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ABSTRACT

It is known that certain configurations which possess curvature are prone to a class of

instabilities which their 'flat' counterparts will not support. The main thrust of the study

of these centrifugal instabilities has concentrated on curved solid boundaries and their ef-

fect on the fluid motion. In this article attention is shifted towards a fluid-fluid interface

observed within a curved incompressible mixing layer. Experimental evidence is available

to support the conjecture that this situation may be subject to centrifugal instabilities.

The evolution of modes with wavelengths comparable with the layer's thickness is consid-

ered and the high Taylor/GSrtler number rSgime is also discussed which characterises the

ultimate fate of the modes.

Research was supported by the National Aeronautics and Space Administration under NASA contract No.
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1 Introduction

The understanding of the dynamics involved in mixing layers is crucial in many phys-

ical problems. The necessarily inflectional profile can support inviscid modes which are

known to be responsible for a great deal of the structures that are observed. The work of

Michalke (1964,1965) describes the temporal and spatial linear stability of incompressible

shear layers. The catalogue of work concerning this situation is immense; it suffices to

say that the problem has been studied by many prolific authors. However, one physical

process that has received relatively little attention is the subject tackled herein; thai is,

the effect of centreline curvature on the stability of curved mixing layers.

Most of the work to date concerning this particular subject has considered turbulent

mixing layers, namely Margolis & Lumley (1965), Wyngaard, Tennekes, Lumley & Mar-

golis (1968), Castro & Bradshaw (1976), Wang (1984), Karasso & Mungal (1990,1991),

LeBoeuf (1991) and more recently Plesniak, Mehta & Johnston (1994). Two recent arti-

cles have tackled the problem analytically, concerning themselves with the fate of order one

wavenumber vortices within highly curved situations. Liou (1994) is devoted to the effect

of curvature on inflectional modes and also identifies three-dimensional steady centrifugal

modes. Hu, Otto & Jackson (1994) (henceforth referred to as HOJ) is concerned both

with that problem and also the question of the pure inviscid G/Srtler problem, given in

Drazin & Reid (1979). We can summarize the findings of HOJ as follows: (i) the effect of

centreline curvature on the Rayleigh modes appears to be minimal, and (ii) the presence

of curvature permits an unstable three--dimensional mode which will become the promi-

nent mode as the streamwise wavelength decreases (this corresponds to reverting to the

centrifugal case for which this wavelength is zero). The apparent features of the inviscid

G/Srtler problem can be described as when the centreline curves into the faster stream, the

situation can support a family of unstable modes. However, if the centreline curves into

the slower stream the situation is totally stable to inviscid GSrtler modes.

Since the early work of Taylor (1923) and GSrtler (1940) there has been a host of

articles devoted to the study of centrifugal instabilities. Taylor (1923) demonstrates that

the flow between two concentric cylinders is susceptible to toroidal modes when the inner

cylinder rotates at an angular velocity with a value within a certain interval. In an exterior



problem, namely the flow over a curved plate, GSrtler showed the boundary layer on a

concave plate will support longitudinal vortices. These modes remain within the boundary

layer and have spanwise wavelengths comparable with the boundary layer thickness. It is

known that the evolution of GSrtler vortices is strongly dependent on their initial form

and position, mad the thickening of the boundary layer plays a critical role in their fate. It

was in the work of Hall (1983) that the full parabolic linear GSrtler equations were solved

numerically. It was shown that it is essential for the layer's evolution to be included in

the analysis. A starting condition was used which was consistent with the equations and

the solution was progressed downstream. It was shown that the structure of the mode

depended heavily on the streamwise position at which the disturbance was imposed. The

characteristics of the modes, independent of initial form and position, eventually coalesce,

so that the idea that one can exploit a far downstream asymptotic structure is an option.

This involves considering high wavenumber vortices in a high GSrtler number situation; this

analysis was originally given in Hall (1982). The numerical techniques used here to solve

the full problem are drawn from an article which considers the role of pressure gradients

and crossflow in determining the structure of centrifugal modes, Otto & Denier (1994);

slight modifications have been made to the techniques used in Hall (1983). The main aim

of this article is to demonstrate that the curved mixing layer can support centrifugal modes

for a finite downstream distance.

As hinted at previously, the consideration of high centrifugal parameter asymptotics

can be very revealing. The high Taylor/GSrtler number rSgime is split into two distinct

problems; firstly the inviscid modes and secondly the right hand branch modes. The former

of these problems is pertinent when a mode with spanwise wavelength comparable with the

boundary layer thickness is introduced into a high Taylor-GSrtler number situation. The

second problem occurs when a mode has a high wavenumber (ie short wavelength) and

it attains a neutral state. As a layer thickens the centrifugal modes are known to main-

rain their wavelength, hence the local wavelength actually decreases. As the wavenumber

of the modes increases in the inviscid problem we should match directly onto the small

wavenumber limit of the righthand branch calculation. It is in this intermediate r_gime

that the most unstable linear mode is encountered. In the GSrtler problem this r_gime
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contains a large spike, due to the fact that the mode is driven to the wall wherethe basic

velocity becomeszero (Denier, Hall & Seddougui(1991), henceforth referred to as DHS).

In the current case the velocity is non-zero where the mode resides and hence we do not

expect tO find this significantly more dangerous mode.

In the conventional G6rtler problem the basic state is uneffected by the situation's

curvature and this is also true in our case. However, unlike the GSrtler case in which the

basic state is given by a Blasius profile, it is not clear which profile to use. As mentioned

previously, the evolution of the layer is cruciM and it is probably not sumcient to use the

normal hyperbolic tangent profile, although it will be adequate in the high GSrtler number

case. Another possibility is the Lock profile (1951) in which the normal velocity is taken

to be zero at the centreline. We shall present results for the order one problem using the

Lock profile.

The remainder of this article is structured as follows: in section 2 we formulate the

problem at hand, then in sections 3 and 4 we consider the high GSrtler number problems

and their subsequent matching. In section 5 the numerical methods used to solve the order

one wavenumber problem are described in brief. In section 6 the results of the numerical

calculations are given and finally in section 7 some conclusions are drawn.
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2 Formulation

The problem consideredhere is the stability of an incompressiblesteady laminar mix-

ing layer which lies betweentwo streamswith different speedsin a channelwith curvature

X(x). A schematic is given in figure 1. The upper stream is travelling at U0 and the

lower stream travelling at fl=U0. We assume that the Reynolds number Re = Uod/u of the

situation is large, where d = R2 - Ra is the height of the channel, assumed to be constant,

and u is the kinematic viscosity. Here, R2 is the radius of the outer wall and R1 is the

radius of the inner. We consider the incompressible Navier-Stokes equations in cylindrical

coordinates, such that the mixing layer lies along r* = R1 + d/2 + dy*. The velocities are

nondimensionalized by U0 and lengths by d. We assume that the local curvature of the

channel 6 = d/R1 is small. The nondimensional steady equations, assuming 6 << 1, are

thus given by
Ou Ov Ow

o---;+ + o---;= o,
Ou Op 1 2

Ou + v _vv + w'-_z = Oz + -ReeV u,u-_z y

Ov Ov Ov cop 1 2

u-g-_x+ v-_u + w-_z x 6u 2 = +Oft -K-geV v,

Ow Ow Ow Op 1 2
u-_z + v-ff-_y+ w Oz - Oz + -R-geV w,

where V 2 is the three dimensional Laplacian operator. We assume that the mixing layer is

confined to a small region about y = O, and hence rescale the velocity components (v, w)

and coordinates (y, z) by Re -1/2. This spanwise scaling is used since we know the vortices

have wavelengths commensurate with the layer's thickness. We write the flow field as a

sum of the mean flow and its perturbation

q'-" (fi, Re-1/2v,O, 1) 4- A ((f(x,y),Re-1/2(er(x,y),Re-1/2_r(x,y),Re-lp(x,y))e ikz,

where k is the wavenumber in the z direction. The parameter A is a vanishingly small so

that the resulting analysis is linear and we may discard terms proportional to A 2.

We shall focus on two standard models for the mean flow. The first model is the Lock

model, with the velocity components given by

1

= ft(r/), v-- V_x (r/f'-- f)



where

f'" + ff" = 0, f'(c_) = 1, f(0) = 0, f'(-c_) =/_,

and 7/ is the similarity variable y/v/_. This model takes into account the non-parallel

nature of the mean flow, necessary for the study of G6rtler vorticies. The second model

involves approximating the mean velocity profile by a hyperbolic tangent

1 (1 +/_,, + (1 - _/,,) tanhr/), _ = 0.e=_

We will call this approximation the Tanh model. Most of the results that will be presented

below are for the Lock model, but we include some discussion for the Tanh model since it

is a standard approximation to the mixing layer.

The perturbation equations are given by

a_0 aa 9.aO a_-- - k2 f" - GXk2ftU + 2 0xcoy Oz + Ox COxcoy

+ 0 o________+ of,"a2c,+ of; a2c, + f" o3______L_+ a_ 050
Ox2ay Oz c9y2 Oy Ozcoy OxOy 2 cOx cOy2

- cOycOy2-+ k20 + k2f" = 0Y

(2.1a)

and

£,(O) = cO_ + _v,

where the differential operator £ is given by

(2.1b)

cOs cO cO
k2_ - -

z:::= au_ _ v_.

These equations have the opposite sign for the GSrtler term when compared to the con-

ventional GSrtler problem due to the choice of the coordinate system. The GSrtler number

G is equal to 26v/-R--e and it is held fixed at an order one value as Re _ oo and 6 --.-rO. We.

shall shortly consider the limit G ---* oo (but still less than the square root of the Reynolds

number). The appropriate boundary conditions are

cOp-
u, f', cOy .--,0 as y -, 4-oo. (2.1c)
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The numerical and asymptotic solution to the above system is considered in the following

sections.

3 Viscous Right Hand Branch Modes

It is known that as a GSrtler vortex progresses downstream it maintains its spanwise

wavelength, and hence the local wavenumber, kx½ = kx, increases. Also the local GSrtler

number, GXX g = Gx increases and hence it is pertinent to consider a high GSrtler number

calculation. As G _ oo it is known that k ,,_ G¼ (if X "_ z½) near the righthand branch

of the neutral curve. For simplicity we shall absorb the leading order curvature term X0

in the GSrtler number. In this r6gime it is known that the mode becomes localised within

a thin layer of thickness k-½ situated at tj say, Hall (1982). We introduce a layer variable

and relevant disturbances quantities so that

where E = exp [k2f (80 + k-½151 +'" ")dz] and again we are considering steady modes.

Since we wish to move away from the neutral curve we also expand G in terms of k, so

that

G = k" [Go + k-½GI +...] .

Substituting these forms into the governing equations and combining the streamwise and

normal momentum equations at zeroth and first order, it is found that

and

(_o/_o + 1) 2 + _o_Go = 0 (3.1)

2_0_1 (jS0fi0 + 1) + Go (u0fi2 + u_) = O, (3.2)

where we have expanded fi locally using a conventional Taylor series as

1 _b2

=  0(x) + + +....

The consistency conditions given by (3.1) and (3.2) provide the growth rate and location

of the mode, namely 80 and 9. Transforming these conditions to the similarity variables

we have

(_* f' + (._*)2) 2 + f' f" = 0, (3.3)
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and

2_/*f" (/_*f' + ($,)2) + (f,f,,), = O,

1

where A = G O 4, with A and _0 scaled as

and A=
(2 )t

(3.4)

Note that since f' = _ is positive thoughout the region the condition (3.1) (and hence

_ 1

(3.3)) requires that f" < 0 at f7 = y/(2x)_, that is _y must be negative and the lower

stream must be faster, hence _= > 1 (the centreline curves into the faster stream). Figure

2 depicts the growth rate/_* versus A* for both the Tanh arid Lock profiles with fl= = 2;

it should be noted how close both models are. As A* --+ 0, which corresponds to tending

towards the inviscid r6gime, both models predict that /_* tends to a constant, 0.585786

for the Tanh model and 0.575432 for the Lock model. If we concern ourselves with the

neutral mode, that is when/3" = 0, the location of the layer is given by the location at

which (f'f")' is zero (see (3.4)) and A* can be found using the relationship

1

A*N = (--f'f") z

For the Tanh model with _, = 2 we find that _/= -0.16 yielding A_v = 0.9367 and for the

Lock profile A_v is essentially unaltered, however the layer location is now at _/= -0.67. In

figure 3 we show the effect of changing/_, on _1and A_v. Although there is little difference

in A_v between the two models, the location of the modes are quite different. At next order

the correction to the growth rate is given by

ulG1 UlG1A 4

2 (_0/_0 + 1) 2_'

which tends to zero as A _ 0. At the next order the leading order eigenfunctions are

determined, which satisfy a parabolic cylinder equation as is the case in the G6rtler problem

discussed in Hall (1982).



4 Inviscid modes

DHS have shown that the proper expansion of U and V as G -, ov with k = O(1) is

gq_ven by

_ p/'_f ad, (Uo(x,y) + G-112UI(X,y)-F'" "),

_ v/-_eV_f#d=(Vo(x,y) + G-'I2v_(x,y) +" "),

where _ is the growth rate in the streamwise direction. Substituting into the governing

equations yields, at leading order, the system

O_ #.02_ _ O2
/_Uo + _vo = o, (-_-u-_y2+k2_,)Vo-k_aVo=O.

This system can be rewritten by eliminating Uo, yielding

L _1
__2_( 00.__ k2- u 0y_°_r')V°- _ _2

The appropriate boundary conditions are V0 _ 0 as y -* :t:ec, which corresponds to the

mode being confined to the layer. Sin_ fi is given in terms of the similarity variable rl, it

is convenient to transform the above equation, resulting in

_.' f,- o2 f,,,
-- ( "_'i -- k * " f, )Vo = - k * "f" Vo , (4.1)

where

k* fl*
k- 8-

(2x)1/'"
The above equation was solved numerically for the Tanh model only, using a fourth order

Runge-Kutta technique, shooting in from 7/ = -t-_ and matching the function and its

derivative at r/ = 0. These results were checked using a fourth order finite difference

scheme. A stretched grid was used to reduce the number of points needed to retain

sufficient accuracy. The results presented henceforth in this section are given for the case

/_,, = 2, in which the mixing layer curves into the fast stream. It was found, as was to be

expected, that for values of flu less than unity there were no unstable vortex modes. The

spatial growth rates for the first four modes are given in figure 4, and the eigenforms of

these modes are given in figure 5. Upon comparing the unstable mode of the right hand



branch shownin figure 2 and the unstable modes of the inviscid regime shown in figure 4,

we see that the growth rate plateaus between the inviscid regime and right hand branch

of the neutral curve. This mimics the Taylor problem in which, at leading order, the most

unstable mode is not well defined. On the other hand, in the GSrtler problem there is

a class of modes with distinctly higher growth rates within this regime, as identified by

DHS. We have thus verified that the mixing layer must curve into the faster stream in

order to be unstable to longitudinal inviscid centrifugal instabilities. This is equivalent to

the concave curvature condition for GSrtler vortices.

We now show that the inviscid solutions in the limit k* --_ oo matches with the viscous

right hand branch solutions as A* -* 0. We begin by first plotting in figure 6 the inviscid

eigenfunctions V0 for the Tanh model verses 77 for three wavenumbers k* = 3.5, k* = 26

and k* = 100. Note that as k* increases, the structure shrinks to a thin layer, consistent

with the asymptotic solution for the right branch. To begin the matching process, we first

set k* = e -1 and take the limit e _ 0. Let r/b be the location of the mode, and set

_=_b+_(

where _ = 8(_). We now expand the quantities

fl* = fl0 q- _fll -[- _2fl2 +'", f = fb "l- 6_f_ + 1_2_2f_ ' +-...

Substitution into the equation (4.1) yields the conditions,

fll = 0, fi, tf, _ (f,,)2 = 0 at r/= r/b.

The first condition shows that as k* _ co the growth rate tends to a constant value (see

figure 4), whilst the second condition defines the location of the layer (this is shown in figure

6 as a vertical dashed line). The eigenfunction satisfies a parabolic cylinder equation which

matches with the viscous right branch provided the choices e = G -1/4 and 6 = O(v_) are

made.
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5 Numerical Methods used to solve (2.1)

The governing equations are parabolic, and thus are solved using a marching procedure

in the downstream direction. This makes the whole process orders of magnitude less

expensive that the corresponding elliptic problem. The numerical methods used here are

taken from Otto & Denier (1994), with slight modifications to cope with the infinite range

(rather than the semi-infinite domain used in that problem). The equations are discretized

in the downstream coordinate using a Crank-Nicholson scheme, and a standard second

order finite difference technique is used in the normal coordinate. This yields a coupled

penta-diagonal and tri-diagonal system which is inverted using techniques detailed in Otto

& Bassom (1993). The entire system is then inverted using a fairly complicated Thomas

algorithm, which serves to retain more of the nature of the system, and hence makes the

scheme slightly more implicit than if the penta and tri systems are solved individually. In

order to resolve the detail at the centreline, an algebraically stretched grid is used in the
1

normal coordinate, with outer limits at 4-40 (x)_. We chose to solve the problem using

the similarity variables, and thus the grid naturally spreads to resolve the layer.

An initial condition was imposed at a streamwise location, _ say, of the form

= (/4 + (7/- _)_) _-("-_)_, V =
0 0 (5.1)

where _ in some sense is the centre of the imposed disturbance and L( is another free

parameter. As one would expect the modes were found to change with//, but the char-

acteristics coalesced downstream as predicted in Hall (1982) and observed in Hall (1983).

Results are also presented for the initial condition given by

U = (_/- _)3 e-(_-_)', V=0. (5.2)

The essential difference is that the modes are now odd functions of 7/about _/. As the modes

progress downstream we monitor the evolution using the energy measure in physical space

_----c_ y----oo

/ 1/= O d,7= O dy
r#------oo y_--oo

and define the spatial growth rate as

a(x) = E., 1
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We are largely interested in determining the location wherethe modesstart to grow. Since

in areal problem somedistancedownstreamof this location it is likely that nonlinear effects

will come into play. Hencewe shall produceneutral curvesof Gx versus kx (both defined

in section 3), where a neutral point is defined as where the real part of a changes sign (in

this case a is always real; if we were to consider temporal oscillations to the problem this

would result in less unstable modes, as shown in Otto & Denier (1994)).

The basic state is taken to be the Lock model and is generated using a fourth or-

der Runge--Kutta scheme in conjunction with a two-dimensional secant method. The

mean flow quantities are constructed from the similarity forms at each station rather than

marching the boundary layer equations forward. We shall now discuss the results of our

calculations.

6 Results

In this section we present results concerning GSrtler modes with wavelengths commen-

surate with the mixing layer's thickness and for order one GSrtler numbers. It is clear that

there are no local approximations which can deal with this problem other than predicting

the far downstream behaviour. The majority of 'local' approximations use the argument

that since the flow evolves over longer scales in the streamwise coordinate than in the nor-

mal layer variable, the streamwise derivative of fi, and hence _, is zero (from continuity).

This argument allows one to use a normal mode analysis, with _r = _e _C,x, where a is the

eigenvalue. Whilst this is suitable for the inviscid modes in which the streamwise evolution

is on a far shorter scale than the boundary layer evolves on, it is not so in the G_Srtler

problem.

In some parallel flow work instabilities are actually predicted with zero spanwise

wavenumber. In Otto & Denier (1994) a favourable pressure gradient was found to desta-

bilize GSrtler vortices which is in direct contradiction to the conclusion reached by Ragab

& Nayfeh (1980) using parallel arguments. In Otto & Denier (1994) it was found that

as the pressure gradient increased, the right hand branch of the neutral curve moved to

the right (as it does with an increase in flu here). The marching calculations were able to

reproduce this behaviour. We shall include similar comparisons here.

We solved equation (2.1) subject to the initial conditions (5.1) with U = 5 and _ = 5.
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Note that the disturbance was placed above the centreline. Similar results were obtained

for the cases _ = 0 and _ = -5 and will not be presented here. The curvature is taken

to have the form X = V/_ and the GSrtler number was taken to be G = 1/20. In

figure 7 we plot Gx versus kx for 8,, = 10, 6_, 2.5 and 2. Note that as 8,, increases

(i.e. greater disparity between the freestream speeds), the right hand branch moves to

the right, consistent with the analysis presented in section 3. Also note that as the value

of 8u increases, the minimum of G, decreases. This is found to be true for other initial

conditions. Here, as in Hall (1983) and Otto & Denier (1994), the centre and left hand

parts of the neutral curve are dependent on the particular initial conditions chosen. For

comparison, we also show in figure 7 results using the odd initial conditions (5.2) with

fu = 2. In figure 8 we plot the growth rate a(z) as a function of z for the initial condition

(5.1) with H = 5, _ = 5 and flu = 10 (dashed curve) and fu = 2 (solid curve). In each

ease, the wavenumber k chosen corresponds to its respective minimum shown in figure 7;

for flu = 10, k = 0.071 and for flu = 2, k = 0.053. Note that the mode corresponding to

the case fu = 10 becomes unstable earlier and has a larger growth rate than the case for

fu = 2. This is consistent with experimental observations that as the speed of the fast

stream increases, the flow becomes more unstable.

To illustrate the streamwise structure of the GSrtler. modes, we plot in figure 0 the

spanwise vorticity

at various downstream locations and with A = 0.002. The initial conditions and paramet-

ric values are the same as in figure 8 for/_u = 2. Note that as the downstream distance

increases, streamwise vortices emerge and appear to "ride" on top of the centreline. Al-

though these streamwise vortices will produce large scale structures, they may not be an

efficient mechanism for mixing enhancement since they are predominant on one side of the

mixing layer and are confined within.

We remark here that the choices of H and _ are in a sense arbitrary since the starting

condition is artificial and is not derived from any rigorous analysis. In this paper we merely

wish to demonstrate that the curved mixing layer can support centrifugal instabilities. We

12
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are not trying to identify the most unstable mode. It is our intention to provide information

concerning the receptivity of this situation in the near future. In the article of Hall (1990)

the problem of freestream receptivity of GSrtler vortices within a boundary layer was

considered and, by using similar techniques, we intend to demonstrate the receptivity of

the situation considered herein to freestream disturbances.

In figure 10 we plot the neutral curves for the case G = -1/20, 13,, = 2 and X = X/cz--/_

(solid) and X = 1 (dashed). The initial condition used in these calculations was taken to

be (5.1) with _ = 0 and b/= 5. The negative GSrtler number corresponds to the case for

which the centreline curves into the slower stream. Note the somewhat surprising result

of the existence of an unstable band for small spanwise wavenumbers. For wavenumbers

larger than a critical value, the flow is stable for all GSrtler numbers. This is consistent

with the analysis presented in sections 3 and 4, as well as the recent work by Liou (1994)

and HOJ.

Thus, all the high GSrtler number modes are stable except for those in the neighbour-

hood of the left hand branch. We are not suggesting that these modes will be observed

in a physical problem, merely that it is important to include all the physics of a problem

since these modes would be missed by the parallel flow approximations. In figure 11 we

show the energy E associated with these modes for the case X = V/x-/_ and for se'Ceral

wavenumbers. As k decreases the modes become more unstable, suggesting that the most

linearly unstable mode will have a very long spanwise wavelength. It would be interesting

to explore the analysis of Choudhari, Hall & Streett (1994) for this problem. In that article

the receptivity of long wavelength modes is discussed and the modes were found to operate

within a triple deck type structure. The other information that can be gleaned from figure

11 is that the energy does not return its original value. This is probably the reason that

these modes have not been reported in the experimental literature.
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7 Concluding Remarks

In this paper we have demonstrated that the curved incompressible mixing layer can

support centrifugal instabilities. As far as we are aware this is the first work which investi-

gates the evolution of modes in curved mixing layers where the wavelengths are comparable

with the layer's thickness and order one G6rtler number situations. The extra parameters

that this incurs make a parametric study enormous. However, we have shown that by

solving the equations (2.1) we could predict a given mode's characteristics. In addition,

we have shown that as the modes develop downstream, they conform to a far downstream

asymptotic structure. It is in this rSgime that the parallel flow approximation could be

used, however it is then irrelevant. We were also able to show that as #u increased, the

right hand branch moved to the right. This was shown using the asymptotic techniques

of section 3 (refer to figure 3) and by direct solution of the full equations (2.1) (refer to

figure 7).

In section 3 it was shown that as k decreased from its O(G_) value the growth rate

of the modes tended to a constant multiplied by G½. Similarly in section 4 we showed

that as k increased in the inviscid rSgime, the growth rate asymptoted to the same value.

Thus, there is a direct matching between the two problems and the most unstable mode

is not uniquely defined (at least to leading order). It is, however, still possible to identify

the most unstable linear mode in these cases and the interested reader is referred to Otto

& Bassom (1994) for a discussion of the Taylor case.

The surprising result of this article is that we were able to demonstrate that the case in

which the centreline curved into the slower stream can also support centrifugal instabilities.

It should be stressed that these modes grow for far reduced streamwise distances and do

not seem to grow beyond their initial amplitudes (refer to figure 11) and thus are unlikely

to be seen within experimental configurations. However, we have shown that the most

unstable modes have very small wavenumbers, and their receptivity may be important,

Choudhari, Hall & Streett (1994). This result does not contradict the work of Liou (1994)

and HOJ, nor the analysis presented in sections 3 and 4, since we still predict that the

inviscid and right hand branch modes are stable.

There is also the question of how curvature effects the growth of the Kelvin-Helmholtz

14



instability. In HO:I, a sizeof curvature was used that was sufficient to allow centrifugal

vortices to be obtained, whilst not effecting the Kelvin-Helmholtz modes. In Liou (1994),

however,it was found that if the layer curved into the faster stream, not only were vortices

produced but the inviscid modesalsobecamemore unstable. In HOJ, although the effect

of the curvature on the two-dimensional modes was minimal, the most severechange

was to the modes with short streamwisewavelengths,which would actually be close to

the G6rtler modes (which correspond to at zero). The reason given for the apparent

insensitivity of the Kelvin-Helmholtz modes to the curvature was that they evolve over

far shorter distances O(R-[ ½) than the centrifugal instabilities, O(G-½) (one should recall
1

that G << Re_). It is shown in HOJ that the most unstable temporal mode for small a in

a slightly curved situation is in fact three-dimensional, which shows again the importance

of vortical disturbances in curved mixing layers.
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Here, the initial condition was taken to be (5.1), with

G = 1/20, X = V/_-/_, and flu = 2.
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