fioo 47 N95- 16462

Automatic Differentiation for Design Sensitivity Analysis of
Structural Systems Using Multiple Processors

Duc T. Nguyen™, Olaf O. Storaaslit , Jiangning Qin*, and Ramzi Qamar*
Multidiscplinary Design Optimization Branch
Fluid Mechanics and Acoustics Division

Automatic differentiation tools (ADIFOR) is incorporated into a finite element based
structural analysis program for shape and non-shape design sensitivity analysis of
structural systems. The entire analysis and sensitivity procedures are parallelized and
vectorized for high performance computation. Small-scale examples to verify the accuracy
of the proposed program and a medium-scale example to demonstrate the parallel-vector
performance on the multeiple Cray-C90- processors are included in the paper.

¥ Multidisciplinary Parallel-Vector Computation Center, 135 KDH Building, Old Dominion
University, Norfolk VA 23529-0241

i Computational Mechanics Branch, NASA Langley Research Center, Hampton, VA
23681

181




Automatic Differentiation for Design Sensitivity Analysis of
Structural Systems Using Multiple Processors

by
Duc T. Nguyen®, Olaf O. Storaasli®, Jiangning Qin', and Ramzi Qamar’

" Multidisciplinary Parallel-Vector Computation Center, 135 KDH Building, Old Dominion
University, Norfolk, VA 23529-0241

¥ Computational Mechanics Branch, NASA Langley Research Center, Hampton, VA 23681

Abstract

Automatic differentiation tools (ADIFOR) is incorporated into a finite element based structural
analysis program for shape and non-shape design sensitivity analysis of structural systems. The
entire analysis and sensitivity procedures are parallelized and vectorized for high-performance
computation. Small-scale examples to verify the accuracy of the proposed program and a
medium-scale example to demonstrate the parallel-vector performance on the multiple Cray-C90
processors are included in the paper.

I. Introduction

Using the familiar finite element procedure!!! the static equilibrium equations for a structural
model can be expressed as

[K(b)]nxn {Z}nxl = {mnxl (1)

where [K (b)], {z} and {F} are referred to the stiffness matrix, nodal displacement vector and
nodal force vector, respectively. In Eq. (1), "n" represents the active degree-of-freedom of the
discretized structural model.

The stiffness matrix [K (b)], in general, is a function of design variable vector {b} (where b
€ RY. As an example, {b} may represent the cross-sectional areas of various truss members, or
thickness of plate members (for non-shape type of design variables), or it may also represent the
joint coordinates of various nodes of a structure (for shape type of design variables).

A typical constraint, involving a limit on a displacement or a stress component, may be written
as

g(z, b)) <0 (2)

For the sake of simplified notation, it is assumed that g depends on only a simple design variable
b (i.e. b € R*™"). Using the chain rule of differentiation, one obtains

de 95,  rdz 3)
db 3b db
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where x is a vector with components

. :
XI- = a—z- (4)

Oy

The first term on the right-hand-side of Eq. (3) is usually zero or €asy to obtain, thus one
discusses only the computation of the second term.
Differentiating Eq. (1) with respect to b, one obtains

dz JF dK
x Z

Kx —= = -2 S
db db db ®)
Premultiplying Eq. (5) by x* K, one obtains
XT_d_Z_:XTK_l g—ﬂ*z (6)
db ob db

Numerically, the computation of x* Z_Z can be performed in two different ways. The first, called
the "direct method", consists of solving Eq. (5) for j_z and then taking the scalar product with

x. The second approach, called the "adjoint method"™ 3, defines an adjoint vector A which is the
solution of the system

Ki=x @)
or
A=Klgx (8)
or
AT = xTK'  (since matrix K is symmetric ) 9
and thus, Eq. (3) can be re-written as
ié_’=§__é_’+ﬂa_f__d£*z) (10)
db db ab db

The solution of Eq. (7) for A is similar to a solution for displacement under a "dummy" load
vector {x}.

Once, the sensitivity information j_i has been computed, any gradient based optimization
softwares ! can be used to obtain a new, improved design.

The focus of this paper is in the parallel computation of Z_Z as shown in Eq. (5), and
particularly, the computation of the term i;_f :

Since in the finite element procedure

# elements

(K]= Y (&) an

e=1

Therefore, computation of %l involves with computation of ﬂ% and the latter can be

obtained either by
(i) Finite Difference Method
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or
(1) Analytical Method

In the finite difference method, a small perturbation of a design variable is first applied, then
approximate derivative (which can be affected by round-off and truncation errors®!) can be
generated. The analytical method tends to generate very cumbersome expressions for the
derivatives. Thus, the objectives of this paper is to use automatic differentiation (ADIFOR)

tools® to compute the derivatives of %"bll in a parallel-vector computer environment.

A brief review of ADIFOR tools®® is given in Section 2. Parallel generation and assembly (!
of the stiffness matrix [K] is presented in Section 3. Parallel-Vector equation solver ® which will
be used to solve system of Eq. (5) is summarized in Section 4. Numerical examples are presented
in Section 5, and conclusions are drawn in Section 6.

IL A Brief Review on Automatic Differentiation's’

Automatic Differentiation (AD) is essentially an automatic implementation of the chain rule
of differentiation based on tracking the connection between the dependent (or output) and
independent (or input) variables.

Typically, to calculate the derivative of any output variable in a computer program with
respect to any input variable, one modifies the original program by inserting of specialized
instruction which identify the relevant output and input variables.

Automatic differentiation produces exact derivatives, limited only by machine precision. There
are two modes of AD. In the forward mode, the chain rule is evaluated from the input to the
output. In this mode, the computational cost increases with the number of input variables. In the
reverse mode, the chain rule is evaluated from the output to the input.

In order to understand the forward mode in AD, let's refer to Figure 1 where the computation
flow to evaluate

- 205, - 205,

= -
C (28,8,+VT 8) B (267 &)

is shown in a form of the directed graph.

The derivatives of 2¥2 and %% are also shown in a form of the directed graph in Figure 2.

db, db,
In Figure 2, the connecting link between any 2 vertex represents the chain-rule derivatives.
As an example, 99 =2 b, and 99 = |.
db, da

On the other hand, if the reverse mode of differentiation is used to calculate %, then the

chain-rule of differentiation will start with the output variable y,, and then proceed as ;following:
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dy, 20 b,

dd (24 6,+ 7 )
d y dy, 5d _ 206, = 1
da dd Jda <2 b b+ 3 blz)z
dy, _ dy; 3a . 95
dx, da db,  db
205 « 1«25 ~90

= +

26, b, + 2 BV (26, b, +yZ B
1 72 1

It has been concluded from earlier research works® ® '%! that using automatic differentiation (AD)
method, such as ADIFOR tool ¥, will be more computationally efficient than the finite difference
method. In most problems, however, analytical method is more efficient than ADIFOR tool (but
at the expense of assuming there is no human errors in deriving analytical derivative expressions).

The comparisons of computational costs and the accuracy to evaluate derivative information
between the Finite Difference, Analytical and ADIFOR have been discussed®® ® ‘9. This paper,
therefore, will focus on the issue of incorporating derivative calculation subroutines (generated
by ADIFOR) in a parallel-vector high-performance computer environment.

III.  Parallel Generation and Assembly on Distributed- and Shared Memory Computers!”

The choice of the storage scheme for the global stiffness matrix in any finite element analysis
code is based on whether it will save the memory or it will enhance the vector speed, or both.
The row-oriented storage scheme® is good for saxpy operation and shared memory type
computers, while the skyline storage is good for dot product (daxpy) operation. Moreover, the
skyline storage scheme requires less memory and this feature is important for computers with
distributed-memory (since each processor usually has less memory capacity as compared to
shared-memory computers). Fortunately, the Intel iPSC/860 computers have good vector
performance for daxpy operation. In order to use the vector-unrolling technique to improve the
vector performance, a block-skyline columns storage and block rows storage schemes for the
stiffness matrix is used on the Intel and Cray type computers, respectively (as shown in Figure
3). To simplify the discussion, assuming the global matrix is full and three processors are used
to store different portions of the global stiffness matrix.

The size of the block is called k if there are k columns (or k-rows) in each block. It is realized
that the choice of k will have the effects on

1. the in-core memory requirement,

2. the vector performance,

3. the communication performance.

For the Intel iPSC/860 parallel computers, the block size in MPFEA is set to be 8. Since each
processor only has certain block-columns (or block rows) of the global stiffness matrix, the
generation and assembly of this matrix can be done in parallel without any communications
among processors. The work involved in the generation and assembly procedure can be
summarized as (for each processor i, where i = 1, 2, ... , NP):
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Task 1. To identify (but not to search for!) the elements that contribute to the columns (or rows)
which belong to processor i.

Task 2. To generate these elements stiffness matrices.

Task 3. To assemble the global stiffness matrix with these element stiffness matrices.

It should be noted here that even for the case of nonlinear structural analysis, Task 1 of the
above procedure needs to be done only once, while Task 2 and Task 3 have to be performed
repeatedly since the global matrix will be updated in each nonlinear iteration.

IV.  Parallel-Vector Choleski Method Development®

In the sequential Choleski method, a symmetric, positive-definite stiffness matrix, [K], can be
decomposed as

(K] =[U]T[ U] (12)
with the coefficients of the upper-triangular matrix, [U]:
u; = 0 for 1> J (13)
T Klj .
U11:\/KU;UU=—[—J— for j=1 (14)
1
~1 ,
up = | K;= Y wuy for i>1 (15)
=1
i1
Klj - }: Uy Uy 16)
u; = el for 1,7>1
u

For example, us, can be computed from Eq. (18) as:

ko - usu, - o, - - U U
g, = 237 G5ty 7 s Uy ths Uy — Uys Uy a7

Uss

The calculations in Eq. (17) for the term Us; (of row 5) only involve columns 5 and 7.
Furthermore, the "final value" of uy, cannot be computed until the final, updated values of the
first four rows have been completed. Assuming that only the first two rows of the factored
matrix, [U], have been completed, one still can compute the second partially-updated value of
us; as designated by superscript (2):
2

uy = 77 s Uy T s Uy (18)
If row 3 has also been completely updated, then the third partially-updated value of us, can be
calculated as:

3 2

This observation suggests an efficient way to perform Choleski factorization in parailel on NP
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processors. For example, each row of the coefficient stiffness matrix, [K], is assigned to a
separate processor. : v

From Eq. (17), assuming NP = 4, it is seen that row 5 cannot be completely updated until row
4 has been completely updated. In general, in order to update the i row, the previous (i-1)rows
must already have been updated. For the above reasons, any NP consecutive rows of the
coefficient stiffness matrix, [K], will be processed by NP separate processors. As a consequence,
while row 5 is being processed by a particular processor, say processor 1, then the first (5-NP)
rows have already been completely updated. Thus, if the i row is being processed by the p®
processor, there is no need to check every row (from row ! to row i-1) to make sure they have
been completed. It is safe to assume that the first (1-NP) rows have already been completed as
shown in the triangular cross-hatched region of Figure 4.

Synchronization checks are required only for the rows between (i-NP + 1) and (i-1) as shown
in the rectangular solid region of Figure 4. Since the first (1-NP) rows have already been
completely factored, the i® row can be "partially” processed by the p" processor as shown in Eq.
(18, 19).

V. Numerical Applications

Different finite element types (such as 2-D Truss, and Plate/Shell elements) and different type
of design variables (such as cross-sectional areas, joint coordinates of truss elements and
thickness of plate elements) are considered in this section. The first two examples are small-size
for the purpose of verifying the accuracy of derivatives (d [k ]/ d b) generated by ADIFOR
as compared to the ones obtained by finite difference technique. The last example is medium-size
for the purpose of evaluating the parallel-vector performance of the entire finite element and
Design Sensitivity Analysis (DSA) process.

Example 1: Plate-Structure With (Non-Shape) Thickness Design Variable

In this example, 32 plate elements!"" are used, a point force is applied at the center of the fixed
plate (see Figure 5). Thickness of a plate is selected as (non-shape) design variable in this case.
The original thickness is 0.03 and a perturbation of 0.5% is used in the finite (central) difference
scheme.

The derivatives of element stiffness matrix (in global reference and using ADIFOR) with
respect to the thickness t for typical members such as members 5, 12, and 19 ar presented in
Table 1. These derivatives are in good agreement with the ones obtained by finite (central)
difference scheme.

Example 2: Truss-Structure With (Shape) Joint Coordinate Design Variables

In this example, a 1 bay x 1 Story truss structure is shown in Figure 6. This small-scale
structure has 4 joints and 5 members. All joint x-coordinates of this structure are selected as
(shape) design variables. A horizontal force F is applied at node 1. The dimensions for each base
and height of this structure are 12" and 9", respectively. Young modulus and cross-sectional area
are 29000 Ksi and 4 in? respectively. A perturbation of 1% is used in the finite (central)
difference scheme. The derivatives of element stiffness matrix (in global reference and using
ADIFOR) with respect to a typical x-coordinate of joint 2 for members 1 and 5 are presented in
Table 2. Again, these derivates are in good agreements with the ones obtained by finite (central)
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difference scheme.

Example 3: A 2-D Truss Structure With 80 Bays and 190 Stories

In this example, a 80 bay x 190 story truss structure is also shown in Figure 6. A horizontal
force F is applied at node 100. All other datas are the same as in Example 2. There are 96 cross-
sectional areas selected as (non-shape) design variables-in this example. This structure has 60,990
elements. The resulted structural stiffness matrix has 30,780 degree-of-freedom. Using the
variable bandwidth storage scheme®® will require a real 1-dimensional array with 5,171,574 words
to store the stiffness matrix in the core memory. The average bandwidth for this stiffness matrix
i1s 168. o :
The performance of the entire finite element analysis and design sensitivity analysis (using
ADIFOR tool) on 1, 8, and 16 Cray-C90 processors are shown in Table 3. The total speed-up
for the ENTIRE PROCESS are 7.32 and 12.93 when 8 and 16 Cray-C90 processors are used,
respectively. e

VI.  Conclusions
Based upon the numerical results presented in this paper, the following conclusions can be
made:

I. Automatic Differentiation (ADIFOR)® tool has been successfully applied to both simple
(TRUSS) and complex PLATE/SHELL™" finite elements.

2. Both non-shape and shape design variables can be successfully treated.

3. For the first time (to the authors' knowledge), ADIFOR tool can be applied in a parallel-
vector computer environment for non-shape and shape sensitivity analysis.

4. The entire finite element and sensitivity analysis can be done with excellent parallel and
vector speed (using all 16 Cray-C90 processors).

VII. Acknowledgments

The financial support from NASA grant NAG1-858 are acknowledged. The authors are also
deeply indebted to Drs. L. Green, P. Newman, J. Barthelemy (all from NASA Langley Research
Center), C. Bischof (from Argonne National Laboratory) and A. Carle (from Rice University) for
helpful discussions during the ADIFOR user workshop (September 13-14, 1993), held at Building
1192C-E, the CFD Laboratory, NASA LaRC). Helpful discussions with Dr. A. Tessler on using
his plate/shell element (NASA Langley Research Center) is also appreciated.

VIII. References
1. T.JR. Hughes, The Finite Element-Method, Prentice-Hall, Inc., (1987).
2. J.S. Arora and E.J. Haug, Applied Optimal Design, John Wiley & Sons, Inc., (1979).

3. R.T. Haftka, Z. Giirdal, and M.P. Kamat, Elements of Structural Optimization, Kluwer

188




10.

11.

Academic Publishers (1990).

R. Thareja and R.T. Haftka, "A Modified Version of NEWSUMT For Inequalify and
Equality Constraints," VPI Report 148, (March 1985).

G.N. Vanderplaats, "CONMIN: A Fortran Program for Constrained Function
Minimization", NASA-TM X-62282, (1973).

C.H. Bischof and A. Griewank, "ADIFOR: A Fortran System For Portable Automatic
Differentiation”, Proceedings the 4% AIAA/USAF/NASA/OAL Symposium on
Multidisciplinary Analysis and Optimization, Cleveland, OH, pp. 433-441, AIAA 92-4744-
CP, (September 1992).

J. Qin and D. T. Nguyen, "A New Parallel-Vector Finite Element Analysis Software on
Distributed Memory Computers,” Proceedings of the AIAA/ASME/ASCE/AHS 34" SDM
Conference, La Jolla, CA (April 19-22, 1993).

T.K. Agarwal, O.0. Storaasli, and D.T. Nguyen, "A Parallel-Vector Algorithm for Rapid
Structural ~ Analysis on High-Performance Computers,”  Proceedings of the
AIAA/ASME/ASCE/AHS 31" SDM Conference, Long Beach, CA (April 2-4, 1990).

J.F. Barthelemy and L.E. Hall, "Automatic Differentiation As A Tool In Engineering
Design," NASA-TM 107661, (August, 1992).

C. Bischof, G. Corliss, L. Green, A. Griewank, K. Haigler and P. Newman, "Automatic
Differentiation of Advanced CFD Codes for Multidisciplinary Design," Computing
Systems in Engineering, Vol. 3, No. 6, pp. 625-637, (1992).

A. Tessler, "A C° Anisoparametric Three-Node Shallow Shell Element for General Sheil
Analysis,” MTL-TR-89-72, (August 1989).

189




-0 -
Figure 1. Computational Graph for y, - 05, = 20,

(2606, + V2 b)) b (2b,+ y7 b,)

by
Figure 2: Computational Graph for dy, 40 b, b, - 20
960 (26,6, - VT b2} (25,0, - V2 b}
d 20 b, |
2= | 22 (1) (28, - [-20
db, d? d
dy; (20 < b)) (2b, + 27 b))
dbl [b1(2b2+‘/_2—b1)]2
dy, 20 b, 20 b, -
73 - 1) (2b,) + 21(1) (22 b
a5, [dz (1) (2b,) -2 (1) (2v )
Y3
Ny
/_.’ d / a
1 =
1 i
20 )
bF 7 ‘
T : ’ |
2V2 b, 25 ZTI d
b, b, <

190



Figure 3. Block-skyline columns storage and block rows storage schemes
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Figure 5: Clamped Plate - Structure
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Table 1:

it

37 [5576.925, -4780.2198, 0, 0, 0, - 15934.066 ,

8K _

ryani [15934.068 , 5576.923, 0, 0, 0, - 5576.923 ,

3[4
—5— = (2151099, 5576925, 0, 0, 0, 8.268F-12

ADIFOR Derivatives of Plate Element Stiffness Matrix wit

(Non-shape) Design Variable
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Table 2: ADIFOR Derivatives of Truss Element Stiffness Matrix with Respect to x-coordinate
of Joint 2 (Shape) Design Variable.

el. stff [k] for member !

0.966667E+04 0.000000E+00 -0.966667E+04 0.000000E+00
0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00
-0.966667E+04 0.000000E+00 0.966667E+04 0.000000E+00
0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00

wrk
(H
Gradient of stiff KDV 2 - ﬂak_l
Xy
-805.55555555556 0.  805.55555555556 0.
0. 0. 0 o0
805.55555555556 0. -805.55555555556 O,
0. 0. 0 o0

el stiff [k] for member 5

0.494933E+04 0.371200E+04 -0.494933E+04 -0.371200E+04
0.371200E+04 0.278400E+04 -0.371200E+04 -0.278400E+04
-0.494933E+04 -0.371200E+04 0.494933E+04 0.371200E+04
-0.371200E+04 -0.278400E+04 0.371200E+04 0.278400E+04

(5)
Gradient of stiff [k] w.r.t DV 2 = G_LJ

dx,

32.995555555555 -284.58666666667 -32.995555555555  284.58666666667
-284.58666666667  -445.44000000000 284.58666666667  445.44000000000
-32.995555555555  284.58666666667 32.995555555555 -284.58666666667
284.58666666667  445.44000000000 -284.58666666667  -445.44000000000
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Table 3: Parallel-Vector Performance For DSA of 80 Bays x 190 Stories Truss Structure Using
ADIFOR Tool on Multiple Cray-C90 Processors

Number of Cray-C90 Processors | Speed-Up Faczofs
: Tasks ] proc. 8 proc. 16 proc. 8 proc. 16 proc.
: (A) 0.4855%¢ 0.09954° 0.07854° 4.88 6.18
® | osmos) | @umn | oo | 7% | o
©) 2.6290% 0.3568° 0.2026%¢ 7.37 12.98
(D) 0.1019% 0.1015% 0.1018* N/A N/A
(E) 2.3717% 0.3034°* 0.1558*¢ 7.82 15.22
(F) 9.6934° 1.2128°% 0.6047° 7.99 16.03
Entire
Process 16.2740°¢ 2.2221% 1.2591% 7.32 12.93
Notes:

(A) To generate column heights of stiffness matrix

(B) To generate and assemble stiffness matrix

(C) To factorize stiffness matrix

(D) To get static (forward/backward) solution (sequential computation)
(E) To generate the right-hand-side vectors for sensitivity equations
(F) To solve for displacement sensitivity vectors

*  Wall-Clock-Time
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OBJECTIVES

1. To obtain accurate derivatives of
complex finite elements and/or
complex design variables

2. Design variables can be either
non-shape (such as areas,
thickness) or shape types (such as
joint coordinates)

N

—— —~

3. The entire solution process should
be parallelized and vectorized to
reduce solution time

4. Numerical wvalidation and
performance evaluation for the
proposed procedure.
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Then

[k(ﬂ) ]Glabal = [k(e)JLocal * [TJ

- - .4

. 4

Functions of element nodal coordinates also!

(A) Non-Shape Design Variables

) [/c(e)]

Global = EA SY !

(B) Shape Design Variables
8 k@]

"X =VERY TEDIOUS !
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A

nstory,é;:

nel,ndofpe,nodes,ndofpn,nunrol nummat, ire nbays, :

7, 4, 2%*2, 8, 1000, 0, 10, 300,

‘design varlable, total memory needed—
’ax. wall clock timef for gen+assem
{z)/d{b) with respect to DV # 1000

1000, 7881649
0. 250323822

d{(z}/d{(b) = 0.463915E-02 0. 197448E-03 0.463915E-02 0.127947E~03 0.463915E-02
d{z)/d{(b) = 0.584470E-04 0.463915E-02-0.110535SE-04 0.463915E-02-0.805540E-04
d{(z)/d{(b} = 0.463915E-02-0.150054E-03 0.463915E-~02~0.219555E~03 0.463915E~02
d{z)/d{(b) = -0.289055E-03 0.463915E-02~0.358556E~03 0.463915E-02~0.4280S6E-03
ME, time for generate SD=1, 2.46547SE~2

ME, time for generate K =1, 0.250328442

ME, time for Factori. =1, 0.234019218

ME, time for Solution =1, 2.2428906000002E-2

ME, time for (dK/db)*X =1, 6.526009938

ME, time for dX/db =1, 21.726178002

** Time in boundc =4 .737786E~-3

** Time in jointe =3.0296399999999E-4

** Time in apload =4.8300000000001E-5S

** Time in elconn =3.33129E-3

** Time in materp =4.7050644E-2

colht '0 152899086

12300, 6600,

1865;;\

12300,

Memmm e LT T
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nel,ndofpe,nodes,ndofpn,nunrol,nummat,ireal+nbays, nstoryi&ii)

, 4, 2*%2, 8, 1000, o, 10, 300, 1000

iesign variable, total memory needed- 1000, 7881649

max. wall clock timef for gen+assem = Q. 143736066
d{z)/d(b) with respect to DV & 1000

d{z)/d{(b) = 0.46391SE- —02 0.197448E-03 0.46391SE-02 0.127947E-03 0.463915E-02
d{z)/d{b} = 0.584470E-04 0.463915E-02-0.11053SE-04 0.463915E~-02-0.805540E-04
d{z)/d{(b} = 0.463915E-02-0.150054E-03 0.463915E-02-0.219555E-03 0.463915E-02
d(z}/d(b) = -0.289055E-03 0.463915E-02-0.358556E-03 0.463915E-02-0.4280S6E-03
ME, time for generate SD=1, 2.466528E-2
ME, time for generate K =1, 0.125706372
ME, time for Factori. =1, 0.14178798s6
ME, time for Solution =1, 2.2426734E-~2
ME, time for (dK/db)*X =1, 3.275844468
ME, time for dX/db =], 10.83518028
ME, time for generate SD=2, 1.8168000000429E-5
ME, time for generate K =2, 0.12609603
ME, time for Factori. =2, 0.141645408
ME, time for Solution =2, 5.1287999999872E-5
ME, time for (dK/db) *X =2, 3.28376691
ME, time for dX/db =2, 10.836083088

** Time in boundc =4.723914E-3

** Time in jointe =3.0290400000002E-4

** Time in apload =4.8348000000004E-5

** Time in elconn =3.331998E-3

* % Time in materp =4.7076264E-2

* e in co =3.3666912000001E— —

OTAL TIMET (nel, neq, ielm,nterms) 14. 514775074, 12300, 6600, 61507‘—I;;;;;\
JOTAL TIME: (nel, neq, ielm,nterms) 14. 528120334, 12300, 6600, 6181,



. 21, ndofpe,nodes, ndofpn, nunrol , nummat, ire bays, nstory jndv
S 7, 4, 2*2, 8, 1000, @, 10, 300, (000)
o #design variable, total memory needed= 1000, 7881649
max. wall clock timef for gemtassem = 0.106087758
d(z}/d{b) with respect to DV § 1000
d{z})/d{b) = 0.462915E-02 0.197448E~03 0.463915E~02 0.127947E-03 0.463915E~-02

d{z)/d{b) = 0.584470E-04 0.463915E-02-0.110535E-04 0.463915E-02~0.805540E~04
d{(z)/d{b) = 0.463915E-02-0.150054E-03 0.463915E-02-0.219555E~03 0.:463915E-02
d{z}/d{(b) = -0.289055E-03 0.463915E-02-0.358556E-03 0.463915E-02-0.428056E~03

ME, time for generate SD=3, 2.44180SE-2

ME, time for generate K =3, 8.4435756E~2

ME, time for Factori. =3, .3954744000001E-2
ME, time for generate SD=1, .2068600000003E-4
ME, time for gemerate SD=2, .5296000000008E-5
ME, time for generate K =1, .4171846000001E~2
ME, time for generate K =2, .452527E-2

ME, time for Factori. =1, .3851616E-2

ME, time for Factori. =2, .3939270000001E-2
ME, time for Solution =1, .4373999999923E~-5
ME, time for Solution =2, .441399999917E-5

NN NNNNNUIOD WO 00 NNY

ME, time for (dK/db)*X =1, .156280738
ME, time for (dK/db)*X =2, .168834262
ME, time for dX/db =1, .22125122
=, time for dX/db =2, .196945016
£, time for Solution =3, .2304856E-2
2, time for (dK/db)*X =3, .163674568
ME, time for dX/db =3, .211424354

** Time in boundc =4.723S06E-3

** Time in jointec =3.0207599999998E-4

** Time in apload =4.8342000000007E-5

** Time in elconn =3.328746F-3

** Time in materp =4.6941834E-2

** Time in colht =1.0283598E-2 T ’fmvu "»_m’”“"*““‘*~?
TOTAL TIME: (nel,neq,ielm,nterms)9.621492162, 12300, 6600, 4100, 186532%
TOTAL TIME: (nel,neq, ielm,nterms 9.607627608, 12300, 6600, 4131, 186532
TOTAL TIME: (nel,neq, ielm,nterms 9.721047816, 12300, 6600, 4131, 183313)
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6.1
6.2
6.3

SESSION 6 Mosaic and the World Wide Web
Chaired by

Clyde R. Gumbert and John W. McManus

Introduction to the World Wide Web and Mosaic -Jim Youngblood
Use of World Wide Web and NCSA Mosaic at Langley -Michael Nelson

How To Use the WWW To Distribute Scientific & Technical Information (STI)
-Donna Roper
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