Angeles College
Center for Economic Development
4800 Freshman Drive
Culver City, CA 90230
Phone: (310)204-1832
FAX: 204-3732

Jeanne Cott
Contracts Specialist, OSP
Arizona State University
Office of Sponsored Projects
Box 871603
Tempe, AZ 85287-1603
Phone: (602)965-8013
FAX: 965-8013

Dave Cranmer
Associate Director, Program Planning & Policy
NIST / MEP
Bldg. 224, Room B115
Gaithersburg, MD 20899
Phone: (301)975-3414
FAX: 963-6556

Judi Dohn
Director, Business Development
NISTET
4505 Maryland Pkwy
Las Vegas, NV 89154-1046
Phone: (702)896-9745
FAX: 896-9743
Dr. Harold Glick
Physicist
Naval Warfare Assessment Ctr
Measurement Sciences
NWAC (Code MS-318), P.O. Box 5000
Corona, CA 91718-5000
Phone: (909)273-4755
FAX: 273-4102/4279

Julian A. Gravino
President & CEO
Edison Industrial Systems Ctr.
1700 N. Westwood, Suite 2286
Toledo, OH 43607-1207
Phone: (419)531-3610
FAX: 531-8465

Rod D. Hanks
V.P. Human Resources
HR Textron, Inc.
Human Resources
25200 W. Rye Canyon Road
Valencia, CA 91355
Phone: (805)253-5214
FAX: 259-8090

Steve Harari
President
Enterprise Integration Technologies
459 Hamilton Ave.
Palo Alto, CA 94301
Phone: (415)617-8000
FAX: 617-8019

Paul Helliker
Principal Engineer
CALSTART
3601 Empire Avenue
Burbank, CA 91505
Phone: (818)565-5600
FAX: 565-5610

Greg Goin
Program Manager
Thiokol Corporation
Human Development
916 C N. Highway 83, P.O. Box 689, MS CTC
Corinne, UT 84307
Phone: (801)863-5536
FAX: 863-5510

Oulian A. Gravin
President
Edison Mustard Systems Ctr.
1700 N. Westwood, Suite 2286
Toledo, OH 43607-1207
Phone: (419)531-3610
FAX: 531-8465

Ed Grysiewicz
President
Econioic
170 Forset Lane
Menco Park, CA 94025
Phone: (610)758-5238
FAX: 861-5918

Dwayne Hansen
Director, Mfg Initiatives
Ben Franklin Technology Center
125 Goodman Drive
Bethlehem, PA 18015
Phone: (610)758-5238
FAX: 861-5918

Jeff Haun
TRP Representative
TRP Office
ARPA / TRP
3701 N. Fairfax Drive
Arlington, VA 22203-1714
Phone: (703)696-8945
FAX: 696-8956

Jerry Hight
Corporate Relations Specialist
California State University, Chico
Office of Sponsored Projects
First & Normal Streets
Chico, CA 95929-0870
Phone: (916)898-5700
FAX: 398-6804
Dr. Nabil Ibrahim
Associate Dean, Graduate Studies
San Jose State University
General Engineering
One Washington Square
San Jose, CA 95192-0205
Phone: (408)924-3968
FAX: 924-3818

T.R. Jacks
Program Manager
Indiana University
Engineering & Technology
714 N. Senate Ave, Suite 100
Indianapolis, IN 46202-3112?
Phone: (317)226-5641
FAX: 226-5615

Michael D. Jacobson
President
QUOIN, Inc.
901 Heritage Drive, Suite 205
Ridgecrest, CA 93555
Phone: (619)446-2004
FAX: 446-4036

Cary Jenson
Secretary
Lawrence Livermore National Lab
Energy, Mfg. & transportation Technologies
7000 East Ave., P.O. Box 808, L-644
Livermore, CA 94550
Phone: (510)424-4372
FAX: 423-7914

Murray Johansen
Instructor
West Los Angeles College
Center for Economic Development
4800 Freshman Drive
Culver City, CA 90230
Phone: (310)204-1832
FAX: 204-3732

Thomas A. Kane
Manager
Gencorp Aerojet
New Business Development
1100 West Hollyvale St., P.O. Box 296
Azusa, CA 91702
Phone: (818)812-2970
FAX: 812-2083

Ehsan Khan
DOE
1000 Independence Avenue
Washington, DC 20585
Phone: (202)586-4785
FAX: 586-7719

Elizabeth J. Kuuttila
Director, Office of Technology Commercialization
Iowa State University
Center for Advanced Tech Development
153C ASC II
Ames, IA 50011
Phone: (515)294-2067
FAX: 294-9519

Ron LaPolla
Marketing Manager
Whittaker Electronics Systems
Marketing
1785 Voyager Avenue
Simi Valley, CA 93063
Phone: (805)584-8200x659
FAX: 526-1372

Ernie Leach
Deputy Chancellor
CA Community Colleges Chancellor's Office
1107 9th Street
Sacramento, CA 95814
Phone: (916)445-5226
FAX: 323-9478
John C. Peak
Director
Univ. of CA Mfg Extension Program
15373 Innovation Drive, Suite 105
San Diego, CA 92128
Phone: (619)451-7690
FAX: 485-7390

Randy W. Peebles
Instructional Dean, Tech
Cerritos Community College
Technology Division
11110 Alondra Blvd
Nowalk, CA 90650
Phone: (310)860-2451x2912
FAX: 467-5005

Gerald M. Peeler
Ass't City Manager
City Of Livermore
1052 S. Livermore Ave.
Livermore, CA 94550??
Phone: (510)373-5140
FAX: 373-5135

Frank Penaranda
Member, Technology Deployment Panel
NASA
Office of Advanced Concepts & Technology
Code: C4
Washington, DC 20546
Phone: (202)358-1500
FAX: 358-3938

Gary Phelps
Project Writer
Mountainland Applied Tech Center
Utah Valley State College
800 West 1200 South
Orem, UT 84058-5999
Phone: (801)222-8000
FAX: 374-5473

Dr. Jay D. Pinson
Dean, College of Engineering
San Jose State University
College of Engineering
One Washington Square
San Jose, CA 95192-0080
Phone: (408)924-3800
FAX: 924-3818

Terry Price
Dept Chair
Cerritos Community College
Technology Division
11110 Alondra Blvd
Nowalk, CA 90650
Phone: (310)860-2451x2927
FAX: 467-5005

Mr. Dan Quick
Director
University of Northern Iowa
Metal Casting Center
ITC 76
Cedar Falls, IA 50614-0178
Phone: (319)273-6894
FAX: 273-5959

Cindy Radvanyi
Business Planner
Sacramento Air Logistics Center
Plans & Programs
3237 Peace Keeper Way, Suite 6
McClellan AFB, CA 95652-1049
Phone: (916)643-1281
FAX: 643-3549

Leo Reddy
President
National Coalition for Advanced Mfg
1331 Pennsylvania Ave., NW, Suite 1410 N
Washington, DC 20004
Phone: (202)662-3960
FAX: 637-3182
Tom Starke
Member, Technology Deployment Panel
DOE
Office of Defense Programs
1000 Independence Ave. (DP4.1)
Washington, DC 20585
Phone: (202)586-5880
FAX: 586-1057

Marilyn Sweet
Project Director
West Los Angeles College
Center for Economic Development
4800 Freshman Drive
Culver City, CA 90230
Phone: (310)204-1832
FAX: 204-3732

Steve Trent
Project Engineer
U.S. Air Force
Mfg Tech Directorate
2977 P St., Suite 6, WL/MTI Bldg. 653
Wright-Patterson AFB, OH 45433-7739
Phone: (513)255-7371
FAX: 476-4420

Richard J. Wasley
Engineer
Lawrence Livermore National Lab
Energy, Mfg & Transportation Technologies
7000 East Ave., P.O. Box 808, L-644
Livermore, CA 94550
Phone: (510)424-4372
FAX: 423-7914

Steven Weiss
Mechanical Engineer
Electus Technology, Inc.
1260 E. Victoria Ave.
San Bernardino, CA 92408
Phone: (909)799-8358
FAX: 799-8348

Sara Steinhoffer
Research Policy Analyst
Univ. of San Diego
Federal Research Policy Department 0939
La Jolla, CA 92039-0939
Phone: (619)534-8241
FAX: 534-6404

George Taylor
NIST / MEP
3ldg. 224, Room B115
Gaithersburg, MD 20899
Phone: (301)975-3414
FAX: 963-6556

Michael Ward
Dean
California State University
College of Engr., Computer Sci., Tech
Chico, CA 95929-0003
Phone: (916)898-5963
FAX: 898-4070

Alesa Watson
Project Scheduler
Electus Technology, Inc.
1260 E. Victoria Ave.
San Bernardino, CA 92408
Phone: (909)799-8305
FAX: 799-8348

Mark S. Wiesel
Manager, Program Controls
HR Textron, Inc.
Finance
25200 W. Rye Canyon Road
Valencia, CA 91355
Phone: (805)233-5309
FAX: 259-8090
Ron Williams
Gold Strike Director
CA Trade & Commerce Agency
Office of Strategic Technology
200 E. Del Mar, Suite 204
Pasadena, CA 91105
Phone: (818)568-9437
FAX: 568-9962

Linda Wood
NIST / MEP
Bldg. 224, Room B115
Gaithersburg, MD 20899
Phone: (301)975-3414
FAX: 963-6556

Mr. Bernard G. Zuyo
Senior Associate
American Technology Initiative
535 Middlefield Road, Suite 180
Menlo Park, CA 94025
Phone: (415)325-5353
FAX: 329-0320
Final Attendance List
for
Atlanta
Dr. Emmanuel I. Agba
Mississippi State University
Asst. Professor of Engr.
Mechanical Engineering
P.O. Box Drawer ME
Mississippi State, MS 39762
Phone: (601)325-7316
FAX: 325-8573

Pantulu Avasarala
University of Cincinnati
Graduate Assistant
Mechanical Engineer
500 L Rhodes Hall
Cincinnati, OH 45221-0012
Phone: (513)556-7453
FAX: 556-3390

Ashraf Badir
Clark Atlanta University
Assistant Professor
Physics / Engineering
HIPPAC Center
Atlanta, GA 30314
Phone: (404)880-6900
FAX: 880-6880

Josh Batchelder
Advanced Driving Simulators (ADS)
Principal
Team Coordinator, Marketing & Personnel
4360 Chamblee Dunwoody Road, Suite 400
Atlanta, GA 30341
Phone: (404)458-5525
FAX: 455-1850

Mark Bensen
Kenan Institute
Associate Director
NCSU
Box 7006
Raleigh, NC 27695
Phone: (919)515-5118
FAX: 515-5831
Dr. Bkarat B. Bhalla
Fairfield University
Director, ClMS
School of Business
North Benson Road
Fairfield, CT 06430-7524
Phone: (203)254-4120
FAX: 254-4105

Mr. J. Brice Bible
University of Tennessee Space Institute
Assistant Director
CSTAR
MS 27, UTSI Research Park
Tullahoma, TN 37388
Phone: (615)455-7275
FAX: 455-6167

Jim Brooks
Texas Instruments
Contracts/Marketing Research
13588 N. Central Expw., MS 105
Dallas, TX 75243
Phone: (214)995-2318
FAX: 995-2006

Alfred E. Brown
Knowledge Express Data Systems
CEO/President
900 West Valley Road, Suite 401
Wayne, PA 19087
Phone: (610)293-9712
FAX: 687-2704

Dr. James O. Bryant, Jr.
Auburn University
Associate Dean for Extension Engineering Extension Service
107 Ramsey Hall
Auburn University, AL 36849
Phone: (205)844-4370
FAX: 844-5715

D.R. Buchanan
North Carolina State University
Associate Dean
College of Textiles
Box 8301
Raleigh, NC 27695-8301
Phone: (919)515-6649
FAX: 515-3057

Lee Buchanan
ARPA
3701 N. Fairfax Avenue
Arlington, VA 22203-1744
Phone: (703)696-2282
FAX:

Henry B. Burdg
Auburn University
Director
College of Business
College of Business, Suite 147
Auburn University, AL 36849
Phone: (205)844-4659
FAX: 844-5989

Edward T. Burns
Indiana Business Modernization & Tech Corp.
Vice President
One North Capitol Ave., Suite 925
Indianapolis, IN 46208
Phone: (317)635-3058
FAX: 231-7095

J.C. Campbell
Georgia Tech
Associate Director
Mfg. Research Cntr
813 Fert Drive, Mail Code 0560
Atlanta, GA 30332-0560
Phone: (404)853-9455
FAX: 853-0957
Dr. J. Barry Duvall
East Carolina University
Professor
Industrial Technology
105 Flanagan Hall
Greenville, NC 27858-4353
Phone: (919)757-6704
FAX: 757-4250

Dr. Imeh D. Ebong
University of Rhode Island
Director, Research Development
The Research Office
70 Lower College Road, University of Rhode Island
Kingston, RI 02881-0811
Phone: (401)792-5971
FAX: 792-9089

Virgil Elam
Mississippi State University
Manager, National Institute for Tech Training
Division of Continuing Education
P.O. Box 5247
Mississippi State, MS 39762
Phone: (601)325-3619
FAX: 325-8666

Leslie Cummings Elam
Mississippi State
Consultant
Continuing Education
P.O. Drawer 6338
Mississippi State, MS 39762
Phone: (601)323-8843
FAX: 323-8843

Charles Estes
Georgia Tech
Director, GMTEC
Economic Development Institute
223 O'Keefe Building
Atlanta, GA 30332
Phone: (404)894-6106
FAX: 853-9172

Elma Ettrman
Consultant
c/o Advanced Driving Simulato.s
4360 Chamblee Dunwoody Road, Suite 400
Atlanta, GA 30341
Phone: (706)838-4727
FAX: 838-4201

Sandra Ewerett
Lorain County Community College
Technical Projects & Training Manager
Advanced Technologies Center
1005 N. Abbe Road
Elyria, OH 44035
Phone: 1-800-995-5222x7032
FAX: 366-4105

Mary Fant
NC Department of Labor
Policy Analyst/Advisor
Commissioner's Office
4 West Edenton Street
Raleigh, NC 27601
Phone: (919)????
FAX: 733-6197

Kathleen Faulkner
Connecticut Department of Economic Development
Program Manager
Business & Regional Service Division
865 Brook Street
Rocky Hill, CT 06067-3405
Phone: (203)258-4283
FAX: 721-7650

John R. Fenter
USAF WL/MT
Asst. to the Director, Mfg. Tech
Mfg. Technology Directorate
Bldg. 653, 2877 P Street, Suite 6
Wright-Patterson AFB, OH 45433-7739
Phone: (513)255-2232
FAX: 476-7291
Janet Franz
Vermont EPCOR
Project Coordinator
Cook Bldg., University of Vermont
Burlington, VT 05405
Phone: (802)656-7969
FAX: 656-2950

Dr. Thomas Frey
Lorain County Community College
Technical Specialist
Nord Advanced Technologies Center
1005 N. Abbie Road
Elyria, OH 44035
Phone: 1-800-995-5222x7019
FAX: 366-4105

Traci B. Frey
The New York Public Library
Associate Manager for Government Grants
Government Affairs & Programs
Fifth Avenue & 42nd Street
New York, NY 10018
Phone: (212)930-0692
FAX: 391-2503

Stan Lee Fulcher
Louisiana Dept. of Economic Development
Economic Development Research Supervisor
Office of Policy & Research
P.O. Box 94185
Baton Rouge, LA 70804-9185
Phone: (504)342-4315
FAX: 342-5389

Christopher Fuller
Pratt & Whitney / GESP
Proposal Specialist
Program Service
P.O. Box 109600, M/S 702-90
West Palm Beach, FL 33410-9660
Phone: (407)796-7119
FAX: 796-7381

Dr. George W. Garrison
University of Tennessee Space Institute
Executive Director
CSTAR
MS 27, UTSI Research Park
Tullahoma, TN 37388
Phone: (615)455-9294
FAX: 455-6167

Walter L. Gilfillen
Brevard Community College
Associate V.P. for Development
Development Office
1519 Clearlake Road
Cocoa, FL 32922
Phone: (407)632-1111x4540
FAX: 633-4565

Michael Grant
Southwest Research Institute
6220 Culebra, P.O. Drawer 28510
San Antonio, TX 73228-0510
Phone: (211)522-5983
FAX: 522-5499

Bill Griffie
Iowa Plastic Technology Center
Consultant
242 Guichrist, University of Northern Iowa
Cedar Falls, IA 50614-0029
Phone: (319)273-6920
FAX: 273-6494

Debra Haley
NIST / MEP
Bldg. 224, Room B115
Gaithersburg, MD 20899
Phone: (301)975-3414
FAX:
Audrey D. Hallett
Sprint Communications Co.
Sr. Contract Administration
Government Contract Administration
13221 Woodland Park Road, MS VAHRNA0608
Herndon, VA 22071
Phone: (703)904-2093
FAX: 904-2069

Dwayne Hansen
Ben Franklin Tech Center
Director, Mfg. Initiatives
125 Woodward Drive
Bethlehem, PA 18015
Phone: (215)758-5238
FAX: 861-5918

George M. Happ
Vermont EPSCOR
Project Director
Cook Bldg., University of Vermont
Burlington, VT 5405
Phone: (802)656-0456
FAX: 656-8831

Andrew J. Harris, Jr.
Georgia Institute of Technology
Director
State Relations
177 North Avenue, Wardlaw Bldg.
Atlanta, GA 30332-0392
Phone: (404)894-1238
FAX: 853-9187

Volker Hartkopf
Carnegie Mellon University
Director
Center for Building Performance and Diagnostics
5000 Forbes Avenue
Pittsburgh, PA 15213
Phone: (412)268-2350
FAX: 268-6129

Dr. Kenneth E. Harwell
University of Alabama in Huntsville
V.P. for Research & Associate Provost
UAH Research Institute, Room M-17
Huntsville, AL 35899
Phone: (205)895-6100
FAX: 895-6783

Jeff Haun
TRP Office
TRP Representative
ARPA/TRP
3701 N. Fairfax Drive
Arlington, VA 22203-1714
Phone: (703)696-8945
FAX: 696-8956

Philip Hayes
U.S. Department of Energy
Energy Cons. Specialist
1000 Independence Ave., SW
Washington, DC 20585
Phone: (202)586-4814
FAX: 586-1605

Dr. Scott C. Helzer
University of Northern Iowa
Metal Casting Center
ITC 76
Cedar Falls, IA 50614-0178
Phone: (319)273-6894
FAX: 273-5959

Ronald L. Henderson
U.S. Dept. of Energy, Atlanta Support Office
Director, Grants Management Division
730 Peachtree Street, N.E., Suite 876
Atlanta, GA 30308
Phone: (404)347-7139
FAX: 347-3098
John J. Jarvis
Georgia Tech
Professor & Director
Industrial Research Lab
School of ISYE
Atlanta, GA 30332-0205
Phone: (404)894-2303
FAX: 894-2301

Shelby J. Jan
Great Lakes Composites Consortium
Business Development & Planning
8400 Lakeview Pkwy., Suite 800
Kenosha, WI 53142
Phone: (414)947-7471
FAX: 947-8919

Richard Johnson
Northwestern University
Associate Director
1801 Maple Avenue
Evanston, IL 60201-3135
Phone: (708)491-4794
FAX: 491-7105

Brian Johnson
Florida Small Business Development Center
Information Research Specialist
19 West Garden Street, Suite 300
Ft. Lauderdale, FL 33301
Phone: (904)444-2060
FAX: 444-2070

Brent Kaylor
Booz Allen & Hamilton
Associate
TIP
4001 N. Fairfax Drive, Suite 650
Arlington, VA 22203
Phone: (703)528-8080
FAX: 525-3754

Ehsan Khan
DOE
2326 Darius Lane
Herndon, VA 22071
Phone: (703)471-1821
FAX: 471-7719

Rick Korchak
NIST / MEP
Bldg. 224, Room B115
Gaithersburg, MD 20899
Phone: (301)975-3414
FAX:

Ramesh Krishnaiyer
STAC, NASA
Associate Director
1515 W. Commercial Blvd.
Ft. Lauderdale, FL 33309
Phone: (305)351-4104
FAX: 351-4105

Ann Krone
Sprint
Government Cost Analyst
Government System Division
8330 Ward Parkway
Kansas City, MO 64114
Phone: (816)854-2339
FAX: 854-2302

Matthew La Vigne
Technological Research and Development Authority
Contracts Administrator
6750 South Highway U.S. 1
Titusville, FL 32780
Phone: (407)269-6330
FAX: 269-6346
Paul Mazzuca, Jr.
M/A - COM, Inc.
Technical Advisor
309 Yoakum Pkwy.
Alexandria, VA 22304-3907
Phone: (703)751-0005
FAX: 823-1808

Joe F. McCrosson
Westinghouse Savannah River Company
Manager
Development Department
Bldg. 773-41A
Aiken, SC 29808
Phone: (803)725-4861
FAX: 725-4553

Leon McGinnis
Georgia Tech
Director, CIMS
CIMS
Atlanta, GA 30332-0406
Phone: (404)894-5562
FAX: 853-0957

Kevin McIntyre
NIST
Bldg. 224, Room B115
Gaithersburg, MD 20899
Phone: (301)975-3414
FAX: 963-6556

James C. McKean
VA Department of Economic Development
Manager, Industry Services
Community & Business Services
1021 E. Cary Street, P.O. Box 798
Richmond, VA 23206-0798
Phone: (804)371-8227
FAX: 371-8111

Cliff McKeithan
C. McKeithan
Consultant
c/o Advanced Driving Simulation
4360 Chamblee Dunwoody Road, Suite 400
Atlanta, GA 30341
Phone: (404)565-6729
FAX: 358-5209

Gary Mears
EDS Corporation
Senior Account Rep.
Military Systems Division
13600 CDSDR
Herndon, VA 22071
Phone: (703)742-1304
FAX: 742-2419

Harry M. Meyer
Martin Matietta Energy Systems Y-12 Plant
Development Staff Chemist
Bldg. 9203, MS 8084
Oak Ridge, TN 37831
Phone: (615)576-3866
FAX: 576-2782

C.W. Meyers
Georgia Institute of Technology
Associate Dean
College of Engineering
225 North Avenue
Atlanta, GA 30332-0360
Phone: (404)894-1323
FAX: 853-0168

Farrokh Mistree
Georgia Tech
Professor
Systems Realization Lab
Atlanta, GA 30332-0605
Phone: (404)894-8412
FAX: 894-9342
Deborah Mitta
Georgia Tech Research Institute
Senior Research Engineer
GTR/CAD
Atlanta, GA 30332-0800
Phone: (404)894-1909
FAX: 894-8638

George Mosinskis
Southern CA Gas Company
Special Projects Manager
Research
1150 Connecticut Ave., NW, #717
Washington, DC 20036
Phone: (202)822-3708
FAX: 293-2887

Trygve C. Myhre
Oak Ridge Centers or Mfg. Tech.
Program Development Manager
Martin Marietta Energy Systems, Inc.
P.O. Box 2009, 9737 MS 8091
Oak Ridge, TN 37831-8091
Phone: (615)574-1624
FAX: 574-2000

F. Richard Nicoson
Indiana Vocational Technical College
Coordinator of Business & Industry Training
Business & Sysc Training Suc, ICAT
501 South Airport Street - HRAA
Terre Haute, IN 47803
Phone: (812)877-3616
FAX: 877-1184

Demetrius T. Paris
Georgia Institute of Technology
V.P. for Research and Graduate Programs
Office of the President
Georgia Tech University
Atlanta, GA 30332-0325
Phone: (404)894-8885
FAX: 853-9163

Michael Moch
Michigan State University
Chairperson
Department of Management
475 HBB
East Lansing, MI 48824
Phone: (517)355-1878
FAX: 336-1111

Dale E. Mowbray
Indiana Vocational Technical College
Director of Business & Industry Training
501 South Airport Street - HRAA
Terre Haute, IN 47803
Phone: (812)877-3616
FAX: 877-1184

Phil Nanzetta
NIST
Director
Manufacturing Extension Partnership
Bldg. 224, Room B115
Gaithersburg, MD 20899
Phone: (301)975-3414
FAX: 963-6556

John M. Owens
Auburn University
Associate Dean for Research
College of Engineering
108 Ramsay Hall
Auburn, AL 36849
Phone: (205)844-4326
FAX: 844-2672

T.C. Parsons
University of Tennessee
Executive Director
226 Capitol Blvd., Suite 606
Nashville, TN 37219-1804
Phone: (615)532-4902
FAX: 532-4937
Ron Parsons
NIST / MEP
Bldg. 224, Room B115
Gaithersburg, MD 20899
Phone: (301)975-3414
FAX:

Jennifer Payette
NIST / MEP
Special Projects Manager
Bldg. 224, Room B115
Gaithersburg, MD 20899
Phone: (301)975-5042
FAX:

Frank Penaranda
NASA
Member, Technology Deployment Panel
Office of Advanced Concepts & Technology
Code: CU
Washington, DC 20546
Phone: (202)358-1500
FAX: 358-3938

Laurie Peterfreund
St. Louis County Economic Council
Technology Development Coordinator
Def. Adj. & Diversification
121 South Meramec
St. Louis, MO 63105
Phone: (314)889-7663
FAX: 889-7666

Anne L. Pierce
University of Hartford
Director of Scientific Advancement
Academic Affairs
200 Bloomfield Ave.
West Hartford, CT 06117
Phone: (203)768-4849
FAX: 768-5220

Gary W. Poehlein
Georgia Institute of Technology
V.P. for Interdisciplinary Programs
Office of Interdisciplinary Programs
Atlanta, GA 30332-0370
Phone: (404)894-4826
FAX: 894-7339

N. Nullie Potitong
Georgia Institute of Technology, OCA
Attorney
OCA/Legal
Centennial Research Bldg., Rm 254
Atlanta, GA 30332-0420
Phone: (404)894-4812
FAX: 894-3120

Elizabeth Reid
Ben Franklin Technology Center
Manager, Government Affairs & PR
4516 Henry Street
Pittsburgh, PA 15213
Phone: (412)681-1520
FAX: 681-2625

William T. Rhodes
Georgia Institute of Technology
Professor
Center for Optical Science & Engineering
Atlanta, GA 30332-0252
Phone: (404)894-2929
FAX: 894-6285

John D. Roethle
Anderson/Roethle, Inc.
President
733 N. Van Buren Street
Milwaukee, WI 53202
Phone: (414)276-0070
FAX: 276-4364
Chandra Roychoudhuri
University of Connecticut
Director/Professor
Photonics Research Center
260 Glenbrook Road, U-157
Storrs, CT 06260-3157
Phone: (203)486-2557
FAX: 486-1033

Dr. Andrew Rudczynski
Rutgers University
Associate V.P. Research
Office of Research & Sponsored Programs
Admin. Bldg., Annex II, P.O. Box 1179
Piscataway, NJ 08855-1179
Phone: (908)445-2884
FAX: 445-3257

Ward D. Rummel
Martin Marietta
Manager Advanced Technology
8776 W. Mountainview Lane
Littleton, CO 80125-3406
Phone: (303)977-1751
FAX: 977-1145

Christopher Russo
New York State
Asst. Director, Office of Fiscal Administration
Economic Development
One Commerce Avenue
Albany, NY 12245
Phone: (518)473-4830
FAX: 486-6604

F. Michael Saunders
Georgia Tech
Professor/Center Director
Environmental Engineer/OESTP
Environmental Engineering
Atlanta, GA 30332-0512
Phone: (404)894-7693
FAX: 894-9724

William I. Sauser, Jr.
Auburn University
Associate V.P.
Extension Office
213 Samford Hall
Auburn University, AL 36849-5638
Phone: (205)844-5700
FAX: 844-5708

George Schiro
NCMS
Program Manager
Mfg. Application & Ed. Center
3025 Boardwalk
Ann Arbor, MI 48104-3266
Phone: (313)995-4958
FAX: 995-4004

Reid Schlager
Advanced Driving Simulators (ADS)
Principal
Financial Management/Marketing
4360 Chamblee Dunwoody Road, Suite 400
Atlanta, GA 30344
Phone: (404)416-8436
FAX: 416-8436

Bernard J. Schroer
University of Alabama in Huntsville
Director
Center for Automation and Robotics
Huntsville, AL 35899
Phone: (205)895-6256
FAX: 895-6733

Daniel Schutzer
Citibank
Vice President
909 Third Ave., 32nd Floor
New York, NY 10022
Phone: (212)559-1876
FAX: 832-7497
Stanley Shelly
National Institute of Flexible Manufacturing
President
R.D. #2, Box 1100, Moiser Own Road
Meadsville, PA 16335
Phone: (814)333-2415
FAX: 337-8172

W. Steve Shepard
Mississippi State University
Director
Diagonistic I&A Lab
DIAL, P.O. Drawer MM
Mississippi State, MS 39762
Phone: (601)325-2105
FAX: 325-8465

William T. Sheppard
Southern Technology Applications Center
Technology Counselor
Sennis Space Center
College of Engineering, University of FL
Bldg. 1103
Sennis Space Center, MS 39529
Phone: (601)688-1287
FAX: 688-2408

Jeff Shick
National Technology Transfer Center
Deputy Director
316 Washington Avenue
Wheeling, WV 26003
Phone: (304)243-2355
FAX: 243-2129

Dr. Jatinder Singh
Clark Atlanta University
U.P. Brawley Drive, Box 302
Atlanta, GA 30314
Phone: (404)880-6935
FAX: 880-6890

Patrick Smith
IBM
Manager of Tech Analysis
IBM East Fishkill Facility, Route 52
Hopewell Junction, NY 12533-0999
Phone: (914)894-7527
FAX: 862-6256

Robert W. Springfield
Georgia Tech Economic Development Institute
Associate Director, IES
Industrial Extension Service
1 Reservation Street, Rome Regional Office
Rome, GA 30161-5429
Phone: (706)295-6008
FAX: 295-6049

Terry Squier
El Paso Community College
Director
Advanced Technology Center
P.O. Box 20500
El Paso, TX 79998
Phone: (915)594-2350
FAX: 594-2369

William E. Starn
National Institute of Flexible Manufacturing
Chairman of the Board
R.D. #2, Box 1100, Moiser Own Road
Meadsville, PA 16335
Phone: (814)333-2415
FAX: 337-8172

Harry J. Stone
Institute of Adv. Mfg. Sciences
Managing Director
Ctr for Applied Environment & Technology
1111 Edison Drive
Cincinnati, OH 45215
Phone: (513)948-2000
FAX: 948-2007
Timothy W. Swafford
NSF/ERC for Computational Field Simulation
Deputy Director
P.O. Box 6176
Mississippi State, MS 39762
Phone: (601)325-7722
FAX: 325-7692

Dr. David H. Swanson
National Institute of Standards & Technology
Manufacturing Extension Partnership
Polymers Bldg. B1115
Gaithersburg, MD 20899
Phone: (301)945-5306
FAX: 963-6556

Larry D. Tenerbaugh
Texas Engineering Extension Service
Assistant Agency Director
Texas A&M University System
College Station, TX 77843-8000
Phone: (409)862-2076
FAX: 862-2888

Paul C. Thistlethwaite
Louisville/Jefferson County Office for Economic Development
Executive Director
600 West Main Street, Suite 400
Louisville, KY 40202
Phone: (502)574-3204
FAX: 574-1588

Robert C. Thurmond
University of Louisville
Director
Telecommunications Research Cntr
Shelby Campus
Louisville, KY 40292
Phone: (502)852-0900
FAX: 852-4701

David R. Veazie
Georgia Tech
PhD Candidate
Mechanical Engineering
4275 Cabretta Drive
Smyrna, GA 30080
Phone: (404)434-4085
FAX:

Vonna Viglione
NC Dept. of Labor
Assistant Director
Division for Training Initiatives
19 W. Hargett Street, Suite 209
Raleigh, NC 27601
Phone: (919)733-6550
FAX: 733-2897

Mike Viilo
Kaman Diversified Technologies
Assistant Vice President
1111 Jefferson Davis Hwy., Suite 700
Arlington, VA 22202
Phone: (703)416-2500
FAX: 416-2512

Dr. Terry Walch
Quality Workforce Education Consortium of Colleges
Project Director
5930 Middle Fiskville Rd.
Austin, TX 78752
Phone: (512)483-7721
FAX: 483-7820

W. Travis Walton
Technology Extension Service
Director
Univ. of MD, Engineering Research Ctr
College Park, MD 20742
Phone: (301)405-3883
FAX: 403-4105
Julie S. Welch
Arkansas Science & Technology Authority
Research Program Manager
100 Main Street, Suite 450
Little Rock, AR 72201
Phone: (501)324-9006
FAX: 324-9012

Carolyn E. Williamson
Sprint Communications Co.
Sr. Contract Administration
Contracts
13221 Woodland Park Road, MS VAHRNA608
Herndon, VA 22071
Phone: (703)904-2093
FAX: 904-2069

Eric Alan Wolfe
Coal Technology Corporation
Environmental Project Manager
Environmental
103 Thomas Road
Bristol, VA 24201
Phone: (703)669-6515
FAX: 669-2161

Ronald A. Young
Southeast Manufacturing Technology College
Vice President
EDI of South Carolina
P.O. Box 1149
Columbia, SC 29202
Phone: (803)252-8806
FAX: 252-0056

Raymond Zavada
Innovative Productivity, Inc.
President
P.O. Box 9368
Louisville, KY 40209-0386
Phone: (502)364-5173
FAX: 364-5272

Ward O. Winer
Georgia Tech
Director and Regents Professor
Mechanical Engineering Department
254 Cherry Street
Atlanta, GA 30332-0405
Phone: (404)894-3200
FAX: 894-1658

Linda Wood
NIST
Assistant to the Director
MEP
Bldg. 224, Room B115
Gaithersburg, MD 20899
Phone: (301)975-3414
FAX: 963-6556

Jan Youtie
Georgia Tech
Senior Research Associate
Economic Development Institute
O'Keefe Bldg, Room 205
Atlanta, GA 30332-0800
Phone: (404)894-6111
FAX: (404)853-9172

Robert P. Zimmer
Georgia Tech
GTRI
225 North Ave., CRB510
Atlanta, GA 30322
Phone: (404)894-3519
FAX: 894-7206
List of Others Receiving Proceedings
David Gold
Regional Manager
NIST / MEP
Bldg. 224, Room B115
Gaithersburg, MD 20899
Phone: (301)975-3414
FAX: 963-6556

Dr. Stephen L. Gomes
Chief Executive Officer
American Technology Initiative
535 Middlefield Road, Suite 180
Menlo Park, CA 94025
Phone: (415)325-5353
FAX: 329-0320

Jeffrey D. Hill
Co-Publisher
CALS Journal, Inc.
14407 Big Basin Wav
Saratoga, CA 95070
Phone: (408)867-8600
FAX: 867-9800

Ron Hira
Regional Manager
NIST / MEP
Bldg. 224, Room B115
Gaithersburg, MD 20899
Phone: (301)975-3389
FAX: 963-6556

Christopher Holben
Assistant Secretary
CA Trade and Commerce Agency
Economic Development
801 K Street, Suite 1700
Sacramento, CA 95814
Phone: (916)324-9777
FAX: 322-3524

R Kim Holder
Resource Development Specialist
Dallas County Community College District
Resource Development
701 E. 7th Street
Dallas, TX 75202-3299
Phone: (214)746-2458
FAX: 746-2107

Dr. Sandor Holly
Principal Engr. Specialist
Rockwell International Corp.-Rocketdyne Division
Advanced Programs
6633 Canaga Ave., Mail Stop FA03
Canoga Park, CA 91304
Phone: (818)586-3069
FAX: 586-3074

Amy Hughes
DoD
Office of Economic Adjustment
16695 Shannon Road
Los Gatos, CA 95032
Phone: (408)356-2212
FAX: 356-4980

Steven L. Jarvis
Director, Office of Strategic Technology
State of California
Trade & Commerce Agency
200 E. Del Mar, #204
Pasadena, CA 91105
Phone: (818)568-9437
FAX: 568-9962

Dr. James Jordan
Director, Adv Programs
CAM-I
California Office
3350 E. Birch, Suite 240
Brea, CA 92621
Phone: (714)579-1617
FAX: 993-4110

Ron Ilira
Regional Manager
NIST / MEP
Bldg. 224, Room B115
Gaithersburg, MD 20899
Phone: (301)975-3389
FAX: 963-6556

R Kim Holder
Resource Development Specialist
Dallas County Community College District
Resource Development
701 E. 7th Street
Dallas, TX 75202-3299
Phone: (214)746-2458
FAX: 746-2107

Amy Hughes
DoD
Office of Economic Adjustment
16695 Shannon Road
Los Gatos, CA 95032
Phone: (408)356-2212
FAX: 356-4980

Dr. James Jordan
Director, Adv Programs
CAM-I
California Office
3350 E. Birch, Suite 240
Brea, CA 92621
Phone: (714)579-1617
FAX: 993-4110
Dr. Michael M. Mann
Chairman & C.E.O.
Blue Marble Partners
Corporate Office
406 Amapola Ave., Suite 200
Torrance, CA 90501
Phone: (310)328-3583
FAX: 328-9057

Dr. David Norton
Director
Utah Research Institute
Mail Code 1207, Weber State University
Ogden, UT 84404
Phone: (801)479-8837
FAX: 476-1263

Carol McClain
Coordinator, Research
University of CA
Academic Affairs
Office of the President, 300 Lakeside Dr., 18th Floor
Oakland, CA 94612-3550
Phone: (510)987-9473
FAX: 987-9456

R. A. W. McCullough
President
AWM Associates
20 Aunt Park Lane
Newtown, CT 06470
Phone: (203)270-7159
FAX:

Ralph D. Mills
Director, Research & Policy Planning
CA State University
400 Golden Store, #302
Long Beach, CA 90802-4275
Phone: (310)985-2037
FAX: 985-2829

Jimm Meloy
Education Programs Director
Autodesk
Education Department
2320 Marinship Way
Sausalito, CA 84965
Phone: (415)491-8208
FAX: 491-8337

Jan Murra
Administrative Associate
Arizona State University
CIM Systems Research Center
Box 875106
Tempe, AZ 85287-5106
Phone: (602)965-3709
FAX: 965-2910

Nancy Millstead
Development Officer
Francis Tuttle Vo Tech Center
Development
12777 N. Rockwell
Oklahoma City, OK 73162
Phone: (405)720-4744
FAX: 720-4755

Raju Naidu
Senior Financial Analyst
SRI International
333 Rovenswood Ave.
Menlo, CA 95032
Phone: (415)859-2431
FAX:

Jim Meloy
Education Programs Director
Autodesk
Education Department
2320 Marinship Way
Sausalito, CA 84965
Phone: (415)491-8208
FAX: 491-8337

Nancy Millstead
Development Officer
Francis Tuttle Vo Tech Center
Development
12777 N. Rockwell
Oklahoma City, OK 73162
Phone: (405)720-4744
FAX: 720-4755

Raju Naidu
Senior Financial Analyst
SRI International
333 Rovenswood Ave.
Menlo, CA 95032
Phone: (415)859-2431
FAX:

Ken Patton
Dean of Career Education, Econ. Development
Glendale Community College
1500 N. Verdugo Road
Glendale, CA 91208
Phone: (818)240-1000x5157
FAX: 549-9436

Jan Murra
Administrative Associate
Arizona State University
CIM Systems Research Center
Box 875106
Tempe, AZ 85287-5106
Phone: (602)965-3709
FAX: 965-2910

Raju Naidu
Senior Financial Analyst
SRI International
333 Rovenswood Ave.
Menlo, CA 95032
Phone: (415)859-2431
FAX:

Ken Patton
Dean of Career Education, Econ. Development
Glendale Community College
1500 N. Verdugo Road
Glendale, CA 91208
Phone: (818)240-1000x5157
FAX: 549-9436
Willard W. Perry
Manager, Business Development
Midwest Research Institute
California Operations
32108 Canyon Crest Court
Westlake Village, CA 91361
Phone:
FAX:

Mr. Richard Reece
President
Blue M'x Partners
Corporate Office
406 Amapola Ave., Suite 200
Torrance, CA 90501
Phone: (310)328-3583
FAX: 328-9057

R Rebecca Rone
Senior Scientist, Contracts & Grants
Molecular Simulations
Life Sciences
16 New England Executive Park
Burlington, MA 01803-5297
Phone: (617)229-9800
FAX: 229-9899

Robert G. Sakai
Science & Technology Coordinator
Alameda County (Economic Development Program
County Administrator's Office
1221 Fk Street, Suite 555
Oakland, CA 94612
Phone: (510)272-3881
FAX: 272-3784

Raj Seshadri
Principal
Chestnut Associates
One Sansome Street, Suite 2100
San Francisco, CA 94104
Phone: (415)951-4670
FAX: 951-4660

Cynthia Shallit
Manager
Sacramento Redevelopment Agency
Economic Development
600 I Street
Sacramento, CA 95814
Phone: (916)440-1399x446
FAX: 447-2261

Kathleen Shanahan
Deputy Secretary
Trade & Commerce Agency
801 K Street, Suite 1700
Sacramento, CA 95814
Phone: (916)324-5065
FAX: 227-3524

Rohit K. Shukla
Executive Director
Los Angeles Regional Technology Alliance
6922 Hollywood Blvd., #415
Los Angeles, CA 90028
Phone: (213)462-5111
FAX: 462-4029

William H. Sleight
Co-Publisher
CALS Journal, Inc.
14407 Big Basin Way
Saratoga, CA 95070
Phone: (408)867-8600
FAX: 867-9800

Chip Smith
Principal Scientist
Ballena Systems Corp.
617 South Lower Sacramento Road
Lodi, CA 95242
Phone: (209)369-0236
FAX: 369-0243
Ms. Doris J. Stan
Director
Fairfield University
Office of Grants & Sponsored Programs
Donnarumma Hall, N. Benson Road
Fairfield, CT 06430
Phone: (203)254-4000x2500
FAX: 254-4060

Paul Staples
Executive Director
Clean Air Now
Staff
1415 Abbot Kinney Blvd., #112
Venice, CA 90291
Phone: (310)450-2121
FAX: 827-4887

Robert Stark
Director
NASA Regional Tech Center
University of Southern CA
3716 S. Hope, #200
Los Angeles, CA 90007
Phone: (213)743-6132
FAX:

Brian Stucke
Project Engineer
U.S. Air Force Mfg Tech Directorate
2977 P St., Suite 6, WL/MTI Bldg. 653
Wright-Patterson AFB, OH 45433-7739
Phone: (513)255-7371
FAX: 476-4420

R Hugh Sullivan
Executive Director
Spokane Intercollegiate Research & Technology Institute (SIRTI)
501 North Riverpoint Blvd., SUite 245
Spokane, WA 99202-1649
Phone: (509)456-7091
FAX: 456-7097

Dr. Michael Sullivan
Technology Projects Manager
NAWC - Weapons Division
U.S. Navy
Code 3402
Point Mugu, Ca 93042-5001
Phone: (805)989-9208
FAX: 989-3938

Meg Svoboda
Analyst
Legislative Analyst's Office
925 L Street, Suite 1000
Sacramento, CA 95814
Phone: (916)322-8402
FAX:

G. Marie Talnack
Consultant
Univ. of California-Irvine
University Tower, Suite 240
Irvine, CA 92716
Phone: (714)509-2990
FAX: 509-2997

William R. Taylor
Director
Montana State University
University Technical Assistance Program
402 Roberts Hall
Bozeman, MT 59717
Phone: (406)994-3971
FAX: 994-6098

Wendy Umino
Principal Consultant
Assembly Office of Research
CA Legislature
1020 N Street, Suite 408
Sacramento, CA 95814
Phone: (916)445-1638
FAX: 327-3874
Pete Zaniewski
Senior Engineer
Caltrans
Division of New Technology, Materials & Research
1227 O Street, P.O. Box 942873
Sacramento, CA 94273-0001
Phone: (916)654-9873
FAX: 654-9977
John Adams
Georgia Tech Research Institute
AMTC Director
Economic Development Institute
209 O'Keefe Bldg
Atlanta, GA 30332
Phone: (404)894-4138
FAX: 853-4172

Janet Allen
Georgia Tech
Senior Research Scientist
School of Mechanical Engineering
Georgia Institute of Technology
Atlanta, GA 30345
Phone: (404)894-8168
FAX: 325-3300

Charles Alter
Edison Industrial Systems Center
Director
Business Development
1700 N. Westwood, Suite 2286
Toledo, OH 43607-1207
Phone: (419)531-8610
FAX: 531-8465

Lawrence L. Barker, Jr.
New York State
Director, Empire State Mfg. Service
Economic Development
One Commerce Plaza
Albany, NY 12245
Phone: (518)474-1131
FAX: 486-6644

 Gregg Bennett
Bevill Technology Center
Executive Director
P.O. Box 2488
Gadsen, AL 35903
Phone: (205)547-5782
FAX: 547-5790

James W. Bishop
Southeast Manufacturing Technology Center
Executive Director
P.O. Box 1149
Columbia, SC 29202
Phone: (803)252-6976
FAX: 252-0056

J. Scott Calhoun
Mississippi State University
Research Engineer
Engineer Research Center
P.O. Box 6176
Mississippi State, MS 39762
Phone: (601)325-7754/7559
FAX: 325-7692

Bruce D. Cameron
McDermott/Babcock & Wilcox
Government Relations Rep.
Washington Operations Office
1850 K St., NW, Suite 950
Washington, DC 20006
Phone: (202)833-7018
FAX: 296-2868

Rick Carlisle
Governor's Office
Economic Policy Advisor
North Carolina
116 W. Jones Street
Raleigh, NC 27603-8001
Phone: (919)715-4382
FAX: 715-3775

Dr. Lawrence A. Casper
University of Wisconsin
Assistant Dean of Engineering for Industrial R&D
College of Engineering
1415 Johnson Drive
Madison, WI 53706-1691
Phone: (608)262-5215
FAX: 262-6400
Patti Frohni
Fox Valley Technical College
Resource Development Specialist
Research & Development
1825 N. Bluemound Dr., P.O. Box 2277
Appleton, WI 54913-2277
Phone: (414)735-5611
FAX: 735-2582

Robert Gasko
Advanced Driving Simulators (ADS)
Principal
Ground Prototype Construction
4360 Chamblee Dunwoody Road, Suite 400
Atlanta, GA 30341
Phone: (404)416-8818
FAX: 416-8436

David Gold
NIST
Regional Manager
MEP
Bldg. 224, Room B115
Gaithersburg, MD 20899
Phone: (301)975-5049
FAX: 963-6556

David R. Hendrix
Georgia Institute of Technology
Manager, Program Initiation Div.
OCA/PID
Centennial Research Bldg., Rm 256
Atlanta, GA 30332-0420
Phone: (404)894-4817
FAX: 894-6956

Mac Holladay
Governor's Development Council
Chief Operating Officer
Development
233 Peachtree St., Suite 206
Atlanta, GA 30302
Phone: (404)880-7244
FAX: 880-7246

Robert E. Fulton
Georgia Institute of Technology
Director, CALS Tech Center
Mechanical Engineering
School of Mechanical Engineering
Atlanta, GA 30332
Phone: (404)894-7409
FAX: 894-9342

Clifford E. George
Mississippi State University
Professor of Chemical Engineering
Diagnostic Instrumentation and Analysis Laboratory
P.O. Box MM
Mississippi State, MS 39762
Phone: (601)325-7205
FAX: 325-2482

J. Lynn Griesemer, Ed.D
University of Massachusetts
Associate V.P. for Economic Development
18 Tremont Street, Suite 800
Boston, MA 2108
Phone: (617)287-7045
FAX: 287-7022

Ron Hira
NIST
Regional Manager
MEP
Bldg. 224, Room B115
Gaithersburg, MD 20899
Phone: (301)975-3389
FAX: 963-6556

Roger Hughes
Minnesota Job Skills Partnership
Executive Director
500 Metro Square Bldg., 121 7th Place East
St. Paul, MN 55101
Phone: (612)297-4660
FAX: 296-1290
Dr. S.L. Iyer
South Dakota School of Mines & Technology
Director of Economic Development
502 East Saint Joe St.
Rapid City, SD 57701
Phone: (605)394-2445
FAX: 394-5195

Michael J. Kelly
Manufacturing Research Center
Director
Georgia Tech
813 Ferst Drive
Atlanta, GA 30332-0560
Phone: (404)894-9090
FAX: 853-0957

Robert King
Society of Manufacturing Engineers
Chief Staff Officer
Government Relations
One SME Drive, P.O. Box 930
Dearborn, MI 48121
Phone: (313)271-1500
FAX: 271-2861

Jack Lackey
Georgia Tech
Principal Research Scientist
EOEML/GTRT
Baker Bldg., GTRI
Atlanta, GA 30332
Phone: (404)853-0573
FAX: 894-5073

Holly Lawc
Georgia Tech EDI
Senior Research Associate
IDS
222 O'Keefe
Atlanta, GA 30332
Phone: (404)894-4299
FAX: 853-9172

Jimmy Johnston
State of Tennessee
Energy Program Manager
Dept. of Economic & Community Development,
Energy Division
320 6th Ave., North, Rachel Jackson Bldg., 6th Floor
Nashville, TN 37243-0405
Phone: (615)741-2994
FAX: 741-5070

Ernest J. Kerziicnik
GE Aircraft Engines
Manager, Materials & Mfg. Marketing
Adv. Engine Programs Dept.
One Neumann Way, M/D X408
Cincinnati, OH 45215-6301
Phone: (513)552-5903
FAX: 552-5938

Carlota Klimas
Phillips Laboratory (USAF)
Directorate Technology Transfer Rep.
Advanced Weapons & Survivability Directorate (WS)
Bldg. 413, Room 264, 3550 Aberdeen Ave., SE
Kirtland AFB, NM 87117-5776
Phone: (505)846-0273
FAX: 846-0417

John L. Lauderdale
Babcock & Wilcox
Senior Marketing Specialist
Contract Research Division
1850 K St., NW, #950
Washington, DC 20006
Phone: (202)833-7037
FAX: 296-2868

Dean I. Lawry
Phillips Laboratory (USAF)
Directorate Tech Transfer Rep.
3550 Aberdeen Avenue SE, Bldg. 413, Room 264
Kirtland AFB, NM 87117-5776
Phone: (505)846-0273
FAX: 846-0417
Mark S. LeClair
Fairfield University
Associate Professor
North Benson Road
Fairfield, CT 06430
Phone: (203)254-4000x2865
FAX: 254-4105

Robert G. Lehman
West Virginia University
Director Industrial Extension
549 ESB, Box 6101
Morgantown, WV 26506-6101
Phone: (304)293-3800
FAX: 293-6751

Ron Liss
Catonsville Community College
Chairperson, Technical Studies Div.
800 S. Rolling Road
Catonsville, MD 21228
Phone: (410)455-4740
FAX: 455-4744

Dr. Charles A. Lundquis
University of Alabama in Huntsville
Director of Consortium National Dev. in Space
Associate VP for Research/CMDS
301 Sparkman Drive, RI-M65
Huntsville, AL 35899
Phone: (205)895-6620
FAX: 895-6791

Donna May
Catonsville Community College
Director of Mfg. and Applied Tech
Continuing Education
800 S. Rolling Road
Catonsville, MD 21228
Phone: (410)455-4189
FAX: 455-4744

Sandra Miller
Wirrock International
Director, Arkansas Rural Enterprise Center
Rt. 3, Box 376
McRirton, AR 72110
Phone: (501)727-5435x260
FAX: 727-5242

Larry Nye
Economic Development Resources
Principal
Box 189
Titusville, FL 32781
Phone: (407)269-3224
FAX: 269-8971

Henry Paris
Georgia Institute of Technology
Assoc. Director, Georgia Tech Research Institute
EOEML
Georgia Tech University
Atlanta, GA 30332-0800
Phone: (404)894-3688
FAX: 894-5073

Ira W. Pence, Jr.
Georgia Institute of Technology
Director
Material Handling Research Center
813 Ferst Dr., NW
Atlanta, GA 30332-0206
Phone: (404)894-2362
FAX: 853-0957

Sommy Perdue
State of Georgia
State Senator
327A Legislative Office Bldg
Atlanta, GA 30334
Phone: (404)656-6892
FAX: 656-0093

Steve Powers
Intergraph Corporation
System Integration
Electronics
One Madison Industrial Park
Huntsville, AL 35894
Phone: (205)730-3523
FAX: 730-8344

Jane Renz
Lorain County Community College
Program Coordinator
Advanced Technologies Center
1005 N. Abbie Road
Elyria, OH 44035
Phone: 1-800-995-5222x7032
FAX: 366-4105

Michael J. Rowan
Georgia Tech
Senior Research Scientist
GA Tech Research Institute
GTRI/EOEML
Atlanta, GA 30332
Phone: (404)853-3074
FAX: 894-5073

Ken Saultet
Midwest Mfg. Tech Center
Program Manager, Energy & Environment
2901 Hubbard Rd., P.O. Box 1485
Ann Arbor, ME 48106
Phone: (313)769-4234
FAX: 769-4064

Ashok Saxena
Georgia Institute of Technology
Professor & Director
School of Material Science & Engineer
778 Atlantic Drive
Atlanta, GA 30332-0245
Phone: (404)894-2816
FAX: 853-9140

Dr. William F. Snyder
Wytheville Community College
President
Office of the President
1000 East Main Street
Wytheville, VA 24382
Phone: (703)228-3851
FAX: 228-2129

Stanley J. Souvenir
SPARTA, Inc.
Chief Engineer
4901 Corporate Drive
Huntsville, AL 35805
Phone: (205)837-5282x1642
FAX: 830-0287/5561

John G. Squires
Envirotek Fuel Systems, Inc.
Director
857 Revere Way West
Bartlesville, OK 74006
Phone: (918)333-9381
FAX: 333-9354

Tom Starke
DOE
Member, Technology Deployment Panel
Office of Defense Programs
1000 Independence Ave., (DP 4.1)
Washington, DC 20585
Phone: (202)586-5880
FAX: 586-1057

Dan Stevens
Sprint
Manager Proposal Costing
Govt. Systems Div., Pricing
8330 Ward Parkway
Kansas City, MO 64114
Phone: (816)854-2357
FAX: 854-2303
Ramesh Talreja
Georgia Tech
Professor
Aerospace Engineering
Aerospace Engineering
Atlanta, GA 30332-0150
Phone: (404)853-9351
FAX: 894-2760

George Taylor
NIST
MEP
Bldg. 224, Room B115
Gaithersburg, MD 20899
Phone:
FAX:

E. Dale Threadgill
University of Georgia
Department Head
BAE
Driftmier Engr. Center
Athens, GA 30602-4435
Phone: (706)542-1653
FAX: 542-8806

Chris Van Horn
Department of Energy
Economic Development Specialist
Office of Economic Development
P.O. Box A
Aiken, SC 29802
Phone: (803)725-5313
FAX: 725-5968

William K. Walsh
Auburn University
Department Head
Textile Engineering
Auburn, AL 36849
Phone: (205)844-4123
FAX: 844-4068

Lynda L. Weatherman
Space Coast Development Commission
Executive Director
2000 S. Washington Ave., Suite 2
Titusville, FL 32780
Phone: (407)269-3221
FAX: 267-8971
TECHNOLOGY REINVESTMENT PROJECT

TRP Successes

* Surprisingly Successful Response To Complex Solicitation
 - Excellent Proposals Exceed Available Funding
* Successful Start to Integration of Military/Commercial Base
 - Innovative Dual-Use Programs
 - Workforce Retraining
 - Infrastructure Support
* Meaningful and Unique Collaboration
 - Large Well Integrated Teams (Horizontal and Vertical)
 - Gov't, Industry, University Teams
 - Inclusion of Small Businesses
* Active Participation By State and Local Governments
 - Regional Alliances
 - State Funding
* Cooperation Among Multiple Federal Agencies Works!

TECHNOLOGY REINVESTMENT PROJECT

Technology Reinvestment Project
Cumulative Announcements
December 2, 1993

[Map of the United States with markings indicating locations of projects]
University Performance in TRP

Participants

* Estimated using name search

University Performance in TRP

Lead Proposer

* Estimated using name search
Small Business in TRP

Percent of Proposals With at Least One Small Business

Activity Area

Proposed Selected

Distribution by Technology Focus Area

Funding

Number of Proposals
TRP - What's Next?

- Dual-Use, Defense Conversion Will Continue
 - TRP Statutes Appear to be Well Funded in FY 1994
- Collaboration, Partnerships, Cost Sharing Still Required
 - Some Breaks for Small Businesses
- TRP Options Available
 - Some FY 94 Funds for FY 1993 TRP Proposals Very Likely
 - Limited FY 94 Competition
 - Focused in Scope and Technologies
 - Large Competition
 - FY 94 and/or FY 95

Defense FY 94 Appropriations/Authorizations
($1,000,000)

<table>
<thead>
<tr>
<th></th>
<th>PB</th>
<th>App</th>
<th>Auth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dual-Use Partnerships</td>
<td>324</td>
<td>474</td>
<td>824</td>
</tr>
<tr>
<td>Dual-Use Critical Technology Partnership</td>
<td>150</td>
<td>250</td>
<td></td>
</tr>
<tr>
<td>Commercial-Military integration Partnership</td>
<td>100</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>Advanced Manufacturing Technology Partnership</td>
<td>30</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Regional Technology Alliance</td>
<td>100</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>Defense Dual-Use Assistance Extension</td>
<td>0</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Manufacturing Extension Service Providers</td>
<td>0</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Defense Manufacturing Engineering Education Pgm</td>
<td>24</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>Agile Manufacturing/Enterprise Integration</td>
<td>35</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Advanced Material Partnership</td>
<td>30</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>United States-Japan Management Training Program</td>
<td>5</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>
HELPING SMALL COMPANIES COMMERCIALIZE PUBLIC-SECTOR TECHNOLOGY

BY

Lee W. Rivers
Executive Director
National Technology Transfer Center
Wheeling Jesuit College
Wheeling, West Virginia 26003

TABES Paper
No. 94- 407

TABES Sponsored Annually by

Huntsville Association of Technical Societies

P.O. Box 1964
Huntsville, Alabama 35807
Telephone: 205-837-4287
Fax: 205-837-4275

For permission to copy or republish, contact HATS at above address.