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ABSTRACT

""" Forward and aft acoustic propagation and radiation from a ducted fan is modelled
using a finite element discretization of the acoustic field equations. The fan noise source is
introduced as equivalent body forces representing distributed blade loading. The flow in
and around the nacelle is assumed to be nonuniform, reflecting the effects of forward flight
and flow into the inlet. Refraction due to the fan exit jet shear layer is not represented.
Acoustic treatment on the inlet and exhaust duct surfaces provides a mechanism for
attenuation. In a region enclosing the fan a pressure formulation is used with the assumption
of locally uniform flow. Away from the fan a velocity potential formulation is used and the
flow is assumed nonuniform but irrotational. A procedure is developed for matching the two
regions by making use of local duct modal amplitudes as transition state variables and
determining the amplitudes by enforcing natural boundary conditions at the interface
between adjacent regions in which pressure and velocity potential are used. Simple models
of rotor alone and rotor/exit guide vane generated noise are used to demonstrate the
calculation of the radiated acoustic field and to show the effect of acoustic treatment. The
model has been used to asses the success of four techniques for acoustic lining optimization
in reducing far field noise.

INTRODUCTION

Figure 1 shows in idealized form a rotor/exit guide vane configuration imbedded in
a nacelle with a centerbody or a core engine. The rotor represents the fan in a high bypass
turbofan engine or a ducted propeller. The exit guide vanes provide a source of interaction
noise. In the numerical examples considered in this investigation the number of blades and
exit guide vanes is characteristic of a ducted propeller. The rotor/exit guide vane source
generates noise which is propagated through the inlet and exhaust ducts and is radiated to
the far field. Nonuniform steady flow exists in and around the nacelle due to inflow, outflow,
and forward flight effects. It is required to predict the far field radiated noise at harmonics
of the blade passage frequency.

In a previous investigation [1] ducted fan noise was studied with the assumption that
the mean flow in and around the inlet could be assumed to be uniform. This allowed the
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acoustic field equations to be simplified to a converted wave equation in the acoustic
pressure. The fan noise source was introduced as equivalent body forces representing
distributed blade loading. In the investigation reported here the flow in and around the
nacelle is assumed to be nonuniform, reflecting the effects of forward flight and flow into
the inlet. Refraction due to the fan exit jet shear layer is not accounted for in the current
model. Nonuniform mean flow eliminates the possibility of using the convected wave
equation as in Reference [1], Nonuniform flow effects have been included in studies of
forward radiated noise from turbofan inlets [2,3]. In this case the mean flow is assumed to
be irrotational, as is the acoustic perturbation, and the introduction of a velocity potential
simplifies the field equations. The fan noise source is introduced as a boundary condition
on the fan face defining the amplitude of incident and reflected duct modes.

In order to ensure an efficient numerical model it is desirable to represent the
acoustic field in terms of a single state variable. In the previous studies this was done in
terms of the acoustic pressure or the velocity potential. In the extension discussed here the
pressure formulation is not suitable because the mean flow is nonuniform in most of the
region of propagation and radiation. The velocity potential formulation is not suitable for
introducing the fan noise source as an equivalent body force distribution. For these reasons
a mixed method is introduced. In the fan region a pressure formulation is used and away
from the fan a velocity potential formulation is used. When pressure is used as the state
variable in a region near the fan where it is assumed possible to consider a locally uniform
flow, the fan noise source, either rotor alone noise, or interaction noise, can be introduced
as equivalent body forces. In regions away from the fan where the mean flow is nonuniform
but irrotational, a velocity potential description has proven to be appropriate. A procedure
is developed for matching the two regions by making use of local duct modal amplitudes as
transition state variables and determining the amplitudes by enforcing natural boundary
conditions at the interface between adjacent regions in which pressure and velocity potential
are used.

An additional feature introduced in the present study is the provision for modelling
an acoustic lining on the surfaces of the fan inlet and exhaust ducts. The lining is assumed
to be point reacting and to have a frequency dependent impedance or admittance. The
lining representation is consistent with the physical characteristics of current acoustical
materials.

The details of the introduction of the noise source have been discussed in [1]. In this
paper the extension of the formulation of the finite element model required to admit
nonuniform mean flow and acoustic treatment is explained. Results are presented for the
far field radiated acoustic field for examples of rotor alone noise and for rotor/EGV
interaction noise to demonstrate the cut off of subsonic tip speed rotor alone noise, the
propagation of interaction tones, and the influence of acoustic treatment on the radiated
field.

PROBLEM FORMULATION

In previous studies acoustic radiation from fan sources embedded in a shroud or duct
has been modeled using two different formulations. In the case of forward radiated noise



from turbofan nacelles [2,3] the model was based on the assumption that the mean flow in
and around the nacelle is irrotational and that the acoustic perturbation is also irrotational.
This makes it possible to introduce mean flow and acoustic perturbation velocity potentials.
The governing field equations are the linearized acoustic continuity equation and a
linearized acoustic Bernoulli equation, written in terms of the acoustic potential and the
acoustic pressure (or density). As shown in [2,3], the acoustic potential is the solution of

r r =0 (1)
at

and

(2)

where <£ is the acoustic potential, <£r is the local mean flow (reference) potential, p is the
acoustic density, pr is the local mean flow density, and cr is the local speed of sound in the
mean flow. All quantities are nondimensional with respect to the density in the far field,
pm , the speed of sound in the far field, c,* , and a reference length, R, which is the fan
radius. The acoustic potential is nondimensional with respect to c^R , and the acoustic

pressure with respect to p.cf . Time is scaled with R/ca . The fan or EGV source is input
by specifying complex amplitudes of duct modes at a boundary of the computational domain
designated as the source plane. In the acoustic potential formulation the option to describe
the source in terms of equivalent volumetric forces within the computational domain does
not appear to be available because of the use of the acoustic Bernoulli equation. The
acoustic field equations (1) and (2) form the basis of the finite element models for acoustic
radiation from turbofan inlets including the effect of forward flight developed in [2,3],
Comparisons of results with flight test data are described in [4].

Acoustic radiation from unshrouded propellers in a free field and in a wind tunnel
environment has been investigated with the assumption that the mean flow field,
representing the forward flight effect or the flow in the wind tunnel, is nearly uniform [5-8].
In this case the governing acoustic field equation is the convected wave equation in terms
of the acoustic pressure

(3)



The fan or EGV source is introduced by an equivalent distribution of body forces per unit
mass / (referred to herein as volumetric force). Equation (3) is in nondimensional form

with the body force nondimensionalized by c^/R . The volumetric forces have been derived
from a simplified lifting line theory in Reference [1]. The appearance of cr is due to the
use of CM in the definition of dimensionless variables. MJcr is the local Mach number Mf.
The rotor alone model considers the steady blade loading rotating with the blades, while the
EGV noise considers stationary blades with unsteady loading produced by the sweeping of
rotor wakes past the blades. While simplified in the details, this approach contains the
essential physics of two principal types of turbomachinery noise.

The extension of the propeller acoustic radiation model to shrouded and ducted fans
was done with the assumption that in this case also the entire flow field, both internal and
external to the nacelle, is uniform [1]. This is probably acceptable for a shrouded propeller
and for a very high bypass ratio ducted fan. For a more typical turbofan nacelle the
assumption is clearly not satisfied. The physical appeal of the source model motivates the
extension of the concept to include nonuniform mean flow. The virtue of the representation
of the source is that it provides a direct link between blade loading and acoustic source
strength and distribution. It is not required to specify the acoustic duct modal amplitudes
produced by the source.

The approach used is a mixed method in which the region containing the noise
source is a pressure formulation based on the convected wave equation (3), and away from
the source the acoustic potential formulation of equations (1) and (2) provides the field
equations. The only assumption required is that within the narrow source region it is
sufficiently accurate to treat the mean flow as uniform. Figure.,2 is a sketch of a fan or EGV
blade row embedded in a nacelle, with flow moving from right to left. A finite element mesh
based on quadrilateral elements in the axially symmetric geometry is shown superimposed
on the nacelle fan inlet and fan exhaust ducts. Of particular interest in this discussion is a
region near the blade row consisting of four columns of elements in which the field equation
is based on pressure. The shaded column contains the acoustic volumetric forces describing
the blade loading. In this narrow region the flow is taken as axially directed and uniform.
Outside this region the potential formulation is used. The details of the finite element
formulation in the pressure region are given in [5,6] and the corresponding development for
the potential formulation is found in [2,3]. Reference [1] should be consulted for the source
model.

The main issue to be resolved is the matching between the two regions. In order to
see how this can be done it is necessary to reiterate the finite element procedure for the
weak formulation of the two types of problems. In both cases a Galerkin weighted residual
method is used. In the case of the convected wave equation a solution for the pressure field

p(xs)el(n>t~me> is sought such that the weighted residual statement
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for every member W(x,r)e'^'t*m® of a complete set of functions. In equation (4) the
harmonic time dependence of the source is explicitly represented by the nondimensional
frequency i\t defined as uiR/c^ . In the form shown the operations implied require that
W(x,r) be piecewise continuous and that p(x,r) have a continuous first derivative,
requirements which would lead to seeking solutions in a very restrictive class of functions.
A weaker solution, one which admits the possibility of a solution in a less restrictive class
of functions is obtained by integration by parts to yield the weighted residuals statement that

solutions p(xs)e l(l1'*~IBe) from the class of continuous functions are sought which satisfy

cr c, cr

- ff n d S = Q

for every member W(x,r)el<nit*m^ of a set of continuous functions. The volume integral
is over the domain in which the pressure formulation is used, and the surface integral is over

the boundary of this domain. The unit normal n is directed out of the domain. The
boundary integral introduced plays a significant role in the matching procedure.

In the case of the potential region the weak formulation seeks solutions

<|>(x,r)el(n'/~mfl) in the class of continuous functions which satisfy the weighted residual
equation

}dV

-ffW(pfV<b+V<brf>yndS = 0

in which p(x,r)e'(v~me) is defined by equation (2), for every member
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of a set of continuous functions. The boundary integral is important in the matching
procedure.

The boundary integrals represent natural boundary conditions which must be imposed
on the boundary of the domain. The use of the boundary integrals on the boundaries of the
problem is discussed in [2]. These boundaries of the computational domain are shown in
Figure 3. The far field boundary is at a large distance from the nacelle and is a non
reflecting surface on which a radiation condition is applied [2,3]. This surface is the outer
boundary of wave envelope elements which allow a transition from a fine mesh near the
nacelle to a very coarse mesh in the far field. Most of the nacelle and centerbody surfaces
are rigid, where the normal component of acoustic particle velocity vanishes. In the pressure

region this corresponds to — = 0 . With the additional condition that the flow is taken to
dn

be axially directed in the pressure region, it follows that i-n = 0 , so that the boundary

integral vanishes. In the velocity potential region — = 0 . In addition, the flow tangency
dn

condition requires that V<|>, -n = 0 . The boundary integral vanishes in this case as well. A
portion of the nacelle and centerbody is acoustically treated. On these surfaces an
impedance relation is specified, as discussed later.

In the mixed formulation there are two domains, one in which pressure is the
dependent variable, and one in which velocity potential is the dependent variable. The
boundary integrals at the interface of the two domains represent the natural boundary
conditions which one domain imposes on the other. For the pressure region this integral is

CT

The positive sign applies if the pressure region boundary has its normal in the positive x
direction. The velocity potential region boundary integral is

c-cr

M
-4>}dS (8)

The sign choice is the same as noted for the pressure case. These integrals will form
contributions to the "stiffness" matrices obtained in the finite element formulation for the
elements on the boundary between the regions.



MATCHING OF SOLUTIONS

The matching at the interface between the two domains is accomplished by using the
connection between pressure and velocity potential provided by combining equation (2) and
the linearized equation of state p = cr

2p to yield

P = - p r < / t | r $ + J f r ) = -Prcr(^/*+^ (9)

The nondimensional frequency r\f and Mach number Mf are defined relative to the local
conditions at the interface, taken as those at the fan source.

At the interface the velocity potential is written as an expansion in terms of the local
acoustic modes for the duct,

M

+=E
i-l

where the duct eigenfunctions i|f,*(/•) are computed using a finite element formulation at
the interface cross section.

The duct eigenfunctions Tjf,.(r) are solutions of the Bessel equation and boundary
conditions on the duct wall

.tf - ] , . o
r dr dr r

= 0 r = a (11)
dr

dr

o is the nondimensional inner radius of the duct. The duct eigenfunctions are the same for

upstream propagation and downstream propagation so that $l(r) = i|f,~(r) = ijr.(r) . The

axial wave numbers k* are calculated from the duct eigenvalues Kt according to



I/ (1-Af/)
- Mh A2 (12)

where the mach number Mf and the nondimensional frequency i\r are local values at the
interface cross section. The eigenvalue problem posed by equations (11) and (12) is solved
utilizing a finite element formulation on a one dimensional grid of quadratic elements which
matches the grid used in the duct interior. This very robust routine produces eigenvalues and
eigenfunctions of high accuracy which are completely consistent with the interior grid.
Reference [9] provides some details of the procedure. Equation (9) then provides an
expansion for the pressure at the interface in terms of the velocity potential modal
amplitudes

Jt+

(13)
1=1

Equations (10) and (13) also provide expansions for terms in the integrands of
equations (7) and (8)

M

(14)

M

(15)

The expansions are written in vector-matrix form as



(16)

p = (17)

(18)

(19)

The row matrix [tyCO] = [ik/r) I ̂ ,-W] has 2M columns constructed from the continuous
eigenfunctions generated by the eigenvalue problem of equation (11). It is partitioned with
two blocks of M columns of the eigenfunctions retained in the expansion. The diagonal

square matrix [e] of size 2M x 2M has elements e^ ,i = IM and e^ ,i =
where

(20)

The diagonal square matrix [a] has elements a,^ ,i =
where

, and a^ ,i =

(21)



The diagonal square matrix [P] has elements P^ ,i=l»Af , and p» ,i=M + l,2Af , where

fc1

PS = -ip^ii/l-M,-^) (22)

Finally, the diagonal square matrix [y] has elements Ya >i=l>M , and YS ,i=Af+l,2Af ,
where

(23)

fl-The vector { f is partitioned with the complex amplitudes a. , i = l,M for right running
PJ

acoustic modes and bt , i = l,M for left running modes.
The finite element implementation of the Galerkin Method of Weighted Residuals

(MWR) is characterized by interpolation within subdomains of the computational domain
(elements) based on values of the field variable, pressure or velocity potential, at nodes of
the elements. In the work reported here the elements are isoparametric quadrilaterals with
eight nodes. This type of discretization provides continuity of the field variable at element
boundaries, but does not produce solutions with continuous derivatives. This is consistent
with the weak formulation. Each element contributes an element "stiffness matrix" to the set
of linear equations whose solution yields the nodal values of the field variable.

Figure 4 shows the interface between a region of pressure and a region of velocity
potential. The elements in the two regions which are on the boundary are the key to the
matching of the solutions in the two regions. In Figure 4 the pressure elements have their
right boundary on the interface and the potential elements have their left boundary on the
interface. The continuity of the solution across the interface is accomplished by using the
fact that both pressure and velocity potential at the interface can be expanded in terms of
the duct acoustic modes appropriate to the geometry and flow conditions at the interface
as described in equations (16) and (17). These finite eigenfunction expansions contain M
duct modes in each direction. The value of M is chosen to include all propagating modes
plus perhaps three to five cutoff modes to assure radial resolution of the pressure field.

The velocity potential element stiffness matrices on the boundary are transformed
by using the discrete eigenvectors to form a transformation matrix such that
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{*} = (24)

where {<J>} , the vector of nodal values of the velocity potential for an element, are replaced
by the modal amplitudes at , b.t and the nodal values of <j) at the interior nodes (j). in the
element (nodes not on the boundary). A similar transformation is made for pressure
elements

(25)

The elements of [YJ and [YJ are constructed by using the discrete eigenvectors, sampled
at the boundary nodes for the element, and by using the eigenvector expansions of equations
(16) and (17). They are "modal matrices" which serve as transformations from nodal values
of the field variable in the interior of the element and modal amplitudes to values of the
field variable at all of the nodes. A similar interpretation can be given to an eigenfunction
expansion of the weighting functions. The weighting function evaluated at the element nodes {W]
is obtained in velocity potential elements as

{W} = [TJ-

a

b

W,
(26)

and in pressure elements as

{W} = [Y2J (27)

The transformed element stiffness matrices are for pressure

11



(28)

and for the velocity potential

(29)

The right boundary of the pressure elements and the left boundary of the potential elements
at the interface are now discretized in terms of the modal amplitudes a. ,bt . The assembly
process is carried out on the basis that a. and bt on the pressure and potential elements are
the same.

The element stiffness matrices on the boundary must be augmented by the addition
of the boundary integrals. These integrals can be conveniently evaluated directly in terms
of the modal amplitudes and interior nodal values. This is accomplished by using the
eigenfunction expansions for the integrands given by equations (18) and (19). For example,
consider the integral of equation (7) evaluated on the right boundary. It can be written

(30)

The integral of equation (8) evaluated on the left boundary-is similarly written

iv =

The eigenfunctions xjr^r) , treated in the expansions as continuous functions of r, are known
only hi terms of their discrete values (eigenvectors) at the nodal points on the interface in
the finite element eigenvalue problem described by equation (11). The row matrix of
continuous eigenfunctions is obtained by interpolation of the corresponding discrete modal
matrix [T] = [T, | Y.] of discrete eigenvectors according to

(32)
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where [NJ is the element interpolation matrix on the right boundary of a pressure element
or left boundary of a potential element. In standard finite element procedure, [WJ
produces a continuous version of a function on the boundary in terms of discrete values of
the function at nodes on the boundary. The continuous weighting functions can also be
obtained from discrete values at the nodes (W] . This is accomplished using the same
interpolation matrix

W = [Nb]{W} (33)

For pressure element weighting functions

(34)

and for potential weighting functions

(35)

The boundary integrals / and 7V can be written as

(36)

(37)

The element integral contributions are added to the element stiffness matrices prior to
assembly. The addition of the boundary

13



integral contributions to the stiffness matrices for elements on the boundary can be
simplified if additional "modal matrices" [ Y31 and [ Y41 , constructed by using the discrete
eigenvectors, sampled at the boundary nodes for the element, and by using the eigenvector
expansions of equations (18) and (19), are introduced to relate internal nodal values of the
field variables and modal amplitudes on the boundary to values of the field variables at the
element nodes. Equations (36) and (37) can be rewritten as

(38)

(39)

The interpolation matrix [N] is the element interpolation matrix which produces a
continuous function within an element in terms of the nodal values of the function. The
advantage of this formulation is that the boundary contribution is the same dimension as the
transformed stiffness matrix to which it is appended.

ACOUSTIC TREATMENT

No previously published studies of fan noise radiation have addressed the placement
of acoustic treatment on the surfaces of the fan inlet and fan exhaust ducts. In the
formulation described here provision has been made for acoustic treatment in the region
in which the acoustic field is described in terms of the velocity potential. This excludes only
a very small region in which the fan noise generation process is described in terms of a
pressure formulation.

The boundary integral of equation (6) is the mechanism by which the boundary
condition imposed by locally reacting acoustic treatment is introduced. On surfaces on which
acoustic treatment is present the normal component of mean flow velocity vanishes and the
lining boundary integral simplifies to

(40)
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where vn is the acoustic particle velocity directed normally into the acoustic treatment. The
acoustic treatment is described in terms of the impedance relationship

•*- =z = 7 (41)vn A

p is the acoustic pressure and v-n is the normal component of lining velocity at the wall.
The impedance z is a prescribed function of frequency and is nondimensional with respect
to P»c«, • A is defined as the nondimensional acoustic admittance. The relation between the
fluid particle velocity at the wall and the wall velocity is one of continuity of particle
displacement. This yields

a" "3fr (42)

where C(x,0,f) = £(;c)el(n''~me) is the normal component of wall displacement, directed into
the wall, evaluated at the wall surface. It is assumed that all lined surfaces are nearly
parallel to the duct axis of symmetry so that there are no high flow accelerations
(particularly accelerations normal to the wall) in the lining region and so that the
description of the lining displacement in terms of x is equivalent to a description in terms
of the arc length along the wall. These assumptions are consistent with reality, and greatly

simplify the lining model. Since vn = — it follows that with harmonic time dependence
dt

v. -d- i —-|-)vn (43)
Tl. dx

The relation between acoustic particle velocity and pressure is

(44)
r\r dx

The relation between pressure and acoustic velocity potential is provided by the acoustic
Bernoulli equation of equation (9). Equation (44) can be rewritten

15



(45)

The boundary integral becomes

(46)

The first two integrals on a boundary where acoustic treatment is present are easy to
implement in the finite element formulation because only continuity of acoustic potential
is required. The admittance, A, is assumed piecewise continuous. The third and fourth
integrals have continuity problems because of A and d$/dx and are not compatible with
the weak formulation. However, integration by parts can be performed to reduce the
continuity requirement. This process begins with the observation that

-in
(47)

dS

and

± f f W9rM±\A prMr^]dS = ± f ( ±«JJ Vr r ' r J ac

*rs

(48)

dS

Stokes' Theorem for non-planar surfaces is
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ffcurlV-ndS = jv-dl (49)

where n is the normal to S and dl is the incremental line element on the curve C bounding
S. The first integrals in equations (47) and (48) become

(50)

-(f-n.J,J dx (51)

In arriving at equations (50) and (51) advantage was taken of the fact that the surfaces on
which acoustic lining is present are very nearly cylindrical. The bounding curve C is
considered to consist of segments parallel to the duct axis and circular arcs bounding the
lined region. The integrals on the line segments parallel to the duct axis cancel because of
continuity considerations. The bounding circular arcs are chosen to be located just outside
the lined region so that the admittance vanishes. With these arguments the line integrals
discarded. The weak formulation for the boundary condition^ on the acoustically treated
surface can now be written

-ff p,WvndS =

(52)
dS

Equation (52) is in a form which is appropriate for application of standard finite element
techniques to generate "boundary matrices" which are appended to the element stiffness
matrices of elements whose outer boundaries represent acoustically treated surfaces.
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SOLUTION METHOD

When the matching procedure is carried out and assembly is accomplished by
standard finite element methods, the acoustic field is discretized in terms of nodal values
of pressure in the pressure elements, nodal values of velocity potential in the potential
elements, and amplitudes of the duct acoustic modes at the interfaces. The force integral L
is produced by the evaluation of the weighted residual volume integral

If = f > r v W ' f d V (53)

formed in the pressure elements in which the blade force distribution fib} is defined at the
element nodes [I].

The nodal values of pressure or velocity potential can be recovered from the modal
amplitudes at the interfaces by post processing using the transformations described. The
modal amplitudes are themselves useful information as they can be used to quantify the
acoustic modes generated by the source and reflected from the fan inlet or and exhaust
exits. All other aspects of the implementation of the finite element method are the same as
described in connection with previous work [1,2,3,9].

The set of algebraic equations which arises from the finite element formulation is
solved by using the frontal solution method of Irons [10], modified to deal with unsymmetric
problems. Solutions have been obtained with over 20,000 degrees of freedom (nodes) with
good success.

GEOMETRY AND FLOW FIELD CALCULATIONS

In Reference [1] it was assumed that the mean flow field is everywhere uniform. In
addition to simplification of the acoustic field equations, this eliminated the complication
of producing input data for a nonuniform mean flow field. In the present formulation the
nonuniform flow field is required to be known. In previous studies of turbofan inlet noise
radiation [2-4] it was noted that this data was obtained from a finite element formulation
for incompressible potential flow based on the same mesh as the acoustic calculations. This
potential flow code has been extended to the geometry of the simultaneous forward and aft
radiation problem which now arises. The issue of the shear layer which is present at the
boundary of the exhaust jet and the surrounding flow is not addressed in this study. Also not
included in the model are energy and momentum jumps in the mean flow field which occur
across the rotor. In the last case, a much more detailed analysis of the noise generation
mechanism would be required to include this in a rigorous way.

An automated mesh generation procedure which was developed for the inlet
radiation has been extended to cover the forward and aft radiation geometry required in the
new formulation. The mesh is constructed from input data which describes the nacelle and
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centerbody.

VERIFICATION OF THE COUPLING SCHEME

The technique used to couple the pressure region and the velocity potential region
requires verification. In order to do this, a uniform duct example has been considered in
which the duct terminations have been made reflection free by use of a mode matching
procedure not unlike the scheme described here for the coupling of the two regions [6].
Figure 5 shows the example with a region in the center of the duct in which the propagation
is described by the pressure formulation. The remainder of the duct is represented by a
velocity potential formulation. At the downstream end of the duct (x=0) a single acoustic
mode propagating in the positive x direction is introduced. The reflected mode amplitudes
at x = 0 and the transmitted mode amplitudes at x=l are computed. The expected result is
the absence of reflected modes and the presence at x=l of only the incident wave. This tests
not only the scattering introduced by the coupling procedure but also that caused by the
reflection free termination formulation.

Table 1 provides results which are typical. In this case an angular mode m= 10 with
the first radial mode n=l at nondimensional frequency r\r = 20 is introduced at x=0 with
unit pressure amplitude. There are three radial modes which are propagating. The table
shows the first five incident, reflected and transmitted velocity potential modal coefficients.
The largest reflected mode coefficient amplitude, which is the reflection of the incident
mode, is .009 % of the incident mode coefficient amplitude. The transmitted modal
coefficient corresponding to the introduced mode is very close to the result which would be

.. + .

obtained analytically by accounting for the phase shift introduced by the phase term e *' .

k* is the axial wave number for the first radial mode and 1 is the duct section length.
A second example in which the third radial mode is introduced produces even better

results. This is not unexpected because the effective wave length is longer than for the lower
order modes and the discretization errors associated with mesh refinement should be less
critical. The maximum reflected modal coefficient amplitude is .0006 % of the input
amplitude and the complex modal coefficient for the transmitted mode is again very close
to the analytical result. These calculations are shown in Table 2.

The calculations described were based on a finite element mesh which was chosen
to be refined enough to cope with the specified frequency. Numerical experiments have
shown that five elements per wave length (accounting for Doppler effects) is reasonable and
the results here are consistent with this rule of thumb.

The conclusion to be drawn here is that the mechanics of the coupling procedure as
described are sound, producing spurious scattering only to a level which can be related to
discretization errors and errors introduced by using a coupling procedure and an anechoic
termination model based on finite acoustic mode expansions.
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Table 1 Verification of Coupling - First Radial Mode
Angular Mode m = 10

Frequency i)r = 20
Flow Mach M = -0.30

L/R = 0.4

Mode

1

2

3

Incident
Coefficient

0.00 + i 0365(-1)

Reflected
Amplitude

030(-5)

0.98(-8)

0.47(-8)

Transmitted
Amplitude

0365(-1)

0.42(-6)

0.83(-7)

Transmitted
Coefficient

-0.168(-1) - i 0324(-1)

Transmitted
Coefficient (Th.)

-0.171(-1) - i 0322(-1)

Table 2 Verification of Coupling - Third Radial Mode
Angular Mode m = 10

Frequency r\r = 20
Flow Mach M = -0.30

L/R = 0.4

Mode

1

2

3

4

5

Incident
Coefficient

0.00 + i 0.422(-1)

Reflected
Amplitude

0.86(-8)

0.21(-7)

0.60(-9)

0.26(-6)

0.28(-7)

Transmitted
Amplitude

0.19(-7)

0.43(-6)

0.422(-1)

0.27(-8)

0.43(-9)

Transmitted
Coefficient

-0.409(-1) + i O.lOl(-l)

Transmitted
Coefficient (Th.)

-0.409(-1) + i 0.104(-1)
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ACOUSTIC LINING PARAMETERS

In carrying out calculations to demonstrate the effect of acoustic treatment on the
far field acoustic radiation it is necessary to choose suitable admittance values. This has
been done by using a lining optimization code which uses a Simplex scheme to determine
the optimum impedance for a uniform duct. Optimization can be done by seeking the
maximum attenuation in a given mode (the equivalent to the "Cremer" optimum [11] when
mean flow is present), or on the basis of power attenuation with several choices of modal
amplitude distribution. The choices in the code are (a) The "Cremer" optimum; (b) specified
modal amplitudes and optimization on the basis of transmitted acoustic power; (c) equal
modal amplitudes and optimization on the basis of transmitted acoustic power; and (d)
equal modal power and optimization based on transmitted acoustic power. In the present
study we have used the "Cremer" optimum based on the first radial mode, two specified
modal coefficients defined by the source model, and the equal modal amplitude and equal
modal power assumptions for sample calculations. The duct has been taken as annular with
the radius ratio at the fan, and the acoustic treatment on the inner and outer walls is the
same. For the cases involving transmitted power the lining length has been taken as 60 %
of the fan radius. The lining design is constrained by the requirement that the real part of
the normalized admittance be greater than zero and less than one. This restriction on the
maximum value of the admittance, which has been used to demonstrate the optimization
capability, limits the effectiveness of the exhaust duct lining. The Mach number is taken as
that at the fan face. The frequency and angular mode number are chosen according to the
characteristics of the source. Table 3 provides the admittances for the inlet and exhaust
ducts for the four cases.

Table 3 Optimum Admittances
Inlet Mach = 0.4

Exhaust Mach = 0.4
Radius Ratio = 0.3

Angular Mode m = 1
Frequency r\r = 6.40

Frequency r\f = 6.44
Propagating modes: 2 inlet and exhaust

Constraint: 0.0 < Real[admittance] < 1.0

Inlet

Exhaust

Radial Mode 1

0.22 + i 0.45

1.00 + i 0.82

Specified
Coefficients

0.68 + i 030

0.97 + i 035

Equal
Amplitudes

0.10 + i 038

1.00 + i 0.98

Equal
Power

0.18 + i 039

1.00 + i 0.22
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COMPUTATIONAL RESULTS

Example calculations will be shown for EGV interaction noise for a ducted fan. The
principal feature which will be addressed is the attenuation predicted in the far field due
to the insertion of acoustic treatment in the inlet and exhaust ducts of an inlet of simplified
geometry. The geometry is for a model scale ducted fan with radius 0.311 m (1.02 ft). The
blade chord is uniform at 0.052 m (0.17 ft). A nondimensional rotor angular velocity ofn r

= 0.8 is for a case of subsonic tip speed. At a speed of sound of 344 m/sec (1128 ft/sec) this
corresponds to a rotor rotational speed of 8448 RPM. The geometry of the simple nacelle
is shown in Figure 6. The forward flight speed of the nacelle is M = 0.3 and the flow entering
and leaving the fan is M = 0.4. In the EGV case considered here there are eight blades on
the fan and seven exit guide vanes. The interaction mode number is m = l. The
nondimensional frequency at the fan plane is T^ = 6.44 which produces two propagating
modes in both the inlet and exhaust ducts.

Calculations have been made for the case of untreated walls in the inlet and exhaust
duct and for four cases of optimal acoustic treatment on the duct and centerbody in the inlet
and exhaust ducts. As noted previously, the four methods of optimization depend on how
the modal amplitudes are chosen. The classical, or "Cremer Optimum", is obtained by
seeking the impedance which will maximize the attenuation in a particular mode. This
occurs when two modal attenuations coalesce. In the present study the first radial mode is
chosen and the optimization process maximizes the attenuation in the least attenuated
mode. The remaining three optimal treatments depend on the choice of the mix of modal
amplitudes and a maximum decrease of acoustic power in a specified duct length is the
objective of the optimization. As a consequence of the matching of pressure and potential
regions of the solution, the source acoustic modal amplitudes are available. These are used
to determine the optimal impedance for the case of known amplitudes. The other two cases
of equal modal amplitudes and equal modal acoustic power circumvent the necessity of
knowledge of the modal structure of the source. The lining length in both the inlet and
exhaust ducts is 60 % of the fan radius on the nacelle and 87 % of the fan radius on the
centerbody. The calculations in this example will shed some light on the most appropriate
way to choose the optimal acoustic treatment for this configuration.

The mesh for the example calculation is shown in Figure 7. The most important
feature to note is the outer boundary of the computational domain which is a circle with
center offset in the direction of the flow approaching the inlet. This is a constant phase
surface for an apparent acoustic source at the origin, consistent with the use of wave
envelope elements in the outer reaches of the domain to economically introduce the
reflection free condition at "infinity".

Figure 8 is a plot showing contours of constant sound pressure level around the
nacelle in a plane through the axis of symmetry for the case when there is no acoustic
treatment. It shows the presence of two lobes in both the forward and aft radiated fields.
In the region of 90 degrees to the axis of symmetry other lobes appear which are the result
of diffraction and interference between the forward and aft radiated fields. The peak of the
forward radiated noise is about 2 dB less than the aft radiated noise (this observation is
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more clearly seen in Figure 10). The contours near the inlet tend to be slightly ragged due
to postprocessing velocity potential data at the element nodes to obtain pressure. The
pressure requires derivatives of the velocity potential and it is known that the weak
formulation does not ensure continuity of derivatives on element boundaries. A superior
postprocessing procedure computes the pressure at Gauss points within the elements where
continuity is assured. This has not been done in this investigation because the contour
plotting software requires nodal values of pressure. In Reference [9] the more accurate
scheme was used and shown to generate better contours. It is interesting to note that the
contours are more smooth in the wave envelope region where interpolation includes the
wave structure.

When acoustic treatment is present the radiated sound field is considerably altered.
Figure 9 shows the result when the "Cremer" optimum is used. The optimization process
indicates that the exhaust duct lining is only about 25 % as effective as the inlet lining (in
terms of dB per unit length attenuation). While the contours in Figure 9 are not identified
quantitatively, it is found that the acoustic field in the forward arc now has a distinct single
lobe, and this lobe is down more than 10 dB relative to the aft radiated noise which has had
its peak level reduced by about 7 dB due to acoustic treatment. The aft radiated noise now
has a broad single peak. Quantitative observations are more easily deduced from Figure 10.

Figure 10 is the polar directivity of the radiated acoustic field on a circle with radius
of 10 fan radii. The five cases are shown on this plot with the largest Sound Pressure Level
normalized to 100 dB. The scale level shown of 105.97 dB indicates the highest SPL, so that
the actual level on any of the curves is obtained by adding 5.97 dB. The radiation pattern
in the unlined case can be compared to Figure 8 to identify lobes and to quantify the levels.
The characteristics of the level curves in Figure 9 can also be identified on Figure 10. Due
to the low angular mode number, m=l , the acoustic field has its maximum levels at
relatively low angles from the axis of symmetry.

The four cases of duct acoustic treatment show generally similar effects on the
acoustic far field. Both attenuation and shift in location of the lobes is a characteristic of all
four cases. One could view attenuation as the decrease in SPL in easily identifiable lobes,
regardless of angular shifts in the lobes. This would provide the most optimistic definition
because it would obscure the fact that the new lobes might move into previously low SPL
regions. The definition of attenuation adopted here will be the decrease of SPL at a specific
polar angle. This is the most conservative definition because it is adversely affected by low
SPL levels in the field for the untreated nacelle. For this fan configuration two choices of
optimization philosophy appear to produce superior results for attenuation in the far field.
The "Cremer" optimum and the equal modal amplitude scheme give generally good results
in the entire field, with the attenuation being 10 dB or more for forward radiated noise and
sideline attenuation in the same range except for isolated angular locations. In the case of
aft radiated noise the attenuation is 7 or 8 dB except in the neighborhood of 150 degrees
where an interference dip in the unattenuated field is present. The equal power choice does
well in the forward region but does not do as well in the aft region. It is surprising that the
specification of modal amplitudes in the optimization scheme is the least successful of the
four choices. One can rationalize this by noting that the design procedure focuses on a
section of an infinitely long lining. Scattering due to the leading and trailing edges of the
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lining is not present and input modal amplitudes are not altered by this scattering. These
results can not be taken as general because of the constrained range of the real part of the
admittance, and because of the modal structure of the source, which has only two
propagating radial modes, both of which are strongly affected by the "Cremer" procedure.
In fact, the two modes tend to coalesce, accounting for the loss of the distinctness in the far
field lobes in the directivity. It might be expected that if many modes are propagating
different conclusions would be made.

CONCLUSIONS

The finite element modeling of ducted fan acoustic radiation has been extended to
include a source which represents the loading on rotating or stationary blades. The loading
is introduced by volumetric forces in the acoustic field equations written in a pressure
formulation for a small region in which the flow is uniform. Away from this source region
an acoustic velocity potential formulation is used which includes the effects of a nonuniform
mean flow field due to inlet flow and forward flight effects. The two regions are coupled
by using the transition between acoustic velocity potential and pressure which is available
in an acoustic Bernoulli equation. At the interface between the regions eigenfunction
expansions are used to express both pressure and acoustic velocity potential in terms of
modal amplitude coefficients which become unknowns in the finite element formulation.
The matching at the interface also requires the appending of the natural boundary
conditions which are appropriate for the two regions. A consequence of the matching
procedure is that the modal amplitudes are calculated as part of the solution, thus providing
information on the duct modes generated by the source. Knowledge of the modal amplitudes
is useful for the design of optimum acoustic treatment. The mechanics of the matching
procedure has been tested in an example calculation and it is found that scattering at the
interface is well within other sources of computational error associated with the FEM.

An additional extension of the FEM model is the provision for the acoustic treatment
of the surfaces of the nacelle and centerbody. Designated acoustic admittances can be used
in a model of a locally reacting acoustic lining in both the inlet duct and exhaust duct.

Example calculations have been made for the case of EGV interaction noise to
investigate the effectiveness of acoustic treatment which is specified on the basis of several
forms of optimization criteria. It is found that an optimum admittance based on the
"Cremer" optimization or by the choice of equal modal amplitudes provides the best far field
performance. Because of the complex nature of the propagation and radiation, the result
must be considered as specific to the configuration in this example. Calculation of the
radiated field provides a useful supplement to acoustic design techniques based on infinite
duct theory.
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Figure 1. Idealized view of rotor/EGV imbedded in a nacelle with a
centerbody.



Potential
Region i

Pressure
Region

Potential
Region

z
Moo

Blade Row
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natural boundary conditions apply.
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Figure 8. Contours of constant Sound Pressure Level around the
nacelle in the case of EGV interaction noise with 8
blades and 7 exit guide vanes creating the angular mode
m=l. The blade tip Mach number is M=0.8. The inlet and
exhaust ducts are unlined.
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Figure 9. Contours of constant Sound Pressure Level around the
nacelle in the case of EGV interaction noise with 8
blades and 7 exit guide vanes creating the angular mode
m=l. The blade tip Mach number is M=0.8. The inlet and
exhaust ducts are lined with a "Cremer" optimum lining.
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ABSTRACT

A finite element model is created for the generation,.
propagation, and radiation of steady, rotor alone noise and
rotor and exit guide vane interaction noise of a ducted fan.
In the case of rotor alone noise the acoustic source is
represented by a rotating lifting line of thrust and torque
dipoles distributed radially on the blade. For a specified
number of blades, angular mode harmonic, and rotor
angular velocity, the acoustic field is described in a
cylindrical coordinate system reduced to only the axial and
radial directions. The blade loading is imposed on a radial
line at the axial location of the fan. The blade loading is
assumed to vary linearly from the hub to the tip. The blade
tip loading is determined by a specified thrust requirement
and the inflow velocity. In the case of interaction noise the
acoustic source is a stationary lifting line of torque and
thrust dipoles which represents the fluctuating lift on the
exit guide vane created by the velocity deficit associated
with wakes in the steady velocity field behind the rotor. The
fan and exit guide vanes are imbedded in a duct which can
be contoured to represent a realistic installation. In the
configurations considered in the present study, emphasis is
on ducted fans or ducted propellers for which the by-pass
ratio is very large. In this case the usual assumption is made
that the fan, or propeller, is operating in a mean flow
environment which is uniform and the same as the forward
flight velocity. The flow acceleration in the inlet,
acceleration in the fan duct, and jet free shear layer are not
accounted for in the present model. The model accounts for
the noise generation process, the propagation through the
inlet and fan duct, and the radiation to the near and far
field. The major issue addressed in the computational
examples is the relationship between the far field radiated
Sound Pressure Level (SPL) and directivity and fan tip
speed.

INTRODUCTION

Ultra high by-pass ratio turbo-fan engines and ducted
or shrouded propellers are attractive from the standpoint of
propulsive efficiency. In addition there are possible
advantages to be gained in radiated noise levels due to the
imbedding of the propeller or fan acoustic source within the
nacelle or shroud. An unducted propeller generates an
acoustic field which tends to produce high levels on the
sideline, and therefore may create unacceptable noise
levels in the interior of the aircraft A ducted propeller is
restricted in the way in which it can radiate to the near and
far field. It is known that steady, rotor alone noise, created
by blade loading, is a principle source mechanism for
unducted propellers. It is generally assumed that in the case
of a ducted propeller the rotor alone noise is not
propagated to the far field if the dp speed does not exceed

the speed of sound. This result, due to pioneering work of
Tyler and Sofrin [1], is true for rotor generated noise in a
thin annulus with the absence of duct mean flow.

In the case of ducted fans and propellers an additional
source mechanism exists associated with the presence of exit
guide vanes. The EGV operate in a helical velocity field
behind the rotor, which is for the most part steady and
defined in direction by the thrust of the rotor. The mainly
steady character of the rotor generated velocity is
periodically interrupted by the viscous wakes downstream of
the individual rotating blades. The EGV produce lift in
response to the rotor velocity field, and because of the
fluctuating velocity field behind the rotor, produce
fluctuating lift and provide an acoustic source mechanism.
This interaction source mechanism was also addressed by
Tyler and Sofrin [1] and was shown to have the potential for
the creation of acoustic modes of very low angular order.
Modes of this type will propagate and radiate with a
directivity pattern which may produce high levels near the
axis of symmetry.

The purpose of the work presented here is to
investigate the differences in the radiated acoustic fields of
ducted and unducted propellers of the same thrust operating
under similar conditions. Hanson [2] has created a
comprehensive acoustic model for unducted propellers
which accounts for spanwise and chordwise details of the
blade loading. It is not the intent in the present study to
focus on such a refined model. Instead, the approach is to
generate a very simple source model, similar to the classic
lifting line theory suggested by Gutin [3], to concentrate on
the propagation and radiation effects introduced by the duct,
and to compare the acoustic performance of similar ducted
and unducted propellers based on the same source model.

The finite element method (FEM) has been used in
previous studies to model the wind tunnel acoustic testing of
propellers and the free field acoustic radiation of propellers
[4-7J. In the present study the FEM is used to model the
ducted propeller in the free field. This combines the
propeller modeling previously reported and some aspects of
earlier work on the prediction of the radiated acoustic field
from turbofan engine inlets [8-9].

The generation, propagation, and radiation of sound
from a ducted fan is described in this study by the convected
wave equation with volumetric body forces. Body forces are
used to introduce the blade loading for rotating blades and
stationary exit guide vanes (EGV). For an axisymmetric
nacelle or shroud, the problem is formulated in cylindrical
coordinates. For a specified angular harmonic the angular
coordinate is eliminated and a two dimensional
representation results. A finite element discretization based
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where p* is the acoustic pressure, p0 is the ambient density,
c is the ambient speed of sound, and J* represents the body
force per unit mass acting on the fluid. paf is the body
force per unit volume. Equation (1) is in dimensional form.
In the development which follows a nondimensional form of
equation (1) is used with the following scaling
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t' is the dimensional time and x* is any of the linear spatial
coordinates. The reference length L is the propeller radius
R. The nondimensional form of the acoustic field equation

Figure 1.

Geometry of Shrouded Propeller or Rotor.

on nine node quadratic isoparametric elements is used. The"
nacelle and center body or core engine are defined as rigid
surfaces. The assumption is made that the bypass ratio is
large enough so that the entire flow field is uniform,
consistent with the usual model in propeller acoustic
analyses. Features not modeled are the nonunifonn flow in
the inlet and fan duct, and the free shear layer in the fan
duct exhaust jet.

Geometry and C!nord|nate System

In this investigation the acoustic field is conveniently
represented in a cylindrical geometry with the axis of the
propeller or rotor/nacelle designated as the x axis. It is
assumed that the nacelle/centerbody combination is axially
symmetric and that the inlet flow field is axially symmetric.
Specifically excluded by this restriction are drooped inlets
and nacelles for which the inlet duct is not circular. The
acoustic field is not required to be axially symmetric, and it
would be unlikely that it is. The acoustic field is periodic in
the angular coordinate of the cylindrical system. It is
represented as the components of a Fourier Series in the
angular coordinate 6. The acoustic field for each angular
component, or "angular mode," is represented by a field
equation in only the axial and radial components x, r of the
cylindrical system.

Figure 1 shows an idealized geometry for a
rotor/nacelle arrangement. Noise sources related to the
rotating blades and the interaction of the blades with
stationary exit guide varies can be modeled.

The steady velocity field in and around the nacelle is
assumed to be uniform. For many applications, notably the
case of the ultra high bypass fan or the ducted propeller this
is probably satisfactory. For other cases it may be necessary
to model the flow in and around the nacelle. It may also be
required to consider the effects of the shear layer in the
interface between the fan exhaust and the surrounding
steady flow.

Mathernarica[ fcfndel

The acoustic field is described by the converted wave
equation with body forces

(i)

V - (v> - 3/» -ft - 2M
ox axat gt2

(2)

The body force per unit mass J is related to the force
exerted on the fluid by the rotating blade or stationary vane.

The major deficiency in this model is the assumption
that the interior flow and external flow are uniform and at
the flight Mach number. This is required because a pressure
formulation has been chosen to introduce the acoustic
source model for the rotor or EGV via equivalent body
forces acting on the fluid. This is consistent with previous
models of propellers [4-7]. In the pressure formulation it is
required that the flow field be uniform in order that the
acoustic field equations can be reduced to the convected
wave equation.

By modeling the acoustic field using the pressure
formulation some liberties have been taken. Even though
for ducted propellers or high by-pass ratio ducted fan types
of flow fields the internal and external flows over most of
the region may be approximated as being uniform and
tangent to the nacelle, a region will exist near the inlet lip
where the flow is clearly not uniform. The formulation of
the problem using the convected wave equation does not
account for this. Although the primary corrective effect of
the mean flow is modeled, effects due to localized flow
gradients will not be included.

In addition to the requirement that the flow be
uniform there is a more subtle restriction that is introduced
by the natural boundary condition for the convected wave
equation that would require

- M1 & T) • it = 0
3x (3)
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if no forced boundary condition exists, jf is the outward
normal on the nacelle surface. On the nacelle surface the
rigid wall boundary condition requires that

Vp • n - 0

which is equivalent to specifying that the acoustic particle
velocity normal to the surface vanishes. Equation (3) does
not reduce to this condition except where f . a =, o- This
is clearly violated where the surface normal is not
perpendicular to the duct axis, and particularly near the
inlet lip. The natural boundary condition (3) is used here
with the argument that its apparent failure where f • n • 0
is an artifact of the assumption of uniform flow. No



apparent effect of this approximation can be seen in the
computational results.

A second modeling option has been used in previous
studies of acoustic radiation from turbofan inlets [8,9]. The
assumption is made that the mean flow and acoustic field
are irrotational. The acoustic source is introduced through
the specification of acoustic modal amplitudes at the fan
face. This is accomplished by including suitable boundary
terms. It is therefore not required to include the body forces
in the momentum equation. This allows a first integral of
the linearized momentum equation to be obtained, which
can be interpreted as an acoustic Bernoulli equation. The
combination of the continuity equation and the acoustic
Bernoulli equation written in terms of the acoustic velocity
potential provides the basis of the mathematical model in
[8,9]-

The velocity potential formulation does not seem to
be appropriate if the source model is to be introduced
through equivalent body forces. The critical feature which is
lost is the first integral of the momentum equation leading
to the acoustic Bernoulli equation. This integral is not
possible unless the body force is derivable from a potential.
This does not appear to be the case for the types of body
forces required to represent a propeller, rotor, or EGV.

The finite element formulation of the converted wave
equation (2), is the same as described in previous work
related to propeller acoustic radiation [4-7]. Nine node
quadratic isoparametric elements are used with special
attention given to the elements spanning the propeller and
containing the source terms. A frontal solver is used and
models with as many as 18000 degrees of freedom have
been handled routinely.

The models used for the propeller or rotor and exit
guide vane acoustic sources are discussed in the following
sections.

Blade Loading

The blade loading of the propeller or rotor will be
considered as the only source of rotor alone noise. No
effects of blade thickness will be modeled in this
investigation. Blade loading will be based on isolated lifting
surface theory using a strip analysis. The discussion of
Dommasch, Sherby and Connolly [10] is directly relevant to
the following development.

Figure 2 shows an airfoil section at the radius r from
the hub. The local angle of attack of the section at radius
r depends on the inflow velocity, U, the relative velocity due
to rotation rfl/U, where n is the angular velocity of the
rotor or propeller, and the blade twist $ . The velocity seen
by the section is

(4)

Figure 2. Velocities and Inflow Angles
Experienced by a Blade Element.

The lift per unit span at the tip is

Ip* [i + (I) £ »
c(r) is the local blade chord and c(< is the section lift
coefficient taken as constant in the present study. The lift
per unit span as a function of radius is

/W (7)

For the present investigation it is assumed that the
blade loading is linearly distributed from root to tip, that is

(8)

The thrust on NB blades is given by

or

where

The angle 6 defining the direction of the velocity seen by
the section and the angle of attack a are given by

cosp , sinp -

(5)

R, is the inner radius of the propeller or rotor. The
required tip loading for a given thrust can now be
determined from equation (10)

(12)



The chrust and torque loading are and can be expressed in the Fourier Series

Other types of loading can be considered by
reformulating equation (8) and the subsequent analysis.
Since the investigation reported here centers primarily on
comparisons of unshrouded and shrouded propellers, it is
not deemed critical to precisely specify the loading.

The lift distribution discussed here is dimensional,
and thus based on full scale parameters.

Rotor Alone Noise

Rotor alone noise generation is viewed from the
perspective of a volumetric force fixed in space which is
active during the passage of a blade with its associated lift
distribution. It is assumed that the duration of passage of

the blade past a fixed point is t — where a(r) is the
Qr

projection of the blade chord on the rotor plane. The
strength of the volumetric force representing the blade
passage is taken as the negative of the lifting pressure
differential across the blade, approximated . by l(r)/c(r)
where c(r) is the local chord.

The strength is

(14)

where y* is a dimensional coordinate normal to the blade.
The lift per unit span here is taken to act normal to the
blade chord, which is oriented by the twist angle <t> . The
unit vector em is taken normal to the blade. The
relationship between x', the dimensional axial coordinate,
and y', the normal to the blade chord, for 0 = constant, is

y' = j'cos<t>

By making use of the property of the Dirac delta function
that eS(ax) = a-1«(x), equation (14) can be written

05)

c(r)cos0 is the projection of the blade chord on the rotor
plane so that

P./7. -M act-) 7. (16)

At a fixed angular position 6 = 0, for the successive passage
of NB blades

"••jgi m

The body force per unit volume is periodic with period

T* ^L

p./ (18)

where ti = and
c

"

i(cos mNa

The body force per unit volume can be resolved into
thrust and torque components on the basis of the angle
which orients the velocity seen by the blade. The
components are

P./, = - M cosp W) £ (20)

(21)

Note that these body forces are on the fluid and are
therefore opposite to the corresponding forces on the blade.
The thrust component is rearward and the torque
component is in the direction of blade rotation.

The development to this point is for the reference
location 6 = 0. At any other location the same temporal
event occurs with the phase lag At = 6/n . Hence at any
angle, in non-dimensional form

E C.

(22)

fm = _L (M) sinjj aw £ c. «-"•'" «*"••

(23)

The body force per unit volume has frequencies which are
integer multiples of the blade passgage frequency NBn. The
nondimensional form is obtained by noting that the
nondimensional body force per unit volume is obtained from
the dimensional form by dividing by C0VR- Furthermore,
the dimensional Dirac delta function with the dimensional
argument is nondimensionalized by division by R.

EGV Interaction Noise

In order to estimate the noise generating mechanism
of the exit guide vanes (EGV) in their interaction with the
rotating blades, a simplified model has been constructed.
This model assumes that the EGV are on the average under
the influence of a steady lift dictated by the magnitude and
direction of the absolute velocity field leaving the rotor.
This can be approximated from a knowledge of the steady
blade loading in the rotor stage. The flow field downstream
of the rotor is not steady, but is interrupted by the wakes
downstream of the blade trailing edges. The velocity deficit
in the wake, which is dependent on the distance downstream
of the blade trailing edge, creates a fluctuating lift on the
EGV. It is this fluctuation which becomes the noise source.



r = RADIUS OF BLADE SECTION
0, = ROTOR ANGULAR VELOCITY

Figure 3. Velocity Triangles for Flow
Behind the Rotor.

The model used here is based on quasi-steady strip theory
aerodynamics and is intended only as an estimate of the
actual source mechanism.

From the elementary theory of axial flow
rurbomachines [11] the absolute inlet velocity, v,, the
velocity relative to the rotor at the inlet, vv the velocity
relative to the rotor at the exit, vv and the absolute velocity
at the exit v, can be determined from the velocity triangle
of Figure 3. The pressure rise across the rotor is given by

Ap = U1 (tan'p, - tan'p,) (24)

The pressure rise is balanced by the thrust component of
force per unit span

(25)

(26)

(27)

where o^ = 1/2 pU2 is the approach dynamic pressure.
From the velocity triangle

Therefore, for a known thrust loading

-I I/1 (IE) (tan'p,
2 N

For a local blade section flt and Bj are defined by

span is

where

o s t & t
t i. t i T
0 i. 6 4 1

(30)

(31)

is the period of passage of the reference blade in front of
the reference EGV. The duration of the reduced velocity
is established by the wake thickness h according to

hT
(32)

With this picture of the fluctuating lift, the Fourier
Series for this periodic event is

(33)

where

sin i(cos - 1)
2irn

(34)

The fraction of the steady lift experienced by the
EGV during the encounter with the blade wake is assumed
to depend on the distance between the rotating blade and
the EGV. The measure of this separation is the distance xd

in blade chords of the EGV leading edge behind the
rotating blade leading edge. The velocity downstream in the
wake is given by

The parameter e is therefore

(35)

(36)

In equation (29), the steady lift is associated with the
steady flow. In the acoustic formulation the fluctuating load
is the acoustic source, so that body force per unit volume
will be related to the fluctuating lift per unit span given by

The steady lift per unit span on an EGV is estimated to be

', ' | PVJ t. ct. «j (29)

with the assumption that the EGV has no twist c, is the
chord of the EGV and the lift curve slope is c^. The steady
lift per unit span on the EGV can be estimated from
equation (29) at the same time that the rotor blade loading
is calculated.

The load fluctuations on a reference EGV are
stipulated to occur due to the velocity deficit in the wakes
behind the reference rotor blade. The unsteady lift per unit

-(1 - e)l, (37)

The EGV is represented spatially by a lifting line on
which acts the force per unit volume

p/ - /(r) (38)

The Dirac delta function is written as a periodic function
with period 2-rt,

T ,.__
,«" . G, = ± 09)



The body force per unit volume, the reaction to the lifting
force, is

P/,, - 'V.
SCO (40)

Equation (3) represents the fluctuating body force per unit
volume on the reference EGV, numbered vane 1, due to the
passage of the reference blade, designated blade 1.

For other than the reference vane there are temporal
and spatial phase shifts

(k - (ft - (41)

(* - 1) S. , k - l , N , (42)

Equation (41) is the phase shift in time at the vane k due to
the intervane angular spacing 2ir/NY and the angular
velocity of the blade 0. Equation (42) is the spatial phase
shift due to the angular spacing. Hence at vane k due to
the passage of the reference blade

P/u 8(O
r £ £. 5"G"'

(43)

At vane k there is a further temporal phase shift due
to the passage of blade /

(44)

The body force per unit volume for this interaction is

(45)

The total acoustic source contribution is obtained by
summing over all vanes and blades

E E

(46)
' «

Equation (46) can be simplified by making use of the
result that

£ -**-»¥ n£ e " = 0 , n * BjjJV
i-l

= AT, n = n//, n, = 0, ±1, ±2, . .

In equation (46) for a fixed value of m and n, consider the
summation over k and I. This summation will vanish unless

» • V» • ns " *!- ±2> • • • (47)

m * n = n//,, nr = 0, ±1, ±2, ... (48)

Equation (48) can be replaced by

m - njf, - njtt (49)

The case nB = 0 is not relevant acoustically because it
contributes to the time invariant part of the body force per
unit volume. With these observations the body force per
unit volume can be written

(50)

where

i(cosn//BQT -
2irnATJ

=

Since the EGV is assumed to have zero twist the
angle of attack is given by o2. The body force per unit
volume is then resolved into thrust and torque components
according to the non-dimensional relations

(51)

(52)

FINTTE ELEMENT FORMULATION

Equation (2) is the field equation which governs the
radiated sound field generated by the distribution of body
forces J which are defined in the case of rotor alone noise
by equations (22) and (23) and in the case of EGV
interaction noise by equations (51) and (52). References
(4-9) give details of the finite element discretization of
equation (2). Here the important features are reiterated.

A Galerkin weighted residual formulation seeks a
solution for the acoustic pressure p among the class of
functions C1 with continuous first derivatives which satisfy
the weighted residual statement

[v •
[

- f> - 2
etc

dv

0

(53)



for piecewise continuous weighting functions Wj. Equation
(S3) is the combination of the volume weighted residual of
the field equation and the surface area weighted residual of
a combination of terms which turns out to be the natural
boundary condition. The overbar on p signifies that it is to
be designated on S. The weak form of equation (53) is
obtained by using the divergence theorem to reduce the
level of continuity required of the solution p. In this form
a solution p is sought in the class of continuous functions C*,
with piecewise continuous first derivatives such that

f\ • n

(54)

for all weighting functions W, in C'. Use is made of the fact
that J, the body force, vanishes on the boundary S of the
domain V. The body forces are distributed over the volume
V, . n is the unit normal vector out of the volume V.

Because of the axial symmetry of the geometry of the
nacelle, equation (54) is implemented in cylindrical
coordinates. Figure 4 shows the bounding surfaces of the
computational domain in a 6 = constant slice. The surfaces
of the center body Sc and the nacelle SN are rigid so that
Vp • n = 0- On these surfaces the natural boundary
condition is given by the surface integral in equation (54),
which if it were to vanish on Sc and SN would require that

- M 1 • n =• 0 (55)

on S, and SN. As noted previously, the pressure formulation
used here does not allow the specification of the details of
the mean flow in the neighborhood of the nacelle lip and
the centerbody tip due to the restriction of a uniform axially
directed flow inside and outside the nacelle. The important
features that are missing are the tangency of the mean flow
in the vicinity of the nacelle lip and centerbody tip and the
flow gradients which exist there. The flow gradients exist
over a length scale which is short compared to- a wave
length and can reasonably be neglected. The boundary
condition of equation (55) is derived on the basis of the
restriction of uniform axial flow and hence that the normal ff
is perpendicular to the x axis so that f • n - 0- Just as the
flow is not tangent to the surface of the nacelle near the
nacelle lip and centerbody tip, f . n does not vanish. In the
pressure formulation described here, equation (55) is taken
as the natural boundary condition for all rigid surfaces with
the argument that in a more exact formulation, for example,
the velocity potential formulation of References [8,9], the
equivalent boundary condition would be based on the
tangential component of mean flow, and would therefore
vanish. The validity of these assumptions can only be tested
by checking the computational results and looking for
anomalies in the radiated acoustic field near the nacelle lip
and centerbody tip.

In the case when the propeller is unshrouded, the
surface integral on S, and SN does not exist (in the present
study the center body does not exist If the propeller is
unshrouded). For the unshrouded case the uniform axial
flow assumption is also not rigorously true because of flow
gradients which must exist to account for the momentum
increase which creates the thrust No known propeller

Sc . CENTER BODY

SN* NACELLE OB SIIROUO

REFLECTION FREE SURFACE

BODY FORCE VOLUME

Figure 4.

Computational Domain for FEM Formulation.

acoustic model accounts for this. In this context, the
formulation for the shrouded case is viewed as equivalent.
With these arguments, equation (54) is taken as the weak
form with the surface integral existing only on S., the
reflection free outer boundary. The important features of
the finite element mesh used in the discretization of
equation (54) are discussed in [4,8,9].

The volume integral over the distribution of body
forces representing rotor alone or EGV interaction noise
generation requires some special treatment because of the
nature of the loading in the form of a Dirac delta function.
Details are discussed in Reference [4].

The large set of algebraic equations created by the
FEM discretization of equation (54) is solved by using a
frontal solution routine. The resulting nodal pressures are
postprocessed to create an acoustic directivity pattern, which
is a contour of equal sound pressure level (SPL) on an x-r
plane sliced out of the cartesian system, side line SPL, which
is a plot of SPL on a line parallel to the axis and at a
specified distance, and polar SPL, which is a plot of SFL at
a fixed polar radius centered on the nacelle. Polar SPL
results for several cases can be superposed on a summary
polar SPL plot. Only polar SPL results are shown here.

COMPUTATIONAL RESULTS

In this study both rotor alone noise and EGV
interaction noise for a shrouded propeller will be compared
to unshrouded propeller noise for a fixed thrust. In the
rotor alone case there is a distinct difference in the subsonic
and supersonic tip speed cases, while in the EGV inter-
action no fundamental difference is attributed to the
difference in rotor speed.

A. Nacelle and Propeller Configuration

A model scale propeller and nacelle is considered
here. The propeller has four or eight blades and is of
dimensional radius 0311 m (1.02 ft). The blade chord is
taken to be uniform at 0.052 m (0.17 ft). The non-
dimensional propeller angular velocity is taken as r\ =0.8
and 0.9 in the subsonic case and 1-2 in the
supersonic case. For a speed of sound of 1125 ft/sec, this
corresponds to angular speeds n = 8426 RFM and n = 9479
RPM for the subsonic case and n = 12639 RPM for the
supersonic case. The nacelle geometry is shown in Figure
5. In the unshrouded propeller case no centerbody is
present This has only a slight effect on the propeller
loading. The source location, whether rotor alone or EGV
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Figure 5.

Idealized Shrouded Rotor for Example Cases.

interaction, is just ahead of the center of the nacelle. The
flow velocity inside and outside of the nacelle is M = 0.4.

B. Rotor Alone Noise

Figures 6 and 7 are summaries of the polar radiation
directivity for four and eight blade shrouded propellers with
comparisons to similar unshrouded propellers. Both
supersonic and subsonic tip speeds are shown. Figure 6 is
the four blade case. For supersonic tip speed, r\ - 1-2, the
(4,1) mode (fourth angular, first radial) is cut off with cutoff
ratio ttl (1.2)= 0.988 while at subsonic tip speeds it is cut
off with cut off ratios f,H (0.9) = 0.74 and £4l (0.8) = 0.66.
The corresponding attenuations based on the cut off ratio in
the duct length of 1.3R are 10 dB, 44 dB, and 49 dB. It is
seen that the peak radiated noise at a distance of ten duct
radii is 120 dB created by the unshrouded propeller (this
sets the scale level for the plot). The shrouded supersonic
propeller has a peak level of about 109. The unshrouded
subsonic propeller with ^ = 0.9 peaks at 114 dB and the
case with r\ = 0.8 peaks at 112 dB. The corresponding
shrouded propellers peak at 80 dB and 74 dB. The
relationship of the SPL levels of the shrouded propellers
below those of the unshrouded propellers is consistent with
the projected attenuations due to the cutoff phenomenon,
though not numerically equivalent The comparison of the
SPL levels of the two subsonic shrouded propellers with the
supersonic shrouded propeller shows additional attenuations
for the subsonic cases which are also consistent

For the eight blade propeller a somewhat different
picture emerges, as shown in Figure 7. For supersonic tip
speed the (8,1) mode is propagating with (•„ (1.2)= 1.085,
but for the subsonic tip speeds it is cut off with J8l (0.9) =
0.81 and ?„ (0.8) = 0.72 with calculated attenuations of 70
dB and 83 dB. Reference to Figure 7 shows that the
shrouded propeller at supersonic tip speed creates the
highest SPL and sets the scale level at 130 dB. The
corresponding unshrouded propeller has a peak level about
10 dB lower. The unshrouded subsonic propeller at r\ =
0.9 peaks at about 112 dB and the corresponding shrouded
case is heavily attenuated at only about 74 dB. This
attenuation of 56 dB with respect to the shrouded
supersonic propeller is consistent with the cutoff
phenomenon. A similar result applies when r\ = 0.8. The
unshrouded propeller peaks at 108 dB while its shrouded
counterpart peaks at 39 dB (hardly visible on the figure).

This attenuation of 91 dB with respect to the shrouded
supersonic propeller is also consistent with the cutoff
phenomenon. The interesting feature here is the high peak
SPL of the shrouded propeller. The (8,1) mode for the
supersonic case is cut on, as opposed to the (4,1) mode
being slightly cut off for the four blade propeller. It appears
that the mechanics of wave propagation in the duct
enhances the radiation of the ducted propeller noise when
the mode is cut on.

C. EGV Interaction Noise

To demonstrate the radiation of EGV noise a case
with eight rotating blades and seven stationary vanes located
one blade chord downstream is considered. The lowest
angular mode excited at blade passage frequency is M, = 1.
Figure 8 shows the radiated sound field for supersonic and
subsonic rotors at r\ = 1-2, n = 0.9, and t) = 0.8. The
radiation patterns are similar with high SPL near the axis of
symmetry, characteristic of the well cut on M, = 1 mode.
There is also significant SPL away from the axis due to the
presence of higher order radial modes which are
propagating. An interesting feature is the relative
insensitivity of the peak SPL to the rotor speed, which is in
contrast to the great sensitivity observed in the rotor alone
noise. It is difficult to confidently compare the peak SFL in
the rotor alone and interaction cases, since both source
models are approximate and are probably not entirely
consistent. It is safe to note that the peak SPL in the EGV
case is much higher than in the case of subsonic rotor alone
noise. EGV noise clearly becomes dominant in the subsonic

SUMMARY

Several important observations can be made.
1) Contrary to the usual understanding of the Tyler and
Sofrin result [1], supersonic tip speed rotor noise can be cut
off if the tip Mach number is only slightly in excess of unity
and if the number of blades is relatively small. If there are
many blades, the fundamental angular mode number is
large, and the Tyler and Sofrin result for thin annuli
becomes more relevant 2) Shrouding of subsonic tip speed
propellers is a very effective means of controlling rotor
alone noise. 3) There appears to be no benefit in terms of
the peak radiated SPL for shrouded supersonic propellers
when the fundamental mode is propagating. 4) For
shrouded subsonic rotors, EGV noise becomes the dominant
source.
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APPENDIX B. MESH GENERATION SCHEME

This section discusses the generation of the finite element mesh which plays a

vital role in the formulation of the problem. Figure 1 shows an eight-node parent

element with the local numbering of its nodes. For the convenience of constructing

the mesh, the entire computational domain has been divided into three regions.

Figure 2 illustrates the three regions clearly. Region I occupies the interior of

the nacelle, both forward and aft of the propeller, region II extends from outside

the inlet to the transition boundary C\ and region III (the wave envelope region)

extends from C\ to the outer boundary Coo-

A. REGION I

Due to the complex nature of the acoustic field inside the nacelle, a fine mesh

is generated in order to resolve the variation in acoustic properties. It is separated

from region II by a circle which we shall call the highlight circle. There are, in fact,

two highlight circles, one fore and the other aft of the propeller. The highlight

circles are drawn from the nacelle tip (also known as the highlight) in such a way

that their centers lie at the point of intersection of the x-axis and a line passing

through the tip of the nacelle at 45° with the x-axis (see Figure 3).

The inner surface of the nacelle Cn extends from the propeller to the tip of

the nacelle, both fore and aft. The centerline of the inlet geometry extends from

the intersection of the centerbody curve with the x-axis (fore and aft) and the

intersection of the highlight circles with the x-axis (fore and aft respectively).

Three-node quadratic line elements lie along the inner surface of the nacelle, the

centerbody and the centerline. The coordinates of these nodes are given as input

to generate the mesh in region I. The number of input nodes on the inner surface

of the nacelle and on the centerbody and centerline is the same, to produce a mesh



of generally rectangular elements.

The vertical line segment z = 0 between the inner surface of the nacelle and

the centerbody has also been divided into several elements not necessarily of equal

width, each to be represented by a three-node quadratic line element. Figure 4

illustrates the meshing scheme in this region. The "vertical" element boundaries

inside the nacelle are formed by arcs of circles. These arcs are drawn through

corresponding nodal points on the upper and lower boundaries (for example, the

fifth node on the nacelle inner surface and on the centerbody and centerline,

counted from the line x — 0) with the center of the circles lying on the x-axis.

Such circles are easily constructed as illustrated by Figure 5. (x\, 3/1) and (x2,

3/2) are coordinates of any two corresponding nodal points on the nacelle inner

surface and the centerbody and centerline respectively. Then the x-coordinate of

the center of a circle passing through these two points and having its center on

the x-axis is given by

• 2(x2 -

Now, to preserve the rectangular mesh, each of these circular arcs should have

the same number of three-node line elements on them and this should equal the

number of three-node line elements on the line segment corresponding to x = 0.

Therefore, each of these arcs is divided into the same number of elements with

the same fractional length (fraction based on the arc length) as on the vertical r

(x = 0) axis. Thus, the nodal coordinates of the line elements on each of these

circular arcs is determined. The vertical column of elements adjacent to the right

of x = 0 is chosen to represent the propeller. The nodal coordinates are stored

in a topology array AD(I, J, K } where I is the global element number, J is the

local node number and K = 1 assigns the x coordinate, K = 2 the r coordinate,

respectively, to the array. Proper connectivity relating the local node to its global



numbering is also generated and stored in a connectivity array AN (I, J), where

7 = element number, J = local node number. This array stores the global node

number for each node.

The global node numbering goes from top to bottom of each of the circular

arcs starting from x = 0 and alternating between the fore and the aft of the

propeller (see Figure 6). The element numbering is down each column of elements

between adjacent circular arcs sequencing from x = 0 and alternating between

fore and aft of the propeller (see figure 6).

B. REGION II

The mesh in region II becomes polar in nature essentially because of the

configuration of the domain outside the inlet duct. Region II is separated from the

wave envelope region III by a constant phase circle, as described previously, whose

x-intercept is given as input. The constant phase circles are expanding radially

with the local speed of sound (c) and their centers are moving away along the x-

axis with the speed of uniform exterior flow (U) (see Figure 7). This phenomenon

is very similar to the successive circles of outward ripples created on the surface of

still water when a pebble is thrown into it. The only difference is that in still water

the centers of the successive layers of outward moving circular ripples coincide and

here the centers of the constant phase circles move at a constant velocity.

From Figure 7, we obtain the equation of a constant phase circle (of radius

Re) displaced along the positive x-axis with velocity U (positive direction of U is

indicated in Figure 7)

(x - Ut? + r2 = Rl (2)



where Re = ct is the radius of the circle Therefore,

(x - U^-Y + r2 = R] (3)
c

or,

(x - MRe)
2 + r2 = Rl (4)

where M is the Mach number of the uniform exterior flow. By setting r = 0 in

equation (4) we obtain the x-intercept of the circle

x = (M ± l)Re (5)

The positive sign corresponds to the x-intercept on the positive x-axis,

x = (1 + M) Re

while the negative x-axis corresponds to the x-intercept on the negative x-axis,

x = -(l-M)Rc

The circles can be expressed in polar coordinates R and 9 by,

(RcosQ - MRe)
2 + (RsinO? = R\ (6)

Solving for R hi terms of 6 yields,

R = R c [ l - M2 + (McosB)2 - McosO] (7)

Hence, the radial distance R at every angular position 0 on the outer boundary of

region II is known.

The outer surface of the nacelle which forms a part of the inner boundary of

region II has three-node quadratic line elements along it. Since the mesh generation

in region I precedes that in this region, the coordinates of the three-node line

elements lying along the two highlight circle arcs are known. The nodal points



on the outer surface of the nacelle and those on the highlight circle arcs serve as

input for the mesh generation in region II (see Figure 8).

In this region and also in the subsequent region III, the nodes have been

generated on and along the acoustic rays from origin. Since the mesh is polar,

the angular thickness of the elements increases with radial distance because the

acoustic rays are radial lines diverging from the origin. To maintain proper aspect

ratio of the elements in this region, the radial thickness of the elements should

also increase accordingly along acoustic rays moving away from the origin. Now,

corresponding to each nodal point on the outer nacelle surface and highlight circle

arc, an acoustic ray is defined and its point of intersection with the outer bounding

circle of region II is calculated (see Figure 8). Therefore, the radial distance along

that ray in region II is known. This radial distance is then divided according to

the number of elements required along the general direction of noise propagation,

in geometric progression, from the inner boundary to the boundary C\. From

elementary mathematics, we know that if r\, r2 , . . . , rn are n members of a series in

geometric progression, then the members are related to each other in the following

way,

r3 = cr2
(8)

rn = crn_i J

where c is the common ratio of increment. So, the last member is related to the

first member by

rn = cn-l
ri (9)

Referring to Figure 9 where an acoustic ray intersects with the two boundaries

of region II, it is obvious that the first and the last members of the geometric

progression series, i.e. intersection points on the inner boundary and the outer

bounding circle C\ respectively, are known. Since the number of elements n in the
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radial direction of region II is an input, the common ratio of geometric progression

is found out using equation (9),

/outer bounding circle\ "
common ratio = I : ;—— I

Dinner bounding circle J

Once the common ratio is known, the successive intervals are found out by multi-

plication with the common ratio as in equations (8). Hence, the nodal points of the

line elements along that acoustic ray are located. Geometric progression provides

a gradual increment in the radial thicknesses of elements which is sufficient to a

maintain proper aspect ratio.

The nodal coordinate values are stored in rectangular cartesian form in a

topology array AD (I, J, K) as mentioned before. The connectivity array AN(I, J)

is also created. The element numbering and the global node numbering in this

region is illustrated in Figure 6.

C. REGION III

Region III which consists entirely of wave envelope elements is bounded by

the transition boundary Ci, the outer boundary C^, and the 2-axis. The wave

envelope elements, as discussed before, are large elements bounded by acoustic

rays and constant phase circles. The string of elements between any two successive

constant phase circles is referred to as a wave envelope layer. The input for mesh

generation in this region is the number of wave envelope layers and the ^-intercept

of the constant phase circles bounding each layer. Using equations (5) and (7),

the inner and outer radii of the constant phase circles bounding each such layer

is determined. The mean radius of each layer, which is just the average of the

inner and outer radii, is also calculated. Since the mesh generation in region II

is complete at this stage, the three-node line elements (note that a three-node

line element forms a side of an eight or nine-node isoparametric element) on the



outer bounding circle C\ of region II have been located completely and their global

numbering is also known. Therefore, corresponding to each nodal point on C\, an

acoustic ray is defined (see Figure 8) and thereby its points of intersection with

the inner, mean and outer radii of each wave envelope layer are calculated. The

rectangular cartesian coordinate values of these intersection points on which the

nodes lie are stored in the topology array AD(I,J,K). The connectivity array

AN(I, J) is similarly calculated as in region II. The element and the global node

numbering follows after region II and is similar to region II. Since the mesh in

region II is quite fine and that in region III is coarse, care should be taken to make

a gradual transition in the size of the elements.

After the mesh is generated, a connectivity check is performed to ensure a

proper connection between local and global numbering of nodes and uniqueness

of nodal coordinate values.

E. SOME COMMENTS ABOUT THE FINITE ELEMENT MESH

The acoustic radiation problem is highly mesh dependent but the mean flow

problem is not very sensitive to the mesh parameters. Since both of these problems

have been solved on the same finite element mesh, a mesh conforming to the

acoustic parameters is desired. One of the important factors governing the mesh

is the number of elements per wavelength which must always be maintained above

a minimum value in the main direction of noise propagation to resolve the fine

variation in acoustic properties. According to the rule of thumb the minimum

ratio of the number of elements to the wavelength for quadratic elements should

be 4 or 5. Here a somewhat crude estimate has been made to evaluate that ratio

along the main direction of sound propagation.

Since the nondimensional input frequency rjr (it is an input to the problem)
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of the sound source on C/ is known, we obtain a ratio of the effective wavelength

Ae (the wavelength of the sound radiated is altered in the presence of mean flow)

to the reference duct radius R in the following way :

snce

therefore,
27TJ?

r)r = -r— (1-Af)

or,

— = —(1 - M) (10)

The Mach number M is positive if directed towards the inlet. Now if the number

of elements per duct radius length is NR and A is the average width of an element

within that length, then
R

Therefore, using equation (10), the ratio of the number of elements per unit duct

radius can be expressed as

where N\t(= Ae/A) is the number of elements per effective wavelength. For a

specified number of elements per effective wavelength (for the elements used here

N\9 is the goal), equation (12) can be used to determine the number of elements

per unit of nondimensional length required. This varies as the flow towards the

inlet varies, and would generally be highest within the nacelle near the propeller.

The number of elements in the transverse direction within the nacelle or in the

angular direction in region II is not as critical and is adjusted to maintain the

aspect ratio of the elements.



Since the position of the constant phase circles bordering the wave envelope

layers are user input, care should be maintained to make a gradual transition

from the small conventional finite elements to the relatively large wave envelope

elements. For this, the user should be aware of the radial thickness of the last layer

of conventional elements along C\. Since the radial thicknesses of the elements in

region II have been incremented in geometric progression, the radial thickness of

the last element in region II on the z-axis is

Ar = (cn - cn-l)r,

where c is the common ratio of increment, n is the number of elements radially in

region II and r0 is the i-intercept of C\. This information is valuable to the user

for making a smooth transition from region II to III.
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APPENDIX C. MEAN FLOW CALCULATIONS

A. DERIVATION OF THE FLOW PROBLEMS

Under the assumption of sufficiently low flow Mach number, the flow around

the inlet of the shrouded propeller can be approximated as an incompressible one,

and the equation for mean flow can be approximated by

V^o = 0 (1)

which is the Laplace equation.

In Figure 10, the curves F in the x-r plane correspond to surfaces in the

axisymmetric space around the inlet. The axis of symmetry Fa is not a physical

boundary of the domain. In the axisymmetric integral formulation of the problem,

the boundary integral corresponding to this axis (r = 0) vanishes. Therefore, no

boundary condition needs to be specified. The far field boundary TOO is circular

(spherical in axisymmetric space). Though it is several duct radii from the inlet,

the flow effects due to the presence of the inlet cannot be assumed negligible.

The boundary condition on this curve will be discussed later. The nacelle Fn

and centerbody Fc are impervious to flow. The curves F/j and F/2 represent exit

planes (convenient boundaries near the propeller where mean flow velocities are

specified) fore and aft of the propeller, respectively.

Since the differential equation (1) is linear, it can be split up into four different

problems, each of which can be solved separately and upon employing the method

of superposition, the velocity potential of the actual flow field can be determined.

The velocity potential for the mean flow is decomposed as follows:

<t>0 = 4>» + <t>P (2)

where <£u is the flow field due to the external uniform flow field only (without the
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presence of the inlet) and <j>p is the flow perturbation due to the presence of the

inlet only. The boundary condition to be applied at the boundarie T^ is not clear

until and unless we formulate the problem in terms of flow perturbation. Our aim

is to formulate the entire problem in such a way that the fan face and the external

flow velocity do not become dependent on the perturbations; rather they govern

it.

The perturbation velocity potential <$>p is further decomposed into

<t>P = <i>i + <i>i + <f>s (3)

where <£i is the perturbation potential due to flow to a blank inlet (effect of the

presence of the shroud in the external uniform flow), fa is the perturbation po-

tential due to inlet flow through fore exit plane alone, and $3 is the perturbation

potential due to inlet flow through aft exit plane only. Therefore, the four flow

problems may be posed as

1. Problem I This problem represents the perturbation potential field due

to a flow to a blank inlet.

VVi = 0 in n (4a)

• n = -V<£u • n on T/ (46)

• n = — V<£u • n on Tn and Tc (4c)

n = -^i-r • n on TOO

where <f>u is the external uniform flow velocity potential, AI is a constant to be

determined, n is the unit outward normal on the boundary and r is the outward

radial vector on the outer boundary Too as shown in Figure 10. It is assumed that

on the outer boundary TOO the effect of the flow field is that of a simple source
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placed at the origin. Hence, the velocity perturbation at the outer boundary is

assumed to be radially directed inwards and inversely proportional to the square

of the radial distance from the origin1.

2. Problem II This problem represents the perturbation potential field due

to inlet flow through fore exit plane alone.

V2<#2 =0 hi fl (5a)

• n = Uh on Tfl (56)

• n = 0 on Fn and Te (5c)

i n = ~~^rr • n °n TOO (5d)

where C//t is the uniform exit face velocity, A2 is a constant to be determined, n

is the unit outward normal on the boundary and r is the outward radial vector

on the outer boundary Too as shown in Figure 10. Here also the flow at the outer

boundary is assumed to be that of a simple source placed at the origin. The flow

perturbation is assumed to be radially outwards and varying as 1/R2, where R is

the radial distance from the origin.

1. Problem III This problem represents the perturbation potential field due

to inlet flow through aft exit plane alone.

V2<£3 = 0 hi 0 (6a)

s«n = -£/)„ onT f, (66)

• n = 0 on Fn and Tc (6c)

1The velocity field of a simple source varies as 1/R2.
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n = —^r • n on I,*, (6<f)

where U/a is the uniform fan face velocity, Az is a constant to be determined, n is

the unit outward normal on the boundary and r is the outward radial vector on

the outer boundary ?«, as shown in Figure 10. Here again the flow at the outer

boundary is assumed to be that of a simple source placed at the origin. The flow

perturbation is assumed to be radially outwards and varying as 1/RZ, where R is

the radial distance from the origin.

3. Problem IV The uniform external flow field is generated by

V2<£u = 0 in n (7a)

V4>u • n = £/o i • n on TOO and Fj (76)

where U0 is the external uniform flow velocity.

Problems I through III are boundary value problems with Neumann boundary

conditions. Solutions to these problems are non-unique if the value of the unknown

variable is not specified at one point in the domain 0. The problems also have

to satisfy a compatibility criterion which balances the flux of flow across different

boundaries. This criterion fixes the values of the constants A\ through AS relative

to the flow parameters and, therefore, they are not arbitrary.

A linear superposition of the problems I through III gives us the overall bound-

ary value problem of the mean flow

V2<£0 = 0 in n (8a)

V<j>0 •n — Uf on F/ (86)

V<f>0 • n = 0 on Tn and Te (8c)
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•n = -£Ir*n--5?r0n + -5fr*n + C/° i*n onr~ (8cO

The flow perturbation effects of the inlet at the outer boundary are small

due to the distance of the boundary from the inlet. Also it is to be noted

that the perturbation boundary condition at the outer boundary TOO for prob-

lems I through III tend to balance each other. Therefore, under these conditions

the superposed boundary condition (8d) on TOO can be written approximately as

V(£0 • n w U0 i • n. The superposition of the elementary solutions from problems

I, II, III, and IV is based on the assumption that the outer boundary condition is

imposed at a large distance from the inlet. This effectively makes U/ and U0 inde-

pendent of each other. For a given value of U0, any value of U/ can be chosen once

the elementary solutions are available. Variations in U0 requires new potential

flow solutions to be computed because the mesh depends on U0.

B. FINITE ELEMENT FORMULATION

1. Flow to a blank inlet Since the mean flow field is axisymmetric, there is

no variation of flow variables in the angular direction. Therefore, the test and

trial functions are independent of the angular coordinate 0. Let ij> be a real valued

smooth function defined in the axisymmetric domain fi. Multiplication of the

Laplace equation with the test function V* and integration over the domain yields

(9)

By using Green's theorem, it is determined that

. n dS (10)/
Jn

where 5 denotes surfaces of the axisymmetric volume fi. Since the problem is

independent of 0, the volume integral becomes a surface integral in the x-r plane,
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and the surface integral becomes a line integral, so that

=r v rdT
r

Incorporation of the natural boundary conditions into equation (62) results in the

weak form of the problem

*r . n rtf (12)

Therefore the following weak problem may be posed: find fa : fi — » R2 9 equa-

tion (63) holds V smooth V> : H — > R2. It is to be noted that fa and V> are suitable

classes of functions whose derivatives are square integrable (from the space H1) .

A standard Galerkin finite element approximation has been used for the ma-

trix formulation. Basis functions Ni,N2 , . . . ,Nn have been chosen from a finite

dimensional (of dimension n) subspace of Hl. Hence, the test and trial functions

can be finitely approximated as

$ = dNi(x,r) (13)

^ = <W(z,r) (14)

where c,-'s and dj's are suitable scalars2. Substitution of equations (64) and (65)

in (63) results in the matrix formulation of the problem

[LJ. ,-
+' / a a a ar Jx dx ox or or \

- / NiV<£0 • n rdT + Ai I Ni—r • n rdT (15)
JTi Jr~. R2

F;

,-thwhere K'^ is the t, j entry of the stiffness matrix \K'\ and F- is the ith entry in

the load vector {F1}.

2Since <f> is being suitably interpolated between the nodes, d}-'s here imply nodal values of the
mean flow potential.
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2. Inlet flow through fore exit plane only In a procedure similar to that of

problem. I, the weak form of problem II is

- A, *r . n rdT (16)
Jr^ K2

where P = Tn U F/ U Te and, <f>2 and ^ are from Hl.

As in problem I, a standard Galerkin finite element approximation has been

used for the matrix formulation. The matrix formulation of problem II yields

(17)

where Ky is the t, j entry of the stiffness matrix [K] and F{ is the ith entry in the

load vector {F}.

Details of the stiffness matrix and load vector calculations are dealt with in

the next sub-section. The constants A\ and _A2 for the problems I and II are

found by imposing the compatibility condition which balances the flux across the

boundaries. For problem I, it balances the flux across the nacelle, centerbody and

fan face with the flux across TOO, i.e.,

= Al f —
ypoo R2

or,

For problem II, it balances the flux across the fan face with the flux across

the outer boundary TOO, i.e.,

r r f m / " I(//! / roT = AI I —r • n rdT
JTf JToo R

or,
U. L rdT

(19)
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The constant A3 is calculated likewise.

C. FINITE ELEMENT CALCULATIONS

The global stiffness matrices and the global load vectors as defined in equa-

tions (66) and (68), can be written as the composition of the element stiffness

matrices and element load vectors respectively. Therefore, for example, in prob-

lem II, we can write

= XX*1'}
where ne is the number of elements in the domain. The element stiffness matrix

[K*\ and the element load vector {Fe} for the problem are given by

Kll = f
} Ja,

Ff =

where /n<! is the surface integral over the domain of the element, /r« and /r« are

line integrals along element boundaries on the fan face and the outer boundary

respectively, and Nf is the shape function of the ith node of the element.

Finite element calculations are done based on a parent element with local

coordinates f and 77 as shown in Figure 4. The element shape functions N* corre-

sponding to each node » in the parent element are standard functions and therefore

known.

1. Surface Integrals To perform the finite element calculations on a parent

element, an element map is constructed. The transformation under which each
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element fle in the mesh is the image of a fixed parent element under a coordinate

map Te is constructed as
nodes

T e : x = £ x,-JV?(?,i7) (20o)
«=i

nodes

T e : r = £ nW (<>*)} (206)
1=1

where nodes is the number of nodes on the parent element, and is 8 or 9 depending

on whether it is an eight or nine-node element. The element fte to which Te maps

the parent element is completely determined by specifying the x, r coordinates

(i,-, r,-) of all the nodal points of fle. Element shape functions N'(x,r) are simply

obtained from standard parent element shape functions Nf($, ry) by

A?(x,r) = JV?(?(z fr),i7(i,r)) (21)

The derivatives of shape functions are obtained by the chain rule of differentiation,

dNt dN< dc 0Ai dr,
~~^~ = a a + ~^~~~a~ (22aJox af ax or] ox

dNL = dN id i+dN i^L

dr d$ dr dr] dr ^ }

According to the element map,

dx n^' dNe
k . .(23o)

(236)
l '
. „ .
(23c)

(234)
fc » l ^

By using the above relations (equations (20) through (23)), the element stiff-

ness expression K'j may be expressed as

/ f(x,r}rdrdx= I g($,r,) f((,n) J(f, 17)̂ 1? (24)
Jnt Jnp

dr, & dr,

dr
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where /n is the domain integral over the parent element and J(f , 77) is the Jacobian

of the transformation Te given by

_, . dx dr dxdr ..
J(M)=a?*T^aF (25)

A standard 4x4 Gaussian quadrature rule has been used to evaluate the integral.

It is important to note that the mean flow calculations have been done both with

and without the wave envelope elements. In one case, no distinction has been

made between the elements in regions I and II and the elements in region III. All

the regions have isoparametric rectangular finite elements. In another case, shape

functions for the wave envelope elements in region III, differ from the rest in the

mesh due to the fact that they simulate the inverse square decay behaviour as

expected in a field due to a simple source. Mathematically a shape function may

be expressed as

(26)

where JV/ is the standard shape function of node t at radius r,-. The results in

both cases were virtually identical for the flow velocity we are concerned with.

For compatibility with the radiation calculations the wave envelope elements were

retained.

2. Boundary Integrals Three-node quadratic line elements lie along the

boundaries and the generation of their topology and their nodal connectivity have

already been discussed in the mesh generation scheme. The calculations of the

line integrals are carried out by integrating along those sides of the parent element

that are mapped onto the sides Te of the actual element fle along which natural

boundary conditions are prescribed. For definiteness, it has been assumed that the

side f = 1 has been mapped onto P. The line integrals have been parametrized

with respect to rj.
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The shape functions used for the line integrals are identical to the standard

shape functions for the three-node Lagrangian line element. Element maps are

created as discussed before and the elemental arc length is found by

dT = Vdx2 + dr*

or,

where j is the jacobian of the transfomation of 77 onto the arc length parameter

in the x-r plane. The dot products, V<£0 • n for problem I and r • n for problems

I through III need to be computed at each node on the relevant boundaries to

evaluate the line integrals. Note that the constants A\ through AS need to be

evaluated before constructing the load vector.

D. THE SOLUTION PROCEDURE

All of the boundary conditions are of the Neumann type and the differential

equation is the Laplace equation. Hence, there is no unique solution to the prob-

lems unless a reference value of the mean flow velocity is specified at any point

in the domain. This does not affect the results because we are interested in the

derivatives of the potential and not in the absolute values of the mean flow poten-

tial. By penalization, the potential has been made zero at an arbritary point on

the outer boundary F^. This penalization has been made at the elemental level.

When the stiffness matrix of the element which occupies the penalized node is

calculated, a very large value (l.OelS) is added to the diagonal entry in the matrix

corresponding to that boundary node. Hence the velocity potential at that node

is forced to zero after solution. The penalized stiffess matrix for that boundary
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element looks like the following :

. . . Kin

ff Tf I 1 ff
•''•ml • • • -I* mm ~l~ • • • -**-

t\n\ • • • -**nm • • • f*nn

where m is the penalized node number (local) and e (l.Oe-15) is the penalty param-

eter. As a check, penalization was carried out at a different point in the domain,

and the solution was found to differ from the previous solution by an arbitrary

constant only.

Since the penalization is carried out at the element level, the stiffess matrix

and the load vector are never stored in assembled form. As each element stiffness

matrix and load vector is formed, it is written down onto disk along with its nodal

connectivity. The frontal solution method of Bruce Irons has been used to solve the

algebraic system of equations [#]{<£} = {F}. The principles of this technique are

implied by the Gaussian process of forward elmination and back substitution. The

frontal process alternates between accumulation of element coefficients (assembly)

and elimination. Whenever an element is assembled its nodes are kept in active

storage until their elimination. The active in-core storage at a point of time

depends only on the "frontwidth" (number of active nodes at that time) which is

much smaller than the dimension of the assembled matrix. This drastic reduction

in in-core storage is the most important aspect of this scheme. Details of the

scheme are, however, not discussed here.

E. SUPERPOSITION OF THE SOLUTION FROM THE THREE PROBLEMS

After the solutions to problems I through HI are obtained, they are added

to the exterior field velocity potential to obtain the overall mean flow velocity

potential of the flow field. Solution to the problem IV is the uniform flow field
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whose velocity potential is given by

tf« = U0x (28)

The overall mean flow velocity potential is found out by pointwise addition of

the solution vectors from the four flow problems

4>0 - fa + fa + fa + fa (29)

However, the solutions to the problems I through IV have been obtained by an

input of unit velocity at the exit planes, fore and aft, and in the exterior flow field

i.e. £//, = 1, Uft = 1, and U0 = 1 respectively. Therefore, if the exit planes ( fore

and aft) flow Mach number and exterior flow field Mach number are M/t, M/3,

and Mu respectively, the superposed solution is found by

fa = Mu (^ + 4>u) + Mfl fa + Mh <£3 (30)




