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ABSTRACT

Numerical investigations on a diffusing S-duct with/without

vortex generators and a straight duct with vortex generators are

presented. The investigation consists of solving the full
three-dimensional unsteady compressible mass averaged
Navier-Stokes equations. An implicit finite volume lower-upper

time marching code (RPLUS3D) has been employed and modified. A
three-dimensional Baldwin-Lomax turbulence model has been

modified in conjunction with the flow physics.

A model for the analysis of vortex generators in a fully
viscous subsonic internal flow is evaluated. A vortical
structure for modelling the shed vortex is used as a source term
in the computation domain. The injected vortex paths in the
straight duct are compared with the analysis by two kinds of
prediction models. The flow structure by the vortex generators

are investigated along the duct.
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Computed results of the flow in a circular diffusing S-duct
provide an understanding of the flow structure within a typical
engine inlet system. These are compared with the experimental
wall static-pressure, static- and total-pressure field, and
secondary velocity profiles. Additionally, boundary layer
thickness, skin friction values, and velocity profiles in wall
coordinates are presented. 1In order to investigate the effect of
vortex generators, various vortex strengths are examined in this
study. The total-pressure recovery and distortion coefficients
are obtained at the exit of the S-duct. The numerical results
clearly depict the interaction between the low velocity flow by

the flow separation and the injected vortices.
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CHAPTER 1

INTRODUCTION AND BACKGROUND

1.1 S-duct Without Vortex Generators

The subsonic duct is a feature of the air intake
propulsion systems for modern aircraft whether the speed of
the aircraft is subsonic or supersonic. Depending on the
integration of the engine inlet with the airframe, various
shaped ducts are employed. The intention of duct design is
to produce high pressure recovery in order to maintain high
thrust 1levels, and low flow distortion consistent with
stable engine operation. It is common to design ducts to be
as short as possible ©because of size and weight
restrictions. Many aircraft employ curved rectangular, or
circular shaped ducts with constant or varying cross-
sectional area in the engine intake systems. For example,
the Boeing 727, Lockhead Tristar(L-1011), General dynamics
F-16, and McDonnell-Douglas F-18, etc., use the S-shaped
duct in their engine intake systems; Usually, the
diffusing duct is employed in the inlet of the propulsion
system of the aircraft in order to decelerate the flow and
achieve high pressure recovery at the engine compressor.

The S-shaped duct produces complex cross flow patterns

and nonuniform velocity profiles at the exit because of its
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curvature and centerline offset. These deteriorate the
performance of the engine inlet system. The nonuniform flow
at the exit results from the expulsion of low velocity
fluid by a pair of counter-rotating vortices, which are
produced near the inflection point of the duct and
stretched toward the exit.

The experimental results obtainéd by Bansoed and
Bradshaw(1972) show the expulsion of low velocity fluid at
the exit. The authors conducted experiments using three
different kinds of constant-area S-shaped ducts in
incompressible flow. The S-shaped ducts were assembled with
different radii of curvature(R) of the duct centerline. One
had the same R/D = 2.25 in the first and second half bend.
Others had R/D = 2.25 or R/D = 3.5 1in the first and second
half bend, respectively. The S-shaped duct with large
radius in the second half bend was more efficient because
the thick boundary layer in the second half bend was less
rapidly deflected.

McMillan(1982) conducted experiments using a 40°
curved rectangular diffusing duct. The flow was
incompressible. The results show a pair of counter-rotating
vortices at the exit. The secondary velocity profiles show
that the high velocity fluid at the central portion of the
channel moves toward the concave wall, driven by

centrifugal force. Correspondingly, the low velocity fluid
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in the boundary layers moves toward the convex wall. The
mean velocity in the diffusing duct is dominated by this
secondary flow.

Guo and Seddon(1982) tested a S-shaped rectangular
duct of <constant cross-sectional area with several
different angles of attack. The results show that the flow
separation, turbulent intensity, and flow distortion at the
exit increase with increasing the angle of attack.

Vakili et al.(1987) tested a diffusing 30°-30° S-duct
with circular cross section. The duct area ratio between
inlet and exit was 1.51. The offset of the duct resulting
from the centerline curvature was 1.34 times the inlet
diameter. Two straight circular pipes were attached
upstream and downstream of the S-duct to provide the
desired boundary layer thickness flow at the inlet of S-
duct and minimize the exit flow effect. The entrance Mach
number was 0.6 and the Reynolds number based on the inlet
diameter was 1.76x10°. The secondary velocity profiles,
static- and total-pressure contours, and surface static-
pressure were measured at the several streamwise locations.
The experimental results show that a pair of counter-
rotating vortices created by the flow separation cause the
flow distortion at the exit of the S-duct.

Jenkins and Loeffler(1991) conducted experiments on a
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compact diffusing S-duct. The offset of the duct centerline
was 1.5 times inlet diameter. The duct area ratio between
inlet and exit was 2.25. The entrance Mach number and
Reynolds number were 0.34 and 5.75x10°, respectively. The
authors measured the secondary Vvelocity profiles,
streamwise velocity contours, and surface static-pressure.
The results were similar to the experimental results
obtained by Vakili et al. (1987).

Wellborn et al.(1992) conducted experiments on a
diffusing S-duct, which was larger than, but geometrically
similar to the duct studied by Vakili et al.(1987). The
duct inlet Mach number was 0.6 and the Reynolds number
based on inlet diameter was 2.6x10%°. Two straight pipes of
3.75 times inlet diameter were attached upstream and
downstream of the S-duct to provide a uniform inflow and
minimize the exit flow effect. The authors measured the
surface static~-pressure along the streamwise and
circumferential direction. Streamlines near the wall,
observed by oil flow visualization, showed the formaticn of
the counter-rotating vortices in the flow separation
region. The results showed that the flow at the exit was
strongly affected by these vortices, and the mean velocity
profiles were very similar to the total-pressure field.

Early numerical work on the curved pipe is shown in
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Rowe (1970)’s work. The author computed the secondary flow
on a 45°-45° S-shaped and a 180° pipe by the step by step
application of the Squire and Winter’s(1951) inviscid
secondary flow theory. The computation based on the
inviscid theory predicts roughly the flow pattern in a
curved pipe, if the mean flow does not have large local
variations associated with the secondary flow.

Pratrap and Patankar(1975) calculated mean velocity
and secondary flow in a 90° curved <constant-area
rectangular duct for incompressible flow. The authors used
the fully parabolized Navier-Stokes(PNS) egquations and
partially PNS equations, with a k-& turbulence model. The
partially PNS equations for subsonic flow are obtained from
the full Navier-Stokes(FNS) equations by assuming that the
streamwise viscous diffusion terms are negiigible compared
to the normal and transverse viscous diffusion terms. The
fully PNS equations have one more restriction, that the
pressure in the streamwise momentum equation is assumed to
vary only in the streamwise direction. More detail
information about PNS equations is described by Anderson et
al.(1984). The computational results show that predictions
using the partially PNS equations are more accurate than
those using the fully PNS equations.

Levy et al.(1980) <conducted computations in a

constant-area S-shaped duct using PNS equations. The ocffset
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and length of the duct was one and five times the inlet
diameter, respectively. The inflow Mach number was 0.2. The
results show that the total-pressure contours at the region
of near the bottom wall are almost the same shape as the
streamwise velocity contours. More detailed results of the
total-pressure contours and secondary velocity profiles
were obtained by Towne and Anderson(1981). The authors also
conducted a numerical study with a PNS computer program
with an algebraic turbulence model. The flow was laminar
with an entrance Mach number of 0.2 and a Reynolds number
based on duct diameter of 2000.

Levy et al. (1983) analyzed a 22.5°-22.5° S-shaped duct
in laminar and turbulent flow at Reynolds numbers of 790
and 4.8x10% respectively, using a PNS computer code with an
algebraic turbulence model. The streémwise velocity
contours agreed well with the experimental data. The
analysis shows that the streamwise velocity in turbulent
flow 1is similar to the 1laminar flow field, but the
streamwise velocity distortion in the turbulent flow is
less than that in the laminar flow.

Vakili et al.(1983,1984) performed numerical analysis
and experiments on a 30°-30° non-diffusing S-duct. The
inlet Mach number was 0.6 and the Reynolds number was

1.76x10%. The PNS computer code was used to predict the
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static- and total-pressure contours and secondary velo«it:
profiles. The computational results showed that the
secondary velocity profiles agreed well with the
experimental results. The extent of the flow distortion was
underestimated due to simplifications made in the pressure
field calculations. The pressure in the streamwise
direction was used a sum of the pressure obtained from ¢
three-dimensional potential flow analysis and one-
dimensional correction. Harloff et al.(1992a) used the
three-dimensional FNS equations to analyze the 30°-30°
nondiffusing S-duct, which had the same geometry and flow
conditions tested by Vakili et al.(1984). The authors used
two kinds of grid, H- and O-grid. An H-grid conforms well
to the rectangular shape. An O-grid, which has a pole
boundary condition at the center of the grid, conforms well
to a circular cross-section. The results obtained using the
O-grid were better than those by H-grid because the H-grid
had a large amount of grid skewness in the corner region.
The authors concluded that the computational results were
in qualitative agreement with the experimental results, and
more advanced turbulence model and grid refinement could
improve the agreement with the experimental results.
Jenkins and Loeffler(1991) conducted computations on
a compact diffusing S-duct, and compared their results with

experimental data. Results were cbtained using the Baldwin-
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Lomax and "one-half'" equation turbulence model which
accounts for some of the history effects in computing the
turbulence length scale. The results showed that the thin
layer Navier-Stokes equations code provided a reasonably
good representation of the flow at the exit, but the code
could not accurately predict the separated flow region.

Harloff et al.(1992b) conducted a numerical study in
the diffusing 30°-30° S-duct using the three-dimensional
FNS equations. The authors used the algebraic and k-¢
turbulence model. The wall static-pressure distribution and
total-pressure profiles calculated with the k-¢ turbulence
model were better than those with the algebraic turbulence
model. However, the computational results showed that both
turbulence models could not adequately account for strong

secondary flows with flow separation.

1.2 s-duct With Vortex Generators

From the review of the S-shaped duct without vortex
generators, one sees that the strong secondary flow due to
adverse pressure gradient may have deteriorating effects on
the performance of the engine inlet system. To alleviate
this problem, a vortex generator can be used as a flow
control device because it can transport energy into the

boundary layer from the outer flow. The vortex generator
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has been used mainly for the prevention of separation on
wings, diffusers, or bends, or at least for decreasing the
extent of separated region. There are many kinds of vortex
generators, such as simple plow, shielded plow, triangular
plow, scoop, twist interchanger, ramp, tapered fin, dome,
shieled sink, etc.,. Schubauer and Spangenberg(1960)
experimentally investigated the mixing rate of the
turbulent boundary 1layers with many different vortex
generators in a region of adverse pressure gradient. Most
vortex generators 1in use today are small wing sections,
which are mounted upstream of the problem flow area. The
vortex generators are inclined to the oncoming flow to
generate shed vortices. The vortex generators are usually
sized to local boundary layer height to obtain the best
interaction between the shed vortex and the‘boundary layer.
The vortex generators are usually placed in groups of two
or more upstream of the problem flow area. Fig. 1.1 shows
a wing type vortex generator.

Boundary layer control by vortex generators relies on
induced mixing between the external or core stream and the
low energy flow region. The mixing 1is promoted by
longitudinally trailing vortices over the duct surface
adjacent to the edge of the boundary layer. Fluid particles
with high momentum in the streamwise direction are swept

along helical paths toward the duct surface to mix with
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and, to some extent, replace the low momentum boundary
layer flow. This is a continuous process that provides a
source of re-energization to counter the natural boundary
layer growth caused by surface friction, adverse pressure
gradients, and low energy secondary flow accumulation.

There are two basic configurations. In one
configuration, all of the vortex generators are inclined at
the same angle with respect to the oncoming flow direction,
as shown in Fig. 1.2(a). These are called co-rotating
configurations because the shed vortices rotate in the same
direction. In the other configuration, the vortex
generators are grouped in pairs inclined in the opposite
direction to the oncorning flow, as shown in Fig 1.2(b).
These are termed the counter-rotating configurations
because the shed vortices in pairs rotate in opposite
directions to each other.

What kind of configuration is chosen depends on the
location of the flow separation for a given geometry. Co-
rotating vortex generators are very competitive with
counter-rotating vortices in reducing the flow separation
if the generators are properly selected and located. This
type of vortex generator has the focllowing characteristics
when it is used within the duct. (1) Two induced vortices
move along the duct surface, (2) the first vortex moves

away from the duct surface, (3) the other vortex remains
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close to the duct surface, and (4) the distance between
them decreases because they counteract each other.

Counter-rotating vortex generators are very effective
in reducing the flow separation if the vortex generators
are placed slightly upstream of the region of separation.
If the induced vortices are rotating away from each other,
the induced secondary flow between two vortex generators
moves toward the center of the duct. The vortices are
attracted to each other for a short time, and then they
proceed to march away from the wall. Since the two vortices
are moving toward the center of the duct, the duct surface
is not much affected by the induced vortices. If the
induced vortices are rotating toward each other, the
induced secondary flow between two vortex generators moves
toward the duct surface. Two vortices move away from each
other, but they remain close to the duct surface because
the induced secondary velocities push each other toward the
surface. The 1induced vortex strength 1is dissipated
significantly as it moves downstream due to viscous
diffusion.

Early studies with vortex generators have focused on
improving the diffuser performance. Brown et al.(1968)
conducted experiments with pairs of vane type vortex
generators in a short diffuser. The results show that high

pressure recovery and flow uniformity can be achieved by
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the vortex generators, but the incorrect arrangement of
vortex generators can lead to significance performance
losses.

Vakili et al.(1986) experimentally investigated the
performance of the vortex generators in a diffusing 30°-30°
S-shaped duct with circular cross-section. The entrance
Mach number was 0.6 and the Reynolds number based on the
diameter was 1.76x10°. To eliminate the total-pressure
distortion at the exit and flow separation in the duct, arc
wing type, rail type and vane type vortex generators were
installed at the upstream of the separation region. Using
a flow control device, the flow distortion at the exit was
significantly improved. The results showed that the flow
field at the exit depended on the types of vortex
generators.

Reichert and Wendt(1992) conducted experiments to
examine three parameters of vortex generators array, i.e.,
the height of vortex generator, the location of the vortex
generators array, and the vortex generators spacing. The
test was performed on the same geometry and flow conditions
as studied by Wellborn et al.(1992). The Wheeler wishbone
generators, which produced a pair of counter-rotating
vortices, were used. The results show that the efficiency

of vortex generators is much dependent on the parameters of
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vortex generators.

A numerical study of a fully viscous subsonic internal
flow with vortex generators was reported by Kunik(1986).
The shed vortex 1is modeled by introducing a vorticity
source term into a modified form of the PNS equations. That
vortex model resembles the one proposed by Squire(1965)
except that it neglects the variation of viscosity in the
cross plane. Quantitative comparisons with the experimental
data by Vakili et al.(1986) show that the vortex model can
predict the global flow field in the S-duct.

Anderson(1991) conducted the analysis of the flow
physics associated with vortex injection in the S-shaped
duct and F/A-18 inlet duct. The author used the PNS
equations with the algebraic turbulence model. Predicted
total-pressure profiles were 1in good .agreement with
experiment results, but the transverse velocities at the
exit were overestimated.

The PNS equations were derived from the FNS equations
using a series expansion technigue. These equations can be
solved using a space-marching technique because the
streamwise diffusion term in the FNS equations is neglected
and a pressure in the streamwise momentum equation is
assumed to vary only in the streamwise direction for
subsonic flow. Naturally, a substantial reduction in

computation tizme and storage 1is achieved, but the space
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marching method is not well posed if the streamwise
pressure gradient is included everywhere in the flow field.
If the streamwise velocity deficit in the vortex core is
quickly recovered along the duct, the role of the
streamwise diffusion term in the FNS equations is
important. In that case, the FNS equations should be

solved.
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Fig. 1.1 A typical vortex dgenerator.
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(a) Co-rotating.

(b) Counter-rotating.

Fig. 1.2 Typical vortex generator configurations.



CHAPTER 2

GOVERNING EQUATIONS AND BOUNDARY CONDITIONS

From the reviews of the S-duct without vortex
generators, we can conclude that computational fluid
dynamics (CFD) studies have generally used the PNS computer
code to predict the flow fields in the curved ducts, and
simple turbulence modelling without modifications cannot
predict correctly the flow fields which have strong
secondary flows with flow separation. The PNS solutions
usually rely on an input inviscid static-pressure field,
which is generally from an Euler or potential analysis. In
the present study, the three-dimensional FNS equations with
a modified algebraic turbulence model are solved to predict
the flow fields in the diffusing 30°-30° S-duct. The inlet
Mach number is 0.6 and the Reynolds number based on the
inlet diameter is 1.76x10°. Several aspects of the flow
fields are examined. The computed static- and total-
pressure fields, secondary velocity profiles and boundary
thickness are compared with experimental results obtained
by Vakili et al. (1986,1987) and Wellborn et al.(1992) for
CFD validation. Additionally, skin friction values and
velocity profiles in wall coordinates are investigated.

From the reviews of the S-duct with vortex generators,

17
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we know that most of predictions of flow fields with vortex
generators are conducted using PNS equations. In order to
apply space-marching method of PNS equations, the vortical
structures, modelled from the shed vortex, are set up at
the 1inlet plane of a computational domain with the
approximately calculated inlet flow conditions. In contrast
to the previously published work, a new vortex model is
developed and it is applied inside the computational domain
like a source term. The inlet boundary conditions are not
affected by the added vortical structures. Numerical
analysis 1s conducted using the three-~dimensional FNS
equations, with an algebraic turbulence model, because FNS
equations are able to deal with the streamwise diffusion
terms, which are important in the region of the shed vortex
core. In order to confirm the developed voftex model, four-
different types of vortex generators are examined in a
straight duct. In the straight duct computations, the inlet
Mach number is 0.6 and the Reynolds number based on the
diameter is 1.0x10%. The computational results are compared
with the analytic results obtained by the two prediction
models.

In order to investigate the flow structure in the
diffusing 30°-30° S-duct with vortex generators, the above

mentioned vortex model is applied inside the computational
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domain. The three-dimensional FNS equations with a modified
algebraic turbulence model are solved. The inlet Mach
number is 0.6 and the Reynolds number based on the inlet
diameter is 1.76x10%. The interaction between the injected
vortices and separated flow is investigated. The static-
and total-pressure fields and secondary velocity profiles
are compared with the experimental results obtained by
Vakili et al. (1986). In order to investigate the effects of
the injected vortices, the computed results are compared
with those without vortex generators, and the total-
pressure recovery and distortion coefficients are

investigated at the exit of S-duct.

2.1 Governing Egquations
The three-dimensional and compressible Navier-Stokes
equations in Cartesian coordinates without body forces are

written in a conservation form as follows:

9 3(E-E,) 38(F-F,) 3(6-6,) (2.1)
ER ox dy dz

U is the 1independent variable, E, F and G are the

convective flux vectors
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pu
U=|pvV
pw
pe

pu
pul+p
puv
puw
u(pe+p)

U]
"

pv
puv
pvi+p
pvw
vipe+p)

y
1

pw
puw
G = pvw
pw?+p
w(pe+p)

E,, F, and G, are the viscous flux vectors:

(2.2)

(2.3)

(2.4)

(2.5)
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(2.6)

UT, o+ VT, * Wi, ~ Q)

(2.7)

\UT + VT +w-cyz-qy)

TZX

G, = T2y

TZZ

(Ut et VI + WT,. - G, )

(2.8)

The first row of the vector Egq. (2.1) corresponds to
the continuity equation, the second, third and fourth rows
are the momentum equations, the fifth row is the energy
equation; e in the energy equaticn is the summation cof
internal energy and kinetic energy per unit mass. The shear
and normal stresses can be expressed using Stokes

hypothesis, i.e., the secénd viscous factor A=-2u/3

_a—u + a—‘, + aw)
ox ay 0z
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ke =T =p(.—.+—) (2.9)

In the energy egquation, heat flux gqg,, g, and g, are

£ 4

expressed as;

s
Tx = kax
_ aT
q, = _kﬁ} (2.10)
kT
9 = kaz

To close this system, the state equation with an

assumption of a perfect gas is employed.

P =pRT (2.11)

The viscosity, heat conductivity coefficients and
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specific heats of air are evaluated using fifth order
polynomials in temperature, using properties presented in
the National Bureau of Standards tables(1955).

For turbulent flow, it 1is convenient to wuse a
conservation form of the mass-averaged Navier-Stokes
equation. This form takes all turbulence effects into
account by adding the eddy viscosity to the equations.
These equations can be obtained by replacing the molecular
coefficient of viscosity p with p + g and also the
coefficient of thermal conductivity k with k + k.. u, is the
eddy viscosity and k, is the turbulent thermal conductivity.
The turbulent thermal conductivity can be expressed in
terms of the eddy viscosity and turbulent Prandtl number
Pr, i.e., k, = c,u,/Pr,. In the present study, the turbulent
Prandtl number is assigned Pr, = 0.9 for air, and the eddy
viscosity will be discussed in the section on turbulence

model.

2.2 Coordinate Transformationmn
The computation of flow-fields in and around complex
shapes such as ducts, engine intakes or aircraft, etc.,

involves computational boundaries that do not coincide with
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coordinate lines in physical space. For numerical methods,
the imposition of boundary conditions for such problems has
required a complicated interpolation of the data on local
grid lines, and typically a local loss of accuracy in the
computational solution. Such difficulties motivate the
introduction of a mapping or transformation from physical
(x, y, z) space to a generalized curvilinear coordinates
(€, mn, () space. The generalized coordinate domain is
constructed so that a computational boundary in physical
space coincides with a coordinate line in generalized
coordinate space. It makes it possible to solve the
governing egquations on an uniformly spaced computational
grid. In order to use an uniform grid, consider a general

transformation of the governing egquations.

Caat
1]

E(x,y,z)

n=n(x,y,2) (2.12)

(=0 (x,y.,2)

Using the chain rule of partial differentiation,

the partial derivatives become
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o _¢ O 9 9
Er TR T
o _¢ 9 ,, 9 9
2R S TR (2-23)
o . 0 + _.a_+ ._a-
3z "% Ty T LT

The Jacobians of the coordinate transformation are as

follows:

XE Xn XC
J =det| Y Yy Y

Ze ZT\ Z,

(2.14)

The vector Eg. (2.1) can be written in terms of a
generalized nonorthogonal curvilinear system (£, 7, {)
using the change rule of partial differentiation and the
Jacobian of the transformation. The resulting equations can

be written:
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pJ

Q
o

pJv
pdw
pJe

( pT(UE, +vE +wE,) \
pJu (ug, +vg +wk,) +pJt,
pIv (uf, +vE +wk,) +pJt,
pIw (ug +vE +w,) +pJt,
 (pe+p) T(u,+vEi +w,)

pT{un,+vn, +wn,) \
pJu (un,+vn,+wn,) +pdn,
pIv (um,+ v, +wn,) +pdn,
pIw (um,+vm,+wn,) +pJdn,

(pe+p) J(un,+vm,+wn,)

( pJ (uf, +v{, +w(,) \
pJu (uf,+v{ +wl,) +pJC,
pIv (uf,+v{ +w(,) +pJg,
pdw (uf,+v{ +w(, ) +pJ(,
\ (pe+p) J(ul +v{ +w(,)

(2.16)

(2.17)

(2.18)

{(2.19)
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0
rxxJEx+rnyEy+txxJEz
Tt Ty I8, 4T, T8,
tsz‘E).:+tszEy"'rzzJEz
Ch aT oT oT
P Cy == —_—t ==
Pr ( laE+c28ﬂ+ Jac ))

(2.20)

0
Taoxd Nt TN, *1,,J1,
Tyd Nt T, I, +1,.J7,
szJnx+ Tyz‘]ny.‘“rzz"rnz

aT oT aT
Pr a—E+C‘€T‘|— +C5-a—c)

(2.21)
0
T Cxt Ty I 0+ 10T 0,
Ty I Gt T, 0, *1,.JC,
Tszcx+‘ryz‘jcy.ﬁtzchz
Cpk aT aT aT
Ugvz+ng3+ng“‘-Fpr— (c3€6' "’CSa—n- +C6—a—c-)
(2.22)
c, = J(E2+E2+E72)
cz =dJ ( EXnX+Eyny+Eznz)
c, = J(nl+n2+n;2) (2.23)



28

C5 = J(nxcx+nycy+nzcz)
Co = T(L2+02+02)

Note that all the stress terms in £,, fv and G, should
be transformed. For example, the shear stress term 7, would

be transformed to;

ou Ju z du - E av_* av.bc ov

Tay = H(Ey.a_ﬁ-+nyé-ﬁ+ y.a_c.q- x—a_ﬁ. r]x-a-T—]- XEE) (2.24)

2.3 Boundary Conditions

The numerical solution of any partial differential
equation requires the application of appropriate number of
properly posed boundary conditions. The important aspects
of boundary condition development are that the physical
definition of the flow problem must be satisfied and the
numerical algorithm with the developed boundary conditions
must be stable. The theory of characteristics suggests how
to decide the conditions required at a boundary. The
concept of characteristic theory is most easily developed
for the one-dimensional Euler equations. Extending the
concepts to three-dimensions, we can obtain three U_, U, +

¢ and U, - c characteristics in this system, using the fact
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that the incoming flow at the inlet plane is uniform. At
the inlet plane, only four pieces of information enter the
domain along the incoming characteristics and one piece
leaves along the outgoing characteristics because the flow
speed in the whole computational domain 1is subsonic.
Therefore, four boundary conditions must be specified, and
one relation has to be extracted from the characteristic
equation.

It is not necessary to fix values in terms of the
actual characteristic variables as long as the alternative
choice leads to a well posed problem. A particular good
choice on physical grounds is to specify the stagnation
enthalpy and the entropy of the incoming flow. For a
perfect gas, this corresponds to specifying the stagnation
temperature and pressure. These conditionsbare same as the
flow conditions through a duct or nozzle fed from a large
reservoir in which conditions remain constant. Constant
stagnation temperature 7T, and pressure p, are specified at

the inlet plane.

2
T, =T+ — (2.25)
2¢,
X
P, =p(—:,3)"1 (2.26)
Q
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The transverse velocities are assumed to be zero. The
relation which corresponds to the negative characteristic

can be derived along the characteristics Eg. (2.27).

d du
—_— Cc—— =0 2.27
3 p dE. ( )
This becomes
p-pcu=(Dp-pCU)jporior (2.28)

Substituting the inflow boundary condition Egs. (2.25)
and (2.28) into Eg. (2.26), we can obtain the inlet
temperature, static-pressure and axial velocity. The axial
velocity near the duct edge approaches zero in order to
satisfy the no-slip condition on the wall during iterations
because the finite volume method is employed. The density
at the inlet is calculated from the equatibn of state. The
total initial energy at the entry plane can be obtained
from the calculated values.

At the exit, one negative characteristic enters
through the boundary into the computational domain. One
boundary condition must be specified at this plane. In this
study, constant static-pressure is specified at the exit
plane. Physically this condition corresponds to a duct with
an unobstructed exit into a 1large constant pressure
reservoir. Linear extrapolation is adopted for

evaluating the exit velocity and exit density. The exit
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temperature is calculated from the equation of state. The
total internal energy at the exit plane can be obtained
from the calculated values.

The no-slip condition is specified on the wall of the
duct and an adiabatic wall condition is imposed by setting
the normal derivative of temperature equal to zero. The
boundary values at the center, which is needed when using
the O~-grid, are evaluated by averaging the surrounding flow

properties.

2.4 Turbulence Model

The Baldwin-Lomax turbulence model(1978) is applied
along the normal direction from the wall. This model has
been used extensively for attached or slightly separated
flows Dbecause it leads to 1low computational time
requirements and 1t appears to be comparable to more
complex turbulence models. The Baldwin-Lomax model 1is an
algebraic two-layer eddy viscosity model based on the
Cebeci-Smith(1974) method with modifications that avoid the
necessity for finding the edge of the boundary layer. Near
the wall, the Baldwin-Lomax model uses the well-known

Prandtl-Van Driest formulation for the turbulent viscosity.
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(pt) inner = plle')[ (2.29)
where
I=xy(1-exp (L)) (2.30)

|3| is the magnitude of the local vorticity vector.

LR TR R TRE

and
yo = pwuty - prtwy (2.32)
BFo By

-+
Since the damping constant A 1is a function of the
pressure gradient, an empirical equation by Kays and

Crawford(1980) is employed for iﬂ

A* = 25.0
7.1bp” + 1.0
(2.33)
If p*>0.0, b=2.9

Ifp"<0.0, b =4.25

where

B (-‘?I—’)
p* = ox (2.34)
p(1/2) fi?/Z)
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In this study, 7, 1s evaluated as the absolute value; the
value of p* in the computation is less than 0(103?).
In the outer region, a Clauser formulation with a

Klebanoff intermittency function is used.

(p‘)oucez = 0.02688 p Fwaka Fkleb(y) (2.35)

where

Fuake = M0 ( Ypay Fpax + 025 Yoay Qdir / Fpax) (2.36)

and Klebanoff intermittency factor is given by

F,

K

vep (¥) = [1+5.5(0.3 yy )82 (2.37)

mnax
where y,, and F,,. are determined from the equation

F(y) =y|6‘)|[1—exp(-j};——:)j (2.38)

The quantity g, is the difference between the maximum and
minimum total velocity in the profile. The parameter F,, is
the maximum value of F(y) that occurs in a profile, and y,.
is the value of y at which it occurs. The length y is the
normal distance from the wall and y. is the smallest value
of y at which values from the inner and outer formula are

equal.
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(pc)innar YSYC
He = [ (2.39)

(Bedoueer Y2 Ve

The turbulent Prandtl number is assumed to be Pr, = 0.9

in the present study.

2.5 Turbulence Model Implementation

Eddy viscosity turbulence models are usually derived
and validated for two-dimensional boundary layer flows.
Further, the eddy viscosity coefficient determined by these
models depends on the local flow profiles along the normal
direction from the wall. The Baldwin-Lomax turbulence model
performs adequately for fully attached or mildly separated
flows over simple geometry. However, for. the flows over
more complex configurations, where the boundary layers and
wakes may interact or flow separation may occur, the major
difficulty encountered 1in applying the Baldwin-Lomax
turbulence model in that of properly evaluating the scale
length y,, and in turn, of determining (g,),. for boundary
layer profiles.

The turbulence length scales are determined by 1 of
Eg. (2.30) in the inner layer, and y,, in the outer layer.
The eddy viscosity in the outer layer depends on the F_,,

and the Klebanoff intermittency factor. F . 1is a function



35

of ¥,.. and F_,.. Fu, is a function of (y/y,.). The y,.. is the
distance at which the maximum value of F(y) occurs along
the normal direction from the wall, where F(y) Iis
proportional to the moment of vorticity. For simple
turbulence flows, a single well defined peak exists in the
function F(y) along a given streamwise station. When the
flows are complex, the function F(y) may exhibit multiple
local maxima. Selection of inappropriate length scales
leads to inaccurate flow structure. Various methods for
determining the appropriate length scale have Dbeen
proposed.

Horstman(19287) modified the Baldwin-Lomax turbulence
model for the problem of shock-wave and turbulent boundary
layer interaction flows. The y,, occurred outside the
boundary 1layer thickness upstream and do&nstream of the
shock induced separated region. The first maximum value of
F(y) away from the wall was used to insure y, . is less than
the boundary layer thickness.

Degani et al. (1986, 1991) proposed modification of the
Baldwin-Lomax turbulence model in computing the three-
dimensional separated flow around a prolate spheroid at
high incidence in the supersonic and subsonic flow. To
eliminate the selection of large F,, due to the presence of

the vortex sheet, it was chosen at the first peak value of
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F(y) from the wall. In case of showing a nonsmooth behavior
in F(y), a maximum value of F(y) was chosen at the 90% of
the local maximum value. Another modification was that a
cut-off distance was specified in terms of y,,. from the
previous ray. If no peak of F(y) is found in that range,
the value of F_ ., and y,, were taken as those found on the
previous rays.

As mentioned in 1introduction, the three-dimensional
flow separation occurs in the S-duct by the pressure force
due to the duct geometry change rather than by shear force.
The vortical structure, which results from the flow
separation, 1s stretched to the second half of the duct by
the streamwise velocity. It causes y,,  to be located outside
the boundary 1layer thickness as shown in Fig. 2.1(b);
therefore, it is not necessary to consider fhe whole normal
direction from the wall to pick the correct y,,-

In this study, in order to avoid choosing an
inappropriate length scale(y,.), the cut-off distances are
evaluated in every crossplane. They are obtained by
averaging the local boundary layer thicknesses within ¢ =
45°. The effect of strong secondary flow due to flow
separation can be neglected in this region. The length
scale search is restricted to within the cut-off distance.

If the local boundary layer thickness is less than 110% of
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the cut-off distance, F,, and y,., are chosen at the maximum
peak point within that distance. Otherwise, the first peak
value of F(y) from the wall is chosen as F__.

If one employs the same method to decide a cut-off
distance in the case of the flow with vortex generators,
the cut-off distance is less than that of the flow without
vortex generators. This is because the local boundary layer
thickness within ¢ = 45° is thinner than with without vortex
generators because the shed vortex from the vortex
generator has a streamwlse velocity deficit at the region
of the vortex core. The cut-off distance of the flow with
vortex generators 1is adjusted to be greater than the
average boundary layer thickness which 1is obtained by
averaging the local boundary layer thicknesses within ¢ =

45°,
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Fig. 2.1 Behavior of F(y) = yid|r( - exp (-y*/A*)] through
the flow field



CHAPTER 3

NUMERICAL METHOD

The unsteady compressible Navier-Stokes equations are
a mixed set of parabolic-hyperbolic equations. If the
unsteady terms are dropped from these egquations, the
resulting egquations become a mixed set of elliptic-
hyperbolic equations. These equations are more difficult to
solve than the unsteady compressible Navier-Stokes
equations. Most compressible Navier-Stokes equation
solutions are obtained using the unsteady term; the steady-
state solutions are obtained by time marching until
sufficient convergence is achieved.

Both explicit and implicit schemes have been used to
solve the compressible Navier-Stokes equations.
MacCormack(1969) solved the compressible Navier-Stokes
equations using an explicit scheme with a predictor-
corrector technique. He used forward differences for all
spatial derivatives in the predictor step while backward
differences was used in the corrector step. Although the
explicit schemes have an advantage that they are easy to
implement, these schemes need long computation time because
of the 1limitation on the time step due to the Courant-
Friedrichs-Lewy(CFL) stability restriction. For this

39
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reason, schemes with less-restrictive stability conditions
have been an important subject of investigation. Allen and
Cheng(1970) introduced a nonconsistent approximatién scheme
(£ = (£.° -2fP*'+f, ") /ax?]. This approximation scheme
becomes consistent when the steady state is reached and it
has good stability properties when the mesh Reynolds number
is less than 2. MacCormack(1971) modified his original
scheme by splitting a sequence of one-dimensional
operations. The stability condition on the revised scheme
is less restrictive than his original scheme. Deiwert(1975)
employed a finite volume method to solve compressible
Navier-Stokes equations with less-restrictive stability
condition. However, the explicit schemes are not a suitable
method for solving high Reynolds number flows where the
viscous regions become very thin. For these flows, a very
fine mesh is required near the wall in order to resolve the
boundary 1layer. This leads to an expensive calculation
because of the small time step due to the stability
restriction.

A large and productive effort has been occurred in the
area of implicit schemes. Polezhaev(1967) proposed an ADI
(Alternating Direction Implicit) scheme without an
iterative process. Briley and McDonald(1973) applied the

generalized ADI procedure to solve the compressible Navier-
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Stokes equation. Beam and Warming(1978) solved the
compressible Navier-Stokes equation by the implicit method,
which was the same class of ADI schemes developed by
McDonald and Briley(1975). MacCormack(1981) developed an
implicit scheme analogue of his explicit scheme. Even
though implicit schemes are condemned for their large
arithmetic operation counts, these schemes have been
praised for their improved stability conditions.

In this study, an implicit finite volume, lower-upper
time marching code(RPLUS3D), which was developed at NASA
Lewis Reseach Center, 1is employed, and the boundary
conditions and algebraic turbulence model are added in
conjuction with the flow physics; the chemical reaction
term are eliminated to save the computation time. This
computer code employs a lower-upper (LU) factored implicit
scheme developed by Jameson and Turkel(19381). This scheme
is unconditionally stable 1in any number of space
dimensions. Despite being implicit, the LU scheme requires
only scalar diagonal inversions while most other implicit
schemes require block matrix inversions. The use of scalar
diagonal inversions offers large savings 1in computation

time and temporary storage.
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3.1 LU Scheme
The unfactored implicit scheme with time marching for
the vectorized Eq. (2.15) can be formulated as follows;
viscous terms are treated explicitly to avoid complexity.
gt = 0% - at(DAE™) + D (FY) + D (G)]

(3.1)
+ At[LQ(Eﬁ) + Dn(fﬂ) + Dc(@ﬁ)]

where D, D, and D; are the spatial finite difference
operators. The superscript n denotes the time level, i.e.,
0" = O(nat). The difficulty for solving these algebraic
equations comes from the nonlinearity of the set of

equation. The linearized equations with the same temporal

accuracy can be obtain by the Taylor series expansion.

B = E(GY +(g—g (6" -8°) +o(|Aat]?)

~ n
F(ort) = B(OM +(%’ (G - 8") +o(|Aat]?) (3.2)
é<5"’1)=é(ﬁ">*(%g (G - 6°) +o(]Aac|?)

Let the linearized flux Jacobians of the convective f£flux

vectors be
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A =.§£ , B = Qg , é =.§§ (3.3)
ou ouU ouU
and the correction be AU = U ®**' - U °. The Jacobian

matrices A, B, and C are given in Appendix A.

This unfactored implicit scheme 1is first order
accurate in time. Therefore, the second higher order terms
can be neglected without 1loss of time accuracy of the
linearized governing equations.

(I+at(DA+D,B+DC)]1al

(3.4)
=-at[D (E-E)) + D (F-F) + D (G-G)1]

The linearized Eg. (3.4) with the unfactored implicit
scheme has large block banded matrices, which require large
storage and computation time for inversion. The Eg. (3.4)
can be factorized by replacing the operator with a product
of three one-dimensional operators. This is sane as the ADI
scheme, which also requires inversions of block tridigonal
or block pentadiagonal matrices. If one solves the block
tridiagonal system by Gaussian elimination without
pivoting, the operation count for the block Thomas
algorithm is O(NM?) where M is the block size and N is the
number of unknowns. Clearly it 1is desirable to avoid

solving a block tridiagonal system. For many standard



44
algorithms, one can not be confident that the Thomas
algorithm is numerically stable if the diagonal dominance
is lost by increasing time steps.

Jameson and Turkel(1981) proposed the idea of a lower-
upper factored implicit scheme that 1is unconditionally
stable in any number of space dimensions and also yields a
steady-state solution that is independent of At. The LU
implicit scheme needs only two factors even for three-
dimensional problems because of the unique manner of
splitting. As a result, this scheme is more stable and

robust than ADI schemes. Let

A4 &
é:é.+§- (3-5)
b e

The split flux Jacobians, A*, B*,C*, A, B and C° are
constructed such that the eigenvalues of "+" matrices are
nonnegative and those of "-" matrices are nonpositive. Of
the many ways of splitting, Jameson and Yoon’s(1987) method

is employed as follows:
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A" =0.5(8 +y4T)
§-=O S(A-YEI)
B =0.5(8+y5T)
(3.6)
B~ =0.5(8-vy;T)
E"=0.5(C+vyal)
€ =0.5(8-vya1I)

where y,, vy and y. are greater than the spectral radii of

the flux Jacobians associated with them:

Y3 max(lllsl)

Y5 max(|2.,:|) (2.7)

Ye =max (|Aa])

Here, A,;, Ay and A, represent eigenvalues of Jacocbian
matrices A, B and C. The spectral radii and eigenvalues of
Jacobian matrices are obtained in section 3.3.
Substituting Eg. (3.5) into Eg. (3.4) and performing
the first order upwind difference according to the sign of

the eigenvalues, The linearized implicit scheme can be

obtained:
[I + AC(D{A" +D,‘-B" ‘-‘D(-é’ + D{A‘- + D‘l‘é‘ + Dcé-)]Aﬁ

=-at[D (E-E,) + D, (F-F)) + D (G-G,)] (3.8)
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where DS, D., and D; denotes backward-difference operators

while D,*, D,*, D; are forward-difference operators. Eq.

(3.8) can be expanded in discretized form as follows:

Aﬁi,j,k + At (Al'..i.k AU, - Ai.-lJ.tAﬁi-lj,k + ‘Ai-'l.i.kAﬁ‘-l.j.k
- A AU:'J./:"'B:‘.J.I: AU = BiyjuBU 4 * B jx8UL s
- Bi.‘j,t AU‘J_k+Cij.k AU[Jk - C‘-._ l,j.k AU_ IJ.I + C"-, ],j.k AU. l\j.k

CijxA0,,) = AtRHS
(3.9)

where

RHS =D, (E-E,) +D(F -F,)) +D, (G -G,) (3.10)

This discretized equation can be written as

(3.11)

Eg. (3.11) can be factorized according to the sign of the

Jacobian matrices

{kK + At (D{A* +D /B  +D;C" -A" -B"-¢C") HK)~
(K + At (DE’A' +D/B-+D/C +A +B +C) A0
where
K=I+At (A" -A +B -8B +8& -¢) (3.13)

Notes that matrix K 1s diagonal. This can be easily
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verified by substituting Eg. (3.6) into Eg. (3.13). K! is

also diagonal and can be moved to the right hand side.

{1+At(D;A DB +D /¢ -A -B -C")}
n

{r+ At (D A" D" D/C" + A* +B* + &) AU

=At {I + At (v; * v5 * Yo ) I }RHS (3.14)

The operator on the left hand side of Egq. (3.14)
represents Lower and Upper operator of this scheme. These
two operator represent forward and backward substitutions.
It is interesting to note that if there is no source term
in the governing equation, the numerical method completely
eliminates the need for block matrix inversion. In fact,
the <two operators in Eg. (3.14) require only scalar
inversions. Although the LU scheme is an implicit scheme,
the numerical operation counts are not much differrent from
those of explicit methods.

The discretized equation in the finite volume method
is derived by approximating the integral form of the
equation to be solved. The computational region is divided
into elementary gquadrilateral volumes within which the
integration is carried out, and the integral eguation is
evaluated at each subdomain. This method can easily handle
the complicated gecmetry withcut considering the equation
written in curvilinear coordinates. It makes it possible to

avoid problems with =metric singularities that are usually
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associated with finite difference methods. If this method
is applied on the uniform rectangular grid, the discretized
equation will be equal to the discretized equation using
the central finite difference method. It has second order
accuracy in space, but for the non-uniform grid the

convergence rate in space is less than second order.

3.2 artificial Dissipation

The finite volume formulation reduces to a central
difference approximation on a uniform grid. It allows
undanped oscillations with alternative signs at odd and
even mesh points. Wiggles appear in the neighborhood of
severe pressure gradient regions or stagnation points.
These spurious oscillations can not be smoothed out totally
by the wviscous and dissipation terms. In order to suppress
these numerical oscillations, the artificial dissipation
terms are added into the LU scheme.

In this study, Jameson’s(1981) adaptive artificial
dissipation scheme is employed. The dissipation terms
consist of blended second and fourth order differences. The
fourth order difference terms provide background
dissipation throughout the flow field to prevent odd-even
decoupling which occurs from the linearized Euler equation

terms. The second order dissipation terms are used to
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stabilize the flow calculation near the regions of the
strong pressure gradients. These terms are explicitly added

to the RHS term as an additional residual. The added

dissipation term are as follows:

- _(2) ., U @ . o
DE ( i’—;,j,k $ (TI)iJk L1 JkDE DE Df (E)ij,k)
(2) - 0 (4) . - . 0
+Dq(€ lk ﬂ("—I);Jk lj'lknD“Dn(})ljk)

- 2) - ﬁ (1) ‘NIRRT U
+D<(Ei.j,k’%D<(T]')iJk € ]le(D(D((—j)zjk)
(3.15)
where
(2) - > v v v
115k = K2xio_;,j,kmax (Viva, k0 Viet ok Vi, 5000 Vit k)
(3.16)
5 . =|Pi.3 k" 2Ps ;. k*Pi1 ik (3.17)
1.7.K piol,j,k+2pi,j.k+pi-l.j’.k
xl.%'Jk=min((J?)i.1,jlk, (J?)i,j,k) (3.18)
(4) _ _ o (2)
ei’%,j,k - maX ( O 4 K4 ei’—l-.j,k) (3019)

x, and «, are scalar constants. In this study, «, and x, are
1 and 1/32, respectively, and the magnitudes of artificial

dissipation coefficients are much less than the eddy

viscosity in the boundary layer. The term %U* is a spectral
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radius scaling factor and is defined as
Vi ik =Ys* Y5t Ye

1
= & ul + & vl + &, [ w] +c (EX+E;+E3) 2

(3.20)
s lul + In vl + |l lwl + ¢ (ni+n) +n3) 2

1
|l Tul +1C vl + (8] Wl + e (G+ G+ 00 2

which is the sum of the spectral radii of A, B and C.

The first terms in the parentheses of Eq. (3.15) are
the second order dissipation. It has an extra pressure
gradient coefficient which 1is constructed by taking the
second difference of the pressure. Its value increases in
the neighborhood of the strong pressure gradient region, so
the non-physical overshoot or undershoot are eliminated by
the second order term. The second terms in the parentheses
of Eg. (3.15) are the fourth order dissipation. The
coefficient &£® switches off when the second order nonlinear
coefficient is larger than the constant of the fourth order

coefficient.

3.3 Eigenvalues of Jacobian Matrices

The eigenvalues of Jacobian matrices are required to
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analyze the stability of a numerical scheme. The Jacobian
matrices of non-conservative equation (A, B and C) are much
simpler than the Jacobian matrices of conservative equation
(A, B and C). Warming et al.(1975) showed that an uniformly
bounded similarity transformation between the Jacobian
matrices of non-conservative equation and conservative
equation existed in the invicid gas dynamic equations. The
Jacobians of the generalized trnsformed convective flux
vectors can be expressed by the Jacobians of conservative

equation.

F aé= aE viF: iqzr
A7 56 T o Thau ey T ATA RS

L O0F L 8B, OF, &

B aa nxaU+nyaU+TIZaU nxA*'an*ﬂzC (3.21)
a_ 086 _,0E _, 8F _, 3G _

€= %6~ Yavthap T leap T AT OETLSC

Using the similarity transformation, Eg. (3.21) is

changed to the simple form.

A=M(EA+EB+EC) M
B=M(nA+nB+n,C) M (3.22)
&=M(LA+(B+{,C) M

It is not hard to find the eigenvalues of the Jacobian

matrices in the non-conservative equation. The eigenvalues



52

of A are as follows:

Ai23=U
I4= u+c (3.23)
T, =u-c

The eigenvalues of B and C are similar to those of A,

only u in the eigenvalue of A has to replace to v and w,

respectively.

The eigenvalues of A, B and C are easily obtained

using the Eg. (3.23). The eigenvalue of A are as follows:
;'1,2.3 =furf v+, w

x,

1
Exu+€yv+§zw+ C(Ei*ifﬂ*ii)z (3.24)

) 1
Ay = Eu+E v+ E,w-c(E+E+E3)?2
The eigenvalues of B and C are similar to those of §,
only £ in the eigenvalues of & has to replace to 5 and ¢,
respectively.
In order to obtain the bound of the spectral radii in

the flux Jacocbians, the biggest eigenvalue is tested.
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ve=max ()5

1

. . . 2, g2 .22,

S|5x||u| |Ey|lvl IEZHWI c(Ex+§, £2) 2 (3.25)
S AAA (|ul+ |v|+|wl+/3C)

SAAA (2 Jul+vi+w2+2cC)

where AAA = max(&,, &, §,).
Using the same method, the bound of the spectral radii

of B and C can be obtained:

BB (2yu*+vi+w2+2cC) (3.26)

Ys

CCC(2yu+vi+w2+2cC) (3.27)

Ye

where BBB = max(7n,, 7,, 7,) and CCC = max({,, {,, {)



CHAPTER 4

DIFFUSING S-DUCT WITHOUT VORTEX GENERATORS

4.1 Geometry and Grid

The geometry of the diffusing S-duct examined in this
study 1s shown in Fig. 4.1. The duct centerline is defined
by two circular arcs with identical radii of curvature,
which are 5 times the inlet duct diameter, and subtended
angle 6_,/2 = 30°. Both arcs lie within the xy-plane as
shown in Fig. 4.1. The coordinates (x;,, Y., 2Z,) of the duct

centerline are given by Eg. (4.1):

For 0 < 6 < 8.,/2
X, = Rsin®
Ye1 = Rcosb - R
Z2,=0
For 0,./2 £ 6 < 0., (4.1)

]
X, = 2Rsin( ';"‘) - Rsin (6, -9)

Vel =2Rcos(—-o%‘5) - R-Rcos (6,,,-90)

it
o

zcl

The cross-sectional shape of the duct perpendicular to
the centerline 1is circular. The diameter of the cross
section varies with the arc angle f§ and is given by Eg.

(4.2) .
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(4.2)

where D, and D, are the diameter at the S-duct inlet and
exit, respectively. The area ratio of the duct exit to
inlet is 1.51. The offset of the duct resulting from the
centerline curvature 1s 1.34D;. The 1length of the duct
measured along the centerline is 5.24D,. A straight pipe,
which is 4.6D, long, is installed upstream of the S-duct to
provide the desired boundary layer thickness at the inlet
of the S-duct. In order to minimize any downstream effect,
a 9D, straight section of pipe is attached at the exit of
the S-duct. The average inlet Mach number is 0.6 and the
Reynolds number based on the duct diameter is 1.76x10°.

In the present study, an O-grid is adopted because it
conforms well to the boundaries of the circular duct. The
O-grid consists of 47 radial points, 42 circumferential
points in the half duct, and 70 streamwise nodal points. A
finer grid is used 1in the region of flow separation.
Exponential stretching is used to obtain a fine mesh near
the wall. The upstream and downstream lengths of straight
ducts are also extended using the exponential stretching.
The mesh size adjacent to the duct surface is almost

1.25x10" times the duct inlet diameter. The two grid points
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nearest the wall are at value of y* of about 2.6 and 5.7 at
the reference station (S/D;, = -1.5).

The computed results do not depend on the initial
velocity conditions, 1.e., the initial velocity profile
with or without adjusting the axial velocity by the one-
seventh power velocity distribution law near the wall. The
mass flow changes between the inlet and exit was within 1
percent for all calculations. The residuals for these
numerical solutions were reduced approximately three orders
of magnitude. Solutions were obtained on the Cray-YMP. The
number of iterations required to obtain the converged
solutions was approximately 40,000. The computational speed

was approximately 960 iterations per CPU hour.

4.2 Results and Discussion

When discussing numerical and experimental results,
streamwise position will refer to the distance to cross
stream-planes measured from the inlet of S-duct along the
duct centerline and normalized by the duct inlet diameter.
Position within cross stream-planes is specified by the
polar angle ¢, measured from the vertical in a positive
clockwise direction as shown in Fig. 4.1, and the radial

distance from the centerline of the duct.
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Fig. 4.2 shows the surface static-pressure
distributions at ¢ = 10°, 90° and 170° which are compared
with two experimental data. Note that the definition of the
surface static-pressure coefficient in the two experiments
is different. Vakili et al.(1986) measured the reference
flow parameters at S/D; = -1.5, upstream of the S-duct for
normalizing downstream flow data. The reference variables
were evaluated at the center of the duct.

Wellborn et al. (1992) measured the reference flow
parameters at S/D, = -0.5, upstream of the S-duct. The
reference dynamic pressure was evaluated by subtracting the
wall static-pressure from the total-pressure measured at
the center of the duct. They used a similar duct but larger
than that used by Vakili et al.(1986); therefore, the
Reynolds number of Wellborn et al. (1992) éxperiment is 47%
higher than that of Vakili et al.(1986) experiment.
However, In this study, calculations were made using the
same Reynolds number as the Vakili et al.(1986) experiment.

The computed surface static-pressure distributions are
in good agreement with the experimental data except in the
separation region. In the separation region, the predicted
values of surface static-pressure are higher than the two
experimental results. Both experimental data show constant

values of static-pressure at ¢ = 90° and 170° in the region
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2 < S/D, £ 3; the computational result shows a similar
result in the region 3 < S§/D, < 4.

The experimental flow separation region shown in Fig.
4.2 was determined by surface oil flow visualization. The
computed flow separation region is determined by examining
the streamwise velocity in the vertical plane of symmetry.
The predicted separation length is 1.94, which is a little
shorter than the experimental value of 2.1. The predicted
separation (2.44 < S/D;, < 4.40) occurs farther downstream
than was observed experimentally (2.02 < S/D; < 4.13). This
indicates that the applied turbulence model, even as
modified, cannot correctly account for the three-
dimensional separation flow with very strong secondary
flow. The experimental and numerical.results show that the
flow fields in a diffusing S-duct have gtrong secondary
velocities with flow separation, and the counter-rotating
vortices resulting from the flow separation are stretched
into the second half bend of the duct by the streamwise
velocity. These complex flow fields result in the moment of
vorticity(F(y)) having several peak values along the normal
direction from the wall. Although the first peak value from
the wall is chosen as the length scale(y,,) in order to
avoid choosing an inappropriate length scale, this chosen

length scale in the flow separation region cannot be
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considered as a perfectly correct length scale.

The reverse flow in a diffusing S-duct is associated
with the adverse pressure gradient due to the increase of
duct area and the secondary flow due to the duct curvature.
Fig. 4.3 shows the velocity profiles in the vertical plane
of symmetry. The reverse flow occurs away from the wall; an
enlarged view 1s shown in Fig 4.3(b) to display this
feature more clearly. These different characteristics of
flow separation can occur due to the turbulence model. If
the function F(y) has a peak value close to the wall, the
eddy viscosity along the normal direction from the wall
approaches quickly to zero by the Klebanoff intermittency
factor except the region of the near wall. This incorrect
viscosity profile cannnot adequately account for the
reverse flow associated with the adverse pfessure gradient
and the strong secondary flow.

Fig. 4.4 shows the surface static-pressure
distribution along the circumferential direction at the
three different streamwise locations S/D, = 0.96, 2.97 and
4.01. The computational results at S/D, = 0.96 and 4.01
agree quite well with the experimental data. S/D, = 0.96 and
4.01 are located upstream and downstream of the flow
separation region, respectively. The computed values of

surface static-pressure at S/D, = 2.97, which is located
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within the flow separation region, are higher than the
experimental data. This overprediction of surface static-
pressure seems to result from the inadequate turbulence
model as previously mentioned.

Fig. 4.5 shows the static-pressure contours at the
various streamwise locations. The computed results are
compared with Vakili et al.s(1987) experimental data. Since
the flow is symmetric with respect to a vertical plane
passing through the centerline, only half of the plots are
shown 1in these figures. The calculated static-pressure
contours show similar trends as the experimental results,
but the computed static-pressure levels are higher than the
experimental values. The static-pressure coefficient are
evaluated as (Pjay ~ Pus) /9, and the reference values are
measured at the center of duct in the refefence plane (s/D
= ~-1.5). Comparing two experimental results of the surface
static-pressure coefficient of Fig. 4.2(a) and the static-
pressure coefficient contours of Fig. 4.5, the static-
pressure coefficient near the wall in Fig. 4.5 is much
lower than that shown in Fig 4.2(a). However, the computed
static-pressure coefficient near the wall in Fig. 4.5 are
very close to the experimental surface static-pressure
coefficient, and alsc Fig. 4.2(a) shows that the surface

static-pressure coefficients, even if at the reference
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plane, are much different along the circumferential
direction. This probably results from deficiencies in the
experiments, primarily coarse data acquisition locations
and uncertainties in the static-pressure measurements using
pitot tubes.

Figs. 4.5(a) and 4.5(b) show the increase of the
static-pressure toward the outer wall in the first half
bend. This result is anticipated by the inviscid theory. In
the second bend, the static-pressure increases from the
upper wall to the lower wall as shown in Figs. 4.5(d) and
4.5(e) due to the adverse curvature direction. The static
pressure along the duct increases due to the increase of
duct area. The static pressure core shown in Fig. 4.5(e)
results from the streamwise velocity deficit at the region
of the two counter-rotating vortices. fhis means that
nonuniform flow at the exit occurs from the flow
separation.

Total-pressure contours compared with the experimental
data obtained by Vakili et al.(1987) are shown in Fig. 4.6.
Fig. 4.7 shows the total-pressure contours compared with
the experimental data obtained by Wellborn et al. (1992).
Note the different definition of the total-pressure
coefficient in the two experimental data. The agreement
between the computational and experimental results is guite

good except downstream o©f the flow separation. The
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disagreement at the downstream of the flow separation
caused by the different flow separation region.

A qualitative picture of the secondary flow pattern
in a curved duct is that an inviscid core fluid moves
toward the outer wall of the duct, and a low speed boundary
layer fluid migrates circumferentially from the outer wall
to the inner wall in the first half of the S-duct. This
phenomenon results in low energy flow accumulating near the
inner wall of the first half bend. This is shown in the
total-pressure contours of Fig. 4.6(d). The adverse
pressure gradient is induced on the second half bend of the
duct due to increase of the duct area. The pressure
gradient causes a thick boundary layer and deflection of
the streamwise flow direction.

The above menticned secondary flow paﬁtern contributes
to the formation of a pair of counter-rotating vortices by
the three-dimensional flow separation. Tobak and
Peake(1982) showed the topographical structure of three-
dimensional flow separation. The counter-rotating vortices
formed by the vortex lift-off stretch to the exit of the S-
duct by the streamwise velocity, and move away from the
wall to the center of the duct. In the region between two
counter-rotating vortices, the secondary velocities induced
by these vortices push the low energy flow toward the

center of the duct. The high energy flow between the
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vortices and the duct wall is pushed toward the boundary
layer. This mechanism makes the convex shape of the
inviscid core flow region as shown in Fig. 4.6(f).

The shape of the total-pressure contours in the cross
plane depends on the strength of the counter-rotating
vortices and the core location of the vortices 1in that
plane. They are related to the original 1location of the
counter-rotating vortices in the duct. The computed three-
dimensional flow separation region occurred further
downstream than was observed in the two experiments. This
causes the discrepancy between the computational and
experimental total pressure contours at S/D, = 5.24 and
5.73.

Comparing Figs. 4.7 and 4.8, we see that axial Mach
number contours are very similar to ‘thé total-pressure
contours at the same axial location. The computational
total-pressure contours at S/D, = 5.24 and 5.73 indicate
that the computed streamwise velocity deficit (U, - u) at
the region of the counter-rotating vortices is bigger than
was observed experimentally. This large streamwise velocity
deficit makes the inviscid core flow region larger in order
to satisfy the constant mass flux along the streamwise
direction.

Fig. 4.9 shows the secondary velocity profiles at the
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five stations along the duct. They are compared with the
experimental results obtained by Vakili et al.(1987). Fig.
4.10 is the secondary velocity profiles compared with the
experimental results obtained by Wellborn et al.(1992) at
S/D, = 5.73. The development of secondary flow in the curved
duct is clearly shown in these figures. The computational
results are in good agreement with experimental data except
downstream of the flow separation region. The secondary
velocity profiles in the first bend clearly depict the
gualitative picture of the secondary flow pattern in the
curved duct as mentioned in the discussion concerning the
total-pressure contours.

Fig. 4.9(c) shows the accumulation of low energy flow
at the lower wall, which is consistent with the observation
of the total-pressure contours. Downstréam of the flow
separation region, Figs. 4.9 and 4.10 show that a pair of
counter-rotating vortices move away from the wall and
toward the center of the duct. The computational results
show that the secondary velocity 1is overestimated
downstream of flow separation. This results from the small
eddy viscosity effect in the flow separation region by the

implemented turbulence model, i.e., F

max

and y,, are chosen
at the point of the first peak value from the wall in that

region.
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The variations of boundary layer thickness at ¢ = 10°,
90° and 170° along the duct are shown in Fig. 4.11. The
boundary layer thickness is defined as the normal distance
from the wall where the total-pressure coefficient is 1.0.
The predicted results are compared with the experimental
results obtained by Vakili et al.(1987). The computational
results and experimental data are in reasonable agreement.
The rapid boundary layer growth at ¢ = 170° is caused by
the flow separation. In the transition region (S/D, = 0.0)
from the straight duct into the first bend, the computed
results show that the boundary layer thickness at ¢ = 170°
is less than that at ¢ = 10°. The streamwise velocity near
the lower wall in the transition region is faster than that
near the upper wall due to the effect of the curved
geometry. It was well depicted in the static-pressure
contours as shown in Fig. 4.5. The experimental data do not
clearly show the effect of this flow mechanism. As shown in
the secondary flow pattern of Fig. 4.9, the high energy
flow migrates toward the outer wall in the first bend,
therefore the boundary layer thickness at ¢ = 10° along the
duct 1is less than that at ¢ = 90° and 170°.

Downstream of the flow separation, the computational
result shows that the boundary layer thickness at ¢ = 90°

is less than that at ¢ = 10°. The reason is that the strong
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secondary velocities induced by the counter-rotating
vortices push the high energy flow toward the wall. The
stronger secondary velocities, as compared with
experiments, are associated with the fact the computed
total-pressure boundary layer 1is thinner than the
experimentally measured one.

Fig. 4.12 shows the velocity profile along the normal
direction from the wall at the four different streamwise
locations. The first grid points in the computation are
located inside the visccus sublayer (y* < S). At the first
grid points, the friction velocity 1is calculated to
normalize the velocity profile. The viscous sublayer
region, the log 1linear region, and the wake region are
shown in this figure. In Fig. 4.12(b), the yelocity profile
at ¢ = 170° 1is not shown because the definition of the
friction velocity is not applicable in the flow separation
region. At the exit of S-duct (S/D, = 5.2), the flow is
reattached but a pair of counter-rotating vortices are
present as shown in Fig. 4.9(e). These cause the boundary
layer profile to deviate from the law of the wall at ¢ =
170°. The velocity profiles at ¢ = 170° show the large
streamwise velocity deficit (U, - u). Fig. 4.12(d) shows a
comparison with the velocity profile measured by Wellborn

et al.(1992) at S/D, = 5.73. The agreement in the wake
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region is poor because the strength of the counter-rotating
vortices was overestimated as previously mentioned.

The skin friction values along the streamwise
direction are plotted for ¢ = 10°, 90° and 170° in Figqg.
4.13. Note that there is no experimental data for the skin
friction values. The trends of the computed results are
similar to the trends of Bansod and Bradshaw’s(1873)
experimental data for low speed flow in a nondiffusing S-
duct. The skin friction decreases along the duct due to the
increase of the duct area.

Fig. 4.14 shows the streamlines in the symmetry plane
along the duct. The experimental result was obtained by
placing a thin metal plate in the symmetry plane of the S-
duct. Even though there is no cross flow in this symmetry
plane, the presence of thin plate in the symmetry plane
introduces shear layer development and blockage. However,
the comparison with Wellborn et al.’s(1992) experimental
result agrees well qualitatively.

In the current <computations, numerical results
demonstrate the capability of a modified algebraic
turbulence model in <the flow fields of the three-
dimensional flow separation with a strong secondary flow.
The computed results agree quite well with the experimental
results except in the flow separation region. Even though

there are deviations between experimental and numerical
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results in the flow separation region, the computed results
depict well the flow structure in the diffusing S-duct.
However, further studies to obtain the correct length scale

in the flow separation region are required.
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4.1(a) The geometry of the diffusing S-duct.

Fig.

$/D, = 0.17

24

S/D, = §.

4.1(b) Measurement stations along the streamwise

Fig.

direction.
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4.2(a) Axial surface-static pressure coefficient.
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( Ma = 0.6, Re, = 1.76x10°)
Exp. Vakili et al. (1386)
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Fig. 4.2(b) Axial surface-static pressure coefficient.
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(b) Expanded View
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1.01 S/D, = 4.01

£

Fig. 4.4 Circumferential surface-static coefficient.

Cp: = (Piocat = Puwan)/ (Pag = Puan)
( Ma = 0.6, Re, = 1.76x10° )

Exp. Wellborn et al. (1992)
( Ma = 0.6, Re, = 2.6x10° )
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STATIC PRESSURE COEFFICIENT CONTOURS
( Without Vortex Generators )

EXPERIMENT COMPUTATION

(b) at S/D, = 1.31

Fig. 4.5 Sstatic-pressure coefficient contours without
vortex generators.
( Ma = 0.6, Rey, = 1.76x10° )
Exp. Vakili et al. (1987)
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Pig. 4.6 Total-pressure coefficient contours without
vortex generators.
( Ma = 0.6, Re, = 1.76x10° )
BExp. Vakili et al.({1987)
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COMPUTATION

Fig. 4.7 Total-pressure coefficient contours without
vortex generators. At S/% = 5.73
( Ma = 0.6, Re; = 1.76x10" )

Exp. Wellborn et al.(1992)
( Ma = 0.6, Re, = 2.6x10° )
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Fig. 4.8 Axial Mach number contours without vortex
generators. At S/D;, = 5.73
( Ma = 0.6, Re, = 1.76x10° )

EXp. Wellborn et al. (1992)
( Ma = 0.6, Re, = 2.6x10° )
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SECONDARY VELOCITY VECTORS
( Without Vortex Generators )

EXPERIMENT COMPUTATION

(b) at S/D, = 1.31

Fig. 4.9 secondary velocity profiles without vortex
generators.
( Ma = 0.6, Re, = 1.76x10° )
Exp. Vakili et al.(1987)
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4.10 Secondary velocity profiles without vortex
generators. At S/D; = 5.73
( Ma = 0.6, Re; = 1.76x10° )
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Fig. 4.12(b) Boundary layer wall coordinates plots at
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$/D, = 5.73

Exp. Wellborn et al. (1992)
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CHAPTER 5

STRAIGHT DUCT WITH VORTEX GENERATORS

The spiral 1longitudinal vortex interactions with
turbulent boundary layer are numerically investigated in a
cylindrical duct. The helical motion of the injected vortex
is compared with the prediction by imagine vortex system
and the prediction by Wendt et al.’s(1992) vortex
interaction model. Two prediction models are derived in the
Appendix B and C. In a second model, the constants which
were derived from the experimental result of the external
flow are employed. Although it is not sufficient to apply
the same constants to predict the helical motion of the
injected vortices 1in the internal flow, a reasonable
prediction can be obtained in a short region just
downstream of the vortex generators.

Kunik(1986) conducted a numerical study about the
behavior of the injected vortex using the PNS equations on
the straight duct. The flow was 1incompressible and the
Reynolds number based on pipe diameter was 2000. The
injected vortex was set up at the inlet of the
computational region because the PNS equations could be
solved by forward marching in space. Note that the PNS
equations cannot consider the streamwise velocity deficit
at the vortex core sufficiently because of neglecting the

91
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streamwise diffusion term of the FNS eqguations.
In the present study, the injected vortices are set up
within the computational region, and three-dimensional FNS
equations are solved by the previous described numerical

technique. Fig. 5.1 shows the computational grid for a

cylindrical duct with L/D 20.0. The polar grid topology
consists of 47 radial points, 73 circumferential points and
60 streamwise nodal points. Exponential stretching is used
to obtain a fine mesh near the wall. In order to obtain
high quality velocity profile, the wall shear stresses are
measured within the viscous sublayer. The first grid point
nearest the wall has a y* value of less than 3, which is
about 1.6x10* times the duct diameter. The 1location of
vortex generator is at X/D = 2.1. The entrance Mach number
is 0.6 and the Reynolds number based on thé inlet diameter
is 1.0x10°.

The number of iterations required to obtain a
converged sclution was approximately 25,000. Solutions were
obtained on the Cray-YMP. The computational speed for the
full duct was approximately 540 iterations per CPU hour.
The residuals for these soclutions were reduced by almost

three orders of magnitude. The mass flow changes between

the inlet and exit were within 1 percent.
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5.1 Vortex Generator Model

The shed vortex from the vortex generator is modeled
by providing the two-dimensional secondary flow structure
in a crossplane. The secondary velocity structure is
formulated as a viscous trailing vortex on the assumption
of steady, incompressible, laminar and axisymmetric flow.
The secondary velocity structure obtained with the above
assumptions can be applied to the compressible and
turbulent flow, because only one crossplane of the
computational domain employs this vortical structure to
simulate the shed vortex downstream of vortex generator.

The Navier-Stokes equations in cylindrical coordinates
based on the origin of the trailing vortex in the infinite

space are as follows:

du du U2 1 3
radial mom. eq. U, —% + uy, —=% - & =_.209P
q T or * 8x r p or
(S.1)
u,
+v (Vu, - =]
72
du du u,u u
rotational mom. eq. uU. —— +u. —2 + X228 =y [Ry, - —2
7 T or * dx r [V* uy Iz]
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du du
axial mom. eq. u:.gf'+ ux?ﬁf =.H% gﬁ + vy,
(5.3)
d(ru du
continuty eq. 2 (z u,) + X =0 (5.4)
r or ox

where

3r:  ror | ox? (5-3)

These eguations are linearized and solved by making

the following assumptions:

1) The streamwise velocity deficit u, = U, - u, and the
rotational velocity u, are small compared to the
free-stream velocity U,.

2) The radial velocity u, is very small compared to U,.

3) The Reynolds number of the main fiow, U.,x/v, 1s
large.

These assumptions reduce the above momentum and continuity

Egs. (5.1) - (5.4) to
radial mem. eq. — -10p (5.6)
r p or

. du
rotational mom. eq. U,—2 = -2 ]
ox or? r or r?

[
—
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, aud au§ 1 aud
eo. Uy _ 1 %Y (5.8)
eaxial mom. eqg. U, T v [ 3.7 + 3 ]

. 1 d(ru,) duy
£ t g. = - =0 (5.9)
continuty eg P =

The boundary conditions to be satisfied by these

linearized eguations are:

x>0, uy —~-0and u, - 0 as r - ®

X - o , u — 0 and u, - 0 for all r

x=0, u =Tr/2nrr , u, = 0 except at the singular

point r = 0.
By the nature of the approximations, the vortex is examined
at some distance downstream of its origin. Hence it is
sufficient to assume that the vortex is suddenly generated
at x = 0 as a free vortex of circulation I'. Far downstrean,
the vortex finally decays until all the perturbation
velocities u,, u, and u, are once again zero. Under these

boundary conditions, the solutions of the reduced Egs.

(5.6) = (5.9) are as follows:
Usa = _.L. {1 -exp( "U_I'z Y] (5.10)
®  2nr avx
DAL g (-0 (5.11)
u, = pr exp ey .



udz_exp(- ) (5.12)

The integration constant A can be found from equating the
change of momentum of the flow in the entire wake flow to

the drag on the vortex generator;

(5.13)

where D, is the profile drag of the vortex generator.
Rotational velocity Eg. (5.10) and radial velocity Eq.
(5.11) can be used to set up the vortical flow in the cross
plane. However, comparing the magnitude of these velocities
with the assumptions that a small section of NACA 0012 wing
is used as a vortex generator with a propef angle of attack
and the length x from the origin of vortex to the cross
plane for vortical structure is O(1), the radial velocity

is small compared with the rotational velocity.

T LIk
— [1 - ex - 1
Y _ 2%r [ P 4vx)‘
U, Ar U.r?
- — ex
Sy p ( v )
TpxU,
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U22
+3—1,( =X )y o+ ... 1 = 0(10%)

4vx
(5.14)

U_r?

4vx

C
=—-._.L[1+.i.(
c, 21

Only the rotational velocity 1s used to make the vortical

structure in a crossplane.

- _T - _u.r (5.10)
Ug > (1 - exp ( X" )]

If we apply the vortical structure of Eg. (5.10),
which is formulated as one fully rolled up trailing vortex,
to the circular duct directly, normal velocity component
exists on the duct wall. In order to consider the shed
vortex created from the vortex generator mounted within the
circular duct, we can employ the iﬁage vortex because of a
very small vortex core just downstream of vortex generator.
The image vortex of equal strength as the inviscid flow is
located outside the duct using Milne-Thomson’s circle
theorem(1968). The superposed vortical flow within the duct
has no normal velocity component at the wall. The
tangential velocity component approaches zero at the wall
by reducing the magnitude of the superposed vortical flow
inside the boundary layer by the one-seventh power velocity
distribution law. These adjusted vortical velocities are
introduced at every point in the crossplane.

In order to consider the streamwise velocity deficit
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(u, = U, - u) in that crossplane, the flow passing the
vortex generators is assumed as the steady-state steady-
flow process. The temperature and stagnation enthalpy at
the crossplane are calculated by averaging these values in
the upstream-plane and downstream-plane of the crossplane
for vortical structure. Even though the streamlines between
two crossplanes are not the same as the streamwise
direction due to the vortical flow, this approximation is
sufficient if the vortical flow is small compared with the
axial flow or the distance between two planes is small
compared with the duct diameter. The stagnation enthalpy
obtained by this approximation are uniform at every local
grid points of the crossplane because of the streamwise
velocity deficit in the downstream-plane for vortical
structure. From this stagnation enthalpy a£ the local grid
point, we can obtain the deficit of streamwise velocities
in the crossplane with the calculated vortical velocities

and temperatures.

5.2 Results and Discussion
In order to examine the usefulness of the vortex
generator model and to investigate the effect of the

different type vortex generators in a straight duct, four
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different cases are tested: (1) single embedded vortex, (2)
counter-rotating vortices of the same strength that rotate
toward each other, (3) counter-rotating vortices of the
same strength that rotate away from each other, and (4) co-

rotating vortices, one vortex having double the strength of

the other.
number r/pu, @ AN =r/R
(1) 0.062 | o |  o.831
(2) -0.062,+0.062 | -18°, 18° 0.831
(3) +0.062,-0.062 | -27°, 27° | 0.831
(4) -0.062,-0.031 -27°, 27° 0.831

Table 5.1 The strength and 1location of the embedded
vortices (I is positive when the vortex rotates counter-
clockwise, and ¢ 1s the circumferential angle from the

vertical plane on the lower wall)

The boundary layer thickness at the axial location of
the vortex generator (x/D = 2.1) 1is 0.06 times the duct
radius. The vortex generator is at a height of 0.16 times
the duct radius. Therefore, the vortex generator tip is
located well outside of the boundary layer.

Figs. 5.2 - 5.4 show the computational results when a
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single vortex is embedded in a crossplane within the duct.
The total-pressure contours and secondary velocity profiles
at the several different streamwise locations are shown in
Fig. 5.2 and Fig. 5.3, respectively. Fig. 5.2(a) and Fig.
5S.3(a) are the total-pressure contours and secondary
velocity profiles at the location of the vortex generator
(x/D = 2.1). The location of the shed vortex along the
downstream is shown in Fig 5.4. It is compared with the
predicted 1location by the image vortex and the vortex
interaction system.

The total-pressure contours in Fig. 5.2 show that the
boundary layer thickness 1in the region of downflow is
decreased because the induced secondary flow pushes the
high energy flow toward the wall. Adversely, the boundary
layer thickness in the region of upflow isvincreased by the
induced secondary flow. It shows that the appropriate
vortex generators can control the main flow.

The secondary velocity profiles in Fig. 5.3 show that
the strength of the vortex decays in the downstream
direction due to viscous diffusion. The streamwise vortex
trajectory shows a helical character which is predicted by
the inviscid theory. This characteristic is clearly shown
in Fig. 5.4.

Fig. 5.4(a) shows that the injected vortex moves

radially inward. It shows significant deviation between the



101

computational result and simplified vortex interaction
model. Even though the prediction model using the image
vortex considers a mechanism which the injected vortex
moves radially inward, it is very weak because the vortex
moves radially inward after then the vortex core reaches
the wall. The predicted 1locations obtained by two
simplified prediction models are the same along the
streamwise direction, as shown in Fig. 5.4(a).

Physically, the boundary layer growth on the duct wall
retards the growth of the vortex core to the wall, but the
vortex core grows without blockage to the center of the
duct. This causes a transverse pressure gradient which is
not symmetric with respect to the vortex center. The
pressure gradient between the vortex center and the duct
wall is steeper than that between the vortéx center and the
center of the duct as shown in Fig. 5.2. The vortex moves
radially inward as a result of this nonsymmetric pressure
gradient.

The location of the vortex along the circumferential
direction is in agreement with the location predicted by
the simplified model in the short region just downstream of
the location of vortex generator as shown in Fig. 5.4(b).
The deviation between <+the model 1location and computed
results increases with increasing downstream distance. Even

though the vortex interaction model considers the decay of
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vortex strength by the wall effect, this model does not
adequately consider the mechanism by which the vortex moves
radially inward. At the same strength of vortex, if the
vortex moves radially inward 10% from the original
location, the induced velocity by the image vortex is
reduced around 16% at the vortex core. The induced
velocities overestimated by the simple models overpredict
the azimuthal 1location of the vortex as it moves
downstreanm.

Fig. 5.5 shows the progression of the counter-rotating
vortices of the same strength that rotate toward each other
as they march down the duct. The left hand side and right
hand side of Fig. 5.5 are the total-pressure contours and
the secondary velocity profiles, respectively. Fig. 5.5(f)
shows that the boundary layer thickness in the lower wall
of the duct is one third of that in the upper wall of the
duct at the station VI (x/D = 16.10). It shows that the
main flow can be controlled by adjusting the number of
vortex generators, strength and location of vortex, etc.,.

The behavior of the vortices as they move downstrean
is qualitatively similar to the behavior predicted by the
inviscid theory. Two vortices move away from each other,
and also move radially inward as shown in Fig. 5.6(a). The
deviation between the computaticnal results and the

predictions of the two simple models is due to the weak
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mechanism of radial flow behavior in the simple models as
mentioned in case of the single embedded vortex.

The secondary velocities, induced by the counter-
rotating vortices rotating toward each other, force the
high energy flows into each other. Therefore, the pressure
gradient with respect to the vortex axis in the case of
counter-rotating vortices rotating toward each other is
more symmetric than that of the single embedded vortex,
whose larger 1induced velocities near the wall are
associated with steeper pressure gradient near the wall.
Comparing Figs. 5.4 and 5.6, one sees that the rate of
radially inward motion when counter-rotating vortices are
embedded as shown in Fig. 5.6 is approximately 7% lower
than that when the single vortex 1is embedded as shown in
Fig. S.4. However, the rate of circumferenfial movement of
counter-rotating vortices is lower than that of the single
embedded vortex, even though the radial location of
counter-rotating vortices is closer to the wall than that
of the single embedded vortex. This 1s consistent because
the secondary velocity induced by counter vortex acts
oppositely to the direction which is induced on the vortex
core by image vortex.

Fig. 5.7 shows the progression of the counter-rotating
vortices of the same strength that rotate away from each

other as they march down the duct. The left hand side and
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right hand side of Fig. 5.7 are the total-pressure contours
and the secondary velocity profiles, respectively. Fig.
5.7(£f) shows that the boundary layer thickness at the lower
wall of the duct is much greater than that at the upper
wall of the duct. This is a contrary result compared with
the case of the counter-rotating vortices of the same
strength that rotate toward each other.

The streamwise trajectories of vortices exhibit the
same behavior as that predicted by the inviscid theory. The
vortices attract each other in a short region downstream of
after the vortex generators, and then they proceed to march
away from the wall. As the two vortices move closer to each
other, the pressure gradient between the vortex center and
the duct wall is increased, but the pressure gradient
between the vortex center and the center of the duct is
decreased. Downstream of station IV (x/D = 8.20), the
pressure gradient between the vortex center and the
symmetric line of two vortices is steeper than that between
the vortex center and the duct wall as shown in Fig. 5.8.
It means that the two vortices move away from each other
during the time they proceed to march away from the wall as
shown in Fig. 5.7.

Fig. 5.7 shows that the predicted vortex location by
two models 1is overpredicted except in a short region

downstream of the vortex generators. This deviation occurs
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from the weak mechanism of the two simplified models as
previous mentioned. Two prediction models do not have a
mechanism which each vortex tries to settle at a stable
location, 1i.e., vortex moves to the position of radially
symmetric pressure gradient.

Fig. 5.10 shows the total-pressure contours along the
duct when the co-rotating vortices are embedded; the
secondary velocity profiles are shown in Fig 5.11. The
strength of vortex(A) 1s twice the strength of vortex(B).
As the vortices march down the duct, the circumferential
movement of vortex(A) 1is faster than that of vortex(B)
because of its large induced velocity on the vortex core.
This is anticipated by the inviscid theory. The vortex(B)
is collapsed into the vortex(A) at some distance as shown
in Fig. 5.11 because two vortices have the same direction
of vorticity.

Figs. 5.12 and 5.13 are the locations of vortex(A) and
vortex(B) along the duct, respectively. They agree well
with the results by the prediction models in a short region
just after vortex generators. The deviation between the
computational results and the prediction by two models
occurs from the weak mechanism of the two prediction models
as previously mentioned.

The satisfactory results of the computaticn 1in the

straight duct with vortex generators suggest that the
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vortex model employed in this work can be applied to solve
the full three-dimensional Navier-Stokes equations. The
internal flow can be controlled by an appropriate
adjustment of the location, strength, lateral spacing, and
number of vortex generators. The computational results
agree well with the results of the prediction models in a
short region Jjust after the location of the vortex
generators, even though we adopted the same constants which
were derived from the experimental results on the external
flow. For the Dbetter prediction of vortices along
downstream in the internal flow, an experiment in the duct
with vortex generators 1is necessary to find the correct

constants.
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Fig. 5.1(a) computational grid for the vortex interaction
studies within a cylindrical duct, L/D = 20.0

:"1 > > > r F’ ]
T N b - Ly
[ 11 110 Iv \ A2

stacion I (-E =2.10)

sctation IT (% =2.90)

station ITI ( L; *=4.243)
scacion IV % =8.20)
scacion v (-g =12.20)

scaction VI (% = 16.20)

Fig. 5.1(b) Measurement statioms along the circular
straight duct.
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TOTAL PRESSURE COEFFICIENT CONTOURS
(Single vortex embedded)

contour decrement = 0,05

vortex core location:
1= £ a20.831
R

? = Q°
suen%c}l of vortex:

(a) station I (x/D = 2.10)

(b) station II (x/D = 2.90)

Pig. 5.2 Total-pressure coefficient contours of the single
embedded vortex.
( Ma = 0.6, Re, = 1.0x10°)



109

e

. TN
.\‘.‘—.w:‘.(uwﬁ.h..ﬁ..

- -\wv\-\_\

4.24)

station III (x/D

(c)

8.20)

(d) statiom IV (x/D



110

(e) station V (x/D = 12.20)

(f) station VI (x/D = 16.20)



111

SECONDARY VELOCITY VECTORS
(Ssingle vortex embedded)

vortex core locaclion:
1= Za:90.831
R

¢ = 0°

strength of vercex:

r
— 20.062
DU,

velocicy scale

(a) station I (x/D = 2.10)

(b) station II (x/D = 2.90)

Fig. 5.3 secondary velocity profiles of the single
embedded vortex.
( Ma = 0.6, Re, = 1.0%x10° )
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(c) station III (x/D = 4.24)

{d) station IV (x/D = 8.20)
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(e) station V (x/D = 12.20)

(f) station VI (X/D = 16.20)
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5.4(d) Angular trajectory of the single embedded

veortex.
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COUNTER-ROTATING VORTICES
( Downflow pairs )

. Secondary Velocity

Vectors

(b) station II (x/D = 2.90)

Pig. 5.5 Total-pressure coefficient contours and secondary
velocity profiles of the counter rotating
vortices of the same strength that rotate toward
each other.

( Ma = 0.6, Re, = 1.0%10° )
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{(d) station IV (x/D = 8.20)
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(£f) station VI (x/D = 16.20)
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5.6 (a) Radial trajectory of the counter rotating
vortices of the same strength that rotate
toward each other.
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5.6 (b) Angular trajectory of the counter rotating

vortices of the same strength that rotats
toward each other.
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COUNTER-ROTATING VORTICES
( Upflow pairs )

Total-pressure

coefficient contours Secondary Velocity

Vectors

cencour decremenc
= 0.05

vorcex core

locacion:

1= X .0.831
R

$ = 13°

strength of

vortex:
r
-—_— 3 0,06
DO, 062
velocity scale
———
1
L..!-o.
U 5

(2) station I (x/D = 2.10)

: {(b) station II (x/D = 2.940)
Fig. S.7 Total-pressure coefficient contours and secondary
velocity profiles of the counter-rotating
vortices of the same strength that rotate away

from each other. .
( Ma = 0.6, Re, = 1.0%X10" )
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Total-pressure Secondary Velocity
coefficlient contours -

Vectors

(c) station III (x/D = 4.24)

(d) station IV (x/D = 8.20)



Total-pressure Secondary Velocity

coefficlent contours
Vectors

(e) station Vv (x/D = 12.20)

(f) station VI (x/D = 16.20)
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STATIC PRESSURE COEFFICIENT CONTOURS
( Upflow pairs )

vortex core locacion:
2+ £ xp0.831
R
@ = 27°
sc:en%c.’z of vorcex:

—_— 2 0.0
A 0.062

(2) station III (x/D = 4.24)

(b) station IV (xX/D = 8.20)

Fig. 5.8 Static-pressure coefficient contours of the
counter-rotating vortices of the same strength
that rotate away from each other.

( Ma = 0.6, Re, = 1.0x10° )



123

9

(c) at (x/D = 10.20)

(d) station V (x/D = 12.20)
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5.9(a) Radial trajectory of the counter-rotating
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from each other.
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5.9(b) Angular trajectory of the counter-rotating
vortices of the same strength that rotate away
from each other.
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TOTAL PRESSURE COEFFICIENT CONTOURS
( Co-rotating vortices )

contour decrement = 0.0S

vortex (A) core locacion:
1= L 20.831
R
9 = -27°

screngch of vorcex (A) :

L .0.062
DU

vortex {B) core location:
) QPR S 3
2 0.82:
¢ =27°
Strength of vorcex (3) :

-5—0,: =0.031

(a) station I (x/D = 2.10)

{b) station II (x/D = 2.90)

5.10 Total-pressure coefficient contours when the
co-rotating vortices are embedded. Vortex(A) has
double the strength of vortex (B).

( Ma = 0.6, Re, = 1.0x10° )

Pig.
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(d) station IV (xX/D = 8.20)



(f) station VI (x/D = 16.20)
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SECONDARY VELOCITY VECTORS
( Co-rotating vortices )

vortex (A) core locaction:
1=1L =0.831
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9 = -27°
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(a) station I (%x/D = 2.10)

(b) station II (x/D = 2.90)

Fig. 5.11 Secondary velocity profiles when the
co-rotating vortices are embedded. Vortex(A) has
docuble the strength of vortex (B).
( Ma = 0.6, Re, = 1.0x10°% )
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CHAPTER 6

DIFFUSING S-DUCT WITH VORTEX GENERATORS

6.1 Vortex Model

The shed vortex from the vortex generators is modeled
by introducing two-dimensional vortical flow in the cross-
plane. Eg. (5.10) provides this vortical structure.

- _Tr - _bre (5.10)
He ZTtI[l exp 4vx)]

I' is the vortex strength at the tip of the vortex
generator. The I' term is a function of the geonmetry of the
generator, and the oncoming flow conditions. T is defined

by the strength of one fully rolled up trailing vortex;

FP=c —=tcu (6.1)

where ¢; is the 1lift coefficient, ¢, is the chord length of
the vortex generator, u is the velocity of the flow at the
generator tip, and C, is the constant which considers the
viscosity and turbulence effect, etc.,. C, cannot be greater
than 0.45 according to inviscid wing theory and by

experiment.
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Three pairs of one half of the NACA0012 wing section
were used as the vortex generators in the Vakili et
al.(1986) experiment. They were installed in the duct at
S/D, = 0.087, and at azimuthal angles of -41.4°, 0.0° and
+41.4. The height and chord length of the vortex generator
were h/D, = 0.715x10"' and ¢,/D, = 0.108, respectively. The
vortex generator pairs had geometric incidence angles of
+14° and -14° relative to the duct centerplane.

Eg. (6.1) can be expressed in nondimensional form;

=Ci[‘ﬂ
2 .

6.
U e D (6-2)

U

i 0.
From the experimental conditions, u/U, is taken as 1 and ¢
is assigned as 1.4 because the incident angle of the vortex
generator is 14°. In this study, six different vortex
strengths /DU, = 0.005, 0.010, 0.015, 0.020, 0.025 and
0.030 are investigated to compare with the experimental
data and to study the parametric effect of different vortex
strengths. When the vortex strength(I'/DU,) is equal to
0.030, C, is 0.4. In the choice of various vortex strength,
the decreasing of the vortex strength implies that the
incident angle of the mounted vortex generator is
decreasing.

In Eq. (5.10), the length x is estimated to be the
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distance 0.087D;, from the location of the vortex generator
to the crossplane of the vortical structure. The rotational
velocities at the cross plane (S/D, = 0.17) are evaluated
with the image vortices based on the circle theorem
mentioned in section 4.2.1. If the rotational velocity near
the vortex core is greater than U_,/5, the velocity at that
point is assumed to be of that magnitude. These secondary
velocities of the vortex model are added to the secondary
velocities without vortex generator at the same plane. The
combined vortical structures are applied as the source term
in the crossplane. Fig. 6.1 shows the secondary flow
structure at this plane.

In this computation, the residuals for these numerical
solutions were reduced approximately three orders of
magnitude. Solutions were obtained on the Cray-YMP. The
number of iterations required to obtain the converged
solutions were approximately 25,000. The computational
speed was 950 iterations per CPU hour. The mass flow

changes between the inlet and exit was within 1 percent.

6.2 Results and Discussion
Fig. 6.2 shows values of the computed static-pressure

coefficients (continuous curves in the figure) and
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experimental values (symbols) at ¢ = 10°, 90° and 170° for
various vortex strengths. Numerical results with I'/DU, =
0.025 are close to the experimental data. In the following
discussion, these numerical results will be compared with
the experimental results obtained by Vakili et al. (1986).
The surface static-pressure distribution at ¢ = 170° shows
some deviation between the experimental and numerical
results near the location of the vortex generators. Recent
experimental results on the same geometry by Reichert and
Wendt (1992) show that there is no perceptible upstream
influence on the static-pressure distribution, caused by
the vortex generator arrays. In their experiment, Wheeler
wishbone generators are used. This type of generator forms
a pair of counter-rotating vortices with the flow between
vortices directed upwards. However, the ekperimental data
obtained by Vakili et al. (1986) show some influence on the
static-pressure distribution by the vortex generator
arrays. The influence of the vortex generator arrays on the
static-pressure distribution depends on the location of the
vortex generators and data acquisition points, but the
vortex model employed in this study shows very 1little
upstream influence on the static-pressure distribution, as
can be seen in Fig. 6.3.

For the smallest vortex strength (I'/DU, = 0.005), the
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results differ only marginally from the flow without vortex
generators as shown in Fig. 6.3(a). Figs. 6.3(b) and 6.3 (c)
show higher values of static-pressure for the larger vortex
strength in the second half bend of the duct. The static-
pressure distribution 1lines cross each other at the
inflection point of the duct (S/D, = 2.62). The static-
pressure value at the cross point is less than the peak
value at ¢ = 0° near S/D, = 2.5. These results are very
similar to the experimental results conducted by Reichert
and Wendt(1992).

In Figs. 6.3(a) and 6.3(b), the constant static-
pressure values at ¢ = 170° in 3 < S§/D, < 4 are associated
with the flow separation. These figures show that the
region of the constant static-pressure value decreases with
increasing the vortex strength. The feverse flow of
streamwise velocity dose not occur when the injected vortex
strength is greater than I/DU, = 0.020.

Fig. 6.4 shows the secondary velocity profiles
compared with the experimental results. The computed and
experimental results show on the right hand side and left
hand side, respectively; only half of the cross-plane is
shown because the flow is symmetric along the duct cross
section. The numerical results agree closely with the

experimental results except the behavior of the vortices(C)
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along the downstream. Note that the resolution and the
locations of data collection points of the experiment and
computations are different. The computational results of
Fig. 6.4(a) are plotted in a denser resolution in order to
show more clearly the vortices just downstream of the
vortex generators.

At the first half bend, the high energy flow moves
toward the upper wall and the low energy flow migrates
circumferentially from the upper wall to the lower wall. In
Fig. 6.1, the rotational velocities of the injected
vortices(B) have the same direction as the low energy flow
near the wall, but vortices(A) and (C) have opposite
rotational velocities to the low energy flow. This makes
the secondary velocities of vortices(B) results in stronger
than those of the other vortices. It also makes vortices (C)
more quickly decaying. In the experimental results, the
vortices(C) do not decay as quickly as in the computation;
even if the strength of vortices(C) 1is weaker than the
other vortices. The low energy flow at the vortex plane is
retarded by the installed vortex generators on the wall.
This means the injected vortices have little influence from
the low energy flow. The vortical structure of the vortex
model is strongly influenced by the low energy flow at the
location of the vortex generators.

Fig. 6.5 shows the total-pressure contours compared
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with the experimental results. The small effect of the
vortices(C) is clearly shown in this figure. The thickness
of the computed "boundary layer" at ¢ = 90° is less than
observed experimentally.

The static-pressure contours are shown in Fig 6.6. The
numerical results agree gualitatively with the experimental
results. In the first half bend, higher static pressure is
shown near the upper wall because of the duct curvature.
Opposite behavior is shown in the second half bend owing to
the same reason.

The variation of the boundary layer thickness at ¢ =
10°, 90° and 170° along the duct is shown in Fig. 6.7. The
boundary layer thickness is defined as the normal distance
from the wall where the total-pressure coefficient is 1.0.
The boundary layer thickness of the flow with vortex
generators depends greatly on the vortex strength. The
computed boundary layer thickness at ¢ = 90° is less than
the experimental result because the injected vortices(C)
are weaker than the experimental values. However, the
computed results show that the trend of the boundary layer
thickness variation along the duct is quite similar to the
experimental results.

Fig. 6.8 shows the total-pressure contours with and
without vortex generators. The right hand side and left

hand side show the nunerical results with and without
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vortex generators, respectively. The effect of the injected
vortices 1is clearly shown in this figure. The injected
vortices push the high energy flow toward the lower energy
region. This resulting force prevents the flow separation
at the inflection point of the duct.

Fig. 6.8(a) to (c) show that the boundary layer
thickness of the flow with vortex generators near the upper
wall 1is less than that of the flow without vortex
generators. This results from satisfying a constant mass
flux because the shed vortices injected near the lower wall
cause a streamwise velocity deficit in the region of the
vortex core. However, the experimental results do not show
any difference between the boundary layer thicknesses with
and without vortex generators in the upper wall of the
first half of the duct. This probabiy results from
deficiencies in the experiments, primarily coarse data
acquisition locations and uncertainties in the total
pressure measurements using pitot tubes.

Fig. 6.9 shows the secondary velocity profiles with
and without vortex generators. The interaction between the
injected vortices and the counter-rotating vortices
resulting from the flow separation is clearly shown in this
figure. The injected vortices suppress the growth of these
counter-rotating vortices.

The static-pressure contours with and without vortex
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generators are shown in Fig. 6.10. At the vortical plane
(S/D, = 0.17), the distortion of the constant static-
pressure contours is a result of the injected vortices. The
change of the static-pressure along the duct shows the same
flow phenomena as mentioned in the discussion of the flow
without vortex generators. Figs. 6.10(d) and 6.10(e) show
that the constant static-pressure contours are flatter in
the low energy flow region of the second half bend. The
injected vortices result in a more uniform flow and higher
diffusion at the exit than occurs without vortices.

Figs. 6.11 and 6.12 show the numerical results with
the wvortex strength (I'/DU, = 0.015). The computed results
show that the effect of the injected vortices is weaker
than with the strong vortex strength (T'/DU, = 0.025), as
one could expect. The region of diminished total-pressure
at the exit is larger and the static-pressure contours are
more distorted. Fig. 6.12 shows the interaction between the
injected wvortices and the counter-rotating vortices
resulting from the flow separation. It also shows that the
growth of these counter-rotating vortices are suppressed by
the injected vortices. Fig. 6.12(e) shows that the
sacondary velocities between the vortices(A) are
overestimated. This results from the small eddy viscosity

in the flow separation region as mentioned in the
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discussion of the flow without vortex generator.

Fig. 6.13 shows the total-pressure contours at the
exit with different vortex strengths. The region of
diminished total-pressure 1is significantly reduced with
increasing the vortex strength.

A total-pressure recovery (Ew) is calculated using
area weighted values from the computational mesh over the

cross stream plane.

= _ 1
Coo

= —E CDOdA (6°3)

Using a similar method, the total-pressure recovery of a
segment is determined by integrating the total-pressure
coefficient over a segment of the cross stream plane of
angular extent ¢.

) f’cpo da

Coo (@) = T (6.4)
[Tda

A distortion coefficient 1is useful to describe the
efficiency of inlet duct or to compare the performance of
several inlet ducts. There are many ways to define the
distortion coefficient depending on the comparison
purposes. Distortion coefficients measuring radial or

circumferential distortion have been used. Early workers
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simply defined the distortion coefficient in experiment to
be the difference of the normalized maximum rake total-
pressure and the normalized minimum rake total-pressure. In
this study, the distortion coefficient DC(¢) 1is defined
using the cross stream plane segment that results in the
lowest value of EW(¢). In case of S-duct, the segment angle
¢ is defined to the azimuthal angle from the centerline in
the lower energy region. The values of ¢ are chosen to 60°,

90° and 120°.

DC(9) =C,y - Cpolp) (6.5)

Fig. 6.14 show the total-pressure recovery at the exit
with wvarious vortex strengths. Fig. 6.15 show the
distortion coefficient at the exit. For the smallest vortex
strength (I'/DU, = 0.005), the total—preséure recovery is
slightly reduced. This indicates that the small vortex
strength acts as flow blockage at the location of the
vortex generators. The vortex strength is quickly reduced
in the first half bend. The resulting force is not enough
to suppress the counter-rotating vortices resulting from
the flow separation. Small vortex strength is seen to
affect the flow in a detrimental way. This phenomenon with
small vortex strength 1s shown 1in the experiment by

Reichert and Wendt(1992). The total-pressure recovery and
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distortion coefficient significantly improved with

increasing vortex strength.
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Fig. 6.1(a) Ssecondary flow structure from vortex generator
model at S/D, = 0.17

A =1/R=0.858
Q=414°

Fig. 6.1(b) Location of injected vortices at S/D, = 0.17



146

4

-0.1

-0.3 L . L L J
-2 0 2 3 6
Normalized distance along duct {S/D))

Fig. 6€.2(a) Axial surface-static pressure coefficient.
cpl = (plncal - pr\-f) /qrvf s )
( Ma = 0.6, Rey, = 1.76x10°, T'/DU, = 0.020 )
EXp. Vakili et al.(198s6)
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Fig. 6.2(b) Axial surface-static pressure coefficient.
cpl = (plnc:ll = prcf) /qrr( 4
( Ma = 0.6, Re, = 1.76x10°, I'/DU, = 0.025 )
Exp. Vakili et 2l1.(1986)
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Fig. 6.2 (c) Axial surface-static pressure coefficient.
Cot = (Puca = Pet) /9 :

( Ma = 0.6, Rey, = 1.76x10°, /DU, = 0.030 )

Exp. Vakili et al. (1986)
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SECONDARY VELOCITY VECTORS
( Vortex strength, r/bpDu, = 0.025 )
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(b) at S/D; = 2.62

FPig. 6.4 secondary velocity profiles with vortex
generators.

( Ma = 0.6, Re, = 1.76x10%°, Ir/DU, = 0.025 )

Exp. Vakili et al. (1986)
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TOTAL PRESSURE COEFFICIENT CONTOURS
( Vortex strength, I/D;U_, = 0.025 )

COMPUTATION

0.6 0.6

0.6
(b) at S/D, = 2.62
Fig. 6.5 Total-pressure coefficient contours with vortex
generators.
( Ma = 0.6, Re, = 1.76x10°, I'/DU_ = 0.025 )
Exp. Vakili et al.(1986)
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STATIC PRESSURE COEFFICIENT CONTOURS
( Vortex strength, T/DU, = 0.025 )

EXPERIMENT COMPUTATION

(b) at 8/D; = 2.62

Fig. 6.6 Static-pressure coefficient contours with
vortex generators.
( Ma = 0.6, Re, = 1.76x10° Tr/DU, = 0.025 )
Exp. Vakili et al. (1986)
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EXPERIMENT COMPUTATION

(d) at S/D, = 5.24
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Fig. 6.7 Boundary layer thickness.
( Ma = 0.6, Re, = 1.76x10% T/DU_ = 0.025 )
Exp. Vakili et al. (1986) .
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(b) at S/D, = 1.31

Pig. 6.8 Comparison of the total-pressure coefficient
contours with/without vortex generators.
( Ma = 0.6, Re, = 1.76x10° T/DU_ = 0.025 )
Exp. Vakili et al. (1986)
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SECONDARY VELOCITY VECTORS
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(a) at s/D, = 0.17

(b) at 8/D, = 1.31

Pig. 6.9 Comparison of the secondary velocity profiles
with/without vortex generators.
( Ma = 0.6, Re, = 1.76x10%, T/DU_ = 0.025 )
Exp. Vakili et al. (1986)
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STATIC PRESSURE COEFFICIENT CONTOURS
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(b) at §/D, = 1.31
Fig. 6.10 Compariscn of the static-pressure coefficient
contours with/without vortex generators.

( Ma = 0.6, Re, = 1.76x10°%° T/DU_ = 0.025 )
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TOTAL AND STATIC PRESSURE COEFFICIENT CONTOURS
( Vortex strength, T/DU_, = 0.015 )

Static-pressure
coefficient
contours

Total-pressure
coefficient
contours

(b) at s/p, = 1.31

6.11 Total~- and static-pressure coefficient contours
with vortex generators.
{ Ma = 0.6, Re, = 1.76x10°, I'/DU_ = 0.015 )
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SECONDARY VELOCITY VECTORS
{ Vortex strength, /DU, = 0.015 )

@::":; \)
il l'}n

(2) at s/p, = 0.17

(b) at S/D, = 1.31

Fig. 6.12 Secondary velocity profiles with vortex
generators.

( Ma = 0.6, Re;, = 1.76x10° T/DU_ = 0.015 )
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(d) at s/D; = 3.93
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(e) at s/p, = 5,24
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Fig. 6.13 Total-pressure coefficient contours at the
exit (S/D, = S.24) of S-duct for variation of
vortex strength
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Fig. 6.14 Effect of vortex strength on the total-pressure

recovery at the exit (S/D, = 5.24) of s-duct.
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Fig. 6.15 Effect of vortex strength on the distortion
coefficient at the exit (S/D, = 5.24) of S-duct.



CHAPTER 7

CONCLUSION AND RECOMMENDATION

The numerical results on a diffusing S-duct without
vortex generators show the phenomena of three-dimensiocnal
flow separation. The computed results agree well with the
experimental results except in the flow separation region.
Downstream of flow separation, the strength of the
streamwise velocity deficit (U, - u) is overestimated at
the region of the counter-rotating vortices resulting from
the flow separation. This results from underestimating the
eddy viscosity effect in the flow separation region by the
turbulence model. However, the computed results are better
than the previously published work obtained by Harloff et
al.(1992b) with an alternative turbulence model. In order
to obtain better solutions in the flow separation region,
further efforts on three-dimensional turbulence modeling
are necessary.

The computed results on a straight duct with vortex
generators show how the injected vortices decay, move along
the duct, and interact with the boundary layer in a simple
geometry. For a short region (approximately three times

diameter) downstream of the vortex generators, the vortex
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core locations determined from the simplified model and by
the full computations are in good agreement. Farther
downstream, however, the simplified model is not able to
predict the radially inward motion. In order to provide
more accurate vortical structure for the vortex generator
model, experiments with vortex generators in straight ducts
would be useful.

The computed results on a diffusing S-duct with vortex
generators show the interaction between the separated flow
and the injected vortices. As the strength of the vortex
generators increases, the extent of flow separation region
is decreased. When the strength of the injected vortex is
greater than T/DU, = 0.020, reverse flow along the
streamwise direction does not occur.

The computed results depict well the behavior of the
injected vortices as they travel downstream except for the
injected vortices that are introduced into the region with
strong secondary velocity induced by the curvature of the
duct. The behavior of the injected vortices along the
streamwise direction depends on the induced secondary
velocity and the injected location within the duct, even if
the vortices are 1injected with the same strength.
Experiments are needed to obtain the secondary velocity

just downstream of the vortex generators in order to obtain

¢-3
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an accurate vortical structure for modeling the shed
vortices in the curved duct.

The total-pressure ©recovery 1increases and the
distortion <coefficients decrease at the exit with
increasing vortex strength, except for the smallest vortex
strength (I'/DU, = 0.005). This indicates that there exists
an optimal vortex strength which will minimize the flow
distortion at the exit. In order to obtain the optimum flow
at the exit, additional numerical studies are necessary
with various axial locations, lateral spacing, height, and

number of vortex generators.
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APPENDIX A

The Elements of Jacobian Matrices
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where q = (U + V¢ + w?)/2
The elements of B and C are similar to those of a,
only £ in the element of A has to replace to 3 and s,

respectively.



APPENDIX B

Vortex Trajectory In a Tube Using the Image Vortex System

In order to form a simple model which estimates the
trajectory of a vortex in a tube, the two-dimensional
problem of the motion of an infinite line vortex in a
circular cylinder is considered, and then superpose an
axial velocity to describe the motion of a traveling vortex
in a circular cylinder.

Consider first the 1inviscid model. Fig. B.l1 1is a
diagram of the vortex in a tube with an image vortex. A =
r/R is the non-dimensional radial location of the vortex.
Also note that the image flow must have a superposed
circulation. This plays no role in the following
discussion. The internal vortex moves with the velocity

induced by the image vortex:

I A

u =
® 23R 1-22

{B.1)

The angular velocity of the vortex motion is u,/AR. Thus:

_ T 1
© T TIRI1I-A (B.2)

Now consider a decaying vortex. The analytic solution for
a decaying vortex at the origin, with laminar flow is:

188



189

T -U.r?
= - =" {B.3)
Ye ZKI[l exp ( 4vx)]

For the axially-moving vortex, the time is the particle

travel time for axial motion:

- X
t U (B.4)

The azimuthal velocity is then given by:

r [l—exp(-4r2 )1 (B.S)

u =
® 2nr v

Gy

If identically decaying vortices are employed in the image
system, the tube boundary is no longer a streamline.
However, the image system remains valid .using a simple
approximation to the flow field described by Eg. (B.5). The
decaying vortex has a finite velocity slope at r = 0, and
behaves like an inviscid vortex as r — =. It can therefore
be approximated as an inviscid vortex with a solid body
core. The radius of the core is the value where the solid
body velocity and the vortex velocity are equal. The core
radius for a vortex at the origin is:

r.=2yvec=2 3%5 (B.6)
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For a vortex whose center 1is at AR, the outer radial

location of the solid body core is given by:

- . yx I_XQ_ (B.7)
Ip= AR+ 2 7 R(l+2 U_R/v)

The core reaches the wall of the tube where r, = R. This
occurs at an axial location given by:

U
(iﬂf) =%:—R(1—x¢)2 (B.8)

v

For x/R < (x/R),, the azimuthal velocity and angular

velocity of the vortex are given by the first factors in

Egq. (B.5):
_ I A
YT TER(1 - A | (B-3)
© = —L L (B.10)

27T R? (1 - A%)

To this point the model gives no information about the
radial migration of the vortex. We now use the growth of
the so0lid body core to obtain an estimate, albeit weak, of
the migration of the vortex center toward the tube center.
If we think of the core as a solid body, then continued
growth of the core beyond x = x_  forces migration of the

vortex toward the tube center. Then Egq. (B.8) gives the
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radial location of the center of the vortex for any x > x_,
and Egs. (B.9) and (B.10) give the corresponding azimuthal

and angular velocities. A convenient measure is the angle

of travel of the vortex:

8 =f(a)dC = anzU_(fox“lc_ixl: +fxf1(_:_ixlz) (B.11)

X, fx dx J (B.12)

In the integral in Eg. (B.12), if Eq. (B.8) holds without

the subscript "a", one then obtains:

-y = | £AXxX/R | B.13
1- IU-R/V Ve (B.13)

Eqg. (B.12) then becomes

2 g
6= —1L X +£U-Rf do
2nR2U {1 -2 4 Vv JeJo (2 - /0)
(B.14)
Performing the integration yields:
1
2 l-=J0
g-_T X o, 1O0R 2 (B.15)
2T R2U. 1 - A2 2 v 1 - iyﬁi
2

But



JO. =1 - A, (B.16)
and
2
x = LBR 10y (B.17)
a 4 V -4
Therefore:
g - L [l “ A 21n(2_:4C§)] (B.18)
8mv| 1+ A, 1+ A,
A=1-Ja (B.13a)

JO =2 ! Tf%@? (B.13b)

Egs. (B.18), (B.13a) and (B.13b) hold in the range:

(1 -2,)%2 <0 51 . (B.19)

-

For d < (1 - XN, ) 3% A=A, and the azimuthal angular travel

is given by:

T'x

6 =
2R R2U_(1 - A%)

(B.20)

An alternative measure of the azimuthal travel is <the
tangent of the helix angle. This is obtained by merely re-

writing Egs. (B.18) and (B.20):



6r_ _ T i[l'l“_zln(z ‘/5” (B.21)
X 2TRU, o 1 + A, 1 .
OR r

"X 2mRU.(1 - A%) (B.22)

where Egs. (B.21) and (B.22) are valid in the large ¢ and

small o ranges, respectively.
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>

Fig. B.1 When a single vortex of strength I' is located

inside the circular cylinder, image vortex is
located on the line connecting the center of a
circular cylinder and a single vortex.



APPENDIX C
Vortex Trajectory In a Tube Using the Vortex Interaction

Model

Circulation decay of vortex in the turbulent flow 1is
faster than in the laminar flow because of a large eddy
viscosity. Circulation decay on the previous model is very
slow because only kinematic viscosity is used. In this
model, the wall effects and proximity effects are
considered to predict circulation decay of the vortex in
the tube. At first, circulation decay by the wall effects
is considered. Fig. C.1 is a diagram when a vortex is
embedded at some crossplane location x. The secondary flows
produced by the injected vortex giQe rise to a
corresponding circumferential component of the wall shear
stress (7,). In turn, this stress results in a torque
opposing the rotation of the vortex. The moment M, opposing
the rotation of vortex I can be obtain by integrating the

magnitude of the elemental torque:

dH- 2%
.= —2 = T r c.1
My = — fo (t,9| F|dBdx, £) (C.1)

where |F| is the distance from the center of vortex to the
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wall, and H;, is the angular momentum of vortex 1 of

elemental thickness dx.
Assuming proportionality between the vortex angular
momentum and its circulation, we obtain the streamwise

circulation gradient:

gi - walp i f:“(rre[flde, £) (C.2)
where C,, is the unknown constant of proportionality with
units of m’.

T, i1s a function of wall coordinates, i.e., 74 =
T,(r,0) and it 1is proportional to the circumferential
component of the secondary velocity at the wall. To
simplify this expression, the correlation suggested by

Pauley and Eaton(1988) 1is adopted.

AT

T, = C.Tplg (08, r=|7]) (C.3)

where u,(f,r = |TF|) is the circumferential velocity with
image vortex at the wall. 74 is the wall shear stress of
the corresponding two dimensional boundary layers and C, is

a scaling factor with units of sec/m;

u.? U2 -3
T, p.2- c.= 2222 (0.3:64 Rey ) (C.4)

-

Re, is a Reynolds number based on the duct diameter.
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Substitute Egs. (C.3) and (C.4) into (C.2), and then we
obtain the «circulation gradient along the streamwise

direction by the wall effects;

h|o—-

dP - C:Um 1 ’a- 2r =12
5 loe = =57 (0.1582 R=, )fo | £ [2cos (B) d®

b (C.5)

where f§ is an intersectional angle between the r-direction
and the f-direction.

When the multiple vortices are embedded in a
crossplane, the vortices interact both beéause of their
induced field and through diffusion. Fig. C.2 is a diagram
of two counter-rotating vortex cores in close proximity.

The circulation decay by proximity effect can be expressed:

do
prox prox | ! I—ﬁ"“o' (C.G)

where C,, is the unknown constant of proportionality with
units of m?, and the sign of C,... depends on the rotation
direction of the neighboring vortex.

Total circulation decay is written:

dr _ dr dr

Tx © dx e G lerex (e.n

With this gradient and an assumption that the embedded

vortices move axially at the free streamwise velocity, we
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can track the streamwise displacement of the embedded

vortex step by step

r(x+Ax)=r(x)-+Ax(Q£L£L) (C.8)
g x

B (x-Ax) =6 (x) + Ax(28{x) (C.9)
g x

T (x+Ax) =T (x) +Ax<§r_;_£i)_) (C.10)

As noted early, the same constants Co (1.40x10° m%),
Corar (1.40x10% m°) and C, (0.046 sec/m), which were derived

from the experimental result on the flat plate, are adopted

to predict the circulation decay in the internal flow.
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vortex i

Fig. C.1 The secondary flow field generated by vortex i
gives rise to a local circumferential component
of wall shear stress 71,, Which opposes the
rotation of vortex 1i. v
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Fig. C.2 Two neighbor wvortices in a circular duct for
evaluating proximity circulation losses. The r
represents the coordinate axis along the 1line
connecting adjacent cores, and r, is the location
on r where the vorticity changes sign in the

model.
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