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ABSTRACT 

. The American Institute of Aeronautics and Astronautics (AIAA) released a Request 

For Proposal (RFP) in the form of an undergraduate design competition for a 153 

passenger jet transport with a range of 3,000 nautical miles. The primary requirement for 

this aircraft was low cost, both in acquisition and operation, with a technology availability 

date of the year 2000. This report presents the Non-Solo Design Group's response to the 

RFP, the Aluminum Falcon (AF-l). Non-Solo's approach to development was to take the 

best elements of seven individual preliminary designs, then combine and refme them. The 

resulting aircraft meets or exceeds all requirements of both the RFP and the Federal 

Aviation Administration (FAA). Highlights include a revolutionary wing planform, known 

as an M-wing, which offers many advantages over a conventional aft swept wing. For 

example, the M -wing lessens the travel in the aircraft center of gravity caused by fuel being 

stored in the wing. It also reduces the amount of torque imposed on the center wing box 

because more of the lifting load acts near the fuselage joint, rather than behind it. In 

essence, the M-wing offers the best of both worlds: using a forward swept wing root 

places the aerodynamic center of the wing further forward and allows the landing gear to be 

placed without the use of a yahudi. At the same time, with the outboard section swept . 

backward the tip retains an amount of aeroelastic dampening that is lost on a completely 

forward swept wing. The result is a wing which has many advantages of a straight, 

un swept wings without the severe compressibility effects at high Mach numbers. Other 

highlights include judicious use of composites, giving recognition to the importance of 

weight and its effect on aircraft cost and performance, and an advanced passenger 

entertainment system which can be used as a source of revenue for the airlines. This 

aircraft meets the low-cost doctrine with an acquisition cost of $29 million and a direct 

operating cost of 3.5 cents per seat mile. The AF-l incorporates new ideas with existing 

technology to result in an aircraft that will retain market viability well into the next century. 
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1. THE ALUMINUM FALCON - A TRANSPORT FOR THE FUTURE 

1.1 Statement of Purpose 

Even in the age of fax machines, the information super highway, video phones, 

and teleconferencing, nothing takes the place of actually being there in person. As a result, 

people still need to travel. Air travel continues to be a quick, convenient, and economical 

option for today's commuters, but sustaining this service is proving to be a difficult chore 

for the airlines and airframers. With minuscule profit margins and rapidly changing 

technology, making the right choices at the right times on even seemingly minor issues can 

make the difference between success and failure for the companies involved. The AIAA 

acknowledged the severity of this problem by issuing a Request For Proposal for an 

aircraft that emphasizes low cost and profitability. 

Non-Solo's answer to the RFP addresses the issues of simplicity and economy that 

were specifically mandated. While meeting all of the AIAA requirements, the AF-l uses 

many currently available technologies and an innovative wing design to give it the edge 

over the competition that will be critical in the saturated transport I1}arket of the next decide. 

Non-Solo uses this approach along with an emphasis on efficiency in design to speed up 

manufacturing, minimize dependence on untested technology, and decrease the costs to. 

both the airline and the airframer. This approach will allow airline passengers to continue 

receiving the service they expect at prices they can afford. 

When initially approaching this design, Non-Solo focused on areas which would 

directly lower the aircraft purchase price and the direct operating cost. Research proved 

that manufacturing far outweighed all other contributors to the aircraft purchase price and 

that maintenance and the cost of flying the airplane were the biggest drivers when 

determining the direct operating cost (refer to section 3). This meant that Non-Solo 

targeted efficient manufacturing, low maintenance engines and aircraft systems, and 
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decreased fuel bum by low weight and drag to directly lower the cost of the AF-l as 

compared to its competitors. 

1.2 The M-wing 

Although the AF-l looks unlike any aircraft produced today, the bent wing concept, 

known commonly as the M-wing, was extensively studied by both the British and the 

Germans in the years around the Second World War. During this time, German engineers 

investigated many radical ideas, several of which had great promise and were further 

developed by other countries. At the time, the M-wing concept presented little in the way 

of advantages over conventional design because aircraft flew slower and required more 

inherent stability to be flyable without computer assitance. Simple sweep in the wings 

provided sufficient aerodynamic benefits. An M-wing structure was also much more 

difficult to analyze with the limited computational power available. Consequently, the 

design of commercial aircraft took the path of least resistance along the lines of the swept­

wing conventional tail format so prevalent today. The M-wing offers many advantages of 

the familiar aft-swept wing as well as the more recently studied forward-sept wing with~ut 

many of the disadvantages of either. It essentially offers the advantages of a straight wing 

without the compressibility problems at high speed This is fully detailed in Section 7. 

The thought of embracing a notion as revolutionary as the M-wing could meet 

considerable resistance in an established corporation such as Boeing or 

McDonnel1/Douglas. Not only would it be a problem to throw out much of the empirical 

database available to the designers and start anew, but it would be a chore in itself to 

convince those with decision making power to commit to such a change in company 

philosophy. These problems are not faced to the same degree by the Non-Solo Design 

Group, which is unfettered and willing to take the bold steps necessary to usher in a new 

age in air transport. The risk involved in using an unconventional configuration such as the 

M-wing lies mainly in the reasearch and development costs of the aircraft Non-Solo 

estimates that by incorporating the M-wing into the design of the AF-l rather than a 
, 
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conventional aft swept wing, the research, development, test, and evaluation (RDTE) cost 

increases 42%. However,.the portion of the total purchase price of the airplane dependent 

of RDTE cost is on! Y 2 %. So, by targeting an area of improvement that has the smallest 

effect on the total acquistion cost, Non-Solo is maximizing the benefits with minimal cost 

1.3 Summary of Design 

1.3.1 Configuration 

Aside from the M -wing, the configuration of the AF-l is conventional. Non-Solo 

focused on making all components of the aircraft as small as possible while still 

maintaining competitive passenger comfort Important geometric parameters are 

summarized in Table 1.1. 

Table 1.1 AF-1 Configuration Summary 

Fuselage Length 132ft 

Fuselage Diameter 12.8 ft 

Wing Span 103ft 

Wing Planform Area 1,069 sq ft 

Wing Aspect Ratio 10 

Win~ Taper Ratio 0.3 

Wing Dihedral 3deK 
-

Wing Quarter Chord Sweep 27 deg 

Horizontal Tail Area 210 sq ft 

Vertical Tail Area 200 sq ft 

Cargo Capacity 1180 cubic ft 

Fuel Volume 

1.3.2 Cost 

During the life of the AF-l program, Non-Solo estimates a total production of 2005 

aircraft, including five that will be used for static and flight testing. At this number of units 

produced, the AF-l total acquisition cost, not including spares, is approximately $29 

million. Analyzing the aircraft operating cost using a stage length of 2000 nmi, Non-Solo 
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.. , 

estimates the direct operating cost of the AF-l to be $5.37 per nmi or 3.5 cents per 

available seat mile (Refer to Section 3 for detail). 

1.3.3 Performance 

The AF-l meets all performance requirements of the RFP without exceeding them 

due to unnecessary over-design. Table 1.2 contains a complete performance summary of 

the AF-l (Refer to Section 6 for detail). 

Table 1.2 AF -1 Performance Summary 

AF-l Requirement 

TAKEOFF 

Balanced Field Lenmb 7000 ft 7000 ft 

CLmax 2.1 

Thrust -to-Weight Ratio 0.35 

Wing Loading 131 psf 

Maximum Takeoff Weight 140,000 Ib 

CLIMB 

Rate of Climb Maximum Best 

Time to Climb 18 minutes 

CRUISE 

Range 3000nmi 3000nmi 

Altitude 35,000 ft Best 

Mach Number 0.8 (.99 Vhr) .99 Vhr (>0.7) 

UD 18.4 

LANDING 

Field Length 4940 ft 5000 ft 

CLmax 3.1 

Maximum Landing Weight 126,000 lb 
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2. ORIGINS OF THE ALUMINUM FALCON 

2.1 The AIAA Request for Proposal 

The AIAA provided a specific mission profile with special design requirements. 

The aircraft was to be designed for domestic routes and to conform to all applicable FAR 

sections for a technology availability date of the year 2000. The special design 

requirements of the RPP include a mixed class passenger capacity of 153 and a minimum 

range of 3,000 nmi. The design weight of each passenger including baggage was given as 

200 lbs. Front and rear galleys as well as overhead stowage were to be provided The 

aircraft must also meet all proposed environmental regulations. 

2.2 Mission Profile 

The design mission profIle for the AP-l was completely fixed by the RPP and is 

outlined below: 

• Warm up and taxi for 15 minutes 

• Take off within a FAA field length of 7000 feet 

• Climb at best rate of climb to best cruising altitude 

• Cruise for 3000 nmi at .99 Vbr 

• Descend to sea level (no range credit) 

• Land within a FAA landing field length of 5000 feet 

• Taxi to gate for 10 minutes 

To account for the necessary domestic fuel reserves specified by the RPP, the following 

segments were added to the mission profile: 

• Climb to 10,000 feet 

• Cruise for 150 nmi 

• Descend from 10,000 feet to sea level 

• Additional 45 minutes of flight at cruise conditions 

The additional 45 minutes were added for possible time in holding patterns or adverse head 

winds. This method for estimating necessary fuel reserves is similar to that used by 

Douglas Aircraft Company. 
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It is important to acknowledge that as air traffic control becomes more and more 

efficient hold times will diminish and this method for estimating fuel reserves may become 

overly pessimistic. However, Non-Solo decided that without a definite guarantee that this 

would happen there was no reason to deviate from the current practices of other airframe 

manufacturers. 

Figure 2.1 graphically depicts the Aluminum Falcon's complete design mission 

profile. 

5 • • 
1 - Engine Start & Warmup 
2 - Taxi 
3 - Takeoff 
4 - Climb 6 
5 - Cruise 
6 - Decend 
7 - Fly to Alternate 
8 - Landing, Taxi, Shutdown 7 .------. 

8 1 2 3. .-.-- •• .--. 
Figure 2.1 AF-l Mission Profile 

2.3 Design Process Outline 

The AF-l evolved through the team approach to design. Non-Solo used a very flat 

corporate structure and emphasized the equal importance of all team members (Figure 2.2). 

For the design phase, each member had a specialty or emphasis and no member was 

chosen as a "team leader." Using Total Quality Management (TQM) techniques, team 

members were held accountable to each other and to the team as a whole. 

Gregory King 
Susan Yee 

ChouaLor Estela Mark Bryant Deanne Trigs JanaMusser r- Interiors l!<- - - Hernandez r- ,.--
Aerodynamics r-

Propulsions Configuration Structures Economics 
Systems Controls Performance 

Figure 2.2 Non-Solo Organizational Structure 
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A single design database was used for the AF-l. At bi-weekly team meetings, team 

members gave input and discussed possible design changes. Discussion encompassed the 

impact of changes on other aircraft components, cost, and design goals. Using this 

Concurrent Engineering (CE) approach, the team agreed on the changes which were then 

• implemented in the design database. This provided consistency and expediency while 

maintaining the flexibility necessary to produce a winning design. 

The process for Non-Solo's design followed the AERO Senior Flight Vehicle 

Design Course series at Cal Poly, San Luis Obispo. During the fall quarter of 1993, team 

members assembled individual design proposals to satisfy the RFP. This facilitated 

creativity and individualism as well as developed an understanding of the balance required 

in designing a complete aircraft. Also during this time, team members built up an interest 

in a specific area which carried over into a specialty within the team. Once the team was 

assembled, the group evaluated the individual concepts and chose the best qualities of each 

aircraft for implementation in the final design. From this process, the AF-l evolved. 

2.4 Final Concept Selection 

The design concept evolution is shown below in Figure 2.3. The individual 

designs included two conventional designs, a three-surface concept and an M -wing. Two 

or three engines were used, mounted on the wings or on the fuselage. 

The use of a canard was not chosen because of control complications and airport 

compatibility. The center structural box of the canard also takes up valuable space at the 

front of the aircraft 

The conventional design seemed appropriate for the low-cost requirement, and its 

single aisle was the final selection for the interior. Another component adopted from the 

conventional design was the wing-mounted engines, which were better for noise and 

accessibility considerations as well as center of gravity (CG) travel characteristics. 

However, the Non-Solo design still needed a technology that could beat the competition, so 

the M-wing concept was explored. 
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Figure 2.3 Concept Evolution 

When the M-wing was fIrst considered, the team had certain intuitive ideas about 

the benefIts of that particular design. Most of these have been verifIed thorough analysis 

and inspection, with varying levels of success. These include landing gear placement, 

minimized CG travel, and increased inboard lift capablitiy. 

Other design considerations changed at different times in the evolution, even 

alternating between two configurations, such as single or double aisle. After consulting 

with industry professionals, Non-Solo reemphasized the low-cost precept and held this as 

the driving factor in the fmal concept selection. 

2.5 Comparison of Competitors 

Unfortunately, the market for a passenger aircraft in this class is not an opportunity 

waiting to be exploited. On the contrary, it is quite saturated with planes from many 

airframers, including the Airbus 320/321, the Boeing 757, and the McDonnell/Douglas 

MD-80/90. Requiring the plane to fly 3000 nautical miles with a full load of passengers 

when most of its business will be in stage lengths of under 1000 could be considered 

another disadvantage. In order to break into the market it is not feasible to solely change 

the size and shape of an existing concept for a new mission. Succeeding with this aircraft 

calls for innovation to place it far enough ahead of the competition to justify its purchase 
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and the difficulties of changing the support structure for a new airplane. The advantages of 

the M-wing are slight, but given the state of the business, a slight advantage will make a 

big difference. 

Three aircraft currently have a similar range and passenger capacity to the AF-l. A 

comparison is shown in Table 2.1. 

Table 2.1 Comparison of Similar Aircraft 

B737-400 MD-83 A320-200 AF-l 

Number of Passengers 146 155 150 154 

Range (nmi) 2500 2501 2990 3000 

Max Landing Weight (lb) 124,000 139,500 142,195 126,000 

Max Take-Off Weight (lb) 150,000 160,000 162,040 140,000 

Take-Off Field Length (ft) 8,200 8,375 7,680 7,000 

Landing Field Length (ft) 6,070 5,200 5,040 4,940 

Win~S~an 94 ft. 9 in. 107 ft 10 in ll1ft3in 103ft 

AR 7 9 9.4 10 

1 st Class Seat Pitch (in) 38 36 36 42 

Economy Class Seat Pitch (in) 32 31-33 32 32 

Wing Loading (lbf/ft2) 127 126 123 131 

Cruise Mach Number 0.73 0.76 0.80 0.80 

Circular X-Section? No No No Yes-

Wing Sweep Angle (deg) 25 24.5 25 27 

Currently, there is some debate about the future of the global commercial aircraft 

market. Airframers have an optimistic view of projected aircraft deliveries compared to 

others, such as Moody's Investors Service. Moody's is generally in line with Standard & 

Poor's forecast and is "gloomier than aircraft builders' predictions." (ref. 6) Previous 

upturns in the industry have shown significant growth in deliveries, but this may not be the 

case now. Moody's claims that in the 1980's, airlines all over the world expanded their 

capacity. International Air Transport Assn. Members grew by 93% while traffic only grew 

by 78%. Consequently, many commercial transports parked in storage are waiting to be 

returned to service when the market recovers. Restructuring among the major airlines will 
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cause a lag in ability to finance purchases of new aircraft New competitors from the 

Russian aerospace industry, as well as Non-Solo, are bound to drive prices down. Also 

according to Moody's, traffic growth will be lower than the expected 5% annual increase 

through the year 2002. This means that demand for new aircraft will be lower and aircraft 

manufacturers will have a difficult time generating a return on their investment and 

financing new aircraft development. Figure 2.4 shows manufacturer's plans and Moody's 

Projections for aircraft deliveries through 1996. 
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900 ·1 
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IIIiIII 700 .~ 

~ 600 
~ 

Q 

~ 500 

! 400 

1 300 
~ 1990 

Moody's prediction 

1991 1992 1993 1994 1995 1996 

source: Aviation Week and Space TechnQlogy 
Figure 2.4 Projected Aircraft Deliveries 

The M-wing offers several benefits over a conventional design. The unique shape 

helps reduce shift in the center of gravity, thus allowing the control surfaces and tail to be 

smaller. Smaller control surfaces mean less structural weight. This shape will also show a 

decreased nose-down pitching moment due to wing sweep, allowing a decrease in 

structural weight in the center wing box. The joint in the wing will need more structure; 

however, engine placement at the joint also necessitates extensive structure. The M-wing 

may be slightly heavier, but the reduction in aircraft drag makes it advantageous. This 

along with fly-by-wire flight optimization will result in reduced fuel consumption and 

commensurate reduction in direct operating cost. 
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All of the competitors have very conventional designs that are nearly optimized and 

can only achieve slight performance benefits at great cost, known economically as 

diminishing margin of return on investment The AF-l, uses a totally new concept that will 

attract passengers with high tech services and attract airlines with lower DOC. Even as the 

aircraft market grows tight, a new entry such as the Aluminum Falcon has the potential to 

acquire a significant market share. 
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3. THE LOW COST CONCEPT 

3.1 Economic Philosophy 

The key to a healthy and expedient return on investment is to reduce the design time 

and move quickly to produce aircraft. Non-Solo is capable of a much shorter design phase 

due to its flat corporate organization and concurrent engineering. Using a team approach 

and increased responsibility and accountability for all team members, Non-Solo expects to 

shorten the design phase by up to ten percent. 

The low cost approach to designing the AF-I included focusing on the areas which 

are the biggest contributors to the aircraft acquisition cost and direct operating cost. This 

meant that Non-Solo concentrated on efficient manufacturing, low maintenance engines and 

aircraft systems, and decreased fuel burn by low weight and drag to directly minimize the 

cost of the AF-l. 

3.2 Research, Development, Test and Evaluation Cost 

The major factors in Research, Development, Test and Evaluation (RDTE) costs are 

the test airplanes, development and support testing costs, airframe engineering and design 

cost, flight test operations, and profit and fmancing for the RDTE phase. With the tea~ 

design approach and Computer Aided Design (CAD), Non-Solo can reduce typical 

engineering and design costs. For research, development, test and evaluation costs, 

extensive M-wing wind tunnel tests will have to be done, but this is true of any new wing 

or aircraft design. Well tested, reliable engines can reduce the flight test requirements and 

lower costs. Assuming that Non-Solo is an established airframer with a large current 

facility, the AF-l will need no special facilities for assembly. The total cost of the RDTE 

phase is $1.26 billion as shown in Table 3.1. However, there is some risk associated with 

new technology, such as an M-wing. It is possible that wind tunnel and structural testing 

will prove the M-wing concept unfeasible. If the M-wing were abandoned and the 
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configuration changed to a straight aft-swept wing, the expected loss would be $0.013 

billion. The breakdown of RDTE cost components is shown in Figure 3.1. 

2% 

Table 3.1 AF-l RDTE Cost Breakdown 

RDTEProfit 

Finance for RDTE 

Total RDTE cost 

9% 

60% 

27 millio 

771 millio 

26 millio 

125 millio 

117 millio 

1,280 millio 

1:2) Airframe engineering and 
design 

ill Development, support 
and testing 

II Flight test airplanes 

o Flight test operations 

= RDTE Profit 

II Finance for RDTE 

Figure 3.1 Research, Design, Test and Evaluation Breakdown for the AF-l 

3.3 Production Costs 

The number of aircraft produced can greatly affect costs. The Boeing Company 

plans to produce 2,000 of their 737-X aircraft by the year 2010 (ref. 9). For the purpose 
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of analysis, Non-Solo assumed equal marketability for the similar AF-l. When analyzing 

the effect of the number of aircraft produced on cost factors, it is clear that the more aircraft 

a company can produGe and sell, the l()wer the costs to airlines. As production increases 

there is a significant decrease in both Airplane Estimated Price and Direct Operating Costs, 

as shown in Figures 3.2. The estimated price goes down due to the decrease in RDTE 

costs per airplane. The direct operating cost is reduced due to a lower airplane cost, which 

reduces the cost of spares and insurance. During the life of the program, Non-Solo 

estimates a total production of 2005 aircraft, including the five used for static and flight 

testing. As demand increases for travel to third world countries, Non-Solo plans an 

aggressive marketing style to acquire a solid market share. 
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.Figure 3.2 Effect of AF-l Production on Airplane. Estimated Price and 
DOC 

Non-Solo has performed a cost estimation for the AF-l program, based on 

production of 2005 aircraft in 1994 U.S. dollars. The production costs, shown in Table 

3.2, depend on the price of engines, avionics, manufacturing labor, tooling, materials, and 

quality control. The Aluminum Falcon is designed for simple manufacturing, using 

currently available facilities. When the program goes into production, standardized 

composites and aluminum materials will compose the structure. The estimated average 
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production rate was 6 aircraft per month. The estimated engine price is $6 million and the 

estimated avionics price is $5 million. 

Table 3.2 AF-l Production Costs 

Engines and Avionics Cost 41,860 million 

Interiors Cost 822 million 

Manufacturing Labor Cost 7,672 million 

Manufacturing Materials Cost 3,930 million 

Tooling Cost 767 million 

Quality Control Cost 997 million 

Total Production Cost 56,049 million 

The airplane program costs are the total costs to the manufacturer, including 

production, engineering and design, flight tests, financing and profit as shown in Table 

3.3. According to Non-Solo estimations, the price of the AF-l is competitive at 

approximately $29 million each without spares. Figure 3.3 is a comparison of the AF-l 

and similar aircraft in airplane price per available seat. 

Table 3.3 AF-l Total Program Costs 

Production Cost $56,049 million 

Airframe Engineering and Design Costs $483 million 

Flight Test Costs $208 million 

Financing Cost $5,674 million 

Airframe Manufacturer Profit $7,490 million 

Total Program Cost $69,903 million 
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Figure 3.3 Airplane Price Comparison 

3.4 Operating Costs 

300,000 

Operating costs incurred by airlines consist of direct operating costs and indirect 

operating costs. DOC depends largely on design choices; however, airplane designers· 

have little or no control over IOC. There are five major components of DOC, calculated for 

the AF-l in 1994 U.S. dollars per nautical mile and based on a 2,000 nmi. stage length 

(Table 3.4). When an aircraft is out in the fleet, it rarely flies the maximum range on a 

regular basis. With a range of 3,000 nmi., the AF-l can easily be used for cross-country 

domestic flights. Non-Solo chose a stage length of 2,000 nmi. to model this type of use. 

Many flights from coast to coast in the United States fall into this range. Common city 

pairs include Los Angeles or San Francisco to international travel centers such as Dulles 

and John F. Kennedy Airports. If an airline chooses to use the AF-l on a shorter stage 

length, the DOC can be expected to increase, as with any other aircraft. Table 3.4 below 

are the components of DOC for the AF-l using the 2,000 nmi. stage length. 
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Table 3.4 Breakdown of AF -1 Direct Operating Costs 

Direct Operating Cost of Flying $1.95 

Direct Operating Cost of Maintenance $1.27 

Direct Operating Cost of Depreciation $1.73 

Direct Operating Cost of Fees $0.05 

Direct Operating Cost of Financing $0.37 

Total estimated DOC $5.37 

Total estimated IOC $3.49 

A quick conversion gives a total estimated DOC of 3.49 cents per seat mile. 

To fly the airplane, airlines must pay for the crew, insurance, fuel, and oil. Crew 

costs depend on current salaries and insurance depends on the purchase price of the 

airplane. By choosing an engine with low specific fuel consumption (SFC), Non-Solo 

was able to decrease the required fuel for its mission and lower both weight and DOC. 

Improved sealants and fmishes on the airframe that have a longer useful life will also lower 

both fuel consumption and maintenance costs. 

Maintenance is the biggest area for designers to affect costs. While labor rates 

fluctuate beyond airframer's control, Non-Solo can reduce the number of man-hours -

required Strict quality control and reliable components on the AF-l will help keep costs 

low. Reliable engines will keep the engine maintenance down, and conventional materials 

including aluminum and some standard composites will keep maintenance material cost 

low. Maintenance costs were calculated with labor on both airframe and engines, 

maintenance materials, and maintenance burden. 

Depreciation is a fact of life, but Non-Solo keeps the airplane price low to minimize 

acquisition cost for airlines. The computing of depreciation breaks down into airframe, 

engine, avionics, airplane spares, and engine spares. Airlines use different depreciation 

periods, so this cost may vary. 
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Landing fees have recently been on the rise, but they are usually based on the 

aircraft weight which will give this plane an advantage. The AF-l has the lowest aircraft 

weight per passenger seat of the three major competitors, as shown in Figure 3.4. 

800 900 1000 1100 

Takeoff weight (lbs/avail. seat) 

Figure 3.4 Comparison of Aircraft Max Take-off Weight in Ibs per 
A vailable Seat 

Financing depends on interest rates and total DOC. Non-Solo used a fmancing 

annual percentage rate of 7% . 

Non-Solo cost estimates result in very competitive Direct Operating Costs. Figure 

3.5 shows the significant savings the AF-I can give airlines in dollars per flight hour. The 

other aircraft estimates (ref. 24) are converted from 1989 dollars to 1994 dollars. These 

numbers may vary according to route structure, pay scales, depreciation strategies, and the 

age of the airplanes. 
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Figure 3.5 Comparison of DOC in $/FLH 

Because IOC varies among airlines, Non-Solo used a conservative average of 65% 

of DOC for the 2,000 nmi. stage length. IOC includes passenger services, ground 

equipment and facilities, servicing, control, freight, promotion, sales, entertainment and 

administrative expenses. While in-flight entertainment costs are included in IOC, it is 

important to consider them on the AF-l. There is a cost associated with the entertainment 

system and tech center on board, but airlines can expect to make a significant profit from 

their captive audience. Modular units that can be quickly and easily replaced will keep 

maintenance costs down for these extra items. 

The design emphasis on low cost has made the AF-l a serious contender in the 

market for low cost aircraft. Lower purchase price as well as lower DOC make the AF-l 

the first choice of airlines looking to improve profits. 
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4. AffiPORT OPERATION AND MAINTENANCE 

4.1 Airport Requirements 

The AF-l is conventional in the sense that it will have the same service 

requirements and capabilities of current aircraft in service. From a configuration 

standpoint, the aircraft is small enough to fit in any gate capable of serving a 737. More 

importantly, the Falcon lacks canards or other unconventional surfaces that might pose a 

problem to jetway access or other maintenance. Air-conditioning, power, and other ground 

feed hookups are all located on the right side of the aircraft, but the systems are designed to 

run off APU power should these not be available. The AF-l is not equipped with 

extendible stairways for passenger access at rural airports because the weight penalty could 

not be justified when most airports service9 by this type of aircraft will provide passenger 

loading capability. 

4.2 Maintenance Schedule 

Following the low cost doctrine, Non-Solo avoided implementing any system or 

technology that would have extraordinary maintenance requirements. The wing joint and 

associated structure may require more frequent inspection for fatigue due to its unortho~ox 

and unfamiliar nature, but this procedure will be similar to inspections already being 

performed. The engines, being a major factor in service costs, are already in use and will 

follow the same maintenance schedule already in place for the Airbus 320. Other intervals 

will be similar, with A, B, C, and D checks occurring at normal periods in aircraft service 

life. 

4.3 Inspection and Access Panels 

Inspection panels and access doors are located where necessary and ergonomically 

designed to facilitate quick and easy examination of critical aircraft systems. Close 

attention was paid to placement of panels and related parts to minimize the time spent in 
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accessing parts needing inspection. This will help keep labor costs low. Composites were 

also used in panel construction for weight reduction. 

4.4 Ground Support 

As mentioned above, ground support for the Falcon will be virtually identical to 

current practices. Figure 4.1 illustrates how the ground support equipment will be able to 

access the aircraft. Fueling can be done solely from the right side or from both sides if 

desired. All galleys are right-side serviceable as well with cabin cleaning service accessing 

the aircraft from the left rear door. It can be seen in the figure how the non-swept nature of 

the M-wing may be a possible benefit to ground crews since it leaves a greater percentage 

of the fuselage directly accessible. 

TOW TRACTOR 

FUEUNG 

CABIN CLEANING 

BULK LOADER 

FUELING 

Figure 4.1 Aircraft Ground Support 
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5. WEIGHTS 

5.1 Weight Breakdown 

The AF-l's major component weight breakdown was evaluated by Reference 18 is 

shown in Table 5.1. 

Table 5.1 AF-1 Weight Breakdown (lbs) 
~----------------~ ~------------------------~ 

Structural Weight Fixed Equipment 

10,40 Flight Controls 2,340 

1,46 HPS 280 

17,90 Electrical 1,730 

84 lAB 1,750 

4,64 API 2,870 

35,30 APU 700 

Oxygen System 268 

15,40 Furnishings 7,770 

43 
Auxiliary 1,400 

31 
Paint 560 

Total 19,700 
Total 16,20 

Fuel Weight 35,800 

Crew Weight 1,200 

Payload Weight 30,600 

Total Empty Weight 71,100 

Total Takeoff Weight 140,000 
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All of the component weights add up to the total empty weight. This, along with the 

weight of fuel, crew and payload make up the total design takeoff weight. 

5.2 Weight Reduction Strategy 

To minimize the takeoff weight of the AF-l Non-Solo concentrated on the two 

biggest contributors to the weight of the aircraft: the structure and the fuel needed to fly the 

required range. To attack the structural weight Non-Solo incorporated a defmite 

philosophy: "The smaller, the better." Every design decision from the number of aisles in 

the passenger cabin to the static margin selection followed this philosophy. The result of 

this was the smallest possible aircraft capable of comfortably transporting 154 passengers a 

range of 3000 nmi. 

In order to reduce fuel burn Non-Solo did two things - selected engines with high 

performance and low fuel consumption (Section 9) and concentrated on lower drag for 

lower required thrust (Section 7). 

5.3 Center of Gravity 

The center of gravity (CG) was determined according to the weight breakdown. As 

shown from Figure 5.1 the center of gravity is shown at different stages of the aircraft's 

flight; from the empty aircraft with addition of fuel and loading passengers and bags to a 

fully loaded aircraft, then burning fuel and unloading passengers and bags back to the 

empty aircraft. Careful attention was paid to properly locating heavy items in order to 

minimize CG travel, however Figure 5.1 includes the uncertainty of the positioning of 

these heavy items. Analysis determined that the forward CG location was 57.6 ft and the 

aft CG of 56.6 ft. from the nose of the aircraft. The cruising CG location was determined 

to be 56 ft from the nose. One of the characteristics ofthe M-wing is the minimal CG 

travel of 1 foot. One of the advantages of a small center of gravity travel is a reduction in 

wetted area of the tail due to less trim control power required. 
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Figure 5.1 AF -1 Center of Gravity Excursion 

Once the component weight breakdown and the center of gravity were determined 

the moments of inertia at takeoff and at the empty weight were calculated according to the 

methods in Reference 21. 

Table 5.2 AF-1 Moments of Inertia (Slug ft2) 

Ixx Iyy- Izz Izx 
-

Takeoff Weight 720,000 2,600,000 3,000,000 14,000 

Empty Weight 380,000 1,980,000 2,160,000 8,000 
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6. PERFORMANCE 

6.1 Preliminary Sizing 

In the beginning of the design phase a matching plot was constructed to establish 

important design parameters. Figure 6.1 contains this matching plot and the design point 

that was selected Shown on the matching plot are the climb and cruise requirements for 

selecting a design point, the most restrictive being the climb requirement. 

The takeoff wing loading of 131 psf corresponds to a CLmax at landing of 3.1. 

This requires a fairly sophisticated high lift system. However, the consequences of a lower 

wing loading include a larger wing structure and a less comfortable ride for the passengers. 

At an earlier design phase, the AF-I had a lower wing loading of 110 psf, and 

consequently a much large wing planform area. Increasing the wing loading and shrinking 

the wing size resulted in a decrease of approximately 8,000 lbs in total takeoff weight. 

With two engines, each rated at 23,000 lbs static thrust, the AF-l has a takeoff 

thrust-to-weight ratio of approximately 0.32. 
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Figure 6.1 AF-l Design Point Plot 
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6.2 Field Performance 

6.2.1 Takeoff Performance 

The RFP specifies that the AF-l must be able to takeoff within a FAA field length 

of 7,000 feet The AF-l meets this requirement with a balanced field length of exactly 

7,000 feet This was calculated using methods from Reference 23. In takeoff 

configuration with one engine inoperative, the AF-l has a thrust-to-weight ratio of 0.16 

and an un of 10.1. The takeoff un with both engines operative is approximately 10.3. 

The additional drag with DEI is due to wind milling effects and was calculated using 

Reference 22. Figure 6.2 shows how the balanced field length varies with takeoff weight. 
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Figure 6.2 AF-l BFL Versus Takeoff Field Length 

6.2.2 Landing Performance 

140000 

The FAA landing field length required by the RFP is 5,000 feet. Figure 6.3 shows 

how the Aluminum Falcon's landing field length increases with landing weight. At a 

maximum landing weight of 126,000 Ibs, the AF-l meets the requirement with a landing 

field length of 4,940 feet The AF-l can therefore land within the required field length at 

90 percent of its design takeoff weight. This is competitive with other aircraft of the same 

class. The MD-9O lands at 88 percent of its takeoff weight and the Boeing 737 lands at 87 

percent. These percentages were obtained from Reference 13. 
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Figure 6.3 AF-l Landing Field Length vs. Landing Weight 

6.3 Climb Performance 

The climb requirement of the RFP specifies that the AF-1 must climb at its best rate 

of climb directly to its best cruising altitude. The designers of the AF-1 interpreted the best 

rate of climb to mean the fastest possible climb to cruising altitude because the RFP was 

unclear about whether range credit should be taken for climb. Reference 10 stated that the 

fastest climb is nearly the most economical climb. The best cruising altitude was 

interpreted as the optimum compromise between the altitude where the engines are most 

fuel efficient and the altitude where the wing is most aerodynamically efficient. 

Climb ceilings for the AF-1 were calculated and are summarized below in Table 

6.1. The service ceiling is at an altitude of 36,000 feet and the absolute ceiling is at an 

altitude of 39,000 feet. 

Table 6.1 Af'-1 Climb Ceilings 

Altitude {feet) 

Cruise Altitude 35,000 

Service Ceiling 36,000 

Absolute Ceiling 39,000 

Figure 6.4 contains the complete schedule for the climb phase of the design 

mission. The total time to climb from sea level to the cruising altitude of 35,000 feet is 
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approximately 18 minutes. Below 10,000 feet the velocity is limited to 250 knots due to 

FAA regulations. Throughout the climb phase, it is necessary to monitor the cabin 

pressurization to ensure that the pressure differential does not exceed the maximum that the 

fuselage skin can accommodate. Figure 6.4 also includes a cabin pressurization schedule. 

This shows that at all times during the climb phase the pressure differential imposed on the 

fuselage skin is less than the maximum which occurs at cruise. The cabin reaches a 

pressure equivalent to that at 8000 feet approximately two minutes prior to the aircraft 

reaching its fmal cruising altitude. 
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Figure 6.4 AF-l Climb Schedule 

6.4 Range and Endurance 

6.4.1 Cruise Velocity 

SeaLevel. 

15 20 

The AF-1 cruises at 99 percent of its velocity for best range as required by the RFP. 

This velocity was determined by the information presented in Figure 6.5. The velocity for 

best range occurs where the square root of the lift coefficient divided by the drag coefficient 

(CL 112/CD) is at a maximum. Accounting for an increase in wave drag at higher Mach 

numbers, Figure 6.5 shows that this curve peaks at a Mach number ofO.81. Therefore the 

Aluminum Falcon's design cruise speed at .99 Vbr is Mach 0.80. This cruise Mach 
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number is also at the maximum MUD which is the ultimate optimization of cruise velocity 

versusUD. 

Also included in Figure 6.5 is the lift to drag ratio (UD) as a function of Mach 

number. This shows that the AF-l has a maximum LID of 19.5 which occurs at Mach 

0.69 which would be the desired Mach number for maximum endurance. This Mach 

number for maximum endurance would provide minimum fuel consumption on a per hour 

basis and consequently the maximum time in the air for a given amount of fuel. However, 

on a per trip basis, the velocity for best range will provide lower fuel consumption because 

the fuel burned per mile is lower. Overall, the most economical velocity is that for best 

range. The LID ratio at the design cruise speed is 18.4 which is 94 percent of the 

maximum UD. Reference 16 indicates that a typical value for this is 86 percent. 

30 UD)cruise = 18.4 

25 

20 

15 

10 

5 

UD)max = 19.5 

MUD 

Mbr = 0.81 

o+-----~------~----~----_+------+_----~----~ 
0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 

Mach Number 
.Figure 6.S AJi'-l Velocity for Best Range 

Figure 6.6 shows how the Falcon's required thrust varies with Mach number. 

The maximum thrust available from the engines and the necessary thrust needed at cruise 

are also labeled on the graph. These thrust levels are shown as constant; however, it must 

be noted that in reality there is a slight variation with Mach number which would require a 

slightly higher thrust at lower Mach numbers. The bucket of the thrust required curve is 
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the point of maximum endurance while the cruise condition is at the point of maximum 

range. Table 6.2 is a summary of critical velocities at cruising altitude. 

Table 6.2 AF-l Critical Velocities at Cruise Altitude 

Speed for Maximum Endurance 

CruiseS~ 

Maximum Level Flight Speed 

11000 

10000 
-; 9000 
~ - 8000 

7000 

Velocity {knotsl Mach Number 

252 0.69 

457 0.80 

539 0.92 

Tmax 

Tcmise ~ 6000 Mcruise=0.80 Mmax=0.92 
5000+------P----~~----~----~------+_----~ 

0.4 0.5 0.6 0.7 0.8 0.9 

Mach Number 
Figure 6.6 AF-l Thrust vs. Mach Number at Cruise Altitude 

6.4.2 Payload Versus Range 

1 

Figure 6.7 is the payload range relationship for the Aluminum Falcon. As 

indicated, at the design payload of 154 passengers plus bags the AF-l is capable of a range 

of 3,000 nmi which meets the RFP requirement. If the aircraft is loaded to its maximum 

capacity of 178 passengers the AF-l can cruise for 2,500 nmi. If the AF-l carries no 

passengers and the fuel tanks are filled to maximum capacity the range capability increases 

to 5,750 nmi. 
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Figure 6.7 AF -1 Payload Versus Range 

6.4.3 Flight Path Optimization 

5000 6000 

The two major aspects of the flight path that were not determined by the RFP and 

were left to be optimized by the designers were the rate of climb and the cruising altitude. 

The designers attacked the rate of climb with the following philosophy. Range credit is not 

being taken for the climb phase because from the specifics in the RFP it was difficult to 

interpret whether this was allowed. Therefore, in order to begin traveling the required 

3000 nmi, the AF-1 needs to climb to cruising altitude as quickly as possible. For this 

reason, the AF-1 climb flight path is such that the rate of climb is maximized. In support of 

this, Reference 10 states that for preliminary design purposes, it is safe to assume that the 

fastest rate of climb is close to the most economical rate of climb. 

The cruising altitude of 35,000 feet is optimum for the engines and wing geometry 

of the AF-1. This compromise was a challenge because higher aspect ratio wings tend to 

have optimum performance at higher altitude while above 35,000 feet the engines tend to 

decrease in performance. However, by not exceeding an aspect ratio of 10 and by selecting 

high performance engines, the designers of the AF-1 were able to meet this challenge and 

optimize the cruising altitude at 35,000 feet. The isothermal layer begins at this altitude and 

engine performance decays at a faster rate since the air density is decreasing more rapidly. 
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6.5 Stall Performance 

Figure 6.8 contains the operational flight envelope for the AF-l. The stall locus 

segment of this curve was determined for power-off stall with the aircraft center of gravity 

in the least favorable position producing the lowest maximum lift coefficient. These stall 

characteristics meet all requirements FAR 25. 
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Figure 6.8 AF -1 Operating Envelope 

Stall performance was taken a step further and the load factor was calculated at 

various flight conditions and is represented as the flight envelope in Figure 6.9. 

The AF-l is designed to withstand 2.5 gls positively and 1 g negatively plus a safety factor 

of an additional 50%. Gust lines were also analyzed and fell within the static loading 

requirements set for FAR 25 aircraft (Figure 6.10). 
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7. AERODYNAMICS 

7.1 Wing Geometry 

7.1.1 . M-Wing Concept 

Immediately apparent to even the casual observer is the unusual shape of the wing 

on the AF-l. Referred to in many texts as an "M-wing" for obvious reasons, this wing 

design was chosen for the aircraft based on careful analysis and meticulous attention to the 

compromises that came along with it. Initially, the concept was researched as a possible 

solution to the landing gear placement difficulties that seem to be getting more severe. As 

performance dictates smaller static margins, the wing wants to move forward on the 

fuselage. Unfortunately, this places the main landing gear too close to the center of gravity 

of the aircraft and causes the aircraft to tip over onto the tail. Using a forward-swept wing 

root places the overall aerodynamic center of the wing farther forward without the use of an 

otherwise unwanted yahudi. The yahudi un sweeps the wing at the root, creating 

compressibility problems and is only necessary for proper landing gear placement in an aft­

swept wing. Sweeping the outboard section of the wing backward also has substantial' 

benefits. One is that the tip then retains an amount of aeroelastic dampening that is lost on a 

forward swept wing. Flexing an aft-swept wing up causes a reduction in local angle of 

attack, decreasing lift and stabilizing the disturbance. On the contrary, if the wing were 

completely forward swept, tip divergence would be a major stability and structures 

problem, requiring much stiffer composites and flight control computers. 

In essence, the M-wing has many of the advantages of a straight, un swept wing 

without the severe compressibility problems at high Mach numbers. Stall of the outboard 

section no longer causes unstable pitch-up, so the inboard section can be optimized without 

having to stall first. Having the lift located near the fuselage joint rather than behind it, as 

with a conventional swept wing, also reduces the torque load on that structure significantly 

(see figure 7.1). 
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Ultimately, the M-wing assists notably in achieving one of the major design goals 

of the AF-1, reduced CG travel. Comparison studies show a reduction of about 50% (see 

figure 7.2) compared to a standard wing. 
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-1000000 
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0 -800000 
.0 wing 

I - -600000 -
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Figure 7.1 Wing Torque at Fuselage due to Sweep, M-wing vs. Standard 
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Figure 7.2 CG Shift Comparison Between M-Wing and Standard Wing 

Difficulties with this wing design include increased drag and additional structure 

and weight for the wing joint. Advanced CFD and complicated wind tunnel testing will be 

required to investigate these areas completely, but preliminary research reveals only minor 
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consolations in both areas. For example, the engine pylon can be utilized to add sweep to 

the un swept joint section and reduce Mach effects. Furthermore, once this development 

work is completed, manufacturing costs for the wing will be similar to a conventional wing 

and maintenance costs will remain unchanged. The low-cost doctrine is again upheld while 

still presenting the customer with an advanced concept and lower operating costs. 

7.1.2 Preliminary Potential Flow Analysis 

To obtain a basic comparison between possible aerodynamic differences between a 

conventional wing and the M-wing, Non-Solo utilized computational fluid dynamics. By 

inputting to the program parameters from both the M-wing and an aft-swept wing with 

similar characteristics, inherent variations in lift could be compared between the two. 

Keeping under consideration that the straight wing is being used as a control and 

for comparison purposes, the results are only being interpreted qualitatively. Many other 

variables, including influence of the fuselage, will affect the actual performance of the wing 

on the aircraft, so strict interpretation of the numbers at this stage has been avoided. 

Furthermore, to account for possible complications with the program analyzing a two­

segment wing, this trait was also reproduced in the control wing by using two panels, as 

shown in Figure 7.3. The graph shows only a slight anomaly in section lift between the 

two panels, allowing the assumption that sweeping the inboard section of the wing forward 

will have no unwarranted effects on the analysis. Figure 7.4 shows the results from this 

case, the M-wing configuration. 

From the graph, it is apparent that the lift over the outboard section of the wing is 

relatively unchanged. The root section, however, shows a remarkable increase in section 

CI away from the joint. The trends show that lift tends to increase on aft portions of a 

swept wing, and the M-wing has two such sections on each side as opposed to one, at the 

tip, with a conventional wing. 

As an additional test of the simulation's validity in comparing these two wings, an 

engine pylon was modeled. Although it seems likely that the engine may have some 
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influence on the spanwise flow patterns across the wing, especially on a conventional 

wing, the results showed no difference on either wing due to the simulated pylon 
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installation. The results for the M-wing are shown below in Figure 7.5, with only a local 

change in lift about the pylon. Note the change in scale. 
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Figure 7.5 Section CI versus Span Location, M-wing with Engine Pylon 

Finally, for a more illustrative depiction of the advantages of the M -wing, the 

section lift is plotted versus wing span in Figures 7.6 and 7.7. This takes into account -

section chord length and thereby shows the greater lift generated at the root sections of the 

wing where there is more wing area. As the figures show, the enhanced aerodynamic 

effectiveness of the inboard section on the M -wing translates to approximately a 10% 

increase in lift over the standard wing in that same region. This does not factor in the 

additional compromises inherent to a standard wing after installation of a glove and yahudi. 

Since the program used shows that a standard wing produces the desired elliptical 

lift distribution for minimum induced drag with no twist, it was apparent that the model 

was insufficient for furthur analysis. However, by twisting the inboard section 2 degrees, 

from an angle of incidence of one at the fuselage to 3 at the joint, it was possible to 

reproduce the elliptical lift pattern. The benifits of this include easier wing fuselage 

placement, lower compressibility drag on the inboard section, and better stall performance. 
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Even from this preliminary analysis, it is safe to assume that there is no compromise 

in lift capability for the M -wing, if not some added benefits. This will lower the moment 

loads on the wing, mitigating structural concerns where they are of utmost concern. 
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Figure 7.7 Section Lift versus Span Location, M-wing 
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7.1.3 Wing Placement 

One of the first decisions to be made was the vertical positioning of the wing on the 

fuselage. Aerodynamically, for minimum interference drag, a mid-wing configuration 

would be optimum. This configuration was briefly investigated and definite complications 

between the center wing box and the passenger cabin were discovered For this reason, the 

mid-wing placement possibility was eliminated 

The decision was then between the high and low wing configurations. The high­

wing generally has lower interference drag characteristics; however, this presents landing 

gear retraction complications. Attaching the gear to the wing presents a substantial weight 

penalty. Retracting the gear into the fuselage would require the use of a bump fairing 

which would cause additional drag that would offset the savings in interference drag. 

With these considerations, the designers of the AF-l opted for the low wing 

configuration, not only because of the easier landing gear placement, but for safety reasons 

as well. The AF-l has a design range of 3000 nmi which means many of its flights could 

be over water. The low wing configuration is the safest for emergency water landings 

because the passenger cabin will remain above the water. This provides for passenger 

evacuation onto the wing, if necessary, under these circumstances. 

Longitudinal placement of the wing was a compromise between obtaining the 

desired static margin, which dictates that the wing be as far forward as possible, and 

landing gear placement, which dictates the wing be further back to obtain a reasonable tip­

over angle. However, because of the nature of the M-wing, its aerodynamic center is 

further forward than for a conventional aft swept wing. Therefore, desired negative static 

margin for lower trim drag and decreased tail area was possible without creating a severe 

landing gear placement problem. 

7.1.4 Wing Planform 

7.1.4.1 Planform Area 
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The AF-l has a wing plan form area of 1069 square feet With the design takeoff 

weight being 140,000 lbs, the maximum wing loading is 131 psf. This wing loading is 

comparable to other aircraft in this class (ref. 13) and is high enough to provide a smooth, 

comfortable ride for the passengers. It does, however, call for a fairly sophisticated high 

lift system to provide a maximum lift coefficient at landing of 3.1. The planform is shown 

in Figure 7.8. 

Planform Area = 1069 s uare feet As t Ratio = 10 

~----------------------~ S an = 103 feet Ta Ratio = 0.3 

~----------------------~ Quarter Chord Swee = 27 degrees Mean Aerod namic Chord = 11.3 feet 

Figure 7.8 AF-l Wing Planform Geometry 

7.1.4.2 Aspect Ratio 

The aspect ratio of 10 was selected with weight and cost in mind. A higher aspect 

ratio will provide low induced drag requiring less thrust, and therefore, less fuel. 

However, it will increase the structural weight of the wing. Figure 7.9 graphically shows 

the relationship between aspect ratio with wing weight and thrust required during cruise. 

Reference 21 and Reference 2 were used for these calculations. 

The effects of aspect ratio on wing weight and thrust required were combined and 

referenced back to the total takeoff weight of the airplane. This relationship is shown in 

Figure 7.10 and shows that the takeoff weight starts to level off at an aspect ratio of about 
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10. The curve actually reaches an absolute minimum at an aspect ratio of approximately 

12. However, it flattens out so much that the difference in takeoff weight between in 
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Figure 7.9 Wing Weight and Thrust Required Versus Wing Aspect Ratio 

aspect ratio of 10 and one of 12 is minimal. Therefore, the designers of the AF-l opted for 

an aspect ratio of 10 to avoid structural complication of the wing especially because the 

structure of the M-wing is more complex than that of a straight wing. In addition, a higher 

aspect ratio leads to a larger span which may cause airport compatibility problems. With an 

aspect ratio of 10, the AF-l has a wing span of 103 feet. 
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Figure 7.10 AF -1 Effect of Aspect Ratio on Takeoff Weight 
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7.1.4.3 Taper Ratio 

The M-wing of the AF-I has a taper ratio of 0.3. According to Reference 2, for an 

aspect ratio of 10, this is the taper ratio that provides the most elliptical lift distribution for a 

straight tapered wing and hence produces the lowest amount of induced drag. 

7.1.4.4 Sweep Angle 

The wing sweep angle was directly detennined by the airfoil drag divergence Mach 

number and the desired cruise Mach number. It is necessary that the wing be swept 

enough to stay out of the drag rise at cruise conditions. Using Cp data for the airfoil 

chosen from Reference 8, a method outlined in Reference 3 was used to find the drag 

divergence Mach number at the cruise incidence angle. Figure 7.11 shows that the critical 

Mach number is approximately 0.70. Using historical data as a guide, the AF-I designers 

estimated from this the drag divergence Mach number to approximately 0.72. Taking flow 

acceleration due to the fuselage into account, the required sweep angle is 27 degrees at a 

cruise Mach number of 0.8. 

Q.. 
U 

-2.50 

-2.00 

-1.50 

-1.00 

-0.50 
L--~--c:::::::::---~ 

Mcr=0.70 
0.00 +-----+-----+-----+------1 

0.5 0.6 0.7 

Mach Number 

0.8 

Figure 7.11 AF-l Wing Section Critical Mach Number 

7.1.4.5 Dihedral Angle 

0.9 

The Aluminum Falcon's dihedral angle was originally chosen by examining other 

aircraft in its class. Dihedral angles generally range from 2 to 6 degrees. A large dihedral 
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angle is generally undesirable due to its unfavorable Dutch roll characteristics which must 

be compensated by an oversized vertical stabilizer. Because designing a small empennage 

was a priority to the designers of the AF-l, as small as possible dihedral was pursued. 

However, as the design phase continued, it was found that the minimum allowable dihedral 

angle was dictated by engine ground clearance rather than stability and control 

characteristics. The AF-l, therefore, has a dihedral angle of 3 degrees. 

7.1.4.6 Wing Twist 

The optimum amount of twist in a configuration such as the M -wing most easily be 

obtained through wind tunnel testing procedures. The designers of the AF-l have chosen 

to optimize washout to obtain the most favorable lift distribution during cruise rather than 

for stall characteristics, because wing tip stall of the M-wing is not as much of a concern as 

it is for a standard aft swept wing. However, a potential flow analysis of the M-wing 

compared to a standard aft swept wing showed that the lift distribution for the M -wing was 

essentially similar outboard of the pylon. With the inboard section of the wing operating at 

a slightly higher CI value and since it is not required to stall first, washout should be able to 

be reduced. Preliminary studies set the AF-l with a washout angle of 1 degree. 

7.2 Airfoil Selection 

With today's commercial aircraft flying at high subsonic Mach numbers, it is 

important that airfoils are capable of sustaining minimal drag with minimal wing sweep 

under these conditions. For this reason, the designers of the AF-l first turned to 

supercritical technology when selecting an airfoil. However, supercritical airfoils have low 

lift capabilities at low speed due to early stall. Because a high maximum lift coefficient is 

needed to meet the landing field requirement, it was crucial to find an airfoil with favorable 

lift characteristics under low speed conditions. So other families of airfoils were 

researched and compared to fmd the optimum trade between high speed drag divergence 

Mach number and low speed lift capability. Table 7.1 contains a comparison among the 

three airfoils most seriously considered for use on the Aluminum Falcon. 
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Table 7.1 Airfoil Comparison 

NACA65-415 NASA SC(2)-0714 E555 (16% Thick) 

Clmax 1.6 1.15 1.83 

CLmax 1.38 0.88 1.54 

Stall Angle 16 degrees 5 degrees 14 degrees 

Mdd 0.71 0.77 0.72 

Cruise CD -0.011 -0.012 -0.015 

Cm@ac -0.075 -0.175 -0.13 

The E555 airfoil is an experimental airfoil that was found in Reference 8. This 

airfoil was chosen for the AF-l because maximum lift coefficient was the most important 

criterion. The drag divergence Mach number is lower than desired; however the reduced 

torque characteristics of the M-wing make wing sweep angle a less crucial design 

consideration. Figure 7.12 shows the E555 airfoil shape as well as its lift, drag, and 

moment characteristics. 
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Figure 7.12 Airfoil E555 Shape and Aerodynamic Characteristics 
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7.3 High Lift Devices 

Obtaining the flight performance and weight requirements for the aircraft 

necessitated a small wing and consequently a high average wing loading. In turn, a 

sophisticated high lift system was inevitable to achieve the landing field performance 

dictated in the RFP. The trailing edge is fitted with a standard double-slotted Fowler flap 

along the entire wing with the leading edge employing a variable-camber Kruger (VCK) 

flap. The VCK was chosen for many reasons, the most important being the large increase 

in maximum lift coefficient that it offers compared to standard Kruger flaps or slats. Also, 

having no gaps on the upper surface of the wing will improve cruise drag slightly by 

eliminating leakage. The installed area of the Kruger is substantially less than the 

retractable slat and generates fewer complications around the wing joint. As was 

mentioned above, the Kruger is used full span, optimizing lift and stall performance at all 

sections of the wing. Figure 7.13 shows the mechanical structure of the VCK. 
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Figure 7.13 Variable Camber Kruger Flap 
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Because the AF-1 has a sufficient thrust-to-weight ratio at takeoff, the required 

maximum lift coefficient at takeoff can be obtained without the deployment of the leading 

edge devices. The trailing edge flaps will be extended to 15 degrees with all surfaces 

sealed to prevent excess drag. In the landing configuration, the trailing edge flaps will be 

fully extended to 30 degrees with the leading edge flaps also deployed 

7.4 Fuselage Geometry 

The fuselage of the AF-1 was designed using other aircraft as a guide. One aspect 

is that the cross-section is circular with a diameter of 154 inches. This geometry is 

structurally ideal for cabin pressurization as well as aerodynamically optimum for minimum 

surface area. This cross-section was accomplished without sacrificing comfort for the 

passenger sitting next to the cabin wall while still providing sufficient cargo space. 

The upsweep on the underside of the tail cone is 13.5 degrees, which will not 

induce flow separation but still allows adequate angle for rotation. The top of the tail cone 

has no downsweep to maximize headroom in the aft galley. There is a small base at the tip 

of the tail cone with a diameter of approximately 8 inches. According to industry 

professionals, this is the maximum base area that can be maintained without encountering a 

significant amount of base drag. Keeping this base reduces the surface area of the tail cone 

slightly and provides a location for the APU exhaust duct. 

7.5 Empennage Geometry 

7.5.1 Horizontal Tail 

The design philosophy incorporated by Non-Solo was, "Make it as small as 

possible", since suface area is a major contributor to parasite drag. Therefore, the 

Aluminum Falcon's horizontal tail was sized to maintain the desired cruise static margin of 

-5% (see section 8.1) and it is, therefore, slightly undersized for rotation capability at 

takeoff. To obtain the necessary down force on the tail required to rotate, the horizontal 

stabilizer is equipped with a slotted elevator rather than a plain flap elevator. 
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Table 7.2 contains geometric data for the Aluminum Falcon's horizontal tail. All 

characteristics are similar to other aircraft in the same class. The sweep angle and dihedral 

angle were driven by characteristics of the wing. The sweep was chosen such that the drag 

divergence Mach number of the tail is 0.05 above that of the wing. 

Table 7.2 AF-l Horizontal Tail Geometry 

Planform Area 210 sq. ft. 

Aspect Ratio 4.5 

Span 31 ft. 

Ta~Ratio 0.4 

Thickness Ratio 0.12 

Quarter Chord Sweep 33 deg 

Dihedral Angle 6 deg 

7.5.2 Vertical Tail 

The size of the vertical tail was driven by the one engine inoperative condition rather 

than by lateral stability considerations. Table 7.3 summarizes the dimensions of the 

Aluminum Falcon's vertical tail. 

Table 7.3 AF-l Vertical Tail Geometry 

Planform Area 200 sq. ft. 

Aspect Ratio 1.6 . 

Span 17.9 ft. 

Taper Ratio 0.4 

Thickness Ratio 0.12 

Quarter Chord Sweep 33 deg. 

7.6 Drag Analysis 

In this preliminary design phase, the Non-Solo had the following philosophy when 

approaching a component drag breakdown: Concentrate on the biggest drag contributors 

and those that are unique to the AF-l design. In this manner, research and development 

cost and effort are focused where they will deliver the greatest return on investment. 
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7.6.1 Parasite Drag 

Methods outlined in Reference 14 were used to estimate the Aluminum Falcon's 

parasite drag coefficient. Parasite drag coefficients for the major components (wing, 

fuselage, and nacelles) were each calculated and then added to produce an approximate total 

parasite drag coefficient of 0.0175. Figure 7.15 shows how much each component 

specifically contributes to the parasite drag. 

Nacelles 
14% 

V'T~'1 d. 5% 
H. Tail 

5% 

Fuselage 
42% 

Wing 
34% 

Figure 7.14 AF-l Parasite Drag Coefficient Breakdown 

7.6.2 Cruise Drag 

Figure 7.15 contains a percentage breakdown of the cruise drag coefficient which 

was calculated to be approximately 0.029. As shown, the parasite drag is the biggest 

contributor to total drag at cruise conditions. 

Wave drag was a serious concern to the designers of the AF-l because it was 

expected that the wave drag of the M-wing would be significantly higher than that of a 

standard aft swept wing. Three-dimensional Mach effects emanating from the un swept 

region at the wing joint could create serious complications in the flow patterns around the 

wing and increase drag significantly. M-wing drag data was obtained from Reference 11 
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, ....... .. 

and is shown in Figure 7.16. This graph shows a drag comparison between an M-wing 

and an aft swept wing with all other geometric parameters being identical. In order to 

Induced Drag 

36% 

Trim Drag 
1% 

Wave Drag 
2% 

Parasite Drag 
61 % 

Figure 7.15 AF-l Cruise Drag Coefficient Breakdown 

predict the wave drag of the AF-1, an initial prediction for an aft swept wing was made 

from Reference 17 and then a percentage increase obtained from Figure 7.16 was applied 

As indicated by Figure 7.16, the wave drag is approximately 2 percent of the total cruis~ 

drag coefficient. The trim drag of the AF-1 was estimated using methods outlined in 

Reference 22 and is approximately 1 percent of the total cruise drag coefficient. Wave drag 

was not as critical as Non-Solo designers had feared. 

Local tailoring of the wing joint / pylon area will be accomplished after wind tunnel 

studies can be performed Integrating the pylon to reduce the local thickness ratio at the 

un swept joint could be accomplished therefore lowering the negative wave drag effects. 

Considering the recent accomplishments in pylon design which have resulted in the pylons 

moving closer to the leading edge of the wing, Non-Solo believes that it will not be difficult 

to incorporate this trend with the M-wing. 
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7.7 Drag Reduction Strategy 
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Low drag is key to lowering fuel bum and therefore imperative to lowering the 

direct operating cost of the aircraft Fuel costs are already a major contributor to operating 

cost and will only get worse as prices increase. When approaching the task of drag 

reduction Non-Solo targeted the biggest contributor to total cruise drag which is parasite 

drag. Non-Solo took a passive approach to reducing the parasite drag, strictly abiding by 

the philosophy of "the smaller, the better." Lower surface area on the aircraft will reduce 

drag proportionately. Static instability yielded a small empennage, opting for a single aisle 

rather than double aisle interior configuration saved 9% in parasite drag, and using double 

bogey main landing gear rather than single made it possible to stow the landing gear 

without the use of a bubble fairing, saving another 5% in parasite drag. Induced drag was 

minimized by choosing the proper aspect and taper ratios for the wing and proper wing 

twist tailoring will provide the proper elliptical lift distribution. Compressibility drag may 

be a concern at the wing joint, but engine pylon integration can be used to ameliorate this 

effect and the rest of the wing will actually have better near-Mach performance than a 

standard wing. Overall, significant reductions in major drag areas will result in a total drag 

. reduction and commensurate reductions in operating cost. 
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8. STABILITY AND CONTROL 

The AF-1 uses a conventional forward main wing with an aft tail. This simplifies 

the process of designing control surfaces and analyzing the stability of the aircraft. The 

most important stability derivatives of the AF-1 are summarized in Table 8.1 below, as 

evaluated using Advanced Aircraft Analysis (AAA). Due to the M-wing, certain derivatives 

are significantly different than those for conventional aircraft. Some calculations were 

based on wing sweep angle, and therefore estimations had to be made to analyze the M-

wing. 

Table 8.1 AF-l Stability Derivatives 

CL1 0.643 CDdelE 0 

Cm1 0 CmdelE -1.135 

CmTl 0 CIB -0.116 

Cmu -0.028 Clp -0.300 

Cma 0.274 Clr 0.257 

Cmadot -1.335 CldelA 0.063 

Cmg -7.727 CldelR 0.007 

CmTu 0 CnB 0.153 

CmTa 0 Cnp -0.068 -
CLu 0.521 Cnr -0.239 

CLa 5.493 CndelA -0.005 

CLadot 0.283 CndelR -0.054 

CLQ 2.904 CyB -0.474 

CDa 0.219 Cyp -0.068 

Cnu 0.016 Cyr 0.526 

CTxu 0 CydelA 0 

CLdelE 0.240 CydelR 0.120 

The control surfaces include two split ailerons and 12 spoilers for lateral control, 

two elevators for longitudinal control, and a rudder for directional control. In high speed 

flight, the outboard section of the split ailerons becomes locked in place with the inboard 
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sections being used for control. This eliminates the possibility of aileron roll reversal, a 

phenomenon caused by elasticity in the wing and adverse yaw that usually occurs in high 

aspect ratio wings. Inboard spoilers are added for additional lateral control power and also 

to dump lift on landing. The AF-1 has successfully used relatively small control surfaces 

yielding an additional drag reduction and in turn reducing the overall weight of the aircraft. 

8.1 Longitudinal Stability and Static Margin Selection 

Longitudinal placement of the main wing on the AF-1 was optimized for landing 

gear placement and also for the desired static margin of -5 %. Static instability causes the 

tail to generate positive lift during cruise rather than the negative lift generated when the 

aircraft is stable. Consequently, the main wing no longer needs to overcome this adverse 

lift and induced drag is decreased. The AF-1's horizontal tail was sized to maintain this 

desired cruise static margin, and is slightly undersized for rotation capability at takeoff. 

This was desirable in order to reduce the weight as well as the wetted area of the tail, which 

again reduces the total drag of the aircraft. The resulting horizontal tail area is 210 square 

feet. To gain rotation power for takeoff, slotted elevators are utilized (see Section 7.5.1). 

Figure 8.1 shows the longitudinal X-Plot for the AF-1. The graph shows that as 

the horizontal tail area increases, the CG of the aircraft travels aft more rapidly than does 

the AC. Fixing the static margin at -5%, the designers of the AF-1 had two degrees of 

freedom: wing placement and tail size. Landing gear placement was an important 

consideration in determining how far forward on the aircraft the wing could be placed. Due 

to the nature of the M-wing, its aerodynamic center is further forward than that of a 

standard aft swept wing, therefore the wing did not have to be placed so far forward to 

create static tip over problems. Because of this forward limit on wing placement dictated 

by the landing gear, using a standard aft-swept wing would have made it difficult to obtain 

the desired static margin without an unacceptably small tail. As indicated by Figure 8.1, 

the aircraft would need a horizontal tail area of 680 square feet to be neutrally stable. 
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Figure 8.1 AF-l Longitudinal X-Plot 

Due to the stability margin of the AF-l being -5%, the stability of the aircraft must 

be augmented. This is corrected by using a fly-by-wire system which connects the control 

surfaces to the pilot inputs (Section 14.3). Preliminary dynamic stability calculations show 

with an open loop, unaugmented system, the AF-l is divergent along the pitch axis. By 

closing the loop, however, the system responds properly with opposite elevator input and 

quickly dampens any unwanted divergence or oscillation. This flight control system will 

also allow for gust and maneuver load alleviation. In operation, certain control surfaces are 

deflected in response to gusts or maneuvers to shift or dampen wing loading. This reduces 

the stress on the airplane structures as well as providing a smoother ride for the passengers. 
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8.2 Lateral Stability and Vertical Tail Sizing 

The lateral control system consists of a vertical tail with a standard double hinge­

line rudder. The size of the vertical tail was driven by the one engine inoperative (OEl) 

condition rather than by lateral stability consideration. For the one engine inoperative 

condition, directional control must be maintained while correcting for the yawing moment 

due to asymmetrical thrust To counteract this yawing moment with OEI, the rudder must 

be deflected to an angle of approximately 24 degrees. As seen in Figure 8.2, the vertical 

tail area is 200 square feet which gives adequate lateral stability (positive Cnf3). Compared 

to other aircraft in the class, the area of the AF-l tail is slightly smaller, again contributing 

to the reduction in parasite drag and reduced direct operation cost 
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Figure 8.4 AF-l Directional X-Plot 
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8.3 Trim Diagram 

The driving forces for the trim diagram are the stabilizer incidence and elevator 

deflection. The control surface deflections effects on the aircraft lift versus angle of attack 

curve can be seen in Figure 8.3. The aircraft must be within the aft and forward pitching 

moment coefficient, known as the trim triangle OBA. The AF-l meets this in all flight 

conditions. 
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9. PROPULSION 

9.1 Engine Selection 

The initial concern for engine selection was the· number to install on the AF-l. 

Many factors, including fuel economy, maintenance cost, and weight, promote fewer 

engines. One transport aircraft in this size range, the BAE-146, uses four engines but it is 

optimized for short hops into small fields with noise restrictions and to have good DEI 

performance. These traits are unnecessary for this RFP and therefore reduce the candidates 

to a tri-jet or a twin. Using three engines would eliminate the AF-l from the complications 

of extended-twin-engine-operations-over-water (ETOPS) certification and allow better DEI 

performance. However, given the trend of increasing engine reliability, ETOPS 

certification is a minor concern, evident in Boeing's choice to use two engines on the 777. 

More important to the RFP is low cost, a result of the lower specific fuel consumption of 

two large engines versus three smaller ones and the corresponding reduction of the engine 

maintenance costs which are such a large percentage of direct operating cost. Finally, 

research showed that most manufacturers do not even produce an engine in the thrust class 

that would be required for this aircraft if it were equipped with three turbofans. 
-

The two possibilities that did surface were the lAB V2500 and the CFM56 engine 

families. To our advantage, both families are new product lines with a variety of thrust 

ratings in the 22,000 to 30,000 lb range and environmental considerations to make them 

viable for many years into the next century. They have also been in use for many years on 

the MD-90 and Airbus 320/321. Hence, they are a perfect balance between advanced 

modern technology and proven reliability, the two traditionally opposing determinants that 

define a low-cost engine. The V2500 was selected as the primary engine because of its 

better specific fuel consumption, but the CFM56 is a close second alternative. The 

advantages of the V2500 engine are shown in Figure 9.1. 
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The noise and pollutant levels are well below international requirements that are 

forecast for the year 2000 and beyond. As shown above, the baseline V2500 is currently 

• CFM56 

Noise (EPN, dB) 
IAE V2500 

Nitrogen 0 xides 

Carbon Monoxide 

Hydrocarbons 

Relative Emission Level 
Figure 9.1 V2500 versus CFM56, Noise and Pollutant Emissions 

15 decibels below Stage 3 noise regulations. Nitrogen oxide emissions are 40% below 

current limits and, with the installation of a new burner, are planned to drop another 60%. 

Overall, IAE claims that the V2500 family emits 20% of currently acceptable levels of 

pollutants. 

The thrust ratio selected for the AF-l is the reduced thrust model at 23,000 pounds 

of thrust The major benefit in derating the baseline 25,000 lb engine is a reduction in the 

stress levels on the engine and a corresponding decrease in maintenance requirements. In 

addition, the purchase price of the engine is lower as engine price is generally determined 

by dollars per pound of thrust Also, using a derated version significantly reduces engine 

noise at takeoff. With the noise level of the engine being proportional to the exhaust gas 

velocity to the eighth power, this small change in thrust level will reduce noise emissions 

by nearly 50%! 
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9.2 Engine Performance and Analysis 

Infonnation available about the V2500 was generally limited to cruise thrust 

conditions and sea-level static thrust conditions. Therefore, the thrust and fuel 

consumption data for various altitudes and flight velocities from an AIAA example high­

bypass turbofan was used as a baseline and modified to approximate the V2500 using 

equations that were provided with the data.. The thrust rating of the AIAA engine was 

25,000 lbs, so adjustment ratios were applied to pertinent data fields to nonnalize the 

values. Also, the cruise thrust specific fuel consumption was higher for the AIAA engine 

than the V2500; therefore, a 90% correction was multiplied to all given fuel values. This 

gave thrust available and fuel consumption throughout the climb phase, allowing climb 

perfonnance to be calculated as well as the fuel fraction for this portion of the flight. 

Graphs were also produced showing engine perfonnance versus altitude and Mach number 

to help determine the most efficient cruise altitude and velocity for best range. These plots 

are shown in Figures 9.2 through 9.4 
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Figure 9.2 AF -1 Engine Thrust, climb phase 
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9.3 Propulsion System Integration 

Another important factor in engine selection was whether to place the engines on the 

fuselage or under the wings. Again, current trends were followed in this selection process. 

Placing the engines on the fuselage produces a cleaner wing and less chance of foreign 

object damage, but also complicates maintenance, necessitates the implementation of a T­

tail, and, most importantly, adversely affects the center of gravity. One of the major design 

tenets of the AF-l was to minimize CG travel and thereby reduce trim drag during cruise. 

This is best accomplished by placing the CG of individual components as close together as 

possible. Since the CG of the wing, fuel, and passengers are all located near the center of 

the fuselage, it follows then to put the engines on the wing. This also places a greater 

percentage of the aircraft weight out on the wings, providing load relief. The structure 

necessary to mount the engine is located with the joint structure at the bend in the M-wing, 

supplying synergistic benefits as well. The air-conditioning packs, which draw 

significantly on engine power and bleed air, are placed as close as possible to the engines to 

minimize the weight and complexity of piping hot, high-pressure air through long sections 

of the fuselage. Non-Solo was also concerned with passenger comforts. Putting the 

engine on the wing instead of the fuselage decreases the noise in the cabin. By following 

the Non-Solo design philosophy, designers found that the obvious placement for the 

engines was under the wing. 
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10. STRUCTURES AND MATERIALS 

10.1 Wing Structure 

The structure involved in the M-wing posed several challenges to Non-Solo 

designers. First of all, the joint in the wing made structural design more complicated. 

Keeping this structure as simple and light as possible was achieved by careful modeling of 

the M-wing with fmite element analysis. As a comparison, the modeling of a conventional 

wing under the same loading conditions was also completed 

The material used for the fIrst cut analysis was an improved aluminum alloy, with 

both ribs and intermediate spars being omitted from the model (front and rear spars only). 

In this simplifIed analysis, it was fIrst determined that the critical loading condition would 

occur when subjected to a gust with little fuel, which normally provides load relief. As 

anticipated, a stress concentration was found to exist at the leading edge of the inboard 

section on the M-wing as shown in the pullout, Figure 10.1. This stress concentration was 

absent in the conventional wing under the same loading conditions. As a result, the 

structure in the inboard section needs to be reinforced with thicker spars and thicker skins. 

Also, there is a stress concentration at the M-wing joint, which again calls for additonal 
-

structure. Fortunately, the latter case is not as critical from a weight standpoint, when a 

well designed rib is placed at the M-wing joint. 

Peak stress levels in the M-wing are approximately twice that of a conventional 

wing with similar dimensions. However, this is not true of stress levels throughout the 

wing. An estimate of the additional structural weight required indicates an increase of 

approximately 10% (1000 lbs) in the weight of the wing is adequate to allieviate this 

problem. 

10.2 Empennage Structure 

Owing to the success of both Boeing and Airbus in developing and fabricating all 

composite empennage primary structures, Non-Solo opted to do the same (Figure 7.2) The 
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advantages in weight are considerable, and possible damage to the structure is minimal. 

Aircraft exposed to hail showed more extensive damage to the aluminum structure than the 

composite. The AF-l has no third engine requiring maintenance near the tail. This was 

cited by McDonnellfDouglas as a major cost issue on the MD-ll when the elevator was 

damaged by incidental contact during ground service. 

10.3 Fuselage Structure 

The fuselage structure, as can be seen in the structural pullout Figure 10.3, is 

primarily constructed of aluminum alloy, with the exception of the floor panels and nose 

radome. The radome,as indicated in Fig 10.2, is fabricated out of a hybrid composite 

(kevlar I carbon), and the floor panels are constructed out of graphite fiber reinforced 

plastics. This material was chosen for the radome because it needs to be transparent to 

electromagnetic waves while retaining its durability. The floor panels were chosen mainly 

for reduced weight and improved corrosion resistance, which has been a major problem 

with aluminum panels. Floor components are also well suited for composite fabrication. 

There are many duplicate pieces, they have a relatively simple in design and they are we~ 

isolated from damage. 

10.4 Structural Materials and Construction 

The use of composites in the AF-l, including carbon fiber reinforced plastics 

(CFRP), graphite fiber reinforced plastics (GFRP), and hybrids is illustrated in Fig 10.2. 

The key to making these materials work in aircraft construction is improved design. 

Although composites typically offer a 10-20% decrease in weight over conventional 

aluminum parts, they have also been 10-15% more expensive in material cost. Since the 

weight savings is highly desirable and composites offer improved corrosion resistance, 

Non-Solo, like the other major airframers, has decided the benefits outweigh the costs. 

There is a growing trend to design for manufacturing and assembly (DFMA), 

which emphasizes simplicity and durability. Composite structures can be more easily 

designed with fewer fasteners, reducing the number of parts and providing a savings in 
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assembly and production. For example, the rudder on the A31O, which is all composite, 

reduced the weight by 20%, the number of parts from 17,015 to 4,800 and the overall cost 

by 10% over the metal design, even though the materials cost rose by 13 %! The use of 

manufacturing cells has grown extensively at both Boeing and McDonnelllDouglas, helping 

to speed up the process of fabrication. High speed machining of parts has also greatly 

improved efficiency. These advantages, along with the growing standardization of 

composites, will allow airlines to rely on the next generation of aircraft for reduced cost and 

reduced cost of operation~ The key here is "on time, on weight, on performance, on cost". 

These goals for composite fabrication and construction are quickly becoming a reality. 

I AF-I Aluminum. Falcon I 
Leading Egde, 

Nose &. Main 
Landing Gear Doors 

Fin l Fuselage FaiIing 

Flap Track Fairings 

Nacelle Cowl, 
Strut &. Thrust Reverser 
Fairings 

Fixed Trailing Egde Panels 

B otIDm Access 
Panels 

II Hybrtd Composite (Kevlar I Carbon) II GFRP (Graphite Fiber Reinforced Plastics) 

~ Improved .PJurn:inum Alloy II CFRP (Carbon Fiber Reinforced Plastics) 

Figure 10.2 AF-l Composite Materials 
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Figure 7.3 Structural Pullout 



11. MANUFACTURING 

11.1 Component Manufacture 

Component sub-assemblies on the AF-I will be similar to other aircraft being 

produced today. Long shapes with various constant profiles, such as stringers, are 

produced using the pultrusion process. In this process each component is fabricated 

continuously. Hydrodynamics machining (HDM), also called water-jet machining, is used 

to trim each component to the desired size and smoothness. 

Honeycomb structures will be fabricated using corrugation process. The sheet 

passes through a pair of specially designed rollers, which produce textured sheets that are 

then cut into desired lengths. The material is finally sandwiched together to provide the 

honeycomb structure. 

All composite structures will be produced using a lay-up process. Die molding and 

forging will be used to produce all metal component structures. 

11.2 Final Assembly 

After components are manufactured, they are shifted to the assembly station. Here, 

the main wing, horizontal tail and vertical tail are assembled. Next, the main wing and the 

center of the fuselage are joined together. Then they are moved to the final assembly 

station, where the remaining aft and forward fuselage components are added to form the 

complete Aluminum Falcon. Figure 11.1 illustrates the schematic of this assembly 

process. 
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Figure 11.1 Manufacturing Assembly 
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12. LANDING GEAR 

12.1 Gear Placement 

From the historical data available, it was predicted that a tricycle gear configuration 

with two main gear and a nose gear would be the best choice. After researching other 

options, Non-Solo found no substantial reason to deviate from this common layout. Most 

aircraft in this weight range use two wheels on each gear. However, after performing a 

detailed analysis, it was discovered that an extensive fairing for the twin main gear was 

required to fit the wheels in the fuselage. The alternative was to use a double bogey 

configuration with four tires on each main strut, but the penalty was an increase in weight. 

This increase in weight of 1250 lbs was approximately equal to the increase in fuel weight 

due to the increase in drag of 5 % caused by the fairing. So although there is no direct 

weight benefit, there is the added cost per flight of the additional fuel burned. Other factors 

in the comparison are listed below in Table 12.1 

Table 12.1 AF-l Twin Vs. Double Bogey Tradeoff 

Type Advantages Disadvantages 

Twin • Reduced maintenance cost • Fairing required, causing 

• Reduced number of parts additional drag fuel -
consumption 

Double Bogey • Extended Tire / Brake Life • Increased chance of tire 

for operation at less than failure 

max. rated load 

• All ten tires same size - • Reduced braking 
reduced complexity effectiveness on rear tires 

• Reduced maintenance cost • Increased production cost 

(longer life increased time 

between service) 

Considering this, a double bogey was chosen for the AF-1. 

Due to the shape of the M -wing, it was necessary to retract the main gear into the 

fuselage at an angle and have the truck pivot slightly for final stowage. (Figures 12.1 -
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12.2) This system will require a blow down system to deploy the gear in the event of 

hydraulic failure. 

Fuselage Skin 

-------
~ Aft Aircraft Centerline Forward-

Figure 12.1 AF-l Main Landing Gear Kinematics (Top View) 

Fuselage 

Wing, Bottom Surface 

Gear Up Gear Down 

Front View 

Figure 12.2 AF-l Main Gear Retraction Mechanism (Front View) 
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12.2 Tire Selection 

For both the main and nose landing gear, Non-Solo chose the Type VII tire in all 

positions. Again, this allows for a smaller parts inventory and reduced cost A brief 

analysis indicated that the wheel diameters were sufficient to absorb the kinetic energy of 

landing. Tire specifications are shown in Table 12.2. The selection was also driven by the 

necessity that the load classification number not exceed 80, the maximum allowable for 

major airport runways. 

There is also one additional advantage of using the double bogey. According to 

Reference 16, a tire that is operated at half its rated load increases its lifetime by a factor of 

six. Relating this information mathematically, the following equation was developed: 

% increase in life = [(Lmax I L)2. 6 - 1.0] * 100.0 

where Lmax is the maximum rated load and L is the operating load. With this tire choice, it 

was possible to extend the main gear tire life by 32%, and the nose gear tire life by 128% 

over the average tire life span on current aircraft. 

Table 12.2 AF-l Tire Selection 

Type Do W Load Inflation Weight LeN 

(in) (in) Rating (lh) Pressure (psi) (lb) 

Nose VII 36 11 23300 143 85 45 -

Main VII 36 11 23300 176 85 60 

12.3 Brakes 

The main gear brakes were chosen to be standard anti-skid design with discs and 

pads. The brake rotors are manufactured from carbon for several reasons. The weight 

reduction is significant, which tends to offset the added installation cost. Carbon brakes 

can withstand greater thermal stress and are therefore safer under extreme use, such as 

aborted takeoff. This larger heat capacity will also allow faster turnaround times on short 

stage lengths since time will not have to be spent allowing the brakes to cool before takeoff. 
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In general, carbon brakes are becoming the standard in the industry, so costs will continue 

to decrease. 

12.4 Strut Design 

For the main gear, which uses a metered oleo-pneumatic shock absorber with an 

efficiency of 0.75, the strut diameter was determined to be 9.2". Additionally, the stroke 

length was found to be 15.9". For the nose gear, the stroke length was found at 7.9" with 

a strut diameter of 6.5". Both were designed for a touchdown rate of 10 fps. 

12.5 Steering Mechanism 

The nose gear steering mechanism, driven by the requirement for the aircraft to 

perform a 180· degree tum on a 150 ft wide runway, was chosen to be similar to the 

Boeing 727 or 737 mechanism. This system has been proven reliable and the data was 

readily available. The minimum steering angle was found to be 63.5", well within the 58 -

78· steering angle of a linear actuator system. (See section 14.2 Steering System) 

12.6 Landing Gear Data Summary 

A summary of all pertinent landing gear data is shown below in Table 12.3. 

Table 12.3 AF -1 Landing Gear Data 

Main Gear Type Double Bogey 

Nose Gear Type Twin 

Load Gear Factor 1.52 

Main Gear Weight (lb) 6400 

Nose Gear Weight (lb) 900 

Take off Angle (12-15") 14· 

Tip over Angle «63°) 60° 

Lateral Ground Clearance Angle (>5") 23° 

% Nose Gear Load - CG aft 10% 

% Nose Gear Load - CG forward 12% 
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13. INSIDE THE ALUMINUM FALCON 

13.1 Interior Layout Philosophy 

The internal layout philosophy incorporated in the design of the AF-1 is based on 

the best possible compromise between efficiency and comfort. It is extremely important in 

today's market to minimize costs while providing service and convenience that will attract 

passengers. 

The RFP included several design requirements as stated in section 2.1. 

Incorporating the layout philosophy with the design requirements resulted in the following 

compact yet comfortable interior configuration. Non-Solo strives to provide these comforts 

while minimizing size, cost, and drag penalties. 

13.2 Interior Configuration 

The original layout of the AF-1 interior consisted of a twin aisle 

configuration (see Figure 4.1). It was originally thought that with a larger interior, 

turnaround time would be improved Also, the passengers would be given added comfort 

with better aesthetics and no middle seating. However, the penalties incurred with this 

design included an increase of 3.5 % in total cruise drag an increase of 4 % in structural 

weight for the larger fuselage. Also, turnaround time is a negligible factor considering the 

time involved in flying the full 3000 nmi range. With a flight time as long as six hours, 

shortening the turnaround time will not allow for one more flight per day. Passenger 

loading time is not usually the deciding factor when the aircraft needs to be cleaned and 

other services performed before takeoff. 

A comparison between twin and single aisle configurations proved that the single 

aisle is more economical. The twin aisle configuration utilizes a larger diameter which 

results in a 5.5% total cruise drag penalty. This means that 1100 extra lbs of fuel is needed 

to complete the design mission. In addition to the increase in drag, there is a weight 

penalty to be paid with the double aisle configuration. The increase in fuselage diameter 

Non-Solo Design Group Aluminum Falcon 74 



yielded a 6% increase in its the structural weight. This combined with the increased fuel 

weight increased the takeoff weight of the aircraft by 2000 lb. For these reasons, Non­

Solo opted for a single aisle design in the AF-l, holding to the low-cost philosophy. 

The AF-l incorporates a three class configuration consisting of 8 First Class seats, 

16 Business Class seats, and 130 Tourist Class seats (total of 154 PAX). The aircraft is 

separated into two cabins with the forward containing First and Business Class . 

Double Aisle Configuration Diameter: 14.5 ft 

Sin Ie Aisle Confi uration Diameter: 12.8 ft 

... 

Figure 13.1 AF-1 Cross Section Evolution 

Given the long range demanded in the RFP, Non-Solo felt justified implementing three 

classes to meet the 154 passenger limit. Should an airline desire to maximize occupancy, 

the Falcon is expandable to 178 passengers with an all tourist, 32" seat pitch configuration. 

There are four lavatories in the passenger cabin. Two are in the front with the 

FirstlBusiness Class and two are located in the rear with the Tourist Class. All of these 

lavatories are handicap accessible. 

A small galley is located in front to service the forward cabin and the larger galley is 

at the rear of the aircraft to service the aft cabin. Separate galleys will improve the 
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efficiency and service of the flight attendants, giving them a shorter distance to travel to 

access all passengers. Both galleys are separated from the lavatories by exits. This feature 

is important to Scandinavian buyers who prefer the lavatories away from the galleys. 

Figure 13.2 is a pull-out showing the interior configuration. 

13.3 The Tech Center 

Person-to-person contact is vital to business communications, therefore corporate 

passengers will continue travel by air for meetings, presentations and office visits. This 

decade has already seen the advent of a business class seating, and the next step is using 

technology to cater to the business traveler's needs. The Aluminum Falcon's special 

attraction for the business community is the Tech Center. 

The Tech Center on the AF-l is a station in the business class containing modern 

office equipment for passenger use. First-class or business class travelers with lap-top 

computers can connect through a pre-wired plug in the armrest. Compatible to both 

Macintosh and IBM computers, the tech center can help travelers fmish last minute reports, 

memos, and presentations. Facsimile machines and color printers provide immediate 

access to documents while modem connections offer remote access to personal accounts or 

Internet, the information superhighway. Business travelers will have everything necessary 

to be productive while in flight. These services can be billed to a credit card and later 

reimbursed as a travel expense. This is an excellent source of revenue for airlines, as well 

as an incentive for busy passengers to fly the AF-l. 

13.4 High-Tech Entertainment 

The AF-l will be equipped with personal headset entertainment systems that offer 

three dimensional video and stereo audio, depicted in Figure 13.3. Varying visor opacity 

will allow the passenger to keep an eye on children or the cabin environment while 

enjoying a movie, a three-dimensional video game, music videos, and popular television 

shows. Individual headsets allow passengers to choose their entertainment from 
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computerized menus of programs. Each particular airline can choose the level of service 

they wish to offer. 

source: Reference 7 
Figure 13.3 AF -1 Passenger Entertainment System 

With the present in-flight television systems, if one system goes out most of a 

cabin can be without entertainment. This may create some agitated passengers. Private 

plug in headsets allow malfunctioning units to be quickly replaced and avoid the expensive 

alternative, installation and maintenance of systems located in seat backs. With personal 

units, all that is needed for replacement is a new headset instead of a new seat. 

These entertainment systems can be easily rented on flights the same way airlines 

currently rent audio headsets. Another option for airlines is a credit card payment system, 

with the headset attached to the seat, similar to the way the in-flight phone is billed. Using 

this system, entertainment could be charged by the minute and would also provide theft 
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security. Both arrangements give passengers the option of entertainment while adding 

profitability for the airline. 

13.5 Flight Deck Layout 

The AF-l flight deck, shown in Figure 13.4, is based on the Boeing 767 and 777 

cockpit and control panels (ref 4 and 5). Therefore, pilots of Boeing aircraft will find the 

AF-1 flight deck very familiar and will have few problems with the transition. This layout 

improves flight crew operations with easy access to system controls. There are six main 

control panels which will be discussed in Section 14.1. 

The AF-1 flight deck is designed to be operated by a two member flight crew. In 

addition, one observer seat is provided and is stowable. This seat is necessary for FAA 

certification and observers, but is otherwise seldom used. Providing stowage capability 

allows the flight deck to be shortened. 

Door 

Exit Light 

Fire Extinguisher 
Captain 

Chart Holder 

Flight Kit 

Figure 13.4 AF -1 Flight Deck Layout (Modified from Boeing 767) 
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14. SYSTEMS FOR THE ALUMINUM FALCON 

The systems found within the Aluminum Falcon are not unusual in today's 

commercial transports. Systems ranging from the advanced control panels down to the 

anti-icing system are all proven and are currently being used in Boeing, McDonnell 

Douglas, and Airbus aircraft. Therefore, the costs of such systems are reasonable and 

conforms to Non-Solo's low cost philosophy. In fact, using such proven systems will 

actually lower operating costs because pilots and airline maintenance personnel will already 

be familiar with them. 

14.1 Avionics System 

The Non-Solo advanced design philosophy continues into the cockpit layout. 

Traditional analog instruments are replaced by Multi-Functional Displays with visual mode 

selection controls. The result is an all glass cockpit that displays a greater amount of 

information to the flight crew while maintaining upgrade capability. Figures 14.1 to 14.3 

show the six primary instrument panels found in the AF-l flight deck. 

The AF-l is also equipped with both a differential global positioning system (GPS) 

and an inertial navigation system (INS). The GPS can link up to 8 satellites at a time and 
-

can pin-point the aircraft location with three-meter accuracy. Differential GPS will also 

replace or augment standard ILS landing systems. 
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modified from: Boeing 777 Systems 
Figure 14.1 Forward Aisle Stand Panel and Control Stand 
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(1) Air Data Inertial Reference System Contro 
(2) Primary Flight Computers Disconnect 
(3) Electrical System / APU 
(4) Wiper Control 
(5) Emergency Lighting 
(6) Passenger Oxygen 
(7) Window Heat 
(8) Ram Air Turbine Switch 
(9) Hydraulic System 
(10) Passenger Signs 

(11) APU and Cargo Fire Contro 
(12) Engine Start 
(13) Fuel Jettison 
( 14) Fuel Management 
(15) Anti-ice System 
(16) Air Conditioning Controls 
(17) Temperature Controls 
(18) Bleed Air System 
(19) Pressurization Control 
(20) LIghting 

EFIS Control Panel 

Display Select Panel 
modified from: Boeing 777 Systems 

Figure 14.2 AF-l Overhead and Glareshield Panels 
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Figure 14.3 AF-l Aft Aisle Stand Panel and Main Instrument Panels 
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14.2 Steering System 

For steering, the nose gear is hydraulically powered with two linear actuators. It is 

controllable by either rudder pedals or a backup cockpit hand wheel. A schematic diagram 

is shown below in Figure 14.4. 

Swivel Valve 
Steering Actuator (2) 
Steering Metering Valve 

Steering 
Quadrant 

Nose Gear ---' 
Steering Tiller 

Figure 14.4 AF-l Steering System 

14.3 Flight Control System 

Rudder 
Pedals 

The primary flight control system (PFCS) is a three axis, electronic fly-by-wire 

system. Because the AF-l is statically unstable, it requires the use of fly-by-wire for rapid 

control surface actuation. Benefits include increased fuel economy, smaller vertical tail 

size, and easier adaptation to level I flying quality. This design also allows for a more 

efficient structural design by facilitating maneuver load and gust load alleviation, where the 

computer alters control inputs to shift load patterns away from sensitive areas during certain 

maneuvers and wind gusts. With both GPS and INS, the AF-l can more easily interface 

with autopilot and auto landing. This technology also allows the AF-l to meet strict safety 

requirements while decreasing weight. 
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The control surfaces include two split ailerons and 12 spoilers for lateral control, 

two elevators for longitudinal control, and a rudder for directional control. 

The PFCS supplies manual and automatic airplane control and envelope protection 

in the roll, pitch, and yaw axes. There is stability augmentation in the pitch axis to 

accomodate the inherent unstable characteristics of the aircraft. 

Redundancy is built into the system, both with the computer control system and 

with the control surface actuators. Not only does the AF-l contain multiple control 

surfaces and three flight computers, but the aircraft also has two sets of wiring for the 

transfer of signals to each control surface. If the primary set of wiring does not transfer the 

digital signals properly, the system will automatically switch to the second set of wires. 

This redundancy guarantees that surfaces will be controllable even if one or more 

computers, wiring, or surface is damaged or fails to receive signals. 

The system works by position transducers converting the flight crew commands 

from the control wheels, the control columns, the rudder pedals, and the speed brake lever 

to analog electronic signals. These signals go to the actuator control electronics (ACEs). 

The ACEs convert the signals to digital format and send them to the primary flight 

computers (PFCs) and the power control units (PCU). A schematic representation of the 

flight control system is shown in Figure 14.5. 

Between one and three PCUs operate each control surface. Each PCU contains a 

hydraulic actuator, an electro-hydraulic servo-valve, and position feedback transducers. 

The servos cause the hydraulic actuators to move the control surfaces. The PFC stops the 

PCU command when the position feedback signal equals the command position. 
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source: Boemg 767 Systems 
Figure 14.5 AF-l Flight Control System 

14.4 Hydraulic System 

The AF-1's hydraulics system actually consists of three independent systems. Each 

system has two or more pumps operating from different pneumatic, mechanical, or 

electrical power sources. Each hydraulic system can independently operate the necessary 

flight controls for safe flight and landing. There are built-in redundancies in case one or 

possibly two systems malfunction. Figure 14.6 contains the system diagram. 

The three systems are the left, center, and right in reference to the location of their 

main components. Each system has its own reservoir, pump, and filters. 

The left system has an engine driven pump (EDP) and an alternating current motor 

pump (ACMP). The left engine drives the EDP and the right AC bus powers the ACMP. 

The left system powers flight controls and the left thrust reverser. A similar system is 

based on the right engine. 
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The center system has two ACMPs, two air driven pumps (ADPs) and a ram air 

turbine-driven pump. The left and right AC buses power both ACMPs. Pneumatic power 

from either of the two engines or the APU drives the ADPs. The ram air turbine deploys 

when either both engines are shut down, both AC buses are not powered, or all three 

hydraulic system pressures are low. 

14.5 Pneumatic System 

This pneumatic system is used to supply air (temperature and pressure regulated) 

for engine starts, cabin pressurization, air conditioning, and anti-icing. The pneumatic 

distribution system is located throughout the aircraft and is divided into three parts - left, 

right, and center. Each part contains ducting and valves to control the distribution from the 

supplier to user systems. The air for the system is obtained from the two engines, the 

APU, and an external source. The pneumatic system diagram is shown in Figure 14.7. 

14.6 Electrical System 

The electrical system, shown in Figure 14.8, is designed to reduce flight crew 

operations prior to, during, and after flight This system also incorporate automatic 

features such as on-line power during engine start and standby power operation. 

The primary AC power is produced by the right and left engine mounted integrated 

drive generators (IDG). With the loss of either IDG, the APU automatically powers up. 

During ground operations, the APU driven generator or an external power source can be 

used to handle all servicing and loading operations. 

The left and right main AC buses provide power for various lights, instruments, 

and other loads. In case the electrical system fails, the standby system can provide both 

AC and DC power for up to 30 minutes from the main battery. Also, the ram air turbine 

can provide limited power to the AF-l. 
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Figure 14.6 AF-l Hydraulic System Schematic 
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Figure 14.8 AF-l Electrical System (From Boeing 767) 
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14.7 Fuel System 

The fuel system for the AF-l is fairly conventional and is shown in Figure 14.9. 

The 3000 nautical mile stage length requires approximately 5500 gallons of fuel. This 

amount of fuel can be stored in the two main wing tanks and a center tank with the 

refueling ports on the underside of the wings. The fuel system provides storage, fueling, 

venting, auxiliary power unit and engine fuel feed. 

OVERWING FILL PORT 

ACCESS DOOR 

SURGE TANK 
SUMP DRAIN 

SURGE TANK 

DRY BAY 

Figure 14.9 AF-l Fuel System 

14.8 Environmental Control System 

, 
., 

\ 

Environmental controls for passenger comfort are powered by the pneumatic 

system. The supply air is delivered to the two cooling packs located near the main wheel 

well where it is cooled and properly humidified. The conditioned air is then brought 

forward to the front of the aircraft where it is channeled to the top of the passenger 

compartment and distributed through the cabins via ceiling ducts. A similar process 

provides air with a higher oxygen content to the cockpit. A fraction of the cabin air will 
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then be filtered and mixed with conditioned air from the packs for redistribution, thus 

decreasing the load on the system. Figures 14.10 illustrates the system layout. 

r---A --~B 

AFr OUTFlOW VALVE 

FORWARD OUTFlOW VALVE 

REClRCtltAOOH 
rNi 

DETAIL A 

AIR-CONOmONING PACKS 
PRESSURE REUEF VALVES 

LOUVERS L m OIITfloW VAlVE 

DETAIL B 

Figure 14.10 AF-l Environmental Control System 

In case of an emergency, the oxygen system, depicted in Figure 14.11, can be 

activated in one of two ways. First, the pilot can activate the system by switching the 

system on manually. Second, the system automatically activates should the cabin pressure 

altitude exceed 13,000 feet. 

Once the system is activated, control units will produce pressure surges to release 

the mask stowage doors and chemical generators will start providing oxygen to passengers, 

laboratories, and flight attendant stations. 

14.9 Emergency Evacuation System 

Figure 14.12 shows the evacuation system of the AF-l. Single slides open up to 

allow passengers to exit from the forward and aft type I doors. Over the wing, a twin slide 

deploys off the back of the wing to allow passengers from both type III doors on either 

side to evacuate. 
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Figure 14.11 AF-l Passenger Oxygen System 

OOOOOOOOOOOOOOOODOOOO~DDODDDOODODDDODOOOOODD 

Figure 14.12 AF-l Emergency Evacuation System 

14.10 Potable and Gray Water System 

The potable water system supplies over 100 gallons of clean water to the galleys 

and lavatories. There are two potable water tanks located behind the bulk cargo 
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compartment Air pressure from the pneumatic system pushes the potable water from the 

tanks through distribution lines to the lavatories and galleys. 

There is also a gray water system to drain used water from the sinks in the galleys 

and lavatories. Two gray water drain masts located on the bottom of the fuselage are used 

for this purpose. A schematic is shown in Figure 14.13. 
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modified from: Boeing 767 Systems 
Figure 14.13 AF-l Potable Water System 

14.11 Lavatory Waste System 

There are four lavatories on the AF-l. Each lavatory is equipped with a vacuum 

toilet. Each toilet has a flush switch connected to a flush control unit (FCU). When a 

Non-Solo Design Group Aluminum Falcon 93 



person pushes the flush switch, the FCU starts the flush cycle which includes moving the 

waste to one of two waste tanks, either forward or aft, and potable water flushing the toilet. 

These waste tanks are located on the left side of the fuselage adjacent to the bulk cargo 

compartment. The system is shown in Figure 14.14. 

The waste is evacuated from the toilet by vacuum. Above 16,000 feet, the ambient 

atmosphere causes the vacuum. However, below 16,000 feet vacuum pumps are 

necessary, with one installed on each tank. 
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modified from: Boeing 767 Systems 
Figure 14.14 AF-l Lavatory Waste System 

14.12 Anti-Icing System 

The thermal anti-icing (TAl) uses engine bleed air and electrical power to provide 

protection from ice buildup. The engine bleed air is used for heating the leading edge of the 

wing and for the engine inlet cowls. Electric anti-icing is used to protect water and waste 
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lines, drain and waste masts, cockpit windshields, angle of attack (AOA) sensors, Pitot­

static probes, and total air temperature (TAT) probes. 

Ice detectors are installed on either side of the fuselage. When ice starts to develop, 

an icing signal is sent to the cockpit The flight crew can then turn on the system with a 

switch located on the overhead panel. 
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15. CONCLUSION 

The AF-l takes a radical jump in design philosophy, leaping ahead of the 

competition. It meets all the requirements of the RFP, which is a notable achievement. 

Using an innovative wing, discerning use of composites and other advanced materials, and 

close attention to every other detail from engines to entertainment, the AF-l stands out as 

an advanced concept designed specifically for the demands of the future air transport 

market. Proceeding fOlWard with the development will entail wind tunnel work on the 

wing joint, to determine both the aerodynamic and structural complexities of this new 

conception. The rest of the aircraft, however, will require little advanced testing and 

development time and money can be better spent refining and optimizing the various aircraft 

systems, assisting in the goal of delivering a certifiable, profitable aircraft from the very 

first unit out of the hangar. Oose attention will be paid to keeping acquisition cost down 

while also minimizing direct operating cost. Just as the airline market begins to cycle 

upward before the turn of the century, the AF-l will make its debut, leading the way into 

the new millennium. 
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