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Verification of a dynamic model of a constrained structure requires a modal survey test 
of the physical structure and subsequent modification of the model to obtain the best 
agreement possible with test data. Constrained-boundary or fixed-base testing has 
historically been the most common approach for verifying constrained mathematical 
models, since the boundary conditions of the test article are designed to match the actual 
constraints in service. However, there are difficulties involved with fixed-~ase testing, in 
some cases making the approach impractical. As stated in Refs. 1 and 2, jt is not possible 
to conduct a truly fIXed-base test due to coupling between the test article and the fixture. In 
addition, it is often difficult to accurately simulate the actual boundary constraints, and the 
cost of designing and constructing the fIxture may be prohibitive. For use when fixed-base 
testing proves impractical or undesirable, alternate free-boundary test methods have been 
investigated, including the residual flexibility technique. The residual flexibility approach 
has been treated analytically in considerable detail (Refs. 3-5, 7) and has had limited 
application as a test method (Refs. 6-8). 

Some investigators have expressed concern over difficulty in performing the required 
frequency response measurements for the method. This concern is well-justified for a 
number of reasons. Two of these are well-described by Blair in Ref. 9. First, residual 
flexibilities are very small numbers, typically on the order of 1.0E-6 in/lb for translational 
diagonal tenns, and orders of magnitude smaller for off-diagonal values. This poses 
diffIculty in obtaining accurate and noise-free measurements, especially for points removed 
from the excitation source. A second diffIculty encountered in residual measurements lies 
in obtaining a clean residual function in the process of subtracting synthesized modal data 
from a measured response function. Inaccuracies occur since modes are not subtracted 
exactly, but only to the accuracy of the curve fIts for each mode; these errors are 
compounded with increasing distance from the excitation point. 

In this paper, the residual flexibility method is applied to a simple structure in both test 
and analysis. Measured and predicted residual functions are compared, and regions of 
poor data in the measured curves are described It is found that for accurate residual 
measurements, frequency response functions having prominent stiffness lines in the 
acceleration/force format are needed. The lack of such stiffness lines increases 
measurement errors. Interface drive point frequency response functions for shuttle orbiter 
payloads exhibit dominant stiffness lines, making the residual test approach a good 
candidate for payload modal tests when constrained tests are inappropriate. Difflculties in 
extracting a residual flexibility value from noisy test data are discussed. It is shown that 
use of a weighted second order least-squares curve fIt of the measured residual function 
allows identification of residual flexibility that compares very well with predictions for the 
simple structure. This approach also provides an estimate of second order residual mass 
effects. 
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Backmmnd of the Residual Flexibility Approach 

The technique of using an approximation of the effects of neglected higher order modes, 
or residual modes, to improve the accuracy of reduced-basis mathematical models was fIrst 
presented by MacNeal (Ref. 3). In MacNeal's method, a substructure model derived from 
truncated modal properties was improved by including additional elements derived from 
fIrst-order static approximations of the effects of higher modes. Rubin (Ref. 4) used a 
special statics problem to derive an expression for residual flexibility in a form that is more 
easily applied in structural dynamic analyses. As described in Ref. 4, the flexible-body 
displacements for a substructure can be written as a fIrst-order approximation of residual 
effects, 

(1) 

where G is the free-free flexibility matrix. The constrained flexibility matrix is Gc and 

the transformation matrix A = I - M<I>RMi<I>i . It is noted that MR is the generalized 

mass associated with the rigid body modes <I>R' If the contribution of modes to be retained 
is removed from the deflection for the flexible substructure, the residual flexibility matrix 
G results, as shown in Eq. (2): 

(2) 

where Go = <I>oK~l<I>! is the flexibility matrix corresponding to the retained modes. 

In Ref. 5, Martinez, et. al, expressed substructure displacements in the form 

(3) 

where <I> is the (N x n) matrix of retained or measured modes and GTb is a partition of the 
(N x N) residual flexibility matrix dermed in Eq. (2). If the displacements are partitioned 
into interior and boundary or interface degrees of freedom, Eq. (3) becomes 

{:i} = [<I>i G
rib

] {i} 
b <I>b Gfbb b 

(4) 

By solving the lower partition ofEq. (4) for the boundary forces, and substituting the 
resulting expression back into Eq. (4), the interior physical displacements are obtained in 
terms of generalized interior and physical boundary displacements, 

Combining Eq. (5) with the identity Db = Db yields the desired transformation for 
substructure displacements, 

(5) 



where T is an (N x m) matrix and m = n + nb ' the number of retained modes plus the 
number of boundary dof. 

The partitioned form of the undamped equation of motion for a substructure is 

and the corresponding partitioned form of the residual flexibility matrix is 

(7) 

(8) 

where Gr is to be obtained using frequency response measurements of the free-free test 
article for the connect coordinates and shaker drive points (Ref. 2), or computed using Eqs. 

(1) and (2). The retained natural frequencies and mode shapes, ro~ and q,n' are to be 

obtained from a free-boundary modal test, and correspond to subsets of the eigenvalues 
and eigenvectors of Eq. (8) with F = O. Applying the transformation defined in Eq. (6) to 
Eq. (8), the substructure reduced equation of motion becomes 

M{~} + K{:J = TT{:J (9) 

- T - T 
where M = T MT and K = T KT. Martinez, et. al (Ref. 5) showed that 

[ 
T 

-4>!bJbb ] 
M= 

Inn + q, nbJbbq,nb 

sym. J bb 
(10) 

[2 T-I -4>T G-
1 ] 0nn + q, nb Gfbb q,nb nb Ibb 

K= 
sym. G- 1 

Ibb 

where ~n is the diagonal matrix of retained or measured frequencies CI\t, and<I>nb is the 

boundary partition of the retained modes. Also in Eq. (10), Jbb = G~bHbbG~b and 

Hbb = G~MGfb' where Gfb = [Grib Gfbb]T. Residual mass effects are contained in the 

boundary partition Hbb ' and the full residual mass matrix is given by 



c. 

(11) 

In order to verify a constrained model, the corresponding constrained modes must be 
derived. This is accomplished using the present formulation by striking the rows and 
columns of the matrices in Eq. (10) for boundary dof, yielding 

(12) 

(n x n). The eigenvalues ro~ calculated from Eq. (12) are the constrained frequencies, and 

the constrained modes are obtained by assembling the eigenvectors from Eq. (12), <l>nn ' 
into an (m x n) matrix and premultiplying by T from Eq. (6): 

(13) 

Since T is (N x m) and the partitioned mode shape matrix is (m x n), an (N x n) matrix of 
constrained modes is obtained. The frequencies and mode shapes for the constrained 
structure, roc and <l>e ' are used to obtain a verified constrained mathematical model. 

Frequency Response Function Approach for Measurement and Prediction of Residuals 

To provide an efficient means of comparing test residual measurements with analysis, 
the frequency response function (FRF) approach as presented by Rubin (Ref. 4) was 
utilized. In this method which is applicable to both analytical and test data, the 
displacement is written as a function of frequency, 

U(ro) = Y(ro) F(ro) (14) 

where Y is the FRF matrix and F is the applied force as function of frequency. The 
residual FRF matrix, or residual function matrix as it will be denoted in this paper, is 
obtained by subtracting from the full FRF in Eq. (14) the modal FRF containing the rigid 
body modes and elastic free-free modes that are to be retained. The undamped modal FRF 
matrix is given by 

(15) 

where ~ is the generalized mass associated with the retained modes <l>n ,and 1\ is the 

diagonal matrix ~ - Cfil. The residual function matrix becomes 

Y r (ro) = Y(ro) - Y m (ro) (16) 



which can be approximated over the frequency range of interest by the undamped form 

(17) 

corresponding to Eqs. (2) and (11). For practical computations, residual functions are 
obtained individually rather than in matrix form. It is important to note that the FRF and 
residual functions described here are in displacement/force format Residual flexibility for 
a particular residual function is the value of the function at zero frequency, as can be seen 
from Eq. (17). Each Or determined analytically in this way is equal to the corresponding 
value from Eq. (8). 

Results for Simple Structures 

Residual flexibility tests and analysis have been carried out for a simple beam and for 
the same beam with a flexible appendage. The appendage was designed to simulate a 
shuttle payload interface or trunnion. The simple structures were chosen to allow 
development of required procedures on a system whose dynamic characteristics are known 
with a high degree of confidence. In this manner, the analytical model, after adjustment to 
agree with measured free-free modes and frequencies, is taken as the "right answer" and 
provides the basis for assessing accuracy of residual measurements. To aid in determining 
the acceptable error in residual measurements, error analysis was performed for the beam 
with trunnion simulator. 

Simple Unifoun Beam 
As shown in Fig. I, the aluminum beam studied is 12' long with a 1" x 2" cross

section. The test article was suspended with flexible bungee cords, and 25 accelerometers 
were placed at 6" increments along the beam. A finite element model of the beam was 
developed having degrees-of-freedom corresponding to the measurement locations. 
In order to demonstrate the quality of the model and the modal measurements, a 
comparison of test and analysis mode shapes is shown in Fig. 2, and a frequency 
comparison is given in Table 1. Accuracy of experimental and analytical FRF can be seen 
in Fig. 3. The drive point FRF in Fig. 3 was obtained at the left end of the beam (Fig. 1), 
and the cross FRF was obtained by driving at the left end and obtaining the response at the 
point 1/4 of the beam length from the left end. 

In Fig. 4, comparisons of test and analytical residual functions for both the drive point 
and the quarter point are shown. For both test and analysis, the residuals are obtained by 
synthesizing a FRF from a subset of the mode shapes and subtracting it from the full FRF. 
Experimentally, the mode subset is simply the measured modes, while analytically a 
consecutive number of free-free modes corresponding to the number of measured modes is 
used. 

It can be seen in Fig. 4 that the measured residual functions agree fairly well with 
analysis at higher frequencies, but that poor correlation is obtained at low frequencies. The 
spikes in the test data at system natural frequencies are not a cause of great concern because 
they are the result of fairly small differences in curve-fitted and measured FRF near the 
peak responses. Also, it must be emphasized that the data in Fig. 4 is presented in semi
log format It was found that by manipulating the damping values for each mode that the 
spikes could be reduced considerably, but at the expense of worse agreement at points 
away from the peaks, as shown in Fig. 5. 

The poor agreement between test and analysis at low frequencies is a cause of concern. 
Since the model is believed to be correct (based on results shown in Figs. 2-3 and Table 1), 
the measurements are suspect. The quality of curve fitting in the modal analysis software 
should be the same at low frequencies as at higher frequencies (at least above about 5 Hz). 
Thus, the discrepancies may possibly be due to the fact that at higher frequencies the 
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difference in the full and synthesized FRF becomes greater due to neglected mooes, and 
thus modal curve fitting errors become less important. As described later in the paper, a 
procedure was developed for working around the problem of poor or noisy data, both at 
low frequencies and at system natural frequencies. 

Simple Beam with Trunnion Simulator Attachment 
In an effort to obtain higher quality residual measurements, a screw simulating a shuttle 

payload trunnion was attached to the left end of the beam (Fig. 6). The rationale for this 
modification was that a trunnion structure having drastically different stiffness 
characteristics than the body of the beam would create a stiffness line as observed in drive 
point FRF of shuttle payloads. A clearly-defmed stiffness line provides a prominent 
residual function that should be discernible even in the presence of curve fitting errors. 

Mooe shapes for the "trunnion" beam are similar to those for the uniform beam, with the 
differences being at the left end where the trunnion is attached. Figure 7 shows the fifth 
and sixth modes and demonstrates the quality of agreement between the test and mooel. In 
Table 2 a frequency comparison is shown with the mode shape correlation for the first 6 
modes, and Fig. 8 shows comparison of test and analysis FRF. The frrst FRF in Fig. 8 is 
for excitation and response at the trunnion, the second for excitation at the trunnion and 
response at a point 6" from the left end, and the third for the same excitation point but 
response at midspan of the beam. In Fig. 9 the drive point FRF is shown in 
acceleration/force format It can be seen that the function follows a stiffness line up to the 
first bending frequency of the trunnion. 

As shown in Fig. 10 for the drive point residuals, go<Xi agreement is obtained between 
test and analysis. This clearly demonstrates the effect of the trunnion simulator, and the 
FRF stiffness line, on the behavior of the residual function. Again, the spikes are not a 
great cause of concern, though the disagreement at low frequencies still presents a problem. 
The cross residual functions in Fig. 10 show relatively poor agreement between test and 
analysis, though the trends match at higher frequencies. It is clear that for structures where 
off-diagonal terms of the residual flexibility matrix (Eq. (8)) are required, only the data at 
high frequencies (50 Hz or even higher for this structure) can be trusted. 

An important conclusion to draw from Fig. 10 (and also Fig. 4) is that due to poor 
residual test data at low frequencies and at system natural frequencies, curve fitting is 
required to obtain accurate experimental values of residual flexibility. This is particularly 
obvious for cross or off -diagonal residual functions. In order to address the need for curve 
fitting of poor or noisy data, a general procedure for estimating residual flexibility values 
was developed as described in the following section. 

Statistical Least-SQllares Curve Fittin~ Procedure for Identification of Experimental 
Residual Flexibility 

An investigation of curve fitting residual functions to determine residual 
flexibility values was conducted for the beam with trunnion simulator described in 
the last section. Since residual flexibility is defined as the value of a 
displacement/force (U/F) residual function at zero frequency, it is necessary to 
examine the functions in the UIP domain, as shown in Fig. 11, rather than the 
acceleration/force (AlP) domain shown in previous figures. As described 
previously, poor data is evident at low frequencies and system resonances. A 
second order polynomial curve fit of this data is required (excluding the first power 
coefficient) to determine the residual flexibility (constant coefficient) and the residual 
mass (second order coefficient), as shown in Eq. (17). Direct least-squares curve 
fitting of the data results in extreme divergence of the fit, as shown in Fig. 12. It is 
obvious that weighting must be applied to the data to emphasize regions of accurate 
measurements. 



A theoretical residual function in U/F fonnat is relatively flat at low frequencies 
and has slight upward curvature at higher frequencies. Variations of consecutive 
values of the residual function should therefore be small. When examining the 
residual function produced from the test data, the overall characteristics described 
previously can be seen. In the sections of poor data, consecutive residual values 
have large variations in magnitude. It is apparent, then, that a weighting function is 
needed that applies low weight to data points having large variation with respect to 
neighboring points, and high weight to data in regions of small variations. 
Statistically, this can be expressed in terms of sample variance, where each sample 
consists of two or more neighboring data points. 

By stepping through the test data, the variance of each data point with respect to 
the neighboring points can be calculated The weighting value for each data point is 
set equal to the inverse of the variance assigned to that data point. This gives the 
desired effect that when the variances of neighboring data points are high the 
weighting function value is low and vise versa. Incorporating the weighting function 
into the least-squares curve fit, an acceptable fit is obtained as seen in Fig. 13. The 
residual function determined in this manner has the smooth characteristics previously 
described for theoretical U/F functions. 

For the drive point residual function of the beam with trunnion simulator, 
different weighting matrices generated by examining two, three and four 
neighboring data points were used in the curve fit process. The error range for the 
residual flexibility term produced by examining different groups of data points was 
found to be from 0.4 to 2.5 percent. The examination of different groups of data 
points was performed because of the possibility of two or more consecutive data 
points having small variance, but the relative magnitude being considerably different 
from the characteristic curve. In addition, the frequency range of curve fitted data 
was varied to determine the effect on accuracy of the residual flexibility value. An 
example of the ranging of the curve fit is given in Fig. 14, and the error calculations 
for different sample sizes and frequency ranges are displayed in Table 3. 

For the two residual functions generated from the responses taken at six inches 
from the left end of the beam and the middle point of the beam, Fig. 10, the errors 
compared to the theoretical value were high, about 25 percent. A closer examination 
of these two residual functions reveals that the functions are extremely ragged and in 
one case the characteristic curve of the test residual function does not fall on the 
theoretical curve. However, the curve fitting process provided the best fit of the 
residual test data. The high errors are due to limitations in the evaluation of the test 
frequency response function which produces the ragged data regions. 

Summary and Discussion 

Measurement and prediction of residual flexibility values for two simple structures, a 
uniform beam and beam with flexible appendage, have been demonstrated. The appendage 
was included to simulate a shuttle orbiter payload interface or trunnion. It was shown that 
frequency response functions (FRF) with dominant stiffness lines are needed in order to 
obtain accurate estimates of experimental residual flexibility. Trunnion drive point FRF for 
shuttle payloads exhibit this characteristic, pointing out the high potential of this technique 
for payload testing. 

It was shown that test residual functions have regions of poor or noisy data, at low 
frequencies and at system resonances. The poor data appears to result from current 
limitations in modal parameter estimation software. A weighted least-squares curve fit that 
utilizes the inverse of data sample variance was applied to experimental residual functions 
to estimate residual flexibility. Results showed trunnion simulator drive point residual 
values within 0.4 to 2.5 percent of analytical predictions. The errors obtained from the 
curve fit of cross or off-diagonal residual functions were near 25 percent. Cross residual 



functions are typically not as critical as drive point functions and in some cases can be 
eliminated from the analysis. 
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Nomenclature 

A Transformation matrix for flexibility matrix 

F External forces 

G Flexibility 

Gr Residual flexibility 

H Mass associated with residual flexibility 

K Substructure stiffness 

K Reduced substructure stiffness 



m Number of retained modes plus boundary coordinates 

M Substructure mass 

M Reduced substructure mass 

n Number of retained or measured modes 

nb Number of boundary coordinates 

N Number of coordinates in unreduced substructure 

q Generalized displacement 

T Transformation to reduce substructure coordinates 

u Physical substructure displacements 

Y Frequency response function 

Y r Residual function 

cj), (f) Mode shapes 

A Diagonal frequency matrix for FRF formulation 
of residual technique 

0>, n Natural frequencies 

subscripts 

b Boundary coordinates 

c Constrained substructure 

cn Retained modes associated with connect points 

f Flexible substructure 

i Interior coordinates 

m Modal 

n Retained modes 

r Residual 

R Rigid body 
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Table 1. Comparison of Test/Analysis Frequencies for 
Uniform Beam 

TEST 

1 10.0456 
2 27.6652 
3 54.2048 
4 89.5362 

ANAL 

1 9.9338 
2 27.3716 
3 53.6386 
4 88.6362 

CORR. 

0.99950 
0.99972 
0.99946 
0.99942 
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Table 2. Test/Analysis Frequencies for -Trunnion" Beam 

TEST ANAL CORR. 

1 9.9888 1 9.8874 0.99864 
2 27.4919 2 27.2392 0.99940 
3 53.8265 3 53.3680 0.99916 
4 88.9338 4 88.1604 0.99872 
5 132.5650 5 131. 5806 0.99785 
6 184.7860 6 183.4944 0.99698 
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Figure 10. Test/Analysis Residual Functions for Beam with 
Trunnion Attachment 

150 200 



. ~-

S 
] 
u 
<! 

~ 
E 
~ 
)! 
~ 
Q 

10' 

10· 

10· , 

10.1 

10·] 
o 

Re.idu~1 Function (solid) 

"I Ll 
V~ '\ 

20 40 60 80 100 120 140 160 180 200 

Frequency (Hz) 

Figure 11 • Drive Point Res:dual Function 
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Figure 13. Weighted Curve Fit, 
Function Plotted 
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Figure1l. Direct Curve Fit 
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Figure1t. Ranging of Curve Fit 

Lower Upper 
Freq(Hz) Freq(Hz) 2 Points % Error 3 Points % Error 4 Points % Error 

Exact 0.0028309 0.00 0.0028309 0.00 0.0028309 0.00 
0 200 0.0027593 2.53 0.0028081 0.81 0.0027727 2.06 

30 200 0.0027594 2.53 0.0028082 0.80 0.0027731 2.04 
60 200 0.0027619 2.44 0.0028414 0.37 0.0027783 1.86 

0 180 0.0027596 2.52 0.0028136 0.61 0.0027824 1.71 
30 180 0.0027596 2.52 0.0028138 0.60 0.0027828 1.70 
60 180 0.0027621 2.43 0.0028489 0.64 0.0027885 1.50 

Table 3. Curve Fitting Errors of Residual Flexibility 
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