DELIVERY OF CARDIOPULMONARY RESUSCITATION IN THE MICROGRAVITY ENVIRONMENT.
M. R. Barratt* and R. D. Billica*.
KRUG Life Sciences and Medical Operations, NASA Johnson Space Center, Houston, TX.

INTRODUCTION. The microgravity environment presents several challenges for delivering effective cardiopulmonary resuscitation (CPR). Chest compressions must be driven by muscular force rather than by the weight of the rescuer's upper torso. Airway stabilization is influenced by the neutral body posture. Workers will consist of crewmembers of varying sizes and degrees of physical deconditioning from space-flight. Several ACLS CPR designed to accommodate these factors were tested in the one g environment, in parabolic flight, and on a recent shuttle flight. METHODS. Utilizing study participants of varying sizes, different techniques of CPR delivery were evaluated using a recording CPR manikin to assess adequacy of compressive force and frequency. Under conditions of parabolic flight, methods tested included conventional positioning of rescuer and victim, free-floating aircraft. The hardware planned for use during the MTC phase of the space station was utilized to increase the fidelity of the scenario and to evaluate the prototype equipment. Based on initial KC-135 testing of CPR and ACLS, changes were made to the ventilator filter. CPR in microgravity is hindered by the environment, but should be adequate. Factors specific to microgravity were identified for inclusion in the protocol including immediate restraint of the patient and early intubation to insure airway. External cardiac compressions of adequate force and frequency were administered using various methods. These factors and limitations may alter the algorithm used for CPR in microgravity. Results. The 50% confidence limits for CPR success were calculated for each method of CPR delivery. Comparison of the confidence limits for the different methods indicated that free-floating CPR had a significantly higher success rate than conventional CPR. Conclusions. Free-floating CPR is more effective in the microgravity environment and should be used as the primary method of CPR delivery until patient restraint is available. Development of an adequate CCAD would be desirable to compensate for the effects of deconditioning.

A PROTOTYPE CREW MEDICAL RESTRAINT SYSTEM (CMRS) FOR SPACE STATION FREEDOM. S. L. Johnston*, F. T. Eichstedt, and R. D. Billica*.
KRUG Life Sciences and Medical Operations, NASA Johnson Space Center, Houston, Texas.

The CMRS is a prototype system designed and developed for use as a universally deployable medical restraint/workstation on Space Station Freedom (SSF), the Shuttle Transportation System (STS), and the Assured Crew Rescue Vehicle (ACRV) for support of an ill or injured crewmember requiring stabilization and transportation to earth. The CMRS will support all medical capabilities of the Health Maintenance Facility (HMF) by providing a restraint/interface system for all equipment (Advanced Life Support packs, defibrillator, ventilator, portable oxygen supply, IV pump, transport monitor, transport aspirator, and intravenous fluids delivery systems), and personnel (patient and crew medical officers). It must be functional within the STS, ACRV, and allSSF habitable volumes. The CMRS will allow for medical capabilities within CPR, ACLS, and ATLS standards of care. This must all be accomplished for a worst case transport time scenario of 24 hours from SSF to a definitive medical care facility on earth. A presentation of the above design prototype with its subsequent one year SFF/HMF integration testing and ground based simulations testing will be given. Also, parabolic flight and underwater Weightless Environmental Test Facility evaluations will be demonstrated for various medical contingencies. The final design configuration to date will be discussed with future space program impact considerations.

ADVANCED CARDIAC LIFE SUPPORT (ACLS) UTILIZING MAN-TENDED CAPABILITY (MTC) HARDWARE ONBOARD SPACE STATION FREEDOM. M. Smith, M. Barratt, C. Lloyd. NASA and KRUG Life Sciences, Inc. Medical Operations Branch, Johnson Space Center, Houston, Texas 77058.

INTRODUCTION. Because the time and conditions involved returning a patient from space to a definitive medical care facility, the capability for Advanced Cardiac Life Support (ACLS) onboard Space Station Freedom (SSF) was implemented. To evaluate the effectiveness of terrestrial ACLS_avanced equipment onboard SSF, a medical team conducted simulations during parabolic flight onboard the KC-135 aircraft. The hardware planned for use during the MTC phase of the space station was utilized to increase the fidelity of the scenario and to evaluate the prototype equipment. Based on initial KC-135 testing of CPR and ACLS, changes were made to the ventilator filter. CPR in microgravity is hindered by the environment, but should be adequate. Factors specific to microgravity were identified for inclusion in the protocol including immediate restraint of the patient and early intubation to insure airway. External cardiac compressions of adequate force and frequency were administered using various methods. These factors and limitations may alter the algorithm used for CPR in microgravity, but should be adequate. Conclusions. Delivery of effective CPR in microgravity will be dependent on adequate prehospital and patient restraint, training, and local availability. Free-floating CPR may be employed as a stop-gap measure until patient restraint is available. Development of an adequate CCAD would be desirable to compensate for the effects of deconditioning.

KRUG Life Sciences and Medical Operations, NASA Johnson Space Center, Houston, Texas.

INTRODUCTION. Surgical techniques in microgravity are being developed for the Health Maintenance Facility (HMF) on Space Station Freedom (SSF). This work will be a demonstration of the proposed surgical capabilities for microgravity surgery in the environment of microgravity. METHODS. Procedures and prototype hardware, which include a medical restraint system, a surgical overhead isolation canopy, a surgical device, and a regional laboratory device were evaluated. This was accomplished by realistic surgical simulations involving both mannequins and animals during KC-135 parabolic flight and in a high fidelity ground based HMF mockup. RESULTS. Animal surgery in the environment of microgravity allowed the observation of unique arterial and venous bleeding characteristics for the first time. The ability to control bleeding was demonstrated. Preventing cabin atmosphere contamination was also demonstrated. Conclusions. The procedures and prototype hardware tested provided valuable information and should be investigated and developed further. The use of standard surgical techniques are possible in microgravity if the principles of personnel and supply restraint and operative field containment are adhered to.