
d' N95 16480

Epistemology, Software Engineering, and Formal Methods

Abstract of Presentation

C. Michael Holloway

One of the most basic questions anyone can ask is,
"How do I know that what I think I know is true?" The

study of this question is called epis_ra01ogy _ Tradi-

tionally, epistemology has bee_ ¢0ns!de_d _ be of
legitimate interest only to _]osophe_i _eolo_ans,
and three,year-old-children; WhO respo_ to every

accurately describe reality. Anecdotal experience

yields possible truth; if something happened for one

person, it is possible it might happen to others also.
Finally, human authority provides opinion.

On which of these approaches to epistemology is

softwareengineeringmostlybased?
• 66 _,, : :::: : " :: : :::: :" • • • • 'statement by asking, Why. $oftw_ engineers need _ software engineering hterature is filled with

to be interested in the subject, howe_er, because a lack _aotmc_ments about how software should be devel-
of sufficient understanding of epistemo!0gy contributes oIYcd_¢_gi_t_Object-oriented development is the best
to many of the current problem s in the fieid. :: wayto obtain reusable software") i Rarely, if ever, are

Epistemology is a complex subject_ one to which ::these pronouncemen_ au_ented with either logical or

many philosophers and theologians have devoted their cxpe_enta| evide_i _si Q_ is forced to conclude
entire careers. The discussion here is necessarily brief that mu_h of so_ en_ee_g is based on a combi-

and incomplete; however, it should be sufficient to nation of anecdotal experience and human authority.
demonstrate the critical importance of the subject to That is, we know that a p_cular technique is good

software engineering, because John Doe, who is an expert in the field, says

To the fun_ental question of how do we know
what is true, there are three basic answers: authority,

reason, and experience. An epistemology based on
authority states that truth is given to us by someone

more knowledgeable than ourselves. The two primary

variations of authority-based epistemologies ate omni-
scient authority (the authority is God), and human

authority (the authority is a human expert).
An epistemology based on reasonciaims that what

is true is that which can be proven using the rules of
deductive logic. Finally, an epistemology based on

experience claims that what is true is that which can be
encountered through one or more of the senses.

Several different variations of experience-based
epistemologies exist. The two variations relevant to

this discussion are anecdotal experience and empirical
evidence. The first states that truth for any particular

individual or group of individuals is that which the

individual, or group, personally experiences_ The sec-
ond states that truth is that which can be verified

through carefully controlled experiments.
The relative strengths of these epistemological

approaches are as follows. Omniscient authority pro-
vides absolute truth; if there is a GOd and He has spo-

ken on something, then what He says must, by

definition, be flue. Reason yields conditional absolute

truth; if the premises on which a valid deductive argu-
ment are known to be true, then the conclusion of the

argument must also be flue.
Empirical evidence provides probable truth; if con-

trolled experiments are designed properly and repeated

enough times, then it is highly probable that the results

that it is good (human authority); John Doe knows that
it is good because it worked for him (anecdotal experi-

ence). This is a weak epistemological foundation on

which to base an entire discipline.
This current state should not be surprising; the

development of software engineering is following the

same pattern as the development of many other disci-

plines. Civil engineering, chemical engineering, aero-

nautical engineering, _d o_ all had periods in

which they relied almost e_c|usively on anecdotal
experience and the subsequent authority of the

"experts". Often, it took major disasters before practi-
tioners in such fields began to investigate fully the
foundations on which their field was based.

To date, although there have been many, many

software problems, there have been no major disasters
that have been directly attributed to software. How-
ever, unless a sound epistemological foundation is

established fo r software engineering, disasters will
come one day. To avoid this, research is needed to

develop valid approaches to answering questions about

both software products (e.g., are these requirements

consistent?) and software processes (e.g., is method A
better than method B?).

The Assessment Technology Branch (ATB).

which is part of the Information and Electromagnetic
Technology Division. Research and Technology Group,

is currentlyinvestigatingempiricalmethods to answer

process-type questions and logical methods to answer

product-type questions. The remainder of the presenta-
tion discusses the second of these two avenues of

research.

570

• : : •. 2:

_i_i_ ,

'il••_i!i_i̧¸i̧̧ i
!I i̧i¸•_i:k_ii_!iii•i!_

!i_!!__i¸,_ _ii

_i_iiI__, i_i
? ii:: i _

• _:i_'_ : iii/ _i_/

• ?

A team led by Ricky W. Buffer has been studying

the discipline of formal methods for over 6 years.
Other civil.servants on the team are Jim L. Caldwell,

Victor A. Carrefio, C. Michael Holloway, and Paul S.

Miner. Vigyan, Inc., Stanford Research Institute Inter-

national (SRI), Odyssey Research Associates (ORA),

and Computational Logic, Incorporated (CLI) conduct
research under contract.

Formal methods is 1 the applied mathematics of

computer systems engineering 2. Formal methods aims
to be to software engineering what fluid dynamics is to

aeronautical engineering and what classical mechanics

is to civil engineering. The mathematics of formal
methods includes predicate calculus (first order logic),

recursive function theory, lambda calculus, program-

ming language semantics, and discrete mathematics

(e.g., number theory, abstract algebra). To this mathe-
matical base, formal methods adds notions from pro,

gramming languages such as data types, module

structure, and generics.
There are many different types of formal methodS

with various degrees of rigor. The following is a useful

classification of the possible degrees of rigor in the :

application of formal methods:

• Level 0: No use of formal methods

• Level 1: Formal specification (using mathematical

logic or a specification language with formal seman-

tics) of all or part of a system
• Level 2: Formal specification at two or more levels

of abstraction and paper-and-pencil proofs that the

detailed specification satisfies the abstract one

• Level 3: Like level 2, except paper-and-pencil
proofs are replaced by formal proofs checked by a

semi-automatic theorem prover.

Presently, a complete (level 3) verification of a large,

complex system is impractical; however, application of
formal methods to critical portions of a system is prac-
tical and useful.

The specification of a simple phone book provides

a suitable simple example of many of the basic ideas
and benefits of formal methods. Please see the presen-

tation visuals that follow this abstract for this example.

Because of the promise that formal methods offers,

a considerable amount of high-quality research is being
conducted or sponsored by ATB. This research

includes, but is not limited to, the following projects:

1. Just like mathematics, formal methods should be treated as a

singular, not plural, noun.

2. The ideas apply equally well to both software and complex
hardware devices.

• Detailed design with complete level 3 verification of

the Reliable Computing Platform, which is a fault-

tolerant computing base able to recover from both

permanent and transient faults

• Design with level 2/3 verification of a transient fault-
tolerant dock synchronization circuit; this circuit has

also been fabricated, but the layout was done by
hand without formal verification

• In cooperation with SKI and Rockwell-Collins, level

3 specification and verification of the microcode of

the AAMP5 microprocessor
• In cooperation with ORA and Union Switch and Sig-

nal, level 3 specification and verification of a next-

generation railroad control system
• Under contract, ORA is working with Honeywell on

level 3 specification and verification of aircraft navi-

gation functions
• Under contract, Vigyan and SRI are working with

Loral, Johnson Space Center, and the Jet Propulsion

La_ratory on level 3 specification and verification

of some Space Shuttle functions
, Under contract, SRI is working with Allied-Signal

on level 3 specification and verification of important

algorithms for fault-tolerance

In addition to these, and other, projects, the branch

conducts periodic workshops on formal methods. Pre-
vious ones were held in 1990 and 1992; the next one is

planned for 1995. Also, an extensive collection of
information on the research is available through the

World Wide Web at the following Universal Resource
Locater.

http://shemesh.larc.nasa.gov/fm-top.html

Interested individuals are encouraged to explore this
collection. :

A lot of ground has been covered in this presenta-

tion, but the most important point is simple:

Epistemology: It's important, learn about it

Software Engineering: It's immature, work on it
Formal Methods: It's promising, look for it

571

i: iii

Epistemology
Software Engineering

and
Formal Methods

C. Michael Holloway
Assessment Technology Branch '

Information & Electromagnetic Technology Division
Research & Technology Group

Langley Research Center
National Aeronautics and Space Administration

United States Government

The Rote Of C_puter_ tn _ R & D (Ju_e 15-.16,19_1_

Introduction

• One of the most basic questions anyone can ask is

"How do I know that what I think I know is true?"

L_

• The study of this question is called epistemology

• Traditionally, epistemology has been considered to be of
legitimate interest only to philosophers, theologians, and
three-year-old children

• At least one other group should be very interested in
epistemology - software engineers - because lack of
understanding in this area plagues the field

572

H

i._i_ _.

The Basics of Epistemology

• There are three basic answers to the question of how do we
know what is true

-- Authority: truth is given to usby a knowledgeable person

-- Reason: truth is what can be proven using the rules of
deductive logic

i ! i ! !

-- Experience: truth is what can be encountered through
: : : : : :one or moreof the senses

• Anecdotal experience: truth is whatan individual or a
group of individuals experiences personally :

. Empirical evidence: truth is what canbe verified
through carefully controlled experiments

Examples of Truth by Authority

• The Ten Commandments

(omniscient authority)

1-year-old, pointing to the family cat:
"Whatsthat?"

father: "Kitty"
(human authority)

573

; :" • <:<; :CT < ::<<7: !_< _< _ <:: ; : i! J:n:i:: _ :< :; , ::<*<: <: + :!<i!<$_<:i::.:!.i:k<:•:i.: " / /< ii_ <:_!<Z: ! iZ: _: : ::.::::;-:::i::% _::i:i:<_:::i:!:_::i;i:!:>::i:::::::::_+i:_k:::i:k_:!:<:_!k:<:::J:+:::::::::::::::::::::::!:_:{:_:_:i:_:i;i:i:i_i{iii:i:i:i:i:i:i:{

</ _ i<

/ i

/

Examples of Truth by Reason

• If that creature is a tove, then it is slithy

That creature is a tove

Therefore, that creature is slithy

• if the airplane was built by Boeing, then it is a jet

The airplane is not a jet

Therefore, the rplanewas not built by Boeing

• X+ Y =7

3Y - 2X = 1

Therefore, X =4 and Y = 3

,{

• •h ¸

Exa mpies of Truth by An ecdotal
Experience

Smoking doesn't shorten your life because my
father smoked all his life and lived to be 95.

Whenever I have the hiccups, I hold my breath
and count to 10 and they go away. Therefore,
holding your breath and counting to 10 cures
the hiccups.

• We used method M and had 40% fewer bugs in
testing• You should use method M, too.

574

: _!/}i ¸¸' ii'i •:

• :i i_ '/ •

Examples of Truth by Empirical
Evidence _

The dive,recovery flap for the P38 in World War
II developed through tests in Langley's 8,Foot
High Speed Tunnel

the patients given drug X got better within 1
week• 3 of the patients given no drugsat allgot
better within 1 week. DrugX helps.

Relative Strengths

• •il •

• Omniscient Authority: absolute truth

• Reason: conditional absolute truth

• Empirical Evidence: probable truth

• Anecdotal Experience:

• Human Authority:

possible truth

opinion

, 575

i:

i.

ii I/_/: i

How Does This Apply to
Software Engineering?

The software engineering community is full of claims

"The best way to develop reusable software is to use object-oriented design."

"Programmers should never be allowed to test their own code."

"Getting control of the software process is the key- SEI's CMM is the way to do
this."

"We need more standards!"
: : : : : :

"Much progress has been made in the last few years in improving the way we
develop software.,

"GOTO's are harmful."

"CASE tools are the best way to improve software productivity."

Many people accept these, or other similar, claims as being
true

The Fundamental Question

i i! i

What is the

epistemoiogicai foundation

for accepting

these claims?

576

, i _

i! • •

/

The Answer

Logically sound arguments are rarely given

Virtually no empirical evidence is cited

Instead, software engmeenng Isbased almost entire y on a
combination of human authority and anecdotal experience

-- We know that technique C is good because Jane Doe,
who is a recognized authority in the field, says that it is
good (human authority)

-- Jane Doe knows that it is good because she used it on a
project once and got good results (anecdotal experience)

This is a weak epistemological foundation, one on which no
legitimate claims of success can be based

Implications of This Epistemological
WeaknesS

Until we get adequate evidence, we should be very
cautious in the claims we make and the standards we set

-- It is fine to say, "Method M seems to have improved our productivity, so you
might want to try it."

But it is dishonest to say, "lf you want to improve your productivity, you must
use Method M."

-- 'Company R used method F and found errors they don't think they would
have found using their old methods," is fine

"Method F finds errors that other methods do not find," is dishonest

• The software engineering community should be
investigating methods for obtaining strong (that is, logical or
empirical) evidence

577

Why Has More Not Been Done?

• The development of software engineering is following the
same pattern as the development of other disciplines

-- Civil engineering, chemical engineering, aeronautical engineering, etc. all
had periods in which they relied almost exclusively on anecdotal evidence

-- Often, it took major disasters to prompt changes

• it is hard

• It is expensive

• It is not glamorous

• Few people care: We haven't had a major disaster yet

Why Must More Be Done?

• Without adequate evidence, we are easily influenced by the
latest bandwagon that goes rumbling by

• Without adequate evidence, we may well "cast-in-concrete"
something that ought not even be "cast-in-mud"

• Without adequate evidence, the following two statements
are equally as meaningless:

-- You shaft use method M in developing your software

-- "Twas brillig by the sfithy tove

• Without adequate evidence, disasters are inevitable

578

i!i_ iIii_ ii

i. : _ _i!

?_i_'i /

Towards Establishing a Valid
Epistemologica/FoUndat=on

• Recognize the fundamental need for such a foundation

• Understand the different approaches needed for process
and product

-- Process questions (e.g., Is method A better than method

B_ need to be answered empirically

-- Product questions (e.g., _Are my requirements
consistent?) need to be answered by an appropriate
combination of: logical and empirical methods

• Refuse to accept claims based on insufficient evidence

Current Research at LaRC

• Kelly Hayhurst (IETD/ATB) is leading an effort to develop
an empirical evaluation of a particular approach to IV & V

For more information, contact Kelly

Email: k.j.hayhurst@LaRC.NASA.GOV

Phone: 46215

• The formal methods team led by Ricky Butler (iETD/ATB) is
investigating logical methods for answering product-type
questions

-- Other team members are Jim Caldwell, Victor Carre_o,
Michael Holloway, and Paul Miner

-- Remainder of talk concerns this work

579

iIII _, / ' _ ":

! ili_I

Further Reading on Epistemology
!! il

• If you are interested in more information on epistemology, I
recommend you start with the following two books:

-- Thales to Dewey, by Gordon H. Clark, 2nd edition, 1989,
ISBN 0-940931-26-5

-- The Philosophy of Science, by Gordon H. Clark, 2nd
edition, 1987, ISBN 0-940931-18-4

• These two books contain pointers to most of the important
philosophical works throughout the ages

Singular or Plural?

• Which of the following is correct?

Formal methods is the applied mathematics ...

OR

, i_., :_

, L .

i: _ , , _

Formal methods are the applied mathematics ...

• Answer depends on the writer or speaker

• I will tend to use "formal methods" as singular

58O

' • 7 •i

• !

What is Formal Methods?

Formal methods is the applied mathematics of computer
systems engineering

• The mathematics of formal methods includes:

-- predicate calculus (1st order logic)

-- recursive function theory

-- lambda calculus

-- programming ianguage semantics

-- discrete mathematics: number theory, abstract algebra,
etc.

L • What is Formal Methods?
(continued)

i,

i•¸

:i__i_,_,

System Designed

Bridge

Airframe

Nuclear Reactor

Digital Avionics
System

Engineering

Civil

Aeronautical

Nuclear

Software

i

581

Theory
I

Classical Mechanics

Fluid Dynamics

Quantum Mechanics

Formal Methods

Classical vs Computer Systems

--c,a,:,ca, I!Corn,,u,erS,,,,er,,s•
ContinUous S.tate space I[discrete State space "

smooth transitions _ abrupt tranSitions

finite testing & interpolation H finite testing inadequate,

acceptable II interpolation unsound
mathematical modeling tJ prototyping & test, ng

build to withstand additionaltl build to s.p.ecific
stress " H assumptions

predictable Surprising _

What Makes a Technique a
Formal Method?

• Formal method = logic + programming language concepts

. Important attributes:

-- logic based

-- programming language concepts (e.g., data types,
module structure, generics)

-- fully and formally specified semantics

-- should be able to express what is done without saying
how it is done (i.e., non-procedural)

-- supports the building of useful tools for analysis

582

iii_::i!:_ii_i_ii!!i:iii!ii_ii!i_/:

• i ¸ _•:

: r ¸

_, /i _ i

Levels of Rigor of Formal Methods

• Level O: No use of formal methods

Level 1: Formal specification (using mathematical logic or
a specification language with formal semantics) of all or
part of a system

Level 2: Formal specification at two or more levels of
abstraction and paper-and-pencil proofs that the detailed
specification satisfies the abstract one

• Level 3: Like level 2, except paper-and-pencil proofs are
replaced by formal proofs checked by a semi-automatic
theorem prover

i_, ,

Extent of Application

• Formal Methods is not an all-or-nothing approach

• Complete formal verification of a large complex system is
impractical at this time

I Formal Requirements I
_' proof

I High Level Design I

proof

I DetaUedDesign]
proof

[Implementation I

• Application of formal methods to critical portions of a
system is practical and useful

583

i_il:II'__i _!

i :i! ,¸

Extent of Application (example)

• in the Reliable Computing Platform, we use formal methods
to establish:

ENOUGH_WORKING_HARDWARE

PROPER_OPERATION

• We use reliability analysis to calculate:

Probability[ENOUGH_WORKING_HARDWARE]

• Reliability analysis relies on physical testing of devices to

establish some important parameters

Level 1 Example: Phone Book
English Requirements

• The phone book shall store the phone numbers
of a city

• Given a name, there shall be a way to retrieve
an associated phone number

It shall be possible to add and delete entries
from the phone book

584

:ii!iiiii:!ii!i̧:!:i_:'i i¸ i < L_: : :::_< ::::: <: <: : • : •-:_< :7: •: • • 1 7• i ¸¸ < _ <i:+ > -_ : > : -_: :: :_ :_::'< ::• ::; _:•:_::< ::<<_ ::: :!::!:k< _<+_<:,i,: : : _:<<:_< _:::::<:::::< i :7 _ii<i :_ :i i•: i :i:i:i< ::< :::_:::_::< : : :i:i::i:i,:::::::::_:: ::::i:::i_i::!:i:i::i:i;!:!: :::::!7!:!:i:i:::i:::i:::::::::_:_:_:_:_:{:_:_:i:_:{:_:{:_:_$_:_:_:_:_:_:i:_:!:_:!:_:i:i_j_j_jjj_ij_i_!_i!i_!!i_ij

i_%i,:_<i_ii!iii<::!_ii_ii....

:iii _</i__:<

k< _ i<

: •5,<: •

• _ : •17: •/_•

Level:_l Example: Phone:Book
Choosing a Specification Approach

• How do we represent the phone book mathematically?

1. A set of ordered pairs (name! number). Adding and
deleting entries is by set addition and deletion.

2. A function whose domain is all possible names and
range is all phone numbers. Aading and deleting entries
is by modification of function values.

3. A function whose doma}n is only names currently in the
phone book and range is phon_ numbers!; Adding and
deleting entries is by modification of the function domain
and values, (Z style)

• We choose to use approach 2

i _ ,

Level, 1 EXa mple: Phone !B ook
Specifyi ngthe Book

• Using traditional mathematical notation, we would write:

Let N = set of names

P -- set of phone numbers

book: N--_ P

• To indicate that we do not have a phone number for all
possible names, but only for names of real people, we
decide to use a special number: p e P

• An empty phone book is specified as follows:

emptybook. N-_ P

emptybook (nm) =- p

585

_i ,, i:i__i_!

!!i.i__,i!il__
._!•_ii•i('!_!•:

Level 1Example: Phone Book
Accessing an Entry

Let N = set of names

P _ Set of phone numbers
' i i :

book" N -_ P

! i

s = setof functions: N -_

FindPhone: B X N -_ P

! i?iiiii:!•_iiiili_i:i: :•: i! . .i_i• •i :

Note that FindPhone is a higher-order function, because its
first argument is a function

i.__ _,_ii-_i_

Let

Level::1 Example: Phone Book
Adding/Del eti ng an Entry

iv = set of names

1' = set of phone numbers

book" N -_ P

pep

s = set of functions: iv ---) P

AddPhonet B x N X P -_ B

__bk(x) if x_ name

AddPhone (bk, name, num) (x)- Ln.m if x = name

DelPhone: B X iv -_ B

_bk (x) if x _ name

DelPhone (bk, name) (=) = L.P if X = name

586

• = • i"

Level 1 Example: Phone Book
Complete Specification

Let N = set of names
P = set of phone numbers
book. N -_

peP

s = set of functions: _T --> P

emptybook: N -_ P

emptybook (nm) = p

FindPhone: B x N _ P

FindPhone (bk, name) = bk (name)

AddPhone : B X N X P -_ B _bk (x) if x ¢ name

AddPhone(bk, name,num) (x)=_n.m if x= name

DelPhone. B x N _ B _bk (x) if x _ name

DelPhone(bk, name) (x) =Lp if z= name

Level 2 Example: Phone Book
Putative Theorems

:

! ,

4

A putative theorem is a theorem that we know must be true if

we have formulated the specification correctly.

Lemma putative 1:

FindPhone (AddPhone (bk, name, num) ,name)

Proof:

FindPhone (AddPhone (bk, name, num) ,name)

AddPhone (bk, name, num) (name) = num

num = num

= hum

= num

Q.E.D.

587

i: !!i: i

_!_iii_ _ Level 2 Example: Phone Book
Putative Theorems (continued)

Lemma putative2: bk(name) = p D

DelPhone (AddPhone (bk ,name ,num) ,name) = bk

Lemma putative3: (Vi-nam_ _ name) A

book = AddPhone(bk, name, hum) A

boo_ = AddPhone(book, nam_, nun_) A

boo_ = AddPhone(boo_ , nam_ , num 2) A

!

boo_ = AddPhone(book__ , name., num.)

FindPhone(boo_ ,.name) =: num

Formal methods can establish that a property holds even in
the presence of an arbitrary number of operations; testing
can never establish this.

/

Level 3 Example: Phone Book
PVS Specification

phonebook: THEORY
BEGIN

names_ TYPE
name0z names

ph_numberl TYPE
p0: ph__number
books TYPE - [names -> ph number]

name: MAR names

emptybook(name)i ph__number - p_0
bk¢ VAR book

FindPhone(bk, name)i ph_number - bk(name)

hUm= VAR phnumber
AddPhone(bk, namer hum): book - bk WITH [name i- num]

DelPhone(bk, name): book - bk WITH [name i- p_O]

putatlve_l= LEMMA FindPhone(AddPhone(bk,name,num),name) -num

putative_2: LEMMA bk(name) - p_0 IMPLIES
DelPhone(AddPhone(bk,name,num),name) - bk

END phonebook

588

:,/- _./. •:.:.... : :.: .t!,,: i¸: ::. :i, / _- ::: ,: L_̧̧ :: : :::i:i........ _ :"- : t " : :". / •:: ":<:Gi:t::!?:%::::!i::i_i:i_:::i:!_!:i_i:tii!:7

Epistemology
It's Important, Learn About It

Software Engineering
it's Immature, Work On It

Formal Methods
it's Promising, Look For it

595

:::i :i: !!: ¸; : " _: ¸¸ _ : : • : "•

I•

|

Form/_pmved
REPORT DOCUMENTATION PAGE o.a No.07O_OlU

1. AGENCY USE ONLY (/Jeveb/ank) 1:_. REPORTDATE , ' 3, REPORTTYPE_JCODATESCOVERE.

:l Oct_er 1994 . Conference Publication
'FUNDING NUMBERS

WU 505-90-53

L AInHO_S)

Carol D. Wiesoman, Compiler

- L

7, PERFORMING ORGANIZATION lVj)_) _ ADDRI_'_(ES} & PERFORMING ORGANIZATION

NASA Langley Research Center nEPORTNUMBER
Hampton, VA 23681-0001

AG C _ _"
9. 9PONSORINGIMONITORING EN YNAME.(_AH_ADORF..SS(ES) 10: SPONSORING/MONITORING

National Aeronautics and Space Administration AGENCYREPORTNUMBER

Washington, DC 20546-0001 -:: ' NASA CP-10159

11. BUPPLEMENTARY NOTES

12L DISTRIBUTION / AVAILABILITY STATEMENT

Unclassified - Unlimited

Subject Category 62

_. OSTR_BUT_ON

. ABSTRACT,,x_,,,. _,.,_._

This document is a compilation of the presentations given at the workshop, "The Role of Computers in

Research and Development at Langley Research Center," on June 15-16, 1994. The objectives of the

workshop sponsored by the Computer Systems Technical Committee were to inform the LaRC community of the
current software system and software practices being used at LaRC. To meet these objectives, there were talks
presented by members of the Langley community, Naval Surface Warfare Center, Old Dominion University, and
Hampton University.

The workshop was organized in 10 sessions as follows: Software Engineering; Software Engineering
Standards, Methods, and CASE Tools; Solutions of Equations; Automatic Differentiation; Mosaic and the World
Wide Web; Graphics and Image Processing; System Design Integration; CAE Tools; Languages; and Advanced
Topics.

14. SUBJECT TERMS

Software Engineering

_7. sscu_r_ CLkSSFCA'r_0N _S.SECURn_CLAS=FICA;_ON _s. sScuRrr_CL_SS_FIC*:C)N
OFREPORT OFTHISPAGE OFABSTRACT

Unclassified Unclassified Unclassified

i i ii

NSN 7540-O1-280-5500

15. NUMBER OF PAGES

604

18. PRICE COOE

A99

20. UMITATION OF ABSTRACT

Stsndsrd Form 298 (Roy. 2-89)

Proscribed by ANSI S_d. Z3e-18

29e-1(_

!i!_i_ !i"I_I

i:ilill!ii
i ii_i! I

• i i

L • • • •. evel 3 Example. Phone Book
Proof Using PVS

putative 1 :

___

[1] (FORALL (bk: book), (nm: names),(num= ph_number):

FindPhone(AddPhone(bk, nm, hum), nm) =num)

Rule? (skosimp*)

Repeatedly Skolemizing and flattening,

this simplifies to:

putative 1 =

I
[1] FindPhone(AddPhone(bk|l, nmll, numll), nm|l) = numll

Rule? (expand _FindPhone")

Level 3 Example: Phone Book
Proof Using PVS (continued)

Rule? (expand _'FindPhone")

Expanding the definition of FindPhone,this simplifies to:

putative 1 :

I
[I] AddPhone(bkll, nm|l, numll)(nm|l) - numll

Rule? (expand _'AddPhone")

Expanding the definition of AddPhone,this simplifies to=
putative 1 =

I
[1] TRUE

which is trivially true.

Q.E.D.

Run time = 1.02 secs.

Real time = 20.00 secs.

589

, :_,i ¸' _!

••:_/i {, :i i:•
/' :i i¸¸ /: '

i!_i___!ii i

:ii

Level 1 Example: Phone Book
Deficiencies in the Specification

• Our specification does not rule out the possibility of
someone having a "p" phone number

• We have not allowed multiple phone numbers per single
name

: :

• Our specification does not say anything about whether
there should be a warning if a deletion is requested on
name that is not in the phone book

How do we remedy these deficiencies?

Level 1 EXample: Phone Book
Overcoming Deficiencies 1 & 2

Let N -- set of names
P = set of phone numbers
book" N -_ 2 p

B = set of functions: N ---->2 p

emptybook (name) - 0

FindPhone: B X N _ 2 p

FindPhone (bk, name) = bk (name)

AddPhone t B x N x P _ B _bk (x) ifx _ name

AddPhone (bk, name, num) (x) Lb k (name)u [num}

if x = name

DelPhone. B x N -_ B _bk (x) ifx _ name

DelPhone(bk, name) (x) =_0 ifx= name

' 590

i •

r

I ¸` , ,

• , • r

¸i.¸¸i¸¸,i•

Level 1 Example: Phone Book
An Additional Deficiency

Notice that the function DelPhone deletes all of the phone
numbers associated with a name

There is no way to remove just one of the phone numbers
that is associated with a given name

The original requirements did not address this situation; to
address it, we must define an additional function:

DelPhoneNumt B x N x P -_ B

DelPhoneNum(bk, name, hum) (x)=
bk (x) if z _=name
bk (name) \{num}

if x = name

Example: Phone Book
Revised Requirements

Original Requirements

• The phone book shall store the phone numbers of a city

• Given a name, there shall be a way to retrieve an associated phone number

• It shall be possible to add and delete entries from the phone book

Revised Requirements

• For each name in the city, a set of phone numbers shall be stored

• Given a name, there shall be a way to retrieve the associated phone numbers

• It shall be possible to add a new name and phone number

• It shall be possible to add new phone numbers to an existing name

• It shall be possible to delete a name from the phone book

• It shall be possible to delete one of the phone numbers associated with a name

• A warning need not be given for a requested deletion of a name not in the city

• A warning need not be given for a requested deletion of a non-existent phone
number

591

Example: Phone Book
Observations

• Our specification is abstract. The functions are defined
over infinite domains.

• In translating the requirements from English into a more
formal notation, many things that were left out of the
English were explicitly enumerated.

• The formal process exposed ambiguities and deficiencies
in the requirements. E.g., we had to choose between

book" N --_ P

book: N --_ 2 p

• Putative theorem proving and scrutiny revealed deficiencies
in the formal specification

Exa mple: P hone Boo k
More Observations

• There are many different ways to formally specify

• No matter what representation you chose you are making
some decisions that bias the implementation

• The goal is to minimize this bias and yet be complete

• The process of formalizing the requirements can reveal
problems and deficiencies and lead to a better English
requirements document also

• The formal specification process is similar to the
mathematical modeling process of engineering disciplines

592

_i̧ ii:i_i:i:!i̧ /I:I_

!:i_/: __:,:

/_!_i'/i/_I_I

Formal Methods Research at LaRC

• Detailed design with complete level 3verification of a
Reli able Computin g Platform :

Design withleve[213verificati_nofatransienti fault-tolerant
clock synchronization _ircuit _n_ fabrication of the circuit

With SRI ins; [evel 3
specificat,on an_ vedfi_ati6_ of the micro_e_e of the
AAM P5 microptoce_r : ::::: i

With Switch and
Signal, level 3 s_eS_Sati6n an_ ve_fiCation of next-

generation ra[Iro" c6ntr_t sy'tim
ORA & 3 specification=and verification of
aircraft

_4

Formal Methods Research at LaRC
(continued)

Vigyan & SRI working with Loral, JSC, JPLon level 3
specification and verification of some Space Shuttle
functions

SRI working with Allied-Signal on level 3 specification and
verification of important algorithms for fault-tolerance

Conduct periodic workshops on formal methods; previous
ones in 1990, 1992, with next one planned for 1995

Maintain extensive collection of information on the

research, accessible through the World Wide Web at URL

http://shemesh.larc.nasa, gov/fm-top.html

•:-ii• i!,:_iii_i•__i!i?_:_i!i_•:iI _' ::'_'_ i!!•
593

,_i̧_!:i_¸¸',

L,

594

C_}MAL, PAG'_' B

