Automated Test Environment for a Real-time
Control System

Agenda

Problem Domain

Test Environment

Test Process

Advantages of Automation

Conclusions

Problem Domain

* Space Shuttle Main Engine Control System

 Simulation Requirements

e Test Suite

e Automation

COMMAND AND :
DATA SIMULATOR AT HOST COMPUTER

PROPULSION
SYSTEM
. COMMANDS

SIMULATION
INTERFACE
CONTROLLER
ENGINE ‘ i
CONTROLLER

NGINE
PROPELLAN
VALVES

| FLIGHT SENSOR CONSOLE ENGINE DATA MONITOR

SPACE SHUTTLE MAIN ENGINE |
HARDWARE SIMULATION LABORATORY

S/W

Require
ments

Word
Processor or
editor is used
to enter the
test scripts

Test

Compiler
generates

Data Base

"code" and
listings

Scripts

Test
Generation

Test "code"
and listings

Lab Control
allows user to
initialize lab
configuration

Lab
Hardware

and

Lab Control

Software

downloads
"code" to
CADS, PDP,
DDU which
execute the
test cases

=

Test
Application

Data Base

tr

Test "code
and listings

Test "code"

and listings

CADS

Recording Re]c?jzilion

Data

Reduction
Files

DCL Print
Type or

PLOT)
is used to obtain

hardcopy

Test Results
Analysis

Advantages of Automation

* Test Planning

e Test Performance

 Test Tracking

« Test Management

Ll tialiall tlil nE A it il Rl o
Lo b1 Yoom
] 1 [}) 1 3 1
1 3 1 I] ¥]
0 >
b 2 Lol €1 yoom
Hr A
Ll R T R D R T
+ R R 2L oom
1]] 1 1 1]
] 1 1 1 1 1]
1]] 1 t] 1
T r="r“=r==1"==|~~=--=¢
A L eam
1 [] 1 [} 1 1 1
]] 1 1 1 1]
2] IOM
21w € Q A 01
¢ 15z 35 oo
2 | HF Y
r0| tooa P " 6 Yoom
o oo
5 | . ! o
R _ Lo A g yoom 2
— Lo A @ 3
= el telet telet by bl et E S
[T O m 1 T 1 L MOOMp= o
¢ | m < o oo =
= |22 U 7
§ 152 2 | NINNG] owm
W 1) 1 t ' 1
] - e kmale el e de g
5 m P m G sjoom
/3] ' 1 1
C .I 1 1
w i K com
= “ “ v
212 | LMW .
Z
Gz H ' € Yoam
S o9 b
O a o= 1==a
_ P ' 2 Joam
1 1]
)] 1
. A SR
| A _ ! soom
1 1] I 1
)] 1)] I)
— — fF—t—F—9
(]
888R3838¢8R8 e
juddiad

Conclusions

* Confidence Builder for Software Products
 Test Volume
* Test Documentation
* Visibility of Requirements Mapping

* Throughput of Lab Optimized

 Tests Easily Repeatable

* Concept Adaptable to Other Environments

10

TITLE
AUTOMATED TEST ENVIRONMENT FOR A REAL-TIME CONTROL SYSTEM
AUTHOR

Ronald Owen Hall
Rocketdyne Division

ABSTRACT

An automated environment with hardware-in-the-loop has been developed by Rocketdyne Huntsville for test of a real-
time control system. The target system of application is the man-rated real-time system which controls the Space
Shuttle Main Engine(SSME). The primary use of the environment is software verification and validation, but it is
also useful for evaluation and analysis of SSME avionics hardware and mathematical engine models. It provides a
test bed for the integration of software and hardware.

The principles and skills upon which it operates may be applied to other target systems, such as those requiring
hardware-in-the-loop simulation and control system development. Potential applications are in problem domains
demanding highly reliable software systems requiring testing to formal requirements and verifying successful
transition to/from off-nominal system states.

This paper will provide an overview of the environment and the advantages provided.
INTRODUCTION

The need for a high fidelity simulation facility was recognized early in the SSME program. Any undetected control
system flaw could be disastrous, either on a test stand or shuttle orbiter flying a Space Transportation System(STS)
mission. NASA/MSFC started the initial design of such a facility and the original version became operational at the
MSFC in 1975. The facility provides a program unique capability for simulating SSME system operations at
nominal and off-nominal conditions. The intent is to perturb variables of software, hardware, or internal engine
operations to determine the SSME system response in all modes of operation.

Rocketdyne assumed responsibility for the facility, known as the Hardware Simulation Laboratory(HSL), in 1977.
Rocketdyne's experience in operating the lab indicated the need for automation. As the system matured, an extensive
test suite and testing process was developed to determine if the target system functions per requirements. The
leverage automation could bring to the process became evident.

When the target system was enhanced to a Motorola 68000 series central processing unit, the go-ahead was given to
build an automation environment into the HSL. This effort culminated in 1987 with the release of the first version
of the environment. Subsequent versions have been released which have extended and refined the capability.

TEXT

The laboratory contains a maximum complement of flight-type hardware (actuators, igniters, sensors, solenoids) and
alternately uses component simulation. The SSME is represented with a high fidelity real-time software engine
model. Computers induce in real-time off-nominal conditions through failure activation hardware. Test data is
accumulated as testing progresses and is automatically analyzed later in non real-time.

The laboratory hardware is shown in figure 1. Provisions are made to allow the control of events, the modulation of
inputs and the recording of responses. The configuration includes a VAX 6410 which manages the test environment,
a PDP which controls the lab hardware, a CADS which replaces the orbiter, a DDU which overwrites the SSMEC
dual port memory, a DAS which traps SSMEC memory histories and simulation events, engine component
hardware and simulations, lab hardware, an AD100 realtime engine model and the SSMEC.

ENVIRONMENT CONTROL SYSTEM

Test application is automatically controlled via a software system distributed across the laboratory. A unified
collection of test tools allows the specification of tests and data reduction in a simple scripting language. Different
versions of the target system may be tested in the environment with no change to the environment control software.

The heart of the system is a compiler and database. The compiler parses scripts generated by users and generates code
for the various devices and for test results analysis. The database provides flexibility by maintaining definitions for
devices and symbols required by the compiler. The resulting functionality is that of a state-of-the-art facility
providing high density test histories generated in a flexible, repeatable, comprehensive test environment.

TEST PROCESS

The test process consists of three distinct overlapping stages: test generation, test application and test results
analysis. Test generation is an off-line activity using a text editor to construct test cases in the scripting language.
This activity is essentially a mapping of the individual software requirements(IRs) into test scripts. Failure
scenarios are scripted and stored in files along with expected results.

Test application is the actual running of the tests in the laboratory. Test cases are grouped into logical divisions and
run as units. Test results are captured for subsequent analysis.

Expected test results are embedded in the test scripts. Test results analysis is the off-line application of the expected
results segment of the test scripts to the test results. Test results are automatically analyzed to determine if they are
what is expected. Result logs are recorded in files to maintain documented evidence of whether the test results are as
expected.

The test process is shown in figure 2. The formal test process originates from the SSMEC software requirements
document(SRD). The test team analyzes each requirement to write test scripts which challenge the requirements.
The automation of the process begins at this point.

The test scripts are compiled into test code to control the laboratory devices and the reduction of test data. The
laboratory is initialized to the appropriate configuration. Tests are run, results gathered and reduced and hardcopies
generated.

SKILLS

The development of the environment has attracted and produced skills across the entire software life cycle, plus skills
in hardware fabrication, design and maintenance, configuration management, MSFC security and quality control.
Total quality management concepts are implemented, including the application of continuous process improvement
activities and the application of process metrics. A wrap of engineering and programming expertise has been
developed which is particularly applicable to the development and operation of automated test environments.

ADVANTAGES OF AUTOMATED TEST ENVIRONMENT

The primary benefit of the automated test environment is that it facilitates a better testing process. Testing is better
in terms of test volume, throughput, flexibility, repeatability, exhaustive exercise of the target system and the
precise control of the environment. Advantages are incurred in test planning, test performance, test tracking and test
management,

TEST PLANNING

The planning of the test cycle is facilitated by the way the environment structures the testing process. The work of
test generation may be planned to support subsequent testing and analysis. Laboratory time may be scheduled as the
queue of test cases ready for test increase. Test results analysis may be partitioned among personnel and
workstations. Personnel and resources may be mixed and matched as the test cycle moves to completion. Feedback
from the process stages allows the test planning to adjust to the work flow as shown in figure 3.

TEST PERFORMANCE

The performance of testing is advantaged by the environment at all three stages of the test process. The flexibility
and repeatability provided translate into a dramatic reduction of the test period. A 50% time savings for a complete
end-to-end verification of the target system has been realized.

In the test generation stage the construction of test cases is made direct and natural via scripting: Software
requirements are reformulated as test cases in the scripting language, in the vocabulary of the system. The language
allows the writing of test scripts in terms naturally used in defining tests. The constructs include conditionals and
assignments. The verbs reflect the action to be taken.

3

The compiler and database combine to provide this functionality. The database maintains meaningful names for
device and software addresses. These names are used in the test scripts in test case specification. The use of physical
addresses is avoided, meaning the compiler is independent of laboratory hardware changes and shifting software
addresses.

The principle test results output is the binary 128 word(16 bits) vehicle data table(VDT). The VDT is routinely
output by the SSMEC 25 times per second. The database maintains meaningful names for each word of the table,
yielding verification scripts in terms of the parameters of the target system. This rendering of the verification scripts
enhances the specification and analysis of the data reduction process.

Multiple environment definitions may be maintained in the database to allow the flexibility of using different
laboratory configurations and versions of the target system. The functional level of the target system is addressed,
avoiding the intricacies of the laboratory. The use of raw data are avoided, as data may be entered and expected results
expressed in engineering units,

In the test application stage the environment reduces the scope of the work effort to be the application of selected test
suites in selected time periods. In each session the environment is initialized to the appropriate laboratory
configuration and target system version, allowing anomalous system states to be repeated as necessary. Thus
questionable tests results may be quickly and easily duplicated. Technicians may run the suites, allowing test
engineers (o concentrate on test generation and analysis.

In the test results analysis stage data reduction is preprogrammed to determine if results are as expected. Engineer
activity at this stage is usually reduced to scanning the output logs for the phrase “Results as expected.” When
results are not as expected failure tables are generated to show actual results. Figures 4 - 7 show example scripts
with corresponding data reduction log.

TEST TRACKING

Tracking is essential to the test process to provide visibility to management and customer. Tracking is advantaged
by the environment in allowing a view of the test process in terms of what is being accomplished in relation to what
is planned. The environment facilitates work progress to be quantified in terms of the essential outputs of the
process: test cases/software requirements ready for test as well as those completely tested with results analyzed. The
quality of the target system is quantified by the ratio of the number of software notes(problem reports) to the number
of requirements tested. Figure 8 depicts a typical test tracking chart.

TEST MANAGEMENT

Test management is advantaged by the environment from the perspectives of target system validation and change
management. The environment produces documented evidence of whether the target system functions per
specification. This validation information is necessary to the formal release of the target system for field use.
Directories of data reduction logs are maintained to document test results. These logs are automatically scanned for
the phrase "Results Not Expected"” to identify testing problems.

As the target system evolves, change management becomes a ceniral focus. Requirements are added, taken away and
modified. The environment facilitates the configuration management of the changing test case suite over muliiple
releases of the target system. As the test cases reside in computer files, they may be managed in a code management
system in the same manner as programming source code. Only those test cases need change whose corresponding
software requirements change; reuse is facilitated. Additional test cases are added to the suite as new requirements are
added.

An essential task of test management is to provide traceability between software requirements, test scripts and data
reduction logs. Itis necessary to ensure that all requirements are incorporated and satisfactorily tested and that all
tests are driven by requirements. This task is accomplished by identifier mappings via identification/naming
conventions.

The requirements change notice(RCN) defines changes to software requirements. The RCN identifiers are mapped to
the SRD IR identifiers to link each IR to the definitive RCNs. The SRD paragraph numbers are mapped to test
script file names to link each test script file to the definitive SRD paragraph. The SRD IR identifiers are mapped to
test case names and data reduction log names to link each test case and log to the definitive SRD ID. These
mappings are illustrated in figure 9.

SUMMARY

This paper provides an overview of an automated test environment for a real-fime control system. The advantages of
such an environment are numerous. The principles and skills upon which it operates may be applied to other target
systems such as those requiring hardware-in-the-loop simulation and control system development. Potential
applications are in problem domains demanding highly reliable software systems requiring testing to formal
requirements and verifying successful transition to/from off-nominal system states.

BIOGRAPHICAL SKETCH
Ronald Owen Hall, Engineering Specialist, Rocketdyne Division, Rockwell International Corporation, Southeastern

District Operations,555 Discovery Drive Suite 1, Huntsville, Alabama 35806. Currently involved in developing and
maintaining laboratory control software and delivery system software for the SSME controller.

APPENDIX

VAX

N

PDP Command And Direct Digital Data
Data Simulator ¢+ (DDU) it
(Controls Lab (CADS) [(Jégﬁ overwrite Acsq;lsltselgon
Hardware) Dual Port (DAS)
(emulates orbiter){ | Memory(DPM)
1 A \
/\L Addr/Data Bus Info 4
Controller Commapds DPM values
Vehicle Data Table (VDT)
Lab Commands and Data Sensor Valuks
v
Engine Hardware v (to DPM) ,
(valves, solenoids, Lab Hardware Space Shuttle

transducers, etc.) (relays, gain/offset Main Engine

Controller
AD100 Model DACs, ADCs, etc.) l«——| (SSMEC)
s(i;eq?lllgi?:ndgfn g?; 1 ! Commands to Engine Hardware
engine) Simulated Sensor Values Figure 1
Laboratory Hardware

ord
Processor or

S/W
Require
ments

Lab
Hardware
and
Software

> CADS
Recording

editor is used
to enter the

test scripts

—_—

Test
Scripts

Lab Control
allows user to
initialize lab
configuration

Commracnssanem

Data Base

Lab Control

downloads
"code" to
CADS, PDP,
DDU which
execute the
test cases

Compiler

———>| generates

"code" and
listings

Test "code"

<

Data
Reduction

reduces data

and listings

DCL Print

Type or

PLOT
is used to obtain

hardcopy

Figure 2
Test Process

Data

Reduction
Files

8

Test Planning

v

Test Test
Test
: Application Results
Generation Analysis
Figure 3

Test Planning

This test script verifies the sensor second channel disqualification
failure response for the main combustion chamber pressure
intra-channel test in the start engine phase.

BEGINDDU

/* FAIL THE MCC PC INTRA-CHANNEL TEST FOR

CHANNEL B, THEN CHANNEL A IN THE START ENGINE

PHASE PRIOR TO IGNITION CONFIRMATION */

FROM ST:*:0.2 TO PS:*:* /* FAIL CONTINUOUSLY */
SET MCC_PC_CH_B1_INPUT = 100 /* FAIL CH B */

SET MCC_PC_CH_B2_INPUT = 176 /* FAIL CH B */
ENDC

FROM ST:*:0.6 TO PS:*:* /* FAIL CONTINUOUSLY */
SET MCC_PC_CH_A1_INPUT = 200 /* FAIL CH A */

SET MCC_PC_CH_A2_INPUT = 276 /* FAIL CH A */
ENDC

D
ENDDDU Figure 4

Example DDU Test Script

10

This CADS script controls the simulation by commanding the SSMEC to
the appropriate state and by writing the VDT data to a magnetic tape.
BEGIN CC

BLAF, HSL_TEST /* BUILD TEST FILE */

RSME, 100M

CTRS, 100M

EFLT,100M

PSNI, 1S

PSN3, 58

PSN4, 145

STEN, 100M

TAPE, 4,0 ‘IR767:5895;1AF’, 100M /* WRITE HEADER TO TAPE */
TAPE,1,100M /* BEGIN RECORDING */

STRT,2S /* FAILURES OCCUR DURING START */

TAPE,0,100M /* STOP TAPE RECORDING */

TAPE,3,16S /* WRITE TAPE EOF AFTER SHUTDOWN */
CTRS, 1S

CLER

\

BEGINGO

EXTR, HSL_TEST /* EXECUTE TEST FILE */

ENDGO

ENDCC
Figure 5

Example CADS Control Script

11

This data reduction script directs the capture of the essential test results.
BEGINDR

/* VERIFY CORRECT FAILURE PROCESSING */

WHEN VDT_WORD_100 == %011201 /* CH A FAILURE */
VERIFY FAILURE_COUNTER ==
VERIFY VDT_103_F3 == -76.0
VERIFY _SELF_TEST_STATUS == _MCF

WHEN _DELAY >=1 /* DELAY ONE MAJOR CYCLE */
VERIFY _PHASE_MODE == _THROTTLING_TO_ZERO_THRUST
WHEN (MCC_PC_REF ==0) && (_CHECKED ONCE == 0)
VERIFY MCC_PC == _PREV_MCC_PC_REF
SET _CHECKED_ONCE = _TRUE
ELSE
VERIFY MCC_PC == MCC_PC_REF
ENDC
ENDC

SET DELAY = DELAY +1

ENDC
SET _PREV_MCC_PC_REF = MCC_PC_REF

ENDDR Figure 6
Example Data Reduction Script

12

WHEN VDT_WORD_100 == %011201
VERIFY FAILURE_COUNTER ==
..RESULTS AS EXPECTED

VERIFY VDT_103_F3 == -76.0
...RESULTS AS EXPECTED

VERIFY (ENGINE_STATUS_WORD & %X0003) == 2
...RESULTS AS EXPECTED

WHEN _DELAY >=1
VERIFY (ENGINE_STATUS WORD & XO00FC) == %X00AS8
...RESULTS AS EXPECTED

WHEN (MCC_PC_REF == 0) && (_CHECKED ONCE == 0)
VERIFY MCC_PC == _PREV_MCC_PC_REF

...RESULTS AS EXPECTED
SET _CHECKED_ONCE = 1
ELSE
VERIFY MCC_PC == MCC_PC_REF
..RESULTS AS EXPECTED
ENDC
ENDC
SET _DELAY =_DELAY + 1
ENDC

SET _PREV_MCC_PC_REF = MCC_PC_REF
CASE SUMMARY = PASS6 FAILO
Figure 7
Example Data Reduction Log

13

0
01
0¢
0¢
or
0s
09
0L
08
06
001

week 1

LI L I W 5
]
]

L L =
1
1

week 2

week 3

week 5

e e ———t

14!

J.u daind SR TR T T
ve week 6 o
=] 1 1
[] 1 1
[4°] -.ll_lll.lll_llLll
Lo o
~ week 7 L T
a L 1 [} 1 1}
mw .-l.."ull" " ||n|..
= o
5 week8 N
[L}] 1 1
Z. it b L LR R
- ' 1 1 1
2 week 9 oy
dotodo bl
week 10 P
R LT
week 11 P
week 12 " .

week 13

week 14 k— m

II-III_III_III_II-II_.-II

e -——-

V¥ —

Sdl

NvId

adLsdlL

NVId
J41vdd(l] —pg—— TVYNIDIO

AQVHY SY] —p—

SS9UB04J 1S9], APIIAA d18M]JOS DAINSS

NOA

SYI/SNS
SLSHL —.

d4LSHL

SISHdL ———

AQvad

RCNs

* RCN Identifier to SRD Identifiers

N

Test * SRD Paragraph Number to
Test Script File Name

Scripts

* SRD IR Identifier to Test

* SRD IR Identifier to Data Case Names

Reduction Log Names
Figure 9

Test Management
Identifier Mappings

