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Introduction

Radiation transport models are required for the
evaluation of risk to passengers and crews on high-
altitude airplanes and to astronauts in low-Earth or-
bit or deep space and for understanding degradation
properties of materials, including microelectronics,
on orbiting satellites. Light ions such as 2H or 4He
are present as primary and secondary radiations in
solar and galactic cosmic rays. Light ion beams also
are useful in radiotherapy treatment of cancer pa-
tients. (See refs. 1 and 2.) In nuclear reactions the
mass dependence of secondary radiations results in
broader distributions of secondary energies for lighter
mass particles. Several mechanisms (direct knock-
out, evaporation, coalescence, etc.) will produce light
products of nuclear collisions and lead to a wider dis-
tribution of secondary energies. The broad spectrum
of light ion secondaries leads to some different ap-
proaches to solution of the Boltzmann equation for
radiation transport compared with heavy ion trans-
port. (See ref. 3.) The heavy fragments in nuclear
reactions are usually spectators in that they receive
only small momentum and energy transfer.

In this report, we discuss the modifications of
the monoenergetic version of the BRYNTRN trans-
port code (refs. 4-6) for the transport of light ion
beams. Validation of radiation transport methods
must include monoenergetic beams and a continu-
ous spectrum of primary radiations. The BRYNTRN
transport code solves the Boltzmann equation in
the straight-ahead approximation using the method
of characteristics developed in references 3-6. Re-
cently we developed an energy-dependent model of
light ion nuclear interaction cross sections. (See
refs. 7 and 8.) The previous monoenergetic ver-
sion of the BRYNTRN code considered only the cou-
pled proton-neutron transport problem. Here we dis-
cuss the extension of the BRYNTRN code to include
the database for transport of the light ion beams
*H(d), 3H(t), *He(h), and *He(e). The BRYNTRN
code previously calculated target fragmentation ef-
fects through local energy deposition. We also de-
scribe an equilibrium target fragment field that was
added to consider the effects of fragments on the lin-
ear energy transfer (LET) spectrum.

Symbols

A mass number

Ap mass number of target
c speed of light, fm/sec

D dose, cGy

&~ F &

<

S(E)

8

z

«

6

67k
e(r)
G(r,t)
Vi

g
;(E)
6]
¢;(z, E)

b
Subscripts:
EL

ik

n

T

’H

particle energy, MeV /amu
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beam kinetic energy, MeV/amu
average energy of target fragment j
defined in equation (15)

defined in equation (14)

differential energy cross section for
redistribution of particle type and
energy

3He

nucleon mass, MeV/c?

nuclear matter radii, fm

residual range, g/cm?
proton-stopping power, MeV /(g/cm?)
SH

depth of material, g/cm?

charge

distance, g/cm?

alpha particle

Dirac delta function

Kronecker delta

energy associated with r, MeV/amu
defined in equation (7)
range-scaling parameter

cross section, mb

total cross section, mb

linear energy transfer, MeV /cm

differential flux spectrum of type 35
ions

scaled flux

elastic recoils
ions of type j and k
neutron

target



Boltzmann Equations and Solutions

The propagation of high-energy nuclei and their secondaries through bulk matter is described by the
Boltzmann equation, which in the straight-ahead approximation (refs. 5 and 6) is of the form

[58; — %S(E) + Jj(E)] ¢j(z, B) = ;/Ooo fik(E, E) gy (2, E') dE' @)

where v; denotes the range-scaling parameter equal to Z 32 /Aj, Z is the charge, and A is the mass number. In
equation (1), S(E) is the proton-stopping power, o(E) is the total cross section, ¢j(z, F) is the differential flux
spectrum of type 7 ions, and Fik (E, E ) is a differential energy cross section for redistribution of particle type

and energy.

Utilizing the definitions

E dF’
"= 5@ 2
and
?jk(ra T/): S(E)f]k(E? E,) (4)
we can rewrite equation (1) as
[8%0 — yj% + O'j(T')J Pi(z,r) =) /Oo Fix(r, ) (z, ') dr’ (5)
k T

which is solved by Wilson et al. (refs. 5 and 6) as
Yj(z,r) = exp[—¢;(r, z)]; (0,7 + v;x)

T oo .
+ Z/O / exp[—¢;(r, 2)] Fie(r +viz, "V (z — 2, ) dr' dz (6)
k r
where the exponential is the integrating factor given by

t
Glr,t) = /0 oi(r+uv;t’) dt’ (7

Next we present the basis of numerical procedures for propagation of the solution at Yj(x,7) to ¥;(z + h,7).
Choosing h to be small such that
o;i(h <1 (8)

then from perturbation theory (ref. 4) we derive
Yr(z+h—z,r' )~ exp[—C (', b — 2) e[z, 7 + vy (h — 2)) 9)
For monoenergetic particle beams, the initial beam of type J particles of energy Ej is
¥;(0,7) = 8;76(rg — ) (10)
where 7o = R(Ejp). The separation of the singular terms in the solution is written by the replacement

Yi(z,r) — 1/);‘0(@?‘) +¥j(z, ) (11)




Based on equations (8)-(11), the solution (refs. 3 and 7) at z + h is

¥;(z + h, 1) = exp[—(j(r, )|y (zj,r + vjh)

— h oo
+F'[,'h,+ +~—U dr’ ,’} 12
sk |t et v)g re(v5h/2)+ (v /2) T o) 12

for charged-particle propagation, where 7"6]- =10 — vj[z + (h/2)], and

¢n(1‘ + h7 T) ~ eXP[—Cn(ﬁ h)]¢n($a "')
h

#3 (o{ {6 5) + 6 (165 )| T sl =

+ /roo dr’ exp{— [Cn (7“, g) + <7'/, g):'}?nk (r, r’)z,l)k (x, '+, g)) (13)

for neutron propagation. In equation (12) F is related to the cumulative spectrum F' as
T / h 3 !
Fij(r,vjh, )= /O fij(r+vjz,r)dz = Fij(r + vjh,r')— Fy;(r,r) (14)

with -
E\T
Fij(r,r)= / fij(E,E") dE (15)
0

where &(r) is the energy associated with the residual range r and E/ = e(r').

The numerical representation of particle ranges and stopping powers in the BRYNTRN code has been
described in reference 6, where the database for proton and neutron nuclear interactions is also described. The
database for light ion interactions is described in references 8 and 9. We note that the projectile-like fragments
are represented by a Gaussian spectrum with energy-dependent width and downshift from the beam velocity.
We expect that a sum of several Gaussian terms would more accurately represent these spectra. (See ref. 10.)
The quasi-elastic events for light ions are represented by an approximation to the first collision term of the
inelastic scattering series. (See ref. 11.)

Secondary Flux From Light Ion Beams

In figures 1 and 2, we show the secondary charged particle spectra at several depths in water for
monoenergetic *He beams at 200 and 1000 MeV /amu, respectively. Two sources of secondary particles are
clearly seen in the figures that correspond to a high-energy flux from projectile-like fragments and a low-energy
flux from target-like fragments. The projectile-like fragments are produced at energies above that of the beam
due to the internal Fermi motion of the nuclear-bound state. For the beam at 200 MeV/amu and for great
depths, the projectile- and target-like secondaries overlap as the beam energy degrades and the secondaries
slow from atomic interactions. A similar comparison is shown in figures 3 and 4 for aluminum shielding. In
figures 1-4, the greater range of 3H compared with 3He is apparent.

In figures 5 and 6, we show the secondary proton spectra for monoenergetic 2H beams at several depths
in aluminum for 200 and 1000 MeV/amu, respectively. The pickup reactions for 2H projectiles have not been
included at this time, and no projectile-like secondaries with Z > 1 are included. Before discussing depth-
dose curves and the LET spectrum for light ion beams, we next describe an equilibrium field of heavy target
fragments of mass number Ap > 4.



Equilibrium Field of Target Fragments

The nuclear secondaries produced from the target atoms with A F > 4 have average energies of only a few
MeV or less and, therefore, are of extremely short range. Previously, their effects had been included only as
locally deposited energy. (See ref. 6.) Consideration of the target fragmentation effects in the LET spectrum
and of the radiation response quantities other than energy deposition requires an equilibrium field of target frag-
ments. The differential flux for these ions can be solved in closed form (ref. 6) as

BB = gD [, (B B oute, B 0 (16)

where ¢ (z, Ey)is a projectile-like ion k with energy Fj, at z, which produces a target fragment j with energy E.
The production spectrum from fragmentation is assumed of the form

. _ 9P =
T (B, Eip) = (27rE8‘> 1/2 VEexp <2on> an)
7

where pr is the density of the target material, o is the microscopic fragmentation cross section, and Ey; is
the average target fragment energy. The parameters o; and Ep; used in the BRYNTRN code are described in
reference 6. Using equation (17) in equation (16), we find

o 0i(Ex)pr | E 2 | E —E
¢j(37,E,Ek)—-‘]STE)—%(Ek,x)[ETfC( —2Eﬁ0j>—ﬁ ﬁ?o_jexp<%>} (18)

where Erfc is the complementary error function. For composite materials, a summation over the target
constituents is implied in equation (17). The energy spectrum of elastic recoils (ref. 6) is approximated by

CgL exp(—CgLE)

1 — exp[—Cgr,(1 — Dgy,)Eg] (19)

fxj(E, Ey) = ogLpr

where og, is the elastic scattering cross section and Cgy, = Apmc? [B + (a3/3)], where A7 is the mass number
of the target, m is the nucleon mass, B is an average nucleon-nucleon slope parameter, and a is the target
radius parameter. The energy transfer to the recoil is restricted by

0< E<(1-DgL)Ey (20)
with ( )2
Ap -1
P e 21
(Ar +1)2 1)
The flux of recoils is then
progL{exp(=CgLE) — exp[—CgL(1 — Dgp)Ex}
i(z, B, E) = T, E 22
%3 2 S;(E) 1 — exp[~Cgr,(1 — Dgy,) Ey] Pk ) (22)

The equilibrium field of target fragments is found as
%@ 5) = [ 65(e, B By) aB, (23

For calculations, the production cross sections from light ions are assumed to scale to the nucleon-induced ones
by the factor A2'4‘ (See ref. 3.) An energy grid of 100 points with a maximum energy of 30 MeV/amu is used
to obtain convergence of the equilibrium target fragment fields for water. Interface effects at the boundary of
two media could be described in a similar manner as followed here and as described in reference 12.
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Depth-Dose Curves for Monoenergetic
Beams

In figures 7-9, we show calculations of absorbed
dose versus depth in water shields for monoenergetic
light ion beams at several energies. These figures pro-
vide a breakdown of the contributions from primaries
(dotted line), secondary protons (dash-dot line), and
all other secondaries (dashed line). Included in the
secondary contribution are the contributions from
heavier target fragments (Ar > 4) as described ear-
lier. The increase in secondary contributions to the
absorbed dose is apparent when the proton beam is
compared with the heavier beams where projectile
fragmentation provides additional particles. The 2H
range is about twice that of the proton; therefore, nu-
clear reactions can continue, which is also apparent
in figures 7-9. The absorbed dose does not effectively
represent harmful biological components of a radia-
tion field, so we next consider the LET spectrum,
which is more useful.

LET Spectrum for Monoenergetic
Beams

The LET spectrum is closely related to the re-
sponse of microdosimeters and provides a rough in-
dication of biologically harmful components of a
radiation field. Wilson and Badavi (ref. 13) have dis-
cussed the numerical treatment of the singularities in
the transformation of energy spectra to LET spectra.
We use this method to consider the LET spectrum
in water for monoenergetic light ion beams and a]l
nuclear secondaries from target fragmentation.

In figure 10(a), the LET spectrum from a
200-MeV proton beam is shown at various depths
in water. A similar comparison is provided in fig-
ures 10(b) and 10(c) for a 200 MeV/amu, 2H and
‘He beam, respectively. The inclusion of the heavy
component of the target fragments (Ap > 4) pro-
vides particles above 200 keV/um with significant
numbers at the greater depths. The spikes in fig-
ures 10 and 11 occur both at a LET value corre-
sponding to the peak in a Bragg ionization curve
and near the LET value corresponding to minimal
ionization for each charge group. The biological ef-
fectiveness of these ions is not a unique function of
LET because biological effectiveness also depends on
ion velocity due to thindown effects where the range
of secondary electrons becomes small compared with
the size of relevant damage sites inside cells. (See
ref. 14.) In figures 11(a)~11(c), calculations of the
LET flux spectrum at 1000 MeV/amu are shown.
The high LET components increase compared with
the 200 MeV/amu beams in figures 10(a)-10(c) due
to more predominant nuclear fragmentation effects.

A similar comparison for the integral LET spectra is
shown in figures 12(a)-12(c) and 13(a)-13(c).

Conclusion

The monoenergetic version of the BRYNTRN
transport computer code has been extended to the
transport of light ion beams (?H, 3H, 3He, and 4He).
Nlustrative calculations of energy spectrum, depth-
dose curves, and LET spectrum were presented and
discussed. The extensions described here will allow
transport methods for space radiations to be vali-
dated through comparisons with laboratory experi-
ments that involve light ion beams.

NASA Langley Research Center
Hampton, VA 23681-0001
August 16, 1994
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Figure 1. Calculations of light ion flux spectrum in water shields from primary “He beam at 200 MeV /amu.
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Flux per primary, (cm2-MeV/amu)~1

102

e —.\>¢_\ ]
- -~ /_</ AN
//_/,/ - - = \\‘\l
LAl A\
a AT i ]
104 foem” E
§ ............. f E
I —1g/em2 | 1
1 0_5 L e 5 g /cm2 4
S 10 g/cm?2 E
y -——20 g/cm ]
i ——=30 g/cm2
10_6 Lol sl L) s
10-1 100 101 102 103

Energy, MeV/amu

(e) Proton emissions.

Figure 1. Concluded.




Figure 2. Calculations of light ion flux spectrum in water shields from primary “He beam at 1000 MeV /amu.
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Figure 4. Calculations of light ion flux spectrum in aluminum shields for primary “He beam at 1000 MeV/amu.’
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