PILOT AGING POLICIES IN INTERNATIONAL AIRLINES

L. Glazer, M.D. Chief Medical Officer EL-AL ISRAEL AIRLINES, LTD. BEN GURION AIRPORT, ISRAEL.

INTRODUCTION: For decades regulatory agencies adhered to an arbitrary upper age limit for pilots engaged in passenger operations. Based on these regulatory considerations airlines set contractual agreements with unions and/or individual pilots. With the advent of modern diagnostic techniques and operational monitoring these rules and contracts were recently challenged.

DEVELOPMENT: Stress will be put on medical-physiological criteria rather than purely chronological arbitrary limits. Performance capability is essential in determining one’s fitness as a pilot. Medical technology provides new diagnostic techniques which enable us to predict with better confidence that a pilot will not become suddenly incapacitated especially where the cardiovascular system is concerned. The degeneration of a pilot’s perceptual, psychomotor and intellectual functioning which is expected in the aging process may be detected and assessed with a great measure of confidence by physicians, co-workers and family and documented during simulation performance and line checking. In a relatively small airplane like EL-AL the medical officers and flight operation supervisory staff know each pilot personally and in many cases are familiar with the family environment. This enables them to detect occasionally some hidden stresses. EL-AL maintains the long-established mandatory retirement of operating crew members at age of sixty. However it was recently agreed (as first officers only) on a yearly contract provided they fulfill the medical and operational criteria. This meets the current government regulations and we feel confident that no undue risk is involved. Similar arrangements exist in a few other airlines. Our first year’s experience will be discussed.

REVIEW OF PERFORMANCE, MEDICAL, AND OPERATIONAL DATA ON PILOT AGING ISSUES. L. Glazer, Ph.D. Life Sciences Division, National Aeronautics and Space Administration, Washington, D.C. 20546.

Introduction: An extensive review of the literature and studies relating to performance, medical, operational, and legal data regarding pilot aging issues was performed in order to determine what evidence there is, if any, to support mandatory pilot retirement. Popular misconceptions about aging, including the failure to distinguish between the normal aging process and disease processes that occur more frequently in older individuals, continue to contribute to much of the misunderstanding and controversy that surround this issue. Results: Review of medical data related to the pilot aging issue indicate that recent improvements in medical diagnostic and treatment technology have made it possible to identify a high degree of individuals who are at risk for developing sudden incapacitating stress and for treating those with disqualifying medical conditions. Performance studies revealed that after controlling for the presence of disease states, older pilots are able to perform as well as younger pilots on many performance tasks. Review of accident data showed that older, healthy pilots do not have higher accident rates than younger pilots and, indeed, evidence suggests that older pilots have an advantage in the cockpit due to higher experience levels. The Man-Machine-Mission-Environment interface of factors can be managed through structured, supervised, and enhanced operations, maintenance, flight reviews, and safety procedures in order to ensure safe and productive operations by endurance of fatigue during subsequent flights. Conclusions: There is no evidence indicating any specific age as an arbitrary cut-off point for pilots to perform their flight duties. A combination of regular medical screening, performance evaluation, operational countermeasures, and safety procedures can more effectively ensure a safe pilot population than can a mandatory retirement policy based on arbitrary age restrictions.

FLIGHT CREW FATIGUE IN ADVANCED LONG-HAUL COMMERCIAL AIRPLANES - R.C. Graeber. Boeing Commercial Airplane Group, Seattle, WA.

The rapid increase in two-crew glass cockpit airplanes operating on long-haul routes has generated international interest in better understanding how fatigue affects crew performance on advanced commercial flight decks. This topic provides a unique opportunity for human factors experts to focus on a combination of biomedial, operational, and equipment design issues that directly impact human operators. The panel will examine this issue from the different perspectives of individuals who are actively involved in the ongoing debate. The presentation will emphasize the physiological basis for long-haul crew fatigue, the contribution of the flight deck environment to crew alertness, and the operational factors unique to such airplanes in the long-range environment. Panelists will also discuss both regulatory, operational, and design approaches for mitigating the potentially negative effects on overall crew performance. A general discussion will follow completion of the individual papers.

A PILOT’S PERSPECTIVE ON LONG HAUL OPERATIONS IN TWO CREW COCKPITS. - Paul D. Galicher. Northwest Airlines, Minneapolis, MN.

A comprehensive approach to the issue of fatigue crew fatigue must address crew performance requirements as well as psychophysiological factors such as sleep loss and circadian rhythm. Emphasis on the former has increased with the relatively recent introduction of advanced two-crew aircraft and the accompanying growth in flight deck automation and CRT displays. This paper will address these factors from a pilot’s perspective. Included will be a description of typical flight plans and crew duties along with the associated occurrence of boredom and fatigue. One topic of particular concern is the programming of automated flight systems in terminal areas at the end of long-haul flight segments. The discussion will also focus on the use of augmented crew during extended range operations and the problems encountered in the scheduling of rest breaks in onboard sleep facilities.


Commercial air operators are moving toward greater use of advanced-technology aircraft with increasing levels of automation. Frequently, this transition entails a reduction in the size of cockpit crew; specifically, from 3 to 2 pilots, eliminating the position of flight engineer. This reduction is being accomplished in the context of a dramatic increase in commercial traffic, no revision in FAA flight time/Duty Time regulations and efforts by commercial carriers to exploit the full potential of the new, long range aircraft coming into service. Professional pilot groups are very concerned that human factors considerations, i.e., fatigue, circadian dysrhythmia, scheduling parameters and the human/automation interface are not being adequately addressed.