AERONAUTICAL ENGINEERING

A CONTINUING BIBLIOGRAPHY WITH INDEXES

(NASA-SP-7037(310)) AERONAUTICAL ENGINEERING: A CONTINUING BIBLIOGRAPHY WITH INDEXES (SUPPLEMENT 310) (NASA) 29 p

Unclas

00/01 0031816
AERONAUTICAL ENGINEERING

A CONTINUING BIBLIOGRAPHY WITH INDEXES
INTRODUCTION

This issue of Aeronautical Engineering — A Continuing Bibliography with Indexes (NASA SP-7037) lists 29 reports, journal articles, and other documents recently announced in the NASA STI Database.

Accession numbers cited in this issue include:

Scientific and Technical Aerospace Reports (STAR) (N-10000 Series) N94-37481 — N94-37856
Open Literature (A-60000 Series) A94-61886 — A94-62340

The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles.

Each entry in the publication consists of a standard bibliographic citation accompanied in most cases by an abstract. The listing of the entries is arranged by the first nine STAR specific categories and the remaining STAR major categories. This arrangement offers the user the most advantageous breakdown for individual objectives. The citations include the original accession numbers from the respective announcement journals.

Seven indexes—subject, personal author, corporate source, foreign technology, contract number, report number, and accession number—are included.

A cumulative index for 1994 will be published in early 1995.

Information on availability of documents listed, addresses of organizations, and CASI price schedules are located at the back of this issue.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Category</th>
<th>Description</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Aeronautics</td>
<td>N.A.</td>
</tr>
<tr>
<td>02</td>
<td>Aerodynamics</td>
<td>601</td>
</tr>
<tr>
<td></td>
<td>Includes aerodynamics of bodies, combinations, wings, rotors, and control</td>
<td></td>
</tr>
<tr>
<td></td>
<td>surfaces; and internal flow in ducts and turbomachinery.</td>
<td></td>
</tr>
<tr>
<td>03</td>
<td>Air Transportation and Safety</td>
<td>N.A.</td>
</tr>
<tr>
<td></td>
<td>Includes passenger and cargo air transport operations; and aircraft</td>
<td></td>
</tr>
<tr>
<td></td>
<td>accidents.</td>
<td></td>
</tr>
<tr>
<td>04</td>
<td>Aircraft Communications and Navigation</td>
<td>602</td>
</tr>
<tr>
<td></td>
<td>Includes digital and voice communication with aircraft; air navigation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>systems (satellite and ground based); and air traffic control.</td>
<td></td>
</tr>
<tr>
<td>05</td>
<td>Aircraft Design, Testing and Performance</td>
<td>N.A.</td>
</tr>
<tr>
<td></td>
<td>Includes aircraft simulation technology.</td>
<td></td>
</tr>
<tr>
<td>06</td>
<td>Aircraft Instrumentation</td>
<td>603</td>
</tr>
<tr>
<td></td>
<td>Includes cockpit and cabin display devices; and flight instruments.</td>
<td></td>
</tr>
<tr>
<td>07</td>
<td>Aircraft Propulsion and Power</td>
<td>N.A.</td>
</tr>
<tr>
<td></td>
<td>Includes prime propulsion systems and systems components, e.g., gas turbine</td>
<td></td>
</tr>
<tr>
<td></td>
<td>engines and compressors; and onboard auxiliary power plants for aircraft.</td>
<td></td>
</tr>
<tr>
<td>08</td>
<td>Aircraft Stability and Control</td>
<td>603</td>
</tr>
<tr>
<td></td>
<td>Includes aircraft handling qualities; piloting; flight controls; and autopilots.</td>
<td></td>
</tr>
<tr>
<td>09</td>
<td>Research and Support Facilities (Air)</td>
<td>604</td>
</tr>
<tr>
<td></td>
<td>Includes airports, hangars and runways; aircraft repair and overhaul</td>
<td></td>
</tr>
<tr>
<td></td>
<td>facilities; wind tunnels; shock tubes; and aircraft engine test stands.</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Astronautics</td>
<td>N.A.</td>
</tr>
<tr>
<td></td>
<td>Includes astronautics (general); astrodynamics; ground support systems and</td>
<td></td>
</tr>
<tr>
<td></td>
<td>facilities (space); launch vehicles and space vehicles; space</td>
<td></td>
</tr>
<tr>
<td></td>
<td>transportation; space communications, spacecraft communications, command</td>
<td></td>
</tr>
<tr>
<td></td>
<td>and tracking; spacecraft design, testing and performance; spacecraft</td>
<td></td>
</tr>
<tr>
<td></td>
<td>instrumentation; and spacecraft propulsion and power.</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Chemistry and Materials</td>
<td>N.A.</td>
</tr>
<tr>
<td></td>
<td>Includes chemistry and materials (general); composite materials; inorganic</td>
<td></td>
</tr>
<tr>
<td></td>
<td>and physical chemistry; metallic materials; nonmetallic materials;</td>
<td></td>
</tr>
<tr>
<td></td>
<td>propellants and fuels; and materials processing.</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Engineering</td>
<td>604</td>
</tr>
<tr>
<td></td>
<td>Includes engineering (general); communications and radar; electronics and</td>
<td></td>
</tr>
<tr>
<td></td>
<td>electrical engineering; fluid mechanics and heat transfer; instrumentation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>and photography; lasers and masers; mechanical engineering; quality</td>
<td></td>
</tr>
<tr>
<td></td>
<td>assurance and reliability; and structural mechanics.</td>
<td></td>
</tr>
</tbody>
</table>
Category 13 Geosciences
Includes geosciences (general); earth resources and remote sensing; energy production and conversion; environment pollution; geophysics; meteorology and climatology; and oceanography.

Category 14 Life Sciences
Includes life sciences (general); aerospace medicine; behavioral sciences; man/system technology and life support; and space biology.

Category 15 Mathematical and Computer Sciences
Includes mathematical and computer sciences (general); computer operations and hardware; computer programming and software; computer systems; cybernetics; numerical analysis; statistics and probability; systems analysis; and theoretical mathematics.

Category 16 Physics
Includes physics (general); acoustics; atomic and molecular physics; nuclear and high-energy; optics; plasma physics; solid-state physics; and thermodynamics and statistical physics.

Category 17 Social Sciences
Includes social sciences (general); administration and management; documentation and information science; economics and cost analysis; law, political science, and space policy; and urban technology and transportation.

Category 18 Space Sciences
Includes space sciences (general); astronomy; astrophysics; lunar and planetary exploration; solar physics; and space radiation.

Category 19 General

Subject Index ... A-1
Personal Author Index .. B-1
Corporate Source Index C-1
Foreign Technology Index D-1
Contract Number Index E-1
Report Number Index F-1
Accession Number Index G-1
Appendix ... APP-1
TYPICAL REPORT CITATION AND ABSTRACT

NASA SPONSORED

ACCESSION NUMBER → N94-10675** National Aeronautics and Space Administration. ← CORPORATE SOURCE
Langley Research Center, Hampton, VA.

TITLE → STATIC INTERNAL PERFORMANCE OF A SINGLE EXPANSION RAMP NOZZLE WITH MULTIAXIS THRUST VECTORING CAPABILITY

AUTHORS → FRANCIS J. CAPONE and ALBERTO W. SCHIRMER (George Washington Univ., Hampton, VA.)

PUBLICATION DATE 272 p

CONTRACT NUMBER → (Contract RTOP 505-62-30-01)

REPORT NUMBERS → (NASA-TM-4450; L-17163; NAS 1.15:4450) Avail: CASI HCA12/

An investigation was conducted at static conditions in order to determine the internal performance characteristics of a multiaxis thrust vectoring single expansion ramp nozzle. Yaw vectoring was achieved by deflecting yaw flaps in the nozzle sidewall into the nozzle exhaust flow. In order to eliminate any physical interference between the variable angle yaw flap deflected into the exhaust flow and the nozzle upper ramp and lower flap which were deflected for pitch vectoring, the downstream corners of both the nozzle ramp and lower flap were cut off to allow for up to 30 deg of yaw vectoring. The effects of nozzle upper ramp and lower flap cutout, yaw flap hinge line location and hinge inclination angle, sidewall containment, geometric pitch vector angle, and geometric yaw vector angle were studied. This investigation was conducted in the static-test facility of the Langley 16-foot Transonic Tunnel at nozzle pressure ratios up to 8.0.

TYPICAL JOURNAL ARTICLE CITATION AND ABSTRACT

NASA SPONSORED

ACCESSION NUMBER → A94-60042* National Aeronautics and Space Administration. ← CORPORATE SOURCE
Lewis Research Center, Cleveland, OH.

TITLE → EXPERIMENTAL INVESTIGATION OF COUNTER-ROTATING PROPFAN FLUTTER AT CRUISE CONDITIONS

AUTHORS → ORAL MEHMED NASA Lewis Research Center, Cleveland, OH and ANATOLE P. KURKOV Journal of Propulsion and Power (ISSN ← JOURNAL TITLE
PUBLICATION DATE 0748-4656) vol. 10, no. 3 May-June 1994 p. 343-347 refs

REPORT NUMBER → (BTN-94-EX94321333310) Copyright

This article presents wind-tunnel experimental flutter results, at transonic relative flows, for a 0.62-m-diam composite propfan model. A blade row that fluttered was tested alone, and with a stable aft counter-rotating blade row. The major objectives of the experiment were to study the effect of the second blade row on the row in flutter, and to investigate the flutter. Results show that the second row had a small stabilizing effect. Two distinct flutter modes were found within the operating regime of the rotor: both apparently single-degree-of-freedom instabilities, associated respectively with the first and second natural blade modes. For both flutter modes, flutter boundary, frequency, nodal diameter, and blade displacement data are given. The blade displacement data, obtained with an optical method, gives an indication of the flutter mode shape at a span near the blade tip.

Author (EI)
AERODYNAMICS

Includes aerodynamics of bodies, combinations, wings, rotors, and control surfaces; and internal flow in ducts and turbomachinery.

A94-62276
ANALYSIS OF ROTOR BLADE DYNAMICS USING MODEL SCALE UH-60A AIRLOADS

A test was conducted in the Langley 14 by 22 Foot Subsonic Tunnel to determine the effect of the reverse-thrust flow field of a wing-mounted advanced ducted propeller on the aerodynamic characteristics of a semispan subsonic high-lift transport model. The advanced ducted propeller (ADP) model was mounted separately in position alongside the wing so that only the aerodynamic interference of the propeller and nacelle affected the aerodynamic performance of the transport model. Mach numbers ranged from 0.14 to 0.26; corresponding Reynolds numbers ranged from 2.2 x 10^6 to 3.9 x 10^6. The reverse-thrust flow field of the ADP shielded a portion of the wing from the free-stream airflow and reduced both lift and drag. The reduction in lift and drag was a function of ADP rotational speed and free-stream velocity. Test results included ground effects data for the transport model and ADP configuration. The ground plane caused a beneficial increase in drag and an undesirable slight increase in lift. The ADP and transport model performance in ground effect was similar to performance trends observed for out of ground effect. The test results form a comprehensive data set that supports the application of the ADP engine and airplane concept on the next generation of advanced subsonic transports. Before this investigation, the engine application was predicted to have detrimental ground effect characteristics. Ground effect test measurements indicated no critical problems and were the first step in proving the viability of this engine and airplane configuration.

Author (revised)

This project involved assembly of the hardware and development of the software identified in ACES Phase 1 Concept Development contract study. The assembled system allows three critical stages in responding to an aircraft inflight smoke/fire event to be examined. These stages are (1) sensing (data gathering), (2) establishing the alerting criteria to maintain quick response while reducing false alarms (data analysis), and (3) methods of providing assistance to the procedures, new products, additional training, and regulatory change. This technical report contains pertinent data and testing/guidance material needed to support those elements of the agency charged with performance of regulatory actions and the development of advisory materials and standards. Author

An aircraft canopy breaking device is described, having means for penetrating the canopy glazing material upon application of an applied force from the rising ejection seat to the penetrating means. The device further comprises prepositioning means for prepositioning the penetrating means at a fixed distance from the canopy glazing material, shielding the penetrating means from inadvertently contacting the canopy glazing material, other material or personnel, and compressing whereby upon application of a force the penetrating means contacts the canopy glazing material causing crack propagation in the canopy glazing material.

04

AIRCRAFT COMMUNICATIONS AND NAVIGATION

Includes digital and voice communication with aircraft; air navigation systems (satellite and ground based); and air traffic control.

N94-37830# Department of the Navy, Washington, DC. MARKER BEACON CASE Patent Application 602

A multifunctional case that is suitable for storing, carrying or launching a marker beacon is presented. The launching could be in a dense jungle to place the marker beacon atop tree branches to make it visible from the air, or the case may be adapted for launching at sea. The case has a triggering mechanism for launching the marker beacon. It has alignment means for inhibiting a launch when storing or carrying the marker beacon within the case. The alignment means has a second position for placing the marker beacon in position to be launched. The launching takes place upon activation of a triggering mechanism that forms part of the case. DTIC

The present invention relates to a surface deployed navigational beacon, which is normally secure from nonfriendly forces. More particularly the beacon is capable of user selection of any of a plurality of codes to modulate a transmitted radio signal. The signal is used by the navigational entity to determine direction to the beacon, as well as to distinguish a particular beacon from others which may be deployed within the same broad area. The beacon has the capability of receiving selected coded radio signals sent from the navigating entity. One received signal results in a signal being sent back to the navigating entity from the beacon for the purpose of providing slant range distance between the beacon and the navigating entity. Another signal received by the beacon from the navigating entity is employed to trigger a flare, integral to the beacon assembly, for backup visual/infrared navigational purposes. DTIC

A full-span F/A-18 E/F cable mounted wind tunnel model is part of a flutter clearance program at the NASA Langley Transonic Dynamics Tunnel. Parametric analysis of this model using GRUMCBL software was conducted to assess stability for wind tunnel tests. Two configurations of the F/A-18 E/F were examined. The parameters examined were pullley-cable friction, mach number, dynamic pressure, cable geometry, center of gravity location, cable tension, snubbing the model, drag, and test medium. For the nominal cable geometry (Cable Geometry 1), Configuration One was unstable for cases with higher pulley-cable friction coefficients. A new cable geometry (Cable Geometry 3) was determined in which Configuration One was stable for all cases evaluated. Configuration Two with the nominal center of gravity position was found to be unstable for cases with higher pulley-cable friction coefficients; however, the model was stable when the center of gravity moved forward 1/2. The model was tested using the cable mount system during the initial wind tunnel entry and was stable as predicted. Author
AIRCRAFT STABILITY AND CONTROL

08

VARIATION IN HOVER AEROMECHANICAL STABILITY TRENDS WITH BEARINGLESS MAIN ROTOR DESIGN

An experimental program has been conducted to measure the aeromechanical stability characteristics of a Baringless Main Rotor (BMR) model. The model is based on a four bladed concept with a flexure, between the hub and each blade, which accommodates flatwise, edgewise, and torsional (pitch) motions. The flexure is enclosed by a torsionally stiff cuff that is cantilevered to the blade/flexure joint at its outboard end and shear restrained to the flexure at its inboard end. The shear restraint includes an elastomeric damper to stabilize edgewise motion. The model was tested in hover over a range of rotor thrust and rotational speed. Numerous rotor hub design parameters were varied to determine their effect on aeromechanical stability characteristics of the model. These included changes in fundamental flatwise natural frequency, blade built-in cone and sweep angles, pitch link inclination, flexure prepitch, shear restraint to flexure attachment, movement of the pitch link attachment from the trailing edge to a leading edge location, or various combinations. The results in this paper show that most design changes, which were employed to increase aeromechanical stability margins, provided only negligible improvements or were detrimental in their effects. Movement of the pitch link attachment to the leading edge does provide improved stability characteristics at the higher collective pitch angles, which are usually critical, although the stability margins for this configuration were still small.

Author (Hemer)
N94-37522 National Aeronautics and Space Administration. Lewis Research Center, Cleveland, OH.

Advanced Rotary Wing Aircraft Software Programmer's Manual Visual System Module

The purpose of this document is to provide information needed by a programmer to understand the instruction set architecture of the specified host and target computers. The Software Programmer's Manual provides information that may be used to interpret, check out, or modify existing software on the host and target computers. Section 1 outlines the scope of the document. Section 2 describes the documents referenced in this specification. Section 3 outlines the software programming environment. Section 4 describes the programming information relative to the host and target computers. Section 5 provides general design notes.

N94-37768 Department of the Navy, Washington, DC.

INTERFEROMETRIC JET TOTUBE DEPOSIT MEASURING DEVICE Patent

ROBERT E. MORRIS, inventor (to Navy) and ROBERT WAGNER, inventor (to Navy) 8 Mar. 1994 166 p Filed 30 Jun. 1992

Jet fuels are tested for thermal stability by passing the fuel over a heated metal tube and measuring the amount of residue deposited as a film on the tube as a result of chemical changes to the fuel. The thickness distribution and volume of a deposited film on a tube are calculated by scanning the length of the tube with an optical probe, shining light onto the tube, and measuring the intensity of reflected light of a preselected wavelength from the tube, and correlating the reflected light intensity with positions on the tube. The tube is then partially rotated, and the process is repeated until the entire surface of the tube is scanned. The volumes of each longitudinal slice of the tube are summed to give the total deposit volume on the tube.

12 ENGINEERING

Includes engineering (general); communications; electronics and electrical engineering; fluid mechanics and heat transfer; instrumentation and photography; lasers and masers; mechanical engineering; quality assurance and reliability; and structural mechanics.

A94-62204 IMPLICIT SCHEMES FOR UNSTEADY EULER EQUATIONS ON TRIANGULAR MESHES

A. S. SENS Office National d'Etudes et de Recherches Aérospatiales, Chatillon (France) and G. D. MORTCHELEWICZ International Journal for Numerical Methods in Fluids (ISSN 0271-2091) vol. 18, no. 7 April 15 1994 p. 647-668

Includes engineering (general); communications; electronics and electrical engineering; fluid mechanics and heat transfer; instrumentation and photography; lasers and masers; mechanical engineering; quality assurance and reliability; and structural mechanics.

N94-37752 Joint Publications Research Service, Arlington, VA.

JPRS REPORT: SCIENCE AND TECHNOLOGY. CENTRAL EURASIA: ENGINEERING AND EQUIPMENT

26 Oct. 1993 33 p Transl. into ENGLISH from various Russian articles

Includes engineering (general); communications; electronics and electrical engineering; fluid mechanics and heat transfer; instrumentation and photography; lasers and masers; mechanical engineering; quality assurance and reliability; and structural mechanics.

A94-62204 IMPLICIT SCHEMES FOR UNSTEADY EULER EQUATIONS ON TRIANGULAR MESHES

A. S. SENS Office National d'Etudes et de Recherches Aérospatiales, Chatillon (France) and G. D. MORTCHELEWICZ International Journal for Numerical Methods in Fluids (ISSN 0271-2091) vol. 18, no. 7 April 15 1994 p. 647-668

Includes engineering (general); communications; electronics and electrical engineering; fluid mechanics and heat transfer; instrumentation and photography; lasers and masers; mechanical engineering; quality assurance and reliability; and structural mechanics.
profile and vortex; laser machine for balancing dynamically adjusted gyro; use of heat pumps in solar heat supply systems; numerical simulation of deflagration transition to detonation in homogeneous combustible fuel mixture; and investigation of chemically nonequilibrium flow about bodies allowing for vibrational relaxation.

Author

N94-375248 Joint Publications Research Service, Arlington, VA.

JPRS REPORT: SCIENCE AND TECHNOLOGY. CENTRAL EURASIA: ENGINEERING AND EQUIPMENT 18 Nov. 1993 28 p Trans. into ENGLISH from various Russian articles

(NJRS-UEQ-93-008) Avail: CASI HC A03/MF A01

Translated articles cover the following topics: measurement of gravitation and interaction parameters on satellite; gravitational constant measurement during particle motion in neighborhood of libration points; simulation of dynamics of a high-velocity spinning flexible flying vehicle; anomaly estimation accuracy of inertial navigation system; observability in probe navigation problem; interaction of gyro system oscillation frequencies; imperfect shell dynamics and oscillation control; and variational principle of creep theory for prestressed body analysis.

CASI

N94-375388 Joint Publications Research Service, Arlington, VA.

JPRS REPORT: SCIENCE AND TECHNOLOGY. CENTRAL EURASIA: ENGINEERING AND EQUIPMENT 15 Jul. 1993 47 p Transl. into ENGLISH from various Russian articles

(NJSR-UEQ-93-005) Avail: CASI HC A03/MF A01

Translated articles cover the following topics: formulation of programmed aircraft motion control; float-type linear acceleration integrated gyro with electromagnetic sensor suspension; ensuring unity of monitoring facilities and methods during life cycle stage of aviation engineering products; methods for forming rational requirements for monitoring fullness of functional systems and aircraft as whole; electron gun with ribbon beam; investigation of effect of airtoll vibrations on its edge noise; bending stability of composite cylindrical shell with longitudinally stiffening ribs; numerical investigation of conical shell flutter; intermediate asymptotics in nonlinear shell dynamics; dynamic stability critical load estimate of shells with holes; heat exchange on tip fins in hypersonic flow; boundary layer laminarization of vibrating wing; nonplanar airfoils with minimum induced drag; supersonic flow about cone under heat influx in vicinity of vertex; aero- and thermo-dynamics of high-altitude flight; discharge characteristics of converging-diverging nozzles with cylindrical minimal cross section path; experimental investigation of supersonic flow over wedges with longitudinal slots on windward side; on limit of motion of systems with dry friction; asymptotic integration of dynamic equations of elasticity theory in case of thin shells; dynamic electroelasticity problem for inhomogeneous cylinder; solution of linear and nonlinear boundary problems of shell and plate theory based on lines method; nonlinear elastic strain near elliptic hole in orthotropic spherical shell; acoustic shock wave interaction with cylindrical piezoelectric ceramic shell located near planar boundary; analysis of straining characteristics of glass-reinforced plastic parabolic shells; experimental investigation into strained state of ribbed cylindrical shell under pulse loading; effect of elastic wave inertia during cylindrical shell rotation; clean room technology devices and systems; on effect of normal vibrations on tractive-gripping properties of walking machines; and electromechanical effect of high-current discharges on shell structures.

CASI

N94-375411 National Aeronautics and Space Administration. Langley Research Center, Hampton, VA.

(NASA-TM-109079; NAS 1.15:109079) Avail: CASI HC A04/MF A01

Vehicles, such as the X-15 or the National Aerospace Plane (NASP), traveling at hypersonic speeds through the earth's atmosphere experience aerodynamic heating. The heating can be severe enough that a thermal protection system is required to limit the temperature of the vehicle structure. Although several categories of thermal protection systems are mentioned briefly, the majority of the present paper describes convectively cooled structures for large areas. Convective cooling is a method of limiting structural temperatures by circulating a coolant through the vehicle structure. Efforts to develop convectively cooled structures during the past 30 years, from early engine structures which were intended to be tested on the X-15 to structural panels fabricated and tested under the NASP program, are described. Many of the lessons learned from these research efforts are presented.

Author

DESIGN OF SCALDED DOWN STRUCTURAL MODELS GEORGE J. SIMITSES In NASA. Langley Research Center, Workshop on Scaling Effects in Composite Materials and Structures p 3-18 Jul. 1994 (Contract NAS1-1280) Avail: CASI HC A03/MF A03

In the aircraft industry, full scale and large component testing is a very necessary, time consuming, and expensive process. It is essential to find ways by which this process can be minimized without loss of reliability. One possible alternative is the use of scaled down models in testing and use of the model test results in order to predict the behavior of the larger system, referred to herein as prototype. This viewgraph presentation provides justifications and motivation for the research study, and it describes the necessary conditions (similarity conditions) for two structural systems to be structurally similar with similar behavioral responses. Similarity conditions provide the relationship between a scaled down model and its prototype. Thus, scaled down models can be used to predict the behavior of the prototype by extrapolating their experimental data. Since satisfying all similarity conditions simultaneously is in most cases impractical, distorted models with partial similarity can be employed. Establishment of similarity conditions, based on the direct use of the governing equations, is discussed and their use in the design of models is presented. Examples include the use of models for the analysis of cylindrical bending of orthotropic laminated beam plates, of buckling of symmetric laminated rectangular plates subjected to uniform uniaxial compression and shear, applied individually, and of vibrational response of the same rectangular plates. Extensions and future tasks are also described.

Author (revised)

13

GEOSCIENCES

Includes geosciences (general); earth resources; energy production and conversion; environment pollution; geophysics; meteorology and climatology; and oceanography.

N94-37607* Boeing Commercial Airplane Co., Seattle, WA.

This report describes the development of a stratospheric emissions effects database (SEED) of aircraft fuel burn and emissions from projected Year 2015 subsonic aircraft fleets and from projected fleets of high-speed civil transports (HSCT's). This report
also describes the development of a similar database of emissions from Year 1990 scheduled commercial passenger airline and air cargo traffic. The objective of this work was to initiate, develop, and maintain an engineering database for use by atmospheric scientists conducting the Atmospheric Effects of Stratospheric Aircraft (AESa) modeling studies. Fuel burn and emissions of nitrogen oxides (NOx) as NO2, carbon monoxide, and hydrocarbons (as CH4) have been calculated on a 1-degree latitude x 1-degree longitude x 1-kilometer altitude grid and delivered to NASA as electronic files. This report describes the assumptions and methodology for the calculations and summarizes the results of these calculations.

Author (revised)

15

MATHEMATICAL AND COMPUTER SCIENCES

Includes mathematical and computer sciences (general); computer operations and hardware; computer programming and software; computer systems; cybernetics; numerical analysis; statistics and probability; systems analysis; and theoretical mathematics.

A94-62183

DYNAMIC ANALYSIS OF OPEN MEMBRANE STRUCTURES INTERACTING WITH AIR

R. SYGULSKI

Technical Univ. of Poznan, Poznan (Poland) International Journal for Numerical Methods in Engineering (ISSN 0029-5981) vol. 37, no. 11 June 15 1994 p. 1807-1823 refs (BTN-94-EIX94331337180) Copyright

Vibrations of open membrane structures including interaction with air are presented in the paper. Free and forced linear harmonic vibration problems are considered in the analysis. It is assumed that the air is compressible and inviscid. The aerodynamic pressure associated with structure deformations is described by boundary integral equation. The finite element method for the structure and the boundary element method for the air are used. To discretize the surface of the structure, triangular curvilinear 6-node elements are applied. The effects of the air compressibility and the aerodynamic radiation damping are investigated. The considerable decrease of the lowest natural frequencies in consequence of considering the effect of the surrounding air is observed. Numerical examples are given.

Author (EI)

A94-62186

FURTHER ASPECTS OF DYNAMICAL MODELS FOR RIME-ICE AND SNOW ACCRETION ON AN OVERHEAD LINE CONDUCTOR

G. POOTS

Univ. of Hull, Hull (England) and P. L. I. SKELTON

Current three-dimensional, time-dependent mathematical models for (dry) rime-ice and snow accretion on Overhead Line Conductors (OHLC), of finite span and finite torsional stiffness, assume that the airflow past the iced OHLC is given by Attached Potential Flow (APF) and that the effect of aerodynamic moment on the rotation of the OHLC during ice evolution can be neglected. In the present numerical study a CFD code is employed to simulate the turbulent airflow past an iced OHLC and used to validate APF predictions for icing particle impactions, ice evolution and rotation of the OHLC. Comparisons are made for the following: (a) icing particle impact velocities determined using the CFD code and APF when, for example, the iced surface is fixed at an attitude experiencing lift; (b) the aerodynamic moment, for a chosen ice shape at a range of attitudes, predicted using the CFD code and APF; (c) the aerodynamic moment, for natural ice shapes, given by APF and measured in wind-tunnel tests; (d) the effect of aerodynamic moment, predicted using the CFD code and APF, on ice evolution during a short period of icing. Finally, on employing aerodynamic moments calculated using APF modified values, the sensitivity of the ice-accretion process, across the span of the OHLC, to conductor rotation and various meteorological and physical data for the icing particles is discussed.

Author (EI)

16

PHYSICS

Includes physics (general); acoustics; atomic and molecular physics; nuclear and high-energy physics; optics; plasma physics; solid-state physics; and thermodynamics and statistical physics.

N94-37629

THE EFFECTS OF PROTON-BEAM QUALITY ON THE PRODUCTION OF GAMMA RAYS FOR NUCLEAR RESONANCE ABSORPTION IN NITROGEN

R. GRAYBILL, ed. May 1994 13 p (Contract W-7405-ENG-36)

(DE94-011608; LA-12777-MS) Avail: CASI HC A03/MF A01

The authors describe a method for performing nuclear-resonance absorption with the proton beam from a radio-frequency quadrupole (RFQ) linear accelerator. The objective was to assess the suitability of the pulsed beam from an RFQ to image nitrogen compared to electrostatic accelerators. This choice of accelerator results in trade-offs in performance and complexity, in return for the prospect of higher average current. In spite of a reduced resonance attenuation coefficient in nitrogen, they successfully produced three-dimensional tomographic images of real explosives in luggage the first time the unoptimized system was operated. The results and assessments of the initial laboratory measurements are reported.

DOE

N94-37657

PROSPECTIVE COMMUNICATIONS RESEARCH TO SUPPORT FLY BY LIGHT/POWER BY WIRE Final Report, 18 Jul. - 26 Dec. 1991

DAVID GAME 13 Jul. 1994 18 p (Contract NAG-1-1309)

(NASA-CR-196369; NAS 1.26:196369) Avail: CASI HC A03/MF A01

A NASA Research Grant NAG-1-1309, Distributed Fiber Optic Systems for Commercial Aircraft, was awarded during July 1991. This report primarily constitutes a summary of findings of the original background research done at that time. NASA is embarking on a research project to design the next generation of commercial aircraft, fly by light/power by wire. The objectives of this effort are to improve commercial aircraft design by (1) reducing the weight of the aircraft to improve efficient and (2) improving the fault tolerance and safety of the aircraft by enhancing current systems with new technologies or introducing new systems into the aircraft. Derived from text

18

SPACE SCIENCES

Includes space sciences (general); astronomy; astrophysics; lunar and planetary exploration; solar physics; and space radiation.

A94-62291

THE TWO-BODY PROBLEM WITH DRAG AND RADIATION PRESSURE

A. G. MAVRAGANIS National Technical Univ. of Athens, Athens, Greece and D. G. MICHALAKIS National Technical Univ. of Athens, Athens, Greece Celestial Mechanics and Dynamical
The Kepler problem including radiation pressure and drag is treated. The equation of the orbit is derived and the scalar and vector integrals of motion are obtained by direct operation on the vector form of the equation of motion.

Author (Hemer)
SUBJECT INDEX

AERONAUTICAL ENGINEERING / A Continuing Bibliography (Supplement 310)

November 1994

Typical Subject Index Listing

<table>
<thead>
<tr>
<th>SUBJECT HEADING</th>
<th>ABORTED MISSIONS</th>
</tr>
</thead>
</table>

The subject heading is a key to the subject content of the document. The title is used to provide a description of the subject matter. When the title is insufficiently descriptive of document content, a title extension is added, separated from the title by three hyphens. The accession number is included as an aid in identifying the document. Under any one subject heading, the accession numbers are arranged in sequence.

AERODYNAMIC CHARACTERISTICS

- Further aspects of dynamical models for ice-ice and snow accretion on an overhead line conductor [BTN-94-EX04331337186] | p 606 A94-62186
- Subsonic aerodynamic characteristics of semispan commercial transport model with wing-mounted advanced ducted propeller operating in reverse thrust — conducted in the Langley 14 by 22 foot subsonic wind tunnel [NASA-TP-3427] | p 601 N94-37505

AERODYNAMIC DRAG

- The two-body problem with drag and radiation pressure [HTN-94-02030] | p 606 A94-62291

AERODYNAMIC HEATING

- Active cooling from the sixties to NASP [NASA-TM-109079] | p 605 N94-37541

AERODYNAMIC LOADS

- Analysis of rotor blade dynamics using model scale UH-60A airloads [HTN-94-02060] | p 601 A94-62276

AERODYNAMICS

- Dynamic analysis of open membrane structures interacting with air [BTN-94-EX04331337186] | p 606 A94-62186
- AEROSPACE ENGINEERING
 - JPRS report: Science and technology, Central Eurasia: Engineering and equipment [JPRS-UEO-93-007] | p 604 N94-37523
 - JPRS report: Science and technology, Central Eurasia: Engineering and equipment [JPRS-UEO-93-005] | p 605 N94-37538
- AIR NAVIGATION
 - System for broadcasting marker beacon signals and processing responses from seeking entities [AD-D016313] | p 602 N94-37839

AIR POLLUTION

AIR TRAFFIC

AIRCRAFT ACCIDENTS

- Composite helicopter accident profiles: Deficient crew/aircraft performance [STC-00RF46] | p 601 N94-37604

AIRCRAFT CONTROL

- Prospective communications research to support fly by light/power by wire [NASA-CR-196369] | p 606 N94-37567

AIRCRAFT DESIGN

- Prospective communications research to support fly by light/power by wire [NASA-CR-196369] | p 606 N94-37567

AIRCRAFT LANDING

- Synthesis of display evaluation studies [NASA-CR-199463] | p 603 N94-37658

AIRCRAFT MODELS

AIRCRAFT RELIABILITY

- Prospective communications research to support fly by light/power by wire [NASA-CR-196369] | p 606 N94-37567

AIRCRAFT SAFETY

- Active cooling from the sixties to NASP [NASA-TM-109079] | p 605 N94-37541

ATMOSPHERIC EFFECTS

BENDING MOMENTS

- Analysis of rotor blade dynamics using model scale UH-60A airloads [HTN-94-02060] | p 601 A94-62276

BOUNDARY LAYER ELEMENT METHOD

- Dynamic analysis of open membrane structures interacting with air [BTN-94-EX04331337186] | p 606 A94-62183

BOUNDARY LAYER CONTROL

- Supersonic laminar flow control research [NASA-CR-196260] | p 601 N94-37511
- Supersonic laminar flow control research [NASA-CR-196260] | p 601 N94-37511
- Supersonic laminar flow control research [NASA-CR-196260] | p 601 N94-37511

BOUNDARY LAYER STABILITY

BOUNDARY LAYER TRANSITION

BREAKING

- Canopy breaking device [AD-D016294] | p 602 N94-37767

BROADCASTING

- System for broadcasting marker beacon signals and processing responses from seeking entities [AD-D016313] | p 602 N94-37839

CABLES (ROPEs)

- Canopy breaking device [AD-D016294] | p 602 N94-37767

CANOPYs

- Canopy breaking device [AD-D016294] | p 602 N94-37767

CARBON MONOXIDE

CASES (CONTAINERS)

- Marker beacon case [AD-D016322] | p 602 N94-37630

CHEMICAL EXPLOSIONS

- Rotor-state feedback in the design of flight control laws for a hovering helicopter [HTN-94-02098] | p 603 A94-62274

COLLISION AVOIDANCE

- Composite helicopter accident profiles: Deficient crew/aircraft performance [STC-00RF46] | p 601 N94-37604

COMMERCIAL AIRCRAFT

- Prospective communications research to support fly by light/power by wire [NASA-CR-196369] | p 606 N94-37567

COMPLEX SYSTEMS

- Composite helicopter accident profiles: Deficient crew/aircraft performance [STC-00RF46] | p 601 N94-37604

COMPUTATIONAL FLUID DYNAMICS

COMPUTER GRAPHICS

- Synthesis of display evaluation studies [NASA-CR-194163] | p 603 N94-37658

COMPUTER PROGRAMMING

- Advanced distributed simulation technology advanced rotary wing aircraft. Software programmer's manual visual system module [AD-A280260] | p 604 N94-37755

CONTROL SYSTEMS DESIGN

- Control systems design for the design of flight control laws for a hovering helicopter [HTN-94-02098] | p 603 A94-62274

COOLING SYSTEMS

- Active cooling from the sixties to NASP [NASA-TM-109079] | p 605 N94-37541

CRASHES

- Composite helicopter accident profiles: Deficient crew/aircraft performance [STC-00RF46] | p 601 N94-37604

DATA BASES

DECONTAMINATION

- Active cooling from the sixties to NASP [NASA-TM-109079] | p 605 N94-37541

DISPLAY DEVICES

- Composite helicopter accident profiles: Deficient crew/aircraft performance [STC-00RF46] | p 601 N94-37604

DESIGN ANALYSIS

- Active cooling from the sixties to NASP [NASA-TM-109079] | p 605 N94-37541
- Display systems [JFTOTJ tube deposition measuring device [AD-D016295] | p 604 N94-37756

DISPLAY SYSTEMS

- Display systems [JFTOTJ tube deposition measuring device [AD-D016295] | p 604 N94-37756

DYNAMIC STABILITY

DYNAMIC STRUCTURAL ANALYSIS

- Dynamic analysis of open membrane structures interacting with air [BTN-94-EX04331337186] | p 606 A94-62183
PERSONAL AUTHOR INDEX

VOLUME 4: SIMULATION SYSTEM MODULE RAH-66 KIT

ROBERT F., A T.

STABILITY ANALYSIS OF AN F/A-18 E/F CABLE MOUNT M MODEL

HALLER, HENRY C.

NASA LEWIS WIND TUNNEL MODEL SYSTEMS CRITERIA

PERSPECTIVE COMMUNICATIONS RESEARCH TO SUPPORT BY LIGHT POWER BY WIRE

ADVANCED DISTRIBUTED SIMULATION TECHNOLOGY ADVANCED ROTARY WING AIRCRAFT

SUBSONIC AERODYNAMIC CHARACTERISTIC OF SEMISpan COMMERCIAL TRANSPORT MODEL WITH WING-MOUNTED ADVANCED DUCTED PROPELLER OPERATING IN REVERSE THRUST

ANALYSIS OF ROTOR BLADE DYNAMICS USING MODEL SCALE UH-60A AIRBOATS

THE EFFECTS OF PROTON-BEAM QUALITY ON THE PRODUCTION OF GAMMA RAYS FOR NUCLEAR RESONANCE ABSORPTION IN NITROGEN

COMPOSITE HELICOPTER ACCIDENT PROFILES: DEFICIENT CREW/AIRCRAFT PERFORMANCE (SCS-90-44-46)

AIRCRAFT COMMAND IN EMERGENCY SITUATIONS PROTOTYPE DEVELOPMENT USERS MANUAL

NOVEMBER 1994

KELLY, KNEALE

ACTIVE COOLING FROM THE SIXTIES TO NASP

STABILTY ANALYSIS OF AN F/A-18 E/F CABLE MOUNT M MODEL

HENDERSON, STEPHEN C.

NASA CR-190269

BLOEBERG, MAX L.

THE TWO-BODY PROBLEM WITH DRAG AND RADIATION PRESSURE

MAYS, ROBERT E.

UH-60A AIRLOADS

HIGH ALTITUDE ELECTRONIC WARS

BEHAVIOR OF SIMPLE TUBULAR BEAMS IN UNBROKEN DUCTS

THE TWO-BODY PROBLEM WITH DRAG AND RADIATION PRESSURE (NASP-1093030)

DARROCH, RONALD H.

COMPOSITE HELICOPTER ACCIDENT PROFILES: DEFICIENT CREW/AIRCRAFT PERFORMANCE (SCS-90-44-46)

KELLY, KNEALE

ACTIVELY COOLING FROM THE SIXTIES TO NASP (NASP-109078)

SIMULATION SYSTEM MODULE RAH-66 KIT (ADA-280260)

SUBSONIC AERODYNAMIC CHARACTERISTIC OF SEMISpan COMMERCIAL TRANSPORT MODEL WITH WING-MOUNTED ADVANCED DUCTED PROPELLER OPERATING IN REVERSE THRUST

ADVANCED DISTRIBUTED SIMULATION TECHNOLOGY ADVANCED ROTARY WING AIRCRAFT. SYSTEM/SEGMENT SPECIFICATION.

ADVANCED DISTRIBUTED SIMULATION TECHNOLOGY ADVANCED ROTARY WING AIRCRAFT. SYSTEM/SEGMENT SPECIFICATION. VOLUME 4: SIMULATION SYSTEM MODULE RAH-66 KIT (ADA-280261)

APPLIN, ZACHARY T.

SUBSONIC AERODYNAMIC CHARACTERISTIC OF SEMISpan COMMERCIAL TRANSPORT MODEL WITH WING-MOUNTED ADVANCED DUCTED PROPELLER OPERATING IN REVERSE THRUST (NASA-TP-3427)

BLOEBERG, MAX L.

THE TWO-BODY PROBLEM WITH DRAG AND RADIATION PRESSURE (HTN-94-00330)

MAYRAGANIS, A. G.

THE TWO-BODY PROBLEM WITH DRAG AND RADIATION PRESSURE

MAYS, ROBERT E.

UH-60A AIRLOADS

HIGH ALTITUDE ELECTRONIC WARS

BEHAVIOR OF SIMPLE TUBULAR BEAMS IN UNBROKEN DUCTS

THE TWO-BODY PROBLEM WITH DRAG AND RADIATION PRESSURE (NASP-1093030)

DARROCH, RONALD H.

COMPOSITE HELICOPTER ACCIDENT PROFILES: DEFICIENT CREW/AIRCRAFT PERFORMANCE (SCS-90-44-46)

KELLY, KNEALE

ACTIVELY COOLING FROM THE SIXTIES TO NASP (NASP-109078)

SIMULATION SYSTEM MODULE RAH-66 KIT (ADA-280260)

SUBSONIC AERODYNAMIC CHARACTERISTIC OF SEMISpan COMMERCIAL TRANSPORT MODEL WITH WING-MOUNTED ADVANCED DUCTED PROPELLER OPERATING IN REVERSE THRUST

ADVANCED DISTRIBUTED SIMULATION TECHNOLOGY ADVANCED ROTARY WING AIRCRAFT. SYSTEM/SEGMENT SPECIFICATION.

ADVANCED DISTRIBUTED SIMULATION TECHNOLOGY ADVANCED ROTARY WING AIRCRAFT. SYSTEM/SEGMENT SPECIFICATION. VOLUME 4: SIMULATION SYSTEM MODULE RAH-66 KIT (ADA-280261)

APPLIN, ZACHARY T.

SUBSONIC AERODYNAMIC CHARACTERISTIC OF SEMISpan COMMERCIAL TRANSPORT MODEL WITH WING-MOUNTED ADVANCED DUCTED PROPELLER OPERATING IN REVERSE THRUST (NASA-TP-3427)

BLOEBERG, MAX L.

THE TWO-BODY PROBLEM WITH DRAG AND RADIATION PRESSURE (HTN-94-00330)

MAYRAGANIS, A. G.

THE TWO-BODY PROBLEM WITH DRAG AND RADIATION PRESSURE

MAYS, ROBERT E.

UH-60A AIRLOADS

HIGH ALTITUDE ELECTRONIC WARS

BEHAVIOR OF SIMPLE TUBULAR BEAMS IN UNBROKEN DUCTS

THE TWO-BODY PROBLEM WITH DRAG AND RADIATION PRESSURE (NASP-1093030)

DARROCH, RONALD H.
THOMPSON, NANCY
Stability analysis of an F/A-18 E/F cable mount model

TOROK, MICHAEL
Analysis of rotor blade dynamics using model scale UH-60A airloads
[HTN-94-00300] p 601 A94-62276

WAGNER, ROBERT
Interferometric JFTOT tube deposit measuring device
[AD-D016295] p 604 N94-37768

WELLER, WILLIAM H.
Variation in Hover aeromechanical stability trends with bearingless main rotor design
[HTN-94-00304] p 603 A94-62277

WHITTINGTON, DAVID H.
Synthetic vision display evaluation studies
[NASA-84-194962] p 603 N94-37658

WILSON, CHARLES E.
Marker beacon case
[AD-D016322] p 602 N94-37830 System for broadcasting marker beacon signals and processing responses from seeking entities
[AD-D016313] p 602 N94-37839
Typical Corporate Source Index Listing

<table>
<thead>
<tr>
<th>CORPORATE SOURCE</th>
<th>TITLE</th>
<th>REPORT NUMBER</th>
<th>PAGE NUMBER</th>
<th>ACCESSION NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Christopher Newport Coll., Newport News, VA.</td>
<td>Prospective communications research to support fly by light/power by wire</td>
<td>[NASA-CR-196359]</td>
<td>p 606</td>
<td>N94-37657</td>
</tr>
<tr>
<td>Department of the Navy, Washington, DC.</td>
<td>Canopy breaching device</td>
<td>[AD-D016294]</td>
<td>p 602</td>
<td>N94-37767</td>
</tr>
</tbody>
</table>

Listings in this index are arranged alphabetically by corporate source. The title of the document is used to provide a brief description of the subject matter. The page number and the accession number are included in each entry to assist the user in locating the abstract in the abstract section. If applicable, a report number is also included as an aid in identifying the document.
Typical Foreign Technology Index Listing

<table>
<thead>
<tr>
<th>COUNTRY OF INTELLECTUAL ORIGIN</th>
<th>TITLE</th>
<th>PAGE NUMBER</th>
<th>ACCESSION NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNITED KINGDOM</td>
<td>Further aspects of dynamical models for rime-ice and snow accretion on an overhead line conductor</td>
<td>606</td>
<td>A94-62186</td>
</tr>
<tr>
<td>CHINA</td>
<td>The present situation and future development of Chinese aviation reliability and maintainability engineering</td>
<td>153</td>
<td>A94-10101</td>
</tr>
<tr>
<td>FRANCE</td>
<td>Implicit schemes for unsteady Euler equations on triangular meshes</td>
<td>604</td>
<td>A94-62204</td>
</tr>
<tr>
<td>GREECE</td>
<td>The two-body problem with drag and radiation pressure</td>
<td>606</td>
<td>A94-62291</td>
</tr>
<tr>
<td>POLAND</td>
<td>Dynamic analysis of open membrane structures interacting with air</td>
<td>606</td>
<td>A94-62183</td>
</tr>
<tr>
<td>RUSSIA</td>
<td>JPRS report: Science and technology, Central Eurasia: Engineering and equipment</td>
<td>604</td>
<td>N94-37523</td>
</tr>
<tr>
<td></td>
<td>JPRS report: Science and technology, Central Eurasia: Engineering and equipment</td>
<td>605</td>
<td>N94-37524</td>
</tr>
<tr>
<td></td>
<td>JPRS report: Science and technology, Central Eurasia: Engineering and equipment</td>
<td>605</td>
<td>N94-37538</td>
</tr>
</tbody>
</table>

Listings in this index are arranged alphabetically by country of intellectual origin. The title of the document is used to provide a brief description of the subject matter. The page number and accession number are included in each entry to assist the user in locating the abstract in the abstract section. If applicable, a report number is also included as an aid in identifying the document.
Typical Contract Number Index Listing

<table>
<thead>
<tr>
<th>CONTRACT NUMBER</th>
<th>PAGE NUMBER</th>
<th>ACCESSION NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>AF PROJ. 2404</td>
<td>44</td>
<td>N94-17461</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Listings in this index are arranged alphanumerically by contract number. Under each contract number the accession numbers denoting documents that have been produced as a result of research done under the contract are shown. The accession number denotes the number by which the citation is identified in the abstract section. Preceding the accession number is the page number on which the citation may be found.

- DTFA01-87-C-00014 p 601 N94-37604
- DTFA03-89-C-00081 p 602 N94-37706
- NAG1-1280 p 605 N94-37797
- NAG1-1309 p 606 N94-37657
- NAG2-681 p 601 N94-37511
- NAs1-18360 p 605 N94-37607
- NSF DDM-93-09706 p 602 N94-37762
- N61339-91-D-0001 p 604 N94-37755
- RTOP 505-62-64 p 604 N94-37522
- RTOP 505-63-50-06 p 602 N94-37782
- RTOP 505-63-50-13 p 602 N94-37636
- RTOP 505-70-62-01 p 605 N94-37541
- RTOP 535-03-10-02 p 601 N94-37505
- RTOP 537-01-22-01 p 605 N94-37607
- RTOP 537-09-20-01 p 603 N94-37658
- W-7405-ENG-36 p 606 N94-37629
Typical Report Number Index Listing

<table>
<thead>
<tr>
<th>REPORT NUMBER</th>
<th>PAGE NUMBER</th>
<th>ACCESSION NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>NASA-CR-167690</td>
<td>138</td>
<td>N94-12810 * #</td>
</tr>
<tr>
<td>NASA-TP-3427</td>
<td>601</td>
<td>N94-37505 * #</td>
</tr>
<tr>
<td>NAVY-CASE-74641</td>
<td>602</td>
<td>N94-37830 * #</td>
</tr>
<tr>
<td>NAVY-CASE-74643</td>
<td>602</td>
<td>N94-37839 * #</td>
</tr>
<tr>
<td>SCT-90RR-46</td>
<td>601</td>
<td>N94-37604 * #</td>
</tr>
<tr>
<td>US-PATENT-APPL-SN-216559</td>
<td>602</td>
<td>N94-37830 * #</td>
</tr>
<tr>
<td>US-PATENT-APPL-SN-216567</td>
<td>602</td>
<td>N94-37839 * #</td>
</tr>
<tr>
<td>US-PATENT-APPL-SN-906903</td>
<td>604</td>
<td>N94-37768 * #</td>
</tr>
<tr>
<td>US-PATENT-CLASS-244-129.1</td>
<td>602</td>
<td>N94-37767 * #</td>
</tr>
<tr>
<td>US-PATENT-CLASS-356-382</td>
<td>604</td>
<td>N94-37768 * #</td>
</tr>
<tr>
<td>US-PATENT-5,293,218</td>
<td>604</td>
<td>N94-37768 * #</td>
</tr>
<tr>
<td>US-PATENT-5,301,804</td>
<td>602</td>
<td>N94-37797 * #</td>
</tr>
</tbody>
</table>

Listings in this index are arranged alphabetically by report number. The page number indicates the page on which the citation is located. The accession number denotes the number by which the citation is identified. An asterisk (*) indicates that the item is a NASA report. A pound sign (#) indicates that the item is available on microfiche.
Listings in this index are arranged alphabetically by accession number. The page number indicates the page on which the citation is located. The accession number denotes the number by which the citation is identified. An asterisk (*) indicates that the item is a NASA report. A pound sign (#) indicates that the item is available on microfiche.

<table>
<thead>
<tr>
<th>Accession Number</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>A94-62183</td>
<td>p 606</td>
</tr>
<tr>
<td>A94-62186</td>
<td>p 606</td>
</tr>
<tr>
<td>A94-62194</td>
<td>p 604</td>
</tr>
<tr>
<td>A94-62274</td>
<td>p 603</td>
</tr>
<tr>
<td>A94-62277</td>
<td>p 601</td>
</tr>
<tr>
<td>A94-62291</td>
<td>p 606</td>
</tr>
<tr>
<td>N94-37505 * #</td>
<td>p 601</td>
</tr>
<tr>
<td>N94-37511 * #</td>
<td>p 601</td>
</tr>
<tr>
<td>N94-37522 * #</td>
<td>p 604</td>
</tr>
<tr>
<td>N94-37523 * #</td>
<td>p 604</td>
</tr>
<tr>
<td>N94-37524 * #</td>
<td>p 605</td>
</tr>
<tr>
<td>N94-37538 * #</td>
<td>p 605</td>
</tr>
<tr>
<td>N94-37541 * #</td>
<td>p 605</td>
</tr>
<tr>
<td>N94-37560 #</td>
<td>p 601</td>
</tr>
<tr>
<td>N94-37607 * #</td>
<td>p 605</td>
</tr>
<tr>
<td>N94-37629 #</td>
<td>p 606</td>
</tr>
<tr>
<td>N94-37636 * #</td>
<td>p 602</td>
</tr>
<tr>
<td>N94-37657 * #</td>
<td>p 606</td>
</tr>
<tr>
<td>N94-37658 * #</td>
<td>p 603</td>
</tr>
<tr>
<td>N94-37706 #</td>
<td>p 602</td>
</tr>
<tr>
<td>N94-37712 #</td>
<td>p 602</td>
</tr>
<tr>
<td>N94-37718 #</td>
<td>p 602</td>
</tr>
<tr>
<td>N94-37739 #</td>
<td>p 602</td>
</tr>
<tr>
<td>N94-37813 #</td>
<td>p 602</td>
</tr>
<tr>
<td>N94-37826 * #</td>
<td>p 602</td>
</tr>
<tr>
<td>N94-37840 #</td>
<td>p 602</td>
</tr>
<tr>
<td>N94-37843 #</td>
<td>p 602</td>
</tr>
</tbody>
</table>
AVAILABILITY OF CITED PUBLICATIONS

OPEN LITERATURE ENTRIES (A94-60000 Series)
Inquiries and requests should be addressed to: CASI, 800 Elkridge Landing Road, Linthicum Heights, MD 21090-2934. Orders are also taken by telephone, (301) 621-0390, e-mail, help@sti.nasa.gov, and fax, (301) 621-0134. Please refer to the accession number when requesting publications.

STAR ENTRIES (N94-10000 Series)
One or more sources from which a document announced in STAR is available to the public is ordinarily given on the last line of the citation. The most commonly indicated sources and their acronyms or abbreviations are listed below, and their addresses are listed on page APP-3. If the publication is available from a source other than those listed, the publisher and his address will be displayed on the availability line or in combination with the corporate source line.

Avail: CASI. Sold by the NASA Center for AeroSpace Information. Prices for hard copy (HC) and microfiche (MF) are indicated by a price code following the letters HC or MF in the STAR citation. Current values for the price codes are given in the tables on page APP-5.

NOTE ON ORDERING DOCUMENTS: When ordering publications from CASI, use the N accession number or other report number. It is also advisable to cite the title and other bibliographic identification.

Avail: BLL (formerly NLL): British Library Lending Division, Boston Spa, Wetherby, Yorkshire, England. Photocopies available from this organization at the price shown. (If none is given, inquiry should be addressed to the BLL.)

Avail: DOE Depository Libraries. Organizations in U.S. cities and abroad that maintain collections of Department of Energy reports, usually in microfiche form, are listed in Energy Research Abstracts. Services available from the DOE and its depositories are described in a booklet, DOE Technical Information Center - Its Functions and Services (TID-4660), which may be obtained without charge from the DOE Technical Information Center.

Avail: ESDU. Pricing information on specific data, computer programs, and details on Engineering Sciences Data Unit (ESDU) topic categories can be obtained from ESDU International Ltd. Requesters in North America should use the Virginia address while all other requesters should use the London address, both of which are on page APP-3.

Avail: HMSO. Publications of Her Majesty's Stationery Office are sold in the U.S. by Pendragon House, Inc. (PHI), Redwood City, CA. The U.S. price (including a service and mailing charge) is given, or a conversion table may be obtained from PHI.

Avail: Issuing Activity, or Corporate Author, or no indication of availability. Inquiries as to the availability of these documents should be addressed to the organization shown in the citation as the corporate author of the document.

Avail: NASA Public Document Rooms. Documents so indicated may be examined at or purchased from the National Aeronautics and Space Administration (JBD-4), Public Documents Room (Room 1H23), Washington, DC 20546-0001, or public document rooms located at NASA installations, and the NASA Pasadena Office at the Jet Propulsion Laboratory.

APP-1
Avail: NTIS. Sold by the National Technical Information Service. Initially distributed microfiche under the NTIS SRIM (Selected Research in Microfiche) are available. For information concerning this service, consult the NTIS Subscription Section, Springfield, VA 22161.

Avail: Univ. Microfilms. Documents so indicated are dissertations selected from Dissertation Abstracts and are sold by University Microfilms as xerographic copy (HC) and microfilm. All requests should cite the author and the Order Number as they appear in the citation.

Avail: (US Sales Only). These foreign documents are available to users within the United States from the National Technical Information Service (NTIS). They are available to users outside the United States through the International Nuclear Information Service (INIS) representative in their country, or by applying directly to the issuing organization.

Avail: USGS. Originals of many reports from the U.S. Geological Survey, which may contain color illustrations, or otherwise may not have the quality of illustrations preserved in the microfiche or facsimile reproduction, may be examined by the public at the libraries of the USGS field offices whose addresses are listed on page APP-3. The libraries may be queried concerning the availability of specific documents and the possible utilization of local copying services, such as color reproduction.

FEDERAL DEPOSITORY LIBRARY PROGRAM

In order to provide the general public with greater access to U.S. Government publications, Congress established the Federal Depository Library Program under the Government Printing Office (GPO), with 53 regional depositories responsible for permanent retention of material, inter-library loan, and reference services. At least one copy of nearly every NASA and NASA-sponsored publication, either in printed or microfiche format, is received and retained by the 53 regional depositories. A list of the regional GPO libraries, arranged alphabetically by state, appears on the inside back cover of this issue. These libraries are not sales outlets. A local library can contact a regional depository to help locate specific reports, or direct contact may be made by an individual.

PUBLIC COLLECTION OF NASA DOCUMENTS

An extensive collection of NASA and NASA-sponsored publications is maintained by the British Library Lending Division, Boston Spa, Wetherby, Yorkshire, England for public access. The British Library Lending Division also has available many of the non-NASA publications cited in STAR. European requesters may purchase facsimile copy or microfiche of NASA and NASA-sponsored documents, those identified by both the symbols # and * from ESA — Information Retrieval Service European Space Agency, 8-10 rue Mario-Nikis, 75738 CEDEX 15, France.

STANDING ORDER SUBSCRIPTIONS

NASA SP-7037 supplements and annual index are available from the NASA Center for AeroSpace Information (CASI) on standing order subscription. Standing order subscriptions do not terminate at the end of a year, as do regular subscriptions, but continue indefinitely unless specifically terminated by the subscriber.
ADDRESSES OF ORGANIZATIONS

British Library Lending Division
Boston Spa, Wetherby, Yorkshire
England

Commissioner of Patents and Trademarks
U.S. Patent and Trademark Office
Washington, DC 20231

Department of Energy
Technical Information Center
P.O. Box 62
Oak Ridge, TN 37830

European Space Agency-
Information Retrieval Service ESRIN
Via Galileo Galilei
00044 Frascati (Rome) Italy

Engineering Sciences Data Unit International
P.O. Box 1633
Manassas, VA 22110

Engineering Sciences Data Unit International, Ltd.
251-259 Regent Street
London, W1R 7AD, England

Fachinformationszentrum Karlsruhe
Gesellschaft für wissenschaftlich-technische Information mbH
76344 Eggenstein-Leopoldshafen, Germany

Her Majesty's Stationery Office
P.O. Box 569, S.E. 1
London, England

NASA Center for AeroSpace Information
800 Elkridge Landing Road
Linthicum Heights, MD 21090-2934

National Aeronautics and Space Administration
Scientific and Technical Information Program (JTT)
Washington, DC 20546-0001

National Technical Information Service
5285 Port Royal Road
Springfield, VA 22161

Pendragon House, Inc.
899 Broadway Avenue
Redwood City, CA 94063

Superintendent of Documents
U.S. Government Printing Office
Washington, DC 20402

University Microfilms
A Xerox Company
300 North Zeeb Road
Ann Arbor, MI 48106

University Microfilms, Ltd.
Tylers Green
London, England

U.S. Geological Survey Library National Center
MS 950
12201 Sunrise Valley Drive
Reston, VA 22092

U.S. Geological Survey Library
2255 North Gemini Drive
Flagstaff, AZ 86001

U.S. Geological Survey
345 Middlefield Road
Menlo Park, CA 94025

U.S. Geological Survey Library
Box 25046
Denver Federal Center, MS914
Denver, CO 80225
CASI PRICE TABLES
(Effective November 1, 1994)

STANDARD PRICE DOCUMENTS

<table>
<thead>
<tr>
<th>PRICE CODE</th>
<th>NORTH AMERICAN PRICE</th>
<th>FOREIGN PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A01</td>
<td>$ 6.00</td>
<td>$ 12.00</td>
</tr>
<tr>
<td>A02</td>
<td>9.00</td>
<td>18.00</td>
</tr>
<tr>
<td>A03</td>
<td>17.50</td>
<td>35.00</td>
</tr>
<tr>
<td>A04-A05</td>
<td>19.50</td>
<td>39.00</td>
</tr>
<tr>
<td>A06-A09</td>
<td>27.00</td>
<td>54.00</td>
</tr>
<tr>
<td>A10-A13</td>
<td>36.50</td>
<td>73.00</td>
</tr>
<tr>
<td>A14-A17</td>
<td>44.50</td>
<td>89.00</td>
</tr>
<tr>
<td>A18-A21</td>
<td>52.00</td>
<td>104.00</td>
</tr>
<tr>
<td>A22-A25</td>
<td>61.00</td>
<td>122.00</td>
</tr>
<tr>
<td>A99</td>
<td>Call For Price</td>
<td>Call For Price</td>
</tr>
</tbody>
</table>

MICROFICHE

<table>
<thead>
<tr>
<th>PRICE CODE</th>
<th>NORTH AMERICAN PRICE</th>
<th>FOREIGN PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A01</td>
<td>$ 9.00</td>
<td>$ 18.00</td>
</tr>
<tr>
<td>A02</td>
<td>12.50</td>
<td>25.00</td>
</tr>
<tr>
<td>A03</td>
<td>17.50</td>
<td>35.00</td>
</tr>
<tr>
<td>A04</td>
<td>19.50</td>
<td>39.00</td>
</tr>
<tr>
<td>A06</td>
<td>27.00</td>
<td>54.00</td>
</tr>
<tr>
<td>A10</td>
<td>36.50</td>
<td>73.00</td>
</tr>
</tbody>
</table>

IMPORTANT NOTICE

CASI Shipping and Handling Charges
ADD $1.00 for each document ordered

Does NOT apply to orders requesting CASI RUSH HANDLING.
CASI accepts most credit/charge cards.

NASA Center for AeroSpace Information
800 Elkridge Landing Road
Linthicum Heights, MD 21090-2934
Telephone: (301) 621-0390
E-mail: help@sti.nasa.gov
Fax: (301) 621-0134

Rev. 10/94

APP-5
This report lists 29 reports, articles and other documents recently announced in the NASA STI Database.
FEDERAL REGIONAL DEPOSITORY LIBRARIES

<table>
<thead>
<tr>
<th>State</th>
<th>Name and Address</th>
<th>Contact Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alabama</td>
<td>Auburn Univ. at Montgomery Library</td>
<td>(205) 244-3860 Fax: (205) 244-0678</td>
</tr>
<tr>
<td>Arizona</td>
<td>Dept. of Library, Archives, and Public Records</td>
<td>(602) 348-604 Fax: (602) 348-8833</td>
</tr>
<tr>
<td>Arkansas</td>
<td>State Library Services</td>
<td></td>
</tr>
<tr>
<td>California</td>
<td>University of California Santa Barbara, California</td>
<td></td>
</tr>
<tr>
<td>Colorado</td>
<td>Univ. of Colorado - Boulder</td>
<td></td>
</tr>
<tr>
<td>Connecticut</td>
<td>Connecticut State Library</td>
<td></td>
</tr>
<tr>
<td>Florida</td>
<td>Univ. of Florida Libraries</td>
<td></td>
</tr>
<tr>
<td>Georgia</td>
<td>Univ. of Georgia Libraries</td>
<td></td>
</tr>
<tr>
<td>Hawaii</td>
<td>Univ. of Hawaii</td>
<td></td>
</tr>
<tr>
<td>Idaho</td>
<td>Univ. of Idaho Libraries</td>
<td></td>
</tr>
<tr>
<td>Illinois</td>
<td>Illinois State Library</td>
<td></td>
</tr>
<tr>
<td>Indiana</td>
<td>Indiana State Library</td>
<td></td>
</tr>
<tr>
<td>Iowa</td>
<td>Univ. of Iowa Libraries</td>
<td></td>
</tr>
<tr>
<td>Kansas</td>
<td>Univ. of Kansas</td>
<td></td>
</tr>
<tr>
<td>Louisiana</td>
<td>Louisiana State University</td>
<td></td>
</tr>
<tr>
<td>Maine</td>
<td>Tri-State Documents Depos.</td>
<td></td>
</tr>
<tr>
<td>Maryland</td>
<td>Univ. of Maryland</td>
<td></td>
</tr>
<tr>
<td>Massachusetts</td>
<td>Boston Public Library</td>
<td></td>
</tr>
<tr>
<td>Michigan</td>
<td>Detroit Public Library</td>
<td></td>
</tr>
<tr>
<td>Missouri</td>
<td>Univ. of Missouri - Columbus</td>
<td></td>
</tr>
<tr>
<td>Montana</td>
<td>Univ. of Montana</td>
<td></td>
</tr>
<tr>
<td>Nebraska</td>
<td>Univ. of Nebraska - Lincoln</td>
<td></td>
</tr>
<tr>
<td>Nevada</td>
<td>Univ. of Nevada</td>
<td></td>
</tr>
<tr>
<td>New Jersey</td>
<td>Newark Public Library</td>
<td></td>
</tr>
<tr>
<td>New Mexico</td>
<td>Univ. of New Mexico</td>
<td></td>
</tr>
<tr>
<td>New York</td>
<td>New York State Library</td>
<td></td>
</tr>
<tr>
<td>North Dakota</td>
<td>North Dakota State Library</td>
<td></td>
</tr>
<tr>
<td>Ohio</td>
<td>State Library of Ohio</td>
<td></td>
</tr>
<tr>
<td>Oklahoma</td>
<td>Oklahoma Dept. of Libraries</td>
<td></td>
</tr>
<tr>
<td>Oregon</td>
<td>Portland State Univ.</td>
<td></td>
</tr>
<tr>
<td>Pennsylvania</td>
<td>State Library of Penn.</td>
<td></td>
</tr>
<tr>
<td>South Carolina</td>
<td>Clemson Univ.</td>
<td></td>
</tr>
<tr>
<td>Tennessee</td>
<td>Memphis State Univ. Libraries</td>
<td></td>
</tr>
<tr>
<td>Texas</td>
<td>Texas State Library</td>
<td></td>
</tr>
<tr>
<td>Utah</td>
<td>Utah State Univ.</td>
<td></td>
</tr>
<tr>
<td>Virginia</td>
<td>Univ. of Virginia</td>
<td></td>
</tr>
<tr>
<td>Washington</td>
<td>Washington State Library</td>
<td></td>
</tr>
<tr>
<td>West Virginia</td>
<td>West Virginia Univ. Library</td>
<td></td>
</tr>
<tr>
<td>Wisconsin</td>
<td>Univ. of Wisconsin</td>
<td></td>
</tr>
<tr>
<td>Wisconsin</td>
<td>St. Hist. Soc. of Wisconsin Library</td>
<td></td>
</tr>
</tbody>
</table>
National Aeronautics and
Space Administration
Code JTT
Washington, DC 20546-0001

Official Business
Penalty for Private Use, $300