AERONAUTICAL ENGINEERING

A CONTINUING BIBLIOGRAPHY WITH INDEXES
INTRODUCTION

This issue of *Aeronautical Engineering — A Continuing Bibliography with Indexes* (NASA SP-7037) lists 29 reports, journal articles, and other documents recently announced in the NASA STI Database.

Accession numbers cited in this issue include:

- Scientific and Technical Aerospace Reports (STAR) (N-10000 Series)
 - N94-37481 — N94-37856
- Open Literature (A-60000 Series)
 - A94-61886 — A94-62340

The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles.

Each entry in the publication consists of a standard bibliographic citation accompanied in most cases by an abstract. The listing of the entries is arranged by the first nine STAR specific categories and the remaining STAR major categories. This arrangement offers the user the most advantageous breakdown for individual objectives. The citations include the original accession numbers from the respective announcement journals.

Seven indexes—subject, personal author, corporate source, foreign technology, contract number, report number, and accession number—are included.

A cumulative index for 1994 will be published in early 1995.

Information on availability of documents listed, addresses of organizations, and CASI price schedules are located at the back of this issue.
<table>
<thead>
<tr>
<th>Category 01</th>
<th>Aeronautics</th>
<th>N.A.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category 02</td>
<td>Aerodynamics</td>
<td>601</td>
</tr>
<tr>
<td>Includes aerodynamics of bodies, combinations, wings, rotors, and control surfaces; and internal flow in ducts and turbomachinery.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Category 03</td>
<td>Air Transportation and Safety</td>
<td>N.A.</td>
</tr>
<tr>
<td>Includes passenger and cargo air transport operations; and aircraft accidents.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Category 04</td>
<td>Aircraft Communications and Navigation</td>
<td>602</td>
</tr>
<tr>
<td>Includes digital and voice communication with aircraft; air navigation systems (satellite and ground based); and air traffic control.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Category 05</td>
<td>Aircraft Design, Testing and Performance</td>
<td>N.A.</td>
</tr>
<tr>
<td>Includes aircraft simulation technology.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Category 06</td>
<td>Aircraft Instrumentation</td>
<td>603</td>
</tr>
<tr>
<td>Includes cockpit and cabin display devices; and flight instruments.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Category 07</td>
<td>Aircraft Propulsion and Power</td>
<td>N.A.</td>
</tr>
<tr>
<td>Includes prime propulsion systems and systems components, e.g., gas turbine engines and compressors; and onboard auxiliary power plants for aircraft.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Category 08</td>
<td>Aircraft Stability and Control</td>
<td>603</td>
</tr>
<tr>
<td>Includes aircraft handling qualities; piloting; flight controls; and autopilots.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Category 09</td>
<td>Research and Support Facilities (Air)</td>
<td>604</td>
</tr>
<tr>
<td>Includes airports, hangars and runways; aircraft repair and overhaul facilities; wind tunnels; shock tubes; and aircraft engine test stands.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Category 10</td>
<td>Astronautics</td>
<td>N.A.</td>
</tr>
<tr>
<td>Includes astronautics (general); astrodynamics; ground support systems and facilities (space); launch vehicles and space vehicles; space transportation; space communications, spacecraft communications, command and tracking; spacecraft design, testing and performance; spacecraft instrumentation; and spacecraft propulsion and power.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Category 11</td>
<td>Chemistry and Materials</td>
<td>N.A.</td>
</tr>
<tr>
<td>Includes chemistry and materials (general); composite materials; inorganic and physical chemistry; metallic materials; nonmetallic materials; propellants and fuels; and materials processing.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Category 12</td>
<td>Engineering</td>
<td>604</td>
</tr>
<tr>
<td>Includes engineering (general); communications and radar; electronics and electrical engineering; fluid mechanics and heat transfer; instrumentation and photography; lasers and masers; mechanical engineering; quality assurance and reliability; and structural mechanics.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Category 13 Geosciences
 Includes geosciences (general); earth resources and remote sensing; energy production and conversion; environment pollution; geophysics; meteorology and climatology; and oceanography.

Category 14 Life Sciences
 Includes life sciences (general); aerospace medicine; behavioral sciences; man/system technology and life support; and space biology.

Category 15 Mathematical and Computer Sciences
 Includes mathematical and computer sciences (general); computer operations and hardware; computer programming and software; computer systems; cybernetics; numerical analysis; statistics and probability; systems analysis; and theoretical mathematics.

Category 16 Physics
 Includes physics (general); acoustics; atomic and molecular physics; nuclear and high-energy; optics; plasma physics; solid-state physics; and thermodynamics and statistical physics.

Category 17 Social Sciences
 Includes social sciences (general); administration and management; documentation and information science; economics and cost analysis; law, political science, and space policy; and urban technology and transportation.

Category 18 Space Sciences
 Includes space sciences (general); astronomy; astrophysics; lunar and planetary exploration; solar physics; and space radiation.

Category 19 General

Subject Index ... A-1
Personal Author Index .. B-1
Corporate Source Index .. C-1
Foreign Technology Index ... D-1
Contract Number Index .. E-1
Report Number Index .. F-1
Accession Number Index ... G-1
Appendix .. APP-1
An investigation was conducted at static conditions in order to determine the internal performance characteristics of a multiaxis thrust vectoring single expansion ramp nozzle. Yaw vectoring was achieved by deflecting yaw flaps in the nozzle sidewall into the nozzle exhaust flow. In order to eliminate any physical interference between the variable angle yaw flap deflected into the exhaust flow and the nozzle upper ramp and lower flap which were deflected for pitch vectoring, the downstream corners of both the nozzle ramp and lower flap were cut off to allow for up to 30 deg of yaw vectoring. The effects of nozzle upper ramp and lower flap cutout, yaw flap hinge line location and hinge inclination angle, sidewall containment, geometric pitch vector angle, and geometric yaw vector angle were studied. This investigation was conducted in the static-test facility of the Langley 16-foot Transonic Tunnel at nozzle pressure ratios up to 8.0.
AERODYNAMICS

Includes aerodynamics of bodies, combinations, wings, rotors, and control surfaces; and internal flow in ducts and turbomachinery.

A94-62276
ANALYSIS OF ROTOR BLADE DYNAMICS USING MODEL SCALE UH-60A AIRLOADS
MICHAEL TOROK Sikorsky Aircraft, Stratford, CT, US and ROBERT K. GOODMAN Sikorsky Aircraft, Stratford, CT, US
Journal of the American Helicopter Society (ISSN 0002-8711) vol. 39, no. 1 January 1994 p. 53-69
(HTN-94-00300) Copyright

A structural dynamics model of a modern articulated helicopter rotor is evaluated by applying measured airloads as a forcing function to the structural mode. Measured airloads and blade bending moments are obtained from a model scale UH-60A BLACKHAWK rotor. Test conditions selected for this study include cases in which blade modal frequencies are close to rotor harmonics. Though such conditions are a severe test for a dynamic analysis, the structural model performs favorably. Detailed documentation and refined discretization of blade structural properties leads to good agreement between non-rotating blade modal frequencies and rap test data. Accurate predictions of blade modal characteristics at design RPM values leads to excellent agreement between predicted and measured flatwise bending moments. Good edgewise bending predictions move sensitive to coupling between the rotor system and fixed system, coupling of blade modes, and the non-linear characteristics of the lag damper. Torsional bending moment predictions are not fair, with disagreement possibly due to inadequate modeling of the rotor control system. The generally high quality of agreement between calculated and measured blade response, and the excellent agreement between calculated blade modal frequencies and rap test data, yields confidence in the quality of both the experiment data and the dynamic model. Author (Hemer)

N94-37505*# National Aeronautics and Space Administration.
Langley Research Center, Hampton, VA.
SUBSONIC AERODYNAMIC CHARACTERISTIC OF SEMISPAN COMMERCIAL TRANSPORT MODEL WITH WING-MOUNTED ADVANCED DUCTED PROPELLER OPERATING IN REVERSE THRUST
ZACHARY T. APPLIN, KENNETH M. JONES, BRENDA E. GILE, and P. FRANK QUINTO Jul. 1994 114 p
(Contract RTP 535-03-10-02)
(NASA-TP-3427; L-1782; NAS 1.60:3427) Avail: CASI HC A05/MF A02

A test was conducted in the Langley 14 by 22 Foot Subsonic Tunnel to determine the effect of the reverse-thrust flow field of a wing-mounted advanced ducted propeller on the aerodynamic characteristics of a semispan subsonic high-lift transport model. The advanced ducted propeller (ADP) model was mounted separately in position alongside the wing so that only the aerodynamic interference of the propeller and nacelle affected the aerodynamic performance of the transport model. Mach numbers ranged from 0.14 to 0.26; corresponding Reynolds numbers ranged from 2.2 to 3.9 x 10(exp 6). The reverse-thrust flow field of the ADP shielded a portion of the wing from the free-stream airflow and reduced both lift and drag. The reduction in lift and drag was a function of ADP rotational speed and free-stream velocity. Test results included ground effects data for the transport model and ADP configuration. The ground plane caused a beneficial increase in drag and an undesirable slight increase in lift. The ADP and transport model performance in ground effect was similar to performance trends observed for out of ground effect. The test results form a comprehensive data set that supports the application of the ADP engine and airplane concept on the next generation of advanced subsonic transports. Before this investigation, the engine application was predicted to have detrimental ground effect characteristics. Ground effect test measurements indicated no critical problems and were the first step in proving the viability of this engine and airplane configuration.

Author (revised)

N94-37511*# Tennessee Univ. Space Inst., Tullahoma, TN.
C. F. LO 1994 5 p
(Contract NAG2-881)
(NASA-CR-196260; NAS 1.26:196260) Avail: CASI HC A01/MF A01

The objective of the research is to understand supersonic laminar flow stability, transition and active control. Some prediction techniques will be developed or modified to analyze laminar stability. The effects of supersonic laminar flow with distributed heating and cooling on active control will be studied. The primary tasks of the research applying to the NASA/Ames POC and LFSWT's nozzle design with laminar flow control are as follows: (1) supersonic laminar boundary layer stability and transition prediction; (2) effects of heating and cooling for supersonic laminar flow control; and (3) POC and LFSWT nozzle design with heating and cooling effects combining wall contour and length changes.

Author

N94-37604# Starmark Corp., Arlington, VA.
COMPOSITE HELICOPTER ACCIDENT PROFILES: DEFICIENT CREW/AIRCRAFT PERFORMANCE
(Contract DFA01-87-C-00014)
(SCT-90RR-46; DOT/FAA/RD-94/22) Avail: CASI HC A06/MF A02

The purpose of this report is twofold. First, the unique characteristics of a wide variety of helicopter operations which ended in a collision with terrain features or man-made obstructions were analyzed. Special emphasis was given to operations during difficult visual conditions. Second, this report provides the reader with systematic insights into the affiliated technical and operational aspects of helicopter flight operations which contributed to this category of accident. The report explores the ways helicopters are flown in the low airspace and employs composite accident summaries as points of departure to both illustrate and substantiate the analysis which in turn identifies opportunities for improved flight safety and productivity in the National Airspace System (NAS). The
included analysis deals with a series of rotorcraft accidents involving terrain and obstruction strikes. The common characteristics of these accidents support the need for specific changes. Each composite accident is illustrated and treated to an analysis which often allows the reader to focus on one characteristic in isolation. The summaries of these composite accidents and supporting analysis are included in the report to provide a common information base for the FAA analysts and industry engineers to support the need for additional equipment, new procedures, additional training, and regulatory change. This technical report contains pertinent data and testing/guidance material needed to support those elements of the agency charged with performance of regulatory actions and the development of advisory materials and standards.

This project involved assembly of the hardware and development of the software identified in ACES Phase 1 Concept Development contract study. The assembled system allows three critical stages in responding to an aircraft inflight smoke/fire event to be examined. These stages are (1) sensing (data gathering), (2) establishing the alerting criteria to maintain quick response while reducing false alarms (data analysis), and (3) methods of providing assistance to the procedures, new products, additional training, and in responding to an inflight event. Four smoke/particle sensors are linked to a computer via a high speed data acquisition and control system. On the computer reside alerting logic functions and the capability to emulate the flight deck and cabin attendant displays. In addition, a thermal system that allows both location and temperature of numerous zones on a single fiber optic cable to be known was identified as a means to reduce false alarms and monitor hidden areas of an aircraft. The primary objective of the ACES system concept is to provide the capability to reduce the time required for the flight crew to make a decision to land the aircraft during an inflight smoke/fire event. Author (revised)

An aircraft canopy breaking device is described, having means for penetrating the canopy glazing material upon application of an applied force from the rising ejection seat to the penetrating means. The device further comprises prepositioning means for prepositioning the penetrating means at a fixed distance from the canopy glazing material, shielding the penetrating means from inadvertently contacting the canopy glazing material, other material or personnel, and compressing whereby upon application of a force the penetrating means contacts the canopy glazing material causing crack propagation in the canopy glazing material. DTIC

04 AIRCRAFT COMMUNICATIONS AND NAVIGATION Includes digital and voice communication with aircraft; air navigation systems (satellite and ground based); and air traffic control.

N94-37830 Department of the Navy, Washington, DC. MARKER BEACON CASE Patent Application

A multifunctional case that is suitable for storing, carrying or launching a marker beacon is presented. The launching could be in a dense jungle to place the marker beacon atop tree branches to make it visible from the air, or the case may be adapted for launching at sea. The case has a triggering mechanism for launching the marker beacon. It has alignment means that comprises a first alignment position for inhibiting a launch when storing or carrying the marker beacon within the case. The alignment means has a second position for placing the marker beacon in position to be launched. The launching takes place upon activation of a triggering mechanism that forms part of the case. DTIC

The present invention relates to a surface deployed navigational beacon, which is nominally secure from nonfriendly forces. More particularly the beacon is capable of user selection of any of a plurality of codes to modulate a transmitted radio signal. The signal is used by the navigational entity to determine direction to the beacon, as well as to distinguish a particular beacon from others which may be deployed within the same broad area. The beacon has the capability of receiving selected coded radio signals sent from the navigating entity. One received signal results in a signal being sent back to the navigating entity from the beacon for the purpose of providing slant range distance between the beacon and the navigating entity. Another signal received by the beacon from the navigating entity is employed to trigger a flare, integral to the beacon assembly, for backup visual/infrared navigational purposes. DTIC

A full-span F/A-18 E/F cable mounted wind tunnel model is part of a flutter clearance program at the NASA Langley Transonic Dynamics Tunnel. Parametric analysis of this model using GRUMCBL software was conducted to assess stability for wind tunnel tests. Two configurations of the F/A-18 E/F were examined. The parameters examined were pulley-cable friction, mach number, dynamic pressure, cable geometry, center of gravity location, cable tension, snubbing the model, drag, and test medium. For the nominal cable geometry (Cable Geometry 1), Configuration One was unstable for cases with higher pulley-cable friction coefficients. A new cable geometry (Cable Geometry 3) was determined in which Configuration One was stable for all cases evaluated. Configuration Two with the nominal center of gravity position was found to be unstable for cases with higher pulley-cable friction coefficients; however, the model was stable when the center of gravity moved forward 1/2. The model was tested using the cable mount system during the initial wind tunnel entry and was stable as predicted. Author

N94-37762# National Aeronautics and Space Administration. Langley Research Center, Hampton, VA.
AIRCRAFT STABILITY AND CONTROL

08

AIRCRAFT STABILITY AND CONTROL

Includes aircraft handling qualities; piloting; flight controls; and autopilots.

The use of rigid-body and rotor-state feedback gains in the design of helicopter flight control laws was investigated analytically on a blade element, articulated rotor, helicopter model. The study was conducted while designing a control law to meet an existing military rotorcraft handling qualities design specification (ADS-33C) in low-speed flight. A systematic approach to meet this specification was developed along with an assessment of the function of these gains in the feedback loops. Using the results of this assessment, the pitch and roll crossover behavior was easily modified by adjusting the body attitude and rotor-flap feedback gains. Critical to understanding the feedback gains is that the roll and pitch rate dynamics each have second-order behavior, not the classic first-order behavior, which arises from a quasi-static rotor, six degree-of-freedom model.

Author (Hemer)

An experimental program has been conducted to measure the aeromechanical stability characteristics of a Bearingless Main Rotor (BMR) model. The model is based on a four bladed concept with a flexure, between the hub and each blade, which accommodates flatwise, edgewise, and torsional (pitch) motions. The flexure is enclosed by a torsionally stiff cuff that is cantilevered to the blade/flexure joint at its outboard end and shear restrained to the flexure at its inboard end. The shear restraint includes an elastomeric damper to stabilize edgewise motion. The model was tested in hover over a range of rotor thrust and rotational speed. Numerous rotor hub design parameters were varied to determine their effect on aeromechanical stability characteristics of the model. These included changes in fundamental flatwise natural frequency, blade built-in cone and sweep angles, pitch link inclination, flexure prepitch, shear restraint to flexure attachment, movement of the pitch link attachment from the trailing edge to a leading edge location, or various combinations. The results in this paper show that most design changes, which were employed to increase aeromechanical stability margins, provided only negligible improvements or were detrimental in their effects. Movement of the pitch link attachment to the leading edge does provide improved stability characteristics at the higher collective pitch angles, which are usually critical, although the stability margins for this configuration were still small.

Author (Hemer)
RESEARCH AND SUPPORT FACILITIES (AIR)

Includes airports, hangars and runways; aircraft repair and overhaul facilities; wind tunnels; shock tube facilities; and engine test blocks.

This report describes criteria for the design, analysis, quality assurance, and documentation of models or test articles that are to be tested in the aeropropulsion facilities at the NASA Lewis Research Center. The report presents three methods for computing model allowable stresses on the basis of the yield stress or ultimate stress, and it gives quality assurance criteria for models tested in Lewis’ aeropropulsion facilities. Both customer-furnished model systems and in-house model systems are discussed. The functions of the facility manager, project engineer, operations engineer, research engineer, and facility electrical engineer are defined. The format for pretest meetings, prerun safety meetings, and the model criteria review are outlined. Then, the format for the model systems report (a requirement for each model that is to be tested at NASA Lewis) is described, the engineers that are responsible for developing the model systems report are listed, and the time table for its delivery to the facility manager is given. Author

The purpose of this document is to provide information needed by a programmer to understand the instruction set architecture of the specified host and target computers. The Software Programmer’s Manual provides information that may be used to interpret, check out, trouble shoot, or modify existing software on the host and target computers. Section 1 outlines the scope of the document. Section 2 describes the documents referenced in this specification. Section 3 outlines the software programming environment. Section 4 describes the programming information relative to the host and target computers. Section 5 provides general design notes.

The ADST ARWA System/Segment Specification establishes the functional requirements for the Advanced Rotary Wing Aircraft (ARWA) Simulator System (SS). Volume 4 describes the requirements for the Simulator System Module (SSM) with respect to the aircraft specific models for the RAH-66 Comanche aircraft. The RAH-66 Kit component provides aircraft simulation for flight dynam-ics, flight controls, propulsion, navigation/communication, sensors, aircraft survivability equipment, and weapons. DTIC

Jet fuels are tested for thermal stability by passing the fuel over a heated metal tube and measuring the amount of residue deposited as a film on the tube as a result of chemical changes to the fuel. The thickness distribution and volume of a deposited film on a tube are calculated by scanning the length of the tube with an optical probe, shining light onto the tube, measuring the intensity of reflected light of a preslected wavelength from the tube, and correlating the reflected light intensity with positions on the tube. The tube is then partially rotated, and the process is repeated until the entire surface of the tube is scanned. The volumes of each longitudinal slice of the tube are summed to give the total deposit volume on the tube.

DTIC

12

ENGINEERING

Includes engineering (general); communications; electronics and electrical engineering; fluid mechanics and heat transfer; instrumentation and photography; lasers and masers; mechanical engineering; quality assurance and reliability; and structural mechanics.

A94-62204 IMPLICIT SCHEMES FOR UNSTEADY EULER EQUATIONS ON TRIANGULAR MESHES A. S. SENS Office National d’Etudes et de Recherches Aerospatiales, Chatillon (France) and G. D. MORKCHELEWICZ International Journal for Numerical Methods in Fluids (ISSN 0271-2969) vol. 18, no. 7 April 15 1994 p. 647-668 refs

An implicit finite element method is presented for the solution of steady and unsteady inviscid compressible flows on triangular meshes under transonic conditions. The method involves a first-order time-stepping scheme with a finite element discretization that reduces to central differencing on a rectangular mesh. On a solid wall the slip condition is prescribed and the pressure is obtained from an approximation of the normal momentum equation. With this solver no artificial viscosity is added to ensure the success of the calculation. Numerical examples are given for steady and unsteady cases.

Author (El)

Translated articles cover the following topics: transient gas dynamic processes in ramjet engines; aerodynamic characteristics of delta wings with detached leading edge shock wave at hypersonic flight velocities; effect of atmospheric density gradient on aerodynamic stabilization; measurement of target radar scattering characteristics using frequency synthesized signals; assessing survivability and ensuring safety of large axial-flow compressor blades; procedure for experimentally determining transient aerodynamic forces caused by flat vane cascades; analysis of aerodynamic interaction of...
profile and vortex; laser machine for balancing dynamically adjusted gyros; use of heat pumps in solar heat supply systems; numerical simulation of deflagration transition to detonation in homogeneous combustible fuel mixture; and investigation of chemically nonequilibrium flow about bodies allowing for vibrational relaxation.

CASI

Translated articles cover the following topics: measurement of gravitation interaction parameters on satellite; gravitational constant measurement during particle motion in neighborhood of libration points; simulation of dynamics of a high-velocity spinning flexible flying vehicle; anomaly estimation accuracy of inertial navigation system; observability in probe navigation problem; interaction of gyro system oscillation frequencies; imperfect shell dynamics and oscillation control; and variational principle of creep theory for prestressed body analysis. CASI

Translated articles cover the following topics: formulation of programmed aircraft motion control; floated-type linear acceleration integrated gyro with electromagnetic sensor suspension; ensuring unity of monitoring facilities and methods during life cycle stage of aviation engineering products; methods for forming rational requirements for monitoring fullness of functional systems and aircraft as whole; electron gun with ribbon beam; investigation of effect of airflow vibrations on its edge noise; bending stability of composite cylindrical shell with longitudinal stiffening ribs; numerical investigation of conical shell flutter; intermediate asymptotics in nonlinear shell dynamics; dynamic stability critical load estimate of shells with holes; heat exchange on tip fins in hypersonic flow; boundary layer laminarization of vibrating wing; nonplanar airfoils with minimum induced drag; supersonic flow about cone under heat influx in vicinity of vertex; aero- and thermo-dynamics of high-altitude flight; discharge characteristics of converging-diverging nozzles with cylindrical minimal cross section path; experimental investigation of supersonic flow over wedges with longitudinal slots on windward side; on limit of motion of systems with dry friction; asymptotic integration of dynamic equations of elasticity theory in case of thin shells; dynamic electroelasticity problem for inhomogeneous cylinder, solution of linear and nonlinear boundary problems of shell and plates subjected to uniform uniaxial compression and shear, applied individually, and of vibrational response of the same rectangular plates. Extensions and future tasks are also described.

CASI

N94-37541* National Aeronautics and Space Administration. Langley Research Center, Hampton, VA. ACTIVE COOLING FROM THE SIXTIES TO HASP (NASA-TM-109079; NAS 1.15:109079) Avail: CASI HC A04/MF A01

Vehicles, such as the X-15 or the National Aerospace Plane (NASP), traveling at hypersonic speeds through the earth's atmosphere experience aerodynamic heating. The heating can be severe enough that a thermal protection system is required to limit the temperature of the vehicle structure. Although several categories of thermal protection systems are mentioned briefly, the majority of the present paper describes convectively cooled structures for large areas. Convective cooling is a method of limiting structural temperatures by circulating a coolant through the vehicle structure. Efforts to develop convectively cooled structures during the past 30 years, from early engine structures which were intended to be tested on the X-15 to structural panels fabricated and tested under the NASP program, are described. Many of the lessons learned from these research efforts are presented.

Author

In the aircraft industry, full scale and large component testing is a very necessary, time consuming, and expensive process. It is essential to find ways by which this process can be minimized without loss of reliability. One possible alternative is the use of scaled down models in testing and use of the model test results in order to predict the behavior of the larger system, referred to herein as prototype. This viewgraph presentation provides justifications and motivation for the research study, and it describes the necessary conditions (similarity conditions) for two structural systems to be structurally similar with similar behavioral response. Similarity conditions provide the relationship between a scaled down model and its prototype. Thus, scaled down models can be used to predict the behavior of the prototype by extrapolating their experimental data. Since satisfying all similarity conditions simultaneously is in most cases impractical, distorted models with partial similarity can be employed. Establishment of similarity conditions, based on the direct use of the governing equations, is discussed and their use in the design of models is presented. Examples include the use of models for the analysis of cylindrical bending of orthotropic laminated beam plates, of buckling of symmetric laminated rectangular plates subjected to uniform uniaxial compression and shear, applied individually, and of vibrational response of the same rectangular plates. Extensions and future tasks are also described.

Author (revised)

13

GEOSCIENCES

Includes geosciences (general); earth resources; energy production and conversion; environment pollution; geophysics; meteorology and climatology; and oceanography.

This report describes the development of a stratospheric emissions effects database (SEED) of aircraft fuel burn and emissions from projected Year 2015 subsonic aircraft fleets and from projected fleets of high-speed civil transports (HSCT's). This report
also describes the development of a similar database of emissions from Year 1990 scheduled commercial passenger airline and air cargo traffic. The objective of this work was to initiate, develop, and maintain an engineering database for use by atmospheric scientists conducting the Atmospheric Effects of Stratospheric Aircraft (AES-A) modeling studies. Fuel burn and emissions of nitrogen oxides (NOx) as NO2, carbon monoxide, and hydrocarbons (as CH4) have been calculated on a 1-degree latitude x 1-degree longitude x 1-kilometer altitude grid and delivered to NASA as electronic files. This report describes the assumptions and methodology for the calculations and summarizes the results of these calculations.

Author (revised)

15 MATHEMATICAL AND COMPUTER SCIENCES

Includes mathematical and computer sciences (general); computer operations and hardware; computer programming and software; computer systems; cybernetics; numerical analysis; statistics and probability; systems analysis; and theoretical mathematics.

A94-62183

DYNAMIC ANALYSIS OF OPEN MEMBRANE STRUCTURES IN INTERACTING WITH AIR

Vibrations of open membrane structures including interaction with air are presented in the paper. Free and forced linear harmonic vibration problems are considered in the analysis. It is assumed that the air is compressible and inviscid. The aerodynamic pressure associated with structure deformations is described by boundary integral equation. The finite element method for the structure and the boundary element method for the air are used. To discretize the surface of the structure, triangular curvilinear 6-node elements are applied. The effects of the air compressibility and the aerodynamic radiation damping are investigated. The considerable decrease of the lowest natural frequencies in consequence of considering the effect of the surrounding air is observed. Numerical examples are given.

Author (EI)

A94-62186

FURTHER ASPECTS OF DYNAMICAL MODELS FOR RIME-ICE AND SNOW ACCRETION ON AN OVERHEAD LINE CONDUCTOR

Current three-dimensional, time-dependent mathematical models for (dry) rime-ice and snow accretion on Overhead Line Conductors (OHLC), of finite span and finite torsional stiffness, assume that the airflow past the iccd OHLC is given by Attached Potential Flow (APF) and that the effect of aerodynamic moment on the rotation of the OHLC during ice evolution can be neglected. In the present numerical study a CFD code is employed to simulate the turbulent airflow past an iced OHLC and used to validate APF predictions for icing particle impactions, ice evolution and rotation of the OHLC. Comparisons are made for the following: (a) icing particle impact velocities determined using the CFD code and APF when, for example, the iced surface is fixed at an attitude experiencing lift; (b) the aerodynamic moment, for a chosen ice shape at a range of attitudes, predicted using the CFD code and APF; (c) the aerodynamic moment, for natural ice shapes, given by APF and measured in wind-tunnel tests; (d) the effect of aerodynamic moment, predicted using the CFD code and APF, on ice evolution during a short period of icing. Finally, on employing aerodynamic moments calculated using APF modified values, the sensitivity of the ice-accretion process, across the span of the OHLC, to conductor rotation and various meteorological and physical data for the icing particles is discussed.

16 PHYSICS

Includes physics (general); acoustics; atomic and molecular physics; nuclear and high-energy physics; optics; plasma physics; solid-state physics; and thermodynamics and statistical physics.

N94-37629# Los Alamos National Lab., NM

THE EFFECTS OF PROTON-BEAM QUALITY ON THE PRODUCTION OF GAMMA RAYS FOR NUCLEAR RESONANCE ABSORPTION IN NITROGEN

The authors describe a method for performing nuclear-resonance absorption with the proton beam from a radio-frequency quadropole (RFQ) linear accelerator. The objective was to assess the suitability of the pulsed beam from an RFQ to image nitrogen compared to electrostatic accelerators. This choice of accelerator results in trade-offs in performance and complexity, in return for the prospect of higher average current. In spite of a reduced resonance attenuation coefficient in nitrogen, they successfully produced three-dimensional tomographic images of real explosives in luggage the first time the unoptimized system was operated. The results and assessments of the initial laboratory measurements are reported.

DOE

N94-37657# Christopher Newport Coll., Newport News, VA Dept. of Physics and Computer Science

PROSPECTIVE COMMUNICATIONS RESEARCH TO SUPPORT FLY BY LIGHT/POWER BY WIRE Final Report, 18 Jul. - 26 Dec. 1991

A NASA Research Grant NAG-1-1309, Distributed Fiber Optic Systems for Commercial Aircraft, was awarded during July 1991. This report primarily constitutes a summary of findings of the original background research done at that time. NASA is embarking on a research project to design the next generation of commercial aircraft, fly by light/power by wire. The objectives of this effort are to improve commercial aircraft design by (1) reducing the weight of the aircraft to improve fuel efficiency and (2) improving the fault tolerance and safety of the aircraft by enhancing current systems with new technologies or introducing new systems into the aircraft. Derived from text

18 SPACE SCIENCES

Includes space sciences (general); astronomy; astrophysics; lunar and planetary exploration; solar physics; and space radiation.

A94-62291

THE TWO-BODY PROBLEM WITH DRAG AND RADIATION PRESSURE
A. G. MAVRAGANIS National Technical Univ. of Athens, Athens, Greece and D. G. MICHALAKIS National Technical Univ. of Athens, Athens, Greece Celestial Mechanics and Dynamical
The Kepler problem including radiation pressure and drag is treated. The equation of the orbit is derived and the scalar and vector integrals of motion are obtained by direct operation on the vector form of the equation of motion.

Author (Hemer)
AERONAUTICAL ENGINEERING / A Continuing Bibliography (Supplement 310)
November 1994

SUBJECT INDEX

Typical Subject Index Listing

| SUBJECT HEADING | AIR NAVIGATION | AERODYNAMIC DRAG | AERODYNAMIC HEATING | AERODYNAMIC LOADS | AERODYNAMICS | BENDING MOMENTS | BOUNDBOUNDARY LAYER CONTROL | BOUNDARY LAYER STABILITY | BOUNDARY LAYER TRANSITION | BREAKING | CABLES (ROPES) | CASES (CONTAINERS) | CHEMICAL EXPLOSIONS | COMPLEX SYSTEMS | COMPUTATIONAL FLUID DYNAMICS | COMPUTER GRAPHICS | COMPUTER PROGRAMMING | CONTROL SYSTEMS DESIGN | CONVECTIVE HEAT TRANSFER | COOLING SYSTEMS | GRAPHICS |
|------------------|----------------|------------------|----------------------|-------------------|--------------|----------------|-------------------|-------------------|-------------------|---------|----------------|------------------|------------------|------------------|------------------|------------------|-------------------|----------------|---------------|------------------|

The subject heading is a key to the subject content of the document. The title is used to provide a description of the subject matter. When the title is insufficiently descriptive of document content, a title extension is added, separated from the title by three hyphens. The accession number and the page number are included in each entry to assist the user in locating the abstract in the abstract section. If applicable, a report number is also included as an aid in identifying the document. Under any one subject heading, the accession numbers are arranged in sequence.
FLIGHT SIMULATORS
FLY BY LIGHT CONTROL
Prospective communications research to support fly by light/power by wire [NASA-CR-195639] p 606 N93-37657
FORCED VIBRATION
Dynamic analysis of open membrane structures interacting with air [BTN-94-EIX3433137180] p 606 A94-62183
FUELS TESTS
Interferometric JFTOT tube deposit measuring device [AD-D102695] p 604 N93-37768
GAMMA RAY ABSORPTION
The effects of proton-beam quality on the production of gamma rays for nuclear resonance absorption in nitrogen [DE94-011609] p 606 N93-37620
GROUND EFFECT (AERODYNAMICS)
Subsonic aerodynamic characteristic of semi-span commercial transport model with wing-mounted advanced ducted propeller operating in reverse thrust — conducted in the Langley 14 by 22 foot subsonic wind tunnel [NASA-TP-3427] p 601 N94-37505
HELICOPTER CONTROL
Rotor-state feedback in the design of flight control laws for a hovering helicopter [HTN-94-00298] p 603 A94-62274
HELICOPTER PERFORMANCE
HELICOPTER DESIGN
HELICOPTER PERFORMANCE
Rotor-state feedback in the design of flight control laws for a hovering helicopter [HTN-94-00298] p 603 A94-62274
HELICOTERS
Composite helicopter accident profiles; Deficient crew/aircraft performance [SCT-90RR-46] p 601 N94-37604
HOVERING STABILITY
Rotor-state feedback in the design of flight control laws for a hovering helicopter [HTN-94-00298] p 603 A94-62274 Variation in hover aeromechanical stability trends with bearingless main rotor design [HTN-94-00304] p 603 A94-62277
HUMAN FACTORS ENGINEERING
HYPERSONIC HEAT TRANSFER
Active cooling from the sixties to NASP [NASA-CR-4592] p 605 N93-37541
HYPERSONIC VEHICLES
Active cooling from the sixties to NASP [NASA-AR-194963] p 600 N94-37658
ICE FORMATION
Further aspects of dynamical models for rime-ice and snow accretion on an overhead line conductor [BTN-94-EIX3433137180] p 606 A94-62186
ITERATIVE SOLUTION
Ordering design tasks based on coupling strengths [NASA-TM-109137] p 602 N94-37672 JET ENGINE FUELS
Interferometric JFTOT tube deposit measuring device [AD-D102695] p 604 N93-37678
KEPLER LAWS
The two-body problem with drag and radiation pressure [HTN-94-00200] p 606 A94-62291 KNOWLEDGE BASED SYSTEMS
Ordering design tasks based on coupling strengths [NASA-TM-109137] p 602 N94-37672 LAMINAR BOUNDARY LAYER
Supersonic laminar flow control research [NASA-CR-196290] p 601 N94-37511 LAMINAR FLOW
Supersonic laminar flow control research [NASA-CR-196290] p 601 N94-37511 LANDING SIMULATION
On synthetic vision display evaluation studies [NASA-CR-194963] p 603 N94-37658 LIQUID COOLING
Active cooling from the sixties to NASP [NASA-TP-3427] p 601 N94-37505 MATTERIALS SCIENCE
Further aspects of dynamical models for rime-ice and snow accretion on an overhead line conductor [BTN-94-EIX3433137180] p 606 A94-62186 MEMBRANE STRUCTURES
Dynamic analysis of open membrane structures interacting with air [BTN-94-EIX3433137180] p 606 A94-62183 MILITARY HELICOPTERS
Rotor-state feedback in the design of flight control laws for a hovering helicopter [HTN-94-00298] p 603 A94-62274 NITROGEN OXIDES
The effects of proton-beam quality on the production of gamma rays for nuclear resonance absorption in nitrogen [DE94-011609] p 606 N94-37569 PILOT PERFORMANCE
Composites helicopter accident profiles; Deficient crew/aircraft performance [SCT-90RR-46] p 601 N94-37604 VARIATION IN HOVER AEROMECHANICAL STABILITY WITH BEARINGLESS MAIN ROTOR DESIGN
Synthetic vision display evaluation studies [NASA-CR-194963] p 603 N94-37658 pitch (material)
Variation in hover aeromechanical stability trends with bearingless main rotor design [HTN-94-00200] p 603 A94-62277
PERSONAL AUTHOR INDEX

Aeronautical Engineering / A Continuing Bibliography (Supplement 310)

Typical Personal Author Index Listing

<table>
<thead>
<tr>
<th>PERSONAL AUTHOR</th>
<th>TITLE</th>
<th>PAGE NUMBER</th>
<th>ACCESSION NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>BISHOP, ROBERT D.</td>
<td>Analysis of rotor blade dynamics using model scale UNA-50911a helafts [NASA-TP-3427]</td>
<td>p 601</td>
<td>N94-62276</td>
</tr>
</tbody>
</table>

Listings in this index are arranged alphabetically by personal author. The title of the document is used to provide a brief description of the subject matter. The report number helps to indicate the type of document (e.g., NASA report, translation, NASA contractor report). The page and accession numbers are located beneath and to the right of the title. Under any one author's name the accession numbers are arranged in sequence.

A

AMSCHUETZ, ROBERT R., II
Advanced distributed simulation technology advanced rotary wing aircraft. Software programmer's manual visual system module [AD-A280260]
p 604
National Aeronautics and Space Administration
N94-37555

APPLIN, ZACHARY T.
Subsonic aerodynamic characteristic of semispan commercial transport model with wing-mounted advanced ducted propeller operating in reverse thrust [NASA-TP-3427]
p 601
National Aeronautics and Space Administration
N94-37505

B

BAUGHAIN, STEVEN L.
Stratospheric emissions effects database development [NASA-CR-4592]
p 605
National Aeronautics and Space Administration
N94-37604

BLOEBURG, MAX L.
Active cooling from the sixties to NASP [NASA-TP-3427]
p 605
National Aeronautics and Space Administration
N94-37541

BRASHER, ROGER D.
p 604
National Aeronautics and Space Administration
N94-37756

F

FARMER, MOSES
p 602
National Aeronautics and Space Administration
N94-37604

G

GAME, DAVID
Prospective communications research to support fly by light/power by wire [NASA-CR-190369]
p 606
National Aeronautics and Space Administration
N94-37657

GILE, BRENDA E.
Subsonic aerodynamic characteristic of semispan commercial transport model with wing-mounted advanced ducted propeller operating in reverse thrust [NASA-TP-3427]
p 601
National Aeronautics and Space Administration
N94-37505

GOODMAN, ROBERT K.
Analysis of rotor blade dynamics using model scale UNA-50911a helafts [NASA-TP-3427]
p 601
National Aeronautics and Space Administration
N94-62276

GRAYBILL, R.
The effects of proton-beam quality on the production of gamma rays for nuclear resonance absorption in nitrogen [DEE-M-011609]
p 606
National Aeronautics and Space Administration
N94-37604

GRIMSTAD, GREGORY E.
Sudden decompression during flight [NASA-CR-4592]
p 605
National Aeronautics and Space Administration
N94-37604

H

HALLER, HENRY C.
NASA Lewis wind tunnel model systems criteria [NASA-TM-109065]
p 604
National Aeronautics and Space Administration
N94-37522

HENDERSON, STEPHEN C.
Stratospheric emissions effects database development [NASA-CR-4592]
p 605
National Aeronautics and Space Administration
N94-37607

HOPPE, PETER S.
Stratospheric emissions effects database development [NASA-CR-4592]
p 605
National Aeronautics and Space Administration
N94-37607

HILLZ, FREDERICK P.
Marker beacon case [NASA-AD16322]
p 602
National Aeronautics and Space Administration
N94-37630

HOLTZ, GEORGE A.
System for broadcasting marker beacon signals and processing responses from seeking entities [NASA-AD16313]
p 602
National Aeronautics and Space Administration
N94-37639

J

JONES, KENNETH M.
Subsonic aerodynamic characteristic of semispan commercial transport model with wing-mounted advanced ducted propeller operating in reverse thrust [NASA-TP-3427]
p 601
National Aeronautics and Space Administration
N94-37505

K

KELLY, KNEALE
Active cooling from the sixties to NASP [NASA-TP-3427]
p 605
National Aeronautics and Space Administration
N94-37541

L

LO, C. F.
Supersonic laminar flow control research [NASA-CR-190260]
p 601
National Aeronautics and Space Administration
N94-37511

M

MAGGIO, DEBRA R.
Stratospheric emissions effects database development [NASA-CR-4592]
p 605
National Aeronautics and Space Administration
N94-37607

N

MAYRAGANIS, A. G.
The two-body problem with drag and radiation pressure [HTN-94-00303]
p 606
National Aeronautics and Space Administration
N94-62291

MICHALAKIS, D. G.
The two-body problem with drag and radiation pressure [HTN-94-00330]
p 606
National Aeronautics and Space Administration
N94-62291

MORAIS, ROBERT E.
Implicit schemes for unsteady Euler equations on triangular meshes [BTN-94-EIX3431337252]
p 604
National Aeronautics and Space Administration
N94-62204

MORTONCHEWICZ, G. D.
Implicit schemes for unsteady Euler equations on triangular meshes [BTN-94-EIX3431337252]
p 604
National Aeronautics and Space Administration
N94-62204

P

POOTS, G.
Further aspects of dynamical models for rime-ice and snow accretion on an overhead line conductor [BTN-94-EIX3431337183]
p 606
National Aeronautics and Space Administration
N94-62186

Q

QUINTO, P. FRANK
Subsonic aerodynamic characteristic of semispan commercial transport model with wing-mounted advanced ducted propeller operating in reverse thrust [NASA-TP-3427]
p 601
National Aeronautics and Space Administration
N94-37505

S

SCHUMANN, RALPH F.
Active cooling from the sixties to NASP [NASA-TP-3427]
p 605
National Aeronautics and Space Administration
N94-37541

SEMERAU, JAMES M.
Ordering design tasks related to coupling strengths [NASA-TM-109137]
p 602
National Aeronautics and Space Administration
N94-37762

SOGENTS, A. S.
Implicit schemes for unsteady Euler equations on triangular meshes [BTN-94-EIX3431337252]
p 604
National Aeronautics and Space Administration
N94-62204

SMITZEL, GEORGE J.
Design of scaled down structural models [NASA-CR-19406]
p 603
National Aeronautics and Space Administration
N94-37588

SKELTON, P. L. I.
Further aspects of dynamical models for rime-ice and snow accretion on an overhead line conductor [BTN-94-EIX3431337183]
p 606
National Aeronautics and Space Administration
N94-62186

SODERER, RONALD H.
NASA Lewis wind tunnel model systems criteria [NASA-TM-109565]
p 604
National Aeronautics and Space Administration
N94-37522

SYGULSKI, R.
Dynamic analysis of open membrane structures interacting with air [BTN-94-EIX3431337180]
p 606
National Aeronautics and Space Administration
N94-62183

T

TAKAHASHI, MARC D.
Rotor-state feedback in the design of flight control laws for a hovering helicopter [HTN-94-00298]
p 603
National Aeronautics and Space Administration
N94-62274

November 1994
THOMPSON, NANCY
Stability analysis of an F/A-18 E/F cable mount model
(NASA-TM-108989) p 602 NSR-37636

TOROK, MICHAEL
Analysis of rotor blade dynamics using model scale
UH-60A airloads
(HTN-94-00300) p 601 ASR-62276

W

WAGNER, ROBERT
Interferometric JFTOT tube deposit measuring device
(AD-D016295) p 604 NSR-37768

WELLER, WILLIAM H.
Variation in Hover aeromechanical stability trends with
bearingless main rotor design
(HTN-94-00304) p 603 ASR-62277

WHITTINGTON, DAVID H.
Synthetic vision display evaluation studies
(NASA-CR-194963) p 603 NSR-37658

WILSON, CHARLES E.
Marker beacon case
(AD-D016322) p 602 NSR-37830
System for broadcasting marker beacon signals and
processing responses from seeking entities
(AD-D016313) p 602 NSR-37839
Typical Corporate Source Index Listing

<table>
<thead>
<tr>
<th>CORPORATE SOURCE</th>
<th>TITLE</th>
<th>REPORT NUMBER</th>
<th>PAGE NUMBER</th>
<th>ACCESSION NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Synthetic vision display evaluation studies</td>
<td>[NASA-CR-194063]</td>
<td>p 603</td>
<td>N94-37658</td>
</tr>
<tr>
<td></td>
<td>Aircraft command in emergency situations prototype development users manual</td>
<td>[DOTFAA/CT-84/24]</td>
<td>p 602</td>
<td>N94-37706</td>
</tr>
<tr>
<td>Christopher Newport Coll., Newport News, VA</td>
<td>Prospective communications research to support fly by light/power by wire</td>
<td>[NASA-CR-196389]</td>
<td>p 606</td>
<td>N94-37587</td>
</tr>
<tr>
<td>Cincinnati Univ., OH</td>
<td>Design of scaled down structural models</td>
<td>[N94-37797]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Department of the Navy, Washington, DC</td>
<td>Canopy breaking device</td>
<td>[AD-D016294]</td>
<td>p 602</td>
<td>N94-37767</td>
</tr>
<tr>
<td></td>
<td>Interferometric JFTOT tube deposit measuring device</td>
<td>[AD-D016295]</td>
<td>p 604</td>
<td>N94-37768</td>
</tr>
<tr>
<td></td>
<td>Marker beacon case</td>
<td>[AD-D016322]</td>
<td>p 602</td>
<td>N94-37830</td>
</tr>
<tr>
<td></td>
<td>System for broadcasting marker beacon signals and processing responses from seeking entities</td>
<td>[AD-D016313]</td>
<td>p 602</td>
<td>N94-37829</td>
</tr>
<tr>
<td>J</td>
<td>Joint Publications Research Service, Arlington, VA.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>National Aeronautics and Space Administration. Ames Research Center, Moffett Field, CA.</td>
<td>Rotor-state feedback in the design of flight control laws for a hovering helicopter</td>
<td>[HTN-84-00298]</td>
<td>p 603</td>
</tr>
<tr>
<td></td>
<td>National Aeronautics and Space Administration. Langley Research Center, Hampton, VA.</td>
<td>Subsonic aerodynamic characteristics of semispan commercial transport model with wing-mounted advanced ducted propeller operating in reverse thrust</td>
<td>[NASA-TP-34271]</td>
<td>p 601</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Active cooling from the statoride to NASP</td>
<td>[NASA-TM-109079]</td>
<td>p 605</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ordering design tasks based on coupling strengths</td>
<td>[NASA-TM-109137]</td>
<td>p 602</td>
</tr>
<tr>
<td></td>
<td>National Aeronautics and Space Administration, Lewis Research Center, Cleveland, OH.</td>
<td>NASA Lewis wind tunnel model systems criteria</td>
<td>[NASA-TM-106595]</td>
<td>p 604</td>
</tr>
</tbody>
</table>
Typical Foreign Technology Index Listing

<table>
<thead>
<tr>
<th>COUNTRY OF INTELLECTUAL ORIGIN</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNITED KINGDOM</td>
</tr>
<tr>
<td>CHINA</td>
</tr>
<tr>
<td>GREECE</td>
</tr>
<tr>
<td>POLAND</td>
</tr>
<tr>
<td>RUSSIA</td>
</tr>
</tbody>
</table>

Listings in this index are arranged alphabetically by country of intellectual origin. The title of the document is used to provide a brief description of the subject matter. The page number and accession number are included in each entry to assist the user in locating the abstract in the abstract section. If applicable, a report number is also included as an aid in identifying the document.

UNITED KINGDOM
- Further aspects of dynamical models for rime-ice and snow accretion on an overhead line conductor
 - [BTN-94-EIX94331337183] p 606 A94-62186

CHINA
- The present situation and future development of Chinese aviation reliability and maintainability engineering
 - p 153 A94-10101

GREECE
- The two-body problem with drag and radiation pressure
 - [BTN-94-00303] p 606 A94-62291

POLAND
- Dynamic analysis of open membrane structures interacting with air
 - [BTN-94-EIX94331337160] p 606 A94-62183

RUSSIA
- JPRS report: Science and technology. Central Eurasia: Engineering and equipment
 - [JPRS-UEQ-93-007] p 604 N94-37523
 - [JPRS-UEQ-93-008] p 605 N94-37524
 - [JPRS-UEQ-93-005] p 605 N94-37538
Typical Contract Number Index Listing

<table>
<thead>
<tr>
<th>CONTRACT NUMBER</th>
<th>PAGE NUMBER</th>
<th>ACCESSION NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>AF PROJ 2404</td>
<td>p 44</td>
<td>N94-17461</td>
</tr>
</tbody>
</table>

Listings in this index are arranged alphanumerically by contract number. Under each contract number the accession numbers denoting documents that have been produced as a result of research done under the contract are shown. The accession number denotes the number by which the citation is identified in the abstract section. Preceding the accession number is the page number on which the citation may be found.

- DTFA01-87-C-00014 p 601 N94-37604
- DTFA03-89-C-00081 p 602 N94-37706
- NAG1-1280 p 605 N94-37797
- NAG1-1309 p 606 N94-37657
- NAG2-881 p 601 N94-37511
- NAS1-18930 p 605 N94-37607
- RTOP 505-62-64 p 604 N94-37522
- RTOP 505-63-50-06 p 602 N94-37782
- RTOP 505-63-50-13 p 602 N94-37636
- RTOP 505-70-62-01 p 605 N94-37541
- RTOP 535-03-10-02 p 601 N94-37505
- RTOP 537-01-22-01 p 605 N94-37607
- RTOP 537-08-20-01 p 603 N94-37658
- W-7405-ENG-36 p 606 N94-37629

November 1994
Typical Report Number Index Listing

<table>
<thead>
<tr>
<th>REPORT NUMBER</th>
<th>PAGE NUMBER</th>
<th>ACCESSION NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>NASA-TP-3427</td>
<td>p 601</td>
<td>N94-37505 *</td>
</tr>
<tr>
<td>NAVY-CASE-74641</td>
<td>p 602</td>
<td>N94-37830 *</td>
</tr>
<tr>
<td>NAVY-CASE-74643</td>
<td>p 602</td>
<td>N94-37839 *</td>
</tr>
<tr>
<td>SCT-90RR-46</td>
<td>p 601</td>
<td>N94-37604 #</td>
</tr>
<tr>
<td>US-PATENT-APPL-SN-205780</td>
<td>p 602</td>
<td>N94-37767 *</td>
</tr>
<tr>
<td>US-PATENT-APPL-SN-216559</td>
<td>p 602</td>
<td>N94-37830 *</td>
</tr>
<tr>
<td>US-PATENT-APPL-SN-216567</td>
<td>p 602</td>
<td>N94-37839 *</td>
</tr>
<tr>
<td>US-PATENT-APPL-SN-906903</td>
<td>p 604</td>
<td>N94-37768 #</td>
</tr>
<tr>
<td>US-PATENT-CLASS-244-129.1</td>
<td>p 602</td>
<td>N94-37767 *</td>
</tr>
<tr>
<td>US-PATENT-CLASS-356-382</td>
<td>p 604</td>
<td>N94-37768 #</td>
</tr>
<tr>
<td>US-PATENT-5,293,218</td>
<td>p 604</td>
<td>N94-37768 #</td>
</tr>
<tr>
<td>US-PATENT-5,301,804</td>
<td>p 602</td>
<td>N94-37767 #</td>
</tr>
</tbody>
</table>

Listings in this index are arranged alphabetically by report number. The page number indicates the page on which the citation is located. The accession number denotes the number by which the citation is identified. An asterisk (*) indicates that the item is a NASA report. A pound sign (#) indicates that the item is available on microfiche.

AD-A280260 p 604 N94-37755 #
AD-A280261 p 604 N94-37756 #
AD-A016294 p 602 N94-37767 #
AD-A016295 p 604 N94-37768 #
AD-A016313 p 602 N94-37839 #
AD-A016322 p 602 N94-37830 #
ADST/TR/94-003256 p 604 N94-37755 #
ADST/TR/94-003276-VOL-4 p 604 N94-37756 #
BTN-94-EX9433137180 p 606 A94-62183 #
BTN-94-EX9433137182 p 606 A94-62186 #
BTN-94-EX9433137252 p 604 A94-62204 #
DE94-011609 p 606 N94-37629 #
DOT/FAA/CT-94/24 p 602 N94-37706 #
DOT/FAA/RD-94/22 p 601 N94-37604 #
E-874 ... p 604 N94-37522 * #
HTN-94-000298 p 602 A94-62274 #
HTN-94-00300 p 601 A94-62276 #
HTN-94-00304 p 603 A94-62277 #
HTN-94-00330 p 606 A94-62291 #
JPRS-UEO-93-005 p 605 N94-37538 #
JPRS-UEO-93-007 p 604 N94-37523 #
JPRS-UEO-93-008 p 605 N94-37524 #
L-1762 ... p 601 N94-37505 * #
LA-12777-45 .. p 606 N94-37629 #
NAS 1.15-106565 p 604 N94-37522 * #
NAS 1.15-108989 p 602 N94-37636 * #
NAS 1.15-108979 p 605 N94-37541 * #
NAS 1.15-109137 p 602 N94-37762 * #
NAS 1.26-194963 p 600 N94-37656 * #
NAS 1.26-196260 p 601 N94-37511 * #
NAS 1.26-196369 p 606 N94-37657 * #
NAS 1.26-4582 .. p 605 N94-37607 * #
NAS 1.60-3427 .. p 601 N94-37505 * #
NAS-A94-C194963 p 600 N94-37658 * #
NAS-A94-C196260 p 601 N94-37511 * #
NAS-CR-196369 p 606 N94-37657 * #
NAS-CR-4592 .. p 605 N94-37607 * #
NAS-TM-105655 p 604 N94-37522 * #
NAS-TM-108989 p 602 N94-37636 * #
NAS-TM-109079 p 605 N94-37541 * #
NAS-TM-109137 p 602 N94-37762 * #
Typical Accession Number
Index Listing

<table>
<thead>
<tr>
<th>Accession Number</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A94-62183</td>
<td>p606</td>
</tr>
<tr>
<td>A94-62186</td>
<td>p606</td>
</tr>
<tr>
<td>A94-62204</td>
<td>p604</td>
</tr>
<tr>
<td>A94-62274</td>
<td>p603</td>
</tr>
<tr>
<td>A94-62276</td>
<td>p601</td>
</tr>
<tr>
<td>A94-62277</td>
<td>p603</td>
</tr>
<tr>
<td>A94-62291</td>
<td>p606</td>
</tr>
<tr>
<td>N94-37505</td>
<td>p601</td>
</tr>
<tr>
<td>N94-37511</td>
<td>p601</td>
</tr>
<tr>
<td>N94-37522</td>
<td>p604</td>
</tr>
<tr>
<td>N94-37523</td>
<td>p604</td>
</tr>
<tr>
<td>N94-37524</td>
<td>p605</td>
</tr>
<tr>
<td>N94-37538</td>
<td>p605</td>
</tr>
<tr>
<td>N94-37541</td>
<td>p605</td>
</tr>
<tr>
<td>N94-37555</td>
<td>p601</td>
</tr>
<tr>
<td>N94-37607</td>
<td>p605</td>
</tr>
<tr>
<td>N94-37629</td>
<td>p606</td>
</tr>
<tr>
<td>N94-37636</td>
<td>p602</td>
</tr>
<tr>
<td>N94-37686</td>
<td>p603</td>
</tr>
<tr>
<td>N94-37706</td>
<td>p602</td>
</tr>
<tr>
<td>N94-37755</td>
<td>p604</td>
</tr>
<tr>
<td>N94-37774</td>
<td>p604</td>
</tr>
<tr>
<td>N94-37797</td>
<td>p605</td>
</tr>
<tr>
<td>N94-37802</td>
<td>p602</td>
</tr>
<tr>
<td>N94-37830</td>
<td>p602</td>
</tr>
<tr>
<td>N94-37839</td>
<td>p602</td>
</tr>
</tbody>
</table>

Listings in this index are arranged alphabetically by accession number. The page number indicates the page on which the citation is located. The accession number denotes the number by which the citation is identified. An asterisk (*) indicates that the item is a NASA report. A pound sign (#) indicates that the item is available on microfiche.
AVAILABILITY OF CITED PUBLICATIONS

OPEN LITERATURE ENTRIES (A94-60000 Series)
Inquiries and requests should be addressed to: CASI, 800 Elkridge Landing Road, Linthicum Heights, MD 21090-2934. Orders are also taken by telephone, (301) 621-0390, e-mail, help@sti.nasa.gov, and fax, (301) 621-0134. Please refer to the accession number when requesting publications.

STAR ENTRIES (N94-10000 Series)
One or more sources from which a document announced in STAR is available to the public is ordinarily given on the last line of the citation. The most commonly indicated sources and their acronyms or abbreviations are listed below, and their addresses are listed on page APP-3. If the publication is available from a source other than those listed, the publisher and his address will be displayed on the availability line or in combination with the corporate source line.

Avail: CASI. Sold by the NASA Center for AeroSpace Information. Prices for hard copy (HC) and microfiche (MF) are indicated by a price code following the letters HC or MF in the STAR citation. Current values for the price codes are given in the tables on page APP-5.

NOTE ON ORDERING DOCUMENTS: When ordering publications from CASI, use the N accession number or other report number. It is also advisable to cite the title and other bibliographic identification.

Avail: BLL (formerly NLL): British Library Lending Division, Boston Spa, Wetherby, Yorkshire, England. Photocopies available from this organization at the price shown. (If none is given, inquiry should be addressed to the BLL.)

Avail: DOE Depository Libraries. Organizations in U.S. cities and abroad that maintain collections of Department of Energy reports, usually in microfiche form, are listed in Energy Research Abstracts. Services available from the DOE and its depositories are described in a booklet, DOE Technical Information Center - Its Functions and Services (TID-4660), which may be obtained without charge from the DOE Technical Information Center.

Avail: ESDU. Pricing information on specific data, computer programs, and details on Engineering Sciences Data Unit (ESDU) topic categories can be obtained from ESDU International Ltd. Requesters in North America should use the Virginia address while all other requesters should use the London address, both of which are on page APP-3.

Avail: HMSO. Publications of Her Majesty's Stationery Office are sold in the U.S. by Pendragon House, Inc. (PHI), Redwood City, CA. The U.S. price (including a service and mailing charge) is given, or a conversion table may be obtained from PHI.

Avail: Issuing Activity, or Corporate Author, or no indication of availability. Inquiries as to the availability of these documents should be addressed to the organization shown in the citation as the corporate author of the document.

Avail: NASA Public Document Rooms. Documents so indicated may be examined at or purchased from the National Aeronautics and Space Administration (JBD-4), Public Documents Room (Room 1H23), Washington, DC 20546-0001, or public document rooms located at NASA installations, and the NASA Pasadena Office at the Jet Propulsion Laboratory.

APP-1
Avail: NTIS. Sold by the National Technical Information Service. Initially distributed microfiche under the NTIS SRIM (Selected Research in Microfiche) are available. For information concerning this service, consult the NTIS Subscription Section, Springfield, VA 22161.

Avail: Univ. Microfilms. Documents so indicated are dissertations selected from Dissertation Abstracts and are sold by University Microfilms as xerographic copy (HC) and microfilm. All requests should cite the author and the Order Number as they appear in the citation.

Avail: (US Sales Only). These foreign documents are available to users within the United States from the National Technical Information Service (NTIS). They are available to users outside the United States through the International Nuclear Information Service (INIS) representative in their country, or by applying directly to the issuing organization.

Avail: USGS. Originals of many reports from the U.S. Geological Survey, which may contain color illustrations, or otherwise may not have the quality of illustrations preserved in the microfiche or facsimile reproduction, may be examined by the public at the libraries of the USGS field offices whose addresses are listed on page APP-3. The libraries may be queried concerning the availability of specific documents and the possible utilization of local copying services, such as color reproduction.

FEDERAL DEPOSITORY LIBRARY PROGRAM

In order to provide the general public with greater access to U.S. Government publications, Congress established the Federal Depository Library Program under the Government Printing Office (GPO), with 53 regional depositories responsible for permanent retention of material, inter-library loan, and reference services. At least one copy of nearly every NASA and NASA-sponsored publication, either in printed or microfiche format, is received and retained by the 53 regional depositories. A list of the regional GPO libraries, arranged alphabetically by state, appears on the inside back cover of this issue. These libraries are not sales outlets. A local library can contact a regional depository to help locate specific reports, or direct contact may be made by an individual.

PUBLIC COLLECTION OF NASA DOCUMENTS

An extensive collection of NASA and NASA-sponsored publications is maintained by the British Library Lending Division, Boston Spa, Wetherby, Yorkshire, England for public access. The British Library Lending Division also has available many of the non-NASA publications cited in STAR. European requesters may purchase facsimile copy or microfiche of NASA and NASA-sponsored documents, those identified by both the symbols # and * from ESA — Information Retrieval Service European Space Agency, 8-10 rue Mario-Nikis, 75738 CEDEX 15, France.

STANDING ORDER SUBSCRIPTIONS

NASA SP-7037 supplements and annual index are available from the NASA Center for AeroSpace Information (CASI) on standing order subscription. Standing order subscriptions do not terminate at the end of a year, as do regular subscriptions, but continue indefinitely unless specifically terminated by the subscriber.
ADDRESSES OF ORGANIZATIONS

<table>
<thead>
<tr>
<th>Organization</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>British Library Lending Division</td>
<td>Boston Spa, Wetherby, Yorkshire, England</td>
</tr>
<tr>
<td>Commissioner of Patents and Trademarks</td>
<td>U.S. Patent and Trademark Office, Washington, DC 20231</td>
</tr>
<tr>
<td>Department of Energy</td>
<td>Technical Information Center, P.O. Box 62, Oak Ridge, TN 37830</td>
</tr>
<tr>
<td>European Space Agency</td>
<td>Information Retrieval Service ESRIN, Via Galileo Galilei, 00044 Frascati (Rome) Italy</td>
</tr>
<tr>
<td>Engineering Sciences Data Unit International</td>
<td>P.O. Box 1633, Manassas, VA 22110</td>
</tr>
<tr>
<td>Engineering Sciences Data Unit International, Ltd.</td>
<td>251-259 Regent Street, London, W1R 7AD, England</td>
</tr>
<tr>
<td>Fachinformationszentrum Karlsruhe</td>
<td>Gesellschaft für wissenschaftlich-technische Information mbH, 76344 Eggenstein-Leopoldshafen, Germany</td>
</tr>
<tr>
<td>Her Majesty's Stationery Office</td>
<td>P.O. Box 569, S.E. 1, London, England</td>
</tr>
<tr>
<td>NASA Center for AeroSpace Information</td>
<td>800 Elkridge Landing Road, Linthicum Heights, MD 21090-2934</td>
</tr>
<tr>
<td>National Aeronautics and Space Administration</td>
<td>Scientific and Technical Information Program (JTT), Washington, DC 20546-0001</td>
</tr>
<tr>
<td>National Technical Information Service</td>
<td>5285 Port Royal Road, Springfield, VA 22161</td>
</tr>
<tr>
<td>Pendragon House, Inc.</td>
<td>899 Broadway Avenue, Redwood City, CA 94063</td>
</tr>
<tr>
<td>University Microfilms</td>
<td>A Xerox Company, 300 North Zeeb Road, Ann Arbor, MI 48106</td>
</tr>
<tr>
<td>University Microfilms, Ltd.</td>
<td>Tylers Green, London, England</td>
</tr>
<tr>
<td>U.S. Geological Survey Library</td>
<td>National Center, MS 950, 12201 Sunrise Valley Drive, Reston, VA 22092</td>
</tr>
<tr>
<td>U.S. Geological Survey Library</td>
<td>2255 North Gemini Drive, Flagstaff, AZ 86001</td>
</tr>
<tr>
<td>U.S. Geological Survey</td>
<td>345 Middlefield Road, Menlo Park, CA 94025</td>
</tr>
<tr>
<td>U.S. Geological Survey Library</td>
<td>Box 25046, Denver Federal Center, MS914, Denver, CO 80225</td>
</tr>
</tbody>
</table>
Page Intentionally Left Blank
CASI PRICE TABLES
(Effective November 1, 1994)

STANDARD PRICE DOCUMENTS

<table>
<thead>
<tr>
<th>PRICE CODE</th>
<th>NORTH AMERICAN PRICE</th>
<th>FOREIGN PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A01</td>
<td>$ 6.00</td>
<td>$12.00</td>
</tr>
<tr>
<td>A02</td>
<td>9.00</td>
<td>18.00</td>
</tr>
<tr>
<td>A03</td>
<td>17.50</td>
<td>35.00</td>
</tr>
<tr>
<td>A04-A05</td>
<td>19.50</td>
<td>39.00</td>
</tr>
<tr>
<td>A06-A09</td>
<td>27.00</td>
<td>54.00</td>
</tr>
<tr>
<td>A10-A13</td>
<td>36.50</td>
<td>73.00</td>
</tr>
<tr>
<td>A14-A17</td>
<td>44.50</td>
<td>89.00</td>
</tr>
<tr>
<td>A18-A21</td>
<td>52.00</td>
<td>104.00</td>
</tr>
<tr>
<td>A22-A25</td>
<td>61.00</td>
<td>122.00</td>
</tr>
<tr>
<td>A99</td>
<td>Call For Price</td>
<td>Call For Price</td>
</tr>
</tbody>
</table>

MICROFICHE

<table>
<thead>
<tr>
<th>PRICE CODE</th>
<th>NORTH AMERICAN PRICE</th>
<th>FOREIGN PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A01</td>
<td>$ 9.00</td>
<td>$18.00</td>
</tr>
<tr>
<td>A02</td>
<td>12.50</td>
<td>25.00</td>
</tr>
<tr>
<td>A03</td>
<td>17.50</td>
<td>35.00</td>
</tr>
<tr>
<td>A04</td>
<td>19.50</td>
<td>39.00</td>
</tr>
<tr>
<td>A06</td>
<td>27.00</td>
<td>54.00</td>
</tr>
<tr>
<td>A10</td>
<td>36.50</td>
<td>73.00</td>
</tr>
</tbody>
</table>

IMPORTANT NOTICE

CASI Shipping and Handling Charges
ADD $1.00 for each document ordered

Does NOT apply to orders requesting CASI RUSH HANDLING.
CASI accepts most credit/charge cards.

NASA Center for AeroSpace Information
800 Elkridge Landing Road
Linthicum Heights, MD 21090-2934
Telephone: (301) 621-0390
E-mail: help@sti.nasa.gov
Fax: (301) 621-0134

Rev. 10/94
APP-5
This report lists 29 reports, articles and other documents recently announced in the NASA STI Database.
FEDERAL REGIONAL DEPOSITORY LIBRARIES

<table>
<thead>
<tr>
<th>State</th>
<th>University/Lib</th>
<th>Address</th>
<th>Phone</th>
<th>Fax</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALABAMA</td>
<td>AUBURN UNIV.</td>
<td>7300 University Dr. Montgomery, AL 36117-3596</td>
<td>(205) 244-3860</td>
<td>(205) 244-0678</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARIZONA</td>
<td></td>
<td>Phoenix, AZ 85007</td>
<td>(602) 542-4400,</td>
<td>(602) 542-8833</td>
</tr>
<tr>
<td>ASHANTI</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARKANSAS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CALIFORNIA</td>
<td></td>
<td>Sacramento, CA 94237</td>
<td>(612) 624-5073</td>
<td>(612) 626-9353</td>
</tr>
<tr>
<td>ConnectiCT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Florida</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Georgia</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hawaii</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Idaho</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Illinois</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indiana</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iowa</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kansas</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kentucky</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Louisiana</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maine</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maryland</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Massachusetts</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Michigan</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Missouri</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nebraska</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nevada</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New Jersey</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New Mexico</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New York</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>North Carolina</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ohio</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oregon</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pennsylvania</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>South Carolina</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tennessee</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Texas</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Utah</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Virginia</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Washington</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wisconsin</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>West Virginia</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>