
NASA Contractor Report 195312

Portable Parallel Stochastic Optimization for
the Design of Aeropropulsion Components

Robert H. Sues and G.S. Rhodes
Applied Research Associates, Inc.
Raleigh, North Carolina

October 1994

Prepared for
Lewis Research Center
Under Contract NAS3-26839

• National Aeronautics and
Space Administration

J

NASA Contractor Report 195312

Portable Parallel Stochastic Optimization for
the Design of Aeropropulsion Components

Robert H. Sues and G.S. Rhodes
Applied Research Associates, Inc.
Raleigh, North Carolina

October 1994

Prepared for
Lewis Research Center
Under Contract NAS3-26839

• National Aeronautics and
Space Administration

J

...

'w' Chapter 1
1.1
1.2

Chapter 2
2.1
2.2

2.3

2.4

Chapter 3
3.1

3.2
3.3

3.4

3.5

TABLE OF CONTENTS

Introduction .. 1-1
Background ... 1-1
Objectives and Scope 1-1

Portable Parallel Stochastic Optimization 2-1
Introduction .. 2-1
Background on Parallel Processing and Portable Parallel
Programming ... 2-1
Parallel Stochastic Optimization 2-5
2.3.1 General Formulation and Review 2-5
2.3.2 Formulation for Parallel Multi-Disciplinary Stochastic

Optimization 2-7
Parallelism in Multi-Disciplinary Stochastic Optimization 2-12
2.4.1 Sources of Parallelism in Coupled Aeromechanical

Design .. 2-12
2.4.2 Computational Strategy for Multi-Level Parallelism 2-14
2.4.3 Special-Purpose Computational Algorithms 2-17

Parallel Implementation Using Parallel Virtual Machine (PVM) 3-1
Introduction , 3-1
3.1.1 ANSI Standard Programming Languages 3-1
3.1.2 Portable PVM 3-1
Parallel Computer Systems 3-2
Advanced Prop fan Blade Demonstration Problem 3-3
3.3.1 Problem Description 3-3
3.3.2 Brief Description of the VORP Aerodynamics Code 3-9
Implementation of the MSO .. 3-12
3.4.1 Overview. .. 3-12
3.4.2 Parallelization of the Demonstration Problem 3-13
Parallel Performance 3-20
3.5.1 Description of the Timing Studies 3-20
3.5.2 Phase I Results 3-22

Chapter 4 Summary, Conclusions, and Recommendations 4-1
4.1 Summary ... 4-1
4.2 Conclusions and Recommendations 4-2

References ... R-1

5786

...

'w' Chapter 1
1.1
1.2

Chapter 2
2.1
2.2

2.3

2.4

Chapter 3
3.1

3.2
3.3

3.4

3.5

TABLE OF CONTENTS

Introduction .. 1-1
Background ... 1-1
Objectives and Scope 1-1

Portable Parallel Stochastic Optimization 2-1
Introduction .. 2-1
Background on Parallel Processing and Portable Parallel
Programming ... 2-1
Parallel Stochastic Optimization 2-5
2.3.1 General Formulation and Review 2-5
2.3.2 Formulation for Parallel Multi-Disciplinary Stochastic

Optimization 2-7
Parallelism in Multi-Disciplinary Stochastic Optimization 2-12
2.4.1 Sources of Parallelism in Coupled Aeromechanical

Design .. 2-12
2.4.2 Computational Strategy for Multi-Level Parallelism 2-14
2.4.3 Special-Purpose Computational Algorithms 2-17

Parallel Implementation Using Parallel Virtual Machine (PVM) 3-1
Introduction , 3-1
3.1.1 ANSI Standard Programming Languages 3-1
3.1.2 Portable PVM 3-1
Parallel Computer Systems 3-2
Advanced Prop fan Blade Demonstration Problem 3-3
3.3.1 Problem Description 3-3
3.3.2 Brief Description of the VORP Aerodynamics Code 3-9
Implementation of the MSO .. 3-12
3.4.1 Overview. .. 3-12
3.4.2 Parallelization of the Demonstration Problem 3-13
Parallel Performance 3-20
3.5.1 Description of the Timing Studies 3-20
3.5.2 Phase I Results 3-22

Chapter 4 Summary, Conclusions, and Recommendations 4-1
4.1 Summary ... 4-1
4.2 Conclusions and Recommendations 4-2

References ... R-1

5786

LIST OF FIGURES

Figure 2-1 Parallel Architectures-Memory Taxonomy 2-2

Figure 2-2 Solution Algorithm for Stochastic Optimization 2-8

Figure 2-3 Top-Down Strategy for Parallel MSO Problem Decomposition 2-16

Figure 2-4 Probabilistic Substructuring " 2-17

Figure 3-1 Hypercube Architecture . 3-3

Figure 3-2 Increased Propulsive Efficiency with High-Speed Turboprops 3-4

Figure 3-3 Typical Advanced Propfan Blade Experimental Model 3-7

Figure 3-4 Representation of the Flow Field in the VORP Code 3-12

Figure 3-5 Velocity Influence Coefficient of an Element due to Itself
and due to Neighboring Elements 3-15

Figure 3-6 Typical Propfan Blade and Loads 3-22

Figure 3-7 Thrust Versus Advance Ratio 3-24

Figure 3-8 Propeller Efficiency Versus Advance Ratio 3-24

Figure 3-9 Blade Twist Distributions .. 3-25

Figure 3-10 Parallel Speedup for Sensitivity Coefficient Calculations
on the Intel .. 3-26

Figure 3-11 Theoretical Maximum Parallel Efficiency for Single-Level
Parallelism ... 3-27

Figure 3-12 Advanced Turboprop Blade Differential Surface Pressures 3-27

Figure 3-13 Parallel Speedup for Influence Coefficient Calculations
on the Intel .. 3-29

Figure 3-14 Parallel Efficiency for Influence Coefficient Calculations
on the Intel .. 3-30

LIST OF FIGURES

Figure 2-1 Parallel Architectures-Memory Taxonomy 2-2

Figure 2-2 Solution Algorithm for Stochastic Optimization 2-8

Figure 2-3 Top-Down Strategy for Parallel MSO Problem Decomposition 2-16

Figure 2-4 Probabilistic Substructuring " 2-17

Figure 3-1 Hypercube Architecture . 3-3

Figure 3-2 Increased Propulsive Efficiency with High-Speed Turboprops 3-4

Figure 3-3 Typical Advanced Propfan Blade Experimental Model 3-7

Figure 3-4 Representation of the Flow Field in the VORP Code 3-12

Figure 3-5 Velocity Influence Coefficient of an Element due to Itself
and due to Neighboring Elements 3-15

Figure 3-6 Typical Propfan Blade and Loads 3-22

Figure 3-7 Thrust Versus Advance Ratio 3-24

Figure 3-8 Propeller Efficiency Versus Advance Ratio 3-24

Figure 3-9 Blade Twist Distributions .. 3-25

Figure 3-10 Parallel Speedup for Sensitivity Coefficient Calculations
on the Intel .. 3-26

Figure 3-11 Theoretical Maximum Parallel Efficiency for Single-Level
Parallelism ... 3-27

Figure 3-12 Advanced Turboprop Blade Differential Surface Pressures 3-27

Figure 3-13 Parallel Speedup for Influence Coefficient Calculations
on the Intel .. 3-29

Figure 3-14 Parallel Efficiency for Influence Coefficient Calculations
on the Intel .. 3-30

,. Figure 3-15 Parallel Speedup for Sensitivity Coefficient Calculations
on the IBM RS/6000 Network 3-30

Figure 3-16 Speedup Results for Multi-Level Parallelism on the Intel:
PSC/860 (Ten Clusters Used for Each Multi-Level Study) 3-32

Figure 3-17 Optimized Cold Shape Twist Distribution 3-33

Figure 3-18 Deformed "Hot" Shape .. 3-35

Figure 3-19 Cumulative Distribution Function for Tip Displacement
in the Z-Direction 3-36

5786 iii

,. Figure 3-15 Parallel Speedup for Sensitivity Coefficient Calculations
on the IBM RS/6000 Network 3-30

Figure 3-16 Speedup Results for Multi-Level Parallelism on the Intel:
PSC/860 (Ten Clusters Used for Each Multi-Level Study) 3-32

Figure 3-17 Optimized Cold Shape Twist Distribution 3-33

Figure 3-18 Deformed "Hot" Shape .. 3-35

Figure 3-19 Cumulative Distribution Function for Tip Displacement
in the Z-Direction 3-36

5786 iii

LIST OF TABLES

Table 2-1 Parallel-Programming Toolkits 2-3

Table 2-2 Sources of Parallelism in Probabilistic Mechanics 2-13

Table 3-1 Statistic Parameters for Stochastic Analysis of the Propfan
Blade ~.. 3-36

Table 3-2 Response Statistics 3-36

5786 iv

, ' .' LIST OF TABLES

Table 2-1 Parallel-Programming Toolkits 2-3

Table 2-2 Sources of Parallelism in Probabilistic Mechanics 2-13

Table 3-1 Statistic Parameters for Stochastic Analysis of the Propfan
Blade ~.. 3-36

Table 3-2 Response Statistics 3-36

5786 iv

, ' .'

.. " CHAPTER 1

INTRODUCTION

1.1 BACKGROUND

The continuing rapid advancement of computer technology plays an important
role in the evolution of engineering and mechanical design. Today, as in the past,
engineers often use a "trial and error" approach to design, using their experience as a
guide. Although trial and error design has its place, this approach is especially
inefficient when dealing with complex design problems which involve many different
engineering disciplines, and for problems, such as the design of high-speed-civil­
transport vehicles or the design of advanced propulsion systems, which involve new
technologies for which little practical experience exists. It is in design problems such as
these that high-power computers are becoming more and more useful. With advanced
analysis and numerical optimization techniques, engineers and scientists are attempting
to eliminate the expensive man-in-the-Ioop iterations, and solve multi-disciplinary
design problems completely by computer. This emerging technology is often referred to
as multi-disciplinary design optimization.

The computational cost of these multi-disciplinary optimizations can be quite
large. Many complex calculations must be performed repeatedly within an optimization
loop. These tasks can often become unfeasible on a single computer. The advent of
parallel and distributed computing and continuous advances in computing technology
have spawned new potential for reducing the computer time required for multi­
disciplinary design optimizations. Problems which cannot be solved on a single
computer can now be solved using a network of several computers.

By using parallel and distributed computing, engineers can consider aspects of a
design which were previously ignored. For example, the treatment of uncertainties in
design optimization has long been recognized as important. Both design and constraint
variables with a large degree of uncertainty can significantly affect the optimum design,
and may govern the design constraints. In addition, in pushing performance limits it is
crucial that aircraft reliability be quantified. Probabilistic methods are a growing part of
optimized design, and they can be efficiently used in a parallel computing environment.
The combination of multi-disciplinary stochastic optimization (MSO) and parallel
computing promises to be an innovative solution to optimization of advanced aerospace
systems design.

1.2 OBJECTIVES AND SCOPE

The primary goal of this research program is to develop a methodology for
performing parallel Multi-Disciplinary Stochastic Optimization (MSO) of aerospace
systems. The MSO methodology will be implemented in a portable programming
environment, meaning the source code can be compiled and executed on many different
computer systems ranging from massively parallel super-computers to networks of

5786 1-1

.. " CHAPTER 1

INTRODUCTION

1.1 BACKGROUND

The continuing rapid advancement of computer technology plays an important
role in the evolution of engineering and mechanical design. Today, as in the past,
engineers often use a "trial and error" approach to design, using their experience as a
guide. Although trial and error design has its place, this approach is especially
inefficient when dealing with complex design problems which involve many different
engineering disciplines, and for problems, such as the design of high-speed-civil­
transport vehicles or the design of advanced propulsion systems, which involve new
technologies for which little practical experience exists. It is in design problems such as
these that high-power computers are becoming more and more useful. With advanced
analysis and numerical optimization techniques, engineers and scientists are attempting
to eliminate the expensive man-in-the-Ioop iterations, and solve multi-disciplinary
design problems completely by computer. This emerging technology is often referred to
as multi-disciplinary design optimization.

The computational cost of these multi-disciplinary optimizations can be quite
large. Many complex calculations must be performed repeatedly within an optimization
loop. These tasks can often become unfeasible on a single computer. The advent of
parallel and distributed computing and continuous advances in computing technology
have spawned new potential for reducing the computer time required for multi­
disciplinary design optimizations. Problems which cannot be solved on a single
computer can now be solved using a network of several computers.

By using parallel and distributed computing, engineers can consider aspects of a
design which were previously ignored. For example, the treatment of uncertainties in
design optimization has long been recognized as important. Both design and constraint
variables with a large degree of uncertainty can significantly affect the optimum design,
and may govern the design constraints. In addition, in pushing performance limits it is
crucial that aircraft reliability be quantified. Probabilistic methods are a growing part of
optimized design, and they can be efficiently used in a parallel computing environment.
The combination of multi-disciplinary stochastic optimization (MSO) and parallel
computing promises to be an innovative solution to optimization of advanced aerospace
systems design.

1.2 OBJECTIVES AND SCOPE

The primary goal of this research program is to develop a methodology for
performing parallel Multi-Disciplinary Stochastic Optimization (MSO) of aerospace
systems. The MSO methodology will be implemented in a portable programming
environment, meaning the source code can be compiled and executed on many different
computer systems ranging from massively parallel super-computers to networks of

5786 1-1

engineering workstations. Ideally, the code should be able to execute on a network of
heterogeneous computers.

A complimentary goal is to achieve large-scale parallelism in solving MSO
problems. To do this, we must be able to keep large numbers of processors busy with a
minimum of parallel overhead. In addition, since this research is part of the Small
Business Innovative Research program, potential commercialization of the research is
important, and we have adopted a goal to develop a software/hardware package that is
marketable and meets the following requirements: (1) the software/hardware package
should be available for low-end to high-end price ranges (e.g., be able to operate on
networks of workstations to massively parallel supercomputers), (2) we should not
require special purpose hardware, and (3) the software should be portable, extensible,
and able to adapt as hardware advances are made.

This report represents the results of the Phase I research to determine the
feasibility of developing such a system. The following specific Phase I objectives can be
enumerated:

1. Identify portable parallel programming approaches that meet our
requirements for the portability, extensibility and efficiency necessary to
achieve commercial success.

2. Demonstrate source code portability by executing an example application
on a massively parallel distributed memory system and on a network of
workstations.

3. Demonstrate feasibility of achieving high parallel efficiency and large
scale parallelism via parallel timing studies.

4. Evaluate lessons learned from the example computations and formulate
recommendations for optimal hardware configurations for particular
classes of problems, and formulate optimal software strategies for the
different hardware configurations and problems.

To meet these objectives, we conducted a number of investigations. These results
are summarized in the following three chapters. In Chapter 2, we present the results of
our research to identify a portable parallel programming approach that meets our
requirements, a newly formulated MSO methodology, identify the multiple levels of
parallelism, and discuss strategies for exploiting this parallelism. In Chapter 3, we
present the implementation of the MSO methodology in a portable parallel
programming environment. We also present results from an example problem, the
shape optimization of an advanced propfan blade. The example was executed on a 128-
node Intel iPSC/860 hypercube, a network of IBM RISC/6000 workstations, and a
single Hewlett-Packard Apollo 9000/730 workstation. The list below summarizes these
studies.

1.

5786

Parallel Optimization, Intel iPSC/860. Parallel computation of sensitivity
coefficients used in aerodynamic shape optimization of an advanced

1-2

engineering workstations. Ideally, the code should be able to execute on a network of
heterogeneous computers.

A complimentary goal is to achieve large-scale parallelism in solving MSO
problems. To do this, we must be able to keep large numbers of processors busy with a
minimum of parallel overhead. In addition, since this research is part of the Small
Business Innovative Research program, potential commercialization of the research is
important, and we have adopted a goal to develop a software/hardware package that is
marketable and meets the following requirements: (1) the software/hardware package
should be available for low-end to high-end price ranges (e.g., be able to operate on
networks of workstations to massively parallel supercomputers), (2) we should not
require special purpose hardware, and (3) the software should be portable, extensible,
and able to adapt as hardware advances are made.

This report represents the results of the Phase I research to determine the
feasibility of developing such a system. The following specific Phase I objectives can be
enumerated:

1. Identify portable parallel programming approaches that meet our
requirements for the portability, extensibility and efficiency necessary to
achieve commercial success.

2. Demonstrate source code portability by executing an example application
on a massively parallel distributed memory system and on a network of
workstations.

3. Demonstrate feasibility of achieving high parallel efficiency and large
scale parallelism via parallel timing studies.

4. Evaluate lessons learned from the example computations and formulate
recommendations for optimal hardware configurations for particular
classes of problems, and formulate optimal software strategies for the
different hardware configurations and problems.

To meet these objectives, we conducted a number of investigations. These results
are summarized in the following three chapters. In Chapter 2, we present the results of
our research to identify a portable parallel programming approach that meets our
requirements, a newly formulated MSO methodology, identify the multiple levels of
parallelism, and discuss strategies for exploiting this parallelism. In Chapter 3, we
present the implementation of the MSO methodology in a portable parallel
programming environment. We also present results from an example problem, the
shape optimization of an advanced propfan blade. The example was executed on a 128-
node Intel iPSC/860 hypercube, a network of IBM RISC/6000 workstations, and a
single Hewlett-Packard Apollo 9000/730 workstation. The list below summarizes these
studies.

1.

5786

Parallel Optimization, Intel iPSC/860. Parallel computation of sensitivity
coefficients used in aerodynamic shape optimization of an advanced

1-2

5786

propfan blade. This first study is used as a benchmark and to confirm
expectations of high parallel efficiency for coarse-grained analyses, using
from one to twenty processors.

2. Parallel Aerodynamic Analysis, Intel iPSC/860. Parallel computation of
aerodynamic influence coefficients to obtain loads on the propfan blade.
This study investigates the feasibility of achieving high parallel efficiency
for a finer-grained problem. Analyses are executed using from one to fifty
processors.

3. Parallel Optimization, IBM RS/6000 workstation network. Repeat of
study described under item 1 for the workstation network. Here we
investigate the portability of the PVM toolkit and study parallel efficiency
over a workstation network, both in a dedicated mode and in normal
operation mode, using from one to twenty workstations.

4. Multi-level Parallelism, Intel iPSC/860. Simultaneous parallel
computation of both sensitivity coefficients and influence coefficients. This
study investigates the feasibility of simultaneously exploiting more than
one level of parallelism (which will be necessary for achieving large scale
speedup for practical problems of interest). We use a top-down approach
and exploit the coarsest grained part of the problem first (the sensitivity
coefficients) and use remaining available processors for the finer grained
part of the problem (the influence coefficients). Analyses are executed
using from ten to forty processors.

5. Multi-disciplinary Optimization, HP 90001730 Workstation. Coupled
aeromechanical optimization of the advanced propfan blade. An
improved optimization procedure is made possible since the blade shape
can be optimized starting from the cold shape as opposed to a presumed
hot shape. The purpose of this study is to investigate the feasibility of
performing multi-disciplinary optimization, determine computational
resources required, and to identify special requirements that will be
needed for parallelization in Phase II.

6. Stochastic Analysis HP, 9000/730 Workstation. Stochastic structural
analysis of the propfan blade under load was executed. Parallelization was
not performed since the feasibility of parallel probabilistic analysis has
been demonstrated in earlier research. The purpose was to demonstrate
the feasibility of stochastic analYSis for the example problem.

In Chapter 4, we present our conclusions and recommendations.

1-3 5786

propfan blade. This first study is used as a benchmark and to confirm
expectations of high parallel efficiency for coarse-grained analyses, using
from one to twenty processors.

2. Parallel Aerodynamic Analysis, Intel iPSC/860. Parallel computation of
aerodynamic influence coefficients to obtain loads on the propfan blade.
This study investigates the feasibility of achieving high parallel efficiency
for a finer-grained problem. Analyses are executed using from one to fifty
processors.

3. Parallel Optimization, IBM RS/6000 workstation network. Repeat of
study described under item 1 for the workstation network. Here we
investigate the portability of the PVM toolkit and study parallel efficiency
over a workstation network, both in a dedicated mode and in normal
operation mode, using from one to twenty workstations.

4. Multi-level Parallelism, Intel iPSC/860. Simultaneous parallel
computation of both sensitivity coefficients and influence coefficients. This
study investigates the feasibility of simultaneously exploiting more than
one level of parallelism (which will be necessary for achieving large scale
speedup for practical problems of interest). We use a top-down approach
and exploit the coarsest grained part of the problem first (the sensitivity
coefficients) and use remaining available processors for the finer grained
part of the problem (the influence coefficients). Analyses are executed
using from ten to forty processors.

5. Multi-disciplinary Optimization, HP 90001730 Workstation. Coupled
aeromechanical optimization of the advanced propfan blade. An
improved optimization procedure is made possible since the blade shape
can be optimized starting from the cold shape as opposed to a presumed
hot shape. The purpose of this study is to investigate the feasibility of
performing multi-disciplinary optimization, determine computational
resources required, and to identify special requirements that will be
needed for parallelization in Phase II.

6. Stochastic Analysis HP, 9000/730 Workstation. Stochastic structural
analysis of the propfan blade under load was executed. Parallelization was
not performed since the feasibility of parallel probabilistic analysis has
been demonstrated in earlier research. The purpose was to demonstrate
the feasibility of stochastic analYSis for the example problem.

In Chapter 4, we present our conclusions and recommendations.

1-3

CHAPTER 2

PORTABLE PARALLEL STOCHASTIC OPTIMIZATION

2.1 INTRODUCTION

Multi-disciplinary Stochastic Optimization (MSO) problems are computationally
expensive. Fortunately, however, these problems have many levels of inherent
parallelism. In this chapter we present the stochastic optimization methodology and
identify sources of parallelism. With improvements in processor speed, inter-processor
communication, and high-speed mass storage capabilities, it is now possible to perform
MSO of key aircraft aeropropulsion components, combining at least Euler code
aerodynamics and nonlinear structural mechanics. Many corporations have the
computational power today. The missing key piece is the software methodology to
perform MSO efficiently and in an automated fashion, so that the engineer need not be
burdened with extensive parallel coding. The stochastic optimization methodology
formulated in this research is designed to be able to effectively take advantage of
emerging parallel hardware and workstation networks.

2.2 BACKGROUND ON PARALLEL PROCESSING AND PORTABLE
PARALLEL PROGRAMMING

The purpose in using parallel processing is to reduce the time required to
complete a computation by dividing the task into subtasks and executing many
subtasks simultaneously. The cost of doing parallel processing in the past was quite
expensive. However, in recent years, computer component costs have dropped steadily,
as power has increased. Currently, single-processor desktop computers are available
which have more computational power than mainframe computers less than 10 years
old. This low cost per component and cost/performance ratio is making parallel
computing a practical reality, whether as a massively parallel supercomputer or as a
network of workstations. It is common even for small companies to have several 32-bit
or 64-bit RISC processor workstations connected on a Local Area Network. Since
information can be passed between the workstations, it is possible to distribute tasks to
the different workstations, which execute their tasks in parallel.

This section provides information which is relevant to the current research.
Details of the principle ideas in parallel processing can be found in Sues et al. [1991a, b;
1992]. A survey of the range of parallel architectures is given by Dongarra and Duff
[1992].

The workstation network provides parallel processing capabilities at the low end.
At the high-end are the multiple-processor parallel computers. There are several ways
to classify parallel architectures. For our purposes, a memory-based taxonomy is most
appropriate. We divide parallel processing hardware into three groups as shown in
Figure 2-1. It is desirable for the purposes of this research to support all three memory
architectures in a fashion which is portable; that is, the source code should be identical
regardless of the hardware platform or memory architecture. This portability is

5786 2-1

CHAPTER 2

PORTABLE PARALLEL STOCHASTIC OPTIMIZATION

2.1 INTRODUCTION

Multi-disciplinary Stochastic Optimization (MSO) problems are computationally
expensive. Fortunately, however, these problems have many levels of inherent
parallelism. In this chapter we present the stochastic optimization methodology and
identify sources of parallelism. With improvements in processor speed, inter-processor
communication, and high-speed mass storage capabilities, it is now possible to perform
MSO of key aircraft aeropropulsion components, combining at least Euler code
aerodynamics and nonlinear structural mechanics. Many corporations have the
computational power today. The missing key piece is the software methodology to
perform MSO efficiently and in an automated fashion, so that the engineer need not be
burdened with extensive parallel coding. The stochastic optimization methodology
formulated in this research is designed to be able to effectively take advantage of
emerging parallel hardware and workstation networks.

2.2 BACKGROUND ON PARALLEL PROCESSING AND PORTABLE
PARALLEL PROGRAMMING

The purpose in using parallel processing is to reduce the time required to
complete a computation by dividing the task into subtasks and executing many
subtasks simultaneously. The cost of doing parallel processing in the past was quite
expensive. However, in recent years, computer component costs have dropped steadily,
as power has increased. Currently, single-processor desktop computers are available
which have more computational power than mainframe computers less than 10 years
old. This low cost per component and cost/performance ratio is making parallel
computing a practical reality, whether as a massively parallel supercomputer or as a
network of workstations. It is common even for small companies to have several 32-bit
or 64-bit RISC processor workstations connected on a Local Area Network. Since
information can be passed between the workstations, it is possible to distribute tasks to
the different workstations, which execute their tasks in parallel.

This section provides information which is relevant to the current research.
Details of the principle ideas in parallel processing can be found in Sues et al. [1991a, b;
1992]. A survey of the range of parallel architectures is given by Dongarra and Duff
[1992].

The workstation network provides parallel processing capabilities at the low end.
At the high-end are the multiple-processor parallel computers. There are several ways
to classify parallel architectures. For our purposes, a memory-based taxonomy is most
appropriate. We divide parallel processing hardware into three groups as shown in
Figure 2-1. It is desirable for the purposes of this research to support all three memory
architectures in a fashion which is portable; that is, the source code should be identical
regardless of the hardware platform or memory architecture. This portability is

5786 2-1

acquired by using parallel-programming toolkits that disguise hardware and
architecture-dependent code with common subroutine calls that do not change from
machine to machine.

In addition to providing portability for parallel programming, these parallel­
programming toolkits often introduce useful paradigms which aid program
development. In much the same way as the Object-Oriented-Programming paradigm
simplifies the development of large software projects in general, parallel programming
paradigms simplify the distribution of subtasks for parallel program development.
Table 2-1 summarizes a variety of parallel-programming toolkits.

In the table, there are three different programming paradigms. The message­
passing paradigm is the conventional approach to parallel programming. In fact, most
UNIX-based operating systems provide native, hardware-specific, function calls for
performing message-passing. All implementations of message-passing provide nearly
identical capabilities; thus, a program which is written using one message-passing
toolkit can easily be ported to another message-passing toolkit. For this reason, when
choosing a message-passing toolkit, the primary concerns are those of hardware
support, stability and reliability, and acceptance in the community of hardware and
software manufacturers.

The virtual-shared-memory paradigm of the Linda parallel programming
language is quite different from message-passing. Linda provides a mechanism for
storing data structures which can be accessed by any processor, whether it be local or on
a network. In Linda, these data structures are known as "tuples," and they are stored in
a "tuple-space" which represents the virtual shared memory [Carriero and Gelernter,

Shared
Memory

ConvexC2
CrayY-MP
SGI Power Series
Sequent Symmetrix
Kendall Square
Encore Multimax

(310,320)
Sequent WinServer

Distributed
Memory

Intel iPSC/860
nCube nCube 2
Meiko Computing

Surface
Workstation Networks

Hybrid

Intel Paragon
Network of Shared-Memory Workstations
NASA Hypercluster

Figure 2-1. Parallel Architectures-Memory taxonomy

5786 2-2

\.; acquired by using parallel-programming toolkits that disguise hardware and
architecture-dependent code with common subroutine calls that do not change from
machine to machine.

In addition to providing portability for parallel programming, these parallel­
programming toolkits often introduce useful paradigms which aid program
development. In much the same way as the Object-Oriented-Programming paradigm
simplifies the development of large software projects in general, parallel programming
paradigms simplify the distribution of subtasks for parallel program development.
Table 2-1 summarizes a variety of parallel-programming toolkits.

In the table, there are three different programming paradigms. The message­
passing paradigm is the conventional approach to parallel programming. In fact, most
UNIX-based operating systems provide native, hardware-specific, function calls for
performing message-passing. All implementations of message-passing provide nearly
identical capabilities; thus, a program which is written using one message-passing
toolkit can easily be ported to another message-passing toolkit. For this reason, when
choosing a message-passing toolkit, the primary concerns are those of hardware
support, stability and reliability, and acceptance in the community of hardware and
software manufacturers.

The virtual-shared-memory paradigm of the Linda parallel programming
language is quite different from message-passing. Linda provides a mechanism for
storing data structures which can be accessed by any processor, whether it be local or on
a network. In Linda, these data structures are known as "tuples," and they are stored in
a "tuple-space" which represents the virtual shared memory [Carriero and Gelernter,

Shared
Memory

ConvexC2
CrayY-MP
SGI Power Series
Sequent Symmetrix
Kendall Square
Encore Multimax

(310,320)
Sequent WinServer

Distributed
Memory

Intel iPSC/860
nCube nCube 2
Meiko Computing

Surface
Workstation Networks

Hybrid

Intel Paragon
Network of Shared-Memory Workstations
NASA Hypercluster

Figure 2-1. Parallel Architectures-Memory taxonomy

5786 2-2

\.;

~j 1989]. The tuple-space memory model of Linda simplifies the parallel programming
task considerably and is portable, but introduces a communication overhead cost. Since
the tuples can be stored in the local memory of any node, a search for a tuple in general
requires cross-node communication. This is especially true for large problems where
most of the local memory is required for data storage, and little memory is left for task
maintenance.

The aggregate distributed objects approach to parallel programming, as
implemented using the Interwork II toolkit [Bain, 1990], is similar to Linda in that it
distributes data objects across the nodes in such a fashion that they may be accessed by
any node without explicitly transmitting and receiving messages containing the data.
This method can be considered a superset of the tuple-space concept which allows the
programmer to define a multi-level hierarchy of global, distributed data objects. The
method potentially introduces the same performance losses as Linda.

TABLE 2-1. PARALLEL-PROGRAMMING TOOLKITS

TOOLKITS PARADIGM PLATFORMS PROS CONS

Express Message- Workstation commercial toolkit not widely used
Passing Network,

MPP

Linda Virtual- Workstation commercial toolkit, potential performance
Shared- Network, widely used, hetero- bottleneck
Memory MPP geneous hardware

Isis Message- Workstation public-domain and not widely used
Passing Network commercial

versions,
heterogeneous
hardware

PVM3.1 Message- Workstation supports many not commercially
Passing Network, platforms, widely supported (continuing

MPP used, heterogeneous research project at
hardware, widely ORNL)
accepted

Interwork II Message- iPSC/860, commercial toolkit, supports only Intel
Passing, iPSC/2 close ties with Intel hypercube platforms
Aggregate-
Distributed-
Objects

APPL Message- Workstation heterogeneous experimental
Passing Network, hardware

MPP

PAX-2 Message- Workstation based on PVM does not support MPP
Passing Network yet

MPP=Multiple-Parallel-Processors

5786 2-3

~j 1989]. The tuple-space memory model of Linda simplifies the parallel programming
task considerably and is portable, but introduces a communication overhead cost. Since
the tuples can be stored in the local memory of any node, a search for a tuple in general
requires cross-node communication. This is especially true for large problems where
most of the local memory is required for data storage, and little memory is left for task
maintenance.

The aggregate distributed objects approach to parallel programming, as
implemented using the Interwork II toolkit [Bain, 1990], is similar to Linda in that it
distributes data objects across the nodes in such a fashion that they may be accessed by
any node without explicitly transmitting and receiving messages containing the data.
This method can be considered a superset of the tuple-space concept which allows the
programmer to define a multi-level hierarchy of global, distributed data objects. The
method potentially introduces the same performance losses as Linda.

TABLE 2-1. PARALLEL-PROGRAMMING TOOLKITS

TOOLKITS PARADIGM PLATFORMS PROS CONS

Express Message- Workstation commercial toolkit not widely used
Passing Network,

MPP

Linda Virtual- Workstation commercial toolkit, potential performance
Shared- Network, widely used, hetero- bottleneck
Memory MPP geneous hardware

Isis Message- Workstation public-domain and not widely used
Passing Network commercial

versions,
heterogeneous
hardware

PVM3.1 Message- Workstation supports many not commercially
Passing Network, platforms, widely supported (continuing

MPP used, heterogeneous research project at
hardware, widely ORNL)
accepted

Interwork II Message- iPSC/860, commercial toolkit, supports only Intel
Passing, iPSC/2 close ties with Intel hypercube platforms
Aggregate-
Distributed-
Objects

APPL Message- Workstation heterogeneous experimental
Passing Network, hardware

MPP

PAX-2 Message- Workstation based on PVM does not support MPP
Passing Network yet

MPP=Multiple-Parallel-Processors

5786 2-3

The Parallel Virtual Machine (PVM) toolkit is a portable message-passing toolkit
which has been developed by the Oak Ridge National Laboratory (ORNL) [ORNL,
1993]. It is under continuous development at ORNL, Emery University, the University
of Tennessee, and Carnegie Mellon University. PVM is fully public domain, and is one
of the more popular portable parallel toolkits. The current version, PVM 3.1, will work
on networks of workstations, even heterogeneous networks. In order to handle
multiple-sized integer and floating point variables, and to handle different byte­
orderings, pVM uses a structured message "packing" and "unpacking" methodology.
For example, while one processor might store a two-byte integer value with the least­
significant byte at a lower address than the most-significant byte, other processors store
the integer with the bytes reversed. Rather than require the programmer to be
knowledgeable about intricate details such as byte-ordering, PVM uses its
packing/unpacking methodology to automatically order the bytes as appropriate for a
particular architecture. Apart from this, PVM is a no-frills toolkit. It provides all the
features and functions which are necessary, but does not introduce special-purpose
features which would introduce a larger performance drop from the native operating
system functions.

The reason for parallel processing is increased performance; hence we need a
measure of efficiency in order to gauge the relative worth of an algorithm. For
concurrent processing, a simple, useful model of speedup is given by

s = 1
N a+(l-a)/ N + f(N) (2-1)

where a is the fraction of the code that cannot be processed in parallel, N is the number
of processors, and feN) is the overhead, a function of the number of processors. Parallel
efficiency can be defined as

S
e=~xlOO ST (2-2)

where SN,obs is the actual observed speedup and Sf is the theoretical maximum speedup
obtained when j(N)=O (for f(N)=O, Equation 2-1 reduces to Amdahl's law [Amdahl
1967]).

The overhead, feN), will depend on how well the processor work load is
balanced (to prevent idling), the amount of interprocessor communication required, and
general concurrency management required. These issues are well known and well
documented and we do not go into detail here (Sues et al. 1991b). However, the concept
of granularity, which relates to interprocessor communication is particularly germane to
this study and we provide some background here.

Granularity is a function of the compute to communicate ratio or the number of
code steps which are executed on a given processor divided by the total parallel

5786 2-4

The Parallel Virtual Machine (PVM) toolkit is a portable message-passing toolkit
which has been developed by the Oak Ridge National Laboratory (ORNL) [ORNL,
1993]. It is under continuous development at ORNL, Emery University, the University
of Tennessee, and Carnegie Mellon University. PVM is fully public domain, and is one
of the more popular portable parallel toolkits. The current version, PVM 3.1, will work
on networks of workstations, even heterogeneous networks. In order to handle
multiple-sized integer and floating point variables, and to handle different byte­
orderings, pVM uses a structured message "packing" and "unpacking" methodology.
For example, while one processor might store a two-byte integer value with the least­
significant byte at a lower address than the most-significant byte, other processors store
the integer with the bytes reversed. Rather than require the programmer to be
knowledgeable about intricate details such as byte-ordering, PVM uses its
packing/unpacking methodology to automatically order the bytes as appropriate for a
particular architecture. Apart from this, PVM is a no-frills toolkit. It provides all the
features and functions which are necessary, but does not introduce special-purpose
features which would introduce a larger performance drop from the native operating
system functions.

The reason for parallel processing is increased performance; hence we need a
measure of efficiency in order to gauge the relative worth of an algorithm. For
concurrent processing, a simple, useful model of speedup is given by

s = 1
N a+(l-a)/ N + f(N) (2-1)

where a is the fraction of the code that cannot be processed in parallel, N is the number
of processors, and feN) is the overhead, a function of the number of processors. Parallel
efficiency can be defined as

S
e=~xlOO ST (2-2)

where SN,obs is the actual observed speedup and Sf is the theoretical maximum speedup
obtained when j(N)=O (for f(N)=O, Equation 2-1 reduces to Amdahl's law [Amdahl
1967]).

The overhead, feN), will depend on how well the processor work load is
balanced (to prevent idling), the amount of interprocessor communication required, and
general concurrency management required. These issues are well known and well
documented and we do not go into detail here (Sues et al. 1991b). However, the concept
of granularity, which relates to interprocessor communication is particularly germane to
this study and we provide some background here.

Granularity is a function of the compute to communicate ratio or the number of
code steps which are executed on a given processor divided by the total parallel

5786 2-4

communication time for that processor. feN) is therefore inversely related to
granularity, so a problem with extremely coarse or large granularity will have small
values of feN), in the absence of other sources of overhead. Problems are generally
divided into classes of granularity: "fine" granularity contributes to high values of feN)
and lower parallel efficiency, "coarse" granularity yields low values of j(N) and higher
efficiency, and "medium" granularity is in between. A general description of
granularity has been given which defines "very fine grained" problems as those which
execute 0 to 16 steps before requiring additional parallel input, "fine-grained" problems
execute 17 to 256 steps before requiring parallel input, 1/ medium-grained" problems
execute 257 to 4096 steps before requiring additional input, and "coarse-grained"
problems execute more than 4097 steps before requiring parallel input [Spector 1981].
This definition varies depending on the size of the parallel data packets. Medium to
coarse-grained problems are suitable for networks of workstations, while fine-grained
problems are not.

2.3 PARALLEL STOCHASTIC OPTIMIZATION

Stochastic optimization problems are computationally intensive because they
require evaluation of response sensitivity coefficients at each design iteration. In
general, however, the sensitivity information required in checking the reliability
constraints can also be used in the optimization procedure. Hence, while the stochastic
optimization will be more computationally intensive than deterministic optimization,
the computational effort of stochastic optimization can be on the order of stochastic
analysis. In addition, much of the effort can be performed in parallel. In the following
we present a brief review of stochastic optimization and then a specific formulation
developed under this Phase I research.

2.3.1 General Formulation and Review

The general formulation for the stochastic optimization problem is as follows:

Min (or Max) Ax), x E Rn

Subject to:

gj(X) ~O,for j =Me + 1, M

where f(x) is the objective function and glx) are the constraint functions. The first Me
constraints are equality constraints and the remaining M-Me constraints are inequality
constraints.

As an example, for the design of a propfan blade, the objective function f(x)
might be the thrust provided by the blade, which is a function of the blade geometry

5786 2-5

communication time for that processor. feN) is therefore inversely related to
granularity, so a problem with extremely coarse or large granularity will have small
values of feN), in the absence of other sources of overhead. Problems are generally
divided into classes of granularity: "fine" granularity contributes to high values of feN)
and lower parallel efficiency, "coarse" granularity yields low values of j(N) and higher
efficiency, and "medium" granularity is in between. A general description of
granularity has been given which defines "very fine grained" problems as those which
execute 0 to 16 steps before requiring additional parallel input, "fine-grained" problems
execute 17 to 256 steps before requiring parallel input, 1/ medium-grained" problems
execute 257 to 4096 steps before requiring additional input, and "coarse-grained"
problems execute more than 4097 steps before requiring parallel input [Spector 1981].
This definition varies depending on the size of the parallel data packets. Medium to
coarse-grained problems are suitable for networks of workstations, while fine-grained
problems are not.

2.3 PARALLEL STOCHASTIC OPTIMIZATION

Stochastic optimization problems are computationally intensive because they
require evaluation of response sensitivity coefficients at each design iteration. In
general, however, the sensitivity information required in checking the reliability
constraints can also be used in the optimization procedure. Hence, while the stochastic
optimization will be more computationally intensive than deterministic optimization,
the computational effort of stochastic optimization can be on the order of stochastic
analysis. In addition, much of the effort can be performed in parallel. In the following
we present a brief review of stochastic optimization and then a specific formulation
developed under this Phase I research.

2.3.1 General Formulation and Review

The general formulation for the stochastic optimization problem is as follows:

Min (or Max) Ax), x E Rn

Subject to:

gj(X) ~O,for j =Me + 1, M

where f(x) is the objective function and glx) are the constraint functions. The first Me
constraints are equality constraints and the remaining M-Me constraints are inequality
constraints.

As an example, for the design of a propfan blade, the objective function f(x)
might be the thrust provided by the blade, which is a function of the blade geometry

5786 2-5

and the operating conditions. The geometric design variables, given suitable airfoil and
chord distributions, are the radial variation of the blade pitch angle (twist) and of the
blade sweep angle. The constraints include the practical limits on the design variables,
pitch angle, blade tip sweep angle, an available engine power constraint or a fuel
consumption rate constraint, and static and dynamic aeroelastic performance criteria.
Since the aeroelastic response and lifetime performance of the blade will be a function of
the mechanical properties, the loadings, and the continuous micro and macro­
mechanical· damage processes that can occur over the service life of the blade; the
structural behavior will be subject to significant uncertainty, and hence the aeroelastic
performance criterion constraints should properly be treated non-deterministically.
That is, we require that the aeroelastic performance criteria meet or exceed a specified
reliability goal, (e.g., the probability that the blade will not experience fatigue failure or
fracture within a reasonable. aircraft lifetime is greater than 95%).

A number of optimization algorithms have been used to solve stochastic
optimization problems. For this research we have selected the sequential quadratic
programming algorithm. This algorithm has been successfully used herein for
optimizing the aerodynamics characteristics of propeller blades (see Chapter 3.0) and
has recently been applied in stochastic structural optimization problems by Mahadevan
[1992]. The method is based on an iterative formulation and solution of quadratic
programming subproblems. The method obtains subproblems by using a quadratic
approximation of the Langrangian and by linearizing the constraints. That is,

subject to: V gj(xk l d +gi xk)=O,j =l, ... ,Me

where I(x) is the design objective function given above, Bk is a positive definite
approximation of the Hessian matrix, and Xk is the solution at the current iteration.
Letting dk be the solution of the subproblem, a line search is used to find the new vector
of design variables x k +1 as

such that a merit function will have a lower function value (higher for maximization) at
the new design point. The matrix Bk can be updated using the Broyden-Fletcher­
Goldfarb-Shanno (BFGS) algorithm.

The reliability-based constraints are evaluated by using well established
structural reliability concepts and can be stated as:

5786 2-6

and the operating conditions. The geometric design variables, given suitable airfoil and
chord distributions, are the radial variation of the blade pitch angle (twist) and of the
blade sweep angle. The constraints include the practical limits on the design variables,
pitch angle, blade tip sweep angle, an available engine power constraint or a fuel
consumption rate constraint, and static and dynamic aeroelastic performance criteria.
Since the aeroelastic response and lifetime performance of the blade will be a function of
the mechanical properties, the loadings, and the continuous micro and macro­
mechanical· damage processes that can occur over the service life of the blade; the
structural behavior will be subject to significant uncertainty, and hence the aeroelastic
performance criterion constraints should properly be treated non-deterministically.
That is, we require that the aeroelastic performance criteria meet or exceed a specified
reliability goal, (e.g., the probability that the blade will not experience fatigue failure or
fracture within a reasonable. aircraft lifetime is greater than 95%).

A number of optimization algorithms have been used to solve stochastic
optimization problems. For this research we have selected the sequential quadratic
programming algorithm. This algorithm has been successfully used herein for
optimizing the aerodynamics characteristics of propeller blades (see Chapter 3.0) and
has recently been applied in stochastic structural optimization problems by Mahadevan
[1992]. The method is based on an iterative formulation and solution of quadratic
programming subproblems. The method obtains subproblems by using a quadratic
approximation of the Langrangian and by linearizing the constraints. That is,

subject to: V gj(xk l d +gi xk)=O,j =l, ... ,Me

where I(x) is the design objective function given above, Bk is a positive definite
approximation of the Hessian matrix, and Xk is the solution at the current iteration.
Letting dk be the solution of the subproblem, a line search is used to find the new vector
of design variables x k +1 as

such that a merit function will have a lower function value (higher for maximization) at
the new design point. The matrix Bk can be updated using the Broyden-Fletcher­
Goldfarb-Shanno (BFGS) algorithm.

The reliability-based constraints are evaluated by using well established
structural reliability concepts and can be stated as:

5786 2-6

J3i ~J3~,i =l,M

where J3i is the reliability index for the ith performance criteria and the lower bound J3~
specifies the minimum required values for the reliability index. The reliability index is a
relative measure of the probability that the component response (e.g., blade flutter
frequency, deflection at a point, etc.) will not exceed desired limits and accounts for all
uncertainties in computing the response.

The reliability index f3 is obtained as

J3 =(y*T y* l/2

where y* is the point of minimum distance from the origin of the limit state G(Y)=O
(where G(Y) is the performance function limit state, e.g., G(Y)=o]-o]u SO.O, where O[is
the blade deflection at a point and o]u is the performance limit); and Y is the vector of
uncorrelated standard normal variables. The transformation from X to Y can be
achieved by using the Nataf-model transformation, proposed by Nataf [1962] and
enhanced by Liu and DerKiureghian [1986].

Solution for the reliability index f3 can be by advanced first or second order
reliability methods known in the literature as FORM/SORM or fast probability
integration [e.g., Rackwitz and Fiessler 1978; Madsen et al. 1986; Twisdale, Sues, and
Murphy 1988; Wu 1987], by response surface methods [Schueller 1989], by Monte Carlo
Simulation (MCS) with variance reduction (importance sampling or stratified
sampling), or by direct Monte Carlo Simulation. Hybrid methods such as the combined
response surface and FORM method are also sometimes used. Note that when
simulation methods are used we compute probabilities explicitly rather than use the
reliability index f3.

2.3.2 Formulation for Parallel Multi-Disciplinary Stochastic Optimization

Under this Phase I study, we have formulated a stochastic optimization approach
that builds on earlier research in stochastic optimization and lends itself well to
parallelization. This approach, which will be fully implemented in Phase II, recognizes
that the most computationally efficient algorithm will be a function of the computing
hardware and therefore, incorporates two algorithm paths, an MeS path and a
FORM/SORM path. The approach was formulated to meet the following
requirements/ specifications: (1) parallelizable, (2) applicable for different numbers of
each type of random variable (state and decision) (3) ability to treat large problems with
many variables, (4) ability to handle large numbers of nonlinear constraints, and (5)
generally applicable to the class of problems of interest. The formulation is depicted in
Figure 2-2.

As mentioned two different probabilistic analysis paths are provided, since the
most computationally expedient method is both problem and hardware specific. We

5786 2-7

J3i ~J3~,i =l,M

where J3i is the reliability index for the ith performance criteria and the lower bound J3~
specifies the minimum required values for the reliability index. The reliability index is a
relative measure of the probability that the component response (e.g., blade flutter
frequency, deflection at a point, etc.) will not exceed desired limits and accounts for all
uncertainties in computing the response.

The reliability index f3 is obtained as

J3 =(y*T y* l/2

where y* is the point of minimum distance from the origin of the limit state G(Y)=O
(where G(Y) is the performance function limit state, e.g., G(Y)=o]-o]u SO.O, where O[is
the blade deflection at a point and o]u is the performance limit); and Y is the vector of
uncorrelated standard normal variables. The transformation from X to Y can be
achieved by using the Nataf-model transformation, proposed by Nataf [1962] and
enhanced by Liu and DerKiureghian [1986].

Solution for the reliability index f3 can be by advanced first or second order
reliability methods known in the literature as FORM/SORM or fast probability
integration [e.g., Rackwitz and Fiessler 1978; Madsen et al. 1986; Twisdale, Sues, and
Murphy 1988; Wu 1987], by response surface methods [Schueller 1989], by Monte Carlo
Simulation (MCS) with variance reduction (importance sampling or stratified
sampling), or by direct Monte Carlo Simulation. Hybrid methods such as the combined
response surface and FORM method are also sometimes used. Note that when
simulation methods are used we compute probabilities explicitly rather than use the
reliability index f3.

2.3.2 Formulation for Parallel Multi-Disciplinary Stochastic Optimization

Under this Phase I study, we have formulated a stochastic optimization approach
that builds on earlier research in stochastic optimization and lends itself well to
parallelization. This approach, which will be fully implemented in Phase II, recognizes
that the most computationally efficient algorithm will be a function of the computing
hardware and therefore, incorporates two algorithm paths, an MeS path and a
FORM/SORM path. The approach was formulated to meet the following
requirements/ specifications: (1) parallelizable, (2) applicable for different numbers of
each type of random variable (state and decision) (3) ability to treat large problems with
many variables, (4) ability to handle large numbers of nonlinear constraints, and (5)
generally applicable to the class of problems of interest. The formulation is depicted in
Figure 2-2.

As mentioned two different probabilistic analysis paths are provided, since the
most computationally expedient method is both problem and hardware specific. We

5786 2-7

will briefly describe each path and then provide measures of the computational effort of
each path. For either path we begin with an initial estimate of all of the design variables,
just as in any design problem.

Evaluate
• Objective
• Constraints

Design variable
sensitivities
using surface(s)

Initial
Design

Evaluate
• Objective
• Constraints
• Design variable

sensitivities

Figure 2-2. Solution Algorithm for Stochastic Optimization

Before describing the algorithm, it is important to recognize that the objective
function and each of the individual constraint equations can be either deterministic,
statistically stated or probabilistically stated. A statistically stated objective function is
one wherein the objective is to minimize (or maximize) a statistical measure of response
or performance. For example, the objective could be to minimize expected cost. A
statistically stated constraint has a similar definition; for example, requiring that
expected deflection be less than a specified value. A probabilistically stated objective or
constraint is one that meets a probabilistic criterion. An example of a probabilistic
constraint is a constraint that reqUires that the probability of exceeding ultimate stress
be less than 99.99%. A probabilistically stated objective function would be, for example,
to minimize probability of failure.

5786 2-8

will briefly describe each path and then provide measures of the computational effort of
each path. For either path we begin with an initial estimate of all of the design variables,
just as in any design problem.

Evaluate
• Objective
• Constraints

Design variable
sensitivities
using surface(s)

Initial
Design

Evaluate
• Objective
• Constraints
• Design variable

sensitivities

Figure 2-2. Solution Algorithm for Stochastic Optimization

Before describing the algorithm, it is important to recognize that the objective
function and each of the individual constraint equations can be either deterministic,
statistically stated or probabilistically stated. A statistically stated objective function is
one wherein the objective is to minimize (or maximize) a statistical measure of response
or performance. For example, the objective could be to minimize expected cost. A
statistically stated constraint has a similar definition; for example, requiring that
expected deflection be less than a specified value. A probabilistically stated objective or
constraint is one that meets a probabilistic criterion. An example of a probabilistic
constraint is a constraint that reqUires that the probability of exceeding ultimate stress
be less than 99.99%. A probabilistically stated objective function would be, for example,
to minimize probability of failure.

5786 2-8

.. MCS Path. For the MCS path, the first step is to execute a simulation using the
initial design configuration. From the simulation results we can directly and easily
evaluate the objective function and constraints, whether deterministic, statistically
stated or probabilistically stated. In MCS, the objective and constraint equations are
repeatedly evaluated, each time with different realizations of the problem random
variables. Each repeated evaluation is referred to as a single history or sample and is
equivalent to a deterministic analysis. The realization of each random variable used for
each history is obtained using a uniform random number generator and the inverse of
the cumulative distribution function for the random variable.

The second step in the MCS path is to fit a response surface to the MCS results.
The response surface provides a closed form equation to evaluate the value of the
objective and the constraint equations given values of the input variables. Since each
history in the MCS generates a response value for the objective and each of the
constraint equations, we have generated a very rich source of data for response surface
fitting. For constraint equations, it is important that the response surface be an accurate
discriminator of whether or not the constraint is violated. For example, if the constraint
specifies that maximum deflection be less than a constant, d, (with probability 95%) then
the response surface must be most accurate in the region where values of the input
variables cause the response to shift from less than d to greater than d. This is the so­
called critical region. An additional criterion for multivariate problems is that within the
critical region the fit should be most accurate where the values of the random variables
are most likely to fall (these two criteria are actually analogous to the concept of most
probable failure point (MPP) used in FORM/SORM structural reliability methods),

Response surface fitting proceeds using standard multivariate nonlinear
regression analysis with weighting factors to ensure accurate fit in the critical region.
The weighting factor applied to each data point is a normalized difference. For example,
continuing with the deflection example described above, if a parti,cul.ar.-.¥CS history
gives a deflection of x, then this sample point is weighted by dIV(d-x)2l. Since the
critical region will be different for each constraint, we use a different response surface fit
for each constraint equation (continuing with the FORM analogy above, FORM analysis
would have a different most probable failure point for each constraint or performance
function). The second fitting criterion, that the fit should be most accurate in the
space(s) within the critical region where the values of the random variables are most
likely to fall, is automatically satisfied because the MCS will naturally generate more
sample points in this space. Since more points are generated in this space, the regression
procedure will force the surface to fit best in this space.

The response surface fits are now used to execute the optimization loop. On each
iteration of the optimization loop, the values of the design variables are changed (as
directed by the optimization algorithm) and the objective reevaluated to determine if
the optimum has been achieved. The optimization algorithm requires sensitivity

lOther weighting criteria can also be used, if desired.

5786 2-9

.. MCS Path. For the MCS path, the first step is to execute a simulation using the
initial design configuration. From the simulation results we can directly and easily
evaluate the objective function and constraints, whether deterministic, statistically
stated or probabilistically stated. In MCS, the objective and constraint equations are
repeatedly evaluated, each time with different realizations of the problem random
variables. Each repeated evaluation is referred to as a single history or sample and is
equivalent to a deterministic analysis. The realization of each random variable used for
each history is obtained using a uniform random number generator and the inverse of
the cumulative distribution function for the random variable.

The second step in the MCS path is to fit a response surface to the MCS results.
The response surface provides a closed form equation to evaluate the value of the
objective and the constraint equations given values of the input variables. Since each
history in the MCS generates a response value for the objective and each of the
constraint equations, we have generated a very rich source of data for response surface
fitting. For constraint equations, it is important that the response surface be an accurate
discriminator of whether or not the constraint is violated. For example, if the constraint
specifies that maximum deflection be less than a constant, d, (with probability 95%) then
the response surface must be most accurate in the region where values of the input
variables cause the response to shift from less than d to greater than d. This is the so­
called critical region. An additional criterion for multivariate problems is that within the
critical region the fit should be most accurate where the values of the random variables
are most likely to fall (these two criteria are actually analogous to the concept of most
probable failure point (MPP) used in FORM/SORM structural reliability methods),

Response surface fitting proceeds using standard multivariate nonlinear
regression analysis with weighting factors to ensure accurate fit in the critical region.
The weighting factor applied to each data point is a normalized difference. For example,
continuing with the deflection example described above, if a parti,cul.ar.-.¥CS history
gives a deflection of x, then this sample point is weighted by dIV(d-x)2l. Since the
critical region will be different for each constraint, we use a different response surface fit
for each constraint equation (continuing with the FORM analogy above, FORM analysis
would have a different most probable failure point for each constraint or performance
function). The second fitting criterion, that the fit should be most accurate in the
space(s) within the critical region where the values of the random variables are most
likely to fall, is automatically satisfied because the MCS will naturally generate more
sample points in this space. Since more points are generated in this space, the regression
procedure will force the surface to fit best in this space.

The response surface fits are now used to execute the optimization loop. On each
iteration of the optimization loop, the values of the design variables are changed (as
directed by the optimization algorithm) and the objective reevaluated to determine if
the optimum has been achieved. The optimization algorithm requires sensitivity

lOther weighting criteria can also be used, if desired.

5786 2-9

analyses and since the optimization is stochastic, each sensitivity is with respect to
changes in mean values of the stochastic design variables. Therefore the sensitivities
require MCS to be performed. However, these simulations use the response surface and
are obtained with minimal computational effort since the response surface is analytic
(and they can be executed in parallel).

Notice that the flow chart shows that the response surfaces are refit on each
execution of the optimization loop. This is included because the location of the MPP
changes on each iteration (because the mean values of the design variables change).
Generally, it is not necessary to include this step unless there are large changes in the
mean values and the system response is highly non-linear, since the original response
surfaces remain accurate in the critical region. Refitting is performed, if necessary
without any additional sampling. The refits are performed by reweighting the original
sample points based on their distance to an estimate of the MPP. The additional
sampling shown in the flow chart is only performed when there are large changes in the
value of a design variable such that the space of the design variable was not adequately
covered in the original simulations. Preliminary deterministic designs and small sample
MCS stochastic designs can be performed prior to the full stochastic optimization to
avoid this situation. In all cases, a complete stochastic analysis, encompassing a new
simulation, or a FORM/SORM analysis should be performed at the end to validate the
final design.

FORMISORM Path. The FORM/SORM path is similar to stochastic optimization
that has been used by others [Mahadevan 1992] and follows directly from the general
formulation presented earlier. Hence, we provide only a brief discussion here. For this
path, the probabilistic evaluations of the objective and constraint equations is by First or
Second Order Reliability Methods. These methods require that we search for the most
probable failure point (MPP). In finding the MPP it is necessary to perform sensitivity
analyses, with respect to all of the problem random variables; however, once the MPP is
found we do not need to perform additional sensitivity studies for the optimization
loop [Mahadevan 1992]. The optimization algorithm updates the mean values of the
problem random variables, using the available sensitivity information, and the
probabilistic analysis is repeated. The entire loop is repeated until convergence to the
optimum design is achieved.

We should point out that when using the FORM/SORM method, response
gradients can be computed either by finite difference or by the direct differentiation
method [Sues et al. 1985; Liu et al. 1987]. The direct differentiation method provides the
greatest computational efficiency and accuracy, but at the expense of additional initial
code development. Computational efficiency of the direct differentiation method over
the gradient method can vary from a minimum of a factor of 2 to orders of magnitude,
depending on the problem nonlinearity because solution for the gradient of a nonlinear
response by direct differentiation requires the solution of linear equations (rather than
nonlinear equations) on the order of the original system [Sues et al. 1985; Liu and
DerKiureghian 1991].

5786 2-10

analyses and since the optimization is stochastic, each sensitivity is with respect to
changes in mean values of the stochastic design variables. Therefore the sensitivities
require MCS to be performed. However, these simulations use the response surface and
are obtained with minimal computational effort since the response surface is analytic
(and they can be executed in parallel).

Notice that the flow chart shows that the response surfaces are refit on each
execution of the optimization loop. This is included because the location of the MPP
changes on each iteration (because the mean values of the design variables change).
Generally, it is not necessary to include this step unless there are large changes in the
mean values and the system response is highly non-linear, since the original response
surfaces remain accurate in the critical region. Refitting is performed, if necessary
without any additional sampling. The refits are performed by reweighting the original
sample points based on their distance to an estimate of the MPP. The additional
sampling shown in the flow chart is only performed when there are large changes in the
value of a design variable such that the space of the design variable was not adequately
covered in the original simulations. Preliminary deterministic designs and small sample
MCS stochastic designs can be performed prior to the full stochastic optimization to
avoid this situation. In all cases, a complete stochastic analysis, encompassing a new
simulation, or a FORM/SORM analysis should be performed at the end to validate the
final design.

FORMISORM Path. The FORM/SORM path is similar to stochastic optimization
that has been used by others [Mahadevan 1992] and follows directly from the general
formulation presented earlier. Hence, we provide only a brief discussion here. For this
path, the probabilistic evaluations of the objective and constraint equations is by First or
Second Order Reliability Methods. These methods require that we search for the most
probable failure point (MPP). In finding the MPP it is necessary to perform sensitivity
analyses, with respect to all of the problem random variables; however, once the MPP is
found we do not need to perform additional sensitivity studies for the optimization
loop [Mahadevan 1992]. The optimization algorithm updates the mean values of the
problem random variables, using the available sensitivity information, and the
probabilistic analysis is repeated. The entire loop is repeated until convergence to the
optimum design is achieved.

We should point out that when using the FORM/SORM method, response
gradients can be computed either by finite difference or by the direct differentiation
method [Sues et al. 1985; Liu et al. 1987]. The direct differentiation method provides the
greatest computational efficiency and accuracy, but at the expense of additional initial
code development. Computational efficiency of the direct differentiation method over
the gradient method can vary from a minimum of a factor of 2 to orders of magnitude,
depending on the problem nonlinearity because solution for the gradient of a nonlinear
response by direct differentiation requires the solution of linear equations (rather than
nonlinear equations) on the order of the original system [Sues et al. 1985; Liu and
DerKiureghian 1991].

5786 2-10

Computational Effort. The computational effort is a function of the number of
random variables, design variables, constraints, and constraint reliability goals.
However, which path will execute most quickly must also consider the degree of
parallelism and system hardware. We present next a quantitative assessment of the
computational effort for each solution path for a sequential computer for the particular
problem. Following this we discuss parallelization.

The computational effort for the FORM/SORM path on a sequential computer is
on the order of:

NCE=M*NSOL *(Number _Design-Iterations)

where

NSOL=(Number _Random_ Variables)*(Number _Constraints+ 1)

and M is typically between 3 and 10.

The computational effort for the Monte-Carlo simulation path (MCS) is on the
order of:

NCE=NSOL*S

where

NSOL=10j(1.0-max[R])

and max[R] is the maximum reliability goal of any constraint equation and S is
proportional to the additional sampling required when large changes in design
variables occur during the design iteration and the response surface is updated. Typical
values of S will be between 2 and 3 (allowing for a full simulation at the end of the
design for validation).

Each path is also highly parallel. For the MCS the majority of the computational
effort is in the initial simulation. However, massive parallelism can be achieved with
high efficiency for MCS as demonstrated in earlier research [Sues et al. 1993; Sues et al.
1992]. Hence, on a massively parallel machine, MCS will likely be the selected path. For
the FORM path we can also achieve a high degree of parallelism; first by evaluating
sensitivity coefficients for the random variables in parallel. Ability to achieve extremely
high parallel efficiency for sensitivity analysis is demonstrated for this research and is
described in the next chapter. In addition each constraint equation will have a different
most probable failure point (MPP); hence evaluation of each probabilistic constraint
requires an independent FORM (or SORM) analysis that will be executed in parallel. For
problems wherein FORM is computationally less expensive (as given by equations
above) and it is possible to effectively use all available processors (that is, achieve a high
enough degree of parallelism) then the FORM path would be selected.

5786 2-11

Computational Effort. The computational effort is a function of the number of
random variables, design variables, constraints, and constraint reliability goals.
However, which path will execute most quickly must also consider the degree of
parallelism and system hardware. We present next a quantitative assessment of the
computational effort for each solution path for a sequential computer for the particular
problem. Following this we discuss parallelization.

The computational effort for the FORM/SORM path on a sequential computer is
on the order of:

NCE=M*NSOL *(Number _Design-Iterations)

where

NSOL=(Number _Random_ Variables)*(Number _Constraints+ 1)

and M is typically between 3 and 10.

The computational effort for the Monte-Carlo simulation path (MCS) is on the
order of:

NCE=NSOL*S

where

NSOL=10j(1.0-max[R])

and max[R] is the maximum reliability goal of any constraint equation and S is
proportional to the additional sampling required when large changes in design
variables occur during the design iteration and the response surface is updated. Typical
values of S will be between 2 and 3 (allowing for a full simulation at the end of the
design for validation).

Each path is also highly parallel. For the MCS the majority of the computational
effort is in the initial simulation. However, massive parallelism can be achieved with
high efficiency for MCS as demonstrated in earlier research [Sues et al. 1993; Sues et al.
1992]. Hence, on a massively parallel machine, MCS will likely be the selected path. For
the FORM path we can also achieve a high degree of parallelism; first by evaluating
sensitivity coefficients for the random variables in parallel. Ability to achieve extremely
high parallel efficiency for sensitivity analysis is demonstrated for this research and is
described in the next chapter. In addition each constraint equation will have a different
most probable failure point (MPP); hence evaluation of each probabilistic constraint
requires an independent FORM (or SORM) analysis that will be executed in parallel. For
problems wherein FORM is computationally less expensive (as given by equations
above) and it is possible to effectively use all available processors (that is, achieve a high
enough degree of parallelism) then the FORM path would be selected.

5786 2-11

2.4 PARALLELISM IN MULTI-DISCIPLINARY STOCHASTIC OPTIMIZATION

2.4.1 Sources of Parallelism in Coupled Aeromechanical Design

There are six general classes of parallelism in stochastic optimization problems
for coupled aeromechanical design that we have identified: (1) parallelism in the
general probabilistic computations; (2) parallelism in optimization algorithms; (3)
specialized parallelism that arises in stochastic optimization; (4Lparallelism in the
general structural mechanics computations; (5) parallelism in the aerodynamics
computations; and (6) parallelism inherent in multi-disciplinary analyses. Sources of
parallelism in items 1, 2, and/or 6 are coarse grained while the additional levels of
parallelism dealing with items 3, 4, and 5 can be coarse to fine-grained.

General Probabilistic Computations. Methods for parallelizing the general
probabilistic computations (Item 1) have been reported previously [Sues et al. 1991a, b]
and are summarized in Table 2-2. These sources of parallelism are very coarse-grained
and very high parallel efficiencies can be achieved. In addition a very high degree of
parallelism can be achieved for the Monte-Carlo Simulation method (of course, this is
also often, but not always, the most computationally intensive method).

Optimization. In optimization (Item 2) parallelism arises in the search to find the
optimum design solution. Optimization algorithms can use anyone of a number of
search strategies to find an optimal solution; however, all require repeated evaluation of
the objective and constraint functions for different trial values of the design variables.
Most commonly, search strategies involve computation of response gradients with
respect to each of the design variables in order to update the design solution. These
response gradients or sensitivity coefficients can each be computed independently and
in parallel. This source of parallelism is very coarse grained and nearly perfect linear
speedup can be achieved as will be demonstrated in the next chapter. The main
limitation of this strategy is that the degree of parallelism is limited to twice the number
of design variables (or just the number of variables if one-side finite differences are used
to estimate the response gradient).

Stochastic Optimization. For stochastic optimization (Item 3), sources of
parallelism in the two-path approach (Figure 2-2), were introduced in the preceding
section. For stochastic optimization the sources of parallelism derive primarily from the
stochastics since the optimization sensitivities are obtained as a by-product of the
probabilistic analysis. As pointed out earlier, the MCS path has the same degree of
parallelism as in a general probabilistic analysis and high parallel efficiency can be
achieved as reported in previous research [Sues et al. 1993; 1991a, b]. The FORM path,
however, can also have a high degree of parallelism since it incorporates two of the
sources of parallelism shown in Table 2-2: (1) repeated performance function
evaluations for perturbed inputs; and (2) multiple failure mode analysis. The first
source of parallelism is in the computation of response gradients with respect to the
problem random variables that arise in FORM. The second source of parallelism arises
from the multiple reliability-based constraints in the stochastic optimization. Each
reliability-based constraint will have a different design point (MPP) and, therefore,

5786 2-12

2.4 PARALLELISM IN MULTI-DISCIPLINARY STOCHASTIC OPTIMIZATION

2.4.1 Sources of Parallelism in Coupled Aeromechanical Design

There are six general classes of parallelism in stochastic optimization problems
for coupled aeromechanical design that we have identified: (1) parallelism in the
general probabilistic computations; (2) parallelism in optimization algorithms; (3)
specialized parallelism that arises in stochastic optimization; (4Lparallelism in the
general structural mechanics computations; (5) parallelism in the aerodynamics
computations; and (6) parallelism inherent in multi-disciplinary analyses. Sources of
parallelism in items 1, 2, and/or 6 are coarse grained while the additional levels of
parallelism dealing with items 3, 4, and 5 can be coarse to fine-grained.

General Probabilistic Computations. Methods for parallelizing the general
probabilistic computations (Item 1) have been reported previously [Sues et al. 1991a, b]
and are summarized in Table 2-2. These sources of parallelism are very coarse-grained
and very high parallel efficiencies can be achieved. In addition a very high degree of
parallelism can be achieved for the Monte-Carlo Simulation method (of course, this is
also often, but not always, the most computationally intensive method).

Optimization. In optimization (Item 2) parallelism arises in the search to find the
optimum design solution. Optimization algorithms can use anyone of a number of
search strategies to find an optimal solution; however, all require repeated evaluation of
the objective and constraint functions for different trial values of the design variables.
Most commonly, search strategies involve computation of response gradients with
respect to each of the design variables in order to update the design solution. These
response gradients or sensitivity coefficients can each be computed independently and
in parallel. This source of parallelism is very coarse grained and nearly perfect linear
speedup can be achieved as will be demonstrated in the next chapter. The main
limitation of this strategy is that the degree of parallelism is limited to twice the number
of design variables (or just the number of variables if one-side finite differences are used
to estimate the response gradient).

Stochastic Optimization. For stochastic optimization (Item 3), sources of
parallelism in the two-path approach (Figure 2-2), were introduced in the preceding
section. For stochastic optimization the sources of parallelism derive primarily from the
stochastics since the optimization sensitivities are obtained as a by-product of the
probabilistic analysis. As pointed out earlier, the MCS path has the same degree of
parallelism as in a general probabilistic analysis and high parallel efficiency can be
achieved as reported in previous research [Sues et al. 1993; 1991a, b]. The FORM path,
however, can also have a high degree of parallelism since it incorporates two of the
sources of parallelism shown in Table 2-2: (1) repeated performance function
evaluations for perturbed inputs; and (2) multiple failure mode analysis. The first
source of parallelism is in the computation of response gradients with respect to the
problem random variables that arise in FORM. The second source of parallelism arises
from the multiple reliability-based constraints in the stochastic optimization. Each
reliability-based constraint will have a different design point (MPP) and, therefore,

5786 2-12

requires an independent FORM analysis at each design iteration. Hence, while the
degree of parallelism will not be as high for the FORM path as the MCS path, it can be
large enough to effectively use tens of processors for many typical problems.

TABLE 2-2. SOURCES OF PARALLELISM IN PROBABILISTIC MECHANICS

Repeated
Multiple

Multiple Different
Method Performance Failure Structural

Function CDFValues Mode Response
Evaluations for Analysis Locations of

Perturbed Inputs Interest

FORM/SORM X X X X

Direct Monte
Carlo X Xl

Monte Carlo with
Variance X X X X
Reduction

Hybrid X X X X

1 Only when different analysis model or method is used for different failure modes.

General Structural Mechanics. Parallelism in the general structural mechanics
computation (Item 4) has also been reviewed by Sues et al. [1991a, b]. Farhat [1992]
provides a recent review of methods of parallelization for general finite element
applications. In general, parallelism is exploited by using either domain decomposition
methods, or substructuring methods or through the use of parallel equation solvers. For
more details the reader is referred to the cited references.

Aerodynamics. Parallelism in aerodynamics (Item 5) arises from several sources.
In the implementation studies presented in the next Chapter we exploit, quite
successfully, parallelism in computation of aerodynamic influence coefficients. This
parallel decomposition falls naturally from the nature of the linear potential analysis
method used. In this method, the influence coefficients are mutually independent
functions of the surface geometry. Therefore, they are inherently parallel.

Additional sources of parallelism in other aerodynamics methods have been
identified and will be pursued in future research. For unsteady, compressible potential
aerodynamics (for example, for propfan flutter analysis), the same source of parallelism
exists as just discussed. For unsteady pseudo-three-dimensional cascade aerodynamics
analysis (for general analysis of blades in a turbomachine compressor stage), parallel
decomposition is achieved by performing requisite 2D cascade analyses in parallel. An
additional level of parallelism can be obtained by analyzing multiple compressor stages
each on separate clusters of nodes with flows between stages being modeled
approximately. Finally, for 3D Euler analyses of a single blade row in a compressor
stage (for detailed surface flow analysis), parallelism can be achieved by generating

5786 2-13

requires an independent FORM analysis at each design iteration. Hence, while the
degree of parallelism will not be as high for the FORM path as the MCS path, it can be
large enough to effectively use tens of processors for many typical problems.

TABLE 2-2. SOURCES OF PARALLELISM IN PROBABILISTIC MECHANICS

Repeated
Multiple

Multiple Different
Method Performance Failure Structural

Function CDFValues Mode Response
Evaluations for Analysis Locations of

Perturbed Inputs Interest

FORM/SORM X X X X

Direct Monte
Carlo X Xl

Monte Carlo with
Variance X X X X
Reduction

Hybrid X X X X

1 Only when different analysis model or method is used for different failure modes.

General Structural Mechanics. Parallelism in the general structural mechanics
computation (Item 4) has also been reviewed by Sues et al. [1991a, b]. Farhat [1992]
provides a recent review of methods of parallelization for general finite element
applications. In general, parallelism is exploited by using either domain decomposition
methods, or substructuring methods or through the use of parallel equation solvers. For
more details the reader is referred to the cited references.

Aerodynamics. Parallelism in aerodynamics (Item 5) arises from several sources.
In the implementation studies presented in the next Chapter we exploit, quite
successfully, parallelism in computation of aerodynamic influence coefficients. This
parallel decomposition falls naturally from the nature of the linear potential analysis
method used. In this method, the influence coefficients are mutually independent
functions of the surface geometry. Therefore, they are inherently parallel.

Additional sources of parallelism in other aerodynamics methods have been
identified and will be pursued in future research. For unsteady, compressible potential
aerodynamics (for example, for propfan flutter analysis), the same source of parallelism
exists as just discussed. For unsteady pseudo-three-dimensional cascade aerodynamics
analysis (for general analysis of blades in a turbomachine compressor stage), parallel
decomposition is achieved by performing requisite 2D cascade analyses in parallel. An
additional level of parallelism can be obtained by analyzing multiple compressor stages
each on separate clusters of nodes with flows between stages being modeled
approximately. Finally, for 3D Euler analyses of a single blade row in a compressor
stage (for detailed surface flow analysis), parallelism can be achieved by generating

5786 2-13

multiple grids for several blade rows, and solving the separate blade rows in parallel.
Similar approaches have been demonstrated in previous research by others [Blech et al.
1991]. Additional levels of parallelism can be obtained by using a parallel equation
solver.

Multi-Disciplinary Design. Multi-disciplinary design problems have several
unique sources of coarse-grained parallelism that require further investigation. The
potential for parallel analysis arises from the concept of simultaneously executing
analyses from the individual disciplines. Straightforward implementation is somewhat
hampered when the disciplines are truly coupled (for example when structural
response significantly alters the loading as in many fluid-structure interaction
applications) and approximations based on iterative solution schemes are required to
invoke parallelism. For aero mechanical analysis a source of multi-disciplinary
parallelism that we plan to investigate in future research is simultaneous execution of
steady and oscillatory calculations for both aerodynamics and structures. The unsteady
analysis requires first that an oscillatory pressure distribution be known for the first 3 or
4 blade vibration modes. The 3 or 4 oscillatory pressure distributions can be calculated
in parallel. The distributions feed into an additional parallel structural analysis. Once all
calculations are complete, a master process combines the results to determine flutter
constraint values. Similar parallel calculations can be performed for analysis and design
of both propfan blades and compressor stage blades.

2.4.2 Computational Strategy for Multi-level Parallelism

As identified above there are many sources of parallelism in multi-disciplinary
stochastic optimization problems. In general it is necessary to invoke more than one
source of parallelism for one of two reasons: (1) increase the degree of parallelism; or (2)
reduce memory/processor demand. For typical design optimization problems or
probabilistic analyses by methods other than MCS, if only one source of parallelism is
used, it will generally only be possible to effectively use tens of processors. Hence,
additional sources of parallelism must be exploited to achieve the high parallel
speedups we are after. Also, for problems with large memory requirements typical of
many MSO applications, it is necessary to distribute computations over several
processors to reduce memory demand per node (or use computational algorithms that
minimize memory requirements). As a simple example, if 96 Mbytes of storage are
required to solve a structure and only 16 Mbytes are available at each processor node, 6
processors at a minimum must be assigned to solve a single structure. Decomposition
among these 6 processors must then be accomplished. In this example two sources of
parallelism can be exploited simultaneously in a two-level decomposition to increase
the degree of parallelism and manage the memory/processor demand. That is, for
stochastic optimization we use clusters of 6 processors each to perform independent
sensitivity analyses or Monte-Carlo simulation histories.

As indicated above by the simple example, the sources of parallelism can be
arranged in a hierarchical structure with the coarsest grained parallelism at the top and
successively finer-grained sources of parallelism at lower levels. By exploiting the

5786 2-14

multiple grids for several blade rows, and solving the separate blade rows in parallel.
Similar approaches have been demonstrated in previous research by others [Blech et al.
1991]. Additional levels of parallelism can be obtained by using a parallel equation
solver.

Multi-Disciplinary Design. Multi-disciplinary design problems have several
unique sources of coarse-grained parallelism that require further investigation. The
potential for parallel analysis arises from the concept of simultaneously executing
analyses from the individual disciplines. Straightforward implementation is somewhat
hampered when the disciplines are truly coupled (for example when structural
response significantly alters the loading as in many fluid-structure interaction
applications) and approximations based on iterative solution schemes are required to
invoke parallelism. For aero mechanical analysis a source of multi-disciplinary
parallelism that we plan to investigate in future research is simultaneous execution of
steady and oscillatory calculations for both aerodynamics and structures. The unsteady
analysis requires first that an oscillatory pressure distribution be known for the first 3 or
4 blade vibration modes. The 3 or 4 oscillatory pressure distributions can be calculated
in parallel. The distributions feed into an additional parallel structural analysis. Once all
calculations are complete, a master process combines the results to determine flutter
constraint values. Similar parallel calculations can be performed for analysis and design
of both propfan blades and compressor stage blades.

2.4.2 Computational Strategy for Multi-level Parallelism

As identified above there are many sources of parallelism in multi-disciplinary
stochastic optimization problems. In general it is necessary to invoke more than one
source of parallelism for one of two reasons: (1) increase the degree of parallelism; or (2)
reduce memory/processor demand. For typical design optimization problems or
probabilistic analyses by methods other than MCS, if only one source of parallelism is
used, it will generally only be possible to effectively use tens of processors. Hence,
additional sources of parallelism must be exploited to achieve the high parallel
speedups we are after. Also, for problems with large memory requirements typical of
many MSO applications, it is necessary to distribute computations over several
processors to reduce memory demand per node (or use computational algorithms that
minimize memory requirements). As a simple example, if 96 Mbytes of storage are
required to solve a structure and only 16 Mbytes are available at each processor node, 6
processors at a minimum must be assigned to solve a single structure. Decomposition
among these 6 processors must then be accomplished. In this example two sources of
parallelism can be exploited simultaneously in a two-level decomposition to increase
the degree of parallelism and manage the memory/processor demand. That is, for
stochastic optimization we use clusters of 6 processors each to perform independent
sensitivity analyses or Monte-Carlo simulation histories.

As indicated above by the simple example, the sources of parallelism can be
arranged in a hierarchical structure with the coarsest grained parallelism at the top and
successively finer-grained sources of parallelism at lower levels. By exploiting the

5786 2-14

higher levels first we maximize the average granularity and thereby achieve the highest
degree of parallelism with the coarsest possible granularity. The multi-level parallel
decomposition strategy is depicted in Figure 2-3. In the next chapter, we implement and
evaluate a two-level decomposition. In general, there are limits to the number of levels
of parallelism that can be efficiently exploited. These limitations will depend on the
communications bandwidth of the particular hardware platform and the
compute/ communicate ratios at each level of parallelism for the particular problem.

Levell. The top level decomposition is referred to as task farming and exploits
the data-independent parallelism that is inherent in MSO problems (Section 2.4.1,
generally items, 1, 2, and 3). Each data-independent computation, for example,
individual history computations for the MCS path or the response sensitivity
computations for each probabilistic constraint evaluation for the FORM path is referred
to as a task.

Level II. The second level decomposition focuses on data decomposition of the
structure into sub-domains or matrix partitioning depending on the solution method
used (Section 2.4.1, generally items 4 and 5). The number of decompositions to use (that
is the number of sub-domains or matrix partitions) must consider that while increasing
the number of decompositions allows more processors to be used, parallel overhead
will increase. In fact, negative speedup can result if too many decompositions are used.
Also, the decompositions must be selected so that load balance among the processors
can be achieved. As an illustration of two-level decomposition consider a case where a
structure is broken into four domains. Here four processors would work together as a
cluster on each of the Level 1 tasks. Similarly if the Level II decomposition of the
aerodynamics is such that the flow field is broken down into four portions (e.g., four
compressor stages) then four processors would work together as a cluster on each of the
Level 1 tasks.

As will be demonstrated in Chapter 3, Level I and Level II decomposition can be
highly efficient on massively parallel processors. For networks of workstations,
degradation can occur when Level II is invoked, if the granularity of the Level II
computation is fine. However, it will not generally be necessary to invoke large
numbers of Level II subdomains on workstation networks, since workstation networks
will have limited numbers of nodes and also, very large amounts of memory per node.

Level III. The third level decomposition that can be invoked, if necessary, is at
the element level. This level of parallelism is a fine-to-medium grain data
decomposition. At this level the structure subdomains can be further decomposed and
additional multiple processors used, for example, to perform constitutive model
evaluations for different elements, including micro-mechanics analyses for composite
materials. The need for Level III data decomposition will be evaluated in future
research; and will depend on specific commercial applications/needs and advances in
hardware (that is, to even larger numbers of processors that in currently emerging
hardware).

5786 2-15

higher levels first we maximize the average granularity and thereby achieve the highest
degree of parallelism with the coarsest possible granularity. The multi-level parallel
decomposition strategy is depicted in Figure 2-3. In the next chapter, we implement and
evaluate a two-level decomposition. In general, there are limits to the number of levels
of parallelism that can be efficiently exploited. These limitations will depend on the
communications bandwidth of the particular hardware platform and the
compute/ communicate ratios at each level of parallelism for the particular problem.

Levell. The top level decomposition is referred to as task farming and exploits
the data-independent parallelism that is inherent in MSO problems (Section 2.4.1,
generally items, 1, 2, and 3). Each data-independent computation, for example,
individual history computations for the MCS path or the response sensitivity
computations for each probabilistic constraint evaluation for the FORM path is referred
to as a task.

Level II. The second level decomposition focuses on data decomposition of the
structure into sub-domains or matrix partitioning depending on the solution method
used (Section 2.4.1, generally items 4 and 5). The number of decompositions to use (that
is the number of sub-domains or matrix partitions) must consider that while increasing
the number of decompositions allows more processors to be used, parallel overhead
will increase. In fact, negative speedup can result if too many decompositions are used.
Also, the decompositions must be selected so that load balance among the processors
can be achieved. As an illustration of two-level decomposition consider a case where a
structure is broken into four domains. Here four processors would work together as a
cluster on each of the Level 1 tasks. Similarly if the Level II decomposition of the
aerodynamics is such that the flow field is broken down into four portions (e.g., four
compressor stages) then four processors would work together as a cluster on each of the
Level 1 tasks.

As will be demonstrated in Chapter 3, Level I and Level II decomposition can be
highly efficient on massively parallel processors. For networks of workstations,
degradation can occur when Level II is invoked, if the granularity of the Level II
computation is fine. However, it will not generally be necessary to invoke large
numbers of Level II subdomains on workstation networks, since workstation networks
will have limited numbers of nodes and also, very large amounts of memory per node.

Level III. The third level decomposition that can be invoked, if necessary, is at
the element level. This level of parallelism is a fine-to-medium grain data
decomposition. At this level the structure subdomains can be further decomposed and
additional multiple processors used, for example, to perform constitutive model
evaluations for different elements, including micro-mechanics analyses for composite
materials. The need for Level III data decomposition will be evaluated in future
research; and will depend on specific commercial applications/needs and advances in
hardware (that is, to even larger numbers of processors that in currently emerging
hardware).

5786 2-15

Hardware Characteristics
Problem Characteristics • Nwnber of Processors. Multi-Level

• Memory/Processor. Allocation • MSO - Independent
• Memory Configuration! Parallel Architecture. Algorithm Computations.
• Communications Parameters. f---. ~ • Memory/Solution.

• Equation Solution Method.

I J
I I I

MSO MSO - MSO
Levell: Computationl Computation 2 Computation N

MCSPath: •••
Task Farming

• Specific History
FORM Path:
• Sensitivities
• Failure Modes/

Constraints

I I I
Levelll: MSO Computation 2
Data
Decomposition Subdomain 1 Subdomain 2 or ••• SubdomainN

or Partition 2 or
Partition 1 • Solve for Load Partition N

• Solve for Response
or

• Form substructures

Level III: Subdomain 2
Data
Decomposition Element 1 Element 2 ••• ElementN

· • Constitutive Equations · • · · • Micro/macro mechanics ·

Figure 2-3. Top-Down Strategy for Parallel MSO Problem Decomposition

Parallel Control Algorithm. Phase II of this research will develop a parallel
control algorithm that uses the hardware and problem characteristics to determine the
optimal multi-level decomposition. The pertinent hardware characteristics include: (1)
the number of processors; (2) the architecture type (shared-memory, distributed­
memory, etc.); (3) the amount of memory per processor; and (4) communications
parameters (network configuration, data transfer rates/bandwidth, etc.). The pertinent
problem characteristics include: (1) the number of independent problem solutions
required by the stochastic optimization (NSOL-see Equations 2-1 and 2-2); (2) the
amount of memory required for each solution; and (3) the equation solver selected.
Details of the parallel control algorithm are presented in our Phase II research proposal.

5786 2-16

Hardware Characteristics
Problem Characteristics • Nwnber of Processors. Multi-Level

• Memory/Processor. Allocation • MSO - Independent
• Memory Configuration! Parallel Architecture. Algorithm Computations.
• Communications Parameters. f---. ~ • Memory/Solution.

• Equation Solution Method.

I J
I I I

MSO MSO - MSO
Levell: Computationl Computation 2 Computation N

MCSPath: •••
Task Farming

• Specific History
FORM Path:
• Sensitivities
• Failure Modes/

Constraints

I I I
Levelll: MSO Computation 2
Data
Decomposition Subdomain 1 Subdomain 2 or ••• SubdomainN

or Partition 2 or
Partition 1 • Solve for Load Partition N

• Solve for Response
or

• Form substructures

Level III: Subdomain 2
Data
Decomposition Element 1 Element 2 ••• ElementN

· • Constitutive Equations · • · · • Micro/macro mechanics ·

Figure 2-3. Top-Down Strategy for Parallel MSO Problem Decomposition

Parallel Control Algorithm. Phase II of this research will develop a parallel
control algorithm that uses the hardware and problem characteristics to determine the
optimal multi-level decomposition. The pertinent hardware characteristics include: (1)
the number of processors; (2) the architecture type (shared-memory, distributed­
memory, etc.); (3) the amount of memory per processor; and (4) communications
parameters (network configuration, data transfer rates/bandwidth, etc.). The pertinent
problem characteristics include: (1) the number of independent problem solutions
required by the stochastic optimization (NSOL-see Equations 2-1 and 2-2); (2) the
amount of memory required for each solution; and (3) the equation solver selected.
Details of the parallel control algorithm are presented in our Phase II research proposal.

5786 2-16

.' 2.4.3 Special-Purpose Computational Algorithms

In addition to the multi-level parallelization strategy, a key component of this
research is the identification of special purpose algorithms that are not only
paraUelizable but reduce the basic computational effort in performing the repeated
objective function and constraint equation evaluations that are required for the
probabilistic analysis and optimization and at the same time minimize memory
requirements (a key to achieving high parallel efficiency). Two approaches have been
identified and are briefly summarized below, probabilistic substructuring and the SPCG
equation solver.

Probabilistic Substructuring and Substructured Optimization. Probabilistic
substructuring can be used prior to execution of the probabilistic computations in order
to reduce the memory/processor requirements and to reduce the execution time of each
structural response solution required by the probabilistic analysis. Probabilistic
substructuring has been successfully demonstrated in earlier research for solving
fatigue reliability problems [Sues et al. 1993].

The probabilistic substructuring technique is illustrated in Figure 2-4 for a
turbine blade analysis. The figure is an idealization that depicts a characteristic of many
mechanical analysis problems. That is, there are regions that require detailed modeling
and regions that can be modeled in a coarse fashion. The regions requiring detailed
modeling correspond to regions of high stress concentrations or gradients, resulting
from geometric discontinuities (holes, bends, intersections, etc.) or applied loads. These
regions are likely locations for initiation of failure, such as crack initiation. For
probabilistic analysis, the regions requiring detailed modeling will also require more
detailed treatment of uncertainties and, therefore, considerably more computational
effort in the probabilistic aspects of the problem.

5786

Region of Detail
(Probabilistic)

Figure 2-4. Probabilistic Substructuring

2-17

.' 2.4.3 Special-Purpose Computational Algorithms

In addition to the multi-level parallelization strategy, a key component of this
research is the identification of special purpose algorithms that are not only
paraUelizable but reduce the basic computational effort in performing the repeated
objective function and constraint equation evaluations that are required for the
probabilistic analysis and optimization and at the same time minimize memory
requirements (a key to achieving high parallel efficiency). Two approaches have been
identified and are briefly summarized below, probabilistic substructuring and the SPCG
equation solver.

Probabilistic Substructuring and Substructured Optimization. Probabilistic
substructuring can be used prior to execution of the probabilistic computations in order
to reduce the memory/processor requirements and to reduce the execution time of each
structural response solution required by the probabilistic analysis. Probabilistic
substructuring has been successfully demonstrated in earlier research for solving
fatigue reliability problems [Sues et al. 1993].

The probabilistic substructuring technique is illustrated in Figure 2-4 for a
turbine blade analysis. The figure is an idealization that depicts a characteristic of many
mechanical analysis problems. That is, there are regions that require detailed modeling
and regions that can be modeled in a coarse fashion. The regions requiring detailed
modeling correspond to regions of high stress concentrations or gradients, resulting
from geometric discontinuities (holes, bends, intersections, etc.) or applied loads. These
regions are likely locations for initiation of failure, such as crack initiation. For
probabilistic analysis, the regions requiring detailed modeling will also require more
detailed treatment of uncertainties and, therefore, considerably more computational
effort in the probabilistic aspects of the problem.

5786

Region of Detail
(Probabilistic)

Figure 2-4. Probabilistic Substructuring

2-17

For parallel implementation, multiple processors are first used to develop each of
the super elements. This is accomplished by assigning one processor per super element.
Once the super elements are formed, the probabilistic analysis of the entire structure,
which now has a much reduced number of degrees of freedom, proceeds. The structural
properties of the super element are treated deterministically; however loadings on the
super element can still be treated as random. The key contribution of this approach,
however is in greatly reducing the memory requirements of the probabilistic analysis
which is known to have a great impact on the parallel efficiency.

The probabilistic substructuring approach can also be applied for parallel
deterministic optimization. For deterministic optimization, savings are achieved
because the design sensitivities can be computed at a much reduced cost and memory
requirements are reduced. Of course properties within the super element and at the
super element boundary cannot be design variables. However, outside the super
elements in the regions of detail, size and shape are free to vary to obtain an optimum
structure.

Stochastic Preconditioned Conjugate Gradient Solver. The stochastic
preconditioned conjugate gradient solver is a very effective procedure for solving large
systems of equations in probabilistic finite element analysis [Sues et al. 1992].
Computational efficiency is achieved through the use of a pre-conditioning matrix that
can reduce the number of iterations required for convergence in the conjugate gradient
scheme by an order of magnitude. The procedure obtains the pre-conditioning matrix
from the central solution obtained at the start of every probabilistic analysis (the
solution obtained using mean values of all the random variables) at essentially no
added cost. While the procedure was developed for application in probabilistic analysis,
it is a general purpose approach for sensitivity analysis, and hence is identically
applicable for deterministic optimization. Although the above-referenced study
implements the solver sequentially, it is ideally suited for parallel implementation since
it is an iterative approach requiring only matrix-vector multiplications and vector dot
products. The solver has also been shown to be efficient for use with sparse storage
schemes so that memory requirements can be minimized for large 3-D problems.

5786 2-18

For parallel implementation, multiple processors are first used to develop each of
the super elements. This is accomplished by assigning one processor per super element.
Once the super elements are formed, the probabilistic analysis of the entire structure,
which now has a much reduced number of degrees of freedom, proceeds. The structural
properties of the super element are treated deterministically; however loadings on the
super element can still be treated as random. The key contribution of this approach,
however is in greatly reducing the memory requirements of the probabilistic analysis
which is known to have a great impact on the parallel efficiency.

The probabilistic substructuring approach can also be applied for parallel
deterministic optimization. For deterministic optimization, savings are achieved
because the design sensitivities can be computed at a much reduced cost and memory
requirements are reduced. Of course properties within the super element and at the
super element boundary cannot be design variables. However, outside the super
elements in the regions of detail, size and shape are free to vary to obtain an optimum
structure.

Stochastic Preconditioned Conjugate Gradient Solver. The stochastic
preconditioned conjugate gradient solver is a very effective procedure for solving large
systems of equations in probabilistic finite element analysis [Sues et al. 1992].
Computational efficiency is achieved through the use of a pre-conditioning matrix that
can reduce the number of iterations required for convergence in the conjugate gradient
scheme by an order of magnitude. The procedure obtains the pre-conditioning matrix
from the central solution obtained at the start of every probabilistic analysis (the
solution obtained using mean values of all the random variables) at essentially no
added cost. While the procedure was developed for application in probabilistic analysis,
it is a general purpose approach for sensitivity analysis, and hence is identically
applicable for deterministic optimization. Although the above-referenced study
implements the solver sequentially, it is ideally suited for parallel implementation since
it is an iterative approach requiring only matrix-vector multiplications and vector dot
products. The solver has also been shown to be efficient for use with sparse storage
schemes so that memory requirements can be minimized for large 3-D problems.

5786 2-18

CHAPTER 3

PARALLEL IMPLEMENTATION USING PARALLEL VIRTUAL MACHINE (PVM)

3.1 INTRODUCTION

Hundreds of different kinds of computer systems exist today. These systems
vary significantly in type of processor, operating system, peripherals, connectivity, etc.
In order to provide an application which is useful to most of the people using
computers, a software developer must somehow support multiple systems. In many
cases, particularly for engineering analysis software and packages which do not
produce graphical output, the problem of supporting multiple computer systems is
reduced to supporting multiple operating systems. The most widely used operating
systems in the world are MS-DOS and PC-DOS, Apple Macintosh, and Unix. For
powerful engineering analysis and design applications, Unix is the most popular
system. However, every engineering workstation manufacturer publishes its own
version of Unix, each with added features and modifications. Many vary significantly
from the AT&T and Berkeley standards. On top of the operating system differences,
different systems will likely contain compilers and development tools with differences
that may exceed the differences between operating systems.

While it is clearly difficult to produce one source code for a major application
which is portable and will compile and run on every version of Unix, it is even more
difficult to produce a portable parallel application. The differences in operating systems,
compilers and tools often manifest themselves in networking services and inter­
application communication. This is especially true of multiple-processor parallel
computer systems.

Our approach toward developing a portable parallel multi-disciplinary stochastic
optimization (MSO) computing environment is described in this chapter. We also
provide the results of several parallel implementation and timing studies, including the
multi-level decomposition approach described in the previous chapter.

3.1.1 ANSI Standard Programming Languages

Every version of Unix provides two compilers, FORTRAN and C, which are
fairly portable. In fact, although suppliers generally provide language extensions, they
usually support the ANSI language standards. For this reason, it is important that code
intended to be portable be written strictly in an ANSI standard language. There is no
guarantee that multiple compiler vendors support any language extensions, and code
which uses extensions will likely encounter problems. The demonstration problem code
was developed in the ANSI standard FORTRAN programming language, using
extensions only to obtain timing data.

5786 3-1

CHAPTER 3

PARALLEL IMPLEMENTATION USING PARALLEL VIRTUAL MACHINE (PVM)

3.1 INTRODUCTION

Hundreds of different kinds of computer systems exist today. These systems
vary significantly in type of processor, operating system, peripherals, connectivity, etc.
In order to provide an application which is useful to most of the people using
computers, a software developer must somehow support multiple systems. In many
cases, particularly for engineering analysis software and packages which do not
produce graphical output, the problem of supporting multiple computer systems is
reduced to supporting multiple operating systems. The most widely used operating
systems in the world are MS-DOS and PC-DOS, Apple Macintosh, and Unix. For
powerful engineering analysis and design applications, Unix is the most popular
system. However, every engineering workstation manufacturer publishes its own
version of Unix, each with added features and modifications. Many vary significantly
from the AT&T and Berkeley standards. On top of the operating system differences,
different systems will likely contain compilers and development tools with differences
that may exceed the differences between operating systems.

While it is clearly difficult to produce one source code for a major application
which is portable and will compile and run on every version of Unix, it is even more
difficult to produce a portable parallel application. The differences in operating systems,
compilers and tools often manifest themselves in networking services and inter­
application communication. This is especially true of multiple-processor parallel
computer systems.

Our approach toward developing a portable parallel multi-disciplinary stochastic
optimization (MSO) computing environment is described in this chapter. We also
provide the results of several parallel implementation and timing studies, including the
multi-level decomposition approach described in the previous chapter.

3.1.1 ANSI Standard Programming Languages

Every version of Unix provides two compilers, FORTRAN and C, which are
fairly portable. In fact, although suppliers generally provide language extensions, they
usually support the ANSI language standards. For this reason, it is important that code
intended to be portable be written strictly in an ANSI standard language. There is no
guarantee that multiple compiler vendors support any language extensions, and code
which uses extensions will likely encounter problems. The demonstration problem code
was developed in the ANSI standard FORTRAN programming language, using
extensions only to obtain timing data.

5786 3-1

3.1.2 Portable PVM

Networking and inter-application functions are not currently defined within the
ANSI FORTRAN and C standards. Certain key functions are common to all versions of
Unix; however there are some variations. Also, parallel implementations of Unix have
additional added functions for inter-processor communication, and these functions vary
from manufacturer to manufacturer. For these reasons, it is impossible to write a
portable parallel source code which uses native system calls. The demonstration
problem code was developed using Parallel Virtual Machine (PVMfversion 3.1, created
at Oak Ridge National Laboratory described in Chapter 2.

3.2 PARALLEL COMPUTER SYSTEMS

In order to demonstrate that the PVM approach to MSO executes on a wide
variety of computer systems without modification to the parallel function calls in the
source code, the demonstration problem was executed on the following systems:

1.

2.

5786

Intel iPSCI860 Hypercube. The Intel iPSC/860 installed at NAS at NASA­
Ames is a Multiple Instruction, Multiple Data (MIMD) distributed
memory parallel supercomputer. It has 128 Intel i860 nodes operating at
40Mhz connected in a hypercube architecture (Figure 3-1).
Communication between nodes is by way of direct-connect routing
supporting variable length messages and peak data rates of 2.8MB per
second on 8 bi-directional connections at each node. Each node contains 8
MB of RAM, for a total of 1GB of memory. The hypercube is connected to
a Concurrent File System which is an array of 10 high-speed SCSI disks,
providing 7MB of mass storage. The iPSC / 860 is connected to the N AS
network through a single computer system known as the System Resource
Manager (SRM), which runs a version of the Unix operating system. The
iPSC/860 version of PVM consists of two components. The host
component runs on a Silicon Graphics workstation located on the NAS
network. The workstation is responsible for allocating hypercube
resources by issuing network requests to the SRM. All external
communication to the hypercube is routed to the SRM. The node
component of PVM actually runs on each hypercube node.

Lewis Advanced Computing Environment (LACE) Cluster. The NASA­
Lewis LACE Cluster is a network of 32 IBM RS/6000 560 workstations, all
of which run IBM's AIX version of Unix. The workstations include the
standard array of Unix compilers. The cluster is divided into two
subnetworks. Eight of the workstations are allocated for batch and
interactive processing. Of these, one has 512MB of RAM memory, and
seven have 128MB of RAM. The remaining 24 workstations are dedicated
to MPP and parallel processing. The MPP nodes each have 64MB of RAM.
Through special procedures, it is possible to confine MPP work to the
MPP nodes so that parallel processing applications will not have to
compete with additional network traffic between the two subnets.

3-2

3.1.2 Portable PVM

Networking and inter-application functions are not currently defined within the
ANSI FORTRAN and C standards. Certain key functions are common to all versions of
Unix; however there are some variations. Also, parallel implementations of Unix have
additional added functions for inter-processor communication, and these functions vary
from manufacturer to manufacturer. For these reasons, it is impossible to write a
portable parallel source code which uses native system calls. The demonstration
problem code was developed using Parallel Virtual Machine (PVMfversion 3.1, created
at Oak Ridge National Laboratory described in Chapter 2.

3.2 PARALLEL COMPUTER SYSTEMS

In order to demonstrate that the PVM approach to MSO executes on a wide
variety of computer systems without modification to the parallel function calls in the
source code, the demonstration problem was executed on the following systems:

1.

2.

5786

Intel iPSCI860 Hypercube. The Intel iPSC/860 installed at NAS at NASA­
Ames is a Multiple Instruction, Multiple Data (MIMD) distributed
memory parallel supercomputer. It has 128 Intel i860 nodes operating at
40Mhz connected in a hypercube architecture (Figure 3-1).
Communication between nodes is by way of direct-connect routing
supporting variable length messages and peak data rates of 2.8MB per
second on 8 bi-directional connections at each node. Each node contains 8
MB of RAM, for a total of 1GB of memory. The hypercube is connected to
a Concurrent File System which is an array of 10 high-speed SCSI disks,
providing 7MB of mass storage. The iPSC / 860 is connected to the N AS
network through a single computer system known as the System Resource
Manager (SRM), which runs a version of the Unix operating system. The
iPSC/860 version of PVM consists of two components. The host
component runs on a Silicon Graphics workstation located on the NAS
network. The workstation is responsible for allocating hypercube
resources by issuing network requests to the SRM. All external
communication to the hypercube is routed to the SRM. The node
component of PVM actually runs on each hypercube node.

Lewis Advanced Computing Environment (LACE) Cluster. The NASA­
Lewis LACE Cluster is a network of 32 IBM RS/6000 560 workstations, all
of which run IBM's AIX version of Unix. The workstations include the
standard array of Unix compilers. The cluster is divided into two
subnetworks. Eight of the workstations are allocated for batch and
interactive processing. Of these, one has 512MB of RAM memory, and
seven have 128MB of RAM. The remaining 24 workstations are dedicated
to MPP and parallel processing. The MPP nodes each have 64MB of RAM.
Through special procedures, it is possible to confine MPP work to the
MPP nodes so that parallel processing applications will not have to
compete with additional network traffic between the two subnets.

3-2

n=O n=l n=2

n=3 n=4

Figure 3-1. Hypercube Architecture. An (n+1)-dimensional cube is constructed by
replicating an n-Cube and then connecting each vertex in the original cube
with its corresponding vertex in the replicated cube. Number of nodes is
2n; number of connections per node is n; max distance between nodes is n.

3. Hewlett-Packard 9000 Series 730 Workstation. Applied Research
Associate's HP730 single-processor workstation was the primary
development platform for the demonstration code. The HP contains 32MB
of random-access memory, and 1.8GB of disk space, and runs Hewlett­
Packard's HP-UX version of Unix. The demonstration code was tested on
the single-processor HP, with multiple processes representing multiple
nodes.

3.3 ADVANCED PROPFAN BLADE DEMONSTRATION PROBLEM

3.3.1 Problem Description

The NASA/Industry Advanced Turboprop Project (ATP) was begun in 1978 to
investigate the possibilities of using fuel efficient turboprops in the place of current
turbojets and turbofans [Ziemianski, 1988; Hager, 1988; Rhodes 1991]. Current straight­
bladed turboprop propeller blades are fuel efficient at Mach numbers below
approximately 0.6, but lose this efficiency rapidly at higher Mach numbers largely due
to compressibility effects. The ATP project included a major effort to design new
propeller blades, known as propfan blades, which operate efficiently at the higher
cruise Mach numbers (around 0.8) of turbojet and turbofan aircraft. These advanced
propellers include highly swept blade planforms, thin sections, and a large number of

5786 3-3

n=O n=l n=2

n=3 n=4

Figure 3-1. Hypercube Architecture. An (n+1)-dimensional cube is constructed by
replicating an n-Cube and then connecting each vertex in the original cube
with its corresponding vertex in the replicated cube. Number of nodes is
2n; number of connections per node is n; max distance between nodes is n.

3. Hewlett-Packard 9000 Series 730 Workstation. Applied Research
Associate's HP730 single-processor workstation was the primary
development platform for the demonstration code. The HP contains 32MB
of random-access memory, and 1.8GB of disk space, and runs Hewlett­
Packard's HP-UX version of Unix. The demonstration code was tested on
the single-processor HP, with multiple processes representing multiple
nodes.

3.3 ADVANCED PROPFAN BLADE DEMONSTRATION PROBLEM

3.3.1 Problem Description

The NASA/Industry Advanced Turboprop Project (ATP) was begun in 1978 to
investigate the possibilities of using fuel efficient turboprops in the place of current
turbojets and turbofans [Ziemianski, 1988; Hager, 1988; Rhodes 1991]. Current straight­
bladed turboprop propeller blades are fuel efficient at Mach numbers below
approximately 0.6, but lose this efficiency rapidly at higher Mach numbers largely due
to compressibility effects. The ATP project included a major effort to design new
propeller blades, known as propfan blades, which operate efficiently at the higher
cruise Mach numbers (around 0.8) of turbojet and turbofan aircraft. These advanced
propellers include highly swept blade planforms, thin sections, and a large number of

5786 3-3

blades per engine for both single-rotating and counter-rotating configurations. These
propellers have an installed propulsive efficiency which is increased by 10 to 20% from
turbofans (Figure 3-2). Flight tests have shown that this increased efficiency from the
new propellers alone could provide a fuel savings as large as 30%. A combination of
improved propeller design and modem turbine engine technology offer a potential fuel
savings of 50% over equivalent-technology turbofans.

The example problem for this Phase I research focuses on the aerodynamic
design of an advanced propfan blade. This problem contains many of the salient
features of typical aeropropulsions system design problems. The real-world design of
such blades must consider many different engineering disciplines. A complete design
may include hundreds of design parameters and constraints. For example, the blade
must operate at cruise Mach numbers of approximately 0.8. In .order to maximize
propulsive efficiency, the blade must have minimal supersonic flow on the surface in
order to reduce losses due to shock waves, and so the blade leading edge must be swept
back. Supersonic flow is further reduced by designing very thin blade sections which
exhibit only weak shocks near the trailing edge. The blade will be highly loaded and so
the structural design of the blade is important, particularly with the thin, swept
sections. In the presence of a fuselage/wing/nacelle configuration, there is an unsteady,
periodic loading on the blades which causes the blades to load and unload with every
revolution. Additionally, there is potential for shock waves on the blades which may
themselves oscillate, enhancing the unsteady loading. A further source of vibration and

90 -~ 0 -~
80 (,)

c
Q) .- Advanced, High-Speed Turboprop (,)

== 70 w
"ts
oS! Turbofan -ca 60
In
C

50
0.3 0.4 0.5 0.6 0.7 0.8 0.9

Cruise Mach Number

Figure 3-2. Increased Propulsive Efficiency with High-Speed Turboprops

5786 3-4

blades per engine for both single-rotating and counter-rotating configurations. These
propellers have an installed propulsive efficiency which is increased by 10 to 20% from
turbofans (Figure 3-2). Flight tests have shown that this increased efficiency from the
new propellers alone could provide a fuel savings as large as 30%. A combination of
improved propeller design and modem turbine engine technology offer a potential fuel
savings of 50% over equivalent-technology turbofans.

The example problem for this Phase I research focuses on the aerodynamic
design of an advanced propfan blade. This problem contains many of the salient
features of typical aeropropulsions system design problems. The real-world design of
such blades must consider many different engineering disciplines. A complete design
may include hundreds of design parameters and constraints. For example, the blade
must operate at cruise Mach numbers of approximately 0.8. In .order to maximize
propulsive efficiency, the blade must have minimal supersonic flow on the surface in
order to reduce losses due to shock waves, and so the blade leading edge must be swept
back. Supersonic flow is further reduced by designing very thin blade sections which
exhibit only weak shocks near the trailing edge. The blade will be highly loaded and so
the structural design of the blade is important, particularly with the thin, swept
sections. In the presence of a fuselage/wing/nacelle configuration, there is an unsteady,
periodic loading on the blades which causes the blades to load and unload with every
revolution. Additionally, there is potential for shock waves on the blades which may
themselves oscillate, enhancing the unsteady loading. A further source of vibration and

90 -~ 0 -~
80 (,)

c
Q) .- Advanced, High-Speed Turboprop (,)

== 70 w
"ts
oS! Turbofan -ca 60
In
C

50
0.3 0.4 0.5 0.6 0.7 0.8 0.9

Cruise Mach Number

Figure 3-2. Increased Propulsive Efficiency with High-Speed Turboprops

5786 3-4

unsteady loading is stall flutter due to flow separation and periodic loadings at very
low Mach numbers, and classic flutter at high Mach numbers. These unsteady loadings
present an additional structural burden, and may reduce the life of the blade due to
fatigue. A third discipline involved is aeroacoustics. The blade oscillation will create a
noise element which often exceeds the noise due to the engine. For example, during
takeoff, the blade rotation rate will be high, and the community noise pollution created
during takeoff can present a severe problem near airports. The solution to this problem
is found by optimizing propulsion system and airframe integration such that the
propeller noise is reflected away from the community. Thus, for the design of a propfan
blade, engineers must consider, at a minimum, aerodynamics, structural mechanics, and
aeroacoustics to create an acceptable, real-world design. The design which is technically
the best may not be feasible due to operating costs, and so operating cost must be
considered to create a design which is practical.

Since propeller technology alone contributes the majority of the fuel savings in
an advanced turboprop aircraft, it is desirable to extract as much of this potential as
possible. Historically, the design of propellers has been quite separated from the
efficient design of aircraft. Many of the propellers in use today were designed using the
methods of Goldstein and Theodorsen [Goldstein, 1929; Theodorsen, 1948] purely to
analyze some chosen twist and chord distribution or to produce a chord and twist
distribution based on an optimal radial loading. These methods did not consider sweep;
however, much experimental propeller research was performed on swept-bladed
propellers in the 1950's. This research indicated swept propeller blades could perform
efficiently to Mach numbers of approximately 0.85. However, it was found that these
blades tended to flutter and break. From the mid-1950's until the ATP project was
started, propeller research was at a standstill. During the ATP project, many parametric
studies were performed to determine the best aerodynamic shape for an advanced
prop fan blade. These studies borrowed blade planform concepts from the experimental
research in the 50's. The ATP research included analytic and digital computer analyses
as well as experiment. The primary research effort of the ATP project focused on a set of
perhaps 10-15 different blade configurations. The configurations varied in number of
blades per engine, blade sweep and twist, and chord distribution. Additionally, both
single-rotating and counter-rotating configurations were considered. Single-rotating
propellers have an induced swirl in the flow behind the propeller, and this swirl is an
indication of a loss of propeller efficiency. It was supposed that a second set of blades
behind the first, rotating in the opposite direction, would remove the swirl from the
flow and increase the propeller efficiency. The ATP project included a wide range of
analyses, including aerodynamic, aeroelastic and structural, and acoustic. The analyses
were both computational and experimental. The experimental tests were performed on
small, dynamically scaled models, such as the one in Figure 3-3, and on full-size aircraft.
However, the entire ATP project was based on a select few propeller configurations,
and the blade sections which were determined to be appropriate were only the best
from the configurations available. A well-defined MSO computer application could

5786 3-5

unsteady loading is stall flutter due to flow separation and periodic loadings at very
low Mach numbers, and classic flutter at high Mach numbers. These unsteady loadings
present an additional structural burden, and may reduce the life of the blade due to
fatigue. A third discipline involved is aeroacoustics. The blade oscillation will create a
noise element which often exceeds the noise due to the engine. For example, during
takeoff, the blade rotation rate will be high, and the community noise pollution created
during takeoff can present a severe problem near airports. The solution to this problem
is found by optimizing propulsion system and airframe integration such that the
propeller noise is reflected away from the community. Thus, for the design of a propfan
blade, engineers must consider, at a minimum, aerodynamics, structural mechanics, and
aeroacoustics to create an acceptable, real-world design. The design which is technically
the best may not be feasible due to operating costs, and so operating cost must be
considered to create a design which is practical.

Since propeller technology alone contributes the majority of the fuel savings in
an advanced turboprop aircraft, it is desirable to extract as much of this potential as
possible. Historically, the design of propellers has been quite separated from the
efficient design of aircraft. Many of the propellers in use today were designed using the
methods of Goldstein and Theodorsen [Goldstein, 1929; Theodorsen, 1948] purely to
analyze some chosen twist and chord distribution or to produce a chord and twist
distribution based on an optimal radial loading. These methods did not consider sweep;
however, much experimental propeller research was performed on swept-bladed
propellers in the 1950's. This research indicated swept propeller blades could perform
efficiently to Mach numbers of approximately 0.85. However, it was found that these
blades tended to flutter and break. From the mid-1950's until the ATP project was
started, propeller research was at a standstill. During the ATP project, many parametric
studies were performed to determine the best aerodynamic shape for an advanced
prop fan blade. These studies borrowed blade planform concepts from the experimental
research in the 50's. The ATP research included analytic and digital computer analyses
as well as experiment. The primary research effort of the ATP project focused on a set of
perhaps 10-15 different blade configurations. The configurations varied in number of
blades per engine, blade sweep and twist, and chord distribution. Additionally, both
single-rotating and counter-rotating configurations were considered. Single-rotating
propellers have an induced swirl in the flow behind the propeller, and this swirl is an
indication of a loss of propeller efficiency. It was supposed that a second set of blades
behind the first, rotating in the opposite direction, would remove the swirl from the
flow and increase the propeller efficiency. The ATP project included a wide range of
analyses, including aerodynamic, aeroelastic and structural, and acoustic. The analyses
were both computational and experimental. The experimental tests were performed on
small, dynamically scaled models, such as the one in Figure 3-3, and on full-size aircraft.
However, the entire ATP project was based on a select few propeller configurations,
and the blade sections which were determined to be appropriate were only the best
from the configurations available. A well-defined MSO computer application could

5786 3-5

-_. -- ------- --

have produced a propeller which performs better than the best propeller from the A TP
project.

The geometric shape of a propfan blade is defined primarily by radial
distributions of chord length, 2D airfoil section, leading edge sweep, and twist angle.
The twist angle, f3, is measured from the plane of propeller rotation to the chord of the
airfoil at a given radial station. Typically, the primary propeller performance
parameters, thrust coefficient CT, power coefficient C p, and propeller efficiency, 77 , are
plotted versus the non-dimensional Advance Ratio, /, which is defined by:

V
J=­

nD
(3-1)

where V is the free stream velocity, 0 is the blade diameter, and n is the blade rotational
speed in revolutions per unit time . The non-dimensional coefficients and the propeller
efficiency are defined as:

Cr
__ Thrust

(3-2)
pn2 D4

c - Power (3-3)
P - pn3D5

Figure 3-3. Typical Advanced Propfan Blade Experimental Model

5786 3-7

-_. -- ------- --

have produced a propeller which performs better than the best propeller from the A TP
project.

The geometric shape of a propfan blade is defined primarily by radial
distributions of chord length, 2D airfoil section, leading edge sweep, and twist angle.
The twist angle, f3, is measured from the plane of propeller rotation to the chord of the
airfoil at a given radial station. Typically, the primary propeller performance
parameters, thrust coefficient CT, power coefficient C p, and propeller efficiency, 77 , are
plotted versus the non-dimensional Advance Ratio, /, which is defined by:

V
J=­

nD
(3-1)

where V is the free stream velocity, 0 is the blade diameter, and n is the blade rotational
speed in revolutions per unit time . The non-dimensional coefficients and the propeller
efficiency are defined as:

Cr
__ Thrust

(3-2)
pn2 D4

c - Power (3-3)
P - pn3D5

Figure 3-3. Typical Advanced Propfan Blade Experimental Model

5786 3-7

L L

The power is the theoretical shaft power required to drive the propeller at a given I, and
can be related to aerodynamic torque, CQ' by:

where B is the number of blades and torque coefficient, CQ is:

C = Torque
Q pn2D5

(3-5)

(3-6)

In order for the propeller to operate at a specified I, the engine must provide a torque,
CQ' as defined above. The propeller will absorb the corresponding Cp, as given in
Eq. 3-5. It is likely that, for a particular classification of aircraft, only a few candidate
engines will be available. The fuel consumption rate for the engine will be known at
various throttle positions, as will the available power and torque. In designing a

propeller for single-point operation (e.g. at cruise), some candidate fuel consumption
rate will be selected, and this will define a design shaft power for a particular engine.
The propeller must be designed with the constraint that the required power be equal to
the available power at the design J.

For the example problem, the selected objective is to maximize the thrust CT
provided by an 8-bladed, single-rotating SR-7 propfan blade [Aljabri 1987] for an
Advanced Turboprop aircraft in a takeoff/climb-out configuration. The flight Mach
number is 0.165 which corresponds to a sea-level airspeed of 125 mph, and a power
input of 2730 shaft horse-power (Cp=.94) at 1350rpm. The blade to be designed has a
diameter of 9 feet. This low Mach number case was selected to confine the problem
scope to subsonic flow in the Phase I research (this simplifies the analysis but still
allows us to investigate parallelization issues). From the given information, a design
advance ratio /=0.9 is calculated, and this is the operating condition variable for the
blade. For the example, the airfoil and chord are specified at 10 discrete positions down
the span of the blade. The 10 design variables to be selected by the optimization
algorithm are the blade twist angles. In practice, the sweep would also be an additional
series of design variables, and flutter analysis would be included. Two different
optimizations were performed: one to optimize the blade shape at the power coefficient
of the SR-7 blade at the design advance ratio and one to optimize the blade shape for a
power coefficient ten percent greater than the SR-7 power coefficient. The initial shape
in each case was the SR-7 shape.

3.3.2 Brief Description of the VORP Aerodynamics Code

The propfan blade performance analysis in the demonstration code is performed
using the ARA VORP code. VORP is a linear-potential panel method which solves flows
for which there is exclusively incompressible flow on the blade surface. VORP uses the
two-dimensional Prandtl-Glauert correction at each radial blade station to approximate
the compressible subsonic flow, as described below. The demonstration optimization is

5786 3-9

The power is the theoretical shaft power required to drive the propeller at a given I, and
can be related to aerodynamic torque, CQ' by:

where B is the number of blades and torque coefficient, CQ is:

C = Torque
Q pn2D5

(3-5)

(3-6)

In order for the propeller to operate at a specified I, the engine must provide a torque,
CQ' as defined above. The propeller will absorb the corresponding Cp, as given in
Eq. 3-5. It is likely that, for a particular classification of aircraft, only a few candidate
engines will be available. The fuel consumption rate for the engine will be known at
various throttle positions, as will the available power and torque. In designing a

propeller for single-point operation (e.g. at cruise), some candidate fuel consumption
rate will be selected, and this will define a design shaft power for a particular engine.
The propeller must be designed with the constraint that the required power be equal to
the available power at the design J.

For the example problem, the selected objective is to maximize the thrust CT
provided by an 8-bladed, single-rotating SR-7 propfan blade [Aljabri 1987] for an
Advanced Turboprop aircraft in a takeoff/climb-out configuration. The flight Mach
number is 0.165 which corresponds to a sea-level airspeed of 125 mph, and a power
input of 2730 shaft horse-power (Cp=.94) at 1350rpm. The blade to be designed has a
diameter of 9 feet. This low Mach number case was selected to confine the problem
scope to subsonic flow in the Phase I research (this simplifies the analysis but still
allows us to investigate parallelization issues). From the given information, a design
advance ratio /=0.9 is calculated, and this is the operating condition variable for the
blade. For the example, the airfoil and chord are specified at 10 discrete positions down
the span of the blade. The 10 design variables to be selected by the optimization
algorithm are the blade twist angles. In practice, the sweep would also be an additional
series of design variables, and flutter analysis would be included. Two different
optimizations were performed: one to optimize the blade shape at the power coefficient
of the SR-7 blade at the design advance ratio and one to optimize the blade shape for a
power coefficient ten percent greater than the SR-7 power coefficient. The initial shape
in each case was the SR-7 shape.

3.3.2 Brief Description of the VORP Aerodynamics Code

The propfan blade performance analysis in the demonstration code is performed
using the ARA VORP code. VORP is a linear-potential panel method which solves flows
for which there is exclusively incompressible flow on the blade surface. VORP uses the
two-dimensional Prandtl-Glauert correction at each radial blade station to approximate
the compressible subsonic flow, as described below. The demonstration optimization is

5786 3-9

performed for free-stream Mach numbers for which the blade tip Mach number is
significantly less than unity in order to guarantee there is no supersonic flow (which is
not modeled by VORP) on the blade. A summary of the aerodynamic method used by
the VORP code is given below.

Mathematically, the motion of a fluid can be described using either of two
methods. The Lagrangian method models the motion of discrete mass elements of the
fluid. Although the Lagrangian method treats discrete masses, it does not in general
treat the motion of individual molecules. The Eulerian method focuses on the fluid
properties at various points in space, and the variation of these properties with time.
The VORP code is based on the Eulerian methodology, under the assumptions that the
flow is inviscid and irrotational. A fluid flow will always behave under the laws of
continuity (conservation of mass), conservation of linear momentum, and conservation
of energy. If it is assumed that viscous layers are thin and negligible, the continuity
equation can be written as:

(3-7)

--+
where p is the fluid density and V is the fluid velocity. If it is further assumed that the
fluid is steady and incompressible, the continuity equation becomes:

--+
V·V=O (3-8)

In a steady flow for which there is no boundary layer separation, it is reasonable to
assume that the flow is irrotational. This is sufficient to introduce a velocity potential
function, <P, such that:

--+
V=V<l> (3-9)

Then the continuity equation becomes Laplace's equation,

(3-10)

Such an inviscid, irrotational flow is known as a potential flow, and Laplace's equation
for the velocity potential is the governing partial differential equation for such flows.
Laplace's equation is an elliptic, linear partial differential equation to which the
principle of superposition may be applied. If multiple solutions are known, then any
linear combination of the solutions is also a solution. This characteristic simplifies the
calculation of the inviscid, incompressible, irrotational fluid flows.

The solution to the potential flow problem is the velocity potential field
throughout the volume in which the flow is contained. The velocity at every point is
calculated directly as the gradient of the potential. Through the use of Green's identity
in the second form, the problem reduces to a boundary-value problem. For a flow

5786 3-10

performed for free-stream Mach numbers for which the blade tip Mach number is
significantly less than unity in order to guarantee there is no supersonic flow (which is
not modeled by VORP) on the blade. A summary of the aerodynamic method used by
the VORP code is given below.

Mathematically, the motion of a fluid can be described using either of two
methods. The Lagrangian method models the motion of discrete mass elements of the
fluid. Although the Lagrangian method treats discrete masses, it does not in general
treat the motion of individual molecules. The Eulerian method focuses on the fluid
properties at various points in space, and the variation of these properties with time.
The VORP code is based on the Eulerian methodology, under the assumptions that the
flow is inviscid and irrotational. A fluid flow will always behave under the laws of
continuity (conservation of mass), conservation of linear momentum, and conservation
of energy. If it is assumed that viscous layers are thin and negligible, the continuity
equation can be written as:

(3-7)

--+
where p is the fluid density and V is the fluid velocity. If it is further assumed that the
fluid is steady and incompressible, the continuity equation becomes:

--+
V·V=O (3-8)

In a steady flow for which there is no boundary layer separation, it is reasonable to
assume that the flow is irrotational. This is sufficient to introduce a velocity potential
function, <P, such that:

--+
V=V<l> (3-9)

Then the continuity equation becomes Laplace's equation,

(3-10)

Such an inviscid, irrotational flow is known as a potential flow, and Laplace's equation
for the velocity potential is the governing partial differential equation for such flows.
Laplace's equation is an elliptic, linear partial differential equation to which the
principle of superposition may be applied. If multiple solutions are known, then any
linear combination of the solutions is also a solution. This characteristic simplifies the
calculation of the inviscid, incompressible, irrotational fluid flows.

The solution to the potential flow problem is the velocity potential field
throughout the volume in which the flow is contained. The velocity at every point is
calculated directly as the gradient of the potential. Through the use of Green's identity
in the second form, the problem reduces to a boundary-value problem. For a flow

5786 3-10

problem, there are two boundary conditions. The first condition is that the flow is
normal to every solid boundary. The second boundary condition is that the
perturbation in velocity potential due to solid bodies being present must diminish to
zero at an infinite distance from the body in any direction. The VORP code is a panel
method which solves for the velocity potential field by selecting a distribution of
singular, elementary flows over the surface of all solid bodies; in this case, the propfan
blades, such that the boundary conditions are satisfied. At any point in the flow field,
the total velocity potential can be found by integrating the perturbation potential at the
point due to the elementary flows on the solid bodies and adding the free-stream
potential. The flow singularities are quadrilateral vortex rings which lie in a lattice grid
on the surface of the prop fan blade, as shown in Figure 3-4. The velocity potential of a
potential vortex satisfies Laplace's equation, and the velocity perturbation due to a
potential vortex diminishes to zero at infinity, automatically satisfying the second
boundary condition. The helical wake attaches to the trailing edge vortex rings. This
wake is necessary in an irrotational flow in order for a lifting force to be generated.
VORP uses the 2D Kutta condition at each spanwise blade station as an approximation
of the wake boundary condition. In the figure, the influence coefficient is defined as the
normal component of the velocity perturbation at an element's control point due to a
vortex ring of unit strength on the influencing panel. The perturbation velocity is
calculated using the law of Biot and Savart and is described in detail by Bertin and
Smith [Bertin and Smith, 1979]. The influences are dependent only on the geometry of
the problem and can be calculated in parallel. The system of equations becomes:

(3-11)

~ ~

where Voois the free stream velocity, Vi,l'Ouuioll is the velocity due to rotation at the control
point of element i, and ni is the outward unit normal vector of element i at the control
point. Once the vector solution for r's is known, a 3D equivalent to the Kutta-Joukowski
theorem, which relates force to vortex strength, can be used to determine the
aerodynamic force generated on each element [Karamcheti, 1966]. The integration of the
forces yields a thrust (axial force) and a torque (moment about the axis of rotation),
which are reduced according to equations 3-2 and 3-6, respectively. Once CT and CQ are
known, Cp and 17 can be determined for the problem. VORP accounts approximately for
compressibility effects by using the 2D Prandtl-Glauert correction [Bertin and Smith,
1979] at each spanwise blade row.

5786 3-11

problem, there are two boundary conditions. The first condition is that the flow is
normal to every solid boundary. The second boundary condition is that the
perturbation in velocity potential due to solid bodies being present must diminish to
zero at an infinite distance from the body in any direction. The VORP code is a panel
method which solves for the velocity potential field by selecting a distribution of
singular, elementary flows over the surface of all solid bodies; in this case, the propfan
blades, such that the boundary conditions are satisfied. At any point in the flow field,
the total velocity potential can be found by integrating the perturbation potential at the
point due to the elementary flows on the solid bodies and adding the free-stream
potential. The flow singularities are quadrilateral vortex rings which lie in a lattice grid
on the surface of the prop fan blade, as shown in Figure 3-4. The velocity potential of a
potential vortex satisfies Laplace's equation, and the velocity perturbation due to a
potential vortex diminishes to zero at infinity, automatically satisfying the second
boundary condition. The helical wake attaches to the trailing edge vortex rings. This
wake is necessary in an irrotational flow in order for a lifting force to be generated.
VORP uses the 2D Kutta condition at each spanwise blade station as an approximation
of the wake boundary condition. In the figure, the influence coefficient is defined as the
normal component of the velocity perturbation at an element's control point due to a
vortex ring of unit strength on the influencing panel. The perturbation velocity is
calculated using the law of Biot and Savart and is described in detail by Bertin and
Smith [Bertin and Smith, 1979]. The influences are dependent only on the geometry of
the problem and can be calculated in parallel. The system of equations becomes:

(3-11)

~ ~

where Voois the free stream velocity, Vi,l'Ouuioll is the velocity due to rotation at the control
point of element i, and ni is the outward unit normal vector of element i at the control
point. Once the vector solution for r's is known, a 3D equivalent to the Kutta-Joukowski
theorem, which relates force to vortex strength, can be used to determine the
aerodynamic force generated on each element [Karamcheti, 1966]. The integration of the
forces yields a thrust (axial force) and a torque (moment about the axis of rotation),
which are reduced according to equations 3-2 and 3-6, respectively. Once CT and CQ are
known, Cp and 17 can be determined for the problem. VORP accounts approximately for
compressibility effects by using the 2D Prandtl-Glauert correction [Bertin and Smith,
1979] at each spanwise blade row.

5786 3-11

Infllllence Coefficient
Coo = ("V.lr 10). n.

I) I) j=. 1

Element i

Axis of Rotation

Figure 3-4. Representation of the Flow Field in the VORP Code

c _ C Force,;1tComprusible

Force,comprusib/e - Ji-M:' (3-12)

where in the case of a propfan blade, Moo is the Mach number due to both the free­
stream velocity and rotation.

3.4 IMPLEMENTATION OF THE MSO

3.4.1 Overview

The software developed and implemented in Phase I does not represent the
complete MSO methodology. Rather, it represents key features of MSO, in order to
demonstrate the feasibility of further development. The coding was performed using
the Parallel-Virtual-Machine (PVM) version 3.1 toolkit described in Section 2.2.

For optimization, we use the Automated-Design-Synthesis (ADS) optimization
library, which is a NASA code supported through COS:MIC. This library is flexible and
proven and contains several optimization schemes which work well for unconstrained
and constrained optimizations problems with from one to approximately 40-50 design
variables. The ADS code is written in FORTRAN which is approximately equivalent to
the ANSI standard, making it quite portable. The code compiled and executed on all of

5786 3-12

Infllllence Coefficient
Coo = ("V.lr 10). n.

I) I) j=. 1

Element i

Axis of Rotation

Figure 3-4. Representation of the Flow Field in the VORP Code

c _ C Force,;1tComprusible

Force,comprusib/e - Ji-M:' (3-12)

where in the case of a propfan blade, Moo is the Mach number due to both the free­
stream velocity and rotation.

3.4 IMPLEMENTATION OF THE MSO

3.4.1 Overview

The software developed and implemented in Phase I does not represent the
complete MSO methodology. Rather, it represents key features of MSO, in order to
demonstrate the feasibility of further development. The coding was performed using
the Parallel-Virtual-Machine (PVM) version 3.1 toolkit described in Section 2.2.

For optimization, we use the Automated-Design-Synthesis (ADS) optimization
library, which is a NASA code supported through COS:MIC. This library is flexible and
proven and contains several optimization schemes which work well for unconstrained
and constrained optimizations problems with from one to approximately 40-50 design
variables. The ADS code is written in FORTRAN which is approximately equivalent to
the ANSI standard, making it quite portable. The code compiled and executed on all of

5786 3-12

the target systems with no changes to the source code. The ADS code proved acceptable
to the class of problems demonstrated. ADS allows nonlinear, nonequality constraints,
but does not allow nonlinear equality constraints, the power equality constraint which
is fundamental to the problem of optimized propfan blade design was approximated by
two nonequality constraints as shown below:

C p.loaa{ C p. req+e)S;O

(C p. req-e)-c p.loacP1J

(3-13)

(3-14)

where Cp,req is the required power a:s supplied by the engine, Cp,load is the calculated
power loading on the blade, and £ is a small allowable error term. Generally, good
results were obtained by the ADS code. It is important to note that the optimization
library is a component in the MSO computing environment. It is replaceable, just as are
the analysis codes.

For the aerodynamic analysis in our demonstration problem (described in
Section 3.3), we used the in-house VORP code as described in Section 3.3.1. For
structural response computations required in the multidisciplinary analysis, we used
the implicit finite-element analysis code, NIKE3D, from Lawrence Livermore National
Laboratories. This code can be used for both static and unsteady analyses, induding the
modal analyses necessary to evaluate the flutter phenomenon to be explored in Phase II.
For the stochastic analysis executed in Phase I, we used STOFES, ARA's Stochastic
Finite Element analysis System. For this computation, Monte-Carlo Simulation (MCS) is
used for probabilistic analysis and NIKE3D is used for the finite element analysis.
Within STOFES, NIKE3D is simply a module which can be replaced. For instance,
STOFES can also drive the DYNA3D explicit finite-element code.

The demonstration problem was developed as a serial application, and then
converted into a portable parallel application by parallelizing the code at various levels.
Primary software development was performed on ARA's HP730 workstation, with only
minor porting issues (unrelated to the parallel code) being resolved on the Intel
iPSC/860 and the LACE cluster. The parallel implementation of the demonstration
problem represents a subset of the MSO methodology and consists of the following
components: 1) Parallel minimization/ optimization using the NASA ADS optimization
code, 2) Single-level parallel aerodynamic performance analysis using the ARA VORP
code; and 3) Multi-level parallelization of the optimization and aerodynamic analyses.
Serial implementations of the demonstration problem for multidisciplinary
optimization and probabilistic analysis were also performed.

3.4.2 Parallelization of the Demonstration Problem

Overview. Parallelism in a computer program can be divided into three types,
namely: (1) job-level parallelism; (2) sub-program ("task" or "macro") parallelism; and
(3) loop-level ("micro") parallelism. Job-level parallelism is the most coarse-grained

5786 3-13

the target systems with no changes to the source code. The ADS code proved acceptable
to the class of problems demonstrated. ADS allows nonlinear, nonequality constraints,
but does not allow nonlinear equality constraints, the power equality constraint which
is fundamental to the problem of optimized propfan blade design was approximated by
two nonequality constraints as shown below:

C p.loaa{ C p. req+e)S;O

(C p. req-e)-c p.loacP1J

(3-13)

(3-14)

where Cp,req is the required power a:s supplied by the engine, Cp,load is the calculated
power loading on the blade, and £ is a small allowable error term. Generally, good
results were obtained by the ADS code. It is important to note that the optimization
library is a component in the MSO computing environment. It is replaceable, just as are
the analysis codes.

For the aerodynamic analysis in our demonstration problem (described in
Section 3.3), we used the in-house VORP code as described in Section 3.3.1. For
structural response computations required in the multidisciplinary analysis, we used
the implicit finite-element analysis code, NIKE3D, from Lawrence Livermore National
Laboratories. This code can be used for both static and unsteady analyses, induding the
modal analyses necessary to evaluate the flutter phenomenon to be explored in Phase II.
For the stochastic analysis executed in Phase I, we used STOFES, ARA's Stochastic
Finite Element analysis System. For this computation, Monte-Carlo Simulation (MCS) is
used for probabilistic analysis and NIKE3D is used for the finite element analysis.
Within STOFES, NIKE3D is simply a module which can be replaced. For instance,
STOFES can also drive the DYNA3D explicit finite-element code.

The demonstration problem was developed as a serial application, and then
converted into a portable parallel application by parallelizing the code at various levels.
Primary software development was performed on ARA's HP730 workstation, with only
minor porting issues (unrelated to the parallel code) being resolved on the Intel
iPSC/860 and the LACE cluster. The parallel implementation of the demonstration
problem represents a subset of the MSO methodology and consists of the following
components: 1) Parallel minimization/ optimization using the NASA ADS optimization
code, 2) Single-level parallel aerodynamic performance analysis using the ARA VORP
code; and 3) Multi-level parallelization of the optimization and aerodynamic analyses.
Serial implementations of the demonstration problem for multidisciplinary
optimization and probabilistic analysis were also performed.

3.4.2 Parallelization of the Demonstration Problem

Overview. Parallelism in a computer program can be divided into three types,
namely: (1) job-level parallelism; (2) sub-program ("task" or "macro") parallelism; and
(3) loop-level ("micro") parallelism. Job-level parallelism is the most coarse-grained

5786 3-13

form of parallelism. It can be achieved by starting multiple instances of a complete
parallel program on different processors, or by starting multiple parallel programs on
different processors. Sub-program parallelism is achieved by grouping subtasks into
recursive subroutines, where each concurrent instance of the recursive subroutine
contains a unique copy of all local variables. The duplication of local variables is
necessary on shared memory machines, to prevent one process from overwriting the
calculations of another. It is necessary on distributed memory machines since a process
on one processor cannot access any memory on another processor. Loop-level
parallelism can be achieved automatically on certain parallel computers, using
specialized compilers that perform automatic parallelization at multiple levels.
Although these specialized tools exist, they do not facilitate developing portable parallel
programs. The Phase I example problem was coded to demonstrate both sub-program
and loop-level parallelism in such a way that the code is portable to many computer
systems, including multi-processor distributed memory machines, networks of
workstations, and mUlti-processor shared-memory machines.

To guarantee that the parallel code would be portable, all parallelization was
implemented using the Parallel Virtual Machine approach; no specialized compilers
were used. The following list describes the primary parallelization efforts:

1) Independent calculation of aerodynamic influence coefficients for the
VORPcode.

2) Independent calculation of sensitivity coefficients for the optimization
algorithm.

3) Integrated calculation of aerodynamic influence coefficients and
sensitivity coefficients, to study implementation of multi-level
parallelization strategies.

When optimizing an aerodynamic shape, such as the propfan blade of the
example, an initial geometry is required. The optimization is used to tune the initial
shape to optimum performance. Given a good initial guess, it is generally not necessary
to update the influence coefficients of a vortex ring method such as VORP on every
design loop iteration. The aerodynamic influence coefficients of the VORP code are
functions purely of the geometry of the blade. Each element's vortex ring will influence
every other element; however, the largest influence on a given element is the influence
of its own vortex ring. In fact, as Figure 3-5 suggests, only large changes in the geometry
of neighboring elements will noticeably affect the velocity influence at any control
point. However, in order to investigate the efficiency of multi-level parallelism which
will be necessary for full-scale multi-disciplinary design optimization, the third
parallelization study recomputes influence coefficients at every iteration.

5786 3-14

form of parallelism. It can be achieved by starting multiple instances of a complete
parallel program on different processors, or by starting multiple parallel programs on
different processors. Sub-program parallelism is achieved by grouping subtasks into
recursive subroutines, where each concurrent instance of the recursive subroutine
contains a unique copy of all local variables. The duplication of local variables is
necessary on shared memory machines, to prevent one process from overwriting the
calculations of another. It is necessary on distributed memory machines since a process
on one processor cannot access any memory on another processor. Loop-level
parallelism can be achieved automatically on certain parallel computers, using
specialized compilers that perform automatic parallelization at multiple levels.
Although these specialized tools exist, they do not facilitate developing portable parallel
programs. The Phase I example problem was coded to demonstrate both sub-program
and loop-level parallelism in such a way that the code is portable to many computer
systems, including multi-processor distributed memory machines, networks of
workstations, and mUlti-processor shared-memory machines.

To guarantee that the parallel code would be portable, all parallelization was
implemented using the Parallel Virtual Machine approach; no specialized compilers
were used. The following list describes the primary parallelization efforts:

1) Independent calculation of aerodynamic influence coefficients for the
VORPcode.

2) Independent calculation of sensitivity coefficients for the optimization
algorithm.

3) Integrated calculation of aerodynamic influence coefficients and
sensitivity coefficients, to study implementation of multi-level
parallelization strategies.

When optimizing an aerodynamic shape, such as the propfan blade of the
example, an initial geometry is required. The optimization is used to tune the initial
shape to optimum performance. Given a good initial guess, it is generally not necessary
to update the influence coefficients of a vortex ring method such as VORP on every
design loop iteration. The aerodynamic influence coefficients of the VORP code are
functions purely of the geometry of the blade. Each element's vortex ring will influence
every other element; however, the largest influence on a given element is the influence
of its own vortex ring. In fact, as Figure 3-5 suggests, only large changes in the geometry
of neighboring elements will noticeably affect the velocity influence at any control
point. However, in order to investigate the efficiency of multi-level parallelism which
will be necessary for full-scale multi-disciplinary design optimization, the third
parallelization study recomputes influence coefficients at every iteration.

5786 3-14

-5 ~------------------------~~------------------------~

-10
I I I I

~ ~ 4 4 0 2 468
Distance From Influencing Ring to Control Point (1 unit=1 element)

10

Figure 3-5. Velocity Influence Coefficient of an Element due to Itself and due to
Neighboring Elements

Master-Slave Paradigm. The demonstration code was parallelized using a
master-slave or client/server paradigm, with the message-passing of PVM as the
method of communication between the processes. When the code is executed, the user
specifies the number of processes to start. Except on a single-processor workstation, this
usually coincides with the number of processors available. Given N processes, one (1)
process will act as master, and (N-1) processes will act as slaves. The master process has
a variety of jobs which include:

1) Read input data.

2) Initialize all slaves with data from the input file.

3) Execute main optimization loop.

4) Write output data and results.

Since the code must in general execute on distributed memory computers, and since the
master is the only process which performs I/O, the master must initialize all slaves by
sending messages which contain the input data. The following code segment
demonstrates portions of the coding of the slave initialization using PVM calls, in
standard FORTRAN. The actual code transmits much more information.

5786 3-15

-5 ~------------------------~~------------------------~

-10
I I I I

~ ~ 4 4 0 2 468
Distance From Influencing Ring to Control Point (1 unit=1 element)

10

Figure 3-5. Velocity Influence Coefficient of an Element due to Itself and due to
Neighboring Elements

Master-Slave Paradigm. The demonstration code was parallelized using a
master-slave or client/server paradigm, with the message-passing of PVM as the
method of communication between the processes. When the code is executed, the user
specifies the number of processes to start. Except on a single-processor workstation, this
usually coincides with the number of processors available. Given N processes, one (1)
process will act as master, and (N-1) processes will act as slaves. The master process has
a variety of jobs which include:

1) Read input data.

2) Initialize all slaves with data from the input file.

3) Execute main optimization loop.

4) Write output data and results.

Since the code must in general execute on distributed memory computers, and since the
master is the only process which performs I/O, the master must initialize all slaves by
sending messages which contain the input data. The following code segment
demonstrates portions of the coding of the slave initialization using PVM calls, in
standard FORTRAN. The actual code transmits much more information.

5786 3-15

1: integer bufid,msginfo,n_sect,nj,jspace,N,nready
2: parameter(IMSG_POKEDATA=3)
3: read(iinput,3) n_sect,nj,jspace
4: call pvmfinitsend(PVMDEFAULT,bufid)
6: call pvmfpack(INTEGER2,n_sect,1,1,msginfo)
7: call pvmfpack(INTEGER2,nj,I,I,msginfo)
8: call pvmfpack(INTEGER2,jspace,I,I,msginfo)
9: do i=1,N-l
10: call pvmfsend(sltids(i-l),IMSG_POKEDATA,msginfo)
11: end do
12: nready=O
13: do while (nready.ne(N-l»
14: call pvmfrecv(-1,-1,bufid)
15: if (bufid.glO) then
16: slavetag=O
17: msgtag=O
18: call pvmfunpack(INTEGER4,msgtag,I,1,msginfo)
19: call pvmfunpack(INTEGER4,slavetag,I,1,msginfo)
20: call ipushslave(slavetag)
21: end if
22: end do

The first two lines are, of course, variable declarations. The third line reads three
variable values out of an input data file. Lines 4 through 8 initialize a PVM send, and
pack the data into a "send buffer", which stores the data in the master processor's
memory until it is received by all of the slaves. The loop in lines 9-11 sends a message to
all the slaves. The loop in lines 13-22 waits for confirmation from all of the slaves. This
second loop exists for the following reason; the master must be sure all slaves have been
initialized before making requests. In this segment of code (lines 13-22), most of the
commands are either familiar, or are PVM functions beginning with the letters pvmf.

One function that we created is ipushslave(). This function was created to make
it easier to track a large number of slave processes. In PVM, every process has a unique
identification number. When a process wants to send a message containing data, it must
direct the message to the identification number of the destination process. The function
ipushslaveO takes a single argument which is the identification number of a slave
process. The slave is then placed in a queue within the master process. From this point,
whenever the master needs to make a request, it will call another function, ipopslaveO,
to retrieve a slave identification number, which will be removed from the queue. If no
slaves are available, ipopslaveO will return an error until a slave becomes available.
While waiting for slaves, the master will sit in a loop waiting for results. Every time the
master receives a message, it will again call ipushslaveO, so that the slave queue is
continuously filled and emptied. These two functions allow the master process to easily
keep the slaves busy, even when processors of differing computational power are used.
In order to make efficient use of the hypercube architecture, the code was restructured

5786 3-16

1: integer bufid,msginfo,n_sect,nj,jspace,N,nready
2: parameter(IMSG_POKEDATA=3)
3: read(iinput,3) n_sect,nj,jspace
4: call pvmfinitsend(PVMDEFAULT,bufid)
6: call pvmfpack(INTEGER2,n_sect,1,1,msginfo)
7: call pvmfpack(INTEGER2,nj,I,I,msginfo)
8: call pvmfpack(INTEGER2,jspace,I,I,msginfo)
9: do i=1,N-l
10: call pvmfsend(sltids(i-l),IMSG_POKEDATA,msginfo)
11: end do
12: nready=O
13: do while (nready.ne(N-l»
14: call pvmfrecv(-1,-1,bufid)
15: if (bufid.glO) then
16: slavetag=O
17: msgtag=O
18: call pvmfunpack(INTEGER4,msgtag,I,1,msginfo)
19: call pvmfunpack(INTEGER4,slavetag,I,1,msginfo)
20: call ipushslave(slavetag)
21: end if
22: end do

The first two lines are, of course, variable declarations. The third line reads three
variable values out of an input data file. Lines 4 through 8 initialize a PVM send, and
pack the data into a "send buffer", which stores the data in the master processor's
memory until it is received by all of the slaves. The loop in lines 9-11 sends a message to
all the slaves. The loop in lines 13-22 waits for confirmation from all of the slaves. This
second loop exists for the following reason; the master must be sure all slaves have been
initialized before making requests. In this segment of code (lines 13-22), most of the
commands are either familiar, or are PVM functions beginning with the letters pvmf.

One function that we created is ipushslave(). This function was created to make
it easier to track a large number of slave processes. In PVM, every process has a unique
identification number. When a process wants to send a message containing data, it must
direct the message to the identification number of the destination process. The function
ipushslaveO takes a single argument which is the identification number of a slave
process. The slave is then placed in a queue within the master process. From this point,
whenever the master needs to make a request, it will call another function, ipopslaveO,
to retrieve a slave identification number, which will be removed from the queue. If no
slaves are available, ipopslaveO will return an error until a slave becomes available.
While waiting for slaves, the master will sit in a loop waiting for results. Every time the
master receives a message, it will again call ipushslaveO, so that the slave queue is
continuously filled and emptied. These two functions allow the master process to easily
keep the slaves busy, even when processors of differing computational power are used.
In order to make efficient use of the hypercube architecture, the code was restructured

5786 3-16

so that the master process as well as the slaves would run on the cube. The method of
starting the code is to use a separate program to spawn the processes on the cube. The
startup code looks like:

1: parameter(MSG_ YOUAREMASTER=1,MSG_SIMPACK=2)
2: integer N,tids(100),nalloc
3: call pvmfspawn('propfan',PVMDEFAULT,'*',N,tids,nalloc)
4: if (nalloc.le.O) then
5: call pvmfexitO
6: stop
7: end if
8: call pvmfinitsend(PVMDEFAULT,bufid)
9: call pvmfpack(INTEGER4,MSG_ YOUAREMASTER,1,1,msginfo)
10: call pvmipack(INTEGER4,int(nalloc-l),1,1,msginio)
11: do i=1,(nalloc-1)
12: call pvmfpack(INTEGER4,int(tids(i)),1,1,msginio)
13: end do
14: call pvmfsend(tids(O),MSG_ YOUAREMASTER,msginfo)
15: N=1
16: call pvmfrecv(-1,MSG_SIMPACK,bufid)
17: do while (N.ne.naIloc)
18: call pvmfrecv(-1,MSG_SIMPACK,bufid)
19: N=N+1
20: end do
21: write(*,*) 'The propfan code has started successfully'

Here, line 3 attempts to allocate the process prop fan on a cube of N nodes. If the spawn
succeeds, lines 8-13 initializes a message buffer to send to the master, and line 14 sends
the message. The loop in lines 11-13 provide the master process with a list of slave
processes. The master is responsible for notifying these process that they are slaves.
Once a slave has received the master's message, it sends notification to the host. Once
the host receives as many notification messages as it originally allocated, it prints a
message to the screen, and terminates, leaving the optimization to run entirely on the
iPSC/860.

Parallel Computation of Aerodynamic Influence Coefficients. To illustrate the
implementation strategy consider the following segment of code, which is the loop used
to calculate the aerodynamic influence coefficients in parallel. Pseudo-code has been
substituted in places to make the segment easier to read.

5786 3-17

so that the master process as well as the slaves would run on the cube. The method of
starting the code is to use a separate program to spawn the processes on the cube. The
startup code looks like:

1: parameter(MSG_ YOUAREMASTER=1,MSG_SIMPACK=2)
2: integer N,tids(100),nalloc
3: call pvmfspawn('propfan',PVMDEFAULT,'*',N,tids,nalloc)
4: if (nalloc.le.O) then
5: call pvmfexitO
6: stop
7: end if
8: call pvmfinitsend(PVMDEFAULT,bufid)
9: call pvmfpack(INTEGER4,MSG_ YOUAREMASTER,1,1,msginfo)
10: call pvmipack(INTEGER4,int(nalloc-l),1,1,msginio)
11: do i=1,(nalloc-1)
12: call pvmfpack(INTEGER4,int(tids(i)),1,1,msginio)
13: end do
14: call pvmfsend(tids(O),MSG_ YOUAREMASTER,msginfo)
15: N=1
16: call pvmfrecv(-1,MSG_SIMPACK,bufid)
17: do while (N.ne.naIloc)
18: call pvmfrecv(-1,MSG_SIMPACK,bufid)
19: N=N+1
20: end do
21: write(*,*) 'The propfan code has started successfully'

Here, line 3 attempts to allocate the process prop fan on a cube of N nodes. If the spawn
succeeds, lines 8-13 initializes a message buffer to send to the master, and line 14 sends
the message. The loop in lines 11-13 provide the master process with a list of slave
processes. The master is responsible for notifying these process that they are slaves.
Once a slave has received the master's message, it sends notification to the host. Once
the host receives as many notification messages as it originally allocated, it prints a
message to the screen, and terminates, leaving the optimization to run entirely on the
iPSC/860.

Parallel Computation of Aerodynamic Influence Coefficients. To illustrate the
implementation strategy consider the following segment of code, which is the loop used
to calculate the aerodynamic influence coefficients in parallel. Pseudo-code has been
substituted in places to make the segment easier to read.

5786 3-17

1: integer i,j,k,n_blades,nelem,buiid,slavetag,msgtag
2: integer msginfo
3: i=l
4: n_msg..sent=O
5: do while (i.1e.nelem)
6: j=1
7: do while (j.le.nelem)
8: [set current blade row to 0]
9: k=1
10: do while (k.le.n_blades)
11: okay _incCk=O
12: call pvmfnrecv(-1,-1,bufid)
13: call pvmfunpack(lNTEGER4,slavetag,1,1,msginfo)
14: call ipushslave(slavetag)
15: [process results from slave]
16: n_msg..sent=n_msg..sent-1
17: sendtid=ipopslaveO
18: if (sendtid.glO) then
19: [initialize message buffer for send]
20: call pvmfsend(sendtid,MSG_CALCHRIF,msginfo)
21: if ([element j is a trailing edge element» then
22: okay_incr_k=1
23: end if
24: n_msg..sent=n_ms~sent+1

25: end if
26: if (okay _incr_k.eq.1) then
27: [set blade row=next blade row]
28: k=k+1
29: end if
30: end do
31: j=j+1
32: end do
33: i=i+1
34: end do

This code contains an inside loop which accounts for multiple blades. Since the
solution is calculated only for a single blade, only axial flow is modeled and all blades
must have the same loading. The loop above simultaneously distributes requests to the
slaves and processes results as they arrive. However, after all the requests have been
distributed, the loop ends. In order to synchronize with the slaves, a second loop is
required. This loop gathers results which arrive after the first loop has completed.

5786 3-18

1: integer i,j,k,n_blades,nelem,buiid,slavetag,msgtag
2: integer msginfo
3: i=l
4: n_msg..sent=O
5: do while (i.1e.nelem)
6: j=1
7: do while (j.le.nelem)
8: [set current blade row to 0]
9: k=1
10: do while (k.le.n_blades)
11: okay _incCk=O
12: call pvmfnrecv(-1,-1,bufid)
13: call pvmfunpack(lNTEGER4,slavetag,1,1,msginfo)
14: call ipushslave(slavetag)
15: [process results from slave]
16: n_msg..sent=n_msg..sent-1
17: sendtid=ipopslaveO
18: if (sendtid.glO) then
19: [initialize message buffer for send]
20: call pvmfsend(sendtid,MSG_CALCHRIF,msginfo)
21: if ([element j is a trailing edge element» then
22: okay_incr_k=1
23: end if
24: n_msg..sent=n_ms~sent+1

25: end if
26: if (okay _incr_k.eq.1) then
27: [set blade row=next blade row]
28: k=k+1
29: end if
30: end do
31: j=j+1
32: end do
33: i=i+1
34: end do

This code contains an inside loop which accounts for multiple blades. Since the
solution is calculated only for a single blade, only axial flow is modeled and all blades
must have the same loading. The loop above simultaneously distributes requests to the
slaves and processes results as they arrive. However, after all the requests have been
distributed, the loop ends. In order to synchronize with the slaves, a second loop is
required. This loop gathers results which arrive after the first loop has completed.

5786 3-18

1: do while (n_mss-sent.glO)
2: call pvmfrecv(-1,-1,bufid)
3: if (bufid.glO) then
4: call pvmfunpack(INTEGER4,msgtag,1,1,msginfo)
5: call pvmfunpack(INTEGER4,slavetag,1,1,msginfo)
6: call ipushslave(slavetag)
7: (process results from slave]
8: n_mss-sent=n_mss-sent-1
9: end if
10: end do

The calculation of the velocity influence of a quadrilateral vortex ring around one
element on the control point of another element is relatively fine-grained, with
approximately 420 floating point operations performed per influence coefficient. The
influences due to the helical wake vortex filaments require a numerical integration, and
these calculations are more coarse-grained. While there are many more quadrilateral
influences than helical influences, the computation can still be dominated by the helical
influences (depending on the discretization used to compute the helical influences). For
the example problem here, the combination results in a medium-grained problem.

Parallel Computation of Optimization Sensitivity Coefficients. A general
sensitivity coefficient is defined by the equation:

dF s.=­
I ax.

I

(3-15)

where F is a response function, and Xi is the ith design variable. For the current design
vector, Xi, i=1,N, Si can be approximated by the finite-difference equation:

(3-16)

where 8 is a small percentage of the initial design variable value. This formulation of Si
requires two function evaluations, and these are calculated in parallel. Thus, for N
design variables, one calculation of all sensitivity coefficients requires 2N function
evaluations in parallel. The coding of the sensitivity coefficients use essentially the same
approach as for the aerodynamic influence coefficients; however, the parallel speedup is
greater since the sensitivities are much more coarse-grained.

Multi-Level Parallelism. For the multi-level parallelism the master process
distributes requests to perform function evaluations to clusters of N nodes. Within a
cluster, one process performs the function evaluation, and uses the remaining N-1
nodes to evaluate influence coefficients in parallel. In distributing a single function
evaluation request to a cluster, the master process will select one node to be the sub-

5786 3-19

1: do while (n_mss-sent.glO)
2: call pvmfrecv(-1,-1,bufid)
3: if (bufid.glO) then
4: call pvmfunpack(INTEGER4,msgtag,1,1,msginfo)
5: call pvmfunpack(INTEGER4,slavetag,1,1,msginfo)
6: call ipushslave(slavetag)
7: (process results from slave]
8: n_mss-sent=n_mss-sent-1
9: end if
10: end do

The calculation of the velocity influence of a quadrilateral vortex ring around one
element on the control point of another element is relatively fine-grained, with
approximately 420 floating point operations performed per influence coefficient. The
influences due to the helical wake vortex filaments require a numerical integration, and
these calculations are more coarse-grained. While there are many more quadrilateral
influences than helical influences, the computation can still be dominated by the helical
influences (depending on the discretization used to compute the helical influences). For
the example problem here, the combination results in a medium-grained problem.

Parallel Computation of Optimization Sensitivity Coefficients. A general
sensitivity coefficient is defined by the equation:

dF s.=­
I ax.

I

(3-15)

where F is a response function, and Xi is the ith design variable. For the current design
vector, Xi, i=1,N, Si can be approximated by the finite-difference equation:

(3-16)

where 8 is a small percentage of the initial design variable value. This formulation of Si
requires two function evaluations, and these are calculated in parallel. Thus, for N
design variables, one calculation of all sensitivity coefficients requires 2N function
evaluations in parallel. The coding of the sensitivity coefficients use essentially the same
approach as for the aerodynamic influence coefficients; however, the parallel speedup is
greater since the sensitivities are much more coarse-grained.

Multi-Level Parallelism. For the multi-level parallelism the master process
distributes requests to perform function evaluations to clusters of N nodes. Within a
cluster, one process performs the function evaluation, and uses the remaining N-1
nodes to evaluate influence coefficients in parallel. In distributing a single function
evaluation request to a cluster, the master process will select one node to be the sub-

5786 3-19

master. The master sends a list of all nodes in the cluster along with other requisite
information, as indicated in the code below:

1: sendtid=ipopslaveO
2: if (sendtid.gt.O) then
3: call pvmfinitsend(PVMDEFAULT,bufid)
4: call pvmfpack(INTEGER4,MSG_CALCOBJP,1,1,msginfo)
5: call pvmfpack(INTEGER4,num_nodes,1,1,msginfo)
6: do i=1,num_nodes
7: call pvmfpack(INTEGER4,ipopslaveO,1,1,msginfo)
8: end do
9: [pack additional information for problem]
10: call pvmfsend(sendtid,MSG_CALCOBJP,msginfo)
11: end if

The interesting lines in this code are lines 5-8. These distribute a cluster of nodes. These
nodes together calculate a single function evaluation using the parallel influence
coefficient evaluation code from above. Thus, function evaluations and influence
coefficients are calculated in parallel. In performing multi-level parallelism, the
ipopslave 0 and ipushslave utility routines are not efficient, because they only allow
slaves to be grouped arbitrarily. When a unique problem is performed on a cluster of
nodes, the cluster should contain neighboring nodes as much as possible, depending on
the hardware topology. For example, it is inefficient to perform a single task on a cluster
of nodes from multiple cubes in a hypercube computer. In Phase II additional utility
routines will be created which generate clusters of nodes which are neighbors on the
hardware topology.

3.5 PARALLEL PERFORMANCE

3.5.1 Description of the Timing Studies

On both the Intel iPSC/860 and the LACE Cluster, timing studies were based on
wall clock time. On conventional, multi-user computers such as the LACE Cluster
machines, accurate timing studies are difficult to achieve, due to varying degrees of
network traffic and competition for CPU time. However on the Intel, network traffic is
limited to messages passed between the cube and the workstation which allocated a
cube. There is no multi-user competition for either CPU time or network
communications. Therefore wall clock time is consistent from run to run and yields a
good indication of the true parallel speedup. Intel supplies sophisticated Parallel
Performance Analysis Tools (PAT) profiling tools with their systems; however, these
tools only operate on Sun workstations, and could not be used on the NASA-Ames
Silicon Graphics host workstations. Even when such tools are available, they d<;> not
necessarily represent timing data accurately. The Intel tools are post-mortem tools,
meaning the timing data is acquired and stored to disk during the execution of a
program. The data must be analyzed after the program has completed execution in

5786 3-20

master. The master sends a list of all nodes in the cluster along with other requisite
information, as indicated in the code below:

1: sendtid=ipopslaveO
2: if (sendtid.gt.O) then
3: call pvmfinitsend(PVMDEFAULT,bufid)
4: call pvmfpack(INTEGER4,MSG_CALCOBJP,1,1,msginfo)
5: call pvmfpack(INTEGER4,num_nodes,1,1,msginfo)
6: do i=1,num_nodes
7: call pvmfpack(INTEGER4,ipopslaveO,1,1,msginfo)
8: end do
9: [pack additional information for problem]
10: call pvmfsend(sendtid,MSG_CALCOBJP,msginfo)
11: end if

The interesting lines in this code are lines 5-8. These distribute a cluster of nodes. These
nodes together calculate a single function evaluation using the parallel influence
coefficient evaluation code from above. Thus, function evaluations and influence
coefficients are calculated in parallel. In performing multi-level parallelism, the
ipopslave 0 and ipushslave utility routines are not efficient, because they only allow
slaves to be grouped arbitrarily. When a unique problem is performed on a cluster of
nodes, the cluster should contain neighboring nodes as much as possible, depending on
the hardware topology. For example, it is inefficient to perform a single task on a cluster
of nodes from multiple cubes in a hypercube computer. In Phase II additional utility
routines will be created which generate clusters of nodes which are neighbors on the
hardware topology.

3.5 PARALLEL PERFORMANCE

3.5.1 Description of the Timing Studies

On both the Intel iPSC/860 and the LACE Cluster, timing studies were based on
wall clock time. On conventional, multi-user computers such as the LACE Cluster
machines, accurate timing studies are difficult to achieve, due to varying degrees of
network traffic and competition for CPU time. However on the Intel, network traffic is
limited to messages passed between the cube and the workstation which allocated a
cube. There is no multi-user competition for either CPU time or network
communications. Therefore wall clock time is consistent from run to run and yields a
good indication of the true parallel speedup. Intel supplies sophisticated Parallel
Performance Analysis Tools (PAT) profiling tools with their systems; however, these
tools only operate on Sun workstations, and could not be used on the NASA-Ames
Silicon Graphics host workstations. Even when such tools are available, they d<;> not
necessarily represent timing data accurately. The Intel tools are post-mortem tools,
meaning the timing data is acquired and stored to disk during the execution of a
program. The data must be analyzed after the program has completed execution in

5786 3-20

order to be accurate. However, disk I/O is suffiCiently slow that it can dramatically
change the program execution and adversely affect post-mortem timing studies.

On the LACE Cluster, timing studies were performed during peak usage hours,
as well as during dedicated time. In both cases, all timing runs were repeated several
times in order to acquire an average time. This is important for two primary reasons.
During peak usage hours, there are many users competing for CPU time and network
time. This means the state of any given machine is unknown. It is-possible and likely
that certain machines will be heavily loaded while other machines are lightly loaded,
but it is impossible to know which. The only way to achieve reasonable time
measurements is to take an average. During dedicated time, there is no competition for
CPU time. The measured timings were repeated consistently during dedicated time,
with variations no larger than 0.5%.

We performed several implementation and timing studies including
investigation of the multi-level parallel decomposition approach that will be necessary
for achieving massive parallelism and to achieve high efficiency for problems with the
large memory requirements typical of multi-disciplinary problems. The list below
summarizes the implementation studies executed in Phase I:

1.

2.

3.

4.

5786

Parallel Optimization, Intel iPSC/860. Parallel computation of sensitivity
coefficients used in aerodynamic shape optimization of the advanced
propfan blade. This first study is used as a benchmark and to confirm
expectations of high parallel efficiency for coarse-grained analyses, using
from one to twenty processors.

Parallel Aerodynamic Analysis, Intel iPSC/860. Parallel computation of
aerodynamic influence coefficients to obtain loads on the propfan blade.
This study investigates the feasibility of achieving high parallel efficiency
for a finer-grained problem. Analyses are executed using from one to fifty
processors.

Parallel Optimization, IBM RS/6000 workstation network. Repeat of
study described under item 1 for the workstation network. Here we
investigate the portability of the PVM toolkit and study parallel efficiency
over a workstation network, both in a dedicated mode and in normal
operation mode, using from one to twenty workstations.

Multi-level Parallelism, Intel iPSC/860. Simultaneous parallel
computation of both sensitivity coefficients and influence coefficients. This
study investigates the feasibility of simultaneously exploiting more than
one level of parallelism (which will be necessary for achieving large scale
speedup for practical problems of interest). We use a top-down approach
and exploit the coarsest grained part of the problem first (the sensitivity
coefficients) and use remaining available processors for the finer grained
part of the problem (the influence coefficients). Analyses are executed
using from ten to forty processors.

3-21

order to be accurate. However, disk I/O is suffiCiently slow that it can dramatically
change the program execution and adversely affect post-mortem timing studies.

On the LACE Cluster, timing studies were performed during peak usage hours,
as well as during dedicated time. In both cases, all timing runs were repeated several
times in order to acquire an average time. This is important for two primary reasons.
During peak usage hours, there are many users competing for CPU time and network
time. This means the state of any given machine is unknown. It is-possible and likely
that certain machines will be heavily loaded while other machines are lightly loaded,
but it is impossible to know which. The only way to achieve reasonable time
measurements is to take an average. During dedicated time, there is no competition for
CPU time. The measured timings were repeated consistently during dedicated time,
with variations no larger than 0.5%.

We performed several implementation and timing studies including
investigation of the multi-level parallel decomposition approach that will be necessary
for achieving massive parallelism and to achieve high efficiency for problems with the
large memory requirements typical of multi-disciplinary problems. The list below
summarizes the implementation studies executed in Phase I:

1.

2.

3.

4.

5786

Parallel Optimization, Intel iPSC/860. Parallel computation of sensitivity
coefficients used in aerodynamic shape optimization of the advanced
propfan blade. This first study is used as a benchmark and to confirm
expectations of high parallel efficiency for coarse-grained analyses, using
from one to twenty processors.

Parallel Aerodynamic Analysis, Intel iPSC/860. Parallel computation of
aerodynamic influence coefficients to obtain loads on the propfan blade.
This study investigates the feasibility of achieving high parallel efficiency
for a finer-grained problem. Analyses are executed using from one to fifty
processors.

Parallel Optimization, IBM RS/6000 workstation network. Repeat of
study described under item 1 for the workstation network. Here we
investigate the portability of the PVM toolkit and study parallel efficiency
over a workstation network, both in a dedicated mode and in normal
operation mode, using from one to twenty workstations.

Multi-level Parallelism, Intel iPSC/860. Simultaneous parallel
computation of both sensitivity coefficients and influence coefficients. This
study investigates the feasibility of simultaneously exploiting more than
one level of parallelism (which will be necessary for achieving large scale
speedup for practical problems of interest). We use a top-down approach
and exploit the coarsest grained part of the problem first (the sensitivity
coefficients) and use remaining available processors for the finer grained
part of the problem (the influence coefficients). Analyses are executed
using from ten to forty processors.

3-21

5. Multi-disciplinary Optimization, HP 90001730 Workstation. Coupled
aeromechanical optimization of the advanced propfan blade. An
improved optimization procedure is made possible since the blade shape
can be optimized starting from the cold shape as opposed to a presumed
hot shape. The purpose of this study is to investigate the feasibility of
performing multi-disciplinary optimization, determine computational
resources required, and to identify special requirements that will be
needed for paralielization in Phase II.

6. Stochastic Analysis HP, 90001730 Workstation. Stochastic structural
analysis of the propfan blade under load was executed. Parallelization was
not performed since the feasibility of parallel probabilistic analysis has
been demonstrated in earlier research. The purpose was to demonstrate
the feasibility of stochastic analysis for the example problem.

3.5.2 Phase I Results

The results of the investigations described above are presented here. As
described earlier the example problem selected for the feasibility investigations is the
optimum design of an advanced propfan blade. Figure 3-6 shows a typical propfan
blade and the loadings it encounters. For the Phase I studies we considered only
airloads.

5786

Centrifugal
Loader

Twisting
Moments

Foreign
Objects

Airload

Figure 3-6. Typical Propfan Blade and Loads

3-22

5. Multi-disciplinary Optimization, HP 90001730 Workstation. Coupled
aeromechanical optimization of the advanced propfan blade. An
improved optimization procedure is made possible since the blade shape
can be optimized starting from the cold shape as opposed to a presumed
hot shape. The purpose of this study is to investigate the feasibility of
performing multi-disciplinary optimization, determine computational
resources required, and to identify special requirements that will be
needed for paralielization in Phase II.

6. Stochastic Analysis HP, 90001730 Workstation. Stochastic structural
analysis of the propfan blade under load was executed. Parallelization was
not performed since the feasibility of parallel probabilistic analysis has
been demonstrated in earlier research. The purpose was to demonstrate
the feasibility of stochastic analysis for the example problem.

3.5.2 Phase I Results

The results of the investigations described above are presented here. As
described earlier the example problem selected for the feasibility investigations is the
optimum design of an advanced propfan blade. Figure 3-6 shows a typical propfan
blade and the loadings it encounters. For the Phase I studies we considered only
airloads.

5786

Centrifugal
Loader

Twisting
Moments

Foreign
Objects

Airload

Figure 3-6. Typical Propfan Blade and Loads

3-22

Parallel Optimization, Intel iPSC/S60. The general aerodynamic results are
presented in Figures 3-7, 3-8, and 3-9. Figure 3-7 shows the twist distributions for the
SR7-blade (With !30.75radius=38') and for the two optimized blades. It is seen that there is
little difference between the SR-7 and the optimized shape at the same power coefficient
(Cp=0.94). This indicates the SR-7 twist distribution is nearly optimal within this single­
constraint problem. The optimized shape at a higher power coefficient is essentially a
shift of the SR-7 twist, with only small changes in the distribution. There is larger
change near the tip of the blade, and this is an expected result, as the outer blade
(around the 75% radius station) contributes the largest thrust increment. Figure 3-8
shows the thrust versus advance ratio for the three blade shapes plus experimental data
for the SR-7 blade (Mach=0.165, !3o.75radius=38~ [Aljabri, 1987]. The VORP code thrust in
the vicinity of the design advance ratio J=0.9 is close to the experimental data. At
advance ratios greater than about 1.3, the experimental data and VORP results deviate
due to viscous effects such as flow separation which are not modelled by VORP. There
is virtually no difference between the SR-7 and the optimized shape at the same power
coefficient (Cp=0.94). However, the optimized shape at the higher power coefficient
provides more thrust as expected. Figure 3-9 shows propeller efficiency versus advance
ratio. As expected, for the same power coefficient, the SR-7 and optimized shapes have
nearly identical efficiency distributions, though the optimized shape has a slightly
larger range of effective advance ratios and a higher maximum efficiency. The
optimized shape at a higher power has slightly increased efficiency and a wider range
of effective advance ratios. It is important to make clear the fact that this Phase I
problem is a subset of the full propfan design problem. A full optimization to include
the sweep distribution (blade section stacking) as design variables and flutter analyses
would potentially produce an optimized shape that is significantly different than the
SR-7.

5786 3-23

Parallel Optimization, Intel iPSC/S60. The general aerodynamic results are
presented in Figures 3-7, 3-8, and 3-9. Figure 3-7 shows the twist distributions for the
SR7-blade (With !30.75radius=38') and for the two optimized blades. It is seen that there is
little difference between the SR-7 and the optimized shape at the same power coefficient
(Cp=0.94). This indicates the SR-7 twist distribution is nearly optimal within this single­
constraint problem. The optimized shape at a higher power coefficient is essentially a
shift of the SR-7 twist, with only small changes in the distribution. There is larger
change near the tip of the blade, and this is an expected result, as the outer blade
(around the 75% radius station) contributes the largest thrust increment. Figure 3-8
shows the thrust versus advance ratio for the three blade shapes plus experimental data
for the SR-7 blade (Mach=0.165, !3o.75radius=38~ [Aljabri, 1987]. The VORP code thrust in
the vicinity of the design advance ratio J=0.9 is close to the experimental data. At
advance ratios greater than about 1.3, the experimental data and VORP results deviate
due to viscous effects such as flow separation which are not modelled by VORP. There
is virtually no difference between the SR-7 and the optimized shape at the same power
coefficient (Cp=0.94). However, the optimized shape at the higher power coefficient
provides more thrust as expected. Figure 3-9 shows propeller efficiency versus advance
ratio. As expected, for the same power coefficient, the SR-7 and optimized shapes have
nearly identical efficiency distributions, though the optimized shape has a slightly
larger range of effective advance ratios and a higher maximum efficiency. The
optimized shape at a higher power has slightly increased efficiency and a wider range
of effective advance ratios. It is important to make clear the fact that this Phase I
problem is a subset of the full propfan design problem. A full optimization to include
the sweep distribution (blade section stacking) as design variables and flutter analyses
would potentially produce an optimized shape that is significantly different than the
SR-7.

5786 3-23

60

56

52
48
44
40
36
32

q~

~
+ SR-7'~

Opt, ~
Cp=O.94

~Opt,

Cp=1.013
28 +---------+--------+-------~------~

0.5 1.5 2.5 3.5 4.5

Radial Station (inches)

Figure 3-7. Blade Twist Distributions

-._- SR-? VORP 0.6 *,--
.- -r~x
U 0.5 -t~JC -+-Opt, Cp=0.94

..,
~ 0.4
u
;::
':u 0.3
o
u
....,
en
:::s

0.2

..2 0.1 .-

... ~~
,~x,
~+~ .. ~ -------- Experimental

~~ -r, ~ " '. :~-..... .
4- 7$r",.
, .~ ..

,)"r)\i '"
-;"-,)"7i'

-:lIC- Opt, Cp= 1 .01 3

"'''-'+ T>x o +------~-----_+-----_____ ~-----+------~-----_+----------~ ~I~~

0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

Advance Ratio, J

Figure 3-8. Thrust Versus Advance Ratio

5786 3-24

60

56

52
48
44
40
36
32

q~

~
+ SR-7'~

Opt, ~
Cp=O.94

~Opt,

Cp=1.013
28 +---------+--------+-------~------~

0.5 1.5 2.5 3.5 4.5

Radial Station (inches)

Figure 3-7. Blade Twist Distributions

-._- SR-? VORP 0.6 *,--
.- -r~x
U 0.5 -t~JC -+-Opt, Cp=0.94

..,
~ 0.4
u
;::
':u 0.3
o
u
....,
en
:::s

0.2

..2 0.1 .-

... ~~
,~x,
~+~ .. ~ -------- Experimental

~~ -r, ~ " '. :~-..... .
4- 7$r",.
, .~ ..

,)"r)\i '"
-;"-,)"7i'

-:lIC- Opt, Cp= 1 .01 3

"'''-'+ T>x o +------~-----_+-----_____ ~-----+------~-----_+----------~ ~I~~

0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

Advance Ratio, J

Figure 3-8. Thrust Versus Advance Ratio

5786 3-24

9 0 -t ~~mr,.y.
85 ~x~ -t+ x

~ ._.? "r-~ . -"-. "_ .. -=t ~ g 80 _-'''-//x~ x
CD .- 75
CJ

:s ~~ /~X • SR.7 VORP "

.!! 60 ~::::::- --Opt, Cp-O.94

i 55 .~ -X-Opt, Cp=1.013 1
£ :~ f .. _n ... SR-7 Exp

0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

Advance Ratio, J

Figure 3-9. Propeller Efficiency Versus Advance Ratio

A study of coarse-grained parallelism on the Intel iPSC/860 was performed by
calculating optimization sensitivity coefficients in parallel. Figure 3-10 shows parallel
speedup versus number of slave processors. Nearly perfect linear speedup of almost 19
times is achieved for 20 slave processors. However we note that 19 processors are no
more effective than 10 because we have 20 optimization sensitivity coefficients to
compute in parallel. Hence for 19 processors, 19 sensitivities are computed in parallel
and the 20th is computed using one processor while the other 18 processor are idle. To
obtain higher speedup for 11 through 19 processors, multi-level decomposition is
required.

Considering processor idling that is unavoidable for single-level parallelism, we
can compute the maximum theoretical efficiency that can actually be obtained versus
the ratio NSOL/NPROC, where NSOL is the number of independent parallel
computations (20 in this case) and NPROC is the number of processors as

NSOL/NPROC (3-17)
Br = (NSOL) [(NSOL)]

[NT NPROC + [MOD NPROC > 0

5786 3-25

9 0 -t ~~mr,.y.
85 ~x~ -t+ x

~ ._.? "r-~ . -"-. "_ .. -=t ~ g 80 _-'''-//x~ x
CD .- 75
CJ

:s ~~ /~X • SR.7 VORP "

.!! 60 ~::::::- --Opt, Cp-O.94

i 55 .~ -X-Opt, Cp=1.013 1
£ :~ f .. _n ... SR-7 Exp

0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

Advance Ratio, J

Figure 3-9. Propeller Efficiency Versus Advance Ratio

A study of coarse-grained parallelism on the Intel iPSC/860 was performed by
calculating optimization sensitivity coefficients in parallel. Figure 3-10 shows parallel
speedup versus number of slave processors. Nearly perfect linear speedup of almost 19
times is achieved for 20 slave processors. However we note that 19 processors are no
more effective than 10 because we have 20 optimization sensitivity coefficients to
compute in parallel. Hence for 19 processors, 19 sensitivities are computed in parallel
and the 20th is computed using one processor while the other 18 processor are idle. To
obtain higher speedup for 11 through 19 processors, multi-level decomposition is
required.

Considering processor idling that is unavoidable for single-level parallelism, we
can compute the maximum theoretical efficiency that can actually be obtained versus
the ratio NSOL/NPROC, where NSOL is the number of independent parallel
computations (20 in this case) and NPROC is the number of processors as

NSOL/NPROC (3-17)
Br = (NSOL) [(NSOL)]

[NT NPROC + [MOD NPROC > 0

5786 3-25

In Figure 3-11, Eq. 3-17 is plotted and the measured data are superimposed on
the plot. It is clear that we have in fact achieved close to maximum possible speedup
(for single level parallelism). The difference from theoretical speedup here is due to
communication overhead.

The results for this coarse-grained study are positive. Every multidisciplinary
optimization problem includes such coarse-grained parallelism and can expect similar
speedup results.

Parallel Aerodynamic Analysis, Intel iPSC/860. In order to study finer-grained
parallelism on the Intel, a matrix of aerodynamic influence coefficients necessary for the
aerodynamic analysis was calculated in parallel using ARA's VORP code. As described
in Section 3.4.2, we characterize this problem as medium-grained. Figure 3-12 shows
typical blade surface pressure coefficients, normalized to the free stream velocity plus
the radial component at the panel control point. These actually are differential pressures
between the upper and lower surfaces, since VORP only models the flow over the
camber surface of the blade.

20

18

16

14

g- 12
'a

10 til
til
Q. 8 t/)

6

4

2

0

0

CI Intel IPSC/860
Speedup

--- Perfect Linear
Speedup

5 10 15 20

Number of Slave Processors

Figure 3-10. Parallel Speedup for Sensitivity Coefficient Calculations on the Intel

5786 3-26

In Figure 3-11, Eq. 3-17 is plotted and the measured data are superimposed on
the plot. It is clear that we have in fact achieved close to maximum possible speedup
(for single level parallelism). The difference from theoretical speedup here is due to
communication overhead.

The results for this coarse-grained study are positive. Every multidisciplinary
optimization problem includes such coarse-grained parallelism and can expect similar
speedup results.

Parallel Aerodynamic Analysis, Intel iPSC/860. In order to study finer-grained
parallelism on the Intel, a matrix of aerodynamic influence coefficients necessary for the
aerodynamic analysis was calculated in parallel using ARA's VORP code. As described
in Section 3.4.2, we characterize this problem as medium-grained. Figure 3-12 shows
typical blade surface pressure coefficients, normalized to the free stream velocity plus
the radial component at the panel control point. These actually are differential pressures
between the upper and lower surfaces, since VORP only models the flow over the
camber surface of the blade.

20

18

16

14

g- 12
'a

10 til
til
Q. 8 t/)

6

4

2

0

0

CI Intel IPSC/860
Speedup

--- Perfect Linear
Speedup

5 10 15 20

Number of Slave Processors

Figure 3-10. Parallel Speedup for Sensitivity Coefficient Calculations on the Intel

5786 3-26

100
90

..--. 80 ~

.......... 70 Theoretica l

>. 60 Maximum
u Efficiency c: 50 Q) CEq. 3-17)
u 40 c:
Q) 30 • Intel
~

20 ~ iPse/aGO w
10 Efficiency

0

0 2 4 6 8 10 12 14 1 6 18 20

NSOUNPROC

Figure 3-11. Theoretical Maximum Parallel Efficiency for Single-Level Parallelism

Advance TurboProp Blade Surface Pressure
(M=O.2, J=-1 .0)

Cp

-0.357112
-O.8n 525

,. ·1.39794
· 1.g1835

-2.43876
-2.95917
-3.47959
·4

Figure 3-12. Advanced Turboprop Blade Differential Surface Pressures

5~6 ~7

100
90

..--. 80 ~

.......... 70 Theoretica l

>. 60 Maximum
u Efficiency c: 50 Q) CEq. 3-17)
u 40 c:
Q) 30 • Intel
~

20 ~ iPse/aGO w
10 Efficiency

0

0 2 4 6 8 10 12 14 1 6 18 20

NSOUNPROC

Figure 3-11. Theoretical Maximum Parallel Efficiency for Single-Level Parallelism

Advance TurboProp Blade Surface Pressure
(M=O.2, J=-1 .0)

Cp

-0.357112
-O.8n 525

,. ·1.39794
· 1.g1835

-2.43876
-2.95917
-3.47959
·4

Figure 3-12. Advanced Turboprop Blade Differential Surface Pressures

5~6 ~7

Figure 3-13 shows the parallel speedup on the Intel, and Figure 3-14 shows the
efficiency. High parallel efficiencies are again achieved, exceeding 75% for 31 slave
processors and roughly 60% for 50 processors. Although the efficiency is not as high as
for the coarse-grained parallelism of the previous example (as expected) we still achieve
a speedup of 24 times for 31 processors and 30 times for 50 slave processors. Also, there
are no flat portions in this speedup curve, as there were with the calculation of the
sensitivity coefficients, since a lOxl0 grid of elements requires NSOL=80000 influence
coefficients for an 8-bladed propeller. This yields high values of NSOL/NPROC for any
number of slave processors, resulting in negligible processor idling and maximum
theoretical efficiencies close to 100%. The drop-off in efficiency in going from 31 to 50
slave processors is because this problem contains both medium-grained (helical
influence coefficients) and fine-grained (quadrilateral influence coefficients)
computations. As the number of processors is increased the finer-grained computations
have a greater impact on overall efficiency. In future research we will investigate
approaches for more efficiently parallelizing the fine-grained part of the problem (e.g.,
computing groups of influences at a single node and using element-by-element solution
procedures that don't require global matrix assembly).

50

40

..
o
U 30 II
u..
a.
~
'a
: 20
a.
(f)

10

o
o 10 20 30

-"""C--Intel iPSe/S60
Speedup

---Perfect Linear
Speedup

40

Number of Slave Processors

50

Figure 3-13. Parallel Speedup for Influence Coefficient Calculations on the Intel

5786 3-29

Figure 3-13 shows the parallel speedup on the Intel, and Figure 3-14 shows the
efficiency. High parallel efficiencies are again achieved, exceeding 75% for 31 slave
processors and roughly 60% for 50 processors. Although the efficiency is not as high as
for the coarse-grained parallelism of the previous example (as expected) we still achieve
a speedup of 24 times for 31 processors and 30 times for 50 slave processors. Also, there
are no flat portions in this speedup curve, as there were with the calculation of the
sensitivity coefficients, since a lOxl0 grid of elements requires NSOL=80000 influence
coefficients for an 8-bladed propeller. This yields high values of NSOL/NPROC for any
number of slave processors, resulting in negligible processor idling and maximum
theoretical efficiencies close to 100%. The drop-off in efficiency in going from 31 to 50
slave processors is because this problem contains both medium-grained (helical
influence coefficients) and fine-grained (quadrilateral influence coefficients)
computations. As the number of processors is increased the finer-grained computations
have a greater impact on overall efficiency. In future research we will investigate
approaches for more efficiently parallelizing the fine-grained part of the problem (e.g.,
computing groups of influences at a single node and using element-by-element solution
procedures that don't require global matrix assembly).

50

40

..
o
U 30 II
u..
a.
~
'a
: 20
a.
(f)

10

o
o 10 20 30

-"""C--Intel iPSe/S60
Speedup

---Perfect Linear
Speedup

40

Number of Slave Processors

50

Figure 3-13. Parallel Speedup for Influence Coefficient Calculations on the Intel

5786 3-29

100

95

90

85
>-
Q

80 c • '0
:; 75 -w

70

65

60

55

0 5 10 15 20 25 30 35 40 45 50

Number of Slave Processors

Figure 3-14. Parallel Efficiency for Influence Coefficient Calculations on the Intel

20 ~--__
18

16

14

g- 12

l 10
CD

it 8

6

4

2

o
o

---0-- Network Speedup
(Non-Dedicated)

o Network Speedup
(Dedicated)

---Perfect Linear
Speedup

5 10 15

Number of Slave Processors

Figure 3-15. Parallel Speedup for Sensitivity Coefficient Calculations on the IBM
RS / 6000 Network

20

Parallel Optimization, IBM RSI6000 workstation network. The parallel
optimization timing studies performed on the Intel were repeated on the NASA Lewis
LACE Cluster, which contains 32 IBM RS/6000 workstations. The speedup for the
coarse-grained sensitivity coefficients is shown in Figure 3-15. A large Ethernet network

5786 3-30

100

95

90

85
>-
Q

80 c • '0
:; 75 -w

70

65

60

55

0 5 10 15 20 25 30 35 40 45 50

Number of Slave Processors

Figure 3-14. Parallel Efficiency for Influence Coefficient Calculations on the Intel

20 ~--__
18

16

14

g- 12

l 10
CD

it 8

6

4

2

o
o

---0-- Network Speedup
(Non-Dedicated)

o Network Speedup
(Dedicated)

---Perfect Linear
Speedup

5 10 15

Number of Slave Processors

Figure 3-15. Parallel Speedup for Sensitivity Coefficient Calculations on the IBM
RS / 6000 Network

20

Parallel Optimization, IBM RSI6000 workstation network. The parallel
optimization timing studies performed on the Intel were repeated on the NASA Lewis
LACE Cluster, which contains 32 IBM RS/6000 workstations. The speedup for the
coarse-grained sensitivity coefficients is shown in Figure 3-15. A large Ethernet network

5786 3-30

such as the one which links the 32 IBM's together will in general have very high
network traffic and communications overhead. Additionally, during normal work
hours, there will be varying degrees of competition for CPU time, and different
workstations will have different loads. These factors induce losses in efficiency, and the
periods of heavy usage and for dedicated time. Even during the dedicated time,
network traffic is not guaranteed to be negligible, since the physical connections may
require Ethernet packets between the nodes be redirected through other systems which
could be heavily loaded. However, the LACE Cluster is configured such that 24 of the
IBM workstations are connected together on a subnet which is separated from other
systems, in order to minimize network traffic during dedicated runs. For our dedicated
timing studies we used the subnet. Notice that the dedicated results exhibit essentially
perfect linear speedup at 20 slave processors (of course, the speedup is flat from 10
through 19 processors as explained for the Intel timing studies). For dedicated time,
efficiencies are as good on the network for this coarse-grained application as on the
Intel. This is a very important result, since networks of workstations are so widely
available. Also important is the fact that the coarse-grained speedup is quite good even
when the network is heavily loaded. Finally, a key result is that the source code as
tested was the same on the LACE Cluster and on the Intel hypercube, demonstrating
the portability of the PVM approach.

Multi-level Parallelism, Intel iPSC/860. Multi-level parallelism will be needed
to effectively use large numbers of processors on massively parallel machines and to
alleviate memory/processor demand. For example, for optimization problems, if only a
single level of parallelism is used, it is only possible to effectively use a number of
processors equal to the number of sensitivity coefficients (20 in our example). Also, for
large problems it is necessary to distribute computation of an individual sensitivity
coefficient over several processors to reduce memory demand per node. Without such a
distribution, secondary storage would need to be used which can eliminate parallel
speedup [Sues et al. 1993J.

In order to investigate the parallel efficiency of multi-level parallelism, an
optimization was solved with the influence coefficients re-calculated at every iteration
in parallel, simultaneously with the sensitivity coefficients. Hence, processors are
allocated in clusters with each cluster of processors performing one sensitivity analysis
and each node in the cluster evaluating a group of influence coefficients.

Four separate cases were timed. For each case we used 10 clusters and varied the
number of slave processors per cluster from one to four.

Figure 3-16 shows the multi-level parallelism timing study results. First, we
observe that multi-level parallelism exacts an overhead cost. For ten slave processors
the speedup with multi-level parallelism is roughly 80% of the speedup when only a
single level of parallelism is exploited. However, single level parallelism can only keep
20 slave processors busy (since we have 20 sensitivity coefficients to compute for this
example), thus, speedup reaches a plateau. By using multi-level parallelism we can
effectively use more processors. At forty slave processors the multi-level speedup is

5786 3-31

such as the one which links the 32 IBM's together will in general have very high
network traffic and communications overhead. Additionally, during normal work
hours, there will be varying degrees of competition for CPU time, and different
workstations will have different loads. These factors induce losses in efficiency, and the
periods of heavy usage and for dedicated time. Even during the dedicated time,
network traffic is not guaranteed to be negligible, since the physical connections may
require Ethernet packets between the nodes be redirected through other systems which
could be heavily loaded. However, the LACE Cluster is configured such that 24 of the
IBM workstations are connected together on a subnet which is separated from other
systems, in order to minimize network traffic during dedicated runs. For our dedicated
timing studies we used the subnet. Notice that the dedicated results exhibit essentially
perfect linear speedup at 20 slave processors (of course, the speedup is flat from 10
through 19 processors as explained for the Intel timing studies). For dedicated time,
efficiencies are as good on the network for this coarse-grained application as on the
Intel. This is a very important result, since networks of workstations are so widely
available. Also important is the fact that the coarse-grained speedup is quite good even
when the network is heavily loaded. Finally, a key result is that the source code as
tested was the same on the LACE Cluster and on the Intel hypercube, demonstrating
the portability of the PVM approach.

Multi-level Parallelism, Intel iPSC/860. Multi-level parallelism will be needed
to effectively use large numbers of processors on massively parallel machines and to
alleviate memory/processor demand. For example, for optimization problems, if only a
single level of parallelism is used, it is only possible to effectively use a number of
processors equal to the number of sensitivity coefficients (20 in our example). Also, for
large problems it is necessary to distribute computation of an individual sensitivity
coefficient over several processors to reduce memory demand per node. Without such a
distribution, secondary storage would need to be used which can eliminate parallel
speedup [Sues et al. 1993J.

In order to investigate the parallel efficiency of multi-level parallelism, an
optimization was solved with the influence coefficients re-calculated at every iteration
in parallel, simultaneously with the sensitivity coefficients. Hence, processors are
allocated in clusters with each cluster of processors performing one sensitivity analysis
and each node in the cluster evaluating a group of influence coefficients.

Four separate cases were timed. For each case we used 10 clusters and varied the
number of slave processors per cluster from one to four.

Figure 3-16 shows the multi-level parallelism timing study results. First, we
observe that multi-level parallelism exacts an overhead cost. For ten slave processors
the speedup with multi-level parallelism is roughly 80% of the speedup when only a
single level of parallelism is exploited. However, single level parallelism can only keep
20 slave processors busy (since we have 20 sensitivity coefficients to compute for this
example), thus, speedup reaches a plateau. By using multi-level parallelism we can
effectively use more processors. At forty slave processors the multi-level speedup is

5786 3-31

approximately 3.2 times the multi-level speedup at ten slave processors. Thus, we still
have an 80% efficiency. Of course, we can also keep large numbers of processors busy
simply by invoking only influence coefficient parallelism. However, the multi-level
parallelism has a coarser granularity than single-level influence coefficient parallelism.
Thus, efficiencies are greater for the multi-level parallelism.

Multi-disciplinary Optimization, HP 90001730 Workstation. A multi­
disciplinary design optimization was performed on a single workstation by coupling
our aerodynamiC loads analysis code, VORP, with the NIKE3D implicit finite element
code. The blade finite element model is a 10x10 grid of 4-node Hughes-Liu Shell
elements. In the subroutine which evaluates the objective thrust, the following functions
are performed in order: 1) Generate cold shape geometry for current iteration, 2)
Execute the NIKE3D implicit finite-element code given the aerodynamic loads on the
cold shape, 3) Re-evaluate the aerodynamics for the deformed, "hot" shape, to
determine the current value of thrust and begin the next design interaction.
Theoretically, it is necessary to iterate these three steps to obtain the true hot shape
before beginning the next design iteration. However, in practice a single pass at each
design iteration is sufficient since an exact hot shape is only necessary at the final design
step to validate the optimum solution. By performing this three-step analysis of the
objective function, the final optimized shape is the cold, un deformed shape. Hence we
directly obtain the manufactured shape of the blade. This multi-disciplinary approach
provides a significant time savings over a purely aerodynamic shape optimization (that

25

20

g. 15
'a
CD
CD

f/; 10

5

o Multi-level
(sensitivities and
Influences)

a Single-level
(sensitivities only)

o +--------------------~----------------~----------------~
10 20 30 40

Number of Slave Processors

Figure 3-16. Speedup Results for Multi-Level Parallelism on the Intel: PSC/860 (Ten
Clusters Used for Each Multi-level Study)

5786 3-32

approximately 3.2 times the multi-level speedup at ten slave processors. Thus, we still
have an 80% efficiency. Of course, we can also keep large numbers of processors busy
simply by invoking only influence coefficient parallelism. However, the multi-level
parallelism has a coarser granularity than single-level influence coefficient parallelism.
Thus, efficiencies are greater for the multi-level parallelism.

Multi-disciplinary Optimization, HP 90001730 Workstation. A multi­
disciplinary design optimization was performed on a single workstation by coupling
our aerodynamiC loads analysis code, VORP, with the NIKE3D implicit finite element
code. The blade finite element model is a 10x10 grid of 4-node Hughes-Liu Shell
elements. In the subroutine which evaluates the objective thrust, the following functions
are performed in order: 1) Generate cold shape geometry for current iteration, 2)
Execute the NIKE3D implicit finite-element code given the aerodynamic loads on the
cold shape, 3) Re-evaluate the aerodynamics for the deformed, "hot" shape, to
determine the current value of thrust and begin the next design interaction.
Theoretically, it is necessary to iterate these three steps to obtain the true hot shape
before beginning the next design iteration. However, in practice a single pass at each
design iteration is sufficient since an exact hot shape is only necessary at the final design
step to validate the optimum solution. By performing this three-step analysis of the
objective function, the final optimized shape is the cold, un deformed shape. Hence we
directly obtain the manufactured shape of the blade. This multi-disciplinary approach
provides a significant time savings over a purely aerodynamic shape optimization (that

25

20

g. 15
'a
CD
CD

f/; 10

5

o Multi-level
(sensitivities and
Influences)

a Single-level
(sensitivities only)

o +--------------------~----------------~----------------~
10 20 30 40

Number of Slave Processors

Figure 3-16. Speedup Results for Multi-Level Parallelism on the Intel: PSC/860 (Ten
Clusters Used for Each Multi-level Study)

5786 3-32

'"
60

+oJ
56 CD

m
... 52 c Optimized
~~ Cold Shape C)CI) 48 c:::: CD « Q)

44 s...
+oJ C)
en Q) 40 .- "'C
~'-' I- 36
CD
-c 32 ca
al 28

0.5 1.5 2.5 3.5 4.5

Radial Station (inches)

Figure 3-17. Optimized Cold Shape Twist Distribution

5786 3-33

'"
60

+oJ
56 CD

m
... 52 c Optimized
~~ Cold Shape C)CI) 48 c:::: CD « Q)

44 s...
+oJ C)
en Q) 40 .- "'C
~'-' I- 36
CD
-c 32 ca
al 28

0.5 1.5 2.5 3.5 4.5

Radial Station (inches)

Figure 3-17. Optimized Cold Shape Twist Distribution

5786 3-33

is, uni-discipline optimization). In the uni-discipline optimization the structural
engineer must back-calculate the cold shape afte.r the optimization is completed. Th
multi-disciplinary approach provides the solution in one step. Figure 3-17 shows the
linear twist angle distribution used as the initial guess and the final undeforrned cold
shape of the optimized blade. Figure 3-18 shows the final deformed "hot" shape fr m
the final NIKE3D analysis.

Figure 3-18. Deformed "Hot" Shape

Stochastic Analysis, HP 90001730 Workstation. A stochastic analysi of th
prop fan blade was executed considering uncertainties in the blade material properti
and thickness. Table 3-1 shows the random variable modeling. The stochastic analy i
was executed using STOFES, ARA's stochastic finite element analysis sy tern. For thi
computation, Monte-Carlo Simulation (MCS) is used for probabilistic analy i and
NIKE3D is used for the finite element analysis. Figure 3-19 shows the Cumulativ
Distribution Function (CDF) curve for the tip deflection of the blade in the z direction.
The response statistics are listed in Table 3-2. The 1000 sample MCS requir
approximately 30 minutes to execute on the workstation. Given the near linear pe dup
that has been demonstrated for MCS in earlier studies [Sues et al. 1993], MCS can b th
preferred method for stochastic optimum design on a parallel computer.

5786 3-35

_._1

is, uni-discipline optimization). In the uni-discipline optimization the structural
engineer must back-calculate the cold shape afte.r the optimization is completed. Th
multi-disciplinary approach provides the solution in one step. Figure 3-17 shows the
linear twist angle distribution used as the initial guess and the final undeforrned cold
shape of the optimized blade. Figure 3-18 shows the final deformed "hot" shape fr m
the final NIKE3D analysis.

Figure 3-18. Deformed "Hot" Shape

Stochastic Analysis, HP 90001730 Workstation. A stochastic analysi of th
prop fan blade was executed considering uncertainties in the blade material properti
and thickness. Table 3-1 shows the random variable modeling. The stochastic analy i
was executed using STOFES, ARA's stochastic finite element analysis sy tern. For thi
computation, Monte-Carlo Simulation (MCS) is used for probabilistic analy i and
NIKE3D is used for the finite element analysis. Figure 3-19 shows the Cumulativ
Distribution Function (CDF) curve for the tip deflection of the blade in the z direction.
The response statistics are listed in Table 3-2. The 1000 sample MCS requir
approximately 30 minutes to execute on the workstation. Given the near linear pe dup
that has been demonstrated for MCS in earlier studies [Sues et al. 1993], MCS can b th
preferred method for stochastic optimum design on a parallel computer.

5786 3-35

_._1

TABLE 3-1.

Variable

Young's Modulus (psi)

Poisson's Ratio

Thickness (in)

1.00E+OO

9.00E-01
c 8.00E-01 .2 .. :::s 7.00E-01 .a
;: .. 6.00E-01 .!!

STATISTICAL PARAMETERS FOR STOCHASTIC ANALYSIS OF
THE PROPFAN BLADE

Mean Value

1.0E+07

0.33

0.78

Coefficient of Variation (%)

10.0

1.7

5.0

Distribution

Lognormal

Uniform

Lognormal

........ ,...
.(//11' .""

.",.

." .1'
.1'

./
Q 5.00E-01
CD
>

0.5 .~
---.-.. -.-'--'--'-'.-'--'-'.---------'----------~r-~""'''''''''''''''' ----..... ---, ./"·/1-· Mean = ·1.02E·01 I ;: 4.00E-01

as
:; 3.00E-01
E
:::s 2.00E-01 0

1.00E-01

O.OOE+OO
__ a ___ -"

." I ." :-1.01E-01
.",. .,.

._.,.....-.,

-1.40E-01 -1.30E-01 -1.20E-01 -1.10E-01 -1.00E-01 -9.00E·02 -8.00E-02

Tip Displacement In z-Dlrection (In)

Figure 3-19. Cumulative Distribution Function for Tip Displacement in the Z-Direction

TABLE 3-2. RESPONSE STATISTICS

Variable Mean Value Standard Deviation Coefficient of Variation (%)

Tip-displacement in -0.102 0.0114 11.2
the Z-direction

5786 3-37

TABLE 3-1.

Variable

Young's Modulus (psi)

Poisson's Ratio

Thickness (in)

1.00E+OO

9.00E-01
c 8.00E-01 .2 .. :::s 7.00E-01 .a
;: .. 6.00E-01 .!!

STATISTICAL PARAMETERS FOR STOCHASTIC ANALYSIS OF
THE PROPFAN BLADE

Mean Value

1.0E+07

0.33

0.78

Coefficient of Variation (%)

10.0

1.7

5.0

Distribution

Lognormal

Uniform

Lognormal

........ ,...
.(//11' .""

.",.

." .1'
.1'

./
Q 5.00E-01
CD
>

0.5 .~
---.-.. -.-'--'--'-'.-'--'-'.---------'----------~r-~""'''''''''''''''' ----..... ---, ./"·/1-· Mean = ·1.02E·01 I ;: 4.00E-01

as
:; 3.00E-01
E
:::s 2.00E-01 0

1.00E-01

O.OOE+OO
__ a ___ -"

." I ." :-1.01E-01
.",. .,.

._.,.....-.,

-1.40E-01 -1.30E-01 -1.20E-01 -1.10E-01 -1.00E-01 -9.00E·02 -8.00E-02

Tip Displacement In z-Dlrection (In)

Figure 3-19. Cumulative Distribution Function for Tip Displacement in the Z-Direction

TABLE 3-2. RESPONSE STATISTICS

Variable Mean Value Standard Deviation Coefficient of Variation (%)

Tip-displacement in -0.102 0.0114 11.2
the Z-direction

5786 3-37

• j

j

~ j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

• j

j
• j

j

j

j

j

j

j

j

j

j

j

j

j

• j

j

~ j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

• j

j
• j

j

j

j

j

j

j

j

j

j

j

j

j

•

CHAPTER 4

SUMMARY, CONCLUSIONS, AND RECOMMENDA nONS

4.1 SUMMARY

The objective of this Phase I research was to formulate a parallel multi­
disciplinary stochastic optimization (MSO) methodology and establish the feasibility of
achieving efficient parallel implementation on distributed-memory parallel computers
and on a network of workstations. Further, we set an objective to demonstrate that the
parallel implementation would be portable so that recoding of the parallel instructions
would not be necessary for the two platforms. As demonstrated in the previous
chapters, both efficiency and portability goals were achieved. These are the key
technical objectives that must be met in order to demonstrate the potential of parallel
design optimization tools to meet the very high performance challenges that have been
posed for 21st century aircraft.

Conventional approaches to design are inefficient when dealing with complex
problems that involve many different engineering disciplines, and for problems that
involve new technologies for which little practical experience exists such as the design
of advanced propulsion systems or HSCT vehicles. With advanced analysis and
numerical optimization techniques, engineers and scientists are attempting to reduce
the need for costly trial and error approaches and reduce the amount of testing and
experimentation required. The computational cost of these multi-disciplinary
optimizations can be quite large. However, the advent of parallel and distributed
computing offers the potential to significantly reduce the computer time required for
multi-disciplinary design optimizations. Also, by using parallel and distributed
computing, engineers can now consider aspects of a design which were previously
ignored. For example, the treatment of uncertainties in design optimization has long
been recognized as important. Both design and constraint variables with a large degree
of uncertainty can significantly affect the optimum design. In addition, in pushing
performance limits it is crucial that aircraft reliability be quantified.

Parallel processing applications, in general have been hampered by issues of
code portability and reformulation, and hardware availability. Hence, our goal for this
research is to overcome these hurdles. To meet this goal engineers will need tools that
can efficiently and automatically decompose the problem in a way that considers the
hardware on which the problem is to be solved and the specific problem characteristics.
To demonstrate the feasibility of developing such a tool and meet the Phase I objectives
we performed several investigations, summarized below .

First, we investigated portable parallel programming paradigms to identify the
approach best suited to meet our overall objectives. We selected the message passing
paradigm as implemented in Parallel Virtual Machine (PVM) Version 3.1. This proved
to be an excellent choice for both portability and parallel efficiency.

5786 4-1

•

CHAPTER 4

SUMMARY, CONCLUSIONS, AND RECOMMENDA nONS

4.1 SUMMARY

The objective of this Phase I research was to formulate a parallel multi­
disciplinary stochastic optimization (MSO) methodology and establish the feasibility of
achieving efficient parallel implementation on distributed-memory parallel computers
and on a network of workstations. Further, we set an objective to demonstrate that the
parallel implementation would be portable so that recoding of the parallel instructions
would not be necessary for the two platforms. As demonstrated in the previous
chapters, both efficiency and portability goals were achieved. These are the key
technical objectives that must be met in order to demonstrate the potential of parallel
design optimization tools to meet the very high performance challenges that have been
posed for 21st century aircraft.

Conventional approaches to design are inefficient when dealing with complex
problems that involve many different engineering disciplines, and for problems that
involve new technologies for which little practical experience exists such as the design
of advanced propulsion systems or HSCT vehicles. With advanced analysis and
numerical optimization techniques, engineers and scientists are attempting to reduce
the need for costly trial and error approaches and reduce the amount of testing and
experimentation required. The computational cost of these multi-disciplinary
optimizations can be quite large. However, the advent of parallel and distributed
computing offers the potential to significantly reduce the computer time required for
multi-disciplinary design optimizations. Also, by using parallel and distributed
computing, engineers can now consider aspects of a design which were previously
ignored. For example, the treatment of uncertainties in design optimization has long
been recognized as important. Both design and constraint variables with a large degree
of uncertainty can significantly affect the optimum design. In addition, in pushing
performance limits it is crucial that aircraft reliability be quantified.

Parallel processing applications, in general have been hampered by issues of
code portability and reformulation, and hardware availability. Hence, our goal for this
research is to overcome these hurdles. To meet this goal engineers will need tools that
can efficiently and automatically decompose the problem in a way that considers the
hardware on which the problem is to be solved and the specific problem characteristics.
To demonstrate the feasibility of developing such a tool and meet the Phase I objectives
we performed several investigations, summarized below .

First, we investigated portable parallel programming paradigms to identify the
approach best suited to meet our overall objectives. We selected the message passing
paradigm as implemented in Parallel Virtual Machine (PVM) Version 3.1. This proved
to be an excellent choice for both portability and parallel efficiency.

5786 4-1

Next, we formulated the multi-disciplinary stochastic optimization
methodologies in order to identify sources of parallelism and identify specific areas of
investigation for the Phase I feasibility study. This research combined with some of our
earlier studies also culminated in refining a comprehensive multi-level computational
strategy to exploit these sources of parallelism in a way that minimizes
memory /processor requirements while also minimizing parallel overhead.

Finally, we performed several implementation and timing __ studies including
investigation of the multi-level parallel decomposition approach thaTwill be necessary
for achieving massive parallelism and to achieve high efficiency for problems with the
large memory requirements typical of multi-disciplinary problems. The example
problem that was selected for the feasibility investigations is the optimum design of an
advanced propfan blade. The following parallel implementation and timing studies
were executed in Phase I: (1) Parallel computation of sensitivity coefficients used in
aerodynamic shape optimization of an advanced propfan blade on the Intel iPSC/860
using from one to twenty processors; (2) Parallel computation of aerodynamic influence
coefficients to obtain loads on the propfan blade on the Intel iPSC/860 using from one
to fifty processors; (3) Parallel computation of sensitivity coefficients used in
aerodynamiC shape optimization on a network of IBM RS/6000 workstations using
from one to twenty workstations; (4) Multi-level parallel computation of both sensitivity
coefficients and influence coefficients on the Intel iPSC/860 using from ten to forty
processors; (5) Coupled aeromechanical multi-disciplinary optimization of the
advanced propfan blade on an HP 9000/730 workstation; and (6) Stochastic structural
analysis of the propfan blade on an HP 9000/730 workstation.

4.2 CONCLUSIONS AND RECOMMENDATIONS

The investigations in Phase I demonstrate that it is possible to effectively
parallelize the key computational elements of stochastic multi-disciplinary optimization
problems. Nearly perfect linear speedup was achieved for the coarse-grained sensitivity
coefficient computations on both the Intel and on the workstation network (speedup of
almost 19 times for twenty slave processors). Very high parallel efficiencies were also
achieved for the finer-grained aerodynamic influence coefficient computations on the
distributed-memory Intel iPSC/860 (75% for thirty-one processors and 60% for fifty
processors). These high core efficiencies allowed for high parallel efficiency in the multi­
level decomposition implementation. The feasibility investigations also demonstrate the
portability and high parallel performance of the Parallel Virtual Machine library. All
code in this Phase I research was developed and tested on a single HP 9000/730
workstation. The code was then ported to both the Intel and the workstation network
with no modifications to the PVM portions of the code. PVM was also demonstrated to
provide the level of functional control required to implement the multi-level parallelism
needed to achieve large scale parallelism on massively parallel hardware.

To achieve large scale parallelism and reduce memory /processor demand, multi­
level parallel decomposition strategies along with specially designed computational
algorithms are needed. For typical design optimization problems, if only a single level

5786 4-2

Next, we formulated the multi-disciplinary stochastic optimization
methodologies in order to identify sources of parallelism and identify specific areas of
investigation for the Phase I feasibility study. This research combined with some of our
earlier studies also culminated in refining a comprehensive multi-level computational
strategy to exploit these sources of parallelism in a way that minimizes
memory /processor requirements while also minimizing parallel overhead.

Finally, we performed several implementation and timing __ studies including
investigation of the multi-level parallel decomposition approach thaTwill be necessary
for achieving massive parallelism and to achieve high efficiency for problems with the
large memory requirements typical of multi-disciplinary problems. The example
problem that was selected for the feasibility investigations is the optimum design of an
advanced propfan blade. The following parallel implementation and timing studies
were executed in Phase I: (1) Parallel computation of sensitivity coefficients used in
aerodynamic shape optimization of an advanced propfan blade on the Intel iPSC/860
using from one to twenty processors; (2) Parallel computation of aerodynamic influence
coefficients to obtain loads on the propfan blade on the Intel iPSC/860 using from one
to fifty processors; (3) Parallel computation of sensitivity coefficients used in
aerodynamiC shape optimization on a network of IBM RS/6000 workstations using
from one to twenty workstations; (4) Multi-level parallel computation of both sensitivity
coefficients and influence coefficients on the Intel iPSC/860 using from ten to forty
processors; (5) Coupled aeromechanical multi-disciplinary optimization of the
advanced propfan blade on an HP 9000/730 workstation; and (6) Stochastic structural
analysis of the propfan blade on an HP 9000/730 workstation.

4.2 CONCLUSIONS AND RECOMMENDATIONS

The investigations in Phase I demonstrate that it is possible to effectively
parallelize the key computational elements of stochastic multi-disciplinary optimization
problems. Nearly perfect linear speedup was achieved for the coarse-grained sensitivity
coefficient computations on both the Intel and on the workstation network (speedup of
almost 19 times for twenty slave processors). Very high parallel efficiencies were also
achieved for the finer-grained aerodynamic influence coefficient computations on the
distributed-memory Intel iPSC/860 (75% for thirty-one processors and 60% for fifty
processors). These high core efficiencies allowed for high parallel efficiency in the multi­
level decomposition implementation. The feasibility investigations also demonstrate the
portability and high parallel performance of the Parallel Virtual Machine library. All
code in this Phase I research was developed and tested on a single HP 9000/730
workstation. The code was then ported to both the Intel and the workstation network
with no modifications to the PVM portions of the code. PVM was also demonstrated to
provide the level of functional control required to implement the multi-level parallelism
needed to achieve large scale parallelism on massively parallel hardware.

To achieve large scale parallelism and reduce memory /processor demand, multi­
level parallel decomposition strategies along with specially designed computational
algorithms are needed. For typical design optimization problems, if only a single level

5786 4-2

II

of parallelism is used, it will not be possible to keep very large numbers of processors
busy. Also, for the large MSO problems that are of practical interest, it is necessary to
distribute computations over several processors to reduce memory demand per node
(or use computational algorithms that minimize memory requirements). As a simple
example, if 96 Mbytes of storage are required to solve a structure and only 16 Mbytes
are available at each processor node, 6 processors at a minimum must be assigned to
solve a single structure. Decomposition among these 6 processors must then be
accomplished. Thus, a two-level decomposition for stochastic optimization would use
clusters of 6 processors each to perform independent sensitivity analyses or Monte­
Carlo simulation histories.

Based on the Phase I studies, we can draw the following conclusions and
recommendations:

5786

1. Near linear speedup can be achieved on workstation networks for the
coarse-grained parallelism encountered at the top level of MSO problems.

2. Massively-parallel supercomputers can achieve high parallel speedup
even on medium to fine-grained problems and are well suited to
exploiting multi-level parallelism.

3. The Parallel Virtual Machine (PVM) library is a proven solution for
portable parallel programming and provides the functional control and
parallel efficiency needed to effectively implement multi-level parallel
MSO.

4. There are several inherent levels of parallelism in multi-disciplinary,
stochastic optimization (MSO) problems, and these must be taken
advantage of to fully exploit the potential of parallel computing in
aeropropulsion system design.

5. A generalized MSO code should be portable across a wide range of
architectures, including networks of low-cost workstations, in order to
increase its commercial appeal.

6. Parallel control algorithms must be developed to automatically
decompose a problem and exploit the multiple levels of parallelism for
MSO problems, to make parallel execution commercially viable.

7. Specially adapted computational algorithms should be developed for
efficient parallel implementation in order to reduce memory requirements
and processor idling.

8. Hybrid-memory architectures, consisting of an interconnection of shared­
memory processor nodes (four to eight processors that share memory at a
node) will likely be optimal for parallel MSO problems. This architecture
maps directly to the multiple levels of both coarse and fine grained
parallelism exhibited by MSO problems. This is an emerging technology
and is typified by the massively parallel Intel Paragon machine (which

4-3

II

of parallelism is used, it will not be possible to keep very large numbers of processors
busy. Also, for the large MSO problems that are of practical interest, it is necessary to
distribute computations over several processors to reduce memory demand per node
(or use computational algorithms that minimize memory requirements). As a simple
example, if 96 Mbytes of storage are required to solve a structure and only 16 Mbytes
are available at each processor node, 6 processors at a minimum must be assigned to
solve a single structure. Decomposition among these 6 processors must then be
accomplished. Thus, a two-level decomposition for stochastic optimization would use
clusters of 6 processors each to perform independent sensitivity analyses or Monte­
Carlo simulation histories.

Based on the Phase I studies, we can draw the following conclusions and
recommendations:

5786

1. Near linear speedup can be achieved on workstation networks for the
coarse-grained parallelism encountered at the top level of MSO problems.

2. Massively-parallel supercomputers can achieve high parallel speedup
even on medium to fine-grained problems and are well suited to
exploiting multi-level parallelism.

3. The Parallel Virtual Machine (PVM) library is a proven solution for
portable parallel programming and provides the functional control and
parallel efficiency needed to effectively implement multi-level parallel
MSO.

4. There are several inherent levels of parallelism in multi-disciplinary,
stochastic optimization (MSO) problems, and these must be taken
advantage of to fully exploit the potential of parallel computing in
aeropropulsion system design.

5. A generalized MSO code should be portable across a wide range of
architectures, including networks of low-cost workstations, in order to
increase its commercial appeal.

6. Parallel control algorithms must be developed to automatically
decompose a problem and exploit the multiple levels of parallelism for
MSO problems, to make parallel execution commercially viable.

7. Specially adapted computational algorithms should be developed for
efficient parallel implementation in order to reduce memory requirements
and processor idling.

8. Hybrid-memory architectures, consisting of an interconnection of shared­
memory processor nodes (four to eight processors that share memory at a
node) will likely be optimal for parallel MSO problems. This architecture
maps directly to the multiple levels of both coarse and fine grained
parallelism exhibited by MSO problems. This is an emerging technology
and is typified by the massively parallel Intel Paragon machine (which

4-3

now has more than 30 installations worldwide and is currently being
installed at NASAl Ames), networks of Silicon graphics multi-processor
workstations, and the NASA Hypercluster machine.

The rapid advances that are occurring in parallel hardware (including hybrid­
memory architectures), availability of large amounts of high-speed memory at very
small cost, and commonplace occurrence of workstation networks will clearly make
parallel computing a widely accessible tool. It remains to develop the innovative
computational algorithms that can automatically and efficiently exploit the parallelism
that exists in engineering design problems.

5786 4-4

now has more than 30 installations worldwide and is currently being
installed at NASAl Ames), networks of Silicon graphics multi-processor
workstations, and the NASA Hypercluster machine.

The rapid advances that are occurring in parallel hardware (including hybrid­
memory architectures), availability of large amounts of high-speed memory at very
small cost, and commonplace occurrence of workstation networks will clearly make
parallel computing a widely accessible tool. It remains to develop the innovative
computational algorithms that can automatically and efficiently exploit the parallelism
that exists in engineering design problems.

5786 4-4

" REFERENCES

Aljabri, A. S., 1987. 'Wind Tunnel Tests on a One-Foot Diameter SR-7L Propfan Model,"
AIAA-87-1892, AlAAjSAEjASMEjASEE 23rd Joint Propulsion Conference, June 29-July 2,
San Diego, California.

Amdahl, G., 1967. "Validity of the Single Processor Approach to Achieving Large-Scale
Computing Capabilities," Proceedings of the Spring Joint Conference of AFIPS.

Bain, W. L., 1990. "Aggregate Distributed Objects for Distributed Memory Parallel
Systems," Proceedings of the Fifth Conference on Distributed Memory Concurrent Computers,
Charleston, SC, April 9-12.

Bertin, J. J. and M. L. Smith, 1979. Aerodynamics for Engineers, Prentice Hall, New Jersey.

Blech, R. A. and E. J. Milner, 1992. "Turbomachinery CFD on Parallel Computers,"
Symposium on High-Performance Computing for Flight Vehicles, Washington, DC.

Carriero, N. and Gelernter, D., 1989. "How to Write Parallel Programs: A Guide to the
Perplexed," work supported by National Science Foundation SBIR Grant ISI-8704025,
Department of Computer Science, Yale UniverSity, New Haven Connecticut.

Dongarra, J. and 1. S. Duff, 1992. "Advanced Architecture Computers," Supercomputing
in Engineering Analysis, Ed H. Adeli, Marcel Dekker, Inc., New York.

Farhat, C., 1992. "Finite Element Analysis on Concurrent Machines," Chapter 7 in
Parallel Processing in Computational Mechanics, edited by H. Adeli, Marcel Dekker, New
York.

Goldstein, M. A., 1929. "On the Vortex Theory of Screw Propellers," Proceedings of the
Royal Society of London, Series A, Vol. CXXill, London.

Hager, RD. and D. Vrabel, "Advanced Turboprop Project," NASA SP-495, pp. 13-14.

Karamcheti, K, 1966. Principles of Ideal-Fluid Aerodynamics, Robert E. Krieger Publishing
Company, Malabar, Florida.

Liu, P-L. and A. Der Kiureghian, 1986. "Multivariate Distribution Models with
Prescribed Marginals and Covariances," Probabilistic Engineering Mechanics, Vol. I, No.
2, pp. 105-112.

Liu, P-L., and A. DerKiureghian, 1991. "Finite Element Reliability of Geometrically
Nonlinear Uncertain Structures," Journal of Engineering Mechanics, Vol. 117, No.8,
August.

Liu, W. K., et al., 1987. "Finite Element Methods in Probabilistic Mechanics," Prob. Eng.
Mech., Vol. 2, No.4.

Madsen, H. 0., et al., 1986. Methods of Structural Safety, Prentice-Hall, Englewood Cliffs,
.. NJ.

Mahadevan, S., 1992. "Reliability-Based Optimization Using Sequential Quadratic
c.) Programming," Pres. at Prob. Mech. and Struc. and Geotech. Reliability ASCE Conf.,

Denver, CO, July.

5786 R-1

" REFERENCES

Aljabri, A. S., 1987. 'Wind Tunnel Tests on a One-Foot Diameter SR-7L Propfan Model,"
AIAA-87-1892, AlAAjSAEjASMEjASEE 23rd Joint Propulsion Conference, June 29-July 2,
San Diego, California.

Amdahl, G., 1967. "Validity of the Single Processor Approach to Achieving Large-Scale
Computing Capabilities," Proceedings of the Spring Joint Conference of AFIPS.

Bain, W. L., 1990. "Aggregate Distributed Objects for Distributed Memory Parallel
Systems," Proceedings of the Fifth Conference on Distributed Memory Concurrent Computers,
Charleston, SC, April 9-12.

Bertin, J. J. and M. L. Smith, 1979. Aerodynamics for Engineers, Prentice Hall, New Jersey.

Blech, R. A. and E. J. Milner, 1992. "Turbomachinery CFD on Parallel Computers,"
Symposium on High-Performance Computing for Flight Vehicles, Washington, DC.

Carriero, N. and Gelernter, D., 1989. "How to Write Parallel Programs: A Guide to the
Perplexed," work supported by National Science Foundation SBIR Grant ISI-8704025,
Department of Computer Science, Yale UniverSity, New Haven Connecticut.

Dongarra, J. and 1. S. Duff, 1992. "Advanced Architecture Computers," Supercomputing
in Engineering Analysis, Ed H. Adeli, Marcel Dekker, Inc., New York.

Farhat, C., 1992. "Finite Element Analysis on Concurrent Machines," Chapter 7 in
Parallel Processing in Computational Mechanics, edited by H. Adeli, Marcel Dekker, New
York.

Goldstein, M. A., 1929. "On the Vortex Theory of Screw Propellers," Proceedings of the
Royal Society of London, Series A, Vol. CXXill, London.

Hager, RD. and D. Vrabel, "Advanced Turboprop Project," NASA SP-495, pp. 13-14.

Karamcheti, K, 1966. Principles of Ideal-Fluid Aerodynamics, Robert E. Krieger Publishing
Company, Malabar, Florida.

Liu, P-L. and A. Der Kiureghian, 1986. "Multivariate Distribution Models with
Prescribed Marginals and Covariances," Probabilistic Engineering Mechanics, Vol. I, No.
2, pp. 105-112.

Liu, P-L., and A. DerKiureghian, 1991. "Finite Element Reliability of Geometrically
Nonlinear Uncertain Structures," Journal of Engineering Mechanics, Vol. 117, No.8,
August.

Liu, W. K., et al., 1987. "Finite Element Methods in Probabilistic Mechanics," Prob. Eng.
Mech., Vol. 2, No.4.

Madsen, H. 0., et al., 1986. Methods of Structural Safety, Prentice-Hall, Englewood Cliffs,
.. NJ.

Mahadevan, S., 1992. "Reliability-Based Optimization Using Sequential Quadratic
c.) Programming," Pres. at Prob. Mech. and Struc. and Geotech. Reliability ASCE Conf.,

Denver, CO, July.

5786 R-1

Nataf, A., 1962. "Determination des Distribution dont les Marges sont Donnees,"
Comptes Rendus de l' Academie des Sciences, Paris, 225, pp. 42-43.

PVM 3 User's Guide and Reference Manual, 1993. ORNL/TM-12187, Oak Ridge
National Laboratory, Oak Ridge, Tennessee.

Rackwitz, R. and B. Fiessler, 1978. "Structural Reliability Under Combined Random
Load Sequences," Comput. Struct. 9,489-94.

Rhodes, G. S., P. L. Coe, Jr., and J. N. Perkins, 1991. "30 x 60 Foot-Wind Tunnel Test
Highlights For An Over-The Tail Advanced Turboprop Configuration," Presented at the
29th Aerospace Sciences Meeting, AIAA 91-0681, January 7-10, Reno, Nevada.

Schueller, G.I., et al., 1989. "On Efficient Computational Schemes to Calculate Structural
Failure Probabilities," Prob. Eng. Mech., Vol. 4, No., 1, March.

Spector, Alfred Z., "Multiprocessing Architectures for Local Computer Networks",
August, 1981.

Sues, R. H., Y. J. Lua, and M. D. Smith, 1993. "Parallel Computing for Probabilistic
Fatigue Analysis," Proceedings of the 34th AIAA SDM, La Jolla, California.

Sues, R. H., H-C. Chen, and F. M. Lavelle, 1992. "The Stochastic Pre-Conditioned
Conjugate Gradient Method," Probabilistic Engineering Mechanics, Volume 7, pp. 175-182.

Sues, R. H., H-C. Chen, C. C. Chamis, and P. L. N. Murthy, 1992. "Programming
Probabilistic Structural Analysis for Parallel Processing Computers," AIAA Journal,
Volume 30, Number 12.

Sues, R. H., H-C. Chen, L. A. Twisdale, C. C. Chamis, and P. L. N. Murthy, 1991a.
"Programming Probabilistic Structural Analyses for Parallel Processing Computers,"
Proceedings of the AIAA/ASME/ASCE/AHS/ASC 32nd SDM Conference, Baltimore,
Maryland, 6-8 April.

Sues, R. H., H-C. Chen, and L. A. Twisdale, 1991b. Probabilistic Structural Mechanics
Research for Parallel Processing Computers, NASA CR-187162, August.

Sues, RH., Y-K Wen, and A.H-S Ang, 1985. "Stochastic Evaluation of Seismic Structural
Performance, Jour. of Struc. Eng., ASCE, Vol. ill, No.6, June.

Theodorsen, T., 1948. Theory of Propellers, McGraw-Hill Book Company, Inc., New York.

Twisdale, L. A., R. H. Sues, and C. E. Murphy, 1988. Assessment of Reliability-Based
Design Methodology for Prot. Structures, ESL-TR-38-27, AFESC, Tyndall AFB, FL, Dec.

Wu, Y-T, 1987. "Demonstration of a New, Fast Probability Integration Method for
Reliability Analysis," Advances in Aerospace Structural Analysis, AD-09 (Proc. Symp. on
Prababilistic Structural Design & Analysis, Winter Annual Mtg., ASME, Miami Beach, FL,
17-22 Nov. 1985); and Jour. of Eng. for Ind., ASME, New York, Feb.

5786 R-2

v

Nataf, A., 1962. "Determination des Distribution dont les Marges sont Donnees,"
Comptes Rendus de l' Academie des Sciences, Paris, 225, pp. 42-43.

PVM 3 User's Guide and Reference Manual, 1993. ORNL/TM-12187, Oak Ridge
National Laboratory, Oak Ridge, Tennessee.

Rackwitz, R. and B. Fiessler, 1978. "Structural Reliability Under Combined Random
Load Sequences," Comput. Struct. 9,489-94.

Rhodes, G. S., P. L. Coe, Jr., and J. N. Perkins, 1991. "30 x 60 Foot-Wind Tunnel Test
Highlights For An Over-The Tail Advanced Turboprop Configuration," Presented at the
29th Aerospace Sciences Meeting, AIAA 91-0681, January 7-10, Reno, Nevada.

Schueller, G.I., et al., 1989. "On Efficient Computational Schemes to Calculate Structural
Failure Probabilities," Prob. Eng. Mech., Vol. 4, No., 1, March.

Spector, Alfred Z., "Multiprocessing Architectures for Local Computer Networks",
August, 1981.

Sues, R. H., Y. J. Lua, and M. D. Smith, 1993. "Parallel Computing for Probabilistic
Fatigue Analysis," Proceedings of the 34th AIAA SDM, La Jolla, California.

Sues, R. H., H-C. Chen, and F. M. Lavelle, 1992. "The Stochastic Pre-Conditioned
Conjugate Gradient Method," Probabilistic Engineering Mechanics, Volume 7, pp. 175-182.

Sues, R. H., H-C. Chen, C. C. Chamis, and P. L. N. Murthy, 1992. "Programming
Probabilistic Structural Analysis for Parallel Processing Computers," AIAA Journal,
Volume 30, Number 12.

Sues, R. H., H-C. Chen, L. A. Twisdale, C. C. Chamis, and P. L. N. Murthy, 1991a.
"Programming Probabilistic Structural Analyses for Parallel Processing Computers,"
Proceedings of the AIAA/ASME/ASCE/AHS/ASC 32nd SDM Conference, Baltimore,
Maryland, 6-8 April.

Sues, R. H., H-C. Chen, and L. A. Twisdale, 1991b. Probabilistic Structural Mechanics
Research for Parallel Processing Computers, NASA CR-187162, August.

Sues, RH., Y-K Wen, and A.H-S Ang, 1985. "Stochastic Evaluation of Seismic Structural
Performance, Jour. of Struc. Eng., ASCE, Vol. ill, No.6, June.

Theodorsen, T., 1948. Theory of Propellers, McGraw-Hill Book Company, Inc., New York.

Twisdale, L. A., R. H. Sues, and C. E. Murphy, 1988. Assessment of Reliability-Based
Design Methodology for Prot. Structures, ESL-TR-38-27, AFESC, Tyndall AFB, FL, Dec.

Wu, Y-T, 1987. "Demonstration of a New, Fast Probability Integration Method for
Reliability Analysis," Advances in Aerospace Structural Analysis, AD-09 (Proc. Symp. on
Prababilistic Structural Design & Analysis, Winter Annual Mtg., ASME, Miami Beach, FL,
17-22 Nov. 1985); and Jour. of Eng. for Ind., ASME, New York, Feb.

5786 R-2

v

• •

REPORT DOCUMENTATION PAGE I Form Approved

OMS No. 0704-0188
Public reponing burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions. searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of Information, Send comments regarding this burden estimate or any other aspect of this
collection of information, Including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operalions and Reports, 1215 JeHerson
Davis Highway, Suite 1204, Arlington, VA 22202·4302, and to the OHlce of Management and Budget, Paperwork Reduction Project (0704·0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 12. REPORT DATE 13. REPORT TYPE AND DATES COVERED

October 1994 Final Contractor Report
4. nTLE AND SUBTITLE 5. FUNDING NUMBERS

Portable Parallel Stochastic Optimization for the Design of
Aeropropulsion Components

WU-324-01~0
6. AUTHOR(S) C-NAS3-26839

Robert H. Sues and G.S. Rhodes

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

Applied Research Associates, Inc.
6404 Falls of Neuse Road, Suite 200 E-8725
Raleigh, North Carolina 27615

9. SPONSORINGIMONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORINGIMONITORING
AGENCY REPORT NUMBER

National Aeronautics and Space Administration
Lewis Research Center NASA CR-195312
Cleveland, Ohio 44135-3191

11. SUPPLEMENTARY NOTES
,

Project Manager, Dale A. Hopkins, Structures Division, organization code 5210, NASA Lewis Research Center,
(216) 433-3260.

128. DISTRIBunONlAVAILABILlTY STATEMENT 12b. DISTRIBUTION CODE

Unclassified -Unlimited
Subject Category 39

13. ABSTRACT (MaXimum 200 words)

This report presents the results of Phase I research to develop a methodology for performing large-scale Multi-disciplinary Stochastic
Optimization (MSO) for the design of aerospace systems ranging from aeropropulsion components to complete aircraft configurations. The
current research recognizes that such design optimization problems are computationally expensive. and require the use of either massively
parallel or multiple-processor computers. The methodology also recognizes that many operational and performance parameters are uncertain.
and that uncertainty must be considered explicitly to achieve optimum performance and cost The objective of this Phase I research was to
initialize the development of an MSO methodology that is portable to a wide variety of hardware platforms. while achieving efficient. large-
scale parallelism when multiple processors are available. The flrst effort in the project was a literature review of available computer hardware.
as well as a review of portable. parallel programming environments. The second effort was to implement the MSO methodology for a problem
using the portable parallel programming language. Parallel Virtual Machine (pYM). The third and final effort was to demonstrate the example
on a variety of computers. including a distributed-memory multiprocessor. a distributed-memory network of workstations. and a single-
processor workstation. Results indicate the MSO methodology can be well-applied towards large-scale aerospace design problems. Nearly
perfect linear speedup was demonstrated for computation of optimization sensitivity coefficients on both a 1 28-node distributed-memory
multiprocessor (the Intel iPSC/860) and a network of workstations (speedups of almost 19 times achieved for 20 workstations). Very high
parallel efficiencies (75% for 31 processors and 60% for 50 processors) were also achieved for computation of aerodynamic influence
coefficients on the Intel Finally. the multi-level parallelization strategy that will be needed for large-scale MSO problems was demonstrated to
be highly efficient The same parallel code instructions were used on both platforms. demonstrating portability. There are many applications for
which MSO can be applied. including NASA's High-Speed·Civil-Transport, and advanced propulsion systems. The use of MSO will reduce
design and development time and testing costs dramatically.

14. SUBJECT TERMS 15. NUMBER OF PAGES

Optimization; Probability theory; Structural analysis; Structural reliability; 68
Aerodynamics; Parallel programming 16. PRICE CODE

A04
17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT

OF REPORT OF THIS PAGE OF ABSTRACT

Unclassified Unclassified Unclassified

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2·89)
Prescribed by ANSI Std. Z39-18
298-102

•

REPORT DOCUMENTATION PAGE I Form Approved

OMS No. 0704-0188
Public reponing burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions. searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of Information, Send comments regarding this burden estimate or any other aspect of this
collection of information, Including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operalions and Reports, 1215 JeHerson
Davis Highway, Suite 1204, Arlington, VA 22202·4302, and to the OHlce of Management and Budget, Paperwork Reduction Project (0704·0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 12. REPORT DATE 13. REPORT TYPE AND DATES COVERED

October 1994 Final Contractor Report
4. nTLE AND SUBTITLE 5. FUNDING NUMBERS

Portable Parallel Stochastic Optimization for the Design of
Aeropropulsion Components

WU-324-01~0
6. AUTHOR(S) C-NAS3-26839

Robert H. Sues and G.S. Rhodes

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

Applied Research Associates, Inc.
6404 Falls of Neuse Road, Suite 200 E-8725
Raleigh, North Carolina 27615

9. SPONSORINGIMONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORINGIMONITORING
AGENCY REPORT NUMBER

National Aeronautics and Space Administration
Lewis Research Center NASA CR-195312
Cleveland, Ohio 44135-3191

11. SUPPLEMENTARY NOTES
,

Project Manager, Dale A. Hopkins, Structures Division, organization code 5210, NASA Lewis Research Center,
(216) 433-3260.

128. DISTRIBunONlAVAILABILlTY STATEMENT 12b. DISTRIBUTION CODE

Unclassified -Unlimited
Subject Category 39

13. ABSTRACT (MaXimum 200 words)

This report presents the results of Phase I research to develop a methodology for performing large-scale Multi-disciplinary Stochastic
Optimization (MSO) for the design of aerospace systems ranging from aeropropulsion components to complete aircraft configurations. The
current research recognizes that such design optimization problems are computationally expensive. and require the use of either massively
parallel or multiple-processor computers. The methodology also recognizes that many operational and performance parameters are uncertain.
and that uncertainty must be considered explicitly to achieve optimum performance and cost The objective of this Phase I research was to
initialize the development of an MSO methodology that is portable to a wide variety of hardware platforms. while achieving efficient. large-
scale parallelism when multiple processors are available. The flrst effort in the project was a literature review of available computer hardware.
as well as a review of portable. parallel programming environments. The second effort was to implement the MSO methodology for a problem
using the portable parallel programming language. Parallel Virtual Machine (pYM). The third and final effort was to demonstrate the example
on a variety of computers. including a distributed-memory multiprocessor. a distributed-memory network of workstations. and a single-
processor workstation. Results indicate the MSO methodology can be well-applied towards large-scale aerospace design problems. Nearly
perfect linear speedup was demonstrated for computation of optimization sensitivity coefficients on both a 1 28-node distributed-memory
multiprocessor (the Intel iPSC/860) and a network of workstations (speedups of almost 19 times achieved for 20 workstations). Very high
parallel efficiencies (75% for 31 processors and 60% for 50 processors) were also achieved for computation of aerodynamic influence
coefficients on the Intel Finally. the multi-level parallelization strategy that will be needed for large-scale MSO problems was demonstrated to
be highly efficient The same parallel code instructions were used on both platforms. demonstrating portability. There are many applications for
which MSO can be applied. including NASA's High-Speed·Civil-Transport, and advanced propulsion systems. The use of MSO will reduce
design and development time and testing costs dramatically.

14. SUBJECT TERMS 15. NUMBER OF PAGES

Optimization; Probability theory; Structural analysis; Structural reliability; 68
Aerodynamics; Parallel programming 16. PRICE CODE

A04
17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT

OF REPORT OF THIS PAGE OF ABSTRACT

Unclassified Unclassified Unclassified

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2·89)
Prescribed by ANSI Std. Z39-18
298-102

•

