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EXECUTIVE SUMMARY 

The Third International Symposium on Space Mission Operations and 
Ground Data Systems (SpaceOps 94) is being held November 14-18,1994, in 
Greenbelt Maryland, USA, and is hosted by the NASA Goddard Space Flight 
Center. More than 400 people from nine countries are attending. This 
symposium follows the Second International Symposium that was hosted by the 
Jet Propulsion Laboratory in Pasadena, California, during November 1992. The 
First International Symposium on Ground Data Systems for Spacecraft Control, 
conducted in June 1990, was sponsored by the European Space Agency and the 
European Space Operations Centre. 

The theme of this Third International Symposium is "Opportunities in 
ground data systems for high efficiency operations of space missions". 
Accordingly, the Symposium features more than 150 oral presentations in five 
technical tracks: 

Mission Management 

@ Operations 

Data Management 

Systems Engineering 

Systems Development 

These five tracks are subdivided into over 50 sessions, each containing three 
presentations. The presentations focus on improvements in the efficiency, 
effectiveness, productivity, and quality of data acquisition, ground systems, and 
mission operations. New technology, techniques, methods, and human systems are 
discussed. Accomplishments are also reported in the application of information 
systems to improve data retrieval, reporting, and archiving; the management of 
human factors; the use of telescience and teleoperations; and the design and 
implementation of logistics support for mission operations. 



We welcome you to SpaceOps 94! The Goddard Space Flight Center is pleased 
to host and sponsor our biennial symposium this year. We intend to maintain the 
same high standards set by our predecessors--the Jet Propulsion Laboratory in 1992, 
and the European Space Agency with the European Space Operations Centre in 1990. 

Like other participating organizations, we benefit from the shared knowledge 
and combined experiences that are topics of discussion at  the SpaceOps 94 
symposium. Best of all, we benefit from seeing each other face-to-face and having 
the opportunity to  discuss in person technical issues of mutual, often compelling 
interest. , 

The large number of papers submitted to the SpaceOps 94 committee for 
acceptance and the projected attendance of over 400 of our colleagues should mean 
we are in for another splendid symposium this year. We believe these numbers 
mean that biennial meetings of our international space mission operations 
community are needed and are viewed as productive. 

During the four days of our Symposium, more than 400 people from nine 
countries will hear more than 150 papers presented, as well as keynote, plenary, and 
panel talks by individuals from throughout the world. The papers in this 
proceedings document describe a wide range of ideas and experiences in our field 
that are developed from the perspectives of international space programs and their 
supporting industries. 

Our review of the papers indicates that future space mission operations will be 
strongly influenced by the following kinds of challenges and objectives: 

* Empowering operators to perform at higher intellectual levels by the 
increased use of artificial intelligence 

* Standardizing protocols, formats, databases, and operations to  enable 
simultaneous and economical support of multiple missions 
Dealing with the science data avalanche 
Converting yesterday's and today's mission experiences into the "corporate 
knowledge" databases of tomorrow 
Sharing national resources in cooperative space ventures. 

We wish you a rewarding week. We also wish for, and look forward to, greater 
interaction between our people and our countries--not just a t  our symposia, but in 
our everyday working world as we learn to achieve increasingly successfid and 
~roductive space mission programs. 

' Dale L. Fahnestock 
bid&uA Donald D. Wilson 

General Chair Executive Committee Chair 



PREFACE 
I would like to  acknowledge the fine support of Laura Capella, Todd Del 

Priore, and April Johnson in the preparation of the manuscript for this document, 
which included entering data and creating FileMaker Pro scripts on the Macintosh 
computer to produce the the table of contents and author index. 

If you have Internet access, I invite you to navigate to  the NASA "Hot Topics" 
page using URL address http:l/hypatia.gsfc.nasa.gov/NASAAhomepage.html. 
Possibly, using this path, you already may have accessed the World Wide Web 
information pages on SpaceOps 94, and we solicit your comments on what you find 
there. It is reasonable to assume that the call for papers and other information on 
the next SpaceOps (in 1996) will be similarly accessible a few months in advance. 
Please inform potentially interested colleagues regarding this information resource. 

CJjimes L. Rash/NASA/GSFC 
Editor 
Publications Committee Chair 
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Abstract 
Matra Marconi Space (MMS) occupies a leading 

place in Europe in the domain of satellite and space 
data processing systems. The maturity of the 
Knowledge-Based Systems (KBS) technology, the 
theoretical and practical experience acquired in the 
development of prototype, pre-operatiorzal and 
operational applications, make it possible today to 
consider the wide operational deployment of KBS's in 
space applications. In this perspective, MMS has to 
prepare the introduction of the new methods and 
support tools that will form the basis of the 
development of such systems. This paper introduces 
elements of the MMS methodology initiatives in the 
domain and the main rationale that motivated the 
approach. These irtitiatives develop along two ntain 
axes: knowledge engineering methods & tools, nizd a 
hybrid method approach for coexistirtg knowledge- 
based and conventional developments. 

I. Introduction 
Matra Marconi Space (MMS) occupies a leading 

place in Europe in the domain of satellite and space 
data processing systems. It has a long experience, as 
architect of both types of systems. in the integration of 
hardware and software components, man-machine 
interfaces, knowledge and data management systems, 
etc. 

The development of methods and supporting 
environments is a part of MMS missions. MMS has a 
confirmed expertise in the domain of system 
engineering methods and tools. For instance, MMS 
has co-authored the HOOD design method (dedicated 
to the architectural and detailed design of large real- 
time and embedded Software applications) and is 
involved in the working group in charge of proposing 
evolutions of the method. 

MMS has also acquired a theoretical and practical 
experience in the development of Knowledge-Based 
Systems (KBS) through numerous R&D, pre- 
operational and operational projects generally 
sponsored by CNES (the French space agency). ESA 

or other customen such as ARIANESPACE. The 
development activities conducted at MMS in the 
eighties have allowed to demonstrate the benefits of 
KBS to assist users in operation environments. That 
experience has also led to a robust in-house KBS 
development methodology. 

It is now possible to consider the wide operational 
deployment of KBS's in space applications. In this 
perspective. MMS has to prepare the introduction of 
new methods and support tools that will form the basis 
of such systems development as well as their 
cooperation with more conventional methods [lo]. 
After a brief description of the MMS approach in the 
field of space diagnostic support systems 
development, this paper develops the methodology 
issue that MMS is currently tackling and presents an 
experimentation of a hybrid method approach in the 
diagnostic systems field. 

11. Space diagnostic support systems: the DIAMS 
programme 

MMS has been investigating and experimenting 
spacecraft diagnostic support systems for eight years. 
The DIAMS concept, initiated in 1985, led to the 
development of a prototype expert system dedicated to 
the Telecom 1 Attitude and Orbit Control System [7] 
DIAMS-1, and to the present Telecom 2 Expert 
System [8], DIAMS-2, covering a whole satellite 
(platform and interfaces with the payload), which was 
installed in the Satellite Control Center at the 
beginning of 1993 [3]. 

One of the main advances realized through DIAMS- 
1 was the decomposition of the Knowledge base (KB) 
into different types of Ynowledge Islands (KI) 
representing different domains of expertise. 
DIAMS-lwas implemented in Emicat (an object 
dialect on top of Prolog). 

The next generation called DIAMS-2 was a near 
operational system developed on top of a KEE/ 
CommonLISP platfornl. It is a hybrid system 



combining decision-tree based symptom-hypothesis 
associational reasoning to initiate and to focus the 
diagnosis, and the DIAMS-1 model-based techniques 
to complete the diagnostic reasoning on particular 
functions and to provide the final isolation of the 
fault. 

In DIAMS-2,comprehensiveness and efficiency 
was priviledged against fineness of representation and 
reasoning. Simplified representations well suited to 
the practical problems faced in space industry were 
introduced as a first approximation. A progressive 
refinement of the models and of the reasoning 
paradigms selected (for instance to include the 
handling of incompleteness, uncertainty and time) is 
now being considered in the definition of a new 
generation of knowledge based systems, DIAMS-3 
[41,[51. 

DIAMS-3 is being implemented in C++ and uses 
the ONTOS Object Oriented Database Management 
System for knowledge storage and retrieval. Beyond 
the porting into C++ of the DIAMS-2 machinery, 
DIAMS-3 will provide generic model edition services 
and C++ libraries of operational standard for handling 
time, incompleteness and uncertainty. These libraries 
could also be reused in other KBS development 
projects. 

Other important objectives of DIAMS-3 concern 
tigher integration with other knowledge-based 
systems like data analysis or procedure management 
tools and more generally the complete integration of 
that kind of tools in the operational loop [ l  11. 

111. Methodology issues 
Spacecraft Control Centers (SCC's) have to process 

large amounts of data from which the relevant 
information is generally difficult to extract and may 
require the use of KBS for instance for data analysis 
and diagnosis (such as those belonging to the DIAMS 
family). Knowledge-based planning and scheduling 
or procedures management tools can also be useful to 
master the management and execution of complex 
operational tasks. These different categories of KBS's 
generally need to communicate with the operational 
environment, i.e to exchange information with 
conventional software or databases. In addition, the 
embedding of the various kind of software 
components (including KBS's) into hardware and at a 
higher level into a system with its organizational logic 
has to be taken into consideration. 

An example of typical Satellite Control Center 
functional architecture is provided in table1 

Table I .  Typical SCC functional architecture 

Various methods, tools, languages, models, or 
architectures are used to develop these different 
kindsof components. To give an example, in many 
SCC's development projects currently conducted at 
MMS, SADT and HOOD are used for the analysis 
and design of conventional software, and the 
MERISE Information System Design methodology 
(including Entity-Relationship diagrams) is used for 
the database components. The operational integration 
of KBS's in SCC's thus raises two kinds of 
methodology requirements: 

Core system 
and 
Common 
services 

Procedural 
applications 

Knowledge- 
based 
applications 

n o w l e d a e o d s  & to& 
Well-suited methods and tools are required for 
expertise analysis and knowledge modelling, 
knowledge verification & validation, or KB 
Administration and Maintenance. 

Databases, data storage and retrieval 
Time synchronization and distribution 
Local Area Network(s), wmmunications 
Distributed environment monitoring and 
control 
Operation documentation management. 

Data reconstruction and distribution 
Flight dynamics monitoring and control 
Operation procedures construction and 
execution ... 

Data analysis 
Diagnosis 
PlanningIScheduling ... 

w f l ' n t l  'on ~ ) i f h  c011~e-1 SW d e v e l o ~ m m  
nporonch  
The elaboration of a methodology framework for 
the cooperation between knowledge engineering 
and SW engineering methods and tools is an 
essential requirement to guarantee the safe and 
efficient cooperation between KBS's and 
conventional applications within a same 
operational environment. 

Rather than expecting the advent of the ultimate 
methodology that would allow to develop all types of 
system components Within the same integrated 
methodology, a pragmatic solution, experimented by 
MMS, consists in adopting a hybrid method 
approach. In such an approach, the task of building 
the integrated application is carried out by developing 
all the system components within a methodology 
framework that allows the use of the most suitable 
existing methods in the successive phases of the 
development. 

This approach of course requires to define 
correspondences between models for cross validation 



purposes but it cames a number of very interesting 
properties. For instance, it allows to benefit from the 
experience gained with the existing methods, allows 
to use existing tools supporting the methods, avoid 
problems such as compatibility with existing models 
(SCC's HOOD models for instance) or the costly 
training of a large number of people to a new method. 

A hybrid method approach for KBS development 
grounded on KADS, HOOD and OMT has been 
successfully experimented by MMS through the 
development of the new generation of diagnostic 
support systems (DIAMS-3). This approach is 
detailed in the next section. 

IV. The hybrid method approach experimented 
in DIAMS-3 

1. Selected methods 

The CommonKads method [14] which is now a 
knowledge engineering method rather popular in 
Europe supported by off-the-shelves tools has been 
selected as the DIAMS-3 Knowledge Engineering 
method. Its founding principle is Knowledge Level 
Modelling. The purpose of the knowledge-level 
model is to make the organization of knowledge in the 
system explicit independently of any representational 
issue (symbolic representation in terms of rules, 
frames, etc.) and, a fortiori, of any implementation 
level issue. The CommonKads model set is briefly 
presented in table 2: 

Table 2, The ComrnonKads model set 

HOOD and OMT were selected: 

Organizational 
model 

Task model 

Agent model 

Communication 
model 

Expertisemodel 

* HOOD [12] is a design and development method 
for large technical and real time software systems. 
It resulted from the merging of Booch's Object 
oriented design approach and Abstract Machines 
methods. The definition of the method was 
sponsored by ESA and started in 86. Since its birth 
in 1986, HOOD has become the most commonly 
used design method in the european space 
industry. It is now the reference design method for 
the SW projects sponsored by the European Space 
Agency. HOOD is a hierarchical design method 
offering two kinds of interesting relations between 
objects: the "use" relation to express that one 
object requires the services of other objects and 
the "include" relation to express that one object, 
the parent, is fully implemented by the child 
objects it contains (cf Figure 1 .) 

provides an analysis of the 
organizational environment in which the 
KBS will run 

Descibes the real-life tasks executed in the 
organizational environment 

Describes the properties of agents that 
perform tasks specified in the task model 

Describes all transactions between agents 

Organizes problem-solving knowledge in 
four layers: domain, inference, task and 
strategic knowledge 

Figure 1. HOOD object: grapltical representation 

Objectpame 

Trigger Active Object I 

I I Passive object /Ch'ld2\,, 1 

( Uncle A I 
OMT (Object Modelling Technique) is an object- 
oriented software development method which 
extends from ~roblem formulation and 
requirements analysis, to design and 
implementation. It has been defined by James 
Rumbaugh & al. [13] from the General Electric 
Research center (USA). This method proposes 
three kinds of models to describe the different 
views of a system (cf Table3) 

Table 3. The OMT model set 

Having assessed that the association of KADS with 
object-oriented analysis and design approaches could The evaluation work has been focused on the object 
provide a suitable basis for developments of systems modelling technique from which the methods draws 
such as DIAMS-3, two complementary methods its name. 

Object model 

Dynamic model 

Functional 
model 

Static, structural view of the system 
showing objects structure and relationships 
between them 

Temporal, behavioral view of the system 

Transformational, functional view of the 
system 



2. DIAMS-3 Specification 
Two main kinds of output have been provided at the 

end of this phase: 
* Software requirements (following a template close 

to the Software Requirements Document template 
recommended in the ESA PSS-05 standard [6]) 
including both functional and non functional 
requirements for the overall diagnostic tool. 
A CommonKADS Expertise model for the 
cognitive parts built with the support of the 
KadsTool tool. This model is briefly described in 
the next paragraphs: 

c knowledge 
The KB is partitioned into knowledge islands 

(KI's). A KI contains all the knowledge items needed 
to investigate (i.e. confirm or infirm) some global 
hypotheses. A strategic-level Investigation Procedure 
is used to select a path among pending hypotheses and 
to navigate from KI to KI. 

kno~t le&g 

Domain knowledge is generally represented by 
hierarchies of concepts and relations between 
concepts. A domain ontology describes the terms that 
will be used to formulate statements about the 
application domain. Domain knowledge may further 
be specified with the help of some meta-descriptions 
- model ontology - that specify the type and structure 
of the domain models. 

The diagnostic tool model ontology has been 
mainly represented by two "consist-of' hierarchies 
structuring: 

* the satellite F'DIR (Fault Detection and Isolation 
Recovery) static knowledge and 
the diagnostic session dynamic knowledge 
introduced as an example in Figure 2. 

A complete description of domain knowledge may 
be found in [I]. 

The inference knowledge specifies the basic 
inferences that can be made with the domain 
knowledge. 

The task knowledge describes the problem-solving 
tasks. Tasks are specified through a task definition 
and a task body. The task body decomposes the task 
recursively in terms of activities (other tasks) needed 
to achieve the task goal. A task description is 
generally associated to an inference structure and 
expresses a control flow on the inference structure. 

The top-most inference structure and task 
description of the diagnostic tool Expertise Model are 
represented in Figure 3. and Figure 4. 

3. DIAMS-3 Preliminary Design 

HOOD and OMT have been used in a 
complementary way for preliminary design in the 
sense that: 

HOOD has mainly been used for the top down 
decomposition of the application into abstract 
machines and for an easy representation of 
interactions of the diagnostic system with external 
resources such as reasoning schemes. It supported 
the preliminary design of the diagnostic system 
shell. 

Figure 2. Diagnostic session knowledge "consist-of ' lzierarclty 

I Current-Satellite-Configurntion I 
h current-syndro 

investigated-hypotheses~ 
currenthypotheses 

Temporal-ConstraintNetwork-Entities 
Reasoning-Schemes-Entities 



Figure 3. Diagnose Inference structure 

Figure 4. Diagnose Task descriptwn 
Rdes 
Input 
hi : Initial-hypothesis 
Si : Initial Syndrom 
Conf: Current-Satellite-Configuration 
Obs : Satellite-observability-knowledge 
output 
C : diagnostic conclusions 
Sf : final syndmm 
Control roles 
KI : Knowledge-Island -in current investigation 
H : Current Hypotheses 
S : Current Syndmm 
KI-hyp : output-KI-hypotheses -deduced from K1 Investigation 
KLsym : KI-Symptoms -observed during KI-investigation 
h : next-hypothesis to be investigated 
MY 
DIAGNOSE(hi,Si,Conf,Obs -> (C.Sf))= 
S=Si ,h=hi ,  H=  1 )  
WHILE "select-next-hyp" returns an hypothesis 
get-Kl(h -> KI) -returns the KI associated to hypothesis h 
INvE!XlGATE(Kl ,S.Conf,Obs -> (Kl-hyp.Kl-sym)) 
Update-current-hypotheses(H,Kl-hyp -> H) - add KI-hyp in H and 
update hypheses plausibilities 
Add_symptoms(S,Kl-sym -> S) 
Select-next-hyp (HS -> h) - seled next pending hypothesis h 

according to diagnostic focusing rules and set h status to "not 
pending"; 
END WHILE 
C=H,  S f = S  
Realization INVESTIGATE 
Activates inference diagnose 

* The OMT design process is not hierarchical but 
OMT offers a very powerful object modelling 
technique including of course modelling of 
inheritance. 0MT has mainly been used to design 
the domain objects classes and relationships 
between these classes. 

An example of HOOD object graphical description 
extracted from the documentation generated by the 
HOODNice tool is provided in Figure 5. 

This description shows the decomposition of the 
object "Diagnoser" which is itself included (with 
other objects such as "KB-administrator" or 
"KB-interface") in the decomposition of the top level 
object called "Diagn~stic~System". This figure 
shows "use" relations between Diagnoser internal 
objects and external objects (e.g., KB-interface) or 
objects belonging to the Diagnostic System Software 
environment (e.g., Temporal Constraint Propagator - 
TCP- and Valuation Based System -VBS- handling 
temporal and uncertain reasoning) 

An example of OMT sheet extracted from the 
documentation generated by the OMTool tool is 
provided in Figure 6. This example shows a 
preliminary design model for KI-hypothesis and 
Knowledge-Island domain objects. 

4. DIAMS-3 detailed design 

Only OMT has been used to support the detailed 
design activity. This allowed a direct mapping to C++ 
object classes. OMT has also been used to maintain an 
up-to-date view of the detailed design model during 
the coding activity. 

Classes identified in OMT preliminary design 
appear as ONTOS persistent classes in the detailed 
design model and methods corresponding either to 
administration methods or to basic inference 
mechanisms have been attached to these classes. An 
example of such a persistent class is provided in 
Figure 7. 

Objects identified in the Diagnostic system shell 
HOOD preliminary design model appear as non- 
persistent classes in the detailed design model . An 
example of such a class is provided in Figure 8. In this 
case, services provided by the "Hypotheses manager" 
in preliminary design are dispatched in two classes: a 
semantic class used in the diagnostic process and a 
graphical class used to manage the Man-System 
dialog (its content has been masked to simplify the 
figure). 



Figure 5. Diagnoser Hood Object graphical description 
A DIAGNOSER 

I l o u t ~ u t  hvwtheses I 
possible output of 

Figure 6. OMT sheet including KZ-hypothesis srtbclasses and KZ-Izypotlzesk-KZ relatwnslzips 
investigated by 

input-hypothesis 

Functional-Klhypothesi 
I 

Kl-hypothesis 

FKl-internal-hypothesis 

IP-output-hypothesis FKI-output-hy pothesi 

Knowledge-lslan 

Figure 7. The KZ-hypothesis class 

I I 

Kl-hypothesis 

-plausibility:Uncertainty 
-investigated:CA-Boolean 

+Investigated():const CA-Boolean 
+Investigated(new-status: CA-Boolean):void 
+Plausibility(): const Uncertainty& 
+Plausibility(newglausibility:Uncertainty&):void 
+Is-rnoreglausible(const Kl-hypothesis&) 

Figure 8. The Hypotheses-manager sernantic and 
graphical classes 



5. Experience Feedback Among the methods investigated, OMT is probably 

Each of the selected methods carries advantages 
and drawbacks. Taken as a whole, the set of selected 
methods exhibits complementary features allowing to 
progress in the elaboration of guidelines for selecting 
a lifecycle model and a combination of methods well- 
suited to a particular application project. This is 
further detailed hereafter. 

CommonKADS 

The CommonKADS modelling approach is mainly 
focused on the analysis phase and cannot be 
considered as a comprehensive methodology that 
provides guidance and support in all phases of 
operational KBS development projects.The 
application development experience showed that 
people with a practical experience in SW engineering 
got acquainted rather rapidly with the KADS 
approach. 

The use of KADS allowed to establish a common 
universe of discourse over the project. KADS models 
were found very useful by the newcomers and eased 
their integration in the project team. 

HOOD 

The use of the HOOD method allowed the top- 
down decomposition of the application into modules. 
This provided a convenient basis for the specification 
of the man-system interfaces and the modelling of 
interactions with external resources (other KBS's, 
database systems or procedural applications). The 
HOOD modelling approach has been designed to 
facilitate the structuration of large projects. In the 
early phase of the application development, its use 
indeed simplified the task sharing between team 
members 

However the main drawback of the method resides 
in its lack of support for the modelling of inheritance, 
which is a critical requirement when developing KBS, 
and, correlatively, the absence of C++ code generator 
in the tools that support the method. This feature 
prevented the selection of HOOD as the application 
detailed design method. 

OMT 

OMT offers a powerful object modelling technique 
which turned out to be well adapted for the 
preliminary design of classes corresponding' to 
domain objects and for the detailed design of the 
whole application. In addition the support tool used 
allowed to generate C++ code skeletons based on the 
OMT object model components. 

the one which is the closest to the ideal 
comprehensive methodology that could be applied to 
all kind of system components - KBS's, conventional 
applications, database applications, etc. - in all phases 
of integrated systems lifecycle. Notice for example 
that MMS is using OMT for two KBS projects: 
"Architectural concept for Spacecraft Operations 
Automation" (sponsored by ESA/ESOC) which aims 
at integrationg iarious ~ ~ ~ ( ~ r o c e d u r e s  management, 
data analysis, planning/scheduling) within the current 
ESOC control center (SCOS) and "Ogre", a KBS for 
ARIANES tests data analysis and reprts generation 
(sponsored by CNES). However the method is still 
rather young - support tools of industrial standard are 
only emerging - and not widely used for operational 
system developments in space. Notice also that in 
Europe, ADA remains the reference language for 
real-time systems developments and that HOOD will 
probably remain the reference method for such 
developments for a few years still. 

V. A hybrid methodology framework for 
co-existing conventionallknowledge-based 
developments 

The method cooperation approach straightforward- 
ly derives from the operational continuity principle. 
This requirement states that as organizations are hard 
to change, and as old applications and organizations 
have to be maintained while introducing new system 
capabilities, it is important that applications be devel- 
oped on a modular basis to enable an incremental de- 
velopment and maintenance strategy. 

This principle at the application level translates into 
a dual principle at the methodological level that could 
express as follows: when people have a good working 
knowledge of a given method that has proved to be 
well-suited to a given class of system components it is 
preferable to let them use the known methods and to 
limit the enforcement of new methods to system 
components and development phases which are not 
well covered with the existing methods. 

Rather than developing a comprehensive 
methodology, the proposed approach is thus to define 
a framework that supports the cooperation between 
methods. 

Table 4 introduces a first instance of such an hybrid 
approach that synthesizes the main results of the 
method evaluation work as well as other results 
coming from a comparison of KADS, MERISE, 
SADT and OMT methods [9]. This table associates a 
set of methods or languages to each lifecycle phase. 
Such sets of methods can be interpreted either as 



alternatives methods (e.g., KADSI OMT for domain 
objects modelling) or complementary methods (e.g . , 
HOODIOMT for preliminary design) or as possible 
mappings between models for cross-validation 
purposes (e.g., KADSFlERISE where KADS is used 
for Knowledge-based components and MERISE for 
SCC operational databases). 

The method cooperation approach also requires to 
manage the correspondence between different 
representations of the same objects at each step of the 
development process. This is particularly needed for 
objects encapsulating knowledge & data exchange 
services between different subsystems and to perform 
the cross-validation of models. This question has also 
been investigated in [9] 
Table 4. Method components for operational integration 

of KBS's in space environments 

Conclusion 

In this paper, we have presented a hybrid 
methodology framework that could contribute to the 
operational integration of KBS's in SCC's as this has 
been demonstrated on the example of diagnostic 
support systems. 

Experience feedback coming from MMS current 
KBS projects using OMT for the whole lifecycle will 
also provide valuable inputs for assessing this hybrid 
methodology framework. 

Further goals for MMS in this area are to refine the 
proposed hybrid approach through elaboration of 
rules for the maintenance and updating of hybrid 
models in the coding phase (including the 
management of traceability links). The situation of 
prototyping and V&V activities wrt. the proposed 
hybrid approach are also being investigated. 
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Abstract Introduction 
The Spacecraft Control and Operations System The need for the SCOSII OL has matured 

I1 (SCOSII) is the new generation of Mission Con- through the long experiences ESOC have had 
trol System (MCS) to be used at ESOC. The system with the use of configurable generic MCS7s. As 
is generic because it offers a collection of standard any other previous ESOC MCS, SCOSII will 
functions configured a database 'pan be configured through databases containing the 
which a dedicated MCS is established for a given mission specific knowledge. 
mission. 

An integral component of SCOSII is the support This knowledge will not only need to be 

of a dedicated Operations Language (OL). The efficiently defined, but also validated and then 
spacecraft operation engineers edit - test - validate maintained, due to the pre-launch test results 
and install OL scripts as part of the configuration of and/or the frequent changes which do occur 
the system with e.g. expressions for computing during the lifecycle of a mission. 
derived parameters and procedures for performing 
flight operations, all without involvement of soft- 
ware support engineers. 

A layered approach has been adopted for the 
implementation centred around the explicit repre- 
sentation of a data model. The data model is object- 
oriented defining the structure of the objects in 
terms of attributes (data) and services (functions) 
which can be accessed by the OL. 

SCOSII supports the creation of a mission 
model. System elements as e.g. a gyro are explicit, 
as are the attributes which describe them and the 
services they provide. The data model driven 
approach makes it possible to take immediate 
advantage of this higher-level of abstraction, with- 
out requiring expansion of the language. 

This article describes the background and con- 
text leading to the OL, concepts, language facili- 
ties, implementation, status and conclusions found 
so far. 

The SCOSII OL concept is designed to aug- 
ment the traditional ways an operation engi- 
neer specifies mission specific configuration 
data to cover as well knowledge which is algo- 
rithmic or procedural in nature. Thus it is 
essential to support the operations engineer in: 

specifying and maintaining the mission 
knowledge in a natural, concise and 
intelligible manner - without requiring a 
detailed software understanding or sup- 
port of software engineers; 

defining the mission knowledge in con- 
text-specific dedicated environments, 
whereby both the HCI and the allocated 
constructs are specifically designed for 
each particular information type; 

validating the specified knowledge by 
means of 'on-line' checks and testing 
capabilities. 
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Background and Context 
For any mission has been the demand to 

derive information from the format which is 
provided through the spacecraft telemetry 
parameters. The most frequently used deriva- 
tion is that of applying a (linear) calibration to 
convert raw values into engineering units. The 
calibration is defined by providing value pairs 
as part of the database configuration. 

Although calibrations satisfy a large per- 
centage of the derivation needs, they do not 
provide a sufficient mechanism as there is as 
well a need to compute derived values by com- 
bining other values using an algorithmic trans- 
formation. 

In the Multi-Spacecraft Support System 
(MSSS) these algorithms were specified on 
paper by an operations engineer and subse- 
quently coded by a software engineer. In 
SCOSI the operations engineer writes the algo- 
rithm directly in FORTRAN expanded with a 
few syntactical constructs to e.g. reference a 
previous value of a parameter. In both cases the 
resulting FORTRAN code is compiled and 
linked with the operational control system soft- 
ware. An error in the algorithm will not be 
detected before a run-time crash occurs. The 
turnaround time for changes has from an oper- 
ational perspective a significant and unwanted 
delay. Neither systems support version and 
configuration control functions. 

The Spacecraft Performance and Evaluation 
System (SPES) offers a significant improve- 
ment as it allows the users through a dedicated 
language to define expressions, compute aver- 
ages, etc. SPES is however limited to work in 
an off-line context on historical values and has 
no integration with the control system as such. 

The possible largest driver for the require- 
ments is the wish to formalise and incorporate 
executable operation procedures written in the 
OL within SCOSII. Whereas algorithms for 
derived values do not necessary have to be 
explicit in the run-time context, procedures do 

have to: one property of a procedure is its inter- 
active nature involving a close dialogue with a 
human operator through a procedure execution 
display. 

Within ESA, check-out systems have for 
some time provided capabilities of defining test 
procedures through special languages; the most 
significant ones being ETOL (ESA Test Opera- 
tions Language), ref. [lo], and ELISA 
(Extended Language for Instrument and Space- 
craft AIV), ref. 191. These check-out languages 
focus on regression testing capabilities. 

Two ESOC studies have demonstrated the 
feasibility of executable procedures within 
control systems, namely the Expert Operator's 
Associate (EOA) study, ref. [12], and the Mete- 
osat Workstation (MWS) study, ref. [13] - the 
latter now being used operationally. Both 
projects focused on the internal representation 
of procedures and the interactive nature of their 
execution with close coupling to the human 
spacecraft operator. 

The User Terminal Study at ESTEC, ref. 
[S], has shown the advantages of an object-ori- 
ented language in combination with a mission 
model. The User Language Study at ESOC, 
ref. [7], was initiated with the purpose of pro- 
viding inputs to the SCOSII OL and has proven 
a number of concepts; in particular the advan- 
tages of a layered implementation centred 
around the explicit representation of a data 
model. Both studies focused on the configura- 
bility aspects of the system and associated lan- 
guage capabilities. 

From a technological view the existence of 
powerful UNIX utilities such as lex and yacc, 
the ideas behind database languages as SQL, 
advances in workstation performance, and the 
maturity of object-oriented concepts have fur- 
ther made it possible to implement the OL. 

SCOSII, ref. [I] [2] [3] [4] [S] [6] [14], is the 
new generation of generic control systems to 
be taken into use at ESOC; the first client mis- 
sions being Huygens (97), Artemis (97) and 



Envisat (98). SCOSII is a distributed control definition environment would suffice, both 
system running on powerful UNIX worksta- need to be accessible in a homogeneous man- 
tions connected through a local area network. ner from within the same HCI. 
SCOSII has been engineered for high perform- 
ance throughput; in particular to optimise the 
parallel access to real-time and historical data. 
Further emphasis is put on the configurability 
of the system to incorporate a mission model, 
hereby offering a higher level of abstraction 
than that traditionally provided by telemetry 
parameters and telecornrnands. A new Human- 
Computer Interaction (HCI) concept has been 

An operations language needs to interact 
with the control system to be able to access 
data held by the control system which is of 
operational importance to get e.g. the validity 
status of a telemetry parameter; request sew- 
ices to e.g. send a telecommand; and change 
data to e.g. store the results on an evaluation of 
a derived parameter. 

adopted based on closer data integration and 
-- 

referential capabilities. 

Concepts 
SCOSII is a generic system which is config- 

ured by adding missing specijc knowledge, 
which may be categorised into: 

declarative knowledge, e.g. calibration 
curves, parameter structures, etc.; speci- 
fied through dedicated form based HCIs; 

expressive knowledge, e.g. derived 
parameters, command validation condi- Model 
tions, etc.; specified through the OL; 

* procedural knowledge, e.g. operation A layered approach has been adopted for 

procedures, report procedures, etc.; spec- the SCOSII OL as shown in Figure-1. The 

ified through the OL; three layers are: 

* special knowledge, i.e. non-generic mis- 
sion information typically requiring a 
software expansion to SCOSII. 

It is difficult to define the borderline of 
when to use declarative or expressive knowl- 
edge, i.e. when to use the OL. The definition of 
specific items within the database have typi- 
cally both a declarative and an expressive part. 

* Interaction layer, i.e. the user interface of 
the system which may interact with the 
physical layer directly or with the logical 
layer; 

* Logical layer, centred around the OL 
containing the data entities which are 
manipulated via constructs in the lan- 
guage; 

The identifier, description, etc. of a parameter * Physical layer, providing the generic 
is defined by declarative knowledge, whereas services of the control system. 
its validity criteria is defined by expressive 
knowledge. Due to this 'mixture' of declarative The access from the logical to the physical 

and expressive knowledge inherent to most layer is dictated by an explicit data model. The 

database parts, the way the user interacts with data model is object-oriented as it represents 

the system needs to reflect this fact. Neither a physical layer objects with attributes and serv- 

pure (traditional) forms interface nor a pure OL ices accessible to the OL. 



It supports the explicit representation of each parameter is calculated on the basis of 
inheritance, aggregation and association rela- current values of any contributing parameters. 
tions. This enables the OL to facilitate naviga- 
tion through related objects, e.g. from a 
command to the parameter used within its post- 
execution verification checks. 

The data model serves as a 'contract' 
between the logical and physical layers, it can 
not be changed through the OL itself. This does 
not imply that the data model is static, changes 
are just controlled through a mechanism within 
the physical layer. Any change to the data 
model is propagated to the logical layer. 

The physical layer within SCOSII is itself 
based on an object-oriented implementation, 
i.e. the differences in representation between 
the logical and physical layers are less than 
would otherwise have been the case. The direct 
implication of this is that the logical layer is 
'slim': it mainly serves to present physical 
layer objects to the operations engineer while 
hiding implementation details and offering pro- 
tection against illegal access. The intelligent 
behaviour always rests within objects of the 
physical layer, i.e. if the physical layer does not 
support a certain function it will neither be 
available within the OL. 

SCOSII supports the representation of a 
mission model, allowing to organise the mis- 
sion knowledge according to a structural repre- 
sentation of system elements, e.g. a gyro or a 
heater. The OL can access these higher level 
objects in the same way as any other object 
within the physical layer, i.e. it does not require 
a language expansion to take advantage of 
these. 

It is transparent to the OL whether it 
accesses static (database configuration data, 
e.g. parameter characteristics) or dynamic 
(processing data, e.g. latest parameter value) 
data. Although the OL does offer facilities to 
explicitly request historical data; the concept 
of time is nominally managed through the 
application using the OL. A parameter display 
may be put into retrieval mode, the validity of 

It is further transparent to the OL that 
SCOSII is a distributed system. All aspects 
dealing with data distribution and synchronisa- 
tion are handled fully by the physical layer. 

The OL is an interpreted language. The rea- 
sons for this choice have mainly been that at 
least operation procedures are interactive of 
nature involving communication with a human 
operator - for which an interpretation was 
believed most adequate. 

All OL definitions form part of the database 
configuration of a SCOSII system. They are 
therefore underlying strict version and configu- 
ration control. 

Language Facilities 
The OL is a strongly typed language, which 

enables the detection of a range of errors at 
preparation time during database configuration 
rather than causing an error at execution time. 
The data model forms part of the type system 
within the OL; accessing the physical layer 
objects in a wrong way will be detected prior to 
its execution. 

The executable unit within the OL environ- 
ment is an OL Script. A script may be as simple 
as a single boolean expression or as complex as 
the full directives of a large flight operations 
procedure. A script is composed of two parts: a 
declaration part (local variables and function 
definitions) and an executable part (statement 
list). 

The access to the physical layer objects is 
governed through the explicit existence of an 
object-oriented data model. Figure-2 illustrates 
a segment of a script to calculate the value of 
the derived Parameter P117. If the status of the 
limit of Parameter P112 is above limits, then 
the engineering Value of P117 is set to the 
upper limit definition of P112; otherwise it is 
set to be the engineering Value of P112. 



if (P112.limit == ABOVE-LIMITS) then 
P117 : =  P112.limit.upper; 

P117 : =  P112; 

Heater 
switch-status 
power-status 

swltch[state) 

if ( . . . . )  then 
heaterl3.switch(ON); 

. . . .  

Figure-4 System Element Logical Layer 
Data Model and OL Example 

Figure-2 Operations Language Example The OL is, besides from its integration with 
the data model, a straight-forward imperative 

Figure-3 shows the data model correspond- language. Table-1 provides an overview of the 
ing to this example. A Parameter is character- major language constructs. - - 
ised by its name, description, limit, raw and 
engineering Values. Each Class may have a Table-1 Operations Language Constructs 

default attribute (marked with a '*'): for the 
Parameter the default is its engineering Value. 
A Parameter offers a service delta which 
allows to access historical samples. A Value is 
characterised by its value (default) and validity. 
A Limit is characterised by its status (default), 
lower and upper limit definitions. Notice that 
due to the concept of default attributes, the 
expression 'P112' evaluates as 
'PI 12.eng.valueY. 

Figure-3 Logical Layer Data Model 

Figure-4 shows the representation of a 
Heater system element within the logical layer. 
A Heater is characterised by its switch-status 
(on-off) and power-status (on-off) attributes, 
and offered service to switch it either on or off. 
The OL can operate on heaters in the same 
manner as on parameters shown earlier. 

Functions 

mathematical 
statistical 
bit manipulation 
time 
object creation 
object copy 

Statements 

assignment 
wait 
function invocation 
goto-label 
if-then-else 
select-case 
while-do 
repeat-until 
for-in-list -do 
for-to-step-next 

The generalised approach of interfacing 
physical layer objects governed by the data 
model is not in all cases adequate. A trade-off 
has to be made whether to provide a more tar- 
geted syntax for particular kinds of knowledge. 
It is expected that specialised 'mini languages' 
extending the OL syntax will evolve - typically 
also offering dedicated HCI support. However, 
the baseline is that these shall be mapped onto 
the kernel OL at the syntactical level, i.e. in 
terms of macro expansion. This ensures that 
the intelligent behaviour stays within the phys- 
ical layer of the MCS. 

Expressions 

value 
reference 
function invocation 
boolean expression 
numeric expression 
string expression 
time expression 
list expression 
set expression 
matrix expression 
vector expression 
map expression 

The OL facility is implemented as any other 
SCOSII software: it is specified and designed 
using an object-oriented method (OMT, ref. 
[l I]), and programmed in C++. The UNIX util- 
ities lex (scanner generator) and yacc (parser 
generator) are used to construct the parse tree. 



Due to the fact that the OL scripts form part A typical example of a non-valid Value is 
of the database configuration and hence are the state of a switched-off (or redundant) unit 
defined in the preparation phase, the parse tree which still is being sampled and echoed 
is built already at this stage to improve the per- through telemetry. 
formance in the execution phase. The parse 
tree structure is used directly by the interpreter. 

A LL Object is a special kind of Value. It is 
structured as a record, containing a Value for 
each of its attributes. 

Figure-5 Physical Layer Interface Glass Bia- 
gram 

root 

The physical layer interface is illustrated in 
Figure-5. A Parse Node is a component of the 
parse tree and is characterised by an identijier. 
It references its root Parse Node and all of its 
sub Parse Nodes. A Parse Node is evaluated 
within a particular Context. A Context maps 
identifiers onto Values and offers a lookup 
service. The Global Context is a special kind of 
Context which interfaces a Global Name Table 
provided by the Physical Layer (PL). The Glo- 
bal Name Table offers a lookup service taking 
as input a character string (e.g. "P112") and 
returning a reference to the corresponding PL 
Object. 

Parse Node 
id leaves 

A Value is characterised by its value and 
validity status, which is used to propagate the 
effects of non-valid values throughout the eval- 
uation of expressions: if a Value is computed 
on behalf of non-valid Values, it is itself to be 
considered non-valid. 

Value 
value 
validity 

Any object within the PL which needs 
access from the LL inherits the properties of 
the PL Object, hereby ensuring the proper 
interface to the LL. A PL Object is character- 
ised by its type and contains a service mapping 
relating requests from the LL onto C++ func- 
tions of the PL. All LL Objects are attached to 
one PL Object. At run-time only the PL 
Objects actually used are related to LL Objects. 

An initiative is currently being undertaken 
to further generalise the physical layer inter- 
face by adopting the Model-View-Controller 
(MVC) architecture, ref. [15], with the purpose 
of using identical interfaces from both the 
interaction and the logical layers to the physi- 
cal layer, see Figure-1. The first prototypes 
with this architecture have demonstrated prom- 
ising results. 

8 
attr name 

Figure-6 Script Class Model 

Context 

The Handler, illustrated in Figure-6, con- 
trols the execution of any Script. It offers two 
services: schedule, which determines the order 
in which scripts are executed, and execute, 
which invokes the script execution. 

LL Object 

lookup 0 

Global Context 

Global Name Table 

lookup 

PL Object 
sewice mapping 
type 



A Script is characterised by its dejnition, 
i.e. a textual representation of the script, and its 
status - e.g. whether it has been parsed. It 
offers two services: parse, which builds the 
parse tree of the script, and execute, which 
requests the execution of the script. Any appli- 
cation using scripts have to inherit from the 
Script User class, which provides the mecha- 
nism to interface the OL environment and 
request the execution of scripts. 

The initiative to execute scripts nominally 
comes from an application using the OL. The 
Handler has to deal with the incoming execu- 
tion requests. Currently a very simple schedul- 
ing mechanism is implemented; it is foreseen 
to expand this into a finer-grained mechanism 
taking aspects, like priorities and pre-emptive 
scheduling, into account. 

Nominally a script will be version control- 
led as part of its using entity: e.g. the validity 
criteria of a parameter specified as an OL 
boolean expression is seen as part of the corre- 
sponding parameter version. If the validity cri- 
teria is changed, then a new version is 
associated with the whole of the parameter it 
belongs to. The granularity in terms of at which 
level of detail to manage versions is decided on 
a mission specific basis. 

Status 
SCOSII is under development. A Basic Sys- 

tem has recently been delivered comprising 
functions equivalent to those offered in the 
existing generic MCS's used at ESOC. A 
reduced OL facility covers only expressive 
knowledge and simple tools. Further evolution- 
ary releases are planned: 

* release 1 (1 Q95), adds e.g. mission mod- 
elling capabilities and executable opera- 
tion procedures. The OL facility covers 
procedural knowledge and simple tools. 

* release 2 (1Q96), adds e.g. advanced 
mission modelling and semi-automatic 
operation procedure execution. The OL 
facility is complete with tools. 

release 3 (1Q97), adds e.g. integration 
with knowledge based applications for 
automatic operation procedures execu- 
tion. 

FOPGEN, a WYSIWYG tool to support 
editing, display and printout of operational 
documentation, will be fully integrated with 
SCOSII. It provides advanced editing features 
and readwrite access to the SCOSII mission 
database. FOPGEN will generate operation 
procedures in the SCOSII OL. 

No language constructs to deal with paral- 
lelism or script execution synchronisation are In parallel with the SCOSII development, 

provided. It is believed that such aspects are two major studies have been initiated: ATOS-4 

better managed by the physical layer. Within exploits the use of knowledge based technol- 

the OL conditions can be defined as e.g. an ogy in e.g. the context of procedure execution 

interlock (execute upon successful verification) based on SCOSII and the OL; Productline for 

between two operation procedure execution Compact Ground Facilities investigates the 

requests. The physical layer knows about the integration of check-out and operation control 

conditions and observes these while servicing systems, with particular emphasis on the lan- 

the related execution requests. guage aspects. 

At this stage only basic OL editors and exe- The Committee for Operations and EGSE 

cution displays are provided. It is expected to Standardisation (COES) is currently active to 

expand the tools with a debugger and test tool, standardise the ground segment infrastructure 

enabling the operations engineer to test and systems within ESA. A particular subject cov- 

validate Scripts locally on a workstation. ers the standardisation of the human-computer 
interaction of which a dedicated language is 
seen as an integral part. 



The SCOSII OL will be a significant con- 
tributor to this standardisation work; the OL 
itself will be made compliant to the forthcom- 
ing standard. 

Conclusions 
The SCOSII OL provides support to the 

operations engineer for the configuration of a 
MCS with mission specific data to include 
expressive and procedural knowledge, hereby 
clarifying the borderline between the mission 
specific and generic elements of a MCS. The 
turn-around time for a change is drastically 
reduced as it does not involve any software 
modifications. 

It does not cover the declarative knowledge 
for which the existing forms based HCI have 
proven to be efficient. A mixed approach has 
hence been adopted where only a subset of the 
configuration data is specified through the OL. 

The existence of an explicit object-oriented 
data model ensures a clear framework for the 
interface to the physical layer of SCOSII. 

The language is on purpose 'kept simple 
and stupid', expecting the intelligent behaviour 
to be provided by the physical layer objects. 
This facilitates improved performance within 
the OL environment. 

The language is bound to SCOSII. As there 
is no intelligent behaviour within the logical 
layer, it depends upon the level of services 
offered by the physical layer. The direct impli- 
cation of this is that although the architecture 
concepts could be adopted, it makes little sense 
to port the language environment to a different 
platform than SCOSII. 

The data model approach, although flexible, 
has the possible disadvantage that porting OL 
scripts between missions can be difficult as 
each mission could have their own different 
data model. This is however a property of any 
generic system, not just the SCOSII OL envi- 
ronment. 

With the planned expansions of SCOSII to 
- 

cover extensive mission modelling capabilities, 
the added level of abstraction within the physi- 
cal layer will allow the OL to take immediate 
advantages of this due to the generalised data 
model approach, without requiring syntactic 
nor semantic changes to the language. It is 
expected that the full advantages of the SCOSII 
OL will be demonstrated at that stage. 
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Abstract Spacecraft Assembly, Integration and Test (AIT) is 

Matra Marconi Space (MMS) has been developing 
spacecrafr diagnostic support systems for eight years. The 
DIAMS program, initiated in 1986, led to the development 
of a prototype expert system, DIAMS-1, dedicated to the 
Telecom 1 Attitude and Orbit Control System, and to a 
near-operational system, DIAMS-2, covering a whole 
satellite (the Telecom 2 platform and its interfaces with the 
payload), which was installed in the Satellite Control 
Center in 1993. The refinement of the knowledge 
representation and reasoning is now being studied, 
focusing on the introduction of appropriate handling of 
incompleleness, uncertainty and time, and keeping in mind 
operational constraints. For the latest generation of the 
tool, DIAMS-3, a new architecture has been proposed, that 
enables the cooperative exploitation of various models and 
knowledge representations. On the same baseline, new 
solutions enabling tighter integration of diagnostic systems 
in the operational environment and cooperation with other 
knowledge intensive systems such as data analysis, 
planning or procedure management tools have been 
introduced. 

I. Introduction 

Spacecraft (SIC) operations have pioneered the 
introduction of the Knowledge-Based Systems (KBS) 
technology in Space. The prototyping activities 
conducted in the eighties have allowed to demonstrate 
the potential of KBS to assist in controlling space 
systems. Knowledge-Based Systems in SIC Control 
Centers (SCC) have proven to have a high potential 
for 

assisting spacecraft engineers in monitoring and 
analyzing SIC data, and in diagnosing on-board 
failures from the knowledge of the SIC state 
obtained through the telemetry. 
assisting SIC engineers in complicated operations 
where the exact sequence of operations is 
determined by external constraints and by the actual 
SIC state at each step. 

also becoming a knowledge intensive activity that 
requires appropriate knowledge-based assistance. Due 
to the increasing complexity of space systems, an 
increasing number of parameters have to be tested 
before launch through more and more elaborated test 
procedures. At the same time, the duration of the AIT 
phases is continuously decreasing. This makes the 
AIT phase a critical phase in almost all present space 
projects and increases the pressure on the 
development teams. 

The use of knowledge based systems for emergency 
management, fault diagnosis, resource management, 
replanninglrescheduling, etc. and the operational 
integration of such facilities in future ground 
infrastructures (SCC's, AIT environments) should 
help lowering the risks in problem diagnosis and 
selection of recovery actions, avoiding mis-diagnosis 
that might endanger the system in-orbit or under test, 
and eventually reducing the overall cost of the AIT & 
operation phases. 

These general considerations motivated the launch 
of the DIAMS program by the mid-eighties. DIAMS 
is a step-wise fault diagnosis expert systems 
development programma initiated by Matra Marconi 
Space with support from CNES in 1986.The analysis 
of the DIAMS programma illustrates the progressive 
approach adopted by MMS to master the inherent 
complexity of the knowledge required while 
delivering successive generations of knowledge-based 
tools that can actually provide support in spacecraft 
operations. 

11. DIAMS-0: the first steps 

First experiments in the domain of diagnosis were 
conducted in 86. An early mock-up was developed in 
Smalltalk. It allowed to confirm some basic 
knowledge representation and reasoning principles 



and particularly the importance of model-based 
approaches and object-oriented knowledge 
representations. 

The Object-Oriented (00)  paradigm was found 
well-suited to the implementation of knowledge 
-based systems. In the 00 paradigm, each elementary 
problem-solving competence may be attached as a 
method to one or several domain object classes. 

The Model-Based approach clearly distinguishes on 
the one hand the application domain which is 
modelled in terms of functional or behavioral 
components and on the other hand generic reasoning 
mechanisms that can interpret such models and work 
on them. KBS implementing the model-based 
approach may be decomposed into 
domain-independent modules - the KBS shell - on the 
one hand and domain-specific Knowledge Bases (KB) 
on the other hand. The KBS shell implements the core 
of the inference process (basic knowledge 
representation and reasoning mechanisms, general 
problem-solving strategy) and the external 
communication services (user interface, interface 
with the operational environment). It is generally 
reusable for other target systems of the same nature, 
possibly through customizing of the external 
communication services. The Knowledge Bases are 
generally specific to the target system (a specific SIC 
system or subsystem for instance). 

111. DIAMS-1: Establishing the founding 
principles 

The development of a first generation of diagnostic 
tools, DIAMS-1, started in 1986. The project was 
co-sponsored by the French Space Agency. It led to 
the delivery of a prototype Expert System dedicated to 
the TELECOM 1 Attitude and Orbit Control System 
(AOCS) [7]. The selected implementation platform 
was the SUNIUNIX environment and an 
object-oriented dialect on top of Prolog called Emicat. 
Graphical interfaces were developed on top of 
Sunview. The prototype was installed in the 
TELECOM 1 SCC and evaluated by the operation 
staff in 1989 [8]. 

Setting up the basic knowledge representation and 
reasoning mechanisms 

Knowledge Islands 

One of the main advances realized through 
DIAMSl was the decomposition of the knowledge 
base into different categories of so-called Knowledge 

Islands (KI) representing the different domains of 
expertise required for diagnosis 

hierarchical decomposition of the system into 
functions with identification of basic commands 
and observables 
qualitative models of behavior 
shallow knowledge required for solving the most 
common problems or to deal with situations where 
the expert understanding is not deep enough to 
include a functional or a behavior model 

The notion of knowledge island turned out to be 
particularly well-suited to the management of the 
different natures of knowledge. It greatly facilitated 
the KB maintenance and incremental refinement. It 
also made easier the local implementation of new 
types of knowledge, including new or refined 
knowledge representation paradigms designed to 
achieve a finer representation. 

Functional knowledge 

The functional model consists of a set of functional 
diagrams, grouped into knowledge islands, and 
describing at the component level: 

the functional elements of the system, 
the functional links, representing possible 
influences between functional elements, 
the observable parameters (telemetry) associated to 
some of the functional links, and the available 
telecommands. 

The functional model is hierarchical and its deeper 
level corresponds to the limits of the satellite 
commandability and observability. It depicts 
telecommands and telemetries connections and 
corresponds to the switching diagrams used in SIC 
operation engineering activities (figure 1). 

Figure I .  Example of functional diagram 



For each functional element, a propagation function 
defines how abnormal influences received are 
propagated to other elements, under the assumption 
that it is nominal (not faulty). It describes how this 
component responds to abnormal input influences, or 
how its inputs can be abductively suspected when its 
outputs are in abnormal states. 

The main justification of this hybrid model based 
approach is that, because the systems modelled are 
very complex, the functional elements do not have a 
general description of their behavior. In other words, 
the model is not built to provide predictions of all the 
possible behaviors of the modelled system. It is rather 
a qualitative representation of the possible fault 
propagation between the components of the system. 
The fault modes of the suspected unit(s) are defined 
only by their signatures in terms of abnormal 
output@). Fault modes do not need to be 
systematically identified a priori. Interactions 
between components can stand for all kinds of 
physical signals (e.g. electrical, command signals, 
thermal influences). A very restricted set of states has 
been shown sufficient in most cases to represent the 
propagation of faults over the functional layouts. 

Diagnostic reasoning in a functional KI may be 
decomposed into three fundamental tasks which are: 

hypotheses generation: given suspect links pointed 
out by a behavior analysis or by previous analyses 
in other functional KI's, find out which functional 
elements might account for the symptoms. This 
result is achieved by backward propagation of the 
anomalies through the links between the functional 
elements, using the propagation functions 
abductively. 

* hypotheses elaboration: given the set of suspected 
functional elements given by the reasoning in the 
previous step, determine what the impact of their 
fault would be on the observables of the K1 - 
currently investigated. This is achieved through 
forward propagation through the links, using the 
propagation functions deductively. 

* hypotheses discrimination, that is discriminate 
among the hypotheses coming from the first step by 
adding more information about other observable 
parameters generated at the second step. The 
principle of the diagnosis is then to enter a 
discrimination loop between the possible causes. 
The system selects an observable according to 
various criteria, like the reliability of the measure or 
the discrimination power of the observable, and 

then asks for its qualification. Depending on the 
nature of the response, some possible causes are 
discarded (the ones which are incompatible with the 
qualification of the observable given by the user). If 
there are still discriminating observable parameters, 
another step of the loop is entered, otherwise the 
result of the diagnosis is either a single cause or a 
set of non discriminated possible causes. 

Behavior knowledge 

The behavior Knowledge meets the requirement for 
system level knowledge that allows to rapidly get a 
partial conclusion about the origin of the problem 
(reconfiguration criterion, global fault corresponding 
to some system state variables) and then to focus the 
attention on some subfunctions of the functional 
model and so to limit the exploration of the functional 
model to these subfunctions. 

Standard forms were defined to capture the AOCS 
behavior knowledge. These forms were used to 
specify in a systematic way all the observables (e.g., 
the roll angle), system variables (like the nozzle firing 
command or the nozzle state variable) and the 
observable manifestations (e.g., the displacement of 
the SIC nutation center along the roll axis after an 
actuation sequence) necessary to represent the 
behavior of the system together with the relationships 
existing between these different elements. The 
behavior model also contained a number of causal 
relationships representing the AOCS automatic 
reconfiguration logic. Once this information was 
entered in the KB, the KBS shell could build the 
causal graphs relating system variables, fault modes, 
and observable manifestations, and discriminate 
between them using the same generic inference 
mechanisms as in the functional model (figure 2). 

Figure 2.  Examples of behavioral relalionships 
1 



Lessons learned from the experimentation phase 

The main results of the experimentation phase were 
gathered in a document jointly elaborated with the 
Telecom 1 operations [8]. The experimentation of the 
prototype was very useN in clarifying the situation 
and mission of the expert system in the SCC and in 
refining the operational requirements. It confirmed 
DIAMS-1 basic knowledge representation and 
reasoning mechanisms. The general conclusion was 
that the DIAMS approach improved the 
communication between the SIC manufacturer and 
the SCC staff, and that, as a model-based system, 
DIAMS provided the SCC staff with a better 
knowledge of the SIC functions and behavior. The 
experimentation phase also indicated how additional 
functionalities could be implemented in future 
versions of the system. 

The DIAMS-1 experimentation phase 
demonstrated that the approach chosen was ripe for 
being applied in large scale applications. It convinced 
the French Space Agency to start the development of 
a full scale diagnostic support system for TELECOM 
2 satellites. 

Two of the technical lessons learned during the 
experimentation phase are worth being recalled here: 

An important part of the SIC knowledge is available 
under graphical form (functional diagrams for 
instance). The experimentation emphasized the 
importance of the graphical model edition and 
animation services. Graphical model editors are 
needed for instance for building the functional 
model and checking the graphical consistency of its 
hierarchical deco&siGo;. Model animators are 
needed to display and to animate the appropriate 
diagrams during reasoning. Models editors and 
animators require a development tool which offers 
an object-oriented language for modelling the 
domain semantics (semantic objects) and integrated 
graphical utilities to manage the interactions 
between the semantic objects and their graphical 
representations. 
It was also remarked that some basic mechanisms 
could be reused in the framework of the SIC project 
to support a number of design activities. The 
hypothesis elaboration mechanism could be for 
instance adapted to perform impact analyses - e.g., 
to figure out the impact of a given fault or a given 
telecommand on the system observables. Impact 
analysis is one of the main techniques used for 
instance to elaborate the TM/TC plan or to analyze 

failure modes effects and criticality (the FMECA) 
during the SIC design phase. TMITC Plans and 
FMECA also are major sources of information for 
the construction of the KB and the optimization of 
the diagnostic strategy. 

W .  DIAMS-2: Maturing the knowledge 
modelling and the development prwess 

Through DIAMS-2, MMS addressed the 
development of a fault isolation tool covering a whole 
spacecraft: french telecommunication satellite 
TELECOM 2. This project was the consequence of 
the very positive results of the development and 
evaluation of the DIAMS-1 prototype [9][2][3] [4]. 

DIAMS-2 was developed over a period of 4 years 
from 1989. The selected implementation platform 
was the KEE/CommonLISP object oriented 
environment which was considered the reference 
environment for KBS development when the 
DIAMS-2 project was started. It also complied with 
the semantic-graphic integration requirement that 
resulted from the DIAMS-1 experimentation. 

Refining Knowledge Modelling 

DIAMS-2 is a hybrid system combining decision 
tree based symptoms - hypotheses associational 
reasoning to initiate diagnosis and to focus the 
reasoning on particular functions and components and 
the DI AMS- 1 model-based techniques to complete 
diagnostic reasoning on particular functions and to 
provide the final isolation of the fault. 

Investiaation Procedures " 

The decision-tree based knowledge, called 
Investigation Procedures (IP) in the latest generation 
of the tool, adds a strategic layer on top of the 
functional model. It is used to select among pending 
hypotheses and to focus the attention on definite parts 
of the functional model (figure 3). 

IP modelling starts at the system level, 
implementing a top-down approach. The used 
knowledge is elaborated by SIC operation engineers 
during the mission preparation phase. It corresponds 
to the Contingency Operations section of the 
Operations Preparation Handbook. IPS can be 
enriched on the basis of anomalies experienced 
during the SIC in-orbit 1ifetime.The knowledge is 
represented as decision trees whose nodes are either 
binary tests (e.g., testing whether a given parameter is 
abnormal) or actions on the satellite (e.g., sending a 



telecommand that will allow to discriminate between 
candidate hypotheses). 

A diagnostic session starts when the user inputs a set 
of anomalies. The initial tests implement a 
discrimination strategy at system level. These tests are 
mainly membership tests which aim at localizing the 

Maturing the Development Process 

Moving to a full scale industrial application raises 
stringent requirements in terms of Knowledge 
Management and KBS Development Methodology. 
With support from CNES, MMS elaborated a first set 
of Software Engineering principles and Quality 
Assurance rules applicable to KBS projects that 
benefited from the experience acquired in DIAMS-1. 

The construction of the Knowledge Base was 
conducted by a dedicated team independent from the 
KBS shell development team. The KB development 
team performed the capture of knowledge and the 
construction of the KB using well-suited methods and 
tools in compliance with the representational 
constraints of the operational environment. It also 
maintained close relationships with the target system 
project organization - essentially through cooperation 
with the TELECOM 2 operation engineering team; the 
System, Subsystem and Integration specialists of the 
SIC project did not directly participated in the 
construction of the KB. 

satellite subsystem where the primary anomalies have The development of a KBS shell is rather similar to 
occurred. This kind of procedures can often be a conventional SW development, and requires the 
automated. same kind of methods and tools for design, coding and 

At subsystem level, the diagnostic strategy consists 
in using as far as possible higher level observations 
and characterizations of the satellite behavior or 
evolution, in order to simplify or even avoid in-depth 
analyses involving the functional model. Connections 
with the functional model are reached when tests 
involve large numbers of telemetries and need 
reference states to compare the current situation with. 

testing. The design of the DIAMS-2 KBS shell 
inherited most of the basic knowledge representation 
and reasoning mechanisms already implemented in 
the DIAMS-1 prototype and validated during the 
experimentation phase. A dedicated team assumed the 
design, coding and testing of the tool basic 
functionalities. A third team, independent from the 
development teams, was in charge of the quality 
control and of the integration and final validation of 

Figure 4. Investigation of a fwtcrional KI with DIAMS-2 the KBS. 

A pre-operational consolidation phase was 
scheduled in the continuation of the KBS development 
phase. Its goals were 

to familiarize the SCC staff with the KBS 
to experiment and eventually to enact the KBS 
utilization and maintenance procedures 
to consolidate and validate the external interfaces 
with the SCC information system, including the SIC 
and Simulator data access procedures. 
to calibrate tests and explanations on-site with the 

end-users. 
* to refine some knowledge islands to account for the 

in-orbit experience (e.g., the SIC in-orbit thermal 
behavior). 



Figure 5. DZAMS-2 Development Plan Overview 
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Cooperation between the KB development team 
and the SCC staff is needed, during the construction 
of the KB, to ensure consistency between the 
knowledge representation formalisms used in the 
SCC and those used in the KB. A close cooperation is 
also needed when the system is transferred from the 
development site to the operation site. 

In DIAMS-2, the integration of the end-user in the 
development cycle was founded on the following 
principles. 

The SIC User's Manual (UM) remained the 
reference document for the transfer of information 
between the SIC manufacturer and the SCC. The 
level of decomposition of the models was the UM's 
one, and the same graphical representation modes, 
and variable identifiers were used. 

Operation Engineers from the SIC project were 
involved in the development process to 
continuously maintain consistency between the 
DIAMS-2 KB and the SIC User's Manual. 

A TELECOM 2 SCC representative was included 
in the KB development team. His mission was to 
check that the knowledge representation used 
(symbology, nomenclature) was consistent with the 
one used in the SCC, that the functional model was 
compatible with the hierarchical view of the SIC 
and the monitoring sets defined in the SCC, and that 
the observables used were actually accessible 
through the SCC. Conversely the KB was 
developed in such a way that the SCC engineer 
could draw benefit from the KB design and 
development activity. 

Remark: The TELECOM 2AJ2B launch campaigns 
took place during the DIAMS-2 KB Detailed Design 
phase. This resulted in a lack of availability from both 
the SIC operation engineering team and the SCC 
personnel. A first consequence was that an important 
effort had to be devoted to the refinement of the KB 
during the pre-operational consolidation phase. This 
again confirmed the crucial importance of a right 
phasing with the SIC and SCC development activities, 
and more generally of a tighter integration between 
the KBS, SCC and SIC development processes. 

V. DIAMS-3: the Integration Age 

In DIAMS-2, comprehensiveness and efficiency 
was privileged against fineness of representation and 
reasoning. Simplified representations of knowledge, 
generally well-suited to the practical problems faced 
in spacecraft operations were introduced as a first 
approximation. However, in some specific 
knowledge islands, refined representation and 
reasoning techniques are required to appropriately 
handle time, incompleteness and uncertainty. This 
last refinement step is now being considered through 
the development of a new generation of diagnostic 
tools called DIAMS-3 that started in 1992 [5] .  



Other important objectives of DIAMS-3 concern 
the reduction of the knowledge acquisition efforts, 
tighter integration with other knowledge-based tools 
like data analysis or procedure management tools, and 
more generally the complete integration of the 
diagnostic system in the operational loop [ 101. 

C++ is the implementation language retained for 
DIAMS-3. Beyond porting the DIAMS-2 machinery 
into C++, DIAMS-3 provides generic model edition 
services and a set of libraries of operational standard 
for handling time, incompleteness and uncertainty 
and for cooperation with other knowledge-based tools 
(knowledge interchange format and protocol, 
mapping engine, exchange monitor, etc.). These 
libraries and basic services, all developed in C++, will 
be reused in other KBS development projects. 

Integration Issues 

The different integration issues raised by the 
operational integration of the diagnostic tool in SCC's 
or AIT environments have been addressed through a 
European project called UNITE, co-sponsored by the 
Commission of the European Communities. They are 
illustrated hereafter (figure 6). 
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Functional Integration 

in the SIC lifecycle in the SCC 

based system KBS shell 
development lifecycle Development 

\ 1 
Integration of Knowledge Schemes; 

Cooperation between KBS 's 

1) A first issue concerns the integration of different 
knowledge schemes within a given KBS. Diagnostic 
systems in Space indeed require the implementation 

and integration of different knowledge representation 
and reasoning paradigms: 

they need to handle different domain models 
representing different views of the satellite system 
(e.g., thermal view, mechanical view, electrical 
view, etc.). 
the input information, be it provided by human 
users or by SCC monitoring facilities, is sometimes 
numeric but more often symbolic, intrinsically 
uncertain and imprecise, with a validity time frame. 
the basic inference mechanisms are themselves, 
e.g., exploiting uncertain and imprecise symbolic 
transfer functions (such as qualitative fault 
propagation functions) which may need to handle 
time to reflect the variation of dynamics between 
different views of the system. 
diagnostic reasoning deals with qualitative 
temporal propositions with a Start, an end and a 
persistence. 
dependency tracking and maintenance of 
consistency between different reasoning contexts, 
or the management of the assumptions and 
time-constraints under which statements are valid, 
may require the parallel handling of several 
uncertain and time-dependent alternative 
hypotheses. 

One of the goals is to give the knowledge engineer 
the flexibility to choose the most appropriate 
knowledge representation for some aspects of the 
problem (e.g., various representations of time and 
uncertainty), and yet process them in an integrated 
manner. 

2) A second kind of need is concerned with the 
sharing and exchange of knowledge between KBS's 
that need to cooperate to achieve some global 
problem solving task. For instance monitoring, 
diagnostic and data analysis tools need to cooperate to 
detect and then locate the origin of anomalies. They 
may need to exchange knowledge or complex 
information. As the formalisms used to represent this 
information may vary from KBS to KBS, it is 
necessary to set up translation mechanisms, from the 
formalisms of each KBS to a common Knowledge 
Interchange Format and vice-versa. The approach 
followed by MMS in that domain is experimental. 
The goal being to assess the level of maturity and the 
applicability of existing solutions like those 
elaborated within the Knowledge Sharing Effort [12]. 



3) Functional Integration regards cooperation 
between the KBS and conventional software modules 
or database management systems for the construction 
of fully integrated operational applications. The 
methodology issues raised by the operational 
integration of the diagnostic tool in the SCC are 
investigated in [I]. Functional integration requires a 
hybrid methodology framework for co-existing 
conventional / knowledge-based developments. 

4) Finally the DIAMS experience feedback has 
emphasized the importance of a better integration of 
the knowledge capture tasks in the SIC lifecycle. 

Integration of knowledge models 

The following figure provides a synthetic view of 
the different types of knowledge models explored 
through DIAMS-1 and DIAMS-2 and further refined 
and integrated in DIAMS-3 (figure 7). 

Figure 7. Overview of DZAMS-3 Knowledge Models 
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In the latest version of the tool, behavioral 
knowledge (also called causal knowledge) is 
composed of a reduced set of FMECA related to a 
family of symptoms, that allows to explore and refine 
some higher level hypothesis. This is a natural 
extension of the notion of behavior model explored in 
DIAMS-1. 

Incompleteness is inherent to FMECA. A more 
flexible representation of the effects of fault modes 
has been proposed that eases expression of 
knowledge, down to the relevant level of detail (i.e., 
events chronologies), and that does not make any 
assumption about what is not said explicitly [6]. 

Handling of time, incompleteness and uncertainty 

Some improvements brought by DIAMS-3 should 
allow to better handle time, incompleteness and 
uncertainty. Different techniques have been proposed 
for handling incompleteness, uncertainty or 
time-dependency. The investigation of the current 
practice shows that many difficulties in terms of 
performance or complexity have been experienced in 
deploying these techniques in industrial contexts and 
that ad hoc adaptations or simplifications are 
generally done by the development teams to match 
the industrial constraints. Beyond adequation to the 
specific knowledge representation and reasoning 
needs of the diagnostic tool, performance and 
complexity thus shall be the main criteria for the 
assessment of candidate solutions in that domain. 

For instance, the information available about the 
symptoms is incomplete: many observables are not 
fully monitored in real time. Allowing the users to 
express their uncertainty about the interpretation of 
the observable was also recognized as a need. Indeed, 
some observations involve complex combination and 
abstraction of elementary pieces of data, followed by 
a high level interpretation of the result. Adequate 
formalisms are needed to handle incompleteness and 
allow expression of uncertainty about the 
presencelabsence of a manifestation. 

From a discrimination point of view, graduality in 
the uncertainty of the fault effects and in the 
characterization of the observables has been 
introduced. It allows a ranking of the solutions given 
by the system. As the diagnostic process is iterative, it 
was also found useful to have advice with respect to 
the selection of the next observables to be tested. This 
is achieved through a utility function that assesses the 
impact of the test of a manifestation on the possibility 
of fault mode. 

Application developers will be provided with 
libraries of basic knowledge representation and 
reasoning mechanisms that can be easily included 
into application programs without imposing the use of 



any particular development tool for the compute explanations for symptoms. A possibilistic, 
implementation phase. Considering the current trends temporal, cost-bounded ATMS machinery is used. 
in Information Technology, libraries of C++ objects The cost-bounded feature allows to focus of the 
seemed to be the best possible choice for DIAMS-3. reasoning process and to limit computational costs. 

A first set of libraries of reasoning schemes have The main risk identified for strong integration is 
been selected, developed or re-developed in C++, and performance. The strong integration approach is 
appropriately encapsulated to answer DIAMS needs: currently considered as experimental and is not 

A new reasoning scheme which allows to represent included in the DIAMS technical baseline. 
and process incomplete and uncertain relations 
between faults and manifestations (such as 
FMECA) in a diagnostic context. The core model, 
based on the possibility theory, includes 
consistency-based and abductive diagnostic 
algorithms eploiting uncertain observations, as well 
as additional tools to measure the utility of tests and 
the discriminability of a set of fault modes [6]. 
Extensions of this model to the processing of 
functional knowledge are being developed. 
A Valuation Based System (VBS) which allows 
uncertain reasoning in a causal graph with various 
formalisms, e.g. bayesian, possibilistic, Dempster- 
Shafer's Theory of Belief, etc. 
A Time Constraint Propagator (TCP) which enables 
the comparison of an actually observed chronology 
of events with an a priori knowledge about the 
causal relationships between events. An hypothesis 
is confirmed by the TCP when all observed events 
occur at scheduled dates. If any of the observed 
events occurs outside the expected time window 
then the hypothesis is inconsistent and therefore is 
discarded. When the hypothesis-related events have 
not yet occurred - the hypothesis can be neither 
confirmed nor discarded - the hypothesis is said 
incomplete and TCP provides the validity interval 
for that hypothesis. 

Integration of reasoning schemes 

The joint utilization of the TCP and VBS in a 
diagnostic context is illustrated by figure 8. 

Figure 8. Weak Integration of Reasoning Schemes 
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The reduction of the knowledge acquisition costs 
was a permanent concern in each phase of the DIAMS 
program. A first conclusion was that, in order to 
improve the interactions with SIC specialists, the 
knowledge modelling activity should benefit to the 
S/C project tasks. The goal in DIAMS-3 is now to 
reach a level of expressiveness and genericity such 
that the DIAMS knowledge bases could be built and 
reused throughout the satellite lifecycle. This should 
contribute to significantly reduce the knowledge 
acquisition costs. 

Sometimes such a (weak) integration approach may Current Projects 
not be sufficient. Reasoning threads may be too 
intertwined to be processed efficiently in a separate 
way. A prototype has been developed to tackle this 
kind of problem and to evaluate the candidate 
technology. It addresses the so-called "strong 
integration" of temporal and uncertain reasoning in a 
model based diagnostic context. The computational 
approach consists in generating an ATMS network - 
Assumption-based Truth Maintenance System - to 

Future Projects 

information bases 
- Formalization of 



VI. Concluding Remarks 

The DIAMS program followed a spiral approach, 
each cycle partially or fully implementing a reference 
development cycle. The DIAMS spiral lifecycle model 
is summarized in table 1. Matra Marconi Space is now 
involved in a tool improvement cycle (DIAMS-3) that 
would enable a tighter integration of the diagnostic 
system in ground infrastructures. A more general 
objective is to set up the techniques, methods and tools 
that will allow to consider the KBS technology as a 

Systems: the Methodology Issue", Intl. Symposium on Space 
Mission Operations and Ground Data Systems, Greenbelt 
(USA), 1994 

[2] BASTIEN-THIRY C., MAURIZE J.C.: "SE-TC2 : The first 
expert system in a CNES Satellite Control Center", ESA 
Workshop on Artificial Intelligence and KBS for Space, 
Noordwijk (NL), 1993. 

[3] BRENOT J.M., CALOUD P., VALLUY L.: 'The 
development of an operational expert system for the 
Telecom2 satellite control centre", ESA Workshop on 
Artificial Intelligence and KBS for Space, Noordwijk(NL), 
1991. 

for the of future ' IC 141 BRENOT J.M,, CALOUD P., VALLUY L., GASQUET A. : 
Control Centers or AIT Environments. "On the design and development choices to bring to operation 

The knowledge acquisition issue remains pivotal. It 
comes down to the following two questions 

How to maximize the reuse of already formalized 
and managed knowledge? 
How to adapt the SIC project tasks and deliverables 
so that knowledge could be acquired 'on the fly' 
during SIC developments ? 

A number of solutions have been proposed to 
proceed in this direction. The on-going experiments 
should prove that these solutions are ripe for 
introduction in SIC projects. 
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ABSTRACT 

At NASA's Goddard Space Flight Center, fault- 
isolation expert systems have been developed to 
support data monitoring and fault detection 
tasks in satellite control centers. Based on the 
lessons learned during these efSorts in expert 
system automation, a new domain-specific 
expert system development tool named the 
Generic Spacecraft Analyst Assistant (GenSAA), 
was developed to facilitate the rapid 
development and reuse of real-time expert 
systems to serve as fault-isolation assistants for 
spacecraft analysts. This paper describes 
GenSAA's capabilities and how it is supporting 
monitoring functions of current and future 
NASA missions for a variety of satellite 
monitoring applications ranging from subsystem 
health and safety to spacecraft attitude. Finally, 
this paper addresses efforts to generalize 
GenSAA's data interface for more widespread 
usage throughout the space and commercial 
industry. 

INTRODUCTION 

A group of spacecraft analysts are responsible 
for the proper command, control, health and 
safety of each spacecraft managed by NASA's 
Goddard Space Flight Center (GSFC). During 
numerous contacts with the satellite each day, 
these analysts closely monitor real time data 
searching for combinations of telemetry 
parameter values, limit violations, and other 

indications that may signify problems or 
failures. This is a demanding, tedious task that 
requires well-trained individuals who are quick- 
thinking and composed under pressure. 
However, as our satellites become more 
complex, this task is becoming increasingly 
more difficult for humans to conduct at 
acceptable levels of performance [Ref. 21. 

At GSFC, fault-isolation expert systems have 
been developed to support data monitoring and 
fault detection tasks in satellite control centers. 
Based on the lessons learned during these efforts 
in expert system automation, a new domain- 
specific expert system development tool named 
the Generic Spacecraft Analyst Assistant 
(GenSAA), was developed to facilitate the rapid 
development and reuse of real-time expert 
systems to serve as fault-isolation assistants for 
spacecraft analysts. Although initially 
developed to support GSFC's satellite 
operations, this powerful tool can support the 
development of highly graphical expert systems 
for data monitoring purposes throughout the 
space and commercial industry. 

This paper describes GenSAA's capabilities and 
how it is supporting monitoring functions of 
current and future NASA missions for a variety 
of satellite monitoring applications ranging from 
subsystem health and safety to spacecraft 
attitude. Finally, this paper will address efforts 
to generalize GenSAA's data interface for more 
widespread usage throughout the space and 
commercial industry. 



GenSAA OVERVIEW 

GenSAA is an advanced software tool that 
allows the rapid development of intelligent 
graphical monitoring systems. Through the use 
of a highly graphical user interface and point- 
and-click operation, GenSAA facilitates the 
rapid, "programming-free" construction of 
graphical expert systems to serve as real-time 
fault-isolation assistants for spacecraft analysts. 

GenSAA expert systems are easily built and 
maintained using an integrated set of utilities 
called the GenSAA Workbench which are used 
to define the expert system's telemetry data 
interface, rule base, and X/Motif-based user 
interface. GenSAA insulates the expert system 
developer from the complicated programming 
details of the systems with which the expert 
system will interface. This tool promotes the 
use of previously developed rule bases and 
graphic objects, thus facilitating software and 
knowledge reuse and a further reduction in 
development time and effort. 

The development of GenSAA was motivated by 
the lessons learned from a research effort to 
evaluate the value and effectiveness of using 
graphical rule-based expert systems for fault 
detection purposes. The project, which was 
named the Communications Link Expert 
Assistance Resource (CLEAR), was quite 
successful. Although CLEAR was initially 
conceived to serve as a proof-of-concept 
prototype, it was ultimately used to support real- 
time operations for NASA's Cosmic Background 
Explorer (COBE) satellite where it was 
instrumental in demonstrating the advantages 
that expert systems offer mission operations. 
More importantly, CLEAR provided insights 
into how expert systems could be developed 
more quickly and with less effort. GenSAA 
addresses this issue by insulating the expert 
system developer from the programming details 
by employing a "drag and drop" method of 
developing these systems. 

In addition to meeting the previous objective, 
GenSAA was created as an alternative to high- 
end, complex and expensive commercially 
available expert system development 
environments. In an attempt to meet a wide 
variety of application needs, these general- 
purpose programming tools are often too 

complex to be effectively used by domain 
experts (spacecraft analysts in this case) to 
create graphical expert systems. They typically 
require weeks of training and specialized 
programmers to implement the data interface, 
graphical user interface, or rule base for each 
expert system. GenSAA empowers the 
spacecraft analysts to easily select the data to be 
monitored, layout and define the behavior of the 
expert system's user interface and build rules for 
fault detection purposes without the intervention 
or delay of programmers. 

GenSAA consists of two major components: a 
Workbench and a Runtime Framework. [see 
figure 11. The Workbench is used to specify 
expert systems in an offline mode (i.e., not 
connected to a live data source). The 
Workbench creates several resource data files 
that are read into the Runtime Framework which 
uses these resource files and connects to the data 
source. 

GenSAA 
WorkBench 

3 GenSAA 
Runtime 
Framework 

Figure-1: Architecture 

The GenSAA Workbench consists of a Data 
Manager, a Rule Builder, and a User Interface 
Builder. The Data Manager is used to select the 
telemetry data that is desired for use by the 
expert system; the Rule Builder is used to create 
expert systems rules based on the telemetry 
data; and the User Interface Builder allows the 
user to create graphical user interfaces to display 
the telemetry data and the data inferred from the 
expert system rules. The GenSAA Workbench 
is tightly integrated and easy to use, employing 
direct manipulation techniques such as "drag 
and drop." The Workbench also provides 



mechanisms to automatically generate expert 
system rule statement syntax. 

The GenSAA Runtime Framework is the 
executive for a GenSAA Expert System. It 
controls the user interface, distributes the real- 
time data received from the data server, and 
manages rule execution. The core element of 
the Runtime Framework is the 'C' Language 
Integrated Production System (CLIPS). CLIPS 
is an inference engine and rule-based 
programming language that was developed at 
the NASA Johnson Space Center. It is widely 
used throughout NASA, other government 
agencies, academe, and the commercial sector. 

Expert systems that are created using GenSAA 
require no source code development, and 
therefore facilitate very rapid development life 
cycles. Changes and enhancements to existing 
expert systems can also be made rapidly at very 
low cost. 

GenSAA runs on Sun and Hewlett-Packard 

UNIX workstations using X-windows with 
Motif. Earlier this year GenSAA was delivered 
to operations for acceptance testing. At the time 
of publication, it is expected that GenSAA will 
be in operations in a number of divisions at 
GSFC and at a few external sites. 

The next sections describe several specific 
applications of GenSAA at GSFC. The first 
group of applications is associated with 
spacecraft attitude monitoring. The second 
group is associated with the monitoring of 
spacecraft and their payloads. The applications 
are currently under development and should 
become operational soon. 

GenSAA APPLICATIONS SUPPORTING 
FLIGHT DYNAMICS 

GSFC's Flight Dynamics Division (FDD) is 
responsible for maintaining the orbit and 
attitude of many Goddard spacecraft. The FDD 
has used Heads Up Displays (HUDs) for 
previous missions to graphically portray attitude 

Figure-2: XTE HUD Created Using GenSAA 
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and orbit parameters in a manner that is similar 
to the gauges and dials that appear in an airplane 
cockpit. These HUDs enable flight analysts to 
quickly view the basic orbit, attitude, and sensor 
status of a given spacecraft. 

The FDD is using GenSAA to create the HUDs 
for the X-ray Timing Explorer (XTE) 
spacecraft, the Submillimeter Wave Astronomy 
Satellite (SWAS) spacecraft, and the Solar and 
Heliospheric Observatory (SOHO) spacecraft. 
These missions are among the first FDD 
missions to be supported on UNIX workstations 
using X-windows. By using GenSAA, the FDD 
expects to reduce the effort needed to create the 
HUD while increasing the ability to respond to 
change requests. 

The XTE and SWAS HUDs are using 
GenSAA' s inference engine to infer engineering 
unit values based on raw telemetry values. The 
inferred engineering unit values are displayed 
on the HUD via graphical and textual user 
interface objects. Values that are displayed 
include: magnetometer, gyroscope, and torquer 
bar biases and rates, guide star and sun sensor 
positions, and predicted versus actual attitude. 
Figure-:! is an example of a prototype HUD 
generated with GenSAA for the XTE mission. 

The FDD is also using GenSAA to support the 
SOHO mission. The HUD for SOHO is similar 
to the XTE and SWAS HUDs, however, SOHO 
is enhancing the GenSAA Runtime Framework 
by embedding a number of 'C' functions to 
compute the spacecraft real-time attitude based 
on the current telemetry data received from the 
data server. Although the SOHO HUD 
development team had the option to link these 
functions with the inference engine for 
invocation via expert system rules, this group 
chose to embed the functions to optimize 
performance of these computationally intensive 
attitude algorithms. This situation demonstrates 
one advantage of having direct access to the 
source code of GenSAA. 

GenSAA APPLICATIONS SUPPORTING 
MISSION OPERATIONS 

In GSFC's Mission Operations Division' (MOD), 
GenSAA is being used to support real time 
satellite monitoring in the control centers. 
GenSAA will be used to build simple advisory 
expert systems that monitor spacecraft telemetry 

and ground system parameters. Monitoring 
these parameters during spacecraft contacts has 
traditionally been the responsibility of satellite 
operators. 

Two of the primary objectives of this 
organization's applications are to expedite the 
fault detection and resolution process and to 
reduce the amount of data (telemetry points) that 
human operators must monitor in order to assess 
the current health and status of the spacecraft 
and the scientific instruments onboard. With 
GenSAA, spacecraft engineers will develop 
simple expert systems that will assist console 
analysts by reducing the number of data points 
they must monitor from hundreds of sensor 
values to dozens of derived system level status 
points. 

GenSAA does not constrain the user in how to 
represent the system being monitored. Some 
groups are planning to model the functional 
operations of the system (i.e., functions across 
subsystems) while others are planning to 
develop physical models of the system being 
monitored. For example, the Solar Anomalous 
and Magnetospheric Particle Explorer 
(SAMPEX) project plans to develop a series of 
GenSAA expert systems to monitor the 
scientific instruments (LEICA [See Figure 31, 
MASTIPET and HILT) and some of the 
spacecraft's subsystems including the Small 
Explorer Data System (SEDS), the attitude 
control system (ACS), and thermal system. 

In contrast, members of the Gamma Ray 
Observatory (GRO) Flight Operations Team 
plan to develop discrete expert systems for both 
functional and physical perspectives. This team 
plans to develop expert systems to monitor the 
power subsystem, communications function and 
a high level health and safety monitoring 
system. In addition to the above mentioned 
missions, GenSAA will support satellite 
operators for Transportable Payload Operations 
Control Center (TPOCC) based missions 
including, but not limited to, WindIPolar, 
SWAS, XTE, SOHO, Tropical Rainfall 
Measuring Mission (TRMM) and the Advanced 
Composition Explorer (ACE) missions. 

GenSAA is expected to provide numerous 
benefits to the mission operations arena at 
GSFC. In addition to assisting the satellite 
operators with the data monitoring task, 



GenSAA will reduce the development time and 
effort of the these systems; serve as a training 
tool for student controllers; and protect against 
the loss of satellite operations expertise, 
especially during periods of personnel turnover. 
This last benefit even spans beyond a single 
mission; control center expert systems that 
capture fault-isolation knowledge preserve 
expertise from mission to mission which may 
prove to be beneficial as we embark on multi- 
mission flight operations teams (i.e., a single set 
of operators responsible for operating multiple 
satellites) as a means to reduce satellite 
operations costs. 

GENERALIZING GenSAA FOR BROADER 
USE 

A variety of groups outside of GSFC's Flight 
Dynamics and Mission Operations Divisions 
have expressed an interest in using GenSAA to 
monitor their real time data. However, 
application to other domains has been limited 
because GenSAA is currently designed to 
interface to GSFC-specific ground system 

formats. To broaden GenSAA's potential 
application, work was begun earlier this year to 
generalize its data interface to enable it to 
receive data in other formats. 

The approach adopted is to create bridge 
processes that interface GenSAA to external 
data sources. A bridge receives data from an 
external source and converts it to a format that 
GenSAA understands. A bridge template is 
being developed that will be used to simplify the 
construction of bridges for specific interfaces. 
To facilitate reuse and to accelerate the 
application of GenSAA to new domains, the 
GenSAA Project will maintain a library of 
bridges to databases and other data sources. 

To build a new bridge, the installer creates a file 
containing a description of the variable names 
and data types to be received from the external 
interface. This file is used to automatically 
generate a large portion of the bridge software. 
The installer must also write a small amount of 
program code that will request and receive the 
data. Finally, these software components are 

Figure-3: Leica Status Monitor Created Using GenSAA 
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linked together to form a bridge which provides 
data conversion capabilities enabling the use of 
GenSAA in new domains. 

AUTOMATING SATELLITE 
OPERATIONS WITH GenSAA 

During the past year, a new research project was 
started to develop a proof-of-concept prototype 
that demonstrates how expert system technology 
can be used to automate routine, nominal- 
situation control center operations that involve 
both monitoring and commanding actions. [Ref. 
61 

The project is enhancing GenSAA to enable the 
automation of nominal pass operations for the 
SAMPEX spacecraft. The enhanced software, 
called the Generic Inferential Executor (Genie), 
will perform monitoring and commanding 
operations in the SAMPEX Payload Operations 
Control Center (POCC) as specified in a pass 
script that is defined by members of the Flight 
Operations Team (FOT). The pass script 
defines precondition tests, actions, results 
checks, decision branches, and background 
monitoring activities. In nominal situations, 
Genie will execute the pass script without the 
intervention of FOT members; if an unexpected 
situation arises, an FOT member will be alerted. 
Automated operations include verifying the pre- 
pass readiness test data flow, examining 
spacecraft event log messages, starting 
configuration monitors, evaluating system 
events, initiating the uplink of the daily 
command load, and initiating dumps from the 
spacecraft. 

The automation prototype will be demonstrated 
during a live $AMPEX pass. It is anticipated 
that the results gathered on this project will 
influence the development of enhanced ground 
system software that will automate operations in 
future GSFC missions, including the Earth 
Observing System (EOS) project. 

CONCLUSION 

GenSAA is being used to develop several expert 
systems that will support current and upcoming 
spacecraft missions. GenSAA is making it 
easier for spacecraft analysts to build expert 
systems, and to thereby preserve and apply their 
spacecraft knowledge in automated monitoring 
systems. 

Reduction of spacecraft mission cost is a high 
priority at GSFC. GenSAA is providing a 
means of reducing the cost of developing 
mission support software while increasing 
operations automation using expert system 
technology. GenSAA is well suited to support 
monitoring, fault detection, and fault isolation 
for spacecraft missions. GenSAA is now being 
generalized to support other application 
domains, and is being enhanced to support both 
monitoring and commanding operations. 
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Abstract 

A MS-Windows based electronic procedure system, called OPIS (Qperation Procedure 
Information &stem), was developed. The system consists of two parts, the editor, for - 
"writting" the produre, and the notepad application, for the usage of the procedures by the 
crew during training and flight. The system is based on standardised, structured procedure 
format and language. It allows the embedding of sketches, photos, animated graphics and 
videosequences and the access to offnominal procedures by linkage to an appropriate 
database. The system facilitates the work with procedures of different degrees of detail, 
depending on the training status of the crew. The development of an "language modul" for the 
automatic translation of the procedures, for example into Russian, is planned. 

Introduction 

The scientific output of a manned space mission is highly dependent on the correct execution 
of an experiment according to instructions called "procedures" the astronaut has to follow. The 
procedures of today (at least for spacelab missions) are very explicit paper versions and require 
hours of crew time just to read. For the future, especially for long-duration missions, the 
possibilities of modern computers and text processing should be used to improve the procedure 
standard allowing for the transition to the use of electronic procedures on board. OPIS, a 
development of DLR in cooperation with WIB, is a step in this direction. 

For the European mission Euromir 94, it is planned to use OPIS, installed on the portable 
Crew Support Computer (which is an 'IBM Thinkpad'), as the prime tool for the performance 
of one material science experiment. The post-flight evaluation of its practicallity will be a 
milestone for it's fbrther development (e.g. prime tool for procedures on Euromir '95). 

Approach 

The source that safeguards the experiment success in current SpaceLab missions is called the 
Payload Flight Data File, a complement of books containing the crew work schedule, 



procedures and reference documents. A similar set of documents exists for the use on Russian 
MIR missions. Some shortcommings are associated with this type of flight documentation: 

- 

- large volume and high weight offiles 
- time consuming implementation of paper uplinks into the documents 
- long procedures in checklist format tend to tire out crewmembers 
finally leading to mistakes 
- embedding of graphics, sketches etc. is difficult 
- usage of animated graphic sequences or videoclips within the procedure, 

or the linkage to a database is impossible 

Our idea was to firstly develop a procedure format better suited for the work on a computer 
than the checklist format in use by NASA~, thereby reducing the training effort (as necessary 
for long term missions and space station operation) and minimizing mistakes in the experiment 
performance. Secondly the crewmember should get a tool that facilitates access to support and 
reference information (e.g. malfunction procedures, photos, videos, etc.). 
On the basis of the evaluation of the Payload Flight Data File of the German Spacelab missions 
Dl and parts of the D-2 mission, crew activites were analized. The categories of the typical 
crew activites are displayed in figure 1 below. 

Crew Activities 

Figure 1 : Classification of Crew Activites 

These investigations were used to develop a new format for procedure instructions that is 
better suited for the use on a PC than the checklist format which is used at present. The format 
is build on procedure elements which describe the single task. A procedure element consists of 
seven defined positions as shown in figure 2. The last position leads to additional information 
concerning the performed step using a short code form. The OPIS standard was published in 
1993 and presented to the German Space Agency PARA) in the final presentation of the 
TOR EX^ study. 



Step Location Object Activity Status Info 
Code 

1 

Figure 2: Example of a Procedure Element 

The development of the OPIS software started in 1993. DLR provides the software 
requirements and WIB develops the software under contract by DLR. OPIS uses the 
WINDOWS environment and consists of two modules the one being the Editor for procedure 
generation, the other the so called Notepad-version is designed for the use by an astronaut. 

The OPIS Editor 

The OPIS Editor allows you to generate procedures in a standardised format by use of a 
structured language. This language has been constructed to describe tasks in a simple and 
unique manner. The editor would perform all tasks for the procedure layout automatically and 
offer all information for procedure generation on call, that has been by another experiment 
before. All procedure elements (locations, activties, objects, etc.) are stored in a database. All 
activity keywords are linked to appropriate icons. Complex procedure structures (for exeample 
"REPEAT ... UNTIL" or "IF ... THEN") can be generated in a simple way via implemented 
editor commands. A procedure syntax check via an syntax checker within the editor is 
foreseen for the future. Any sequence within a procedure can be defined as a standard module 
and can then be handled like a single activity (or command). You can have various standard 
modules in one procedure. In that way procedures that contain activities, that have to be 
repeated some times, can be simplified. The embedding of graphics, videosequences, 
offnominal procedures can be realised via linkage to an appropriate database. For the future the 
development of an language modul for the automatic translation into Russian is foreseen. 

The OPIS Notepad 

The layout as shown in figure 3 is designed to give the astronaut a clear picture of the steps he 
has to perform and the ones he already has performed. In the left icon bar the main file 
functions can be quickly accessed (the numbers 1 to 8 can be used to quickly open specified 
files). In the procedure window a highlighted bar shows the current step the astronaut is 
working on. When work on the procedure element is finished it can be tagged with the 'Enter'- 
key. In this way the system time and the line number will be entered into the 'Report File' wich 
is an ASCII-File containing all the information of the timely execution of the experiment. There 
is also a possibility for the crew to write notes and enter data into the procedure, which will 
also be transfered into the Report File. In that sense the original procedure can be used for 
different runs and the Report File will include all experiment specific infos for evaluation on 
ground. 
Additional useful information is displayed in the status line at the bottom. The actual page and 
line number can be seen as well as the current time, the elapsed time since the procedure was 
called up, and a countdown that can be started if waiting periods are included in the procedure. 



cassette compartment OPEN 

CSK Control Unit @ ACT-ON see figure below 

Hold keys for three to four  semnds 

Figure 3: The OPIS Notepad environment 

There are off-nominal situations and very complex procedures requiring additional information 
to safely perform the task. OPIS approaches this problem by establishing an interface $0 a rdata 
base containing photos, video clips and instructions to solve the problem. The data base 
currently in use for the TES-Experiment (material science) on Euromir '94 was developed by 
BSO under contract from ESAESTEC. The data base information can be accessed via a 
mouse doubleclick into the info-code box of OPIIS. 
As a paper backup or for selfstudying etc. the procedure can be printed from the editor or the 
notepad with an layout identically to the layout on screen. But the computer related topics (and 
that means most of the advantages of OPPS) will be lost. 

Oratlook and Conclusion 

Main topics under consideration at present are: 

- Needs of individual crewmembers for information vary by a wide margin 
(e.g. for medical experiments) -> 'personalized'procedure desirable 



- Long-term missions require procedure systems that are capable of frequently providing 
updates of information without producing huge piles of paper 
->file uplink (and downlink) 

- Cooperation with Russia requires translation of procedures 
-> language module 

With the development of an operational procedure information system we try to take into 
account the advantages of modern PCs. Our hope is that the ideas behind our system can 
help to improve the operations on board a manned space station even if OPIS is not the tool 
to be used then. We appreciate every comment to our paper and would be glad to 
demonstrate the software to interested parties. 
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Abstract - In 1974 ESOC decided to develop a musable Mission 
Control System infrastructure for ESA's missions operated under 
its responsibility. This triggered a long and successful product 
development line, which started with the Multi Mission Support 
System (MSSS) which entered in service in 1977 and is still being 
used today by the MARECS and ECS missions; it was followed 
in 1989 by a second generation of systems known as SCOS-I, 
which wadis used by the Hipparcos. ERS-1 and EURECA 
missions and will continue to support all future ESOC controlled 
missions until approximately 1995. In the meantime the increasing 
complexity of future missions together with the emergence of new 
hardware and software technologies have led ESOC to go for the 
development of a third generation of control systems, SCOSII, 
which will support their future missions up to at leo:;t the middle 
of the next decade. The objective of the paper is to present the 
characteristics of the SCOSII system from the perspective of the 
mission control team; i.e. it will concentrate on the improvements 
and advances in the performance, functionality and work efficiency 
of the system. 

1. INTRODlJCTION 
The concepts and functionality of the Mission Control Systems 
(MCS) which are currently in use in ESOC, i.e. MSSS and SCOS- 
I, are mainly originating from the mission control requirements of 
the 1970's which were based on the hardwired spacecraft 
technology which was the standard at this time. The arrival of a 
new generation of more complex spacecraft with significant 
amount of on-board sofhvare and increased on-board autonomy, 
such as EURECA or ERSl, placed much more demanding 
requirements in terms of functionality and performance on the 
MCS which, although they could be accommodated (sometimes 
requiring development of mission specific adds-on), revealed the 
limits of these systems. Therefore the decision for the developn~ent 
of a new generation 
of MCS, SCOSII, was taken, with the follo\ving main objectives: 

- reduce mission adaphtionlmaiatenance costs. 
- improve eficiency of mission preparation. esecution and 

evaluation tasks, 
- increase operational quality and reliability, 
- have a life time of at least 10 years, 
- cope with a wide range of different mission 

type/size/complexity. 

which led to the following major design requirements: 

- SCOSII must be a full scope generic system. 
- It must be a modular and open system, being adaptable and 

expandable in size, performance and functionality. 
- It must operate in a basic hardware and sofhvare environment 

that is vendor independent. 
- It must be based on state-of-the-art sofhvare technology. 

- It must be compatible with the new standards in the space 
domain such as in particular the CCSDS and related ESA 
standards for telemetry and telecommand packets, and the 
standards and guidelines of the ESA Committee for Operations 
and EGSE Standards (COES). 

2. SYSTEhI CHARACTERISTICS 
AND CONCEPTS 

The SCOSII system has been conceived as a generic infrastructure 
platform, providing an exhaustive set of standard functionality 
constituting the basis for the development of mission dedicated 
MCSs. As such, a particular instance of a SCOSII based MCS will 
not offer multi-mission support, but will be able to cope with 
multi-satellite missions, thus supporting simultaneous control of 
several satellites of the same family. 

2.1 Architecture - 
The high flexibility and performance requirements placed on 
SCOSII led to the choice of a decentralized architecture, consisting 
of a nehvork of Unix workstations in a 'ClientServeS 
configuration. Each operational user will interface to the system 
through a dedicated \vorkstation providing local processing power 
to cope with the user-interface processing load, and local storage 
for e.g. hosting of the most recent historical data, while a set of 
system level services (e.g. interfacing to the ground stations) 
ensuring overall coordination will be provided by central server 
processors. The use of such a distributed system will allow the 
computing power to be tuned to the demand of a particular 
mission and will also offer advantages in terms of system 
availability and failure tolerance. A more detailed description of 
the architecture of SCOSII can be found in References [2] and [5]. 

2.2 Overview of Functionality & Utilisrtion - 
SCOSII is intended to cover the following functions and services: 

- Mi.~.rion Planning, including .acceptance, checking and pre- 
processing of various types of planning requests, generation of a 
conflict-free 'Plnn', and derivation of an executable Schedi~le'. 
- nfonitoring & Conrsranding (Jf&C), of the spacecraft, the 
mission support services provided by the ground network (e.g. 
telemetry and telecommand services of the TT&C stations) and 
SCOSII itself (i.e. control of user configurable functions). This 
means that e.g. the same generic M&C functions (e.g. status 
monitoring, commanding, procedures execution) can be used to 
handle the spacecraft, ground station services and on-line SCOSII 
configuration. 
- Historical Data & Perforttrance Evaluation, consisting of the 
storage of all mission data in an on-line manner, the ability to 
access these data for direct visualisation and/or subsequent 
processing using powerful data analysis and presentation tools, and 
the production of corresponding reports. 
- nfission Database Handling, consisting of the generation and 



maintenance of all the static mission data used, to configure the 
system for a given mission (e.g. user privileges, display lay-out), 
and to define the characteristics of the mission (e.g. TMTC 
processing data, operations procedures, etc ...). 
-On-board Software nfaintenancr, consisting of the tools to 
monitor, and modifL the content of the on-board memories (i.e. 
memory images). 
- System Level Took & Services, such as state-of-the-art Human 
Computer Interface (HCI) techniques, user access control 
mechanism, advanced help facility, etc ... 

The wide range of functionality provided by the system, and its 
flexibility and adaptability, will allow SCOSII to be tailored to 
cover, for a given mission, different 'Roles', each being carried out 
by a specific instance of a SCOSII system. This will of course 
include its main role of 'Prime' MCS which will incorporate the 
full set of functionality required to support the mission, but 
SCOSII may also be used as 'nfini-backrrp' spacecraft M&C 
system to be located at e.g. a TT&C ground station. Furthermore, 
the fact that SCOSII is being designed in accordance with the 
standards and guidelines of COES, will ensure not only its full 
compatibility with checkout systems, but would allow SCQSII to 
be used, with minor adaptations, as a checkout system as such. 

Having outlined the functionality and roles of the system, we will 
now address the various user scenarios which SCOSII \vill have to 
support. Here again, SCOSII constihttes a major step fonvard with 
respect to its predecessors which were only providing very 
restrictive and rigid centralised user access, in that it will also 
support various types of remote access scenarios as described 
below and illustrated in figure 1. 

- Office based users, for mission preparation and/or evaluation 
activities. 
- Home-based users, for on-call contingency support. 
- Engineering support users, such as spacecraft manufacturer, for 
anomaly investigation, mission evaluation. 
- User Operations Corrtrol Centres (USOC), for the control of 
given payload@) on a spacecraft. 

2.3 Confieurability 
Since SCOSII will constitute the basic MCS kernel for a wide 
range of missions of different type and complexity, the system 
will have to be highly configurable. One important aspect in this 
context, is the capability of SCOSII to be descoped, adapting its 
functionality and hardware to the needs of the mission. For a 
simple mission, a mini-system running on a single SUN 
workstation, could be used. Moreover, its portability will allow 
such a mini-system to run on a PC. 

Another issue related to configurability is that the system must be, 
as much as possible, data-base driven, maximizing the tailoring 
capabilities and minimizing the need for software modifications. 
For predecessor systems, this approach was limited to tht: 
spacecraft TMITC processing characteristics, which were fully 
defined in the spacecraft characteristics database. For SCOSIl this 
concept has been expanded to all functional subsystems, including 

Figure 1: SCOSII User Scenario 

data driving the system configuration, thereby providing the user 
with the capability of defining through the Mission Database the 
haracteristics of major elements of the system such as: 

- HCI layout (e.g. layout of input forms or of displays templates), 
- defaults for most of the functions (e.g. which packets are to 
undergo which types of checks), 
- definition of standard named sets of user privileges. 

The SCOSII system will therefore consist of a set of generic 
functions plus a generic default configuration, which can be 
modified by the user to suit the needs of his mission. 

2.4 Performance 
As SCOSII is intended to be the basis for MCSs for at least the 
next ten years, very ambitious performance goals have been 
adopted. These include concurrent real-time telemetry and 
telecommand rates of 2Mbps and 4Kbps respectively, display 
update rates exceeding I0 per second, very short response times to 
user requests - e.g. from 5 sec for retrieval of data not older than 
a few weeks to 30 sec for data being several years old -, the above 
requirements being applicable to utilisation scenario involving up 
to 50 workstations used simultaneously. 

2.5 System Level Tools 
In support of its main functions as described above, SCOSII will 
provide a set of very powerful system level services and tools, the 
most significant of which are presented below. 

2.5.1 Alodelling Tool 
Previous control systems were based on a low-level view of the 
spacecraft in that they only considered its telemetry and 
telecommand components, and thus did not include any 
information about their link to the higher level components of the 
spacecraft such as the devices/units, subsystems, etc ..., and their 
interrelationships. This approach was sufficient to handle relatively 



simple missions, but was not adequate for introducing more 
advanced functionality and user interfaces which require a more 
structured and intuitive view of the missionlspacecraft. 

A fundamentally different approach was followed for SCOSII. In 
the SCOSII database the mission will be described as a 
hierarchical structure of components of operational significance. 
This is achieved by defining a decomposition following the object- 
oriented 'whole-part' relationship, starting with the mission as the 
highest level component, down to the deviceslunits hosting the 
individual measurements and command items at the lowest level. 

In addition to this decomposition into what are called 'System 
Elements' in the SCOSII jargon, it will be possible to associate 
with them synthetic information, called 'Operntional Modes' and 
'Roles'. The former represents particular states of operational 
significance as derived from the state of their constituted parts, 
while the latter corresponds to their function(s) within their 
respective mission domain. This \\.ill provide a first step towards 
an advanced modelling capability; initially modelling will be 
restricted to data routing, power control and redundancy but this 
will be further extended in future releases of the system to include 
the full set of standard functions and behaviours of the typical 
mission components. 

Moreover, SCOSII will also provide a library of 'Systent E1cntent.s' 
which could be used as building blocks. In order to define e.g. the 
battery 1 component of mission X, the user \vould chose the 
standard battery building block in the SCOSII library; he would, 
if required, modify it to correspond to the characteristics of the 
batteries of mission X by specifying its difference to the standard 
SCOSII battery, and instantiate it to become battery 1 by 
specifying the links to its constituent telemetry and telecommand 
items. These modelling capabilities which are illustrated in 
Figure 2 below and further expanded in Reference [ S ] ,  will provide 
significant improvements in the following domains: 

-Mission Database Definition: increased efficiency and 
qualitylconsistency, by reducing the information to be specified by 
the user to a strict minimum and by providing him with a more 
intuitive view of its mission. 
- Systenc Confgurability and Controllability: by allowing the 
userlsystem to exercise this at mission component level (for 
navigation through mimic display, to disable functional checks for 
only a particular n~ission component, to allocate/restrict functional 
privileges to e.g. a particular spacecraft subsystem, etq ...). 
- Mission Execution: by making use of the n~odelling data (in 
particular the 'Roles') to predict the status of the mission, thereby 
supporting the mission planning and commanding functions in 
assessing the effect of future commands (e.g. to ascertain their 
safetylfeasibility), and the monitoring function by generating the 
expected mission status as reference for comparison against the 
status obtained from telemetry. This 'Prediction' function is a new 
feature, making use of the Mission Model' to obtain the best 
estimate of the mission status at any time in the future, based on 
an initial state and on the knowledge of any planned activities and 
any foreseen on-board events and actions. 

F i m r e  2: SCOSII hlodelling 

2.5.2 Operations Language 
To allow an efficient definition and maintenance of the mission 
specific knowledge in the Mission Database, a dedicated SCOSII 
Operations Language (OL) is required. The OL has been designed 
to provide users without sofhvare design expertise, with a set of 
mini languages offering the necessary expressive capability to 
define the knowledge for the more advanced SCOSII functions, 
such as: 

- Procedural knowledge. for the presentation of, navigation 
through and automaticlsemi-automatic execution of procedures to 
e.g. control the spacecraft, ground station services and SCOSII 
configuration, 
- Events & Actions, to identify from the incoming data, user 
defined events to be logged and the corresponding actions to be 
initiated by the system (e.g. an event could be a particular 
spacecraft anomaly which would initiate a specific set of recovery 
and diagnosis actions), 
- Selection Strategies, to provide the various data selection 
capabilities that will be required by the user andlor system in 
support of the different activitieslapplications (e.g. selection 
strategies could be applied to restrict a particular function to a 
subset of the data it would normally be applied to). 

Further details about the SCOSII OL can be found in Reference 
141. 

2.5.3 hlission Database Test Function 
This is another new functionality, which will provide an on-line 
mission database checking capability, using as data sources either 
real-time or historical telemetry, or data generated by the 'Mission 
Model'being driven by a predefined sequence of commands. This 
local test function will atlo\' to significantly reduce the turn 
around time for database changes, and to alleviate the need for the 
lengthy and resource-intensive validation using an external 
sofhvare simulator. 



2.6 Human Computer Interface (HCI) 
The SCOS I1 HCI will provide users of all levels of experience, 
with an intuitive, but reliable and robust interface. The SCOSII 
HCI will be based on WIMP (Windows, Icon, Mouse and Pull- 
down menus) technology. SCOS I1 will support all the traditional 
display types (e.g. alphanumeric, graphic and mimics displays), 
however, the users will be given tools which will allow them to 
combine these different data display techniques to display data in 
a more flexible and efficient manner. Due to the increase in the 
diversity and versatility of the HCI with respect to previous 
systems, particular attention has been paid to the specification of 
general guidelines concerning display and data representation 
techniques in order to provide the user with a consistent HCI 
across all applications. 

3. MISSION DATABASE 
The scope of the SCOS I1 Mission Database is much wider than 
that of the earlier systems, which generally concentrated upon the 
data required by the Monitoring and Control functions. In addition 
to the latter, a SCOS I1 database will contain, e.g. the mission 
model data, the mission planning/scheduling data, the on-board 
software memory images, the operations procedures and the 
Spacecraft Users Manual (SUM), and will also include the system 
set-up and configuration data (e.g. definition of user privileges). 

3.1 klission Database Structure 
The Mission Database will consist of a hierarchical collection of 
database parts, each with a unique identifier and version number, 
arranged in a user defined structure (Figure 3). The higher level 
parts are used purely for organisational purposes, the lowest level 
parts contain the data and constitute the lowest level entities 
submitted to version control. For a given mission, the user will 
have some flexibility of configuring the structure to its particular 
needs. 

3.2 Database hlanagcmcnt 
There will be three types of Mission Database. 

- The Operafiortal Database: A database which is, or has been 
judged so in the past, capable of supporting real-time operations. 
SCOS I1 will support a number of Operational Database versions. 
- The Active Database: The Operational Database which currently 
supports real-time operations; any of the Operational Databases 
may be selected as the Active Database. 
- The Draft Dafnbase: A database used as an intermediate step to 
constructing a new Operational Database. There will be only one 
Draft Database. 

It can be imagined that all the databases are kept within a 
'Database Area' and accessed via the users from a 'IPorking Area'. 
The 'Working Area' contains a number of user accounts, i.e. 'User 
orking Areas', which will allo\v multiple user database 
maintenance. Special mechanisms will be provided in order to 
ensure this multiple user maintenance is done in an orderly 
manner; e.g. each user working area will be completely isolated 
and the system will prevent several users from being able to work 
on the same database part simultaneously. The database manager 
will be able to select modified database parts and to integrate them 

Finure 3: Mission Database Structure 

back into an Operational Database, either directly (for on-line 
changes) or via the draft database (for changes of a higher 
magnitude). Subsequently, this database can be selected as  the 
Active Database. 

Version Control functionality will automatically maintain the 
version of the Operational or Draft Databases and their constituent 
parts. In addition Change Control functionality will permit 
exhaustive recording of all database changes at item level and at 
the higher levels of the database hierarchy. The SCOSII database 
management concept, as described above, is illustrated in Figure 
4, below. 

3.3 Database hlaintenance 
Mission Databases are mainly constructed from input data that are 
provided from spacecraft/payload(s) manufactureds) or from 
checkout. Since the data volume may be extremely high (typically 
several thousands of parameters, just for telemetry) these data are 
to be provided in an electronic form. SCOSII will be able to 
import these source databases in various electronic formats (e.g. 
ORACLE, ASCII), to integrate the contained data items into the 
SCOSII internal database, and to subsequently handlenew versions 
of the source database (e.g. functions to compare a new source 
version with previous ones or SCOSII versions). 

In addition to the acquisition of the source database, SCOSII will 
provide the editing capabilities required to handle the data that 
have been acquired from the source database (for this dedicated 
functions will be provided to facilitate large scale editing) and to 
subsequently maintain the data. The data maintenance functions 
will of course include exhaustive but flexible data consistency 
checking functionality. Consistency checking will be performed at 
all levels (e.g. data item, database part and database), however, the 
user will be able to switch the checking off, an essential feature 
for the preparation phase, when inconsistencies cannot be avoided. 
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4. h1ONITORING 
The following monitoring tools will be provided. 

4.1 klonitorinp Parameters - 
Unlike previous systems, there will be several potential sources of 
monitoring parameters in addition to those that come from the 
spacecrat?, e.g. SCOS I1 parameters and Ground Segment 
parameters. Regardless of source, all parameters will be processed 
by SCOS 11 in the same manner. 

SCOSII will be far more flexible and versatile than previous 
systems. The users will be given the facilities to view the 
monitoring parameters in a number of different ways called 
'Representatio~ts'. The user will be able to select, in real-time, 
which 'Representation' is to be displayed. In particular, SCOS I1 
will support: 

- The Raw representation: the uncalibrated view of the parameter 
value. 
- The Engineering reprrsmtation: the calibrated view of the 
parameter value. 
- The Functional rrpre.sentation: obtained by applying a function 
to the parameter eg. derivative, integral, mean, mas. 
- The Status represrntation: returning the state of the currently 
applicable 'Checki,rg', eg. nominal (see section 4.3 below). 

In addition, SCOS I1 will support the display of values in different 
formats (e.g. raw representation in hex, decimal or binary) and the 
on-line conversion behveen engineering units. 

4.2 Parameter Validity - 
SCOS will support the concept of monitoring parameter validity, 
since for a nun~ber of possible reasons. the latest parameter 'alue 
could be meaningless or unreliable. The follo~ving factors 
influencing the validity have been identified. 

- Power: the status of the power supply the parameter is dependent 
upon. 

- Data Unit: the quality of the data unit within which the 
parameter was transported. 
- Data Routing: the status of the transmission route taken by the 
data. 
- Age: the age of the parameter value. 
- Stability: the parameter value may be in a transient state due to 
commanding activity. 
- Status: any other explicit criteria the user wishes to specify. 

SCOS I1 will check all these factors when assessing a parameter's 
validity. The resultant validity state of a parameter will be 
automatically propagated throughout the system affecting other 
processing where relevant (e.g. synthetic parameters will also be 
flagged as invalid if they use an invalid parameter) and affecting 
how the data is displayed to the user. 

The user will be able to gain real-time access to the results of each 
validity component check. Hence, the SCOSII user will be 
provided with significantly improved validity checking facilities 
and, when a parameter is flagged as invalid, considerably more 
information about the reason why. 

4.3 Parameter check in^ - 
The objective of checking is hvofold. On one hand the system 
must be able to check whether the operator has not or is not going 
to place the mission elements under its responsibility (e.g. the 
spacecraft) in a non-nominal or unsafe state, on the other hand, the 
system must be able to detect whether these elements are behaving 
as expected. This led to the following categories of parameter 
checking being provided by SCOSII. 

- Operational Statris Checks: Monitor the on-board status which 
is required regardless of any commanding activities, to ensure that 
the spacecraft is left in the correct state after a series of operations. 
- Operational Constraints Checks: Are of the same nature as 
Operational Status Checks, but stronger. They are rules which 
should never be violated operationally and as such, should never 
be disabled. They will contribute to ilctivity' 'Pre-Execrrtion 
I'oliJnfiot~' (see section 5.3 below). 
- Brhaviorcr Checks: Are based upon the prediction of the on- 
board stahts, taking into account the effects of commanding and of 
predicted events. The checking performed is to ensure that any 
behaviour exhibited (e.g. change of state after a command) is as 
espected. 

5. COhlhIANDING 
An overview of the envisaged full SCOSII Commanding 
functionality is given in Figure 5. 

5.1 Activities - 
In order to control the mission, a SCOSII user will be able to 
initiate the execution of :.fctivities', where an ilctivity'is either a 
Procedure (highest level), a Command Sequence (simplified 
procedure syntax), or a Command (lo\vest level). SCOSII treats 
each of these in exactly the same manner. Each can have 
execution pre-requisites. each can be monitored through its 
execution phase and each can be verified. Activities will be 
initiated manually, or automatically by the system. The long term 
aim of SCOSII is to have a fully automated Procedure execution 
capability. 



Figure 5: Commanding Overview 

5.2 Prenaration - 
This consists in the production of the schedule of activities 
corresponding to a given time increment, for later subn~ission to 
the activity execution function. While this will be initially done 
manually, it will be carried-out, in later releases of the system, by 
a generic Mission Planning function.ality, which will include: 

- Processing of Planning Rcqrce.~ts: This covers the acceptance, 
checking and pre-processing of planning requests received from 
external entities e.g. experimenters, external control centres, flight 
dynamics. 
- Planning/Sclteduling Function: This covers all activities 
required to generate a conflict-free 'Plan' and its corresponding 
Schedrtk' of activities from the pre-processed planning requests. 

5.3 Activity Execution - 
It will be possible for the user to execute operational 'Activilies'by 
means of three facilities: 

- The Scheduler: Pre-prepared Scltedzrles' will be imported from 
the preparation environment into the Schedtrler'. If necessary, the 
user will also be able to split this imported 'S'clreditle' into a 
number of logical partitions called 'S'uh-Schedrcle.~'. Each 'Strh- 
SchsdrrIes' of executable acti\.ities could then be assigned to a 
different user and/or to a different type of operations (e.g. one sub- 
schedule could be dedicated to Payload-X), thus delegating 
execution control. Nominally the 'Scked~tler' will manage the 
execution of activities automatically, taking into account execution 
pre-requisites and links between activities, prompting for manual 
input when required. However the user will always retain the 
capability of regaining, if required, control over the Schediiler'. 
- The Afanual Stack: The traditional commanding facility, 
allowing the user to directly control the release of Activities will, 
of course, also be supported by SCOSII in order to provide the 
user with fully manual execution capability in the eventuality of 
critical and/or unplanned operations. 
- The Event Driven Commander: This is a ne\v SCOSII concept 
that will give the users the capability of setting up event-action 
relationships as Event Driven Commanding Routines (EDCRs). 

EDCRs can periodically monitor for the occurrence of an event 
that will trigger the execution of a specified set of activities, e.g. 
can be used for automatic closed loop reaction to on-board 
anomalies. 

All executable activities will have pre-requisites which must be 
satisfied before they can be released from the SCOSII system. In 
SCOSII, these are called 'Pre-Execration Validationl(PEV) checks. 
These will have three components: 

- Feasibility Checks: Checking that all necessary resources are 
available, e.g a transmission route. 
- Safety Checks: eg. Checking that Unit A if OFF before 
switching Unit B ON. 
- Dynaniic Checks: Checks which are not related to the activity in 
isolation, but to the external context of the execution of a specific 
instance of an activity, e.g. time window and interlock checks. 

Activities will then be released by SCOSII when authorised by 
their respective PEV, based on a Release Strategy' specified at 
preparation. SCOSII will support both manual and automated 
release strategy such as "initiate execution X minutes after event 
Y". 

5.4 Activity Execution nfonitoring - 
To enable the user to be aware of the transmission and execution 
status of any activity that has been released from SCOSII, 
dedicated verification checks will be performed. For command 
execution verification, the users will explicitly define verification 
criteria, using the Operations Language, in the Mission Database. 
Though, there will be the capability of doing the same for 
command sequences and procedures, the majority of their checks 
will be implicitly defined by the checks defined for each command 
they contain. SCOSII will support the explicit definition of 
simple or complex multi-staged verification criteria, the latter for 
those commands which are executed in a number of stages (eg. 
reception on-board, reception by application, execution stage 1, 
execution stage 2). For each identified verification stage, SCOSII 
will automatically compute a verification window based on 
expected execution times and/or user defined marginsldelays. 

6. CONTROL O F  SCOSII SYSTEM 
The M&C functionality will be controllable flexibly. This is 
particularly important in the case of contingency situation where 
the norn~al conditions of applicability of a function may not be 
valid any more; past systems have been rather rigid in this respect. 
During operations, the user will have the capability to control the 
way the functions are applied and to which data they are applied; 
e.g. one will be able to completely or partly disable parameter 
validity checks. Standard parameter checking, as described in 4.3 
above, will be applicable to the status of the controlled functions, 
to ensure that they are not left in a non-nominal/undesirable state. 

7. k1ISSION EVALUATION 
Sophisticated tools will enable the users to access historical data 
and then view, analyze them and to produce reports. This 
functionality nrill be an integral part of SCOSII, and unlike on 
previous systems, will be available on-line. The following 
functions will be provided. 



7.1 Historical Data Access - 
The user will be able to access data and if required to save them 
for later re-use, either for direct presentation using the standard 
displays used for real-time monitoring, or for submission to further 
processing (e.g. detailed analysis). Data access will be supported 
by a powerful syntax, allowing the user to define expressions, 
called 'Data Access Strategies', which he could save for later re- 
use, and capable of specifying: 

- A time window or multiple time windows. 
- References to events eg. 'entry into eclipse' 
- Expressions eg!when A123 > 35 degrees C' 
- Data access criteria e.g. all AOCS telemetry 

7.2 Viewine Historical Data - 
SCOSII will provide the user with hvo viewing modes, 'Replay as 
Live'and 'Video Replay'. 'Replay a s  Live' will be dedicated to the 
technical analysis of the mission data, i.e. it will allow the user to 
replay historical data and to interact with them as if they were 
being generated in live, while 'Video Replay' will be dedicated to 
operational investigation, i.e. it will allow a user to be confronted 
with the same data and workstation lay-out as at the time of 
reception of the data. 

In both cases, the user will have complete control over the replay, 
controlling its start time, the number of workstations it appears on 
and its speed and direction ( e g  fast fonvard, fonvard, pause, 
rewind, fast rewind etc ...). 

7.3 Historical Data Analvsis - 
The users will be provided with a data analysis package which will 
have the following functionality at a minimum: 

- Data Rfanipiclation, allowing the user to select a subset of the 
retrieved data for analysis. 
- Rfatlreratical functions, e.g sin, cos, tan, log, differentiation, 
integration. 
- Statistical Analj.sis frrnctions, e.g. mean, standard deviation. 
- Grapltical took, allowing the user to produce 2- and 3-D graphs, 
straight line fits, polynomial fits, bar charts, pie charts etc ... 

7.5 R e ~ o r t  Generation 
A great amount of effort is expended by Operational Teams 
producing reports, many of which are of a routine nature. 
Therefore SCOSII will. unlike on previous systems, include a 
report generation function allowing production of test documents 
in which mission history data can be incorporated. This function 
will also support an automatic report generation facilities; a user 
will be able to define report templates, e.g. definition of the 
contents and structure of a report, and use these to automatically 
produce reports of data for a user defined time period. 

8. C0NC:LUSION 
SCOSII is a major step fonvard with respect to its predecessor 
systems, which will put ESA at the forefront of the technology and 
meet its main goals of minimising mission costs and improving 
mission preparation eficiency and operational performance. 

(as opposed to individual mission systems). This has involved a 
close cooperation behveen the users and the developers of the 
system, and has included exploratory prototyping (as well as 
technology prototyping). 

Release 1 of SCOSII is at an advanced stage of implementation. 
a preliminary delivery being expected in November 1994. Broadly 
speaking Release 1 is covering the same range of  functionality 
as the previous infrastructure, with inclusion of the Commanding 
function (not available in SCOS-I) and with enhanced functionality 
and more modem human computer interfaces. More advanced 
functionality will be added in Release 2 (1995-6) and Release 3 
(1996-7). including Modelling, Mission Planning, Data Distribution 
and certain of the more advanced database features. Consolidation 
of Release 1 functionality will also take place in the later releases. 
Such an incremental implementation has been chosen in order to 
minimise technical and schedule risks to the first client missions 
of the system, HUYGENS, ARTEMIS-and ENVlSAT to be 
launched in 1997-1998. 
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ABSTRACT 

The Operations Engineering Lab (OEL) at 
JPL has developed a software architecture 
based on an integrated toolkit approach for 
simplifying and automating mission 
operations tasks. The toolkit approach is 
based on building adaptable, reusable 
graphical tools that are integrated through a 
combination of libraries, scripts, and system- 
level user interface shells. The graphical 
interface shells are designed to integrate and 
visually guide a user through the complex 
steps in an operations process. They provide 
a user with an integrated system-level picture 
of an overall process, defining the required 
inputs and possible outputs through 
interactive on-screen graphics. 

The OEL has developed the software for 
building these process-oriented graphical user 
interface (GUI) shells. The OEL Shell 
development system (OEL Shell) is an 
extension of JPL's Widget Creation Library 
(WCL). The OEL Shell system can be used 
to easily build user interfaces for running 
complex processes, applications with 
extensive command-line interfaces, and tool- 
integration tasks. The interface shells display 
a logical process flow using arrows and box 
graphics. They also allow a user to select 
which output products are desired and which 
input sources are needed, eliminating the 
need to know which program and its 
associated command-line parameters must be 
executed in each case. The shells have also 
proved valuable for use as operations training 
tools because of the OEL Shell hypertext help 
environment. 

The OEL toolkit approach is guided by 
several principles, including the use of ASCII 

text file interfaces with a multimission 
format, Per1 scripts for mission-specific 
adaptation code, and programs that include a 
simple command-line interface for batch 
mode processing. Prajects can adapt the 
interface shells by simple changes to the 
resource configuration file. This approach 
has allowed the development of 
sophisticated, automated software systems 
that are easy, cheap, and fast to build. 

This paper will discuss our toolkit approach 
and the OEL Shell interface builder in the 
context of a real operations process example. 
The paper will discuss the design and 
implementation of a Ulysses toolkit for 
generating the mission sequence of events. 
The Sequence of Events Generation (SEG) 
system provides an adaptable multimission 
toolkit for producing a time-ordered listing 
and timeline display of spacecraft commands, 
state changes, and required ground activities. 
The multimission SEG software is easily 
adapted and OEL Shell templates are built to 
meet different mission requirements. The 
SEG system was adapted in a unique way for 
the Ulysses mission since the spacecraft does 
all commanding in real time. The Ulysses 
SEG toolkit allows a user to interactively 
build commands on a timeline display in 
spacecraft event time and then the system 
automatically derives required ground events, 
builds a mission sequence of events listing, 
and outputs a space flight operations 
schedule. 

INTRODUCTION 

The Operations Engineering Lab (OEL) at 
JPL has developed a generic set of tools for 
Sequence of Events Generation (SEG) that 
have been adapted to many of the current 



flight projects. The toolkit includes what- of servers to enhance the Perl language which 
you-see-is-what-you-get (WYSIWYG) is used to generate the SEG products, and a 
editors for the Sequence of Events (SOE), user-configurable graphical user interface 
Space Flight Operations Schedule (SFOS), (GUI) to control the SEG process. All of the 
and Deep Space Net Schedule (DSNS), a set SEG interfaces are text files. 
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NOTES 

The editors are generic object-oriented 
programs that display, edit, filter, and 
reformat the SEG products, but do not 
interpret the data. The editors are X 
Windows / UNIX programs written in C. 
The same editors are used by all projects. 
Rather than writing MSDOS or Macintosh 
versions of the editors, we export files that 
may be read with most MSDOS or Macintosh 
tools. 

~---------------VGR----------------~ 

[ I  S/C 32-GS-40 1137 XB-2 8K 41 NOT RECOVERABLE 
Bj SIC 31-GS-40 g 1159 XB=2.8Kl4l; NOTRECOVERABLE 

The SEG process for most missions is to take 
the spacecraft sequence file, the Deep Space 
Network @SN) allocations and view periods 
files, and the light time file, and generate the 
SOE, SFOS, and DSN keyword files. 
Simply, SEG integrates the spacecraft and 

ground schedules in to a unit. The spacecraft 
sequence file is generated far in advance, 
does not include real time commands, and is 
often based on out-of-date DSN allocations. 
The SOE, SFOS, and DSN keywords files 
will contain more accurate ground 
information, and are used by the Mission 
Control Team and the Spacecraft Teams to 
schedule ground activities. In addition all 
SEG products use ground times for both 
ground and spacecraft events. 

We chose to write our generating software in 
Perl since it is a very powerful interpreted 
language designed for processing text files. 
We also did not want to write a new 
language. Since the delivered executable is 



also the source code, it is reasonably easy for 
the Mission Control Team to maintain the 
SEG adaptation. Perl has only two 
elementary data types: strings and floating 
point numbers, so additional servers were 
written in C to manipulate triggers, time- 
dependent state variables, time conversions, 
and spacecraft command smng processing. 
The parent Perl script includes a Perl library 
that automatically starts up the server process 
and sets up a communications channel 
between the parent Perl script and the server 
similar to the Remote Procedure Call (RPC) 
mechanism. The server functions are then 
invoked with simple Perl function calls. It is 
possible to compile new functions directly 
into the Perl language, but the server model 
was chosen since it simplifies configuration 
management on the operations workstations, 
a new version of Perl may be installed 
without having to link in any SEG code, and 
in fact, the servers are not even tied to Perl. 

The final component of the SEG toolkit is the 
OEL Shell. This is a user configurable GUI 
that lets the user gather input files, specify 
output files, and selectively run portions of 
the generating process and the SEG editors. 
OEL Shells have been built for several 
projects' SEG processes 

THE OEL SHELL 

The OEL Shell is a compiled program based 
on the XI1 release 5 windowing system, the 
X toolkit (Xt), the Motif Widget set, and 
David Smyth's Widget Creation Library 
(Wcl) [I]. The intent was to provide a shell 
that would allow the user to enter UNIX 
commands with parameters from a simple 
Motif interface. The interface is configurable 
by the user by modifying the resource file. 
Several copies (which should in fact be links) 
of the compiled program may be available on 
the system. The appearance of these shells is 
determined by the program's name and its 
corresponding resource file. Since the user is 
encouraged to modify the resource file, and 
create one's own shells or enhancements to 
existing shells, some knowledge of Motif 
widgets and the resource database is 
prerequisite. 

From a user's perspective, the OEL Shell 
consists of a series of push buttons, text 
entry areas, and toggle buttons arranged on a 
work area or control panel (one or more 
Motif drawing areas). Pressing one of the 
push buttons causes a UNIX program to 
execute. This program may be another Motif 
application or a script without a graphical 
user interface. The work area provides text 
entry areas for the user to enter command line 
arguments for the program. Toggle buttons 
correspond to UNIX command line options. 

Below the panel is a scrolling message area 
which displays any output messages from the 
executing program or script. In addition, the 
actual UNIX command created from the push 
button, text, and toggle buttons may 
optionally be displayed here. If a text widget 
is used for file input, it will generally have a 
Select and an Edit push-button located 
nearby. The OEL Shell does not need to 
open any user files, however the user may 
wish to browse through the file hierarchy 
with the Motif File Selection Dialog. 

To use the File Selection Dialog, choose the 
Select button near the file text that you want, 
and the File Selection Dialog will appear. 
The OK button will cause the selected file 
name to be copied to the text entry area in the 
control panel that last had focus. You can 
focus on a text widget (move the mouse 
cursor over the text widget, and press the left 
mouse button) and then hit the OK button. 
Unlike other Motif programs written in the 
OEL, this File Selection Dialog is non-modal. 
You may leave it up while you work with the 
main window. The OK button does not 
unmanage the dialog, so you can use it to fill 
filenames into several text widgets. The 
Cancel button will remove the dialog. The 
Help button will display help text for this 
dialog. 

The Edit buttons will bring up an editor, 
which the user may choose in the resource 
file, to view the file specified by the contents 
of the currently selected text widget. The 
Exit button will cause .the shell to terminate. 

The shell also includes a Help button which 
is user configurable. This will pop up a 
single pane of help text. It is intended that 



the designer of an OEL Shell also attach help help on a push button without activating the 
to each widget in the work area. You may button, move the mouse cursor off the button 
obtain help on any button or text field in the until the button no longer appears to be 
work area by selecting that object and then pressed. You may then release the mouse 
pressing the Help key. The default Help key button without any activation. 
for Motif application is the F1 key. To obtain 
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WCL allows you to define the widget tree for 
an application in the resource file using new 
resource names such as wcCreate and 
wcchildren. In addition, callbacks are 
provided that set resources, manage and 
unmanage widgets, run an external program 
and exit. 

The OEL Shell is a very simple application 
built on WCL [2]. It is basically about ten 
callback procedures which may be used in the 

resource file. The most important of these is 
CmdCB (the command call back). This 
callback executes its text string argument. 
For example, you could create a push button 
to execute the UNIX 1s command as follows: 

demo*lsPb.wcCreate: XrnPushButton 
demo*lsPb.labelS tring: Show Files 
demo*lsPb.activateCallback: CmdCB(1s) 



A simple command like this could be 
executed with WCL alone. The OEL Shell 
permits one to access text widgets, toggle 
widgets, and option menus, and pass these in 
CmdCB. For example, if demoTog is a 
toggle button, then $demoTog[-r] has the 
value in the brackets if the toggle button is 
true, and is the empty string if false. 
Likewise, the value of a text widget is just the 
text that the user entered. 

Another very useful callback is the FocusCB 
which is used to specify the directory filter 
string used with the File Selection Box. A 
FocusCB is used with each text widget that is 
used to contain input file names. 

Besides the resource file, two other files are 
used by the OEL Shell. These are a drawing 
file, that places simple XI 1 primitives (not 
widgets) in the drawing area. This has been 
used to give the OEL Shell the appearance of 
a flow chart. The other file is the help file. 

Output from the child processes is sent to the 
scrolling message area below the work area. 
In addition, there are some special text 
messages that the child can send back which 
set resources in the OEL Shell. 

In addition to SEG, we have used the OEL 
Shell for many other functions in operations. 
These include training, generating database 
queries, and running a command compiler. 

Some advantages of using the OEL Shell are: 

* It is easily configurable by operations 
personnel. 

It separates the computing engine from 
the GUI, thus simplifying testing of the 
computing engine. 

All functions may be run with or without 
a GUI. 
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ULYSSES SEG 
Teams, and the Ulysses Spacecraft Team for 
their enthusiasm and support. 

We have recently adapted the SEG software REFERENCES 
for Ulysses. The Ulysses mission is 
considerable different from the other 1. The Widget Creation Library, David E. 
missions in that the primary command mode Smyth, September, 1991. 
is real time. Thus we do not have a 
spacecraft sequence file as an input to SEG. 2. OEL Shell Programmers' and Users' 
We introduced a new graphical document Guide, Kevin J. Miller, October, 1993. 
called the Timeline which contains the DSN 
allocation, view periods, and command 
windows translated into spacecraft time. 
This is generated from the DSN allocations 
and view periods files, and the light time file. 
The SEG operator then uses these times to 
schedule the spacecraft. Typical activities 
scheduled include: records and playbacks, 
telemetry mode changes and maneuvers. 
Since the SFOS editor is a general purpose 
timeline editor, it is also used to edit the 
Timeline document. The spacecraft 
information is then extracted and put into a 
file that roughly corresponds to the spacecraft 
sequence file for other missions. 

From this point on, Ulysses SEG resembles 
SEG for the other JPL projects. The 
telemetry state of the spacecraft is extracted 
from the sequence file. The ground events 
are generated for the beginning and end of 
each track, the DSN configuration, spacecraft 
telemetry state changes, and other significant 
activities. This information is then used to 
create the SOE, SFOS, and DSN keyword 
files. 

Ulysses SEG was the first project where the 
SFOS editor was used to input data that 
would then be passed on to other processes. 
The SFOS editor has functioned well, and it 
was easy to extract data from the SFOS 
records. 
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INTRODUCTION 

We are in the midst of a revolution in the spacecraft command and control industry. This revolution 
is driven by several factors. Traditional customers of spacecraft command and control systems (like 
the government) are now trying to do more with less money. Where in the past the government 
would be inclined to design and build a system from scratch, today they are looking for an off-the- 
shelf solution. Another factor contributing to the changes in spacecraft command and control is the 
advancing technology of spacecraft. Several commercial ventures are underway to exploit large 
constellations of relatively cheap satellites. These new commercial space opportunities create a need 
for more economical command and control systems to satisfy these bottom-line oriented endeavors. 

Some of the changing requirements in the market include: 
The skill level required to operate the system on a day-to-day basis is lower than required by 
traditional systems. 
The number of human operators required per satellite is smaller. 
The user interfaces are becoming graphical, as opposed to the text-based interfaces of traditional 
systems. 
The amount of time to prepare for a spacecraft mission is decreasing, making it harder for satellite 
users to develop their own system from scratch. 

This paper describes a product called the Intelligent Mission Toolkit (IMT), which was created to 
meet the changing demands of the market. IMT is a command and control system built upon an 
expert system. Its primary functions are to send commands to the spacecraft and process telemetry 
data received from the spacecraft. It also controls the ground equipment used to support the system, 
such as encryption and decryption gear, and telemetry front-end equipment. Add-on modules allow 
IMT to control antennas and antenna interface equipment. 

The design philosophy for IMT is to utilize available commercial products wherever possible. IMT 
utilizes Gensym's G2 Real-time Expert System as the core of the system. G2 is responsible for 
overall system control, spacecraft commanding control, and spacecraft telemetry analysis and display. 
Other commercial products incorporated into IMT include the SYBASE relational database 
management system and Loral Test and Integration Systems' System 500 for telemetry front-end 
processing. 



Use of Expert Systems in IMT 

Spacecraft command and control consists of a repetitive sequence of planning, contact and 
evaluation activities. During these phases, events occur and information is gathered that determine 
subsequent actions required to control the spacecraft. Traditional control systems require system 
operations personnel and spacecraft engineers to manually determine the appropriate responses to 
these events. In addition, to respond to recurring anomalous conditions that can be overcome via 
procedural solutions, operators often document detailed system conditions in a log book or 
operations manual. These references are examined by operations staff to determine how to resolve 
specific system conditions. If these conditions are not properly documented and accessible, the 
operations staff must consult with the operations "expert" to determine the appropriate course or 
action. 

Using IMT's satellite support plan functions in combination with the embedded expert system, 
complex system conditions and responses are captured within a system knowledge base. IMT 
identifies specific events and conditions and invokes rules, procedures or specific satellite support 
plans to generate appropriate system responses. In this capacity, IMT stores, recalls and implements 
the knowledge of the system operations staff. The system can automatically respond to specific 
events or present suggested actions based on system conditions. The following are particular 
examples of how IMT implements these principles. 

Telemetry Analysis and Display 

The G2 expert system can be used to analyze telemetry data emitted by a spacecraft and determine 
the state of the spacecraft. G2's inherent ability to model real-world objects supports sophisticated 
analysis of complex data. The data can also be displayed to the user through G2 objects, presenting 
the data in a format that is easier to understand than traditional text-based displays. 

Figure 1 - IMT Graphical Pass Plan 
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Graphical Pass Plan 

In IMT, a "pass plan" is a sequence of spacecraft commands and system configuration actions called 
"steps." IMT uses G2 to represent each step as a G2 object, and the flow of execution through the 
steps is indicated using the G2 connection facility. A graphical pass plan resembles a flow chart, 
which is more intuitive than the proprietary commanding languages used by other command and 
control systems. As the pass plan is executed, the current step is highlighted; status information 
about each step is presented along with the G2 icon for the object. 

There are two ways to create pass plans. The first is to select commands from command palettes 
and connect them into graphical sequences to form pass plans. The second way to create a pass plan 
is to build an ASCII file using an off-line process (e.g. using an editor or the output from another tool). IMTs 
Pass Plan Import function is then used to convert the ASCII file into a graphical pass plan where it 
can be executed like any other pass plan. 

IMT supports two modes for pass plan execution: manual and automatic. Automatic execution 
provides the first step toward the complete automation of system operation. During automatic 
execution, command sequences are executed without operator intervention. Automatic execution 
continues until the sequence is completed successfully or until an anomaly is detected. Anomaly 
detection could be based on the inability to properly transmit the command from the ground system, 
a command rejection from the spacecraft, or the result of a complex set of rules developed to verify 
the command operation. 

h g i c  in Pass Plans 

Logic is provided through an "if step," which is analogous to an "if' statement in a high level 
computer programming language. When an "if step" is executed, G2 executes rules provided by the 
pass plan builder to determine which step should be executed next. 

Interactive Telemetry Displays 

IMT can be used to build "smart" interactive telemetry displays. These displays allow the operator 
to control the spacecraft by directly manipulating graphical representations of the system. For 
example, circuit diagrams representing portions of the electrical power subsystem can be created that 
contain graphical representations of subsystem components. The user could then click on the 
graphical representation of a switch to change the switch's position to allow (or prevent) current flow 
to the subsystem. This frees the operator from having to know the details of specific commands 
required to manipulate a system component (spacecraft or ground system) and creates a more 
"results oriented" user interface. 



Command Verification 

Traditional spacecraft command and controI systems require manual examination of telemetry to 
determine the status of a spacecraft component or subsystem. Manual actions are initiated based on 
the examination of this data. For example, after transmission of a command, operators may continue 
to view telemetry data to determine if the spacecraft received the command and is responding as 
expected. 

IMT uses expert system rules to automate the analysis of telemetry data, determine the status of the 
spacecraft, and identify necessary control actions. Specific control actions are captured in rules 
which are invoked after command transmission. Rules can be designed to examine specific data 
points and determine whether the desired reaction was achieved. Actions, as directed by the 
operations experts, can be initiated based on the results of the execution of these rules. 

Commanding Constraints 

Before a command is transmitted, IMT consults the knowledge base to determine whether it is 
acceptable to send the command. IMT allows the operator or engineer to specify command 
transmission constraints. To specify a constraint, a rule is written to which G2 backward chains 
during command transmission. These rules can refer to any available data to reach this conclusion. 
This includes telemetry data, system state, and even the person making the request to send the 
command. Using G2, it is easy to define constraints that can be turned on and off. 

By defining a rich set of constraints, the end-users can customize their system to minimize the risk of 
using lower-skilled spacecraft operators. 



Automatic Analysis of Pass Plans 

During mission planning, spacecraft operators determine the future activities of the spacecraft. The 
objectives of these activities are determined by vehicle maintenance requirements, overall mission 
objectives, and operations required to ensure the health of the spacecraft. Using IMT and the 
embedded expert system, mission objectives can be captured and applied during the planning 
process. For example, to ensure the health of a spacecraft, mission objectives might indicate that 
battery reconditioning must be performed at precise time intervals. These objectives can be stored as 
rules within the planning knowledge base. 

As mission planners develop future contact support plans, this knowledge can be used to validate the 
proposed pass plans and command sequences. As system intelligence increases, this analysis can 
incorporate knowledge from previous spacecraft contacts. For example, suppose the last time the 
vehicle was contacted, a specific anomaly was detected. Using knowledge of this condition, along 
with the expert spacecraft knowledge captured by the system, the system could identify a proposed 
command sequence as ineffective or dangerous to the spacecraft. 

THE TOOLKIT MODEL 

IMT was designed specifically to support a dynamic system environment. The "Toolkit" model 
allows the product to be configured to satisfy a variety of mission unique requirements and ensures 
the system can evolve to meet changing system requirements. 

The "Toolkit" Model emphasizes the use of COTS products as the foundation for final solutions. 
Rather than developing a complex system from scratch, the target system is developed by integrating 
commercial products - best suited for the target application - into a final solution. Mission unique 
requirements are implemented primarily through modifications to expert system knowledge bases and 
standard relational databases. In addition, many commercial products provide graphics rich tools 
that allow the system to be tailored to meet user specifications without extensive software 
development. This environment supports rapid system customization and reduces development, 
operations and maintenance costs. When development is required, the level of effort is significantly 
lower than that required by traditional system development approaches. 

Procured from Performed by Performed by Integrated and 
commercial developers customer staff or Contractor delivered by 
censelmaintenance fees) Contractor Contractor 



CONCLUSION 

The Intelligent Mission Toolkit provides significant advantages to the implementation of a complex 
command and control system. The embedded expert system offers the ability to store and apply 
expert mission operations and planning knowledge using system knowledge bases. This information 
can be used to automate spacecraft command validation, control ground system equipment and apply 
intelligence to the entire mission planning process. 

IMT's modular architecture and fully Object Oriented implementation addresses the complex 
requirements of modem command and control systems. The "Toolkit" model emphasis allows end- 
users to customize the product to satisfy unique mission objectives resulting in the most powerful 
and flexible commercial command and control system available. 
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Abstract 

SEQ-GEN is a user-interactive 
computer program used to plan and 
generate a sequence of commands for 
the spacecraft. Desired activities are 
specified by the user of SEQ-GEN; 
SEQ-GEN in turn expands these 
activities, deriving the spacecraft 
commands necessary to accomplish the 
desired activities. SEQ-GEN models the 
effects on the spacecraft of the 
commands, predicting the state as a 
function of time, flagging any conflicts 
and rule violations. These states, 
conflicts, and violations are viewable 
both graphically and textually at the 
user's request. SEQ-GEN also displays 
the entire sequence graphically, showing 
each requested activity as a bar on its 
graphical timeline. SEQ-GEN includes 
a full-screen editor, allowing the user to 
make changes to the requested activities. 
After a change has been made to the 
sequence, SEQ-GEN immediately 
revalidates the sequence, updating its 
models and calculations along with its 
displays based on these changes. 
Because SEQ-GEN is user-interactive 
and because it has the ability to 
recalculate  spacecraft  states 
immediately, the user is able to perform 
"what-if" sessions easily. 

SEQ-GEN, a multimission tool, is 
adaptable to any flight project. A flight 
project writes its adaptation files 
containing project unique information 
including in its simplest form, only 
spacecraft commands. For more 
involved projects the adaptation files 
may also contain flight and mission 
rules, description of the spacecraft and 
ground models, and the definition of 
activities. SEQ-GEN operates at 
whatever level of detail the adaptation 
files imply. Simple adaptations are 

straight forward to do. There is, 
however, no limit to the complexity of 
activity definitions or of spacecraft 
models; both may involve unlimited 
logical decision points. Commands and 
activities may involve any number of 
parameters of a wide variety of data 
types, including integer, float, time, 
boolean, and character strings. 

SEQ-GEN will be used by the Mars 
Pathfinder, Cassini, and VIM (Voyager 
Interstellar Mission) projects in an effort 
to speed up adaptation time and to keep 
sequence generation costs down. 

SEQ-GEN is hosted on UNIX 
workstations. It uses MOTIF and X for 
windowing, and was designed and coded 
in an object-oriented style in the 
language C++. 

Introduction 

SEQ-GEN is a flexible software tool 
that can be used in several roles in the 
uplink planning and sequence generation 
process. In this paper, we address 
various tasks that are done during uplink 
planning and sequence generation, and 
show how SEQ-GEN supports each of 
them. We begin with comments that 
apply to all uses of SEQ-GEN. 

Typically, SEQ-GEN is used 
interactively. The user sees results of 
SEQ-GEN computations on a graphical 
timeline (see Figure 1). If there are 
conflicts or rule violations, the user 
changes the sequence by using 
SEQ-GEN's editor to alter, add, or 
delete requests. SEQ-GEN then 
recomputes the state of state of the 
spacecraft, and reevaluates the rules. 
This process is repeated until the user is 
satisfied with the sequence, at which 
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time SEQ-GEN writes results into 
computer files. 

A key feature of SEQ-GEN is that it is a 
multimission program. Adaptation of 
SEQ-GEN for use by a specific flight 
project in a specific role is done by 
supplying SEQ-GEN with files of data 
about the project. Only the information 
pertinent to the intended use of 
SEQ-GEN is required. In this paper we 
use the term "adapter" to denote the 
person or persons that supply the 
information about the flight project. The 
term "user" denotes a person who is 
using an adapted SEQ-GEN. 

Now we discuss how SEQ-GEN 
supports various uplink planning and 
sequence generation tasks, showing 
SEQ-GEN's flexibility. 

Generating Command-Level 
Sequences 

Command-Level Editing 

One simple use of SEQ-GEN is as an 
editor, enabling a person to write a 
sequence of spacecraft commands. The 
adapter provides the list of all spacecraft 
commands for the flight project. If the 
commands have parameters, those are 
named by the adapter. The adapter can 
specify what the allowable values are for 
each parameter of each command, and 
what type of value is appropriate 
(decimal integer, hexadecimal, octal, 
binary , floating point, duration, time, 
character string, boolean, or a one- 
dimensional array of any of the previous 
types). The adapter can also specify the 
default value of each parameter. In this 
way, SEQ-GEN "knows" a project's 
spacecraft commands. 

When the user wants to add a command 
to the sequence, SEQ-GEN lists all the 
commands, letting the user choose one. 
SEQ-GEN displays the name and 
description of each parameter (as 
supplied by the adapter), to guide the 
user in specifying the requested 
command. SEQ-GEN will use whatever 

information the adapter has supplied 
concerning the parameters of the 
command. For example, if the adapter 
has supplied the allowable range, 
SEQ-GEN will warn the user when a 
value given by the user is not in range. 
SEQ-GEN's editor enables a person to 
form a request, consisting of one or more 
commands (and also "activities"; see 
below) and to add that request to the 
sequence. 

Command-level Sequence 

One output of SEQ-GEN in the simple 
adaptation described above is a file of all 
the commands (in mnemonic form), in 
time order, ready to be translated to bits 
and sent to the spacecraft. 

In addition, SEQ-GEN produces a 
timeline (see Figure I ) ,  both 
interactively on the screen, and on paper. 
The timeline shows visually the position 
in time of each request in the sequence. 

Such an adapted SEQ-GEN is useful for 
building sequences for use before launch 
in the testing of the spacecraft. It is also 
useful for simple projects where 
command-level sequence planning is 
adequate, and where any constraints on 
interactions of commands can be 
checked by hand. 

Spacecraft Clock 

If precise timing of commands with 
respect to the spacecraft's clock is vital, 
the adapter can define the units of the 
clock and their nominal durations. The 
definition is then used in some of 
SEQ-GEN's calculations. For example, 
there is an option in SEQ-GEN to align 
all commands' times to the nearest whole 
unit in the spacecraft's clock. The 
relation between Universal Time and the 
values of the spacecraft's clock is given 
to SEQ-GEN at run-time, to account for 
differences in the clock's rate from its 
nominal rate. 



Merging Sequences 

Another feature of SEQ-GEN is the 
ability to merge sequence files. For 
example, SEQ-GEN could be used 
individually by different flight team 
members making their individual request 
files. Those files can then be merged to 
produce a single time-ordered file with 
all of the requests. Each request retains 
its requestor's name (or other identifying 
string), so that the individuals can check 
that their requests were properly 
handled. 

Different requestors could include 
members of the engineering team (for 
example, an attitude control analyst 
requesting a calibration), or of the 
navigation team (requesting a 
maneuver), or of science teams 
(requesting scientific observations). 

Predicting Events 

It is often useful to predict the effects of 
the commands in a sequence. The 
adapter can supply models to SEQ-GEN 
that enable predictions of the state of the 
spacecraft based on the commands in the 
sequence. 

Flexibility of Models 

A nice feature of SEQ-GEN is the 
variability possible in the models. One 
possibility, of course, is to have no 
models at all. In this case, as discussed 
above, SEQ-GEN's output is the time- 
ordered list of commands in the 
sequence. 

Models of varying complexity can be 
added. For example, if the amount of 
power being used at any time during the 
sequence is of interest, a power model 
could be added. The adapter defines a 
model element by specifying its 
attributes (i.e., state variables). An 
attribute can be of any type (same 
choices as for parameters of a command; 
see above), and the adapter can define 
the allowable range of each (in which 
case SEQ-GEN will give a warning to 

the user if the attribute's value ever 
becomes out of range). For each 
spacecraft command that affects an 
attribute, the adapter describes the effect, 
using a simple language provided by 
SEQ-GEN. The language includes the 
basic programming language constructs, 
such as IF statements and loops. In 
addition, the language C can be used by 
the adapter to specify calculati~ns. No 
compiling or linking of SEQ-GEN is 
needed to incorporate the adapter's 
compiled C code; the linking of the 
adapter's code is dynamic, done at run- 
time. 

The effect of a command can depend on 
the state of the model before the 
command. The most common effect of a 
command is to change the value of an 
attribute. 

Simple models, such as ones that keep 
track of whether a switch is "on" or 
"off", are simple for the adapter to 
specify. Each project can model the 
details appropriate for its sequencing 
needs. 

The modeling done in SEQ-GEN is a 
discrete event simulation, where the 
commands in the sequence are the 
triggering events. SEQ-GEN processes 
each command by interpreting the 
simple language in which the adapter has 
written the effect of the command, and 
by calling any C functions the adapter 
may have used.- The adapter can use 
SEQ-GEN's "stimulus" concept to 
promote the effect of a command to 
future time or to several model elements. 

SEQ-GEN has built-in the ability to read 
files of Deep Space Network view 
periods and allocations, a file that 
contains predictions of downlink data 
rate capability, and a file that contains 
trajectory events, such as occultations. 
The adapter can write effects of such 
events in the same way as writing effects 
of commands. For interplanetary 
missions, where the light time is non- 
negligible, SEQ-GEN has the capability 
of adjusting times between ground time 



and spacecraft time using a file giving 
the light time. 

Predicted Events File 

SEQ-GEN produces a comprehensive 
file that contains the results of the 
modeling (see Figure 2). The file is a 
time-ordered list that contains an entry 
whenever an attribute of a model is set to 
a value. The entry consists of the time, 
the values of the attributes of the model 
element, and an indication of the causal 
command. The file also lists all 
commands in the sequence. (Activities 
and rule violations are also in the file; 
see below.) The file can be used to 
review a sequence. 

Interactive Display of Models 

The user of SEQ-GEN can turn the 
modeling on or off at will. The user can 
also have SEQ-GEN display a graph of 
the value of any one or more attributes 
above the timeline of requests (see 
Figure 1). The user can change what to 
display any time during the SEQ-GEN 
session. When the user changes the 
sequence, SEQ-GEN models the part of 
the sequence being viewed and updates 
all the displays. 

Thus the adapter has great flexibility in 
what models to build and how detailed to 
make them, and the user has complete 
flexibility in choosing what model 
attributes to display on the screen during 
the session. 

Different Users, DifSerent Models 

Even on a single flight project, different 
adaptations of SEQ-GEN could be used. 
For example, an attitude control expert 
may include more detailed models of 
attitude, but omit models of interest only 
to a scientist, and vice versa. 

Checking Rules 

The adapter can add "rules", which are 
stated in terms of the model attributes. 
SEQ-GEN has eight types of rules. A 

rule contains a boolean-valued 
expression of model attributes. During 
modeling of a sequence, if the 
expression becomes true (or remains true 
for too long, or for not long enough, or 
becomes true too many times, or not 
enough times, or becomes true before 
some other state has occurred for long 
enough), the rule is considered violated. 
An indication of the violation occurs 
above the timeline of requests (see 
Figure 1). The user can click on the 
indication to get details of the violation. 
Rule violations are also incIuded in the 
Predicted Events File. 

By defining rules, the adapter enables 
SEQ-GEN to perform some of the 
validation of a sequence. 

For situations where none of the eight 
built-in types of rule adequately reflects 
the constraint desired to be checked, the 
adapter can use logic in the models 
themselves to declare a conflict. An 
indication of conflict appears above the 
timeline (see Figure l), and appears in 
the Predicted Events File. 

Thus SEQ-GEN is flexible in the rules it 
can check. Just as different users could 
use different models, so they could use 
rules tailored to their interest. 

Making High-Level Requests; 
Activity Types 

SEQ-GEN offers flexibility in the level 
at which a user requests commands for 
the sequence. The adapter can define 
"activity types" (also called "blocks"), 
which can then be used in users' 
requests. 

A simple activity type is a list of 
spacecraft commands, with their relative 
timing specified. The activity type has a 
name. By requesting an activity of that 
name, the user is effectively adding all 
the commands in the activity type's 
definition to the sequence, timed relative 
to the time specified for the request. 
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SEQ-GEN is flexible in how 
complicated the definition of an activity 
type can be. An activity type can have 
parameters. The user, when requesting 
an activity of that type, is prompted by 
SEQ-GEN's editor for values of the 
parameters. The values can be used for 
parameters in commands that appear in 
the definition of the activity type. The 
values can also be used in logical 
constructs (such as IF statements) that 
govern what commands will be used in 
the activity. For example, in an activity 
type that represents a maneuver of the 
spacecraft, a parameter could be an 
option determining whether or not to 
turn on the gyroscopes. 

The definition of an activity type can 
refer to other activity types (i.e., 
activities can be nested). 

Activity types are "expanded" by 
SEQ-GEN to produce commands. The 
commands are modeled along with any 
commands requested explicitly by the 
user. 

Using activities allows the user to think 
at a higher level than individual 
commands. Also, the definition of an 
activity type can be written or checked 
by experts, and tested before use. A 
person who is not an expert can then 
safely use the activity. 

Some activity types represent on-board 
programs that can be invoked in a 
sequence to yield several commands. 
Such an activity type, called an on-board 
block, is expanded by SEQ-GEN for 
modeling, but is not expanded on the 
Spacecraft Sequence File (see below). 

form packaged for transmission to the 
spacecraft is not a function of 
SEQ-GEN. 

Planning without Commands; 
d-commands 

Activity types can actually be defined 
even if spacecraft commands have not 
been defined. SEQ-GEN has the concept 
of d-commands (dummy commands), 
which are requested by the user and 
modeled by SEQ-GEN as commands 
are, but which are not placed in the 
Spacecraft Sequence File. In this way, 
an adaptation of SEQ-GEN can be made 
wherein activity types are defined in 
terms of d-commands, which can trigger 
abstract or approximate models. An 
example of an abstract model is one 
telling whether a maneuver is in 
progress. Such an adaptation is useful 
for planning sequences early in the 
planning stage, or early in the life of the 
project. 

Both actual commands and d-commands 
can be used in the same activity type and 
in a single sequence. Thus modeling and 
rule checking involving actual 
commands can be supplemented by 
modeling and rule checking of 
abstractions. 

Changing Adaptation 

The adaptation information is given in 
ASCII files (plus optional C code in the 
model or activity definitions). The 
adaptation can be changed as the mission 
progresses. Another program, called 
SEQ-ADAPT, is being developed to aid 
the adapter in producing syntactically 
correct and consistent adaptation files. 

Writing the Spacecraft Sequence File 
History and Use of SEQ-GEN 

Another output of SEQ-GEN is a 
computer file called the Spacecraft 
Sequence File. This file contains (a 
mnemonic representation of) the 
information that must actually go to the 
spacecraft, i.e., spacecraft commands 
and calls to on-board blocks. 
Conversion of this file to binary in a 

SEQ-GEN (under different names) has 
its historical roots in the Mariner Mars 
1971 project, a Mars orbiter. Most 
major later projects at the Jet Propulsion 
Laboratory, including Voyager and 
Galileo, wrote new versions specific to 
the project. In the last few years, the 



current version, which is a multimission 
version, was developed. 

Its activity features were used on Mars 
Observer. It will be used on Mars 
Pathfinder, VIM (Voyager Interstellar 
Mission), and Cassini. SEQ-GEN is 
hosted on Sun SPARC and Hewlitt- 
Packard workstations. 

Development of SEQ-GEN 

SEQ-GEN has about 55,000 lines of 
code, written in C++ in an object- 
oriented style (Wirfs-Brock et al., 1990). 
SEQ-GEN is Category A; it was 
developed with full rigor and testing. 

Summary 

SEQ-GEN is a comprehensive and 
flexible tool for use in uplink planning 
and sequence generation. SEQ-GEN is 
flexible in that 

*it can be adapted for use in any 
flight project, or for different classes 
of user in a single project 

*it can be adapted in several versions, 
with or without spacecraft 
commands, models, rules, and 
activity types 

*models can be simple or detailed 

*models can be of actual spacecraft 
parts andlor of abstract quantities 

*models can be triggered by 
spacecraft commands or by 
d-commands 

*adaptation does not require 
compiling or linking of SEQ-GEN 
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Abstract 

The Packet Processor I1 (Pacor 11) Data 
Capture Facility (DCF) acquires, captures, 
and performs level-zero processing of packet 
telemetry for spaceflight missions that adhere 
to communication services recotnmendations 
established by the Consultative Committee for 
Space Data Systems (CCSDS). A major goal 
of this project is to reduce life-cycle costs. 
One way to achieve this goal is to increase 
automation. Through automation, using 
expert systems and other technologies, 
staffing requirements will remain static, 
which will enable the same number of ana- 
lysts to support more missions. 

Analysts provide packet telemetry data 
evaluation and analysis services for all data 
received. Data that passes this evaluation is 
forwarded to the Data Distribution Facility 
(DDF) and released to scientists. Through 
troubleshooting, data that fails this evaluation 
is dumped and analyzed to determine if its 
quality can be improved before it is released. 
This paper describes a proof-of-concept 
prototype that troubleshoots data quality 
problems. 

The Pacor I1 expert system prototype uses the 
case-based reasoning (CBR) approach to 
development, an alternative to a rule-based 
approach. Because Pacor I1 is not operational, 
the prototype has been developed using cases 
that describe existing troubleshooting experi- 
ence from currently operating missions. 

Through CBR, this experience will be avail- 
able to analysts when Pacor 11 becomes 
operational. 

As Pacor I1 unique experience is gained, 
analysts will update the case base. In essence, 
analysts are tr-uinin,? the system as they learn. 
Once the system has learned the cases most 
likely to recur, it can serve as an aide to 
inexperienced analysts, a refresher to experi- 
enced analysts for infrequently occurring 
problems, or a training tool for new analysts. 

The Expert System Development Methodol- 
ogy (ESDM) is being used to guide develop- 
ment. 

Pacor I1 Overview 

The Pacor I1 DCF acquires, captures, and 
performs level-zero processing of packet 
telemetry for spaceflight missions that adhere 
to com~nunications services recommendations 
established by CCSDS. Pacor I1 provides 
three forms of service for packet processing: 
real time, routine producdon, and quicklook. 
It strips packets from telemetry frames, 
reassembles packets, sorts packets by selected 
fields, merges packets from different sessions, 
and delivers scientific data sets and other 
related products to the user. 

Analysts provide packet telemetry data 
evaluation and analysis services for all data 
received. Data passing this evaluation is 
foiwwded to the DDF and released to scien- 
tists. Through troubleshooting, data failing 



this evaluation is dumped and analyzed to 
determine if its quality can be improved 
before it is released. 

A major goal of the Pacor I1 project is to 
reduce life-cycle costs. One way to achieve 
this goal is to increase automation. Through 
automation, using expert systems and other 
technologies, staffing requirements will 
remain static, which will enable the same 
number of analysts to support more missions. 

Problem Identification 

Through discussions with Network and 
Mission Operations Support analysts, addi- 
tional candidate areas for automation were 
identified. We focused on areas where the 
human reasoning processes of experts could 
be automated. Analysts provided a study that 
showed where they spent their time in the 
Hubble Space Telescope (HST) DCF for a 1- 
week period. Fifteen tasks were identified. 
The study described the percentage of staff- 
hours expended in each task for current 
operations and for projected future operations 
as workloads are expected to increase. The 
troubleshooting/dump analysis task had the 
highest potential benefit and was also suitable 
for implementation as an expert system. 

Benefits 

have to discuss it with each other or look up 
the problem and solution in a log book. Log 
books are available for analysts to record how 
they fix problems; however, specific require- 
ments for the information stored there does 
not exist. The information may be sketchy, 
inconsistent, and difficult to find. 

Analysts felt that a record of their prior 
troubleshooting knowledge, with an easy way 
to access the information, would help them in 
solving new or recurring problems. They also 
felt that troubleshooting experience from 
prior missions, including Pacor I, would be 
beneficial for Pacor I1 analysts at the start of 
the Pacor I1 mission, even though some 
problems may be new. 

Expertise available during o f  hours: Shift 
analysts are the first analysts who fix prob- 
lems that occur. If these analysts cannot fix a 
problem, troubleshooting analysts fix the 
problem. However, troubleshooting analysts 
only work during the day shift. An expert 
system could be an assistant to shift analysts 
on other shifts who do not have access to 
troubleshooting analysts and who are not as 
proficient in fixing problems. 

Retain expertise with high turnover rate: Due 
to the nature of operations, analysts are 
required to work rotating shifts. Because this 

Through additional discussions with analysts, is demanding on the individuals involved, 
analyst turnover is high, which results in a the troubleshooting problem was further 
high demand for training of new analysts. evaluated for implementation as an expert 

system. Several potential benefits appeared to Analysts felt that it would be useful to have a 

be possible. system that would help in training and 
assisting inexperienced or new analysts 

Capture and store experience: Analysts felt perform their jobs. Also, because the Pacor I1 
lifetime is expected to be long, expertise can that it would be useful to have a system that 
be retained during personnel turnover through would enable them to more readily access 
the use of expert systems. 

prior troubleshooting problems and solutions. 
currently, when problems recur, analysts 
must remember how they were fixed. If it is a Increased workload jor same number of staf: 

problem that another analyst handled, analysts Facility personnel currently handle complex 
decision-making processes. Through the use 



of expert systems, some of these processes are two types of adaptation: manual and 
can be automated, which frees the analyst to automatic. In manual adaptation, a user 
concentrate on exceptional situations and modifies a closely matching case manually. 
relieves the analyst from performing the more 
routine decision-making tasks. This automa- 
tion would enable the same number of 
analysts to handle an increased workload. 

Case-Based Reasoning Overview 

CBR is a kind of expert system or another 
way besides rules to build an expert system. 
CBR uses past experience in solving new 
problems by storing previous experience or 
cases in a case base or database of cases. 
Cases are indexed so that they can be easily 
retrieved from the case base, and retrieved 
cases can be adapted to solve new problems. 

Figure 1 illustrates the CBR process. Appli- 
cation domain knowledge is stored as a set of 
cases that describes past experience. Each 
case is composed of a set of features with 
values associated with these features. Typical 
information that might be included as features 
of a case are a description of a problem, a 
solution for the problem, how the solution 
was reached, and the expected result follow- 
ing implementation of the solution. Most 
often, the case base is developed incremen- 
tally over time as users find and solve new 
problems. 

When a new problem is encountered, an 
analyst enters the characteristics or symptoms 
of the new problem as a new case. The CBR 
system searches the existing case base for 
cases that match and then displays a set of 
closely matching cases. Cases are ranked to 
indicate the degree of match between an old 
case previously stored in the case base and the 
new case. 

If there are no exact matches, adaptation is 
often performed where a closely matching 
case is adapted to fit the new situation. There 

The modified case is then stored so that it can 
be reused when the problem occurs again. In 
automatic adaptation, the system automati- 
cally adapts an existing case. This adaptation 
is typically performed using a set of rules that 
describe how an existing case should be 
adapted. 

Figure 1. CBR Approach to Problem 
Solving 

Advantages to CBR Approach 

The CBR approach to problem solving has 
many advantages. Solutions to problems can 
be quickly derived because past experience is 
applied to the current problem. Previously 
obtained solutions can be reused rather than 
repeating the entire reasoning process each 
time the same problem recurs. Novices can 
use a CBR system to quickly obtain solutions 
to probleins without a deep understanding of 
the process involved in deriving the solution. 
Also, with CBR, novices are prompted for the 
important features and do not have to remem- 



ber what is important, which makes CBR 
systems useful training tools. Finally, past 
correct solutions and solution paths, as well as 
past mistakes that may have been forgotten, 
can be reapplied to new problems, eliminating 
"reinventing the wheel." The system becomes 
more robust as more cases are added or 
existing cases are modified. 

Rule-based expert systems have been widely 
used to handle problems dealing with auto- 
mating the human reasoning processes of 
experts. The CBR approach to problem 
solving has many advantages over the rule- 
based approach. It is often easier to add new 
cases to a case base as compared to adding 
new rules to a rule base. For example, it is not 
always clear what the effect of adding one 
rule to a rule base will have on other rules in 
the rule base. In CBR, each case is an inde- 
pendent entity and does not -interact with 
other cases as a rule does when it fires other 
rules. 

CBR solves problems more similarly to the 
way humans solve problems. Humans most 
often use what they already know in solving a 
new problem, reapplying a previous solution 
path and solution, rather than generating a 
new solution every time. They adapt what 
they already know to solve a current problem. 
Because cases are more understandable to the 
end user or expert, CBR systems are easier 
for a human to understand, build, use, and 
maintain, which also makes knowledge 
acquisition easier. However, as with any 
intelligent system, users must be cautioiled 
not to blindly apply the recommended solu- 
tion without thoroughly evaluating it to 
ensure that it is indeed the correct one. 

Two types of problems are most suited to the 
CBR approach: (1) those where a significant 
number of past experiences or cases are 
available that are applicable to new problems 
and (2) problems where all solutions or 

expertise are not known in advance or where 
the domain is not well understood. 

Rationale for Choosing CBR 

Based on the characteristics of the trouble- 
shooting problem, we felt that the CBR 
approach was a suitable approach for trouble- 
shooting for several reasons. Pacor II con- 
ventional software is under development. 
Therefore, the necessary troubleshooting 
expertise for Pacor I1 does not currently exist. 
However, a troubleshooting assistant could be 
developed for Pacor I1 analysts from existing 
mission experience and, subsequently, for 
logging Pacor I1 troubleshooting sessions 
after Pacor I1 becomes operational. A Pacor II 
troubleshooting system could be developed 
incrementally as knowledge is gained. Also, 
analysts could take a major part in populating 
an initial case base during development, after 
case base design is stable, and they can 
perform their own maintenance during 
operations. 

Methodology 

ESDM describes a standard methodology to 
follow when developing an expert system. 
Because requirements are unknown at the 
beginning of an expert system project, by 
developing a series of progressively more 
complex prototypes, requirements will be 
identified and validated. ESDM is based on 
an iterative life-cycle model or spiral model. 
Each iteration adds knowledge about what the 
human expert does and what the requirements 
should be for the system. Each iteration also 
reduces the risks and uncertainties about the 
feasibility and practicality of using expert 
system technology for a given system. 

ESDM is composed of five stages. The 
product of each stage is an executable proto- 
type. We are using ESDM for this project and 



have developed the first-stage prototype or a explanation of what an analyst should do to 
Feasibility Stage prototype. handle the anomaly (action). Figure 2 pro- 

vides a sample case. 
The prototype produced during the Feasibility 
Stage automates one or a few key functions of 
the human expert and concentrates on feasi- 
bility issues. 

Prototype Implementation 

We have developed a proof-of-concept 
prototype that assists analysts in troubleshoot- 
ing data quality problems. If the quality of the 
data received in the DCF is below a certain 
level, the analyst must determine the cause of 
the problem and decide if the quality of the 
data can be improved before it is forwarded to 
the DDF and to scientists. 

The initial prototype is composed of a set of 
12 cases. We expect the final system to 
contain about 100 cases. The cases range in 
level of detail from very broad, network-type 
anomalies to very specific, spacecraft-related 
anomalies. Categories of cases were classified 
into four general types: 

Spacecraft problem or spacecraft to 
ground station link problem 
Ground station to NASA Communica- 
tions (Nascoin) (GSFC) link problem 

* Nascom to GSFC Building 23 inter- 
building data distribution re- 
source/interbuilding data transmission 
system (XBDDRIIBDTS) link problem 

* BDDRDBDTS to Pacor I1 link/Pacor I1 
internal problem 

Title: Nascom to Sensor Data Processing 
Facility (SDPF) Link Problem 
Problem Description: 
Frame-level errors-Cyclical redundancy 

code (CRC) 
Block-level errors-Polynomial errors 
System results match-Generic Block 

Recording System 
Packet errors--Missing packets or gaps 
Percent recovery-Greater than 100% 
Data Type-Playback Recorder 
Data Inversion PerfonnedAVo 
Gap characteiistics---No gap in block time 
100% recovery-Yes 
Inversion flag changes and frame synch 

pattern is valid but inverted4Vo 
Duration of gap-Less than 4 minutes 
Number of missing packets-Greater than I 
Frame CRC corresponds to each packet gap 

location-Yes 
Location of fratne ei-sors corresponds to 

location of block ei-sors-Yes 
Solution Description: Link problem between 
Nascom and SDPF 
Action: Notify the Payload Operations 
Control Center and request a retransmission 
from the ground station. Request Nascom 
support for line checkout. 

Figure 2. Sample Case 

To match a new case with a case stored in the 
case base, a similasity assessment technique The initial case base contains cases from the 
must be defined. In the prototype, the sirni- first three categories. Six of the cases ase 

from Pacor I and six are from the HST DCF. larity between two cases is calculated by 
generating a score that indicates the normal- 

Each case is composed of a title to identify a ized sum of the number of features that match 

case, a set of symptoms or a description of the between a new case and a case stored in the 

problem, a description of the cause of the case base. Features that describe the symp- 

anomaly (solution description), and an 



toms leading to a problem are used in 
generating this score. 

Figure 3 illustrates a sample prototype screen. 
At the top of the figure, an analyst has entered 
the characteristics of a current acquisition 
session. All of the closely matching cases 
retrieved from the case base are displayed at 
the bottom. Each line contains a score that 
indicates the degree of match between the 
current case and a stored case, the name of the 
matching case, and a brief description of the 
problem causing the anomaly. An analyst 
may retrieve a stored case from the case base 
and compare it to the case describing the 
current situation. 

We currently use manual adaptation. If no 

exact matches are found, an analyst reviews 
the cases provided to see what other analysts 
have done in the past and decides if any of the 
proposed solutions are applicable to the 
current situation. If this is a new problem, an 
analyst may build a new case by entering the 
characteristics of the new problem, including 
the proposed solution. Later the solution may 
be verified or changed to a better solution, 
other incorrect solutions that were tried and 
discarded may be added, or alternate suitable 
solutions may be added. 

Tool Chosen 

The prototype was developed using the 
ESTEEM CBR tool, developed by Esteem 
Software Incorporated. ESTEEM is a 

71 DataGaps Frame CRCs detected in 
71 PacketFill Bad spacecraft time cau 
53 NascomSDPFLinkPSNLink problen between Ma 
47 GSNascomLinkPSN Link problem between gr 
41 VarmRestart Varm restart on board s 
29 LossTDRSSSupport Loss of data in dovnlin 

Figure 3. Sample Screen 



standalone tool that runs on an 80486 IBM- 
compatible PC with 16 megabytes (optimal, 
4-megabyte minimum) of memory, 5 mega- 
bytes of hard disk space, and a VGA monitor. 

Future Issues 

A major result of prototyping was to uncover 
issues that must be addressed in subsequent 
work. During maintenance in the operational 
environment, many analysts will have access 
to the case base. It needs to be determined if 
all analysts or if only the most experienced 
analysts will be permitted to add new cases to 
the case base. Also, it is very likely that 
analysts will have differences of opinion 
concerning the correct problem resolution. It 
needs to be determined whether all possible 
solutions or the most popular solutions will be 
added. Having alternatives could prove to be 
useful for situations where a close match is 
not found and an alternative solution is inore 
suitable. 

It is expected that in the operational environ- 
ment, cases will evolve over time. A solution 
that an analyst initially thinks to be good 
could turn out to be in error, or an alternative 
solution may be better. The CBR system must 
be capable of evolving through this process. 

For the prototype, we defined a set of features 
that describe the characteristics of the prob- 
lem, the recommended solution, and the 
actions for handling the problem. For subse- 
quent prototyping efforts, we need to deter- 
mine if this set of features is suitable for all 
types of problems that analysts typically 
handle and for new, not-yet-encountered 
Pacor I1 problems. We need to determine if 
other information might be useful, such as 
other solutions tried that proved inadequate, 
additional background information or defini- 
tions for the inexperienced analyst, diagrains 
on how to fix a problem, and steps to follow 
to uncover the problem. A small analyst team 

has provided the expertise to build our initial 
prototype. The prototype must be evaluated 
by other analysts. 

Because the Pacor I1 environment is UNIX 
based, we plan to port the prototype to the 
UNIX environment. The operational system 
will run as a tool for analysts who will extract 
feature values directly from the Pacor 11 
database to minimize operator input. The final 
system will generate trouble reports automati- 
cally following an evaluation. Subsequent 
efforts will also include extending the case 
base and upgrading the computer-human 
interface. 

Conclusion 

This prototyping effort represents a novel 
approach to solving the troubleshooting 
problem using CBR. With advanced tech- 
nologies such as expert systems, more auto- 
mation can be introduced into operations, thus 
reducing life-cycle costs. Expert systems have 
been developed to handle troubleshooting 
using the rule-based approach. However, due 
to some of the unique characteristics of the 
Pacor I1 environment, the requirements of 
operations analysts, and the shortcomings of 
rule-based systems, an alternative approach 
was tried. This paper describes an initial 
proof of concept for the troubleshooting 
problem using CBR. A significant result of 
prototyping has been to confirm our hy- 
pothesis-we feel that this approach is a 
viable one for the troubleshooting problem. 
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ABSTRACT 

The Intelligent Command and Control (ICC) 
System research project is intended to provide 
the technology base necessary for producing an 
intelligent automated command and control 
(C&C) system capable of performing all the 
ground control C&C functions currently 
performed by Mission Operations Center 
(MOC) project Flight Operations Team (FOT). 
The ICC research accomplishments to date, 
details of the ICC and the planned outcome of 
the ICC research, mentioned above, are 
discussed in detail. 

INTRODUCTION 

Beginning this year and extending into the 
foreseeable future mission operations personnel 
are being required to operate more complex 
ground systems with less flight operations team 
(FOT) personnel and lower budgets than in the 
past. The Intelligent Command and Control 
(ICC) system research is intended to provide 
the technology base necessary to solve these 
problems through automation and intelligent 
machine Case-Based reasoning and decision 
making. The need for the ICC is due in some 
cases to the fact that FOTs will be asked to 
command and control (C&C) more complex 
missions such as those of the Earth Observing 
System (EOS) and in others to the fact that 
FOTs will be required to operate several 
spacecraft concurrently from the same Mission 
Operations Center (MOC), such as in the case 
of the Small Explorer (SMEX) and the 
International Solar and Terrestrial Physics 
(ISTP) missions. These facts require that we 
develop an intelligent C&C system which is 
capable of acting as a cooperative assistant to 
the FOT, reduce the workload of existing 
FOTs, and reduce the cost burden of creating 
ever larger FOTs. 

DEFINITION 

The Intelligent Command and Control (ICC) 
System is designed to ultimately produce the 
technology necessary for development of a 
highly intelligent automated machine based 
C&C for Spacecraft mission operations which 
is capable of performing all the C&C functions 
currently performed by FOTs. While that is the 
ultimate goal, it should be noted that many 
very valuable interim products are being 
produced and will be produced which are and 
can be used to improve, automate, and reduce 
the cost of MOC operations. 

This project was originally planned as a five 
year research project but, while interest in the 
ICC research is very high in the Space Ops and 
process control communities, funding has been 
halved and therefore the end-point of the ICC 
project is now 8-9 years out from the original 
start point of April, 1993. 

A detailed description of the technology 
involved is provided later in this paper. 

Program Objectives 

The following are the objectives of the ICC 
research and development program: 

1. To demonstrate that we can improve and 
simplify spacecraft MOC command and control 
by building and operating a real time Intelligent 
Command and Control (ICC) system utilizing 
AI, object oriented techniques, & animated 
graphical user interfaces. 

2. To create a command and control 
system that can act as a cooperative member of 
an FOT. 



3. To demonstrate that Mission Operations baseline C&C with the ICC will involve five 
Center (MOC) Command and Control steps: 
functions can be fully automated and that such 
a system can perform intelligent machine based 1. Collecting data on the current or 
decision making. baseline C&C. 

4. To demonstrate that such a system 2. Turning off the baseline C&C 
would show tremendous savings in both and taking over all C&C functions with the 
development and operating costs by: ICC prototype for at least one pass. 

* Limiting or reducing the number 3. Collecting data on the ICC 
of FOT personnel. prototype. 

* Intelligently automating 4. Turning off the ICC prototype 
spacecraft MOC functions to the point where and returning command and control to the 
management by exception can become a reality. baseline C&C. 

* Reducing operator enor through 5 .  Steps 1 through 4 above will be 
more intuitive user interfaces, automation, the repeated until sufficient data on the 
use of true machine decision making, and the performance and reliability of the ICC 
application of standardized commands. prototype has been collected to establish the 

results and conclusions of the ICC research. 
Technical Approach 

The technical approach we have chosen to 
accomplish these objectives is as follows: 

1. Establish a collaborative activity among 
the Mission Operations Division's (MOD) 
technology and operations groups, academia, 
and private industry. 

2 .  Survey and evaluate existing advanced 
technology products available for possible use 
in the ICC. 

3. Select and use an existing command 
and control system as a baseline with which to 
.compare the ICC. 

4. Prototype & evaluate the ICC using 
reiterative validation and development 
techniques. 

5 .  Perform a side by side evaluation of the 
ICC and the baseline C&C. 

Completion of ICC Research 

Significance and Benefits 

The following benefits potentially apply to all 
future NASA missions. Specific and strong 
interest in the ICC research, its results and 
products have been received from the following 
projects and organizations: ISTP, SMEX, 
Hubble Space Telescope (HST), EOS, and the 
Network Management and Operations Support 
(NMOS) Flight Projects Support Division, and 
the European Space Agency (ESA). 

Expected benefits of the ICC research are: 

1. Reducing operator error through 
more intuitive user interfaces, automation, and 
selection of standardized commands. 

2. Lowering system supervisory 
costs through the use of management by 
exception. 

3. Limiting or reducing the number 
of FOT personnel. 

4. Faster, more cost effective and 
robust spacecraft system status, and operations Successful completion of the ICC research and models. project is defined as completing a successful 

side by side test of a working ICC prototype 
and the baseline C&C. The comparison of the 



5. Simplified and reduced cost of 
training through the use of a command and 
control system which is both more generic, or 
standardized, for all missions, and internally 
more flexible (i.e. easier to modify for 
specific missions). 

Accomplishments 

Accomplishments to date are as follows: 

1. Completed technology survey. 

2. Completed 1 st Transportable Payload 
Operations Control Center (TPOCC) Task 
Analysis (SMEX). 

3. Completed ICC Prototyping Plan . 

4. Completed Operator Function Model. 

5. Completed initial ICC MOC Simulator 
which accepts actual TPOCC data as input . 
6. Completed Task Analysis of Anomaly 
Detection and Correction Processes. 

Deliverables and Future 
Accomplishments 

The deliverables and accomplishments 
expected for the remainder of the ICC research 
project are as follows: 

7 . Develop Case-Based+ Reasoning Tools 
for ICC. 

8. Develop Advanced Tutor-Aid Paradigm 
for use in ICC (described below). 

9.  Complete Automation Analysis for 
implementation of control center management 
by exception. 

10. Complete Second Task Analysis 
(ISTP). 

1 1. Complete initial, basic research .ICC 
Prototype. 

12. Conduct reiterative redesign and 
reevaluation of basic ICC prototype. 

13 Complete detailed architecture (both 
structural and functional) of the ICC Inference 
Engine. 

14. Construct robust ICC MOC Simulator. 

15. Begin construction of ICC inference 
engine. 

16. Complete Construction of ICC 
inference engine. 

17. Conduct reiterative Integration and 
Testing (I&T) of ICC components. 

18. Assemble ICC components into robust 
ICC prototype. 

19. Conduct reiterative I&T, evaluation, 
and redesign of complete robust ICC 
prototype. 

20. Conduct sided-by-side test of ICC and 
baseline C&C. 

Item Twenty (20.) marks the end of the 
research phase of the ICC project. 

Technology Description 

Functional Description: 

Downlink Telemetry 
Handling: 

The completed operational ICC when fully 
integrated into MOD operations will reside in 
the TPOCC workstation accepting data from 
the Front End Processor (FEP) Data Server 
Task (DST) and consist of the following: An 



intelligent object oriented command and control 
system capable of accepting downlink telemetry 
in real time, and passing the telemetry (or 
database) updates to the ICC Reasoning 
Machine (RM). The RM, or inference engine 
using case based, and most probably a 
combination of A1 machine reasoning 
techniques, will match the input with robust 
spacecraft and ground control system 
models/simulators and then decide what actions 
should be taken based on that information. The 
ICC will decide whether these actions are to be 
taken by the ICC directly, sent to the human 
operators (FOT) for further action, sent to other 
ground control systems (e.g., small Generic 
Systems Analyst Aid [GenSAA] built expert 
systems), or other users (e.g., Primary 
Investigators, or subsystem engineers) . What 
actions the ICC takes can be preset by the FOT, 
have default settings or be based on previous 
cases or extrapolations from such cases. 

Uplink Commanding: 

The Command side of the ICC will be capable 
of acting cooperatively as another member of 
the FOT. It will be capable of accepting and 
sending commands in real time, from a number 
of sources: default routine commands set by the 
FOT prior to the mission, commands set by the 
FOT for a given pass, Reasoning Machine 
ordered commands sent in response to 
electronic input. Whatever the source of the 
commands, it is currently envisioned that they 
will be converted from either operator 
graphically generated commands or RM 
generated commands into the Systems Test and 
Operations Language (STOL) commands that 
will be processed by the existing STOL 
Processor. That is our current plan, although 
we may find that the ICC can bypass STOL 
and go directly from machine generated 
commands or human graphically generated 
commands to a lower level language. 

User Interface Description: 

The user interfaces (UI) will be, mostly, 
graphical animated user interfaces. The 
guiding principle behind any UI design .and the 
first question which will be asked in designing 
each user interface will be "What type of user 
interface most enhances task (and thereby 

mission) performance?" Therefore some user 
interfaces will be two dimensional graphical 
animated interfaces (such as those currently 
used in the operational Visually Inspectable 
Tutor and Assistant [VITA] training system 
[Chu, 19911). Others will be real time 
interactive 3D graphical animated interfaces 
(such as those being developed for the 1997 
Hubble Space Telescope (HST) Servicing 
Mission), some will use voice interactive 
interfaces, and still others will be alpha- 
numeric command line interfaces. The idea is 
to apply the most effective type of interface for 
the task to be accomplished and this will be 
determined by a reiterative process of 
prototyping and prototype evaluation using 
FOT personnel to conduct the evaluations. 

Detailed Description of 
Conceptual Deliverables: 

The following descriptions and discussions are 
derived primarily from work conducted under a 
NASA grant by Dr. Christine M. Mitchell of 
the Georgia Institute of Technology (Mitchell, 
1994). 

SAMPEX Operator 
Function Model: 

The Operator Function Model (OFM) is a 
hierarchical-heterarchical decomposition of the 
FOT functions required to carry out real-time 
operations involved in satellite ground control. 
The OFM provides a detailed normative model 
specifying how operations are intended to be 
carried out. The OFM is hierarchical. At the 
highest level it specifies the components that 
comprise the overall real-time operations: pre- 
pass, on-pass, and post-past. It decomposes 
each function into its component activities that 
may be mapped to lower levels including sub 
functions, and tasks. At the lowest level, the 
OFM specifies operator actions, both, manual 
(e.g., issue this command) and cognitive (e.g., 
check the current state of the power subsystem) 
needed to canyout individual tasks. The OFM 
is both heterarchic and dynamic. Its 
components depict the concurrent activities 
typical of satellite ground control (e.g., execute 
and monitor a command to ensure that it is 
properly carried out at the same time as running 
procedures to up-load another command). The 
dynamic component provides the context: 



triggers represent how new operator activities Case-Based Reasoning for 
manifest themselves as a result of system 
events and previously executed operator Real-Time Ground 
actions. Control Operation: 

SAMPEX Task Analysis 
of Anomaly Detection and 

This analysis is intended to understand how 
often and what happens when unanticipated 
events and anomalies occur. The study 
addresses events that occur post launch and 
early orbit (L&EO), i.e., examination of those 
events that are considered to have occurred 
during the SAMPEX nominal operations 
phase. In particular, the study documents for 
each anomaly (other than those identified by 
one of the SAMPEX experts as a peculiarity of 
the L&EO) the process of 1) failure detection 
(i.e., when, how, by whom was the anomaly 
first noticed?); 2) failure management (i.e., 
how long, and what happened, between the 
time when the anomaly is first detected, and 
when corrective action is initiated); 3) fault 
compensation (i.e., what was done, who did it 
(with emphasis on the decision maker's 
qualifications, e.g., spacecraft analyst, 
command controller). The study will include 
identification of time required to resolve the 
anomaly and distribute information to the FOT. 
This study will be coordinated with the 
SAMPEX OFM, particularly with respect to the 
issue of non-preplanned activities. Recall, the 
OFM will include comments on what actions 
are pre-planned (always, usually, sometimes), 
opportunistic (i.e., planned and executed on the 
fly without inclusion in the pass plan). In the 
latter case we will attempt to document the 
types of opportunistic activities undertaken and 
the personnel who formulate and execute them 
(e.g., lead analyst, spacecraft engineer). 

Building; a 
Knowledge Base of 
Experience of 
Real-Time Decision 
Making: 

This component of the ICC project will 
investigate the use of case-based reasoning 
technology to accumulate a knowledge base of 
actual operations experiences and,  
subsequently, to use that experience as aid or 
advice in an intelligent decision support 
system. Initially such a system monitors real- 
time operations forming a knowledge base that 
reflects the range of nominal operations. As 
unplanned andfor anomalous events occur the 
case base grows, in fact it automatically learns, 
broadening its knowledge base to include 
operations experience accrued in managing 
these unanticipated events. Such a system uses 
case-based reasoning technology to build an 
extensive repository of operations experience-- 
i.e., cases, that over time, can function as the 
knowledge base for an autonomous system. 
This project represents one of the first 
applications of case-based reasoning to real- 
time decision making and system control. It 
provides an alternative, and potentially richer, 
knowledge base than such applications as rule- 
based systems. Given the extent of operational 
experience that comprises the foundation of 
FOT expertise, a case-based system that can 
learn from skilled operators is a promising way 
to encapsulate and capitalize on human 
experience and subsequently make it available 
to both other operators and intelligent systems. 

The Tutor-Aid 
Paradigm 

This project builds on the highly successful 
VITA intelligent tutoring system as the first 
component of an integrated tutor-aid 
architecture. The tutor-aid paradigm proposes 
that an effective approach to operator aiding 
and training is the integration of aiding and 
training into one comprehensive system that 



differentially responds depending on the skill 
level of the operator. An integrated tutor-aid 
provides a great deal of assistance and guidance 
to unskilled operators, i.e., operators-in- 
training; as the operator skills increase the tutor 
becomes less active and transitions into a well- 
understood assistant. The tutor-aid paradigm 
promises to be very effective. An integrated 
tutor-aid system is cheaper to build and 
maintain. Functionally, a versatile and 
intelligent tutor is likely to evolve into a well- 
understood and trusted aid. The knowledge 
bases that support an intelligent tutor-aid 
system (e.g., system and task models of what 
to do, how, and when) are exactly those 
needed for more autonomous system operation 
and control. 

ICC-TPOCC (A Real- 
Time Simulator of the 
Operator Interface to 
TPOCC-Based Ground 
Control Systems): 

Another component of the ICC project is the 
development of a researchlexperimental 
testbed, the ICC-TPOCC testbed. In addition 
to research concepts exploring intelligent 
systems for operator aiding and training, the 
ICC project is concerned with proof-of-concept 
demonstrations and evaluations of these 
technologies. Long term, the intent is to 
provide a side-by-side demonstration 
comparing conventional operations with 
operations incorporating the proposed aiding 
systems. In the interim, the individual research 
efforts can be demonstrated and empirically 
evaluated in the context of the ICC-TPOCC 
testbed. The ICC-TPOCC testbed is a real-time 
simulation of the operator interface to the 
satellite ground control system. It is modeled 
after the SAMPEX TPOCC mission operations 
center operations. The testbed provides the 
ICC project with the ability to implement the 
proposed system, and using NASA operations 
personnel as subjects, conduct experiments that 
compare current and proposed systems. 

Automation Analyses: 

of a completely autonomous control center and 
a statement of working assumptions that 
underpin the belief that an autonomous control 
center is possible. The feasibility study will 
examine the existing facilities and procedures 
integral to satellite ground control, specifically 
focusing on impediments to a completely 
autonomous control center (why are operator's 
needed and what do they do). As impediments 
to intelligent automation are identified, the 
study will attempt to suggest technological 
alternatives to the impediments. The sets of 
impediments and technological alternatives 
define the basis of the second study. This 
study will articulate a set of working 
assumptions that define the operating practices 
(current or needed in the future) essential to 
moving to fully autonomous ground control 
operations. 

State of the Technology 

Current technology in operational use employs 
windows and some point and click interfaces 
but is still highly tied to alpha-numeric 
command line and telemetry display 
technology. Very little artificial intelligence 
(AI) and animated real time graphics is built 
into any of the current operational command 
and control systems. 

The technical challenges to developing the ICC 
lie, first, in the area of developing the most 
intelligent inference engine possible, second, in 
determining the most intuitive and cost effective 
graphical animated user interfaces. The third 
area is that of developing robust spacecraft 
simulators/models. The fourth technical 
challenge is that of integrating the ICC with the 
TPOCC systems. 

Research Team 

ICC Project Manager: 

A. William S toffel, Human Performance 
Studies, Code 513.1, NASA, Goddard Space 
Flight Center, Greenbelt, MD 

Team Members: 

Two studies comprise the final component of Dr. Christine M. Mitchell, Center for Human- 
the ICC: an in-depth analysis of the feasibility Machine Systems, School of Industrial and 



Systems Engineering, Georgia Institute of Dr. Patricia M. Jones, Dept. of Mechanical and 
Technology, Atlanta, GA Industrial Engineering, University of Illinois at 

Urbana-Champaign, IL 
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ABSTRACT 

Reliable radio astronomy support of 
Space Very-Long-Baseline- 
lnterferometry missions by ground 
radio telescopes is mandatory in 
order to achieve a high scientific 
return from the missions. The 70m 
DSN antennas along with other 
ground radio telescopes will perform 
as the ground segment of the Earth- 
Space interferometer. 

Improvements of radio astronomy 
VLBl operations at the DSN to 
achieve higher reliability, efficiency, 
flexibility and lower operations costs 
is a major goal in preparing for radio 
astronomy support of SVLBI. To 
help realize this goal, a remote 
control and monitoring mode for 
radio astronomy operations at the 
DSN is been developed. 

1. INTRODUCTION 

Two Space Very-Long-Baseline 
lnterferometry (SVLBI) missions are 
to be operational during the second 
half of the 1990's. The spacecrafts 
and Space Radio Telescopes (SRT) 
will be designed, manufactured and 
launched by the Japanese (VSOP) 
and Russians (Radioastron). 

In addition to the flight elements, the 
network of ground radio telescopes 

which will be performing co- 
observations with the SRTs are 
essential to the mission. 
Observatories in 39 locations 
around the world are expected to 
participate in the missions [I ,2]. 
They should provide co-observing 
support with detection of signals 
from celestial sources in L,C, K- 
bands for VSOP and Radioastron, 
and additionally P-band for 
Radioastron, two circular 
polarizations at each channel and 
recording of signals in VLBAIMKIV 
compatible formats. 

The 70m DSN antennas along with 
other ground radio telescopes will 
perform as the ground segment of 
the Earth-Space interferometer. 
DSN radio astronomy co- 
observations for future Space VLBl 
missions will play a special role due 
to the performance of the faciiiiies 
(longest baselines, co-location with 
spacecraft data acquisition and 
phase link stations, 70m class of 
antennas with 22 GHz antenna 
efficiency up to 40-50%), and the 
inherent reliable operability of the 
DSN which is oriented to supporting 
routine operations (daily for 3-5 
years). 

The importance of DSN co- 
observing support for SVLBI 
missions 'is recognized by DSN 
management as evidenced by their 
preliminary allocation of DSN 70m 



time in their long-range resource 
allocation plan. The value of the 
DSN 70m network to SVLBl 
missions' efficiency is illustrated by 
Figl. (Courtesy of D.Meier, JPL). 
This figure shows an estimation of 
SVLBl mission efficiency (percent of 
time per orbit actually used for 
observations by a SRT) vs average 
DSN 70m usage for co-observing 
with a SRT. The change of 
efficiency for a SVLBl mission can 
be significant due to a change in the 
level of the DSN co-observing 
support [3]. 

Requested level 

Average DSN 70m usage 
(percent of DSN hours in the year) 

Preliminary consideration of the 
DSN 70m co-observing 
requirements and cost estimates for 
corresponding upgrades of the DSN 
systems did show that upgrading 
the existing DSN capabilities is the 
only way to keep the cost upgrades 
at a reasonable level and satisfy 
minimal requirements for SVLBl 
mission co-observing support. 
Another condition is to accept a 
lower than is usually used for s/c 
operations reliability of DSN 

operations to maintain radio 
astronomy support for SVLBI. 

Three main areas of activities are 
under development to upgrade 
DSN VLBl radio astronomy 
performance and to provide 
adequate and reliable co-observing 
support: 
- improvements of the current VLBl 
Radio Astronomy operations; 
- renovation of radio astronomy 
receiving systems and upgrade of 
the MKlll to MKlV VLBl recording 
system; 
- testing equipment and training 
operations personnel. 
Some of these upgrades are part of 
an ongoing improvement of DSN 
radio astronomy capabilities. Others 
are specific to the SVLBl missions. 

The purpose of this paper is to 
describe ongoing improvements of 
the current VLBl Radio Astronomy 
operations at the DSN in order to 
meet SVLBI co-observing 
requirements. 

2. DSN OPERATIONS 
CONCEPT TO SUPPORT 
SVLBl RADIO ASTRONOMY 
CQ-OBSERVATIONS 

Improvements in VLBl Radio 
Astronomy operations at the DSN to 
achieve higher reliability, efficiency, 
flexibility and lower operations cost 
is one of the major goals in 
preparing for DSN co-observing 
support of SVLBI. These 
improvements will also resuly in 
major advancements in the DSN's 
support of other radio astronomy 
activities. 

Radio astronomy co-observing 
support for SVLBl is very similar in 
structure and content of the 



observing sessions to Radio 
Astronomy and Special Activities 
(RASA), but the volume of SVLBl co- 
observing activities is expected to 
be a few times more (yearly 
average) than the regular volume of 
RASA activities at the DSN. 

Because of this, it is logical to 
improve the operations performance 
of existing DSN VLBl radio 
astronomy activities to meet 
requirements for SVLBl co- 
observing. 

2.1. SVLBl co-observing 
concept 

The required operations reliability 
for the DSN 70m antennas serving 
as radio telescopes in support of 
SVLBI is 90-95%. The SVLBl 
projects (VSOP and Radioastron) 
will provide the schedule for 
observations (DRUDG file) one 
month in advance, but in cases of 
"Targets of Opportunity," the 
telescope has to be able to change 
its configuration and support a new 
program for observations in three 
days. 

Essential improvements in hardware 
to be used for co-observing are 
needed: use more reliable 
equipment, (e.g., instead of masers 
use HEMT LNA), provide spares, 
backup receivers and recorder, 
improve status of monitoring and 
calibration. Flexibility in operations 
can be provided through fast and 
simple ways to change operations 
configurations and modes, and 
through the standardization of 
operations procedures. 

The goal of significantly improving 
operations performance without 
increasing the cost of operations 

can be achieved by reducing the 
amount of hands-on activity and 
automating routine activities as 
much as possible. Since the largest 
component of operations costs is the 
staff, by introducing automated and 
remote operations the costs can be 
lowered [4]. 

2.2. VhBl Radio astronomy 
operations functions and 
operations scenario 

Existing VLBI Radio astronomy 
operations functions performed at 
the DSN, excluding the time 
allocation on the DSN, are listed in 
Tablel. 

The proposed improvements 
include: 
(a) automatically processing 
DRUDG files (VLBI radio astronomy 
schedule files) received from the 
SVLBl project via lnternet to DSN 
Predicts; 
(b) remote monitoring and control of 
receivers (K, L, C-bands) by using 
dedicated Radio Astronomy 
computers connected with a 
computer at JPL via lnternet at each 
DSN site; 
(c) capability for remote monitoring 
of the antenna position and recorder 
status; 

(d) station personnel will petform the 
initialization, aalibrations (Antenna 
Gain Curve, Tsys) and tape logistics. 

Radio Astronomy operations at the 
DSN are working toward an 
automated and remotely-controlled 
configuration such as is shown in 
Figure 1. As this capability develops, 
it may be an attractive resource for 
future SVLBl co-observing support 
possibilities. 



VLBl radio astronomy operations functions at the DSN 

l~ red ic ts  ~DRUDG to VLBl recorder predicts INOA VLBl I 

I 

~DRUDG to Briefing Message 
I 

INetwork Operations Project Engineer for RASA 1 

Functions 
IDRUDG to Antenna predicts 

Staff 
NOA VLBl 

~VLBI Recorder 
I 

IDeep Space Complex operations staff 1 
Control 

t ~ a i n  curvelnonlinearity 
I 

1 Radio Astronomy engineer I 

Antenna configuration* 
Antenna pointing 

Calibration 

Deep Space Complex operations staff 
Deep Space Complex operations staff 

Figure 1. DSN VLBI RA operations configuration for 70m subnet 
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The majority of the radio astronomy 
community, including the SVLBl 
projects, in order to schedule VLBl 
co-observing, produce a generic 
scheduling file referred to as a 
DRUDG file. Because the DSN is 
used for a wider range of 
measurements than only VLBl radio 
astronomy (e.g. navigation, TM), the 
DSN uses its own scheduling 
format. DSN stations are incapable 
of reading DRUDG files. For this 
reason, someone must perform the 
conversion of DRUDG files to DSN 
gredicts. SVLBl co-observing vl~ill 
require performing this activity much 
more intensively, basically every 
day. As result, this operation 
becomes very labor intensive. 
Automatically processing of the 
VLBl radio astronomy schedule files 
(DRUDG files), should eliminate or 
significantly decrease the workload 
to execute this function. 

The Radio Astronomy Server 
(workstation) located at each station 
or in JPL, will automatically convert 
DRUDG files coming from the Space 
VLBl project to DSN predicts. 

To provide security for DSN 
operations, it is required to have an 
"air gap" when information comes 
from outside the network it is 
transferred to inner network 
computers on diskette. The radio 
astronomy controller will serve as an 
additional filter to allow only 
commands which are permitted by 
the DSN complex. Finally, the 
observing program loaded on the 
Radio Astronomy Controller can be 
initiated only from the Complex 
Monitor and Control computer. In the 
future, the "air gap" may be 
eliminated with operations being 
remotely executed from the JPL 
control /monitor computer. 

For planned SVLBl co-observations, 
a number of different DSN RA 
configurations are considered. The 
number of configurations is 
estimated to be 3 receivers x 2 
polarization's x 4 recording modes = 
24. An observing program may be 
different from day to day. An 
extensive automation of the control 
of the antenna, receivers and VLBl 
recorder configurations are 
necessary to provide reliable 
support without increasing of the 
workload of the stations personnel. 

To monitor the VLBl DSN status 
during the observations, the 
necessary information will be taken 
from the regular flow of the DSN 
status information available in the 
Network Operation Control Center 
and displayed on the Radio 
Astronomy Monitor at JPL. 

For Space VLBl co-observing, the 
Radio Astronomy Server and 
Controller may be considered as a 
Project resource for generating the 
required input files for the DSN 
Network Sypport System (NSS). 

The station personnel will monitor 
activities on site during the 
observations for security reasons, 
but the automation afld remote 
monitoring of many VLBl RA 
operations functions can 
significantly decrease the demands 
on the workforce thus enabling them 
to be shared by other projects. 

Since by following the above 
recommendations the role of the 
DSN operations staff for co- 
observations will be minimized, 
more responsibility for successful 
observations must be assumed by 
the SVLBl Project. The Project 



should be prepared to accept the 
higher probability of failures. 

2.3 Implementation status 

A new software for conversion of 
radio astronomy schedule files into 
DSN predicts is now under 
development (N.Vanden berg, 
Goddard SFC). The software will 
allow 'conversion of files which will 
arrive by the Internet to the Radio 
Astronomy Server atomatically and 
prepare the DSN predict files to use 
for DSN SVLBI co-observing 
operations. 

The remote monitor control system 
development has been completed 
and its software has been 
successfully tested in Goldstone for 
34m antenna operations (J.Leflang, 
JPL). The system is under 
development for the 70m antenna 
in Goldstone, and then will be 
implemented on other 70m DSN 
antennas 

Dedicated RA computers (H P9000) 
exist at each complex. The 
automation of receiver control was 
demonstrated in Canberra DSCC. 
This needs to be implemented at the 
other complexes. It may be 
necessary to upgrade the computers 
at the other complexes to achieve 
full compatibility. 

The monitor of data flow from DSCC 
via MOSO will be available on the 
RA computer at JPL in the near 
future. Software needs to be 
developed for the RA computer. 

Antenna monitor data captured 
locally at each complex is available 
via the Radio Astronomy workstation 
at each complex. Software is being 
actively developed. 

The new Radio Astronomy VLBl 
observations concept is under 
development at the DSN to provide 
co-observing support for future 
space VLBl missions. The concept is 
focused on a high degree of 
automated operations with 
elements of remote monitoring and 
control of the VLBl radio astronomy 
equipment. 

The upgrades will benefit not only 
the SVLBI project but also VLBl 
radio astronomy and other related 
VLBl activities (sic navigation, 
geodesy, astrometry) at the DSN. 
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Abstract 

Traditional satellite and launch control systems have consisted of custom solutions requiring significant 
development and maintenance costs. These systems have typically been designed to support specific 
program requirements and are expensive to modify and augment after delivery. The expanding role of 
space in today's marketplace combined with the increased sophistication and capabilities of modem 
satellites has created a need for more efficient, lower cost solutions to complete command and control 
systems. 

Recent technical advances have resulted in Commercial-Off-The-Shelf products which greatly reduce 
the complete life-cycle costs associated with satellite launch and control system procurements. System 
integrators and spacecraft operators have, however, been slow to integrate these commercial based 
solutions into a comprehensive command and control system. This is due, in part, to a resistance to 
change and the fact that many available products are unable to effectively communicate with other 
commercial products. 

The United States Air Force, responsible for the health and safety of over 84 satellites via its Air Force 
Satellite Control Network (AFSCN), has embarked on an initiate to prove that commercial products can 
be used effectively to form a comprehensive command and control system. The initial version of this 
system is being installed at the Air Force's CEnter for Research Support (CERES) Iocated at the 
National Test Facility in Colorado Springs, Colorado. The first stage of this initiative involved the 
identification of commercial products capable of satisfying each functional element of a command and 
control system. A significant requirement in this product selection criteria was flexibility and ability to 
integrate with other available commercial products. 

This paper discusses the functions and capabilities of the product selected to provide orbit determination 
functions for this comprehensive command and control system. 



Precision Orbit Determination SystemTM (PODSTM) 

Introduction 
The Precision Orbit Determination System (PODS), developed by Storm Integration, Inc., is a 
workstation-based orbit determination system. PODS is layered on top of the commercially-available 
Satellite Tool Kit (STK)B produced by Analytical Graphics, Inc. PODS also incorporates the 
Workstation/Precision Orbit Determination (WS/POD)TM product offered by Van Martin Systems, Inc. 
The STK graphical user interface is used to access and invoke the PODS capabilities and to display the 
results. WS/POD is used to compute a best-fit orbit solution to user-supplied tracking data. 

The Precision Orbit Determination System (PODS)'" grew out of a need to process antenna tracking 
data to determine a spacecraft orbit. The determined orbit can then be used to generate antenna 
pointing commands to control a ground antenna. Such a system is necessary for full "closed-loop" 
satellite command and control (i.e., from processing of telemetry and tracking data to the transmission 
of commands) and augments commercial command and control systems such as Storm's Intelligent 
Mission Toolkit (IMT)". 

PODS provides the capability to simultaneously estimate the orbits of up to 99 satellites based on a 
wide variety of measurement types including angles, range, range rate, and Global Positioning System 
(GPS) data. PODS can also estimate ground facility locations, Earth geopotential model coefficients, 
solar pressure and atmospheric drag parameters, and measurement data biases. All determined data is 
automatically incorporated into the STK data base, which allows storage, manipulation and export of 
the data to other applications. 

PODS supports three levels of processing: Standard, Basic GPS and Extended GPS. Standard allows 
processing of non-GPS measurement types for any number of vehicles and facilities. Basic GPS adds 
processing of GPS pseudo-ranging data to the Standard capabilities. Extended GPS adds the ability to 
process GPS carrier phase data. 

Requirements 
A workstation-based capability is desired for compatibility with other workstation-based products (such 
as Storm Integration's IMT). The system should function stand-alone, but offer interfaces for 
integration with other products. A Commercial Off-the-shelf (COTS) product approach is desirable for 
potential resale either alone or integrated with other command and control products. Finally, the 
development and certification costs must be kept low, which suggests incorporation of existing, proven 
COTS products in the implementation as much as possible. 



Solution Approach 
Storm chose two commercial products for incorporation into PODS: Satellite Tool Kit (STK)B by 
Analytical Graphics, Inc. (AGI), and Workstation/Precision Orbit Determination (WS/POD)'" by Van 
Martin Systems, Inc. (VMSI). PODS consists of these products as well as the additional code and data 
required to integrate the products, accept user inputs and provide output data in operationally useful 
formats. 

Commercial Products 

Satellite Tool Kit 
STK is a workstation-based, interactive system for analyzing the relationships among satellites, Earth- 
bound vehicles, ground stations and targets. STK incorporates both text-based tables and graphics to 
display satellite orbits, periods of visibility, access times, and sensor coverage patterns for multiple 
satellites, ground stations and targets. The graphics allow animation of satellite constellations to see 
how sensor coverage and visibilities change over time and with orbital position. 

STK allows the input of initial orbit conditions for satellites, facility and target coordinates, and Earth- 
and satellite-based sensor parameters via ASCII text file or Motif-based user interface panels. Output is 
displayed via graphical ground traces on a variety of map projections, and tables of access angles and 
ranges over windows of visibility. Both text and graphics output can be sent to files for printing andlor 
incorporation into other systems. 

The STK user interface uses an object-oriented approach for defining and manipulating data. For 
example, a Scenario object consists of multiple Vehicle, Facility and/or Target objects. Each of these in 
turn may have one or more Sensor objects. Objects are created, saved, and restored separately. Data 
for objects are stored in individual ASCII files with pre-defined extensions (e.g., ".v" for vehicle files, 
etc.). 

STK Programmer's Library 
The Satellite Tool KitIProgrammer's Library (STKPL)'" offers C application programmers access to 
the underlying functionality of the STK runtime version. The STIWL includes header files and selected 
source code modules to allow programmers to develop add-on applications that are seamlessly 
integrated with the STK user interface, or stand-alone applications that use STKRL as a library of 
functions. The S T W L  includes access to the object manager, user interface, and graphics, as well as 
astrodynamics libraries, time and coordinate conversion functions, and the orbit propagators. The 
S T W L  is written in an object-oriented manner which allows rapid modification and addition of new 
functionality. The PODS User Interface is being developed using the STWPL. 

Workstation/Precision Orbit Determination 
WSIPOD is a state-of-the-art precision orbit and geodetic parameter determination software system 
derived from the GEODYN I1 Version 8609 software used by NASA's Goddard Space Flight Center 
(GSFC). Van Martin Systems, Inc. has ported the GEODYN I1 software to numerous workstation 



platforms, enhanced it in the area of GPS data processing, and packaged it as a commercially available 
and supported product. 

WS/POD processes satellite tracking data using a Bayesian weighted least-squares data reduction 
algorithm and detailed environmental modeling using a Cowell-type numerical integration scheme to 
determine precisely various quantities related to the satellite orbit and tracking stations. Specific 
capabilities include the following: 

Physical Models 
* Atmospheric drag using the Jacchia 1971 

atmospheric density model 
Solar radiation pressure 

* Earth gravitation (up to 180 x 180 
geopotential matrix) 
Polar motion 
Earth rotation 
Solid Earth tides 
Third body gravitation 
Earth precession and nutation 
Tropospheric refraction 

Parameters Estimated 
* Orbit state vectors 

Parameters of atmospheric drag and solar 
radiation pressure 
Measurement and time tag biases 
Tropospheric refraction scale parameters 
Satellite and station clock polynomials 

* Earth gravitational coefficients 
* Tracking station coordinates 

Measurement Types 
* Laser and radar range 
* Radar range rates and dopplers (including 

single and double differences) 
Radar altimeter range 

* Topocentric right ascension and declination 
East and north direction cosines 
X/Y angles relative to the tracking station 
Azimuth/elevation angles relative to the 
tracking station 
GPS pseudo-range and carrier phase, 
includhg single, double and triple differences 

Algorithms and Capabilities 
* Cowell-type numerical integration 

Bayesian weighted least-squares estimation 
algorithm 
Batch data processing 
Automatic data editing with criteria specified 
by the user 
Simultaneous estimation of up to 99 satellite 
orbits in a single run 

WS/POD receives inputs and produces outputs exclusively through files. There is no user interface 
provided. Program control is provided by input files of 80-column card images with data in rigidly- 
defined column format. Data is provided and produced in ASCII text and binary files, with the file 
formats defined in the WSIPOD documentation. 

Summary 
STK offers a state-of-the-art graphical user interface that has been perfected through many years of 
development, upgrades and customer feedback. WS/POD offers more algorithmic and data processing 
capabilities that any other commercially-available orbit estimation system. WS/POD also benefits fiom 
its NASA heritage, which assures that the algorithms have been tested using a wide range of operational 
scenarios over a span of decades 



PODS Solution Approach and Features 
PODS is separated into two components: PODS User Interface and PODS External Procedure 
(PODSKP). PODS User Interface is implemented using STK/PL. PODSKP is a stand-alone program 
independent from STK and provides a C-language interface to WS/POD. The PODS functional 
breakdown is shown in Figure 1: PODS Functional Breakdown and is described below. 

Figure 1: PODS Functional Breakdown 
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STK provides an object-oriented user interface in which the data applies to a selected object (either 
Vehicle, Facility or Scenario). PODS data is treated as an extension to the data for the existing STK 
object class. This allows STK to store the PODS user inputs in the STK object files and use previously- 
entered values as defaults for subsequent runs. This approach also allows PODS input data to be 
specified in the ASCII object files instead of through the user interface. 
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PODS External Procedure 
The PODS External Procedure (PODSKP) provides a C-language interface to the WS/POD product. 
It is designed to be independent from the specifics of the user interface, which allows the use of other 
user interfaces or calls from external applications. The interface data are consolidated in a series of 
structures in header files that are incorporated by the application providing the data (initially STWPL). 
PODSKP is designed such that calls to it can be made from any C program that makes use of the 
PODS structures. 

Processing Levels 
PODS provide three levels of support for users with a variety of mission requirements: Standard, Basic 
GPS, and Extended GPS All levels provide the STK-based graphical user interface and inputloutput 
capabilities. The different levels are licensed externally, allowing users to upgrade without re- 
installation of the PODS software. Each level is described in more detail below: 

Standard - Provides the capability to determine the parameters and process the measurement types 
listed in the section titled Workstation/Precision Orbit Determination, including processed GPS 
positionlvelocity data. Depending on the quality of the data and models used, sub-meter orbit 
positional aecuracies are achievable. 
Basic GPS - Includes the Standard capabilities plus the ability to process GPS pseudo-range data 
from any number of GPS satellites and receivers. To achieve a more accurate solution using GPS 
data, PODS estimates the orbits of the GPS satellites based on tracking data from ground receivers 
rather than using the downlinked GPS navigation data. 
Extended GPS - Includes Basic GPS capabilities and the ability to process carrier phase data. Orbit 
position accuracies within 10 cm and ground station coordinate accuracies within 1 cm are 
achievable. 

Inputs 
This section summarizes the avaiIable inputs. 

Inputs from User 

PODS user inputs are provided per STK object (Scenario, Vehicle, or Facility). Scenario inputs apply 
to all vehicles and facilities in the Scenario. Inputs per object type are listed below. 

Scenario Inputs 
Input tracking data file names and formats 
Selection criteria for tracking data by time span, 
measurement type, vehicle or facility, etc. 

* Earth flattening coefficient 
* Earth gravitational constant and sigma 
* Maximum geopotential model degree and order 

for all vehicles 

Vehicle Inouts 
Transponder delay 
Geopotential model degree and order to be 
used in the force model for this vehicle 
Vehicle area and mass 

* Initial orbit state vector in a variety of 
coordinate systems and element forms 
(Cartesian, Keplerian, non-elliptical forms, 
etc.) 
Span for orbit estimation and/or propagation 



Earth gravitational model coefficients and sigma 
values 
Solar flux data and times 
Magnetic flux data and times 
Coordinate system reference date 
Data pass definitions 
Minimum and maximum number of iterations 
Convergence criteria 
Sigma editing criterion 
Initial RMS values 
Orbit integrator step size 
Selection of optional output reports as listed in the 
section titled Outputs to User 

Facility Inputs 
* Minimum elevation angle before data is rejected 

Facility coordinates (in a variety of coordinate 
systems) and sigma values 

* Coordinate system for station adjustments 
* Facilities which are constrained in position relative 

to one another 
* Earth semi-major axis and flattening overrides for 

geodetic conversion per station 
* Antenna mounting type and displacement 
* Nominal received wavelength 

Turn-around factor (ratio of wavelength 
transmitted to wavelength received) 
Biases and sigma values for all measurement types 

* Override sigma values for normal equations and 
data editing 
Temperature, pressure and humidity at facility and 
time spans over which the data applies 

Inputs from Files 

* Optional unmodeled acceleration and sigma 
values 

* Solar pressure coefficient and sigma 
* Atmospheric drag coefficient and sigma 

value 
Biases and sigma values for all measurement 
tY Pes 
Covariance matrix for initial orbit elements 

* Selection of optional output files 

Additional GPS Inputs (GPS options only) 
Names of RINEX files containing GPS 
tracking data 
Names of navigation files containing GPS 
navigation data 
Time span and/or measurement type criteria 
for selection/deletion of GPS data 
Radiation pressure model name for GPS 
orbit perturbations 

* Identification of hub receivers used in 
construction of single differences 

* Allowed tolerances between receiver times 
when forming differences 

* Selection of optional output data 

Tracking Data Files - Files containing tracking data (formats described in PODS documentation. 
Environmental Files - Files containing Earth geopotential matrix; time system, polar motion and flux 
data; and planetary ephemeris. 

* STK Object Files - ASCII files containing the STK and PODS data (user inputs, estimated 
parameters, orbit ephemeris, etc.) stored between runs. 



Outputs to User 
Ail user outputs are displayed through the STK user interface. STK provides the ability to change 
display units and time systems, export data into a format suitable for use by a spreadsheet program, and 
send data directly to a system printer. The Mandatory Outputs are displayed during or after every 
PODS run, and the Optional Outputs can be displayed in addition to the Mandatory Outputs at the 
user's choice. The items in each output type are listed below. 

Mandatory Outputs 
* Tracking data summary, including: 

- Vehicles, facilities and measurements types 
for which tracking data exists in the 
selected files 

- Start and stop time of selected tracking data 
by vehicle, facility and measurement type 

- Number of passes 
- Time span for each pass 
- Vehicle, facility and measurement types per 

pass 
* Convergence status (convergedldiverged) for 

solutions 
* Convergence criterion for solution 
* Number of iterations performed 
* List of parameters estimated 
* For each estimated parameter: 

- A priori value 
- Estimated value before last iteration 
- Final estimated value 
- Difference between final and a priori values 
- Difference between final and last iteration 

values 
- Final sigma value 
- Final sigma value multiplied by the RMS 

value 
- Epoch times (for estimated orbits) 

* List of STK objects updated 
Ephemeris data (including ground traces) for each 
estimated orbit 
New locations for each estimated facility 

Optional Outputs 
* Correlation and covariance matrices for 

solved-for parameters 
* Last iteration residuals 
* Number of measurements per type used 

in each iteration 
* Summary per measurement type, 

including: 
- Name 
- Units 
- Total number of measurements in 

tracking data 
- Number used 
- RMS and mean value of both the 

residual and weighted residual 
* RMS history per iteration 
* GPS vehicle orbit elements (GPS options 

only) 
* WS/POD TDF Run File 
* WS/POD TDF Block Summary File 

WS/POD GDF Run File (for GPS 
options only) 

* WS/POD FixCIock Run File (for GPS 
options only) 

* WS/POD CNTL Run File 
* WS/POD EXEC Run File (132-column) 
* WS/POD EXEC Terminal Output File 

(80-column) 



outputs to Files 

Solution FiIes - WSPOD output files saved after the PODS run. File formats are outlined in the 
PODS documentation. 
Environmental Files - Updates to the Environmental Files used by WSIPOD. 
STK Object Files - Updates to the ASCII object files with the latest object data. 

Applications 

Single Satellite Maintenance 
One potential application for PODS is the Air Force Satellite Control Network (AFSCN), which 
determines the orbit of individual satellites using azimuth, elevation and S-band range and range-rate 
from a world-wide network of Remote Tracking Stations (RTSs). Tracking data is generated by the 
stations and sent to a Mission Control Complex where an orbit estimation is performed. The new orbit 
is used to generate antenna pointing angles, which are in turn sent to the RTSs to drive the antenna for 
subsequent contacts with the vehicle. 

A typical sequence of events using PODS is as follows: 
The analyst creates the vehicle in the STK database including the initial orbit estimate. This can 
either be the result of a previous PODS run propagated to the present time, or generated by STK 
using NORAD 2-Line Mean Element Set (2LMES) inputs. 
The tracking data from the RTSs are reformatted into a PODS data format. This can be 
accomplished using a database management system, custom program, or text formatting tool such 
as UNIX awk. 
The analyst produces a tracking data summary as necessary to display the types and spans of 
tracking data available. 
After approval of the tracking data contents, the analyst sets the estimation parameters and performs 
a PODS estimation run, resulting in a display of solution data and a ground trace for the new vehicle 
orbit. 
After examination of the output, the analyst can elect to accept the results by saving the vehicle 
object in STK, or can overwrite the results by reloading the original vehicle object from the data 
base. 
The analyst invokes the standard STK Access operation against the saved orbit ephemeris data to 
generate antenna pointing angles for the RTSs. 
After viewing the pointing angles, the analyst can export the data to a file for use in controlling an 
antenna in real-time. 

The saved PODS results supply the input field defaults for the next PODS run for the same vehicle. The 
PODS-generated ephemeris data is used by other STK utilities and/or optional add-on STK products. 
The analyst can also at any time extend the ephemeris span of a PODS orbit by invoking the PODS orbit 
propagator from the STK VehiclelOrbiting menu. 



Automated Constellation Management 
One of the powerful features of the PODS implementation is the ability to process the data for many 
satellites simultaneously. This allows management of entire constellations from a single workstation. 
The nature of the STK interface and object file storage capability allows inputs to be specified by an 
automatic process, eliminating the need for a user to manually enter data for each run. 

As an example of such a process, consider a constellation of several dozen low-flying satellites at high 
inclination (as is proposed for several commercial global cellular communications networks). Tracking 
data for the satellites is collected by multiple ground stations around the world. A process utilizing 
PODS is as follows: 
* Collect the tracking data for the different stations. 

Using a network management system (such as Storm Integration's IMT) perform the following: 
- Reformat into PODS tracking data types. Data from multiple stations andor vehicles can be 

included in a single PODS tracking data file. 
- Automatically generate the PODS inputs and build the STK ASCII object files containing the 

PODS inputs per object. 
- Invoke PODS for the entire constellation. Graphical results for the entire constellation appear in 

STK. 
- Automatically save the estimated results for the entire constellation. 
- Use the Inter-process Communication (IPC) features of STK to automatically generate 

scheduling information, ground station access times and antenna pointing angles for the 
constellation. 

* The analyst can perform periodic updates of the solar and magnetic flux information, Earth polar 
motion and UT1 coefficients using the PODS database management utilities, or these can also be 
automated. 
Manual overrides can be used at any time, entered either through the user interface or the object 
files. 

Initial orbit estimations may require multiple passes of data in order to accurately estimate the effects of 
solar pressure, atmospheric drag, and the Earth gravitational field per vehicle. Longer data spans using 
multiple stations can also be used to precisely determine the location of the tracking stations as well as 
any biases associated with the measurements from the individual tracking stations. The best estimates 
of these parameters can be used in the automated scenario described above and can be updated at any 
time. 

GPS Data Processing 
PODS provides a variety of options for GPS data processing. The simplest option is supported by the 
Standard level and involves incorporation of GPS receiver point position vectors into an orbit solution. 
Vehicles with on-board GPS receivers generally telemeter the position vectors computed by the 
receiver. These position vectors can be combined with ground-based measurement types (e.g., range, 
range-rate, etc.) to form a single set of data for which PODS will compute the orbit that best fits the 
available data. The GPS receiver data can supplement ground-based measurement types, which can 
reduce the number andlor required coverage areas of ground stations while still achieving high 
accuracy. The GPS data can also be used as a reference to calibrate the ground-based receivers. 



A more sophisticated approach can be supported when the on-board GPS receiver passes along the raw 
pseudo-range and carrier phase data. The GPS options of PODS can process these data types directly 
to obtain user satellite position solutions with 10 cm accuracy. Processing of pseudo-range and carrier 
phase data from ground-based receivers allows determination of ground receiver locations as well as 
orbit solutions for the entire GPS constellation with uncertainties below 1 m. 

Summary 
PODS combines two powerful COTS products, STK and WSPOD, into a single integrated system 
combining ease-of-use with high-fidelity algorithms. STK provides a modem graphical user interface 
and seamless integration of the estimated parameters with a wide range of existing mission planning and 
analysis tools. The integration with STK makes PODS a natural extension of existing STK capabilities. 
WSPOD provides powerful computational capabilities with demonstrated reliability due to the heritage 
from NASA programs. The system is designed so that it can be entirely configured by the end user with 
minimal assistance from the vendor. 

Applications of PODS range from single satellite control to constellation management. The three 
different processing levels based on inclusion of different types of GPS data allow the user to choose the 
level of support appropriate for mission requirements. The open nature of the PODSISTK interfaces 
allow easy integration with existing command and control systems. 
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Abstract 

Operational deep space navigation has in the past, and is currently, performed using 
systems whose architecture was originally designed to accommodate tape data transfers and 
computing environments with a tiny fraction of the current capability. Additionally, this 
architecture requires constant human supervision and intervention. A prototype for a 
system which allows relatively automated processing of radio metric data received in near 
real-time from NASA's Deep Space Network @SN) without any redesign of the existing 
operational data flow has been developed. This system can allow for more rapid response 
as well as much reduced staffig to support mission navigation operations. 

Introduction 

In the past and current practice, deep space navigation operations have been relying 
on a system architecture that was designed for tape data transfers. The entire navigational 
procedure consists of processing batches of observations to correct spacecraft initial 
conditions and then using the corrected initial conditions to regenerate spacecraft trajectory. 
This practice not only requires constant human intervention but also makes it impossible to 
process data in an automated fashion. 

In certain operational scenarios, it is desirable to recursively process data as they 
become available and to obtain the most current improvement on spacecraft trajectory (vice 
the correction on the initial conditions). Since the current software system can not serve this 
purpose, the development of the prototype system, which is dubbed the Real-Time 
Automated Filter (RTAF), is intended to fill this vacuum. The fundamental building block 
of RTAF is the Extended Kalman Filter [Ref. 11, which allows processing of data one at a 
time. The data driven feature of the system takes advantage of the architecture of the X- 
Windows Real-Time Display (XRTD) software [Ref. 21. This system works recursively 
and each recursive step consists of the followings. A data point is first obtained and 
validated; then the spacecraft trajectory is propagated to the time corresponding to the data; 
and then the data point is used to correct the propagated spacecraft trajectory, which will be 
used for propagating the spacecraft trajectory when the next data point becomes available. 

Interestingly, the Kalman Filter algorithm has been widely used and proven 
powerful in many data reduction applications including geo-satellite orbit determination. 
However, no utilization of any forms of the Kalman Filter has been documented in the 
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literature of deep space navigation operations. This prototype, once developed fully, may 
be the first such application using the Kalman Filter. 

Approach 

In the RTAF, the models for the spacecraft dynamics and measurements are a 
subset of that in the operational orbit determination software in JPL. The spacecraft 
dynamics include the n-body point mass gravitational accelerations, solar radiation pressure 
with an assumed cylindrical spacecraft geometry, a limited oblateness perturbation, and 
accelerations due to maneuver motor burns of finite time length. The measurement models 
are restricted to the coherent two-way Doppler with precision light time corrections for 
transmission and receiving times, as well as tropospheric delay of the radio signal. Filter 
parameters include the spacecraft state (position and velocity) and system parameters. 
Currently, the hydrostatic and wet zenith delays of the troposphere are treated as system 
parameters. Other examples of system parameters are solar radiation pressure and finite 
motor burn direction and duration. 

Using the Extended Kalman Filter modeling definition, the spacecraft dynamics are 
modeled by first order nonlinear stochastic differential equations, the system parameters by 
first order Gauss-Markov process, and measurements by discrete nonlinear equations. 

In above equations, 'j; is the spacecraft state vector; { is the dynamic system parameters, 
such as solar pressure and maneuver parameters; 7 is the ground system parameters, for 
example, the tropospheric zenith delays. For the measurement model, three times are 
involved, the station transmission time tz, the station receiving time e ,  and the spacecraft 
transmission time $, all corresponding to the k-th data point. These times are related via 
precision time tran'sfonnations between station time and ephemeris time as well as precision 
light time corrections. Statistical assumptions are the usual ones, such as the noise terms 

+ 
-t -D 

w, u, p, and v are uncorrelated and are of mean zero. Data validation is a simple minded 
approach currently, which is to check that each raw data point lies within a specified 
deviation limit. Data outside of this limit is discarded. 

The data flow from NASA's DSN to the navigation workstation is accomplished 
via the same interface as is used with the XRTD software system (Ref. 2). This system 
taps into the already existing radio metric information stream. Data flows from each DSN 
antenna to the Ground Communications Facility (GCF) located at JPL. From this facility, 
the data flows to VAX computers which serve the Radio Metric Data Conditioning team, a 
part of the DSN's Multi Mission Navigation Team at JPL. At this point, an auxiliary data 
stream is created which allows the tracking data to flow from this DSN computer through a 
gateway machine also controlled by the DSN to the navigation operations workstation. 
This gateway is connected via DECNET to the DSN VAX and via TCP/IP to the 
navigation workstation. The direction of the data flow is exclusively controlled from the 
secure DSN machines and is restricted to a limited set of operations machines. Additionally 
no direct contact between the DSN operations computer and project computers occurs. 



However, the result is that the navigation workstations receive the same Multi Mission 
Spacecraft Record (MMSPR) file that exists on the DSN computers with a time lag of no 
more than one minute. Figure 1 illustrates this data flow as well as highlights the software 
processes and file manipulations that occur on each machine. Initially a process named 
DSNLISTEN receives incoming data and generates individual files of data blocks (DBF's). 
The SPRCREATE process creates individual spacecraft record files (SPR's) and multi 
mission spacecraft record files (MMSPR's) at a predetermined schedule which is defined 
via the human controlled process SPRCREATE. The maximum frequency at which the 
MMSPR's are created is limited by the speed of the DSN Vax computer and is currently 
limited to once per two minutes. A process called SPRNET which runs on a DSN 
rnicroVax monitors the MMSPR file on the primary machine and when it has been updated 
then transfers it to the navigation workstation via TCP/IP where a waiting process named 
SPRD receives the file and creates a copy of it on the navigation machine. The RTAF, then 
access the latest data from this file. 
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Figure 1 : Network Data flow 

As data flows in to the navigation workstation, the RTAF then recursively validates 
each data, extrapolates the spacecraft state and system parameters, computes predicted data 
using extrapolated state and system parameters, forms residual using the raw data and the 



predicted data, and corrects the extrapolated state and system parameters. The following 
structure chart of the RTAF depicts this recursive process. 
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Figure 2: Filter Processing Algorithm 

Conclusions and Future Plans 

The RTAF represents a radically different way to perform deep space navigation 
operations. It has been shown to be well suited for real-time automated data processing, 
which would be impossible to accomplish using the traditional batch or batch sequential 
filter and it has high potential in autonomous navigation applications. In addition, it 
provides significant advantages over the traditional epoch state or pseudo epoch state 
formulations in its simplicity and extensibility as well as its natural way of modeling the 
temporal process. 

Though this prototype has great promises, to be truly an operational tool, more 
work needs to be done. The future development will expand the spacecraft dynamic 
models and observable models. More sophisticated statistical methods will be incorporated 
in data and solution validation. Currently the system outputs a time history of changes in 
the estimated parameters. It is desired to have this system interface directly with one or 
more commercial numerical data analysis packages to allow greater data analysis 
capabilities. This prototype was developed in less than one year using parts of already 
existing systems. It is planned to develop a completely new operational tool based on this 
system design during the next eighteen months. 

This new system will be similar in overall design to the one described here, but 
should provide much greater capabilities for autonomous operation as well as possible 
future application in on-board systems which do not use radio metric data types. 
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ABSTRACT 
Attitude determination algorithms that require only 
the Earth's magnetic field will be useful for contin- 
gency conditions. One way to determine attitude is 
to use the time derivative of the magnetic field as 
the second vector in the attitude determination 
process. When no gyros are available, however, 
attitude determination becomes difficult because 
the rates must be propagated via integration of 
Euler's equation, which in turn requires knowledge 
of the initial rates. The spacecraft state to be de- 
termined must then include not only the attitude but 
also the rates. 
This paper describes a magnetometer-only attitude 
determination scheme with no a priori knowledge 
of the spacecraft state, which uses a deterministic 
algorithm to initialize an extended Kalman filter. 
The deterministic algorithm uses Euler's equation 
to relate the time derivatives of the magnetic field 
in the reference and body frames and solves the re- 
sultant transcendental equations for the coarse atti- 
tude and rates. An important feature of the filter is 
that its state vector also includes corrections to the 
propagated rates, thus enabling it to generate highly 
accurate solutions. 
The method was tested using in-flight data from the 
Solar, Anomalous, and Magnetospheric Particles 
Explorer (SAMPEX), a Small Explorer spacecraft. 
SAMPEX data during several eclipse periods were 
used to simulate conditions that may exist during 
the failure of the on-board digital Sun sensor. The 
combined algorithm has been found effective, 

yielding accuracies of 1.5 deg in attitude (within 
even nominal mission requirements) and 0.01 de- 
gree per second (deglsec) in the rates. 

INTRODUCTION 
The coarseness of the attitude information derived 
from the Earth's magnetic field, $ , limits the use- 
fulness of magnetometers in accurate attitude de- 
termination systems. On the other hand, magnetic 
field measurements offer several advantages: (1) 
the sensors are inexpensive, (2) measurements can 
be made any time regardless of the spacecraft's ori- 
entation in space, and (3) usually changes direc- 
tion rapidly enough to make computation of its 
time derivative possible and these changes during 
the orbit are sufficiently large to enable determina- 
tion of all three Euler angles using only a three-axis 
magnetometer (TAM). 
The first and second advantages make a TAMytL 
tractive for Small Explorer missions that have 
modest attitude requirements. The third advantage 
prompts a closer look at contingency attitude al- 
gorithms that use only TAM measurements and are 
the subject of this paper. In fact, the third advan- 
tage allows the spacecraft rates to be computed, in 
principle, by examining time derivatives of 5. 
Therefore, we address here the following nontrivial 
problem: Can we reliably estimate both attitude and 
rates of the spacecraft using only TAM measure- 
ments and no a priori information? If so, we can 
provide for sensor contingencies of a gyro-less 
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spacecraft such as SAMPEX, as well as of a gyro- 
based spacecraft when the gyros are not functional. 
Note that the second situation is not hypothetical. 
For example, the Earth Radiation Budget Satellite 
(ERBS) experienced a control anomaly 
(Mronenwetter and Phenneger, 1988, and 
Kronenwetter et al., 1988) during a hydrazine 
thruster-controlled yaw inversion maneuver that 
resulted in the spacecraft tumbling with rates of 
over 2 deglsec. As a result, both Sun and Earth 
sensor readings became unreliable, and the gyro 
output was saturated. Similarly, control of the Re- 
lay Mirror Experiment (RME) satellite was lost af- 
ter the failure of the Earth sensors (Natanson, 
1992). In both cases, a TAM became the only 
functional attitude instrument. 
We present here a combined scheme invoking two 
different algorithms-deterministic attitude deter- 
mination from magnetometer-only data 
(DADMOD) and the Real-Time Sequential Filter 
(RTSF)-both of which have been tested success- 
fully for SAMPEX in giving the positive answer to 
the above question. The DADMOD (Natanson et 
al., 1990; Natanson et al., 1991; and Natanson, 
1992) is an algorithm that relates the time deriva- 
tives of 5 in inertial and spacecraft body coordi- 
nates to determine the attitude and the body rates. 
DADMOD has been successfully tested for ERBS 
under normal conditions as well as for RME after 
the aforementioned horizon sensor failure 
(Natanson, 1992). 
The RTSF (Challa, 1993, and Challa et al., 1994) is 
a novel extended Kalman filter that estimates, in 
addition to the attitude, errors in rates propagated 
via Euler's equations. The RTSF is sensitive to rate 
errors as small as 0.0003 deglsec (Natanson et al., 
1993), and this feature makes it a very robust and 
accurate real-time algorithm. In particular, it has 
been shown (Challa, 1993, Challa et al., 1994) that 
the RTSF converges successfully in TAM-only 
situations using inertial initial conditions; i.e., the 
spacecraft is assumed at rest in the geocentric iner- 
tial coordinates (GCI) with its axes coinciding with 
the GCI axes. Note that the RTSF does not ex- 

are the main source of errors in the deterministic 
scheme. 
The combined method suggested here uses the de- 
terministic solution for initializing the RTSF to 
guarantee and speed up its convergence. In this 
scheme, the initial conditions for the RTSF are de- 
termined by the DADMOD using a 100-second 
batch of magnetometer measurements. The method 
is applied here to flight data for SAMPEX during 
eclipse periods. During these periods, the magnetic 
torquer is turned off, so that the spacecraft attitude 
is controlled only by the momentum wheel (Forden 
et al., 1990, and Frakes et aI., 1992); this situation 
is similar to the aformentioned contingency condi- 
tions for RMIE. Remarkably, the accuracy of our 
attitude estimates is less than 2 degrees, which is 
within the SAMPEX requirements under normal 
conditions (Keating et al., 1990). 

MAGNETOMETER-ONLY 
DETEIIQR.IHNISTIC ATTITUDE/RATE 
DETERMINATION 
The deterministic scheme starts by constructing the 
second vector measurement from the first time de- 
rivatives of $ resolved in the reference and body 
frames. This gives the usual transformation equa- 
tions 

AjjR = g A ,  (la) 

and 

where A is the attitude matrix, 6 is the angular 
velocity vector, and superscripts R and A imply that 
that the corresponding vectors are resolved in the 
reference and body frames, respectively. If the ini- 

tial value of cSA is known, then cSA can be ob- 
tained by integrating Euler's equation, and the 
TRIAD algorithm (Wertz, 1984) can be used to 
compute the attitude matrix A from the vector pairs 

(5", ZA) 

and 

plicitly compute the time derivatives of 5 ,  which 



as has been done by Natanson et al. (1993). The two roots, a , (@) is substituted into the second 
nontrivial nature of the problem considered here 
arises from the unknown initial conditions for 
Euler' s equation. 
As shown by Natanson et al. (1990), the problem 
can be cast in the form of transcendental equations 
as follows. Taking into account that the vector 
lengths must be the same, regardless of the frame in 
which it is resolved, the projection G, of G A  onto 

the plane perpendicular to iA can be expressed as 
a function of an unknown angle aP between the - 

[ ' I  [ vectors A B R  x B R  and B A  x B A  

thus reduces to two unknown variables: the angle 
and the projection o, of 6 in the direction of 

5, with the attitude matrix A dependent only on 
the angle @ .  To find and o,, Equations (la) 
and (lb) must be supplemented by Euler's equa- 
tions, which can be written in the following sche- 
matic form: 

where the vectors Go(@), &(a), and G, are 
given by Equations (25a) through (2%) of Natan- 
son (1992).* The kinematic equation relating the 

second derivatives Z A  and g R  is then formally 
represented as 

1To(a)+1T,(cD)~l+;\2a;=a (3) 

where the vectors ;\, (a), A, (a), and ;\, are de- 
fined by Equations (23a) through (23c) of Natan- 
son (1992). 

Two nontrivial equations (transcendental in @) are 
obtained by projecting the vector equation (3) on 
two directions perpendicular to i .  One of the re- 
sultant equations is then analytically solved with 
respect to a, at different values of cD, and one of 

* Note that the cited equations erroneously used 

I-I [F x Z] = I-'F x  1-9 
instead of the correct expression 

I - ' [ f x Z ] = I ~ x  121det I 
where I is the inertia tensor of the spacecraft. 

a .  . 

equation. [The selected root a, (@) must turn into 
the solution of the linear equation in a , ,  which 

arises in the limit & A  -t 6 (Natanson et al., 1990).] 
Finally, the resultant transcendental equation is 
numerically solved with respect to @ . 

The RTSF's state vector 2 comprises the four 
components of the attitude quaternion, q' , and the 

three components of the rate correction, c , to G A  : 

2 = [$' "'I' 
The RTSF uses sensor data to estimate q' as well 

as g , with b being estimated kinematically in the 
same manner as gyro biases for a gyro-based 
spacecraft, i.e., by attributing differences between 
the measured and propagated attitudes to errors in 
G A  . The 6 estimates are then used to correct G A  , 
and these corrected rates are used as initial condi- 
tions to propagate Euler's equation to the next 
measurement time. The propagation of B is rnod- 
eled via a first-order Markov model: 

where ;ii, is a white noise vector, and 7 is a fdte 
time constant. The novel feature of the RTSF is 
that, since b represents rate errors accumulated 
between measurements, the optimum value for T is 
the data period: 5 seconds for the SNAPEX data 
used here. (In contrast, the same model, when used 
for gyro bias estimation, requires T of several 
hours.) 

BRIEF DESCRIPTION OF SAMPEX 
SAMPEX is the first of the Small Explorer satel- 
lites and is designed to study elemental and isotopic 
composition of energetic particles of solar and 
cosmic origin. It has a 550 x 675-km orbit with an 
82-deg inclination. SAMPEX nominally is Sun- 
pointing and has a rate of one rotation per orbit 
(RPO) about the spacecraft-to-Sun vector. The 



attitude accuracy requirement of 2 deg is achieved 
using a fine Sun sensor (FSS), and a TAM. The 
control hardware consists of a momentum wheel 
and a magnetic torquer assembly (MTA). During 
eclipse periods, the MTA is turned off, and attitude 
control is performed by only the momentum wheel 
under the assumption that the spin axis remains di- 
rected along the Sun vector. 

The wheel momentum, 6, is directed along the 
body y axis, which is also the FSS boresight. The 
SAMPEX mass distribution is approximately sym- 
metric about this axis. The body z axis is directed 
along the boresights of the science instruments. 

ATTITUDE CONWNTIONS 
In following Crouse (1991), the Sun-pointing or- 
bital coordinate system (OCS) used here has its 
z axis directed along the target vector as it was ini- 
tially defined by Flatley et al. (1990). Later 
McCullough et al. (1992) modified the control law, 
and as a result, the nominal direction of the body 
z axis in space differs slightly from the direction of 
the OCS z axis. The roll, pitch, and yaw angles are 
defined as the 1-2-3 decomposition of the matrix 
transformation from the OCS to the body frame. 
During the nominal 1-RPO mode, the roll and yaw 
angles are both close to 0, and 6 A - (0,0.06, o)= 

deglsec, while the pitch angle may deviate from 
zero by a few degrees for the reason mentioned 
above. 
The present work also uses the 2-3-2 Euler de- 
composition of the matrix transformation from GCI 
to the body frame. The advantage of this attitude 
parametrization during eclipse is that the third 
Euler angle directly reflects the 1-RPO rate of the 
spacecraft, while the other two angles are very 
nearly constant because no external control torque 
exists, and environmental torques acting on the 
SAMPEX are negligibly small. 
The tests discussed below were performed using 
SAMPEX telemetry data for an eclipse on July 12, 
1992. The truth model here is the attitude solutions 
from the single-frame TRIAD algorithm (Wertz, 
1984), which are computed using the onboard al- 

gorithm; i.e., assuming that the Sun vector remains 
unchanged during eclipse. 

RESULTS 
Figures l(a) and l(b) present the first and third 
Euler angles for the 2-3-2 decomposition of the 
GCI-to-body attitude matrix, respectively. Except 
for the region between 400 and 700 seconds 
(discussed below), only two solutions are obtained, 
which significantly differ from each other. If atti- 
tude control is performed solely with the momen- 
tum wheel and enviromental torques are neghgibly 
small, one can use conservation of the angular mo- 
mentum to select the physical solution (Natanson, 
1992). In the absense of spacecraft nutation, this 
implies that the first two Euler angles must remain 
unchanged. In fact, the first Euler angle depicted in 
Figure l(a) remains unchanged for one of the two 
deterministic solutions and significantly varies for 
another. Except for the region of multiple solu- 
tions, the physical solution closely follows the 
straight lines of the TRIAD solution. 
A similar conclusion can be drawn from an analysis 
of Figures 2(a) and 2(b) presenting the x and y 
body components of the angular velocity vector. 
Note that the DADMOD solutions presented here 
were obtained assuming constant wheel speed 
equal to the nominal value. Taking into account 
actual values from telemetry did not result in any 
noticeable gain in the accuracy. 

More than two solutions appear when B becomes 
perpendicular to the pitch axis about 400 seconds 
after the beginning of the eclipse. Before this oc- 
cured, the vector functions &(a) and XI(@) in 
Equation (3) could be roughly approximated as: 

det I 

det I 



where 

a:(@) I I-' [6x6,(0)], 

The approximation can be understood easily by 
taking into account that the magnitude of the vec- 
tor I 6 *  is generally much smaller than wheel mo- 
mentum. For the same reason, one can neglect the 
quadratic term in Equation (2). By projecting the 
resultant equation onto the vector 8" x @, one 
then obtains the following quadratic equation: 

which is analogous to that derived by Natanson 
et al. (1990) for the constant-angular-velocity limit. 
Obviously, this equation may not have more than 
two solutions. (Another advantage of this approxi- 
mation is that one needs only thefirst derivatives of 
i with respect to time, which can be evaluated 
relatively accurately from a 30-second batch of 
magnetometer measurements.) However, the ap- 
proximation made to derive Equation (7) fails if 
6 .  IE" goes to zero, so that the vectors i t ( @ )  

and A: become parallel regardless of the particular 
value of 0 .  Because SAMPEX is very nearly 
symmetric about the pitch axis, the relation 

$ . ~ j j "  =:O 

is satisfied in the region where becomes per- 
pendicular to the pitch axis. In addition, in this re- 
gion 

6,(@). zEA - 0 

regardless of the particular value of @. Conse- 
quently, ( 0 )  vanishes at any 0, which implies 
that the coefficients of quadratic Equation (7) are 
all equal to zero. Therefore, when i is perpen- 
dicular to the pitch axis, one cannot disregard the 
contribution from the vector I 6  " to A, (@) . The 
coefficients of quadratic Equation (7) remain small 
for some time, making its solution completely un- 
reliable. 

Figure 3 compares the RTSF roll and pitch angle 
results obtained after initializing the filter with two 
different schemes: the inertial initial conditions 
mentioned in the introduction to this paper, and the 
correct DADMOD sdution from Figures 1 and 2. 
For both starting conditions, the roll angle results 
of Figure 3a reflect oscillations with the space- 
craft's nutational period of 120 sec. The amplitude 
of the oscillations is a measure of the magnitude of 
the transverse component of GA at t = 0. The true 
nutational amplitudes, however, are negligible for 
this data span (Natanson et al., 1993). Thus, the 
amplitude of the oscillations is RTSF errors and is a 
direct consequence of the initial rate errors. 
Although the filter's rate-corrections feature en- 
ables it to converge (not shown here) after 2500 
sec to within 0.01 deglsec of the true rates even 
with the inertial initial conditions, it is clear that the 
DADMOD reduces the initial errors, as well as the 
convergence time, by an order of magnitude. More 
important, the correct DADMOD solution, by 
providing starting attitude and rates close to the 
true values, nearly eliminates the possibility of filter 
divergence. 

CONCLUSIONS 
We find that, using only magnetic field data and no 
a priori information, the RTSF determines the atti- 
tude to within SAMPEX mission requirements of 
2 deg and rates to within 0.01 deglsec, respec- 
tively. Using the DADMOD to initialize the RTSF 
reduces the a priori errors and the RTSF's conver- 
gence time by an order of magnitude (to within a 
few hundred seconds) and also reduces the possi- 
bility of divergences. 
The DADMOD allows one to find the TAM-only 
attitude solution with an accuracy of 10-15 deg, 
unless the spacecraft passes through a region where 
i is perpendicular to the wheel momentum. The 
DADMOD results are consistent with those re- 
ported for the RME satellite (Natanson, 1992), 
where the onboard conditions after the failure of 
the Earth sensor are similar to those used here. 
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The current presentation has been deliberately lim- 
ited to the case with no external torques so that the 
choice between physical and spurious deterministic 
solutions can be made by analyzing changes in the 
direction of the total angular momentum in space. 
It should, therefore, be noted that the inertial initial 
conditions enable the RTSF to converge in more 
severe conditions such as SAMPEX's Sun- 
acquisition mode, where the magnetic torquers are 
used to vary ox and o, rapidly, with amplitudes 
up to 0.6 deglsec. This is shown in Figure 4 where 
the telemetered data span the transition (at about 
2000 sec) from SAMPEX's Sun acquisition mode 
to the 1-RPO mode. Here, the TRIAD attitude so- 
lutions are obtained using both Sun and magnetic 
field data, and these are differenced to produce the 
TRIAD rate solutions. These TRIAD results serve 
as the truth model for evaluating the RTSF, which 
used only the magnetic field data. Despite a priori 
errors of up to 90 deg in attitude and 10 RPO in 
rates, the RTSF attitude and rate estimates con- 
verge to within 2 deg and 0.01 deglsec, respec- 
tively, in about 1200 sec. 
Therefore, the RTSF can also be used for TAM- 
only attitude determination in the magnetic despin 
mode using the magnetic field solely for the atti- 
tude control. This mode has been successfully used, 
for example, to despin ERBS during the control 
anomaly mentioned previously in this paper. 
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ABSTRACT 

In support of a NASA study on the application of radio interferometry to satellite orbit 
determination, MITRE developed a simulation tool for assessing interferometric tracking 
accuracy. The Orbit Determination Accuracy Estimator (ODAE) models the general batch 
maximum likelihood orbit determination algorithms of the Goddard Trajectory Determination 
System (GTDS) with the group and phase delay measurements from radio interferometry. ODAE 
models the statistical properties of tracking error sources, including inherent observable 
imprecision, atmospheric delays, clock offsets, station location uncertainty, and measurement 
biases, and through Monte Carlo simulation, ODAE calculates the statistical properties of errors in 
the predicted satellite state vector. This paper presents results from ODAE application to orbit 
determination of the Tracking and Data Relay Satellite (TDRS) by radio interferometry. 
Conclusions about optimal ground station locations for interferometric tracking of TDRS are 
presented, along with a discussion of operational advantages of radio interferometry. 

INTRODUCTION 

As part of its effort to assess cost and 
performance benefits of various emerging 
technologies, NASA sponsored a series of 
studies on the application of radio 
interferometry to satellite tracking. Though 
astronomers had applied radio interferometry 
to astrometry for decades prior, it was not 
until the late 1960s that interferometry was 
proposed for use in satellite orbit 
determination. In an experiment devised by 
Irwin Shapiro, Alan Whitney, and others, 
very long baseline interferometric (VLBI) 
measurements were made on the TACSAT I 
communications satellite in geosynchronous 
orbit (GEO), and the semi-major axis of the 
orbit was measured with accuracy on the 
order of several hundred meters [I]. 
Subsequent experiments performed in the 
1980s by Jim Ray, Curt Knight, and others 
to determine the position of the Tracking and 
Data Relay Satellite (TDRS) yielded accuracy 
on the order of 75 meters [2]. Such orbit 
determination accuracy, which derives from 

the extremely high precision of the group 
delay and phase delay observables, makes 
radio interferometry an attractive option for 
satellite tracking. 

Operational considerations are also a benefit 
of radio interferometry in satellite orbit 
determination, because the group and phase 
delay measurements are made completely 
passively. Whereas the existing Bilateral 
Ranging Transponder System (BRTS) is 
taxing on TDRS communications resources, 
radio interferometry can derive its 
measurements from any signal, including the 
signal intended for the TDRS user 
community. Therefore, an interferometric 
orbit determination system for TDRS would 
eliminate traffic for tracking on the TDRS 
transponder. Because an interferometric 
tracking system would be passive, it would 
place no design constraints on the space 
segment, and it would therefore provide 
backward compatibility with all generations 
of TDRS. These potential operational and 
accuracy benefits led NASA to investigate 
radio interferometry for future TDRS 
tracking applications. 



NASA sponsored a series of studies to 
investigate whether an operational radio 
interferometry system could provide TDRS 
orbit determination services (1) at lower 
cost, (2) at greater accuracy, and (3) across 
considerably smaller baselines than BRTS. 
Contributors to these studies included 
Interferometrics, Inc., where a Small 
Business Innovative Research (SBIR) 
contract was executed to demonstrate 
hardware and software that would provide 
group delay measurements on TDRS with 
VLBI. CSC performed an assessment for 
the Goddard Space Flight Center (GSFC) on 
a variety of TDRS tracking alternatives, 
including VLBI and Connected Element 
Interferometry (CEI) systems. The Jet 
Propulsion Laboratory (JPL) sponsored a 
series of experiments to determine CEI 
accuracy from its Goldstone facility. For its 
part of the effort, MITRE assessed optimal 
site locations and programmatic 
considerations of an operational 
interferometric TDRS orbit determination 
system. 

For accuracy assessment purposes, MITRE 
developed a Monte Carlo simulation tool, the 
Orbit Determination Accuracy Estimator 
(ODAE), that models error sources in orbit 
determination with VLBI and CEI systems. 
In ODAE, the user can specify a satellite 
orbit, any set of ground stations between 
which group or phase delay measurements 
are to be made, and the statistical properties 
of the errors in those measurements. Upon 
each iteration of the Monte Carlo simulation, 
the orbit of the satellite is determined based 
on measurements with errors added, and the 
errors in the resulting satellite ephemerides 
are recorded. Thus, the user may study the 
statistical properties of the enor in the batch 
orbit determination process resulting fiom 
the use of group or phase delay 
measurements. 

We applied ODAE to study the effects of 
varying satellite and measuring station 
geometries on orbit determination accuracy. 
This paper presents an assessment of optimal 
siting for TDRS tracking by radio 
interferometry. A discussion of the 
operational and programmatic considerations 

of an interferometric tracking system are also 
presented. 

THE ODAE MODEL 

ODAE, which was implemented in 
Mathematica to allow maximum flexibility, 
models the batch maximum likelihood orbit 
determination process applied in the 
Goddard Trajectory Determination System 
(GTDS) [3 J. The user specifies a reference 
true satellite orbit, a set of observing stations 
(earth-based or space-based), the 
observation types, and the times at which 
measurements are to be made. Given a set 
of observations on the satellite (e.g., radar 
measurements, group or phase delay 
measurements, o r  pseudorange 
measurements), ODAE determines the set of 
parameters (e.g., state vector, clock offsets, 
or atmospheric parameters) that best fit the 
observations. Upon each iteration of its 
Monte Carlo simulation, ODAE injects 
errors of user-specified statistical properties 
into various parts of the orbit determination 
process. ODAE computes the error of the 
measured parameters at each iteration, and at 
the end of the simulation, ODAE computes 
the statistical characteristics of the error. 

Error sources that can be modeled by ODAE 
include inherent measurement imprecision, 
station location uncertainty, atmospheric 
delays, and clock offsets. The user must 
specify the statistical properties of the error 
sources. Trajectory propagation schemes 
available in ODAE for dynamic orbit 
determination range from the two-body 
approximation to numerical integration of the 
fully disturbed equations of motion. A 
detailed mathematical specification of the 
coordinate frame, force models, and 
numerical integration techniques used in 
ODAE are given in Reference 4. The only 
significant deviation from the GTDS 
approach to orbit determination is the use of 
Bulirsch-Stoer rational function extrapolation 
for numerical integration [S,  61. For the 
numerical integration of the equations of 
satellite motion, the Bulirsch-Stoer technique 
has been shown to provide the same 



precision as more traditional techniques, 
such as predictor-corrector integration or 
Runge-Kutta integration, but at reduced 
computational cost [4,7]. 

For short-term dynamic orbit determination 
accuracy studies, it is often sufficient to 
apply simplified trajectory propagation 
schemes for the sake of reducing 
computation time. Absolute trajectory 
propagation accuracy is not of concern for 
the assessment of the relative effects of 
changes in geometry or measurement errors. 
For the study on TDRS tracking by radio 
interferometry, we were concerned only with 
the effect of ground station geometry on 
initial orbit determination accuracy, and so 
dynamics came to play only over the time of 
signal propagation from the satellite to the 
tracking stations. Therefore, we applied the 
two-body approximation for trajectory 
propagation and state transition matrix 
computation. 

Since its initial application to the problem of 
optimal ground station siting for 
interferometric tracking of TDRS, MITRE 
has applied ODAE to a variety of problems, 
including an assessment of Space 
Surveillance Network Improvement Program 
(SSNIP) tracking accuracy on various 
classes of orbits, and an assessment of the 
accuracy of GPS for satellite telemetry, 
tracking, and command (TLT&C). 

INTERFEROMETRY OVERVIEW 

Consider an interferometric orbit 
determination scenario in which 0 is the 
origin of an earth-centered inertial (ECI) 
coordinate system, r is the position vector of 
a satellite with respect to 0 ,  bl  and b2 are 
the position vectors of two ground stations 
from which measurements are to be made, 
and dl and d2 are the position vectors of the 
satellite with respect to those ground 
stations, as pictured in Figure 1. The 
position vectors r ,  bl, b2, dl, and d2 are all 
functions of time. The sum of a station 
position vector, bk , and the satellite position 
vector measured from that station, dk , is 

simply the satellite position vector r ;  
therefore, dk = r - bk. If the propagation 
rate, c, of the signal through the atmosphere 
is known, then the transit time, Tk, of the 
signal from the satellite at point P to ground 
station number k at point Bk will be given by 

Note that in equation (I), the vectors r and 
bk are measured at slightly different times. 
Now, the true group delay, z, between 
stations i and j is the differential transit time 
of the signal between these two sites: 

Figure 1. Illustration of the Interferometric 
Measurement Scenario 

During the Monte Carlo simulation, ODAE 
computes measured group delay by adding 
measurement or atmospheric fluctuation 
errors to the true group delay as computed 
from equations (1) and (2). The solution of 
the orbit determination problem on each 



iteration of the simulation, as described in 
Reference 7, follows the GTDS maximum 
likelihood estimation approach, one step of 
which is the computation of the Jacobian, or 
matrix of partial derivatives of equation (2) 
with respect to the state vector parameters at 
epoch. 

For phase delay measurements, ODAE 
converts phase delay into equivalent group 
delay, as described in Reference 7. This 
computation can be accomplished so long as 
the cycle ambiguity can be determined from a 
priori information about the satellite's 
position vector. ODAE can model both the 
case where cycle ambiguity is unknown and 
the case where it is known. We assumed the 
latter in this study. 

ODAE APPLICATION TO TDRS 

In this section, we assess the level of orbit 
determination accuracy that can be attained 
for a geosynchronous satellite with radio 
interferometry, and we draw conclusions 
about optimal station-satellite geometry. The 
results are applied to recommend optimal 
ground station siting for orbit determination 
of TDRS by radio interferometry. 

Radio interferometry with baselines the size 
of BRTS's, which are intercontinental, 
would translate the high level of observable 
group delay accuracy into greatly improved 
TDRS tracking accuracy. However, it was 
NASA's desire instead to accept only a 
modest improvement in accuracy while 
reducing system cost and ameliorating other 
operational considerations by greatly 
shortening the baselines. This led naturally 
to the study of a CEI-based system, where 
baselines are very short. Because of the 
requirement for a CEI system to have 
interferometer sites connected by fiberoptic 
cable in a temperature-controlled 
environment, the cost of lengthening 
baselines is very high. We constrained our 
baselines to 20 km maximum length for the 
purposes of this study. 

We used ODAE to assess position 
determination accuracy on a GEO satellite for 
a sample interferometer siting scenario, and 
we determined the effects of varying the 
relative satellite to ground station geometry. 
Because the effect only of relative geometry 
was to be studied initially, it was not 
necessary to select true TDRS ephemerides 
or true potential ground station locations. 
The reference orbit chosen was 
geosynchronous with a 4' inclination and a 
subsatellite longitude of 18OW. To provide 
three independent baselines across which 
phase delay could be measured, we 
constrained four CEI sites to lie on the 
vertices of a square with a 20 km baseline, 
as shown in Figure 2. The site latitudes, 
longitudes, and altitudes for this reference 
scenario are given in Table 1. ODAE 
modeled simultaneous phase delay 
measurements across the baselines from 
station 2 to station 1, station 3 to station 1, 
and station 4 to station 1 (denoted 2- 1, 3- 1, 
and 4- 1, respectively). These baselines are 
illustrated in bold in Figure 2. 

Figure 2. CEI Station Locations 

An extension of Alan Whitney's work [8] 
shows that the theoretically achievable 
precision of the phase delay observable, 04, 
is given by 

1 



where v is the center frequency, in Hz, 
sampled by the interferometer, and SNR is 
the signal-to-noise ratio. Since the TDRS 
downlink to White Sands is centered at 
14 GHz and SNR = 50, the theoretically 
achievable precision of the phase delay 
observable is 0.23 picosec. While no TDRS 
tracking experiments were performed with 
JPL's CEI equipment at Goldstone, 
observations were made on natural radio 
sources at 8.4 GHz to assess the precision of 
the phase delay observable [9, 101. JPL 
demonstrated the standard deviation in the 
phase delay observable to be approximately 
1 picosec, which is 70% larger than the 
theoretically achievable value given by 
equation (3). Extrapolating this result to the 
theoretically achievable phase delay precision 
for TDRS, we estimated the practically 
achievable precision to be 0 . 2 3 ~  1.7 = 0.4 
picosec. We took this measurement error to 
be independently normally distributed across 
each baseline. 

Table 1. CEI Station Locations for 
Reference Scenario 

Station Geodetic Longitude Altitude 
Number Lat. (ON) (OE) (km) 

1 45.00000 0.0000 0.1 
2 45.00000 -0.2545 0.1 
3 45.17997 0.0000 0.1 
4 45.17997 -0.2545 0.1 

For the initial study, it was assumed that 
there were no equipment biases, that there 
were no atmospheric delay errors, that all 
station were connected by fiberoptic cable to 
one clock and frequency standard, that there 
were no local oscillator offsets between the 
four stations, and that station positions were 
known with perfect accuracy. Thus, the 
pure effect of measurement geometry and 
observable precision on orbit determination 
could be assessed. 

ODAE Monte Carlo simulation of the orbit 
determination scenario described above with 
200 iterations showed a lo root-mean- 
squared (RMS) position vector accuracy of 

3.2 krn. We also assessed the accuracy that 
can be attained with the use of other 
combinations of baselines. It is practical to 
have one site in common for all three 
measurements so that the common site can 
act as the correlation center at which the 
phase delay observables are generated. For 
the particular satellite and ground station 
locations in this scenario, selection of three 
measurements where one station is common 
to each pair (i.e., 2-1, 3-1, 4-1; or 1-2, 3-2, 
4-2; or 1-3, 2-3, 4-3; or 1-4, 2-4, 3-4) 
results in a la RMS position vector 
accuracy of 3.2 km. Thus, there is no 
geometrically-preferred common site for the 
measurements. 

The orbit determination scenario described 
above was the starting point for the 
assessment of the effects of varying 
interferometric measurement geometry on 
orbit determination accuracy. Since only 
relative geometry matters, and since it would 
have been more cumbersome to vary the 
positions of four ground stations, we instead 
varied the satellite's initial position vector. 

First, we studied the effect of relative 
interferometer baseline size on orbit 
determination accuracy. Satellite range from 
station 1 was varied while keeping the 
elevation angle and azimuth angle from that 
station constant. Because the baseline sizes 
are small relative to the range to GEO, the 
range, elevation angle, and azimuth angle 
from each of the other three stations are close 
to those of the first. For the sample orbit 
determination scenario described above, 
range from each site to the satellite is 
approximately 37,850 km, the elevation 
angle is approximately 3g0, and the azimuth 
angle is approximately 155O. As shown in 
Figure 3, the smaller the range to the satellite 
for a constant baseline length (or, 
equivalently, the longer the baselines across 
which phase delay is measured relative to the 
range to the satellite), the greater the position 
vector accuracy. 

Next, we assessed the effect of satellite 
azimuth angle on orbit determination 
accuracy. The azimuth angle of the satellite 
at station 1 in the original scenario was 
varied while keeping the range and elevation 



angle from that station constant. The results 
indicate that for a configuration of four 
interfernmetric ground stations at the vertices 
of a square, position error is maximized 
when the satellite's azimuth angle is an 
integer multiple of 90°, and position error is 
minimized when the satellite's azimuth angle 
is an odd integer multiple of 45'. 
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Figure 3. Position Error vs. Range to 
Satellite 

Finally, we assessed the effect of satellite 
elevation angle on orbit determination 
accuracy in this scenario. The elevation 
angle of the satellite at station 1 was varied 
while keeping the range and azimuth angle 
from that station constant. As can be seen in 
Figure 4, for this particular orbit 
determination scenario, position error 
increases monotonically with elevation 
angle. Thus, based on the criterion of 
minimizing ephemeris enor due only to enor 
in the phase delay measurement, optimal 
viewing geometry is at the lowest possible 
elevation angle, and the scenario becomes 
degenerate when the satellite is at zenith. 

A tradeoff is suggested by the geometrical 
result that greater orbit determination 
accuracy is attained at lower elevation 
angles. The tradeoff arises because 

statistical models of the variation in signal 
propagation rate through the troposphere 
show that, because a signal must pass 
through more of the troposphere as the 
elevation angle of the satellite decreases, 
errors in predicting signal propagation rate 
increase as elevation angle decreases [I 11. 
Moreover, errors in predicting propagation 
rate due to tropospheric fluctuations tend to 
be the dominant error source in overall 
accuracy for CEI systems [12]. Thus, we 
sought to determine the optimal elevation 
angle far CEI measurements with 
consideration of both measurement error and 
tropospheric delay error. 
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Figure 4. Position Error vs. Satellite 
Elevation Angle 

We modeled tropospheric fluctuations 
between each interferometer site and the 
satellite as being independent and normally 
distributed. The assumption of indepen- 
dence is based on the fact that water vapor 
cells can be of several kilometers in 
diameter, and so tropospheric delay errors 
from each site can in fact be independent. 
From Reference 11, we computed the 
elevation angle dependence of the standard 
deviation in tropospheric delay error for 100 
second measurement arcs of phase delay. 
The results are shown in Table 2. 



Table 2. Tropospheric delay error as 
a function of elevation angle CONCLUSIONS 

Elevation Tropospheric Delay 
Angle ('1 Error (uicosec) 

For varying satellite elevation angles, we 
used ODAE to model error due to 
tropospheric fluctuations as well as inherent 
phase delay imprecision. The resulting la 
position errors are shown in Figure 5. As 
can be seen, the optimal satellite elevation 
angle is approximately 30°. In the 
conclusions section of this paper, we show 
how these results can be applied to optimally 
siting a CEI system for TDRS orbit 
determination. 

We have derived conclusions about optimal 
geometry for orbit determination of a GEO 
satellite by radio interferometry. These 
results can be applied to the problem of 
optimally siting a CEI system to track 
TDRS. For a particular TDRS satellite, and 
for a configuration of four interferometer 
sites located at the vertices of a square, a 
geographical position should be chosen so 
that the satellite's elevation angle is as close 
to 30° as possible, and the square should be 
oriented so that the satellite's azimuth angle 
is an odd integer multiple of 45'. For 
TDRS-W at 17 1°W, the maximum elevation 
angle visible within the -20 dB contour of 
the White Sands downlink is in southern 
California at approximately 20' elevation. 
For TDRS-E at 41°W, an elevation angle 
near 30' can be attained within the -20 dB 
contour of the White Sands downlink by 
siting a CEI system in eastern Louisiana or 
western Mississippi. 

DISCUSSION 
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Having determined optimal siting for a CEI 
TDRS tracking system, we return to a brief 
discussion of operational considerations. As 
stated previously, benefits include freedom 
from requirements placed on the space 
segment, the potential for excellent orbit 
determination accuracy, and the ability to 
locate the system entirely within the United 
States. It is expected that these benefits 
would ameliorate cost and operational 
constraints. Estimates have placed required 
staffing levels for an interferometric TDRS 
tracking system in the range from 10 to 20 
full-time equivalent staff [13]. With respect 
to initial costs, Interferometrics demonstrated 
prototype hardware and correlation software 
for less than one million dollars [14]. 
Expected development and production costs 

Figure 5. Position Error vs. Elevation Angle for an operational system are expected to be 
with Tropospheric Effects Included an order of magnitude larger [13]. Finally, 

we note that interferometry offers low 
technological risk because- it has been 
successfully applied in a number of related 
fields for several decades. 
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COST EFFICIENT OPERATIONS FOR DISCOVERY CLASS MISSIONS 
G. E. Cameron*, J. A. Landshof* and G. W. Whitworth* 
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Laurel, Maryland 20723-6099 

ABSTRACT 
The Near Earth Asteroid Rendezvous 

(NEAR) program at The Johns Hopkins 
University Applied Physics Laboratory is 
scheduled to launch the first spacecraft in 
NASA's Discovery program. The Discovery 
program is to promote low cost spacecraft 
design, development, and mission operations 
for planetary space missions. In this paper, 
the authors describe the NEAR mission and 
discuss the design and development of the 
NEAR Mission Operations System and the 
NEAR Ground System with an emphasis on 
those aspects of the design that are con- 
ducive to  low-cost operations. 

INTRODUCTION 
NEAR will launch in February 1996 and 

rendezvous with the asteroid Eros in January 
1999. The spacecraft is to orbit Eros for up 
to a year, mapping the asteroid and collect- 
ing data on its gravitational and magnetic 
fields as well as its elemental composition. 
Significant challenges are anticipated in 
NEAR mission operations. NEAR will be 
the first spacecraft to conduct orbital opera- 
tions around a small, irregularly shaped 
planetary body. Stringent orbital plane 
restrictions are required to simultaneously 
maintain instrument fields of view of the 
asteroid, communications antenna coverage 
of the Earth, and illumination on the solar 
panels. During certain portions of the year 
of asteroid operations, orbital maneuvers 
may be required every three days to 
maintain the orbital plane. Given the 
irregular shape and size of the asteroid, 
simple nadir pointing mapping strategies 
will not be sufficient for conducting opera- 
tions at Eros; a flexible planning strategy 
must be implemented to coordinate scientific 
priorities given limited observation 
opportunities. These scientific observations 
must be combined with routine subsystem 

* Member of the Senior Professional Staff 

maintenance, orbital maintenance, and 
navigation requirements. A sophisticated 
sequence planning system with quick 
reaction capability is required (priorities and 
orbital dynamics can be expected to change 
on a continuous basis, requiring constant 
adaptation of operations to mission science 
needs). 

These considerations generally increase 
the cost of mission operations in an era 
when Mission Operations and Data Analysis 
(MO & DA) costs are being scrutinized as 
never before. If NEAR and future Discov- 
ery class missions are to succeed, they must 
set new standards for cost efficiency. The 
goal of this paper is  to show how mission 
operations costs can be controlled by the 
application of advanced technologies and 
operations concepts. 
Organization of P a ~ e r  

Following the Abstract and Introduction, 
this paper begins with a discussion of low 
cost mission operations. This is followed by 
a description of the NEAR Mission 
Operations System (MOS) which highlights 
those elements of the system design that 
contribute to low cost mission operations. 
Following the MOS description is a section 
detailing the design of the NEAR Ground 
System (NGS), again, with an emphasis on 
the low cost operations aspects of the 
design. Finally, we provide a summary of 
our recommendations for implementing low 
cost mission operations on Discovery class 
missions. 

LOW COST MISSION OPERATIONS 
The MOS is often the last element of the 

program to be developed; as such, the MOS 
frequently must make up for gaps and 
problems that have developed in the mis- 
sion, spacecraft, and instrument designs. 
The MOS is generally custom developed for 
each mission, which is decidedly non- 
optimal from a cost-effectiveness viewpoint. 



Mission Operations costs can be divided 
into two major categories: development 
costs (mostly pre-launch) and operations 
costs (mostly post-launch). In the following 
discussion, potential cost saving measures 
are introduced in each category. 

Svstem Development 
System development costs are primarily 

pre-launch and are generally incurred late in 
the pre-launch program. If a program gets 
into budget problems late in the spacecraft 
development phase (this is not uncommon), 
mission operations development costs fre- 
quently attract the attention of the budgetary 
ax-wielder. Saving money in development 
costs at the expense of repetitive costs in the 
post-launch mission ope;ations phase is 
cost efficient over the mission life cvcle, yet 
this trade is frequently made. In the follow- 
ing, several approaches to saving costs in 
MOS development are discussed which do 
not compromise either mission capability or 
total life cycle cost. 

Existing Infrastructure 
Always take advantage of existing 

infrastructure where cost efficient. If an 
existing voice communications system or 
ground station network will work for your 
mission, why re-invent the wheel? It should 
be noted that existing infrastructure is not 
alwavs cost efficient. Maintenance or 
personnel costs associated with outdated 
systems can negate their advantage. Each 
element must be individually evaluated on 
the basis of cost-efficiency. 

Commercial-Off-The-Shelf Systems 
Examine Commercial Off-The-Shelf 

(COTS) hardware and sofhvare systems for 
applicability to your program, again, on a 
cost efficiency basis. COTS systems have 
shown a tremendous growth in capability in 
recent years; low-cost programs can get a lot 
of bang for the buck compared to the devel- 
opment costs of custom systems. There are 
two major shortcomings of COTS systems. 
First, "COTS" elements for space mission 
applications are not the shrink-wrapped 
products we have come to expect in the truly 
commercial (i.e., PC) marketplace; they lack 
the smooth polish of a mass market product 
(e.g . , documentation, on-line technical sup- 

port) and must frequently be customized for 
each application. Make certain that the costs 
of these modifications are considered in the 
total cost of a COTS system. Second, many 
functions that are necessary to operate a 
complex space mission are not found in the 
COTS offerings. Straight-forward Teleme- 
try, Tracking, and Control (TT&C) opera- 
tions for a commercial satellite (such as a 
communications satellite) are significantly 
different from operations for a planetary 
exploration mission with complex planning 
tasks and command sequence development. 
COTS products tend to be stronger in meet- 
ing the needs of commercial users than sci- 
entific mission planners. 

Concurrent Engineering 
Use modern concurrent engineering de- 

velopment techniques. Traditional ap- 
proaches to  system development (re- 
quirement definition, specification devel- 
opment, preliminary and detailed design, 
fabrication, and test) are slow, cumbersome, 
and costly. Modern methods of system 
development such as concurrent engineering 
and rapid prototyping can be faster and 
cheaper. There are risks in this approach, 
however, the benefits generally outweigh 
these risks. For Discovery programs, higher 
risks must be tolerated to achieve the 
avowed goals of faster, better, and cheaper. 

Design for Operability 
Design the spacecraft and Mission 

Operations System for operability. Too 
often, flexibility and operability are rele- 
gated to the ground system and mission 
operations team to save development costs 
in the spacecraft. While this is an under- 
standable approach (complexity vs. reliabil- 
ity tradeoffs in the spacecraft favor simplic- 
ity), this may not be the optimal approach. 
In some cases, relatively minor changes in 
spacecraft or instrument design can signifi- 
cantly save in operations costs (sometimes, 
over and over again). For example, thermal 
and power robustness may eliminate the 
need for  complex analysis of every 
maneuver sequence, saving time and money 
in the development of sequence uploads. A 
mission level system engineer should have 
the authority and responsibility to perform 
such tradeoffs at a high level. 



System Commonality 

Build systems that achieve simplicity 
through the use of common architectures. 
Cost savings due to system commonality 
may not be apparent at the mission opera- 
tions level, but are observable at the pro- 
gram level. Many Integration and Test 
(I&T) functions are duplicated in the Mis- 
sion Operations System and vice versa. 
Why should these capabilities be developed 
twice? Using a common system design for 
Mission Operations (MO) and I&T saves 
money not only in design and development 
of the ground system, but in sparing, training 
of personnel, and staffing during test, 
launch, and mission ops. 

The division of operations costs between 
pre- and post-launch is mission dependent. 
Pre-launch development of operations teams 
and processes, personnel training, and sys- 
tem testing can be significant cost items. If 
the mission is short, or if it can be staffed at 
a very low level, pre-launch costs can be a 
significant portion of overall operations 
costs to the program. If the mission is long, 
complex, or both, post-launch costs tend to 
be the driver of overall costs. In the sections 
that follow, we shall show how intelligent 
application of pre-launch funding can signif- 
icantly reduce post-launch costs. 

Low Staffing Levels 
Minimize the number of personnel 

needed to operate the spacecraft during 
post-launch operations. The major post- 
launch cost item for most missions is per- 
sonnel. In most programs, the key to lower- 
ing operations costs is to reduce the number 
of people required to operate the spacecraft. 

Personnel reductions can be achieved 
merely by paying attention to the type and 
capabilities of personnel hired and the 
changes in skills needed during different 
phases of the mission. As teams become 
smaller, the competence and breadth of 
individual members becomes more impor- 
tant. Small teams can not afford to have 
members with specialized or limited skills'; 
every team member must contribute signifi- 
cantly to the overall productivity of the team 
for operations to be cost efficient. 

It is important to note that the skills 
required during design and development of 
the MOS are not the same as those required 
during post-launch operations. Personnel 
should be added as their skills are required 
and removed when their skills are no longer 
applicable to the needs of the program. This 
may conflict with the policies of some 
organizations, but is essential to controlling 
operations costs. Large institutions fre- 
quently utilize matrix management tech- 
niques that allow the program to draw from 
a broad mix of skilled personnel, paying 
only for the time charged to the program. 
Matrix techniques can be advantageous in 
the implementation of these practices. 

Spacecraft Autonomy 
Build spacecraft systems that. require 

minimal operations support. Perhaps the 
most obvious way to reduce operations cost 
is to build a spacecraft that does not require 
operations! The more autonomy built into a 
spacecraft, the less the MOS needs to do. 
The prevailing view is frequently the inverse 
-- the more the ground does, the less the 
spacecraft needs to do. Mission system 
engineering of the spacecraft and MOS 
offers the capability to partition require- 
ments between the ground and flight sys- 
tems. If the optimization goal is to minimize 
overall program costs, operations costs will 
generally be lower. Even if cost is not an 
optimization parameter, the consideration of 
mission operations issues in the design of 
the spacecraft will generally result in cost 
savings (due to operability enhancements). 
Frequently, the spacecraft design team has 
options that have little impact on the space- 
craft but significant advantage to mission 
operations. 

Spacecraft autonomy features which 
simplify operations include: telemetry moni- 
toring and alarming; processor memory 
management; anomaly detection, correction, 
and/or reporting; automated data handling; 
and multi-level autonomous safe modes. 
Each of these features are discussed below. 

Autonomous telemetry monitoring and 
alarming reduces the work load on ground 
personnel, especially if the MOS is designed 
to communicate spacecraft generated alarms 
to operations personnel immediately. This 



reduction in the need for ground system 
monitoring reduces the number of personnel 
and the frequency of contacts required. Dur- 
ing missions with long cruise phases and 
infrequent contacts, onboard alarming, cou- 
pled with storing alarm status in memory, 
can enable operations personnel to instanta- 
neously assess the state of spacecraft health 
since the last contact. This reduces the con- 
tact time required, the operations load, and 
thus, the total cost to the program. 

Automation of memory management 
allows the MOS to use lower fidelity models 
of onboard processors, thereby reducing 
development costs. Additionally, fewer 
commands are required for processor mem- 
ory management, reducing the costs of test- 
ing those commands as well as simplifying 
operations. 

Autonomous anomaly detection, correc- 
tion, and reporting is similar to onboard 
telemetry monitoring and alarming with 
respect to operations. The potential reduc- 
tion in operations workload and the increase 
in intervals between contacts results in a 
reduction in operations personnel. 

Autonomous data handling, in which the 
spacecraft processes, stores, and retrieves 
data by instrument or subsystem without 
detailed operator intervention, allows the 
operations team to use contact time more 
efficiently and send fewer commands, 
reducing the workload and cost of oper- 
ations. 

Multi-level safe modes allow the space- 
craft to assume intermediate modes of 
operation between fully operational and 
"cocoon" mode (minimal activity, awaiting 
ground command). For example, a failure in 
the data handling system may cause the 
spacecraft to shut down the data handling 
system, point the antenna at Earth (assuming 
guidance, navigation and control functions 
are unaffected), and await instructions. 
Allowing the good subsystems to remain 
operational means that the anomaly will be 
addressed more quickly than would other- 
wise be the case. This allows for longer 
intervals between contacts, which reduces 
operations loads and costs. This also 
reduces the time spent and the assets utilized 
in recovering from a failure. 

Ground System Automation 
Build ground systems that minimize per- 

sonnel requirements. The use of automation 
in the ground system can significantly 
reduce requirements on operations person- 
nel. Most apparent is the application of 
automated telemetry display and command 
generation capabilities. The use of high 
level command languages reduces opera- 
tions personnel requirements, as do inte- 
grated databases, graphical user interfaces, 
and automatic report generation and trans- 
mission capabilities. 

The next logical step in ground system 
automation is ground systems that 
autonomously receive, process, interpret, 
and respond to spacecraft telemetry. While 
totally automated operations are not yet fea- 
sible for scientific missions, many functions 
can be automated. Automated monitoring of 
telemetry can not only alert an operator to an 
out-of-bounds condition, it can spawn a pro- 
cess to advise the operator what to do (i.e., 
retrieve a contingency plan from a database), 
or even take action itself (depending on the 
nature and severity of the anomaly). Space- 
craft data trending and analysis can be 
highly automated, generating formatted 
reports and delivering them electronically to 
the correct parties at the appropriate times 
(e.g., at shift changes or on Monday morn- 
ings). Clearly, all of these capabilities can 
be used to reduce the personnel otherwise 
needed to perform these tasks. 

Advanced Technology 

Utilize advanced technologies, where 
applicable, to enhance productivity in 
operations. The application of advanced 
technology throughout Discovery class mis- 
sions has been mandated by NASA (the 
NEAR mission design predates this man- 
date, and NEAR is specifically exempted 
from this requirement). Advanced technol- 
ogy can reduce operations costs by enhanc- 
ing productivity, i.e., allowing fewer people 
to accomplish more work with fewer 
resources expended. Two ways in which 
advanced technology can be used to enhance 
productivity are: 1) advanced technology 
can enable the use of higher level interfaces 
to gain insight into data and processes, and; 
2) advanced technology can be used to assist 



in making decisions. The application of 
advanced graphical techniques to gain 
insight into complex data sets is called 
visualization; and the use of software to 
assist in decision making processes falls in 
the category of expert systems. 

Everyone has seen global maps with 
projected spacecraft ground traces, coverage 
circles of ground receiving sites, and per- 
haps time ticks indicating when a spacecraft 
will or did pass over a particular spot -- 
these types of displays were a staple of the 
highly publicized manned space missions of 
the 1960's. This type of display is a prime 
example of the use of visualization to 
provide insight into a complex data set -- in 
this case, the orbital ephemeris of the 
spacecraft, the locations and views of each 
of the ground network's tracking stations, 
and the time the spacecraft will be available 
for contact at each of the ground stations. 

Humans excel at the assimilation of 
visual information. The recent trend in 
returning to traditional watches and clocks 
from the digital variety is evidence of this 
phenomenon. People easily interpret the 
time of day from the angles of clock hands, 
whereas a digital clock requires assimilation 
and interpretation to understand. Computer 
graphics are a powerful tool for taking 
advantage of this characteristic of the human 
brain to reduce operations costs. The trend 
in operations systems is away from 
alphanumeric screens with numbers and 
cryptic mnemonics towards graphical dis- 
plays, including analog dials, graphs, and 
trees of color coded boxes representing 
spacecraft systems and subsystems, etc. 
Aircraft cockpits with modem CRT and flat- 
panel displays utilize representations of 
analog dials and "tape" gauges for the same 
reasons operations systems do; these dis- 
plays rapidly and intuitively present more 
information to the user more quickly than 
alphanumeric displays, thus allowing fewer 
people to monitor a complex system more 
efficiently and completely -- and with fewer 
errors. Fewer people mean lower costs, and 
fewer errors mean greater spacecraft safety. 

Expert Systems 
More advanced than visualization 

(already in use in operations centers, albeit 
sparingly) is the use of expert systems to 
assist in decision making processes. Rule- 
based expert systems are currently in use in 
some operations systems to assist in teleme- 
try monitoring and display functions. Rule- 
based systems may also be used in the near 
future to help diagnose spacecraft anoma- 
lies, again, based & inte6reting spacecraft 
telemetry. In artificial intelligence circles, 
however, rule-based systems have fallen out 
of favor because of their inherent lack of 
robustness; these systems can only apply 
pre-programmed rules to a known data set, 
and can be very difficult to adapt rapidly to 
changing conditions. For complex systems, 
the rule sets can get very large and difficult 
to manage. Finally, rule-based systems 
require ijill rules to be programmed before 
the system is very useful. 

Model-based systems are being investi- 
gated for spacecraft operations because they 
address these problems. Model-based rea- 
soning (MBR) methods use models of sys- 
tems and subsystems to make estimates of 
systems states. MBR allows incremental 
growth in capability as models are added, 
refined, or updated, and can provide answers 
that are both qualitative and quantitative. 
MBR can be used to diagnose problems 
based on spacecraft telemetry, but the mod- 
els can also be used to support analysis in 
the sequence generation process. 

Model-Based Reasoning appears likely 
to reduce MOS costs in two ways. First, it 
may allow the development of a single set of 
spacecraft models to perform planning, anal- 
ysis, and assessment functions, thereby 
reducing system development costs over 
traditional MOS designs. Second, it may 
allow fewer analysts to generate very com- 
plex spacecraft sequences with greater con- 
fidence, thereby reducing personnel require- 
ments while enhancing mission capability. 
MBR may be a suitable alternative to the 
building of costly hardware-based spacecraft 
simulators traditionally used for command 
sequence vetting. 



Figure 1. NEAR Ground System 

&ITSSTON OPERATIONS SYSTEM testing at GSFC, and prelaunch testing at the 

Ground Svsterq launch site. The ITOGS and MOGS are 
identical; by virtue of the interconnecting 

Figure 1 is a high level diagram of the data network called NEARnet, each has con- 
NEAR Ground System (NGS). There are trolled access to the spacecraft. 
six major ground facilities: the Mission 
Operations Center (MOC); the Ground Sup- 
port System (GSS); the Mission Design 
Center (MDC); the Science Data Center 
(SDC); the Mission Navigation Center; and 
the Deep Space Network (DSN), which is 
linked via NASA Communications 
(NASCOM) circuits at Goddard Space 
Flight Center (GSFC). 

Mission operations will be conducted 
from APL. Therefore, the MOC and MDC 
are located at APL. The principal equip- 
ment in the MOC is a suite of interface 
equipment and high-end workstations, 
including software, known as the Mission 
Operations Ground Segment (MOGS). 

The GSS includes a parallel construction 
called the Integration and Test Operations 
Ground Segment (ITOGS) as well as the 
Ground Support Equipment (GSE). The 
GSS is used to perform integration and test 
of the spacecraft at APL, environmental 

Science data received by the MOC is 
processed and passed on to the SDC, which 
further processes the data for dissemination 
to the science community. The Mission 
Navigation Center, located at the Jet Propul- 
sion Laboratory (JPL), provides navigation 
data and products to the MOC, the SDC, 
and the MDC. 

The NEAR Ground System maximizes 
the use of existing infrastructure, including 
the DSN and NASCOM. The DSN is used 
for all TT&C for NEAR. Operated by JPL, 
the DSN is a ground network primarily used 
for interplanetary missions, with ground sta- 
tion complexes in Barstow, California, 
Madrid, Spain, and Canberra, Australia. 

Access to the DSN is provided via 
NASCOM. NASCOM will be used for vir- 
tually all NEAR communications. This 
includes extensions of the NEARnet to the 



ITOGS as it moves with the spacecraft to 
GSFC and to the Kennedy Space Center 
(KSC) and Cape Canaveral Air Force Sta- 
tion (CCAFS). The cost effectiveness of 
using NASCOM for NEAR is multiplied 
because the arrangements for its use are 
provided by the DSN as a service. 

A third major use of existing infrastruc- 
ture is internal to APL. As discussed, the 
workstations, GSE, and peripherals of the 
MOGS and ITOGS are tied together as one 
large system via the NEARnet. Within 
APL, NEARnet uses an existing ethernet 
communications system called the APL 
Network Information System (APLNIS). 
APLNIS is ubiquitous throughout APL and 
supports multiple interface configurations. 
APLNIS supports TCPIIP protocols and has 
an existing connection to Internet, which 
provides off-campus access to the SDC. 
Connections of the ITOGS and MOGS to 
the APLNIS will utilize a router to provide 
protection against unauthorized access to 
spacecraft control and telemetry. 

It should be noted that the NEAR space- 
craft conforms to the standards of the Con- 
sultative Committee on Space Data Systems 
(CCSDS), and will be the first spacecraft to 
use CCSDS for uplinking. In using this 
system, NEAR is effectively making use of 
another set of existing infrastructure that 
results in reduced costs within the NGS. 

Commercial-Off-The-Shelf Systems 
An important aspect of the NGS imple- 

mentation approach is the use of COTS mis- 
sion operations systems. Although this 
industry is still young, a number of available 
systems offer capabilities in one or more 
aspects of spacecraft telemetry processing, 
performance assessment, and command and 
control. The core of the NGS is COTS. 
This core provides telemetry monitoring, 
alarming, and archiving, as well as 
spacecraft command and GSE control. Two 
systems are being procured for the MOGS 
and ITOGS; when augmented with 
additional workstations and custom software 
developed by APL, they will constitute the 
ITOGS and MOGS. 

The core system includes a VME-based 
front-end, a workstation, and peripherals. 

The front-end provides the telemetry and 
command interfaces to the spacecraft (or 
more correctly, the spacecraft GSEs and/or 
the DSN via NASCOM) as well as realtime 
decoding, error correction, and data handling 
required to provide data for display on 
operator workstations. Workstation process- 
ing includes calibration, engineering unit 
conversions, display, alarming, and com- 
mand script generation. Workstations may 
analyze realtime or archived data, or a 
combination. A large number of worksta- 
tions can be supported on the NEARnet, and 
as described previously, these can be located 
anywhere. 

Like many other current COTS systems, 
the NEAR MOC and GSS use networking 
and distributed processing. In each area, the 
workstations, peripherals, and command and 
telemetry interfaces are merely logical 
groupings of equipment on the NEARnet, 
with equal access to all data whether it 
enters the system via the MOC or the GSS. 
Each workstation has equal access to the 
"front end" of either area. The look and feel 
of the system remains the same in all 
locations; the parallel nature of the 
networked system provides a mutual backup 
capability. 

This networked architecture permits the 
system to take advantage of distributed pro- 
cessing. The NEAR MOS has no large cen- 
tral computer with the resultant interference 
and speed problems as different worksta- 
tions access and run processes on the central 
facility. These workstations simultaneously 
and independently run different processes on 
the same or different realtime or archived 
data. This permits a single database (e.g., 
telemetry and command dictionaries) to be 
accessed from any workstation, preventing 
the problems of maintaining multiple dictio- 
naries. Incremental growth in the ground 
system can be easily accommodated without 
disrupting existing (operating) components. 

The NEARnet extends beyond the 
MOGS and ITOGS, providing controlled 
(authorized) access to selected data on the 
NEARnet by other workstations or PCs. 
One recipient of data is the Science Data 
Center (which also has workstations and 
peripherals connected to the NEARnet). 



The SDC is given essentially raw science 
data at the CCSDS Transfer Frame and 
Packet level and provides various levels of 
processing to generate products for the sci- 
ence community, which* accesses these 
products via the NEARnet. Off-campus sci- 
ence teams may obtain access via the Inter- 
net. Two other Centers have access to the 
NEARnet Science Data Center. These are 
the Mission Design Center and the Mission 
Navigation Center. 

One additional aspect of the-ITOGS and 
MOGS worth noting is the use of an open 
operating system. All of the commonly rec- 
ognized advantages of this approach are 
realized for NEAR. For example, access to 
commercial software is maximized; in-house 
software can be developed on non-NEARnet 
workstations or PCs with minimum prob- 
lems in transporting these to MOS worksta- 
tions. Further, the NEARnet configuration 
is much more supportable and expandable 
over the life of the mission. 

Common architecture for I&T and MO 
It is important to note that the MOGS 

and ITOGS are identical in configuration, 
software, hardware, and command and 
telemetry capability. This is significant in at 
least two aspects. First is the reduced devel- 
opment and maintenance costs resulting 
from identical workstations, front-end 
equipment, and peripherals. Because a 
single system design and architecture is 
used, overall complexity and design effort is 
reduced, as is the number and cost of pro- 
cured components. Additionally, spares and 
maintenance costs are minimized. 

The second significant aspect of using 
identical systems for I&T and MO is that the 
spacecrafi will be flown as it was tested. 
The look and feel of the two segments is the 
same to the user. Since both sets of front- 
end equipment are also identical, (each sup- 
porting the three modes of interface with the 
spacecraft: RF GSE, umbilical GSE, and via 
NASCOM and the DSN), and since either 
can be accessed from a workstation in either 
the MOGS or ITOGS, the only distinction 
between the two is established by access 
authorization. While I&T activities will be 
principally controlled from the ITOGS due 
to its proximity to the spacecraft and GSE, 

considerable capability exists, and will be 
utilized, to exercise the spacecraft from the 
MOC during the I&T phase. When this 
commonality of hardware and software is 
considered in light of the current plan to 
have a number of mission operations per- 
sonnel involved in integration and test, the 
transition from I&T to MO should be as 
seamless as is achievable. This blending of 
traditionally separate and distinct functions 
significantly reduces the total cost and 
development time for the ground support 
elements of the NEAR mission while 
improving the quality and reliability of the 
overall product. 

SUMMARY 
This paper began with a discussion of 

low cost mission operations, including a 
number of specific recommendations for 
controlling costs. These are summarized 
below: 1) Always take advantage of existing 
infrastructure where cost efficient; 2) Use 
Commercial Off-The-Shelf hardware and 
software systems where applicable and cost 
effective; 3) Use modern concurrent engi- 
neering techniques; 4) Design the spacecraft 
and Mission Operations System for oper- 
ability; 5) Build systems that achieve sim- 
plicity through the use of common architec- 
tures; 6) Minimize the number of personnel 
needed to operate the spacecraft during post- 
launch operations by building spacecraft and 
ground systems that minimize personnel 
requirements, and; 7) Utilize advanced tech- 
nologies, where applicable, to enhance pro- 
ductivity in operations. While these simple 
statements may seem obvious, they are fre- 
quently forgotten or overlooked as heritage 
often dictates the design and implementation 
of the MOS. 

The second part of the paper included a 
description of the NEAR MOS and ground 
system with an emphasis on those elements 
of the system design that contribute to low 
cost operations. In the case of NEAR, we 
were able to apply almost all of the practices 
discussed in this paper. It is our hope that 
NEAR Mission Operations will introduce a 
new way of doing business for Discovery, 
and that this will lead others to identify even 
better approaches to controlling costs in 
today's cost-constrained environment. 
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ABSTRACT 

In order to keep the cost of a complete small scientific satellite programme low, it is necessary to rninimise the 
cost of the Ground Station Operations and Support. This is required not only for the operations and support 
per se, but also in the development of Ground Station hardware and the mission associated software. Recent 
experiences at the Rutherford Appleton Laboratory (RAL) on two international projects, IRAS and AMPTE, 
have shown that the low cost objectives of operations using smaller national facilities can be achieved. This 
paper describes the facilities at RAL, and the n~cthods by which low cost support are provided by considering 
the differing in~plications of hardwarelsoftware system modularity, reliability and small numbers of dedicated 
and highly skilled operations staff. 

INTRODUCTION 

Rutherford Appleton Laboratory (RAL) is part of the UK Engineering and Physical Sciences Research Council 
(EPSRC) - formally the Science and Engineering Research Council (SERC). RAL has a long history of Space 
Science and Technology going back to the early 19601s, and in more recent times RAL has had TT&C 
responsibilities for a number of space tnissions. In 1983, RAL operated the Infra-Red Astronomical Satellite 
(IRAS) on behalf of NASA, SERC and the Dutch Aerospace Agency NIVR. Operations with IRAS covered all 
aspects of ground System work, including Mission Planning, Command Generation, Satellite Control, Data 
Reception, Satellite Health Monitoring, and Detailed Science Analysis. The mission lasted for 10 months, and 
operations went flawlessly, with no passes being missed. In 1984, the Ground System was re-configured for 
operations on the Active Magnetospheric Particle Tracer Explorer (AMPTE) mission. AMPTE was a UK 
sub-satellite operating as part of a NASA, UK, West German mission. Unlike IRAS (which was in a 
sun-synchronous orbit), AMPTE was in a hi~hly eccentric orbit, taking apogee out to 200,000 km, giving 
real-time operations of up to 14 contini~ous hours per day. In both those missions, hardware, software and 
operations were developed and run by a closely-knit group of experienced space engineers, all contributing to a 
cost-efficient operational progranme, even though in the case of IRAS it was not classified as a 'small' mission. 

The RAL Ground Station is currently being re-configured again for operations with Small Satellites. Data 
reception monitoring will begin shortly on the Space Technology Research Vehicle (STRV) program. STRV is 
a UK Ministry of Defence mini-satellite, operating at S-band frequency. Once the downlink end-to-end system 
has been checked out, RAL will finalise plans for complete end-to-end, low cost operations on another 
mini-satellite programme, called BADR-B. BADR-B (Urdu for full-moon) is a Pakistan mini-satellite 
programme managed by the Space and Upper Atmosphere Researchf Commission (SUPARCO) in Karachi. 
Due for lauilch in 1995, BADR-B \\.ill be placed in a near-polar orbit at an altitude of about 800 km. Prime 
operations will be run from Karachi and Lahore in Pakistan, and UK operations will be run from RAL, using 
an ultra-low cost approach as defined in the remainder of the paper. 



THEMES FOR LOW COST OPERATIONS 

The starting point in defining the requirements on the Ground Station is to consider what the User actually 
needs (as well as what he wants, which may not necessarily be the same!). Overall, a rough guide to the main 
requirements may be considered as: 

Lowest possible cost, but reliable operations (not missing passes or losing data), fast return of critical 
data, regular return of bulk data, rapid response for critical commanding and ease of access to data 

In order to achieve the low cost goal, it is not, however, unreasonable to expect some compromises to be made. 
These may include: 

Acceptance of occasional (1 in 20?) lost passes, acceptance of some (5%?) lost data, and/or non-rapid 
return of non-urgent data 

With these ground rules understood, we can look at some of the potential areas of cost reduction. 

COST REDUCING SCENARIOS 

The cost of mission operations represents a significant portion of the total programme costs, often 20 to 30%. 
Thus the ground segment configuration (ie. hardware, software) and the operational modes (ie. complexity) 
have a significant influence on total costs and must be given serious consideration in overall system design. 

The ground segment fulfils several functions: 

- mission planning, including command preparation and validation, 

- tracking, telemetry and command (TT&C) interface with the satellite, 

- status and health monitoring of the satellite, 

- reception of mission data via satellite telemetry, 

- initial pre-processing of the data prior to distribution from the operations part of the ground segment to 
the user for final processing and analysis, 

use of EGSE before and after launch. 

The following are some general considerations concerning the ground segment configuration and operation. 

System modillaritv 

In exactly the same way that satellite costs can be significantly reduced by greater use of common modularised 
subsystems, ground system configurations can also be modularised. Instead of developing individual EGSE 
(Electrical Ground Support Equipment) and Ground Segment equipment for every instrument and/or satellite, 
there are now being developed standardised off-the-shelf equipment that can subsequently be customised to the 
individual needs, at much lo\\ler cost. Within the ground system itself, computing power is sufficient these days 
to combine the tasks of TT&C into a single low-cost workstation. Of even more potential benefit is the reuse of 



previous mission software for many of the data analysis functions. As an example of this, the data analysis 
software for the JET-X instrument, which will fly in 1995 as part of the Spectrum-X mission, is almost entirely 
based on software developed for the ROSAT niission launched in 1990. This scenario alone has cut the 
software development cost for this mission by a factor of three. 

National facilities 

Probably the greatest potential for cost reduction of the ground system is by making greater use of national 
facilities. Agency facilities are clearly required for large (manned and unmanned) missions, but are often too 
cumbersome and inflexible for small missions. It has usually proven far more cost-effective to employ national 
facilities - ideally utilising just a single ground station. For instance, the two European AMPTE spacecraft 
were controlled from single stations in Germany and England, respectively. The UK station was developed at 
very low cost by updating the original IRAS control centre to the requirements of the AMPTE mission. 
Although new software and operational procedures were necessary, very little new hardware was required. As 
an example, the 12 m S-band tracking station and control centre at the Rutherford Appleton Laboratory can be 
used for TT&C on an "as required basis", the operations staff being redeployed to other tasks during non-active 
satellite periods, thus significantly cutting down tlie running operations costs even for satellites producing many 
hundreds of Mbitslday. Similarly, for low-cost satellites producing kbits rather than hlbits of data, it is now 
possible to receive data using rooftop antennae and to command~receive using desktop PCs. 

Reliability versus cost 

For larger missions, it has always been normal practice to masimise the reliability of the ground system despite 
the associated increase in co$t. This is not unreasonable for man-rated missions, but is often an unnecessary 
expense for most other missions. There is a very sizeable potential reduction in cost to be obtained by 
accepting just a small reduction in system reliability. It is proposed here to agree "up-front" that a small 
percentage (perhaps 5%) of satellite passes can be lost through ground system outage. This may (though not 
necessarily) lead to some data loss, but even so a data loss of a few percent is not usually significant. By 
agreeing to this reduction in reliability, the level of hardware redundancy (and perhaps software complexity) 
required in the ground system can be significantly reduced, and hence the cost is lower. Likewise, if the number 
of passes required per day to support the mission operation can be reduced through a slightly less than optimal 
coverage programme, the cost of operations can also be reduced. 

Data availability 

There is no doubt that for all missions it is essential to be able to process some subsets of the data in Real-Time 
andlor Near Real-Time. Ho\vever, the less data that has to be processed in this manner the simpler the 
immediate ground system coniplesity becomes. For the majority of small satellite missions, it should only be 
necessary to process instrument/bus health data as a matter of urgency, thus decoupling the task of satellite 
"operations" from that of off-line data processing. 

Data transfer 

There are basically two different methods of transferring data from the operations part of the ground system to 
the user or data processing centres. The first (and ~iiost expensive) is via one of the many space or terrestrial 
data links. This is the common route for most satellite data and gets the data to the end user very quickly. 
However, it is more often the case that although tlie end user likes to have this data "as quickly as possible" it is 
not often an absolute necessity. In this case an alternative route via mailed magnetic tapesloptical disks can be 



just as satisfactory; possibly some (small) percentage of the data can still be transmitted via a low bandwidth 
(and lower cost) data link; it is important to try to avoid the exclusive dedicated use of these links as this too 
adds to the cost. 

Data access 

There are as many different philosophies regarding methods of data access as there are concerning designs of 
satellite. Generally however, the most cost efficient and practical method is the concept of a Centralised Data 
Handling Facility which is accessible by users over local data networks. This concentrates the pipeline data 
processing in one place, whilst allowing the individual users both to develop their own specialised software and 
to make full use of centrally developed software. 

With these principles addressed, we now look at the Ground Station and Operations facility at RAL. 

RAL GROUND STATION HARDWARE 

The Science and Engineering Research Council's Rutherford Appleton Laboratory ( h ~ )  operates a Ground 
Station and Control Centre on its site at Chilton, Oxfordshire, UK. (5 1.57'N, 1.3 1°W). 

Fiy. 1 RAL 12 m Antenna 
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The main antenna is a transportable 12 metre S-band cassegrain instrument (Fig. 1). Built in 1965 by the 
North American Aviation Company for the ATS project, it was re-commissioned in 1980 on the Chilton site as 
the prime antenna for the joint UWUSIDutch mission IRAS (low-Earth polar orbit). 

Antenna Svstem 

The main reflector of the antenna is a hyperboloid section, made with 20 petals constructed from 2 in thick 
aluminium honeycomb and faced with aluminium sheet. The reflector, the radio frequency feed, cassegrain 
sub-reflector and equipment cabinets are supported on elevation over azimuth bearings at the top of a 
cylindrical steel pedestal. Three tubular steel legs provide support for the pedestal and, with screw jacks, allow 
accurate levelling of the antenna structure. The whole antenna weighs approximately 32 tons. Attached to the 
edge of the main reflector is a 1.2 metre diameter paraboloid antenna which, because it has a wider beamwidth 
(ie. field of view) is used to locate satellites whose position is uncertain. 

The radio frequency feed mounted at the vertex of the main reflector is a complicated waveguide structure. It is 
able to transmit and receive simultaneously at S-band frequency, in either right-hand or left-hand circular 
polarisation. In the receive mode, three output ports are available: one is the channel containing the received 
signal, the other two provide error signals (one each for azimuth and elevation axes) so that, with a servo loop, 
the antenna can lock on to an incoming transmission, allowing very accurate tracking of selected satellites. In 
addition to this autotrack mode, the antenna can be driven along a predicted path by computer. 

The pointing error of the antenna is approsinlately 1 arc minute. The success of the antenna, as a machine for 
tracking moving sources, depends ultimately on the quality of the servo mechanism. The electric drive system 
incorporates two motors per axis and a redcsigned set of servo amplifiers, aimed at maintaining the peak 
tracking error within 6 arc minutes, at mean wind speeds of up to 30 knots. Tests have shown that this figure is 
easily met and a typical peak tracking error is 2 arc minutes in a mean wind speed of 20 knots with gusts above 
30 knots. 

A summary of the technical details of the antenna are as follows: 

Mechanical 
Cassegrain configuration 
12 m diameter paraboloid primary reflector, f/d ratio 0.325 
1 m diameter hyperboloid secondary reflector 
Eccentricity 1.4 13 
Main reflector surface accuracy 0.89 inm rms 
Mount: elevation over azimuth, Azimuth rotation * 270 deg , Elevation rotation -5 deg to +95 deg 

Drive 
Electronically servo-controlled electric motors 
Two motors in tandem in each axis 
Static pointing accuracy * 3.5 sec arc nns, Tracking accuracy * 2 min arc rms 
Velocity, azimuth and elevation 7 deglsec mas 
Acceleration, azimuth and elevation, 4 deg/sec2 mas 
Modes of operation: Standby, Mantlual or Progra~n-Track 

Data output: Position encoder 20 bits, Accuracy * 1.23 sec arc 



RF Transmit Receive 

Antenna gain 45.8 dB 46.5 dB 
Beamwidth (3 dB) 0.9 deg 0.8 deg 
Nominal frequency 2075 MHz 2253 MHz (IRAS) 
Transmitter power into antenna 10 watts 
Max side lobe - 18 dB from main lobe 
System noise temp 115 K at zenith 
Feed: Four horn monopulse 

Left or Right hand circular polarisation receive and transmit 
Output: 3 channels - sum and two orthogonal error channels 

Acquisition Aid 

1.25 m diameter paraboloid reflector (fixed to rim of main antenna) 
Receive only 
Antenna gain 26 dB 
Beamwidth 6 deg 
Nominal frequency 2253 MHz 
RH circular polarisation 
Output: 3 channels - su111 and two orthogonal error channels 

The receivers and exciters were previously sited at the NASA STDN ground station at Madrid and were used 
on the Apollo programme. They are based on the NASA unified S-band system. 

The system comprises: 

(1) Two identical receivers with a common phase reference generator, 

(2) Two identical transmitters with a common phase modulation drive, 

(3) An RF path-switching sub-system, 

(4) The Control and Monitor sub-system, 

( 5 )  The Calibration and Test sub-system. 

These sub-systems are physically distributed between an inner cabin on the antenna pedestal (S-band 
components, adjacent to the antenna feed), outer equipment cabinets, also moving with the antenna, and the 
remainder within the Operations Control Centre about 250 m from the antenna pedestal base. Almost all of the 
OCC sub-systems operate at 50 MHz and below (Receive) and 65 MHz and below (Transmit). However, 
low-loss coaxial feeder is used between OCC and antenna. 

Each receiver comprises three channels. 'The ReferenceITelemetry Channel establishes carrier phase-lock, 
supports wide-band (Dump) telemetry and outputs video TLM. Two Angle-Error Channels detect the angular 



deviation from antenna boresight in the X and Y planes relative to the antenna feed, and output error signals for 
feedback to the antenna servo drive to establish autotrack. 

Each transmitter comprises a multiplier chain to raise the phase-modulated RF drive to the Uplink frequency 
and a stage of power amplification to produce the final RF level of 10 W into the diplexer. 

An associated Translator unit samples the outgoing Uplink and converts this to the Downlink frequency, as a 
Test Input to the down-conversion stages of the receiver. The common phase-modulation drive is derived from 
a VCO, tripled and modulated with the Command Sub-carrier which is itself modulated with command 
messages generated in the computer. 

Control Centre Equipment 

Equipment located in the Control Centre coinprises a Unified S-Band (USB) TT&C set, PCM bit conditioners, 
a time standard, two wide-band instrumentation tape recorders and test gear. Control of the antenna and 
handling of the telemetry is accon~plished with two desktop computers, which monitor the status and health of 
the Ground Station and satellite as well as generating the satellite commands for uplinking during each pass. At 
the modest data rates generated by small satellites, modem desktop PC's are quite capable of acquiring 
telemetry and processing it in real time, using hard disk as the primary storage medium. 

Ground Station Performance 

During the IRAS Mission, the antenna system successfully tracked over 1500 consecutive passes. Following 
the IRAS mission, the system was reconfigured for operations with the UK sub-satellite of the AMPTE mission 
(apogee 125,000 krn), where passes over several hours duration were taken every day of the mission. 
Additionally, the ground station has been used to track several other spacecraft including LANDSAT-IV, IUE 
and EXOSAT. In all cases, command and control down to 8' elevation is possible, and for the majority of 
cases elevation down to 2%' is possible. 

GROUND STATION SOFTWARE 

It is a traditionally held view that ground soR\\?are has to cope with all of the problems which have been left by 
the hardware engineers. This may always be true to a certain extent, but the trade-offs for low cost need to be 
made in a detailed way early in the planning of a mission. A number of early decisions may, on the one hand, 
allow the in-flight component to be simplified, but at the expense of more complex operations and software. 
Alternatively, decisions on whether to adopt for instance, a standard telemetry format (CCSDS) would permit 
standardisation of ground software and minimal changes for successive missions. Thus the ground segments 
should always be considered to be an essential, integrated part of the mission right from the start. 

Advantage can be taken of the increasing power and modularity of computers, both on the ground and in space. 
Thus, there is an opportunity to provide flexibility on-board the satellite to reduce data telemetry volumes, 
without the fear, which has existed up to the present, that irrevocable techniques could lead to at least partial 
mission failure if the instrumentation subsequently performs unpredictably. On the ground, sufficient checks 
can be built in to permit the use of autonlated passes, eliminating the need for expensive shift working. 
However, for this to be viable, the hard\vare design has to build in this requirement from the start and the 
control station hardware and software also. 



The experience of RAL on many scientific missions has been that high efficiency and low costs can be achieved 
by using highly qualified and experienced staff throughout the design, development and operation of the ground 
systems. Despite the additional costs per staff year, there are significant gains in productivity from adopting 
this philosophy. Team members are selected to ensure a mixture of backgrounds in operations, formal 
computing training and research in the subject area of the spacecraft. Benefits are seen to be greater 
motivation, a strong understanding of mission objectives, which in turn makes the teams very adaptable and 
capable of proposing and implementing solutions to problems. Producing systems which the team themselves 
will have to run is a strong concentrator of the mind and the considerable costs of training and detailed 
documentation as the project progresses are significantly reduced. 

It is not only in formatting that the adoption of standards can be of benefit. The existence of cosrdinated 
national facilities in the UK such as Starlink in the Astronomy area and the British Atmospheric Data Facility 
(formerly GDF) has also led to standardisation of data handling tools and data bases, allowing the reuse of 
software for analysis despite the widely differing instrumentation being flown. More could be done to exploit 
these universal tools, but a start has been made, although each project may have to accept compromises and 
possible lower perfomlance if the goal of minimal new software is to be achieved. 

CONCLUSIONS 

It has been shown that mission costs for the Ground System can be significantly reduced by making just small 
compromises in data return, together with standardisation of hardware and particularly software subsystems, 
and in greater use of National facilities. 
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New concepts must be implemented when 
designing a Ground Segment (GS) for small 
satellites to conform to their specific mission 
characteristics : low cost, one main instnunent, 
spacecraft autonomy, optimised mission return, 
etc ... This paper presents the key cost drivers 
of such ground segments, the main design 
features and the comparison of various design 
options that can meet the user requirements. 

Key words : Small satellites, Ground 
Segment, Mission Control, Data Acquisition. 

1- Introduction 

The Ground Segment for control of the 
spacecraft and for exploitation of their data 
represent a growing part in the space mission 
budgets. Therefore it has been considered 
important by Industry and by such Agencies as 
ESOC (1) and CNES (2) to review the state of 
the art for the Ground Segments that support 
the SmaIl Missions, to understand the possible 
degree of optimisations and the cost 
implications. 

Small satellite missions usually consist of one 
or two instruments aboard a small spacecraft 
thanks to technology progress. The 
development time frame and the programme 
costs are major drivers that will have to be 
fully considered for the definition of Ground 
Segment development and operations. The 
main driver to optimise the design while 
considering the cost constraints is thus to 
consider the space system (Figure 1) as a 
whole and to think integrated system. 

DESIGN 

Figure 1 : Concurrent Engineering 
for Ground Segment design 



The paper presents the cost drivers to be 
examined when designing a Ground Segment, 
the typical overall Ground Segment design 
characteristics and the main latitudes for 
optimisation. Finally the emphasis is placed on 
the definition of major Ground Segment 
elements, the Mission Control System and the 
Ground Stations to highlight where an 
optimum design can stand. 

2- Mission related cost d ~ v e r s  

Since the cost constraints must be considered 
from the beginning, it is necessary to analyse 
where lay the cost drivers for ground segments. 
The cost drivers may vary from one mission to 
the other, may depend a lot on the category of 
service proposed by the mission : data for 
scientists, commercial service for 
telecommunications. However some general 
trends have been highlighted from examination 
of a number of conventional missions and of 
small missions. 

For a typical observation small mission (Table 
I), the GS design must consider with specific 
attention all requirements that may impact the 
number and definition of the Ground Stations 
and the Flight Dynamics functions on-ground. 
In this example, the Ground Station and Flight 
Dynamics elements have a sizing costs within 
the Ground Segment costs. 

The accuracy of orbit restitution needed for 
payload data processing is a characteristic of 
this mission that directly impacts the flight 
dynamics processing on-ground. The ground 
station is a unique S-band station that supports 
both the Payload and the TWTC housekeeping 
data. The other elements have a lower 
importance since either based on reuse of 
existing components or based on a limited 
development for a simple mission : for 
example, the mission planning function is 
limited due to only one payload instrument 
with no direct interaction with the users who 
require a systematic observation. 

Satellite Pointing requirement 
RF Payload constraints 1 
SATELLITE DESIGN 
Orbit control 1 2 
Attitude control 2 3 2 
TMJTC interfaces 1 
RF design 3 
Data rates/response times 4 1 1 1 
Number/~~mplex Ops modes 1 1 

Table 1 : Typical Cost Drivers for a small satellite mission (Observation) 

826 



The methodology followed was to identify 
what are the requirements that can impact the 
Ground Segment Design. In relation with the 
Users, the following requirements are identified 
as having a significant impact : the Mission 
Purpose that defines mainly coverage (image 
size, trajectory), resolution and duration of 
observation, the permitted mission outage 
expressed in possible interruptions of on-board 
service or observations, the availability of 
payload data criterion corresponding to the 
delay between the observation on-board and 
the time of reception of data at user site. The 
Mission Analysis then considers these 
requirements and the characteristics of a space 
system to derive such characteristics as the 
mission lifetime, the satellite pointing 
requirements or the RF payload constraints 
(e.g. number of ground stations, RF band 
selection). From the Mission Analysis a 
Spacecraft &sign will also impact the Ground 
Segment &sign with such requirements related 
to orbit control, attitude control, TMITC 

interfaces defmition, data rates and response 
times, RF links characteristics and link budget, 
number and complexity of operations modes 
that will have to be handled from the ground. 

For comparison an observation conventional 
mission is considered : the GS costs are equally 
shared between the Ground Stations and 
Comms development, the Mission Planning 
and the Satellite Control Centre. For such a 
conventional mission, the main cost drivers 
were impacting most elements in a more 
distributed fashion as shown per Table 2. 

The above elements must be given full 
consideration, when performing the necessary 
iterations between the Ground Segment design, 
the costs, the operations and satellite definition. 

The main Ground Segment design 
characteristics for a small mission are now 
highlighted. 

Table 2 : Typical Cost Drivers for a conventional satellite mission (Observation) 
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Conventional SATELLITE MISSION 
GS DEVELOPMENT COST 
(Most sizing cost driver graded 5) 
USERS REQUIREMENTS 
Mission purpose 
Permitted mission outage 
Availability of payload data 
MISSION REQUIREMENTS 
Mission Lifetime 
Satellite Pointing requirement 
RF Payload constraints 
SATELLITE DESIGN 
Orbit control 
Attitude control 
TMITC interfaces 
RF design 
Data ratedresponse times 
Number/complex Ops modes 

Flight 
Dynamics 

2 

1 
3 

2 
3 

1 

Ground 
Stations 

3 
2 
1 

1 
2 
2 

1 
2 
1 
3 
3 

Comms 
Infhstruct. 

2 
1 
1 

1 

3 

Mission 
Mission 
Planning 

3 

1 

Control 
lTC 

processing 

1 

1 
1 

1 
2 

1 
1 

Other 
functions 

1 

1 

1 



3- Ground Sewent dsign 

The Ground Segment design for a small 
mission must be such as to support the overall 
mission, but with much emphasis placed on 
costs aspects both for development and for the 
typical 3 years mission duration (2 to 5 years 
depen'ding on the mission). 

A first major trend of the design will be to 
d s e  the use of existing components in the 
ground infrastructure : this trend limits the 
development costs and the maintenance effort 
since the hardware is based on off-the-shelf 
items and the software is flight proven in other 
programmes. This is why an important design 
effort will be dedicated to the overall 
architecture definition to identify the building 
blocks, to define their interfaces and the 
missing elements, and last but not least to react 
on requirements whenever it is felt to simplify 
the design while meeting the overall mission 
objectives. 

To design a Ground Segment with building 
blocks will be more easily achieved if the 
system is built as a distributed system. And 
since cost efficiency for operations is an other 
major criteria, the collocation of the Ground 
Segment facilities must be enforced. Therefore 
a typical Ground Segment design for a small 
mission will be based with its components 
collocated around a Local Area Network 
(Figure 2) : Ground Station, Satellite Control 
System, Flight Dynamics, Mission Planning, 
Payload Preprocessing with the capabilities to 
communicate payload data to users either by 
mail or by communication links. 

For small missions, the availability 
requirements can be less stringent than in 
conventional missions. No hot redundancy will 

be implemented as a rule : as experienced in 
conventional missions, it is costly since it 
requires more hardware, automatisms, specific 
procedures adding to the complexity of 
operations, documentation, training and 
maintenance. 

Figure 2 : Typical design for a Small Satellite Ground Segment 
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The other main features of the GS design for 
small missions are : collocation of Eacilities, 
reduced staffing, use of pmven off-the-shelf 
hardware and software, automation of routine 
operations, compliance to standards (e-g. 
CCSDS and ESA COES) to enf- further 
commonalties for reuse. Table 3 hereafter 
compares the main features for a Low Cost 
ground segment option, for a Lower risk 
ground segment option and for the design 

attached to a conventional mission. The Lower 
Risk option will mainly differ from the Low 
Cost option in the operations concept that wiU 

provide a higher security level for operations 
and a higher mission availability. 

How the Lower Risk option can best meet the 
overall mission requirements and what are the 
possible risks attached to a Low Cost option 
are given a preliminary answer in the following 
section. 

Table 3 : Main features for the overall GS Design 

STATION Design 

MCS Design 

4- Ground segment optimisation 

The allocation of costs for a Ground Segment must 
be carefully considered to select design options that 
will rnaximise a mission return criteria, i.e.. the 
amount & quality of data versus the investment. 

Standard products, 
small antennae 

Reuse existing packages 
Minimum adaptations 

Typical costs allocations are shown for a 
Telecomms conventional mission (Figure 3) and 
for a Small Mission (Figure 4). The total GS cost 
includes the following costs : Ground Stations & 

Comrns, Mission Control System, Prelaunch 
operations (Flight procedures preparation, MCS 
database definition and validation, ground and 
flight operations validation and rehearsals) and a 
normalised period of 3 years operations. 

In the conventional mission example, the Ground 
Stations costs were important due to the number of 
antennae considered and to a 11 meter antenna 
supporting accurate angular measurements. The 
ground station cost for the small mission was 
limited since VHF/UHF data links were considered 
both for payload messages (less than 20 Kbps) and 
for housekeeping TWTC with no ranging 
requirements imposed on ground other than 
processing the on-board GPS transmitted data. 

Idem + reuse 
of a station network 

Reuse existing packages 
More tailored to ops 

With these characteristics a significant cost of the 
small mission Ground Segment corresponds to the 
operations costs. Therefore it is important to 
analyse how these costs can be reduced and how 
this reduction can impact the GS availability and 
the risks for operations. 

New development 

New development 
Many ops requirements 



GS & Operations costs 

W@y-) 
23% Q-cud 

stalim & 

PrelcLnchcp 
Ccmrs 

43% 
11% 

Mssim 
Ccntd 
23% 

Figure 3 : Cost break-down for a Telecomms Conventional mission 

T elecommb : Low cost option 

I 

Figure 4 : Cost break-down for a Telecomms Small mission 



Figure 5 below presents a typical example of a 
GS availability as a function of the GS total 
cost for typical GS options with different 
design, maintenance and staffing orientations. 
The availability was computed using 
equipment failure rates and mean time to repair 
as checked during several years of operations 
and the time for intervention considered for 
exploitation. The main difference between 
options availability characteristics proceeds 
from this time for intervention, i.e. time spent 
between the occurrence of a failure and the 
staff performing failure detection, investigation 
and replacement of the faulty equipment. With 
today's GS equipment high reliability figures, it 
is the exploitation characteristics that mainly 
drive the GS availability. 

In the Low Cost option, staff is only available 
during working hours. In the other option (Low 
cost/24 Hours, ESOC reuse, Low risk) only 

the design is different when the staff is 
available day and night, including week-ends to 

react to any ground failure detected with spare 
equipment available for ground equipment. 

The Low Cost option is interesting since it 
presents a substantial cost advantage of about 
3 MAU with respect to the other options and a 
higher mission return per cost unit (defined as 
the amount of data a user can expect over the 
mission duration, and therefore proportional to 
the GS availability figure). From the user 
perspective the mission return is 2% lower but 
the sensibility of theses availability figures and 
their statistical meaning show that this will 

have little effect on the user satisfaction wrt the 
amount of data acquired over the 3 years. 
Therefore the 24 Hour Manning Low cost 
option does not bring a significant advantage to 

be considered. 

LDw risk 

Figure 5 : Staffing & Maintenance impact on GS availability and cost 



An alternative could be to change some 
characteristics so that the mission return be 
much lower at a significant saving. From the 
cost drivers analysis this orientation would 
bring a minor cost saving with a substantial 
degradation of mission return and a higher risk: 
for example operators only working upon 
automatic anomaly detection could be felt more 
risky without a significant advantage. 

This is why it is of the utmost importance to 

appreciate the risks induced by the Low cost 
approach in comparison with the more 
conventional approaches. The following 
elements contribute to the risk specific to the 
Low Cost option and not supported by the 
other options : 

- The whole expertise (spacecraft and ground) 
is supported by a 3 engineers staff coming 
from the spacecraft development team. In the 
other options an operations support 
infrastructure is identified that support 
spacecraft contingency analysis or such 
expertise domains as flight dynamics, or 
ground equipment maintenance. The difficulty 
consists in the level of skills required from this 
3 engineers team and whether they can 
efficiently support contingency cases. The 
typical spacecraft autonomy of 1 week, the on- 
board securities and the expertise gained by the 
staff during spacecraft development should 
compensate most of the risk. 

- The simulator is not foreseen in the low cost 
option and limited testing will be performed 
with the spacecraft (or its engineering model) 
on ground. A number of operations will not 
have been tested prior to launch : this could be 
accepted if the spacecraft is safe, robust to 

ground errors and that a number of spacecraft 
specialists are available at the beginning of life 
so that operations imperfections be detected 
quickly and correct procedures be validated. 

The beginning of spacecraft lifetime would 
lead to less data availability, what could be 
accepted since a first period is often considered 
for calibration and with full support of the 
spacecraft engineering team. However it is 
strongly recommended to keep the siniulator 
even in a low cost option, since the fareseen 
benefit for operations security is important 
with regards to the cost of such a recurring 
product which represents less than 3% of the 
total mission cost. 

Each of the GS components are further 
examined with emphasis on the major design 
options. 

5- Mission Control System 

The Mission Control System (MCS) is 
con~posed of the following functions : TWTC 
function with real time control and satellite 
performance analysis, flight d ~ ~ c s  and 
mission planning. The main outcome for small 
missions will be the reuse of existing software 
packages. Most packages are running now on 
Unix workstations and the integration can be 
limited when only exchanging few data files. 

An important trend to reach additional cost 
saving for small missions, will be to consider 
all Ground Systems needed in a programme : 
with reuse of existing EGSE and MCS 
building blocks, it is now envisaged to build a 
"Universal Test Bench that can be used in all 
stages of the satellite development and 
operations. 

Figures hereafter (Figures 6 to 8) examine the 
relative development costs for observation 
missions : a Conventional mission, a Sea 
Altimeter small satellite mission and a 
Cartographic small satellite nlission. 



G r o u n d  S e g m e n t  D e v e l o p m e n t  costs  

Flight Management  
MISS Ion Dynarnlcs & Integraflon 
~ l a n n l n a  3 % 4 9 9 ~  - . . m .. ," 

25% Ground 
s tatlons (2) & 

Cornrns 
24% 

MCS : T M/T C 
36% 

Figure 6 : MCS costs for a conventional mission (Observation) 

GJ Development for Small Sea AHlmeter SatellHe 

Maagt&lnBgofm 
11% 

45% 
12% 

Figure 7 : MCS costs for a Sea Altimeter small mission 

GS Development for S mall E arth 
Observation satellite 

Flight 
Dynamics Managt & 

Integration 

S tation & 
Comms 

36% 

I 

Figure 8 : MCS costs for a cartographic small mission 



The above examples show that with this 
strategy of reuse with minimum adaptations, 
the amount of the Mission Control System in 
the overall development costs is lower than for 
conventional missions. Depending on the 
ground station characteristics, the MCS can 
weight 36% to 44% of the Ground Segment 
development cost. 

6- Ground stations and Communications 

The Ground Stations and the ground 
Communications part of a Ground Segment is 
usually a sizing ratio of the total development 
cost. Therefore special attention must be 
granted to the characteristics that contribute to 
the costs (Table 4). 

The Antenna itself in the ground station can be 
the sizing cost element when high 
performances are required from the specified 
bandwidth and data rates. This is why a 
ground and board optimisation must take place 
to review the data rates with respect to user 
requirements, to review then the budget link 
requirements, to retain only one system of 
communications both for payload and 

housekeeping operations. The choice of the 
frequency bandwidth (X band, S band or lower 
band such as UHF) and the mission orbit 
characteristics will then make the price of the 
antenna. A common characteristic of many 
small missions is that only one antenna system 
is used for communications of both payload 
and housekeeping data of the satellite platform. 

The RF equipment and Baseband equipment 
are then to be considered in the cost but they 
are usually off-the-shelf equipment with high 
reliability figures : the Monitoring & Control 
equipment can limit itself to the set-up of 
equipment configuration and to support 
investigation and no longer as a procedure 
driven system to act on the redundancies and 
switches. In addition, for a low cost solution, a 
new range of VSAT equipment is available at 
a lower cost with possibly lower reliability 
performances that can be adequate for small 
missions. As for other elements of the Ground 
Segment, a major contributor to costs, as 
experienced in passed conventional 
programmes, is the development of specific 
equipment or of new technology when off-the- 
shelf equipment exists. 

Table 4 : Cost drivers for Ground Stations and Communications 

834 

COST DRIVERS 

OFT-THE-SHELF 
EQUIPMENT 
ANTENNA & RF 

RANGING 

LEOP 

COMMUNICATIONS 

SMALL MISSION 
Systematic 

Only 1 station 
for payload and data 

Use of GPS 

Interface with existing network 
Transportable l T C  station 
SIC autonomy wrt LEOP 

Collocation on LAN as baseline 
Files transfer at low data rates 

CONVENTIONAL 
cost of technology changes 

Network of stations 
Sizing costs 

Can be costly on ground 

Specific requirements 

Usually low relative costs 



7- Conclusion 
An other important cost item can be related to 

the requirements imposed on ground to 

perform the ranging. In conventional missions 
these requirements imposed range equipment in 
the station, or large antenna with complex 
mechanics for accurate angular measurements. 
For small missions these requirements are 
alleviated either by lower performance 
requirements on orbit determination or by the 
availability on-board of GPS or other 
equipment that provide orbit measurements. 

Finally communications can be achieved more 
simply than in conventional missions with 
relaxed requirements for data timeliness that 
defines the time spent to provide the user with 
data. Depending on missions, simple mail 
procedures can be accepted or an electronic file 
transmission system using standard networks 
(e.g. INTERNET or other national or 
international networks) can be used. To 
decrease the communications costs, one 
solution if feasible may consist of having users 
collocated at Ground Segment site and 
receiving their data on the LAN. The 
communications analysis can impact the place 
where the data demultiplexing can be 
performed : either at Station or at Control 
Ground System level. 

Small missions constraints enforce a new 
approach for development of both the satellite 
and its associated ground systems. With due 
consideration to existing technology and 
products, the project team must review in an 
iterative way the requirements, design and 
costs implications on both the satellite and the 
ground systems for satellite testing and for 
operations. This new approach can be 
summarised as the Integrated System 
Approach relying on a new ground system 
means, the "Universal Test Bench" which 
building blocks will be used according to 

satellite development and operations stages. 
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ABSTRACT INTRODUCTION 

This paper presents the capabilities implemented in the 
SAX system for an efficient operations management 
during its in-flight mission. 

SAX is an Italian scientific satellite for X-ray Astronomy 
whose major mission objectives impose quite tight 
constraints on the implementation of both the space and 
ground segment. The most relevant mission 
characteristics require an operative lifetime of two years, 
performing scientific observations both in contact and in 
non-contact periods, with a low equatorial orbit 
supported by one ground station, so that only a few 
minutes of communication are available each orbit. 
This operational scenario determines the need to have a 
satellite capable of performing the scheduled mission 
automatically and reacting autonomously to contingency 
situations. 

The implementation approach of the on-board operations 
management, through which the necessary automation 
and autonomy are achieved, follows a hierarchical 
structure. 
This has been achieved adopting a distributed avionic 
architecture. Nine different on-board computers, in fact, 
constitute the on-board data management system. Each 
of them performs the local control and monitors its own 
functions whilst the system level control is performed at 
a higher level by the Data Handling Application 

The SAX satellite is part of a scientific program whose 
objective is to observe celestial X-ray sources in the 
broad energy band fiom 0.1 KeV to 300 KeV. The SAX 
mission has been planned to achieve a systematic, 
integrated and comprehensive exploration of galactic and 
extra-galactic sources, providing significative 
improvements for more complete and extensive studies 
in X-ray astrophysics. 
SAX is a joint program managed by the Italian Space 
Agency (ASI) and by the Netherlands Agency for 
Aerospace Programs (NIVR) coordinating the scientific 
interest of the Italian and Dutch scientific community 
and funding an international industrial team whose 
overall organization structure includes: 

Alenia Spazio as main contractor for the Space Segment 

Telespazio as main contractor for the Ground Segment 

Martin Marietta - Commercial Launch Services - as 
main contractor for the Launch Vehicle 

Italian and Dutch Scientific Institutes as Scientific 
Consultancy. 

The SAX Payload hosted on-board consists of the following 
six scientific Instruments (Ref. 1): 

Low Ehergy Concenh-ator Spectrometer (LECS) whose 
task is to perform X-ray spectrometry/imaging in the 
0.1-10 KeV energy range 

software. Medium Energy Concentrator Spectrometer (MECS) 
The SAX on-board architecture provides the ground whose task is to perform X-ray spectrometryfirnaging in 
opentors with different options of intervention by three the 1-10 KeV energy range 
classes of telecommmis. The management of the scientific 
opentions will be scheduled by the Opention Control Cenk @ High Pressure Gas Scintillation PrOportional Counter 
via dedicated openring plans. (HP-GSPC) whose task is to perform X-ray 

spectrometry in the 3-120 KeV energy range 
The SAX satellite flight model is presently being a phoswich Detector System (PDS) whose is to 
integrated at Alenia Spazio premises in Turin for a perform X-ray spectrometry in the 15-300 KeV energy 
launch scheduled for end '95. range and gamma-ray burst monitoring in the 60-600 
Once in orbit, the SAX satellite will be subject to Kev energy range 
intensive check-out activities in order to verifiy the 
required mission performances. An overview of the Two Wide Field Cameras (WFCs) whose task is to 
envisaged procedure and of the necessary on-ground perform X-ray spectrometry1 imaging in the 2-30 KeV 

activities is therefore depicted as well in this paper. energy range. 



Fig. 1 - Satellite Overall Configuration 

The WFCs are mounted along the +Y and -Y satellite 
axes, allowing an observation of a wide sky portion, 
whereas all the other Narrow Field Instruments are 
aligned along with the +Z axis. Fig. 1 illustrates the 
satellite overall configuration. 
The SAX pointing capability ensures a target 
measurement accuracy of 1 arcmin and a pointing of 3 
arcmin for a maximum of 16 seconds, i.e., one clay. 
All the project design has been developed to cope with a 
mission of at least two years preceded by a 
commissioning phase period, estimated to extend for 
about eight weeks. 
The satellite is currently in a very advanced C/D phase. 
The Flight Model is under integration as the last step of 
a system integration and test campaign involving the 
developing of a Structure Model, an Engineering Model, 
and a Software Verification Facility. The launch will 
take place by end '95 with an Atlas Centaur vehicle. The 
SAX Ground Station will be located in Singapore and 
will be connected via Intelsat to the SAX Operation 
Control Center and the Scientific Data Center, both 
located in Rome. 

MISSION CHARACTERISTICS 

The major constraint entailed by the scientific objectives 
requires a satellite orbit such that the background particle 
radiation for X-ray detection be very low and the effects 
of radiation from the South Atlantic Anomaly region be 
reduced. This leads to the choice of a circular low Earth 
orbit at a 600 Krn altitude - Begin of Life (450 End of 
Life) - and an inclination of about 4'. The orbit period is 
thus of 97 minutes with an alternance of 60 minutes of 
sunlight and 37 minutes of eclipse. 

One single ground station, located near the equator, will 
suppat the mission offering satellite visibility each orbit, 'Ihe 
coverage period is anyway no longer than 11 minutes so that 
about 90% of orbital life is out of visibiity. 
The pointing domain is limited by the allowed sun 
incident angle range on the satellite solar array surface. 
A maximum of 30" (with occasional excursions to 45') 
inclination is allowed with respect to the sun direction to 
ensure a proper battery charge. This implies a pointing 
domain for the Narrow Field Instruments limited within 
a band in the sky 60" wide available for observation each 
orbit (except some possible occultations by celestial 
bodies). In a one year period, the whole sky will be 
observable for a scientific activity that can be estimated 
as performing between 2000 and 3000 independent 
observations (Ref. 2). 

THE SYSTEM ARCHITECTURE 

The above introduced operational scenario determines 
the need to have implemented on-board the capability of 
supporting, in an autonomous way, the execution of 
on-ground predefined mission plans. That also requires 
the on-board architecture to manage the nominal 
activities as well as the pre-conceived anomalies, in all 
the mission phases, taking into particular account that 
most of the mission is out of the ground coverage. 
The implementation approach of the required operation 
management is based on an avionic architecture which 
makes extensive use of a distributed on-board 
intelligence (Ref. 3). Nine on-board intelligent terminals 
constitute the SAX system architecture as shown in Fig. 
2 (see following page). 
Each of them performs the autonomous control of the 
relevant subsystem (S/S) local functions including the 
surveillance of its health status. The control of the system 
overall activity is assigned to a higher hierarchical level and 
is implemented in a Central Terminal Unit (CTU). The CTU 
is &voted to coordinating and controlling the Data 
Management and Communication System as well as to 
managing the system nominal operations and to u n d d n g  
the system level recovery actions. A set of non-intelligent 
subsystems, including the Telemetry Tracking & Command 
SIS, the Reaction Control S/S and the Electrical Power S/S 
are placed under the dkct control of the CTU via serial lines 
through a Remote Terminal Unit. 
The interprocess communication is based on the ESA 
standard serial digital bus arbitrated by the CTU and 
composed of: 

0 Interrogation Bus for CTU to local terminals 
interrogations 

Response bus for local terminals to CTU transmission of 
Housekeeping Data (HKD) 
Block Transfer Bus for Scientific Instruments to CTU 
bansmission of Scientific Data 
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Fig. 2 - System Architecture 

The data communication protocol is designed to ensure a 
collection of about 16 kbit/sec of HKD from the satellite 
subsystems and science instruments and up to 100 
kbit/sec of scientific data. Two different formats of HKD 
can also be selected: one essential format including a 
basic set of SAX HKD, one intensive format including 
some extra information on hot redundant units and Data 
Handling traced operations. All the data gathered in 
non-visibility are temporarily stored on a dedicated tape 
recorder, with a capacity of 510 Mbits, until requested to 
be dumped to ground during the coverage periods. Two 
channels are implemented to dump to ground the satellite 
telemetry in High Bit Rate mode: 

* channel "I" for dumping the real-time collected 
telemetry at 13 1 kbps 

* channel " Q  for dumping the tape recorded data at 917 
Kbps. 

A 16 Kbps link is also available to implement a Low Bit 
Rate transmission mode. 
The telecommand bit rate allows an uploading of 2 
Kbps, that is about 20 frame instructions/sec. 

ON-BOARD REDUNDANCY CONCEPT 

The SAX mission characteristics have led to a system 
design with a high degree of reliability to cope with so 
long an autonomous lifetime. 

All the spacecraft S/Ss are designed to be single failure 
tolerant whereas the Scientific Instruments implement 
redundancy only at interface level. Critical on-board 
items (e.g. receivers, decoders, gyroscopes, power units, 
protected memory) all operate in hot redundancy. In this 
context single spacecraft unit malfunction does not affect 
the nominal mission performance. 

The intelligent subsystems - i.e., On-Board Data 
Handling (OBDH), Attitude and Orbit Control S/S 
(AOCS), Thermal Control SIS (TCS) - are based on a 
fully redundant architecture. Each of their unit classes 
includes one redundant item so that one fatal failure can 
be recovered by properly activating this redundancy. 
The Scientific Instruments, not having implemented any 
internal redundancy, perform only a reduced Failure 
Detection and Isolation function for specific problems. 



All the on-board computers maintain at least the software 
(SW) basic functions stored in Programmable Read Only 
Memories so that any reseuswitch-over cannot cause the 
loss of the code, as it is downloaded from PROM to 
RAM any time a (re)-initialization takes place. 
Embedded circuitry for error detection and correction of 
corrupted memory cells by single event upset as well as 
a watch-dog circuitry for autonomous reconfigurations 
are provided in all the intelligent subsystems. 
All the data considered critical for the proper on-board 
autonomous maintenance of the mission, in any nominal 
or contingency situation, are dynamically maintained in 
dedicated Protected Memory Areas. According to the 
relevant OBDH and AOCS performed control, this data 
set is so classified and grouped: 

0 OBDH Application S W (A/SW) vital data, including the 
Solar Array deployment status, the launcher separation 
status, the system and some critical S/S items active 
configmtion (e.g. transmitters, battery discharge 
regulators, reaction control S/S branches, etc.) 

OBDH Basic SW (BISW) vital data, including the 
launcher separation status, the OBDH active unit 
configuration, the redundancy management data 

Time Tagged commands to be scheduled at their own 
preset time 

Real Time commands to be executed at CTU 
switch-over 

AOCS S/S active configuration and launcher separation 
status, maintained in dedicated AOCS solid state latches. 

The failure management of non-intelligent S/Ss is 
performed at centralized level by the OBDH AISW. 
Some exceptions deviate from this general approach: 
* Power S/S performs the failure management for its own 

units; 
* the hydrazine flow control valves are under control of 

the AOCS when it makes use of thrusters; 

and these are driven by time intervention constraints. 

MISSION PHASES 

The SAX mission can be divided into four overall 
mission phases. 

Launch Phase 
LP begins at spacecraft power-on just before vehicle 
lift-off and extends to the physical separation between 
the launcher and SAX. In this phase the S/Ss are 
initialized and perform a continuous control of the 
powered units. No attitude manoeuvre is of course 
executed as the AOCS is in its initialization mode 
until the separation. The on-board produced data are 
stored on the tape recorder, just after the launch 
vibrations terminate, for later transmission to ground. 

Commissioning Phase 
This begins at the SAX-launcher separation and 
extends to the completion of all initial in-orbit tests 
and calibrations. As a first step, it consists of an Early 
Orbit Phase which comprises a short post separation 
coast period, a reduction of any residual S/L body 
rates and a subsequent SuniEarth acquisition period. 
Upon successful completion of these activities the 
deployment of the Solar Arrays is autonomously 
operated. 
The commissioning of the satellite shall proceed with 
an initial health check-out continuing with systematic 
functional checks of all the subsystem nominal 
functionalities. 
The Scientific Instrument activation and functional 
verification shall be operated as a last step. Some 
overlaps between the two shall be necessary for a 
complementary check-out of both the spacecraft and 
the Scientific Instruments. All these operations shall 
be initiated by ground and supported by the on-board 
SW tasks. 

Operational Orbit Phase 
This phase covers the period of the satellite's useful 
scientific lifetime. It shall be nominally two years and 
shall be characterized by routine scientific operations. 
The satellite design shall, anyway, allow an extention 
of the mission beyond the nominal period up to a total 
four years lifetime. 

End of L@e Phase 
This phase covers the period when SAX is no longer 
capable of producing useful scientific information due 
to either component degradation or altitude decay. 

SATELLITE MODES 

The system mode design has been structured to cope 
with all the SAX mission phases (Ref. 4). The satellite 
modes - implemented with a direct correspondence with 
the AOCS modes - drive all the on-board autonomous 
operations. Their transitions can be initiated either upon 
ground commands or at the occurrence of automatic 
fallbacks caused by system autonomous emergency 
re-configurations. The SAX mode transitions diagram is 
reported in Fig. 3 (see following page). 
The mission/science support modes are the principle 
configuration to support the scientific activity. The 
defaulusafety modes correspond to the main operative 
configurations to be assumed in case of interim science 
activity or on-board emergency. Two further modes 
support special operations during the launch phase and 
during the orbit raising manoeuvre - if ever needed. 

Satellite Launch Mode (SLM) 
Routine operations are performed to ensure an health 
satellite status ready to operate just after the 
S AX-launcher separation. 
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The produced telemetry is recorded only after the 
vibration level is reduced - the activation of the 
on-board tape recorder is made by a time tagged 
command. 

c Satellite Sun E d  Pointing Mode (SSEPM) 
This mode is automatically entered either at 
SAX-launcher s e w o n  or as fall-back from the other 
Nominal Satellite modes. Purpose of this mode is to 
maintain the satellite in a 3-axis stabilized attitude 
optimizing the sun incidence on the Solar Arrays. As 
this mode is entered from the separation, it has to 
accomplish a very critical sequence of operations most 
of them to be performed autonomously since they are 
out of the ground coverage. The major operations are 
initiated by the OBDH and AOCS software that have to 
coordinate the safe attitude acquisition with the Solar 
Arrays deployment. Trigger of these operations is the 
SAX-launcher separation, detected by a dedicated fully 
redundant hardware circuitry and sent to both the S/Ss. 

Satellite Interim Science Mode (SZSM) 
This mode configures the SAX satellite in a accurate 
three-axes stabilized attitude making use of one star 
tracker, besides all the other used sensors. This fine 
pointing helps in keeping a default attitude (e.g. 
Polaris pointing) and in fastening attitude transitions 
to scientific modes. 

SateUite Nominal Science Mode (SNSM) 
The satellite remains in this mode while operating the 
planned scientific observations. A very fine pointing 
is made by use of the AOCS star trackers. All the 
scientific data produced by the Scientific Instruments 
are collected by the OBDH according to a dedicated 
polling algorithm. 

Satellite Slow Scan Mode (SSSM) 
This mode will mainly be used to perform calibrations 
of Non-Imaging Scientific Instruments by performing 
sequential slews across a known target. 



Satellite Delta-V Mode (SDVM) 
This mode is designed to cope with the altitude decay, 
raising the satellite orbit in the case the SAX altitude 
decreases below the 450 Km. 

Satellite Ssfe Mode (SSM) 
This mode is entered upon detection of specific 
system-level failures. A safe attitude is then maintained 
by the AOCS pointing the Solar Array surfaces toward 
the sun and aligning the satellite with the earth magnetic 
field. 

OPERATION MANAGEMENT STRUCTURE 

The management of the SAX system operating modes is 
implemented by a multi-level hierarchical structure (Ref. 
5) involving, in increasing priority: 

the S/L Subsystems and Scientific Instruments 

the OBDH Application Software 

the Ground Operation Control Centre. 

To the upper levels is assigned the task of initiating the 
scheduling of system level functions as well as the 
capability of controlling and overriding the lower level 
decisions. On the other hand, the main nominal 
operations autonomously performed at local level allow 
the proper control and setting of the relevant S/S. In 
particular, the intelligent terminals and Scientific 
Instruments are designed to be fully autonomous in 
performing their relevant tasks so that they can in 
principle continue operating consistently without any 
external intervention. Few inputs are, in fact, needed 
only for tuning their performances and their 
configurations with respect to either the system 
configuration or the current mission characteristics. 
Each of the intelligent subsystems also performs a 
Failure Detection, Isolation and Recovery (FDIR) 
management on its own, keeping under control the 
configuration, functioning and health status of all its 
relevant units. In the case a malfunction is detected, the 
fault unit can be substituted by the redundant one. If the 
main S/S computer is affected an automatic switch-over 
takes place. The redundant intelligent unit will then be 
initialized assuming a safe mode of functioning. 
The Scientific Instruments, not having a redundant 
architecture, adopt a self disabling policy, in particular, 
against a too high level of particle radiation able to 
damage the instrument itself. 
Purpose of the OBDH A/S W is to keep under control all 
the subsystem level operations; that implies a system 
supervision to ensure the proper nominalfsafety satellite 
consistency. What has been assigned to the A/SW is the 
role of the on-board coordinator of all the major flight 
operations between themselves and with respect to the 
ground scheduled plans. 

It is in particular devoted to: 

* perform Solar Array deployment following the launcher 
separation and sdearth acquisition 

* inform the AOCS of the new inertia matrix to be used 
after the Solar Array deployment 

* support the distribution and enabling of operating plans 
to the AOCS and Scientific Instruments 

* support the Ground-to-Satellite link acquisition and 
downlink telemetry operations 

* enable/disable power resources to the non-essential 
satellite loads, i.e., Scientific Instruments, Reaction 
Control S/S, thermal control heaters 

* perform the deployment of the Scientific Instrument 
baftles 

* manage satellite mode transitions as a consequence of 
" Intelligent S/S switch-over 
" AOCS mode fallbacks 
" Power S/S protection triggering 
" Scientific Instrument particle over-radiation detection. 

All the A/SW operations are coordinated and 
synchronized by the proper activation of dedicated 
pre-defined command sequences and command loops. 
These can be activated either by ground or autonomously 
to accomplish the above introduced operation set. The 
OBDH A/SW core is based on three principal modules 
acting as the kernel of the AJSW architecture, as 
illustrated in Fig. 4 (following page). 

The Mission Manager: it monitors the mode transitions 
of all the subsystems and instruments which require 
corrective operations. It is based on a mode transition 
table indicating all the actions to be undertaken at the 
occurrence of S/S mode transitions. It in particular 
specifies the safe configurations to be adopted in case of 
some critical mode fall-backs. It also drives the 
enablingldisabling statuses to be applied to the AJSW 
controls, as a function of the satellite mode 
configuration. 

The Fault Managec it cyclically checks a predefined 
sub-set of the on-board produced monitors to undertake 
subsequent actions to isolate and/or recover the related 
problems. The data set includes all the mission critical 
on-board items, provided on a periodic basis and kept 
under control by means of a table driven FDIR manager. 
The control is performed by periodic tasks scheduled 
every second. 
A cross-check is then made between the measured 
values and their relevant expected ranges. Any 
discrepancy activates a direct recovery action on the 
non-intelligent S/S with possible extension to a system 
reconfiguration in the case the malfunction can severely 
affect the system performance. 
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The Telecommand Sewer: it manages the ground 
initiated operations distributing and verifying the 
command execution. 
It furthermore applies a consistency checks on the 
ground uploaded requests against the current system 
configuration. In the case a conflict is detected a report 
is provided in the A/SW telemetry but no action is 
undertaken until an explicit ground override is operated. 

The top level of the SAX operations is, of course, a 
ground task. It is responsible for acting on the satellite 
configuration in order to set it up properly to accomplish 
the planned scientific observations. It has therefore to 
operate on both the spacecraft and the Scientific 
Instruments. Besides, routine maintenance operations 
have to be scheduled to cope with the orbit and mission 
events/constraints. 
Some of the more frequent operations are anyway related 
to the orbit contact management whose ground 
intervention extends to: 

* linking acquisition via the proper activation of the 
transmitter linked to the ground facing antenna. This is 
done by a time tagged telecommand acting on a 
dedicated AJSW command sequence which is devoted to 
verifying the correct functioning of the on-board link 
chain 

* enabling the telemetry transmission to ground once the 
down-link caniex is obtained. This concems the 
real-time telemetry and, on request, the on-tape data 
stored in the non-coverage period 

* restoring the on-board data recording and termination of 
the link befote the end of the contact period 

* command the issuing of the on-board time samples for 
on-ground data correlation 

* managing the antennae switch-over as the coverage 
concerning the facing antenna is going to end. Note that 
two hemispherical antennae are implemented on SAX in 
order to cover the whole space mund the satellite. 

Less frequent operations are related to scientific 
observation management. That involves: 

* changes of the satellite attitude via dedicated AOCS 
Operating Plans 

* changes of allowed pointing domains 
* changes of Scientific Instrument operating modes 
* Scientific Instrument configuration management, in 

particular at any entry/exit of the South Atlantic 
Anomaly. 

Other infrequent operations are related to performance or 
maintenance aspects. In this context, the ground control 
centre shall periodically monitor the satellite dumped 
telemetry to keep under control the actual on-board 
configuration. It can therefore intervene for recovering 
any on-board assumed safe mode or, simply, for tuning 
some control parameters such as, for example, battery 
End Of Charge and/or End Of Discharge levels, thermal 
loop thresholds and/or enablingldisabling flags, sun 
vector and attitude quaternion values, etc.. 

GROUND COMMANDING CAPABILITY 

The ground commanding capability is driven by three 
major parameters: 

the visibility period 

the uplink characteristics 

the on-board command management design & 
operations. 

The major constraint on the commanding capability 
comes from the very limited visibility window. This 
requires the Operation Control Centre to prepare a 
well-defined timeline for a long period, e.g. one week - 
corresponding to about one hundred passages, operating 
in the interin of two passages just to analyze the dumped 
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telemetry and to react to any anomaly detected. All the 
commands necessary for operating the satellite both in 
and out of visibility must be uploaded during the 
contact period. 
The up-link characteristics are based on the ESA PCM 
Telecommand Standard. It allows the transmission of 
2000 bps, that is - as the ESA standard telecommand 
frame is 96 bits long - a bit more than 20 frameslsecond. 
The minimum instruction can be based on a single frame 
structure. In the case a complex command is needed, a 
mutiframe message - constituting a block command - can 
be uploaded. The block command structure used on 
SAX is shown in Fig. 5. 
Based on the above mentioned standard, the on-board 
design provides ground with three different options of 
intervention. Three classes of commands are, in fact, 
made available and properly managed on board. 

* Single frame commands that can be used to up-load high 
priority command whose purpose is to o p t e  on a 
critical subset of the satellite hardware devices. This type 
of commands by-passes any on-board SW control and, 
via the decoder, directly acts on the end items. This class 
is thus useful as a back-up in case of an emergency. 
Typical applications are switching opt ions involving, 
for example, unit selection and separation event override 
command to AOCS. 

* Single fmme commands that can be used to directly 
issue single instructions on the OBDH Bus to my 
terminal. This class might be used only in the case of 
OBDH BISW bus management malfunction since they 
by-pass the OBDH B/SW control. Care might therefore 
be taken because such asynchronous instructions can 
affect the proper OBDH Bus protocol functioning. 

* Block commands that represent the nominal way of 
commanding. Their structure can be flexibly filled in so 
that they can contain either one multi-parameter 
command or a set of single instructions or one operating 
plan. Their routing is performed by the OBDH BISW 
according to the destination field content. Other 
syntactic/semantic information is contained in the block 
header for on-board verificabion and execution, i.e., 
begin pattern, destination, name and length. 

What is particularly important to emphasize is the 
on-board capability of managing the block commands as 
delayed commands. By means of a dedicated flag, 
ground can, in fact, impose their execution at the time 
specified in the relevant tag field A queue of one 
hundred time tagged commands is dedicated in the 
OBDH protected memory area.- an estimation of about 
60 block commands, as a maximum, has been evaluated 
as necessary each orbit for nominal spacecraft and 
Scientific Instrument operations. It is worthwhile noting 
that a dedicated flag is also present in the block structure 
indicating whether the command has to be deleted in 
case of CTU switch-over. Since a system reconfiguration 
takes place at the CTU switch-over, this option is quite 
useful to avoid any unwanted ovemde unless not 
explicitly authorized by ground. The mission critical 
commands, e.g. Transmitter ON command, should, 
anyway, always remain in the queue until their 
scheduling time elapses. 
Within these commanding possibilities ground can 
address specific requests to any on-board subsystem 
coordinating the mission operations both in and out of 
visibility. 

One of the major aspects offered by the OBDH A/SW 
design is the capability of modifying the OBDH AjSW 
control, devoted to the system operations, by means of 
simple enabling'clisabling commands. As the most 
important A/SW functions are implemented by a table 
driven mechanism, a flag has been associated to each of 
the table entries. 

The relevant control can be made active or inhibited by 
setting the proper value of these flags. An easy updating 
of the table elements, used as comparison for activating 
autonomous recovery actions, can be, as well, easily 
done by mean of dedicated commands. 

One of the more powerful features that are made 
available for emergency ground intervention is specific 
command to the OBDH operating system. The OBDH 
SW - in particular the A/SW - is based on a very 
modular architecture so that each command loop and 
sequence has been implemented as a stand alone task. 
Therefore, proper acting on the operating system 
primitives can modify the task scheduling mechanism. 



In particular, the following main interventions can be 
run-time commanded: 

* change the task priority 
* init~start/stop tasks 
* sendbxeive messages on mailboxes. 

This mainly allows the introduction of a new task 
implementing new functionalities or replacing the current 
ones. 
The lowest level of possible intervention by ground is 
the patching of the Intelligent Terminal software. It can 
be accomplished through the OBDH support which 
either autonomously executes the patch command on 
itself, if so addressed, or routes the new datalinstructions 
towards the relevant Intelligent Terminal via the OBDH 
Bus protocol. The same can be done by directly sending 
patching commands to the AOCS and the LECS which 
implement the capabilities of executing the patching by 
themselves. This avoids putting the microprocessors in 
wait state until the patch is terminated. 

Both the interventions on the operating system and the 
code have anyway to be planned very carefully with the 
support of a Software Maintenance Facility whose team 
shall have a very thorough expertise. 
As far as the telemetry commanding capability is 
concerned, two major features are provided on SAX. 
The fmt one concerns the housekeeping data 
transmission to ground whose format can be selected 
between two: 

* one essential format corresponding to the produced data 
set fmm all the subsystems 

* one intensive format that, besides the previous set, 
includes extra data packets from the hot redundant 
battery control unit and the BISW tracing process. 

The second is devoted to driving the scientific data 
collection algorithm. The algorithm, once the scientific 
activity is enabled, is executed every second, polling the 
six scientific instruments to get the number of ready 
scientific packets. The share of the successive scheduled 
acquisitions between the instruments is based on two 
ground configurable allocation tables, each of their 
entries indicating one, out of six, instrument address. 
Adjustment of the content of the two tables can be done 
by ground according to each Scientific Instrument data 
production forecast. Two dedicated commands are 
available for this purpose. 
Last but not least, extra data can be required by ground, 
dumping both the code and the &ta segments of each 
Intelligent Terminal for diagnostic purposes. That in 
particular allows to obtain some memory areas of the 
Intelligent Terminals devoted to storing history or tmce 
records not included in the periodic provided telemetry. 

OPERATING PLANS 

Setting the AOCS and Scientific Instrument 
configurations and modes usually requires many 
commands. This can overload both the time tagged 
command queue and the related scanning process. A 
solution to this potential problem has been found in 
grouping a consistent set of commands into only one 
Operating Plan. 
Two types of plans are, in particular, implemented on 
SAX: 

AOP - Attitride Operating Plans - devoted to 
commanding the mode transitions of the AOCS and to 
controlling the attitude manoeuvres within the fine 
pointing modes 

* POP - Payload opemting Plans - devoted to setting-up 
the instrument configuration and the data output formats 
for the required scientific performance. 

These plans can be up-loaded encapsulated into one 
command block and then stored in a dedicated Parcking 
Memory Area. Their activation is requested by ground 
via the associated Tranqer and Enable Commands, 
either in real-time or delayed with proper time tags. The 
actual execution, by the destination terminal, shall follow 
the correct reception and validation of the incoming 
Operating Plan only once the Enable command is 
received. Supervision of the whole consistency of this 
transferlenabling process is centralized and 
autonomously made by the OBDH NSW. It is, in fact, 
in charge, if enabled, of filtering the Tranger and Enable 
commands if not consistent with the satellite 
mode/configuration, e.g. in the case of Safe Mode 
fall-back. 
As far as the safe AOCS modes are concerned no AOP 
are, anyway, needed since the related attitudes are 
autonomously acquired and indefinitely kept. 

COMMISSIONING CHECK-OUT 

The in-flight verification of SAX will be performed in a 
designated eigth week Commissioning Phase following 
its launch and separation from the launch vehicle. 

The purpose of the Commissioning Phase is to validate 
the functionality and operability of the satellite and give 
the go-ahead to the scientific mission. The relevant 
check-out activity is comprised of two principal 
sub-phases. 

Phase 1 involves the basic functional/ performance 
verification of each of the spacecraft subsystems. 
Phase I1 complements Phase I by extending the verification 
to all the Scientific Inshuments and completing the 
verification of the fully active system codigmtion. 



A summary of the planned activities includes: 

o Mode Functionality Venf~ation 
All nominal modes shall be verified for functionality, 
valid telemetry parameters and expected ranges with 
respect to the inherent functions of each mode. 

* Commanded Mode Transifions 
All nominal mode transitions requiring an uplinked 

- procedure from Ground will be performed and 
verified. Certain transitions will be omitted for 
specific reasons, e.g. Delta-V mode transitions. 

Autonomous Mode Transitions 
Verifications of autonomous fall-backs will not be 
performed as they require fault conditions forced by 
ground. 

Cyclic and Selec&ble Telemefq Ven@Wion 
All the cyclically generated telemetry will be verified 
for correct protocol handling, telemetry block 
structures, parameter location and consistent time and 
block counter fields. Variable telemetry activated by 
ground will be verified as well, e.g. dumped data and 
scientific packets. 

On-board Memory Patch and Dump 
Dump operations will be required to evaluate control 
parameters not visible in regular telemetry, e.g. AOCS 
database, history areas, etc. Patches of program or 
data memories are not a nominal activity but could 
sometimes be necessary for table item updating, e.g. 
LECS Instrument. A dump should always be required 
after a patch operation. 

Conbol Function Calibrafions 
Calibrations or maintenance are required to optimize 
the overall performance of both the Scientific 
Instruments and the Subsystems, e.g. thermal control 
loops thresholds, Instrument digital and analogue 
discriminator levels, etc.. 

Redundant Unit Check-out 
Under nominal operations all operative redundant 
units will be verified for correct functionalities, e.g. 
gyros, decoders, receivers, etc.. Cold redundant units 
will not be activated or verified unless necessary 
because of failures. It is considered more prudent to 
maintain a good nominal configuration rather than 
risk possible failure in activating the redundant one. 

CONCLUSIONS 

The SAX satellite is the result of a quite challenging W o n  
requbment implementation. 
Once in orbit it will support the extensive activity of six 
complex Scientific Instruments performing parallel X-ray 
observations. 
The system design is based on a distributed intelligent 
architecture allocating to each of the on-board computers 
its own specific function. This has been designed to 
provide the maximum flexibility and reliability in 
autonomously executing the ground mission plans. The 
SAX implementation of the operating modes, in fact, 
allows the on-board configuration to be maintained by 
itself, supporting, at the same time, the ground required 
operations. 

To conclude, the SAX mission will not only provide the 
most up-to-date results in the field of X-ray astrophysics, 
but it will also make operative a very powerful system 
that is the product of Italian scientific satellite 
engineering. 
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ABSTRACT 

CTA Space Systems (formerly DSI) has played a 
premier role in the development of the "lightsat" 
programs of the 80's and 90's. The high costs and 
development times associated with conventional 
LEO satellite design, fabrication, launch, and 
operations continue to motivate the development of 
new methodologies, techniques, and generally low 
cost and less stringently regulated satellites. These 
spacecraft employ low power "lightsat" 
communications (v.s. TDRSS for NASA's LEOS), 
typically fly missions with payloadlexperiment 
suites that can succeed, for example, without 
heavily redundant backup systems and large 
infrastructures of personnel and ground support 
systems. Such small yet adaptable satellites are 
also typified by their very short contract-to-launch 
times (often one to two years). This paper reflects 
several of the methodologies and perspectives of 
our successful involvement in these innovative 
programs and suggests how they might relieve 
NASA's mounting pressures to reduce the cost of 
both the spacecraft and their companion mission 
operations. It focuses on the use of adaptable, 
sufficiently powerful yet inexpensive PC-based 
ground systems for wide ranging user terminal 
(UT) applications and master control facilities for 
mission operations. These systems proved 
themselves in successfully controlling more than 

these concepts since a user can easily mount a 
lightweight antenna, usually an omni or helix with 
light duty rotors and PC-based drivers. A few feet 
of coax connected to a small transceiver module 
(the size of a small PC) and a serial line to an 
associated PC establishes a communications link 
and together with the PC constitute a viable ground 
station. Applications included geo-magnetic 
mapping; space borne solid state recorder 
validation; global store-and-forward data 
communications for both scientific and military 
purposes such as Desert Storm; UHF transponder 
services for both digital data and voice using a 
constellation; remote sensor monitoring of weather 
and oceanographic conditions; classified payloads; 
UHF spectrum surveillance, and more. Ground 
processing has been accomplished by automatic 
unattended or manual operation. Management of 
multiple assets highlights the relative ease with 
which 2 constellations totaling 9 satellites were 
controlled from one system including constellation 
station keeping. Our experience in small end-to- 
end systems including concurrent design, 
development, and testing of the flight and 
operational ground systems offers low cost 
approaches to NASA scientific satellite operations 
of the 1990's. 

BACKGROUND 

two USAF, USN, and at As Congressional budgets tighten and conventional 
CTAISS. UT versions have linked with both GEO military threats appear to dissipate, private 
and LEO satellites and hct ioned autonomously in industrial R&D, universities and other potential 
relay roles often in remote parts of the world. LEO participants in primarily LEO missions are 
applications particularly illustrate the efficacy of increasingly drawn to consider new options. while 



STS flight availability and piggyback experiments 
flown on larger missions are still possibilities, the 
resurgence of small satellites as viable experiment 
platforms is a distinct part of the general solution. 
This is especially so for new commercial 
applications and the exercise of new technologies 
in the space environment where time from design 
to launch is of the utmost importance. Five years is 
not the answer while two years, or less, can meet 
competitive and marketing needs. On the other 
hand, science and technology innovations are 
difficult to fund on their own, but can often fit 
nicely into multi-mission oriented lightsats. 

Costs of experiments borne by "lightsats" can dip 
considerably below many other options, though the 
lightsats may not offer the same degree of 
reliability as their larger and costlier counterparts. 
Lightsats are often deployed in clusters to diminish 
the relative launch costs. Complementing the 
reductions in space segment cost, the ground 
segment can usually support most missions at a 
fraction of the expense imposed by current 
standards. In the past ten years CTAISS has 
produced a large number of "lightsat" system 
designs utilizing compressed schedules for 
development and test and very low key mission 
operations. The evolution towards more automated 
bus, experiment and ground operations and less 
cumbersome spacecraft command and control is 
leading towards provision of stable mission 
operations without the customary large levels of 
ground support. Additionally, inexpensive space- 
to-end user terminals have been developed. Such 
services can provide direct experiment to 
laboratory connectivity which is of great interest in 
university science and engineering applications as 
well as commercial or government circles. 

SIMPLIFICATIONS 

Small satellites with small budgets for operations 
must still satisfy broad requirements: 

Provision for bus control via ground 
commanding 
Provision for experimentlpayload control 

e Provision for onboard telemetry collection of 
both bus and experiment/payload systems 
Provision for on-board autonomous health and 
stability protection 
Provision for TT&C data flows and 
experimentlpayload data flows 

In the most common instance, mission operations 
are performed from a central location where the 
state of health (SOH) of the entire spacecraft is 
continuously assessed. It is generally here also that 
flight commands are issued to the spacecraft. In 
CTA Space Systems' history, we have built and 
operated the first GLOMR satellite in 1985 from a 
PC but without any automation of communications. 
Telemetries (TTMs) were received and commands 
sent aloft from an inexpensive adjunct transceiver 
module under micro-control and employing a 
simple roof-mounted UHF omni-directional 
antenna. Command streams were short and TTMs 
limited in this spacecraft, but for those that 
followed, there were many improvements and 
adaptations stemming from a growing assortment 
of mission requirements. It is important to embody 
certain "simplifications" into the fabric of the 
overall system design in order to facilitate low cost, 
yet reliable, small satellite operations. 

We seek to accomplish certain key objectives: 

1. Operate experiments from pre-established 
command sequence files 

2. Provide pre-uplink command verification 
3. Employ macro style bus and experiment 

commands 
4. Provide spacecraft scheduled (i.e., for future) as 

well as immediate command execution options 
5. Provide reliable (error free) and autonomous 

communications 
6. Provide "intelligent" SOH displayslreports 
7. Provide key mission operations software 

elements as part of the EGSE (avoiding full 



probably separate efforts) and use throughout 
I&T (Integration and Test), the IST (Integrated 
Systems Test) and Environmental Testing 

8. Offer autonomy in routine communications 
scheduling 

9. Wherever possible encourage provision of 
experiment autonomy with independence of 
other experiments and bus 

10. Wherever possible use autonomous bus sub- 
systems (notably ADACS) requiring minimal 
ground attention 

Item (1) is tried and true through such programs as 
STACKSAT (three satellites: TEX, POGS & 
SCE); SCSC (two satellites known as 
"MACSATS" and seven "MICROSATS); REX; 
and RADCAL. The savings and reliability 
associated with the construction and pre-validation 
of operational sequences which make up mission 
operations segments are very significant. For 
example, a series of commands required to operate 
a difision pump and to trigger a particular set of 
experiment actions is accomplished by writing a 
series of commands under software control. Each 
individual command is range-checked and 
otherwise evaluated to be a valid command (as 
noted in item 2) and is encapsulated in a 16-bit 
check sum (CRC) to assure future integrity. The 
set of commands is saved as a file and can be 
evoked during all phases of ground-based testing as 
a block with individual command execution times 
shifted by a definable increment avoiding having to 
make up sets with specific pre-set execution times. 
The same segment can be conveniently recalled 
and sent to the spacecraft when on-orbit. The very 
significant work force necessary to conduct around 
the clock environmental and integrated systems 
tests is greatly reduced by avoiding the effective 
hand entry of large numbers of detailed commands. 
Errors are nearly eliminated in the process. Item 
(3) is a significant objective in that it suggests that 
wherever feasible, the ground to space interface is 
held to as simple a structure as possible. That is, 
the spacecraft bus or experimentJpayload 
commands should be process-oriented if possible. 

For example, in the case of the preparation of an 
instrument application, there may be a 25 step 
timed sequence of "micro style" commands 
required. If the controller for that experiment or 
the bus processor can maintain that sequence as 
part of its operational flight code, then all the 
ground team needs to do is to evoke that process by 
a simple command such as "Experiment 2, Process 
5, ON=2/23/95 13:OO:OO." Similarly the shutdown 
might be commanded "Experiment 2, Process 6, 
ON=2/23/95 1 3 :45:00." These two commands are 
easy to deal with and will achieve the highest level 
of reliability. If this is not possible, then the 
command sequence file approach can be used 
instead with the operator simply evoking the two 
procedures adjusting the process execution times 
according to the plan. The disadvantage here is 
that there are now many commands to uplink and it 
is essential that they are all accounted for on the 
spacecraft prior to beginning the execution of the 
procedure. Verification of the presence of the 
entire command chain for a process in the past has 
usually been accomplished by a satellite schedule 
dump and on the ground review. The operator then 
had the option to re transmit missing commands or 
to delete commands. A better method involves the 
addition of a special command type that will inhibit 
execution of incomplete command streams. This 
command spawns a notification message to the 
ground that its powers have been evoked and that 
the sequence is either incomplete or OK. With 
present and emerging powerful and robust flight 
digital electronics including wide usage of EDAC 
RAM or other (nearly) non-volatile mass memory, 
storage of command chains onboard that can be 
evoked by an immediate or future-acting ground 
uplink command are more prevalent. 

Normally commands are sent to the spacecraft in 
advance of planned execution and are executed at 
future times under the action of the spacecraft's 
software scheduler. Immediate commands (with 
zero tokens for execution dateltime) are, however, 
allowed to execute immediately. Given that the 
uplink commands and downlink TTMsIdata are 



reliably communicated, there is little in the area of 
routine flight operations that necessitates constant 
operator attention much less "crisis-like" 
circumstances on the ground. Indeed, with easily 
interpretable and "to the point" SOH displays 
available on the ground, the missions are virtually 
made to "fly themselves" for considerable periods 
of time. 

Item (7) represents an important ingredient to 
planning and executing a successful low cost small 
satellite mission. It is a standard practice at 
CTNSS to develop the TTM and command 
formats and specifications early in the systems 
design stage and to build around them the 
essentials of ground station processing and 
communications software. These elements are 
assembled into the PC-based EGSE suit that 
accompanies the satellite from the I&T test bed, 
throughout I&T and environmental testing and 
beyond. These same elements which have 
accumulated much equivalent "flight time" and 
have been perfected in a natural manner are then 
incorporated into master or remote ground station 
packages. There is no separate team associated 
with the ground station operational software; it is 
basically an inherited evolute of the spacecraft 
development process. 

Point (8) suggests an innovation that is currently 
underway in three CTNSS programs. Unlike older 
systems that require scheduling and pre- 
programming of satellite communications events, 
some new programs are now operating via 
intelligent space and ground systems to totally 
avoid routine contact scheduling which is a tedious 
process. The UTs, for example, maintain their own 
ephemerides and simply come on the air when the 
satellite is known to be visible at some preset 
minimum elevation angle andlor in an allowed 
azimuth band. In some programs the satellite itself 
autonomously contacts ground units without 
cumbersome deterministic scheduling uplinked 
previously by the master controller. Not only is 

this much more efficient, it also allows dynamic 
response disallowed by too much pre-planning. 

The final two points refer to spacecraft subsystem 
and experiment levels of autonomy and non-mutual 
interference. A very great deal of labor and 
engineering efforts are expended throughout testing 
and later mission operations; labor that escalates 
sharply when systems conflict in any way or when 
excessive and too-frequent monitoring and control 
is required. This placing the operators "in-the- 
loop" in the manner of a very stiff control law. 
Building inexpensive space systems for small 
satellites that do not impose these penalties may be 
a challenge, but should always be entertained in 
both the bus and experiment arenas. 

SMALL SYSTEMS, SMALL OPERA- 
TIONS APPROACH 

A Case Study: POGS 

The typical lightsat ground configuration consists 
of a frequency agile UHF transceiver with 
mod/demod capabilities in various forms of BPSK 
and FSK modulations operating under a simple 
micro controller. This unit can be rack mounted 
inside, or configured in an environmental housing 
for exterior deployment. Coax connects the RF to 
a RHC or LHC circular polarized omni-directional 
radome-covered antenna or complementary pair. 
From the transceiver unit there is a standard serial 
(RS-232) line interfacing an ordinary PC. This 
comprises the minimal standard configuration. A 
variant is the replacement of the ornni-directional 
antenna is a light weight directional antenna which 
may be either linearly or circularly polarized, but in 
either case can be driven by inexpensive light duty 
commercial rotors. Such directive antennas are 
driven by open-loop controllers connected via PC 
cards implants or via an additional PC RS-232 
serial ports. A component of the ground station 
software generates antenna tracking data for each 



pass and provides it to the antenna controller. 
While there is nominally only a few dB's of gain 
advantage, it is often useful in noisy metropolitan 
areas and the same system can also lead a high gain 
X-band antenna, for example, to acquire the 
satellite and allow it to switch to closed-loop 
tracking for more precise alignment. 

A typical mission illustrates the major points in 
CTAISSs small systems approach. The USAF 
STACKSAT mission deployed three small 
satellites into nominal 300 nm polar orbits. POGS 
(Polar Orbiting Geomagnetic Satellite) was 
dedicated to the primary NORDA mission of 
magnetic mapping of the Earth's field and was 
equipped with a 6 foot boom-mounted NASA 
magnetometer instrument and a 4 Mbit CMOS dual 
channel SSR (solid state recorder). To prepare the 
operational staff of a one or two individuals from 
Bay St. Louis, a two week long training program 
was conducted in McLean. Shortly thereafter, and 
while the future operators looked on, CTNSS 
conducted the initial on-orbit testing procedures 
which commenced with the deployment of the 
spacecraft's gravity-gradient boom equipped with 
hysteresis rods to quench spin and libration. With 
the boom and antennas deployed, the satellite was 
ready for checkout and the entire procedure was 
handled from a PC system with omni antenna from 
the rooftop of our building just outside the 
Washington Beltway at Tyson's Corner Virginia. 
Despite high local noise levels various sources 
including one nearby arc-welder, everything went 
smoothly and the spacecraft was soon ready for 
hand-off. Operations had consisted first of a 
mission plan previously approved by the USAF 
and Aerospace. The plan permitted sufficient 
latitude thus avoiding serious delays while 
necessary variations would have been proposed and 
officially accepted. This is important to the low 
profile operation that we designed and budgeted. 
Finally the station at the user site at Bay St. Louis 
took over the operation that included two key 
unmanned high latitude receiving sites. Data down 
linked from POGS was automatically diverted to a 

WORM optical disk drive occasionally removed 
and mailed to the Bay. St. Louis facility although 
data was frequently recovered remotely via a dial- 
up link. Software updates and parameterization 
changes were facilitated via the remote dial-up link 
which also allowed operators at either Bay St. 
Louis or CTNSS to "man" the remote station. 
This also allowed one to see all the displays and to 
operate the keyboard remotely as though present 
on-site. POGS provided its requisite magnetic data 
in a few months and is still operating after about 
four and a half years. POGS also has a number of 
communications capabilities and other sensors all 
of which have performed flawlessly and have been 
operated with the most minimal of ground support. 

Communications scheduling for all ground 
elements and the spacecraft is handled over 
intervals of generally ten days time by the Bay St. 
Louis PC from which the appropriate files are 
simply "modemed" into the remote Arctic sites. 
The uplink to the satellite of command files can be 
accomplished from any of the three stations. 
Multiple sites provide excellent redundancy 
although the avoidance of non-standard computers, 
other equipment and software always provides 
inexpensive and obtainable components which 
need not be duplicated as spares. This approach 
permits a natural flow of technology improvements 
to the ground systems. It hinges on the use 
wherever possible of commercial software and 
hardware products and the use where possible of 
standard interfaces. This is not generally true of 
government systems. 

Hishli~hts of Cost Reduciny Factors 

0 Relaxed Official Coordination/Documentation 
Requirements 
Technical Backup Availability Including On- 
Line Operational Support 
Spacecraft Supports Long Term Scheduling to 
Allow Autonomous Operation of Both Bus and 
Experiments for Days or Weeks on End 



e Semi- or Fully-Automated Ground and 
Spacecraft Communications Scheduling 
Software 

e Compact and Powerful Spacecraft Commands 
e Telemetries and Telemetry Displays Keyed to 

Early Warnings via Color Coding at the Top 
Level 

0 Use of COTS (Consumer Off The Shelf) 
Products: 
o Generic IBM-like PCs and Peripherals 
o Land-Based Communications 
o Standard File Transfer (e.g., KERMIT) 
o Operating Systems (space and ground) 
o Use of Standard Protocols (HDLC[space- 

ground], TCPIIP [Internet], etc.) 
e Planned Software Reusability 
o Training and Simple SOPS (Standard Operating 

Procedures) 

FUTURE IMPROVEMENTS 

As small satellites (nominally of Class C 
construction) improve and advance with continuing 
miniaturizatiodweight reduction and other 
technical innovations, inclusion of new 
technologies and science applications are bound to 
create enhanced demands. Obtaining high cost-to- 
effectiveness for many future missions will depend 
on successes in modifying conventional approaches 
to today's large scale expensive launches and flight 
operations. These changes may be perceived as 
somewhat radical today, and yet to a large extent, 
they represent a rebirth of older principles of 
pioneering space developments that, over the years, 
have become somewhat anachronistic. The 
procurement process for DoD and NASA and 
associated regulatory demands are simply not 
structured to foster the rapid development of small 
satellite missions (including inexpensive LVs). To 
an extent they may also appear to conflict with STS 
mission elements since many tasks have and 
continue to be executed by manned crews- tasks 
that for a fraction could be carried out not for days 
but for years by small satellites linked to 
inexpensive ground systems and targeted to the 

needs of the experimentersllaboratories. 
Conventional approaches to flight operations are 
grand by comparison to the probable minimal 
needs of many potential candidate packages. To 
regain the spacecraft "pioneering" spirit of the '60s 
using today's small powerful computers both 
onboard and on the ground together with spectrum 
of technology improvements in both materials, 
components, structures, and manufacturing 
processes we can achieve magnitudes more results 
for the same relative costs. 

A major and bold new NASA initiative is fully 
targeted towards achieving the goals and objectives 
typified by the small satellite mission under 
discussion in this article. The Small Spacecraft 
Technology Initiative (SSTI), dubbed 
"pathfiider" by the program sponsor, will produce 
two spacecraft "LEWIS" and "CLARK" with the 
latter being built by CTAISS with Martin Marietta 
utilizing a set of IPDTs (Integrated Product 
Development Teams) including commercial 
entities, universities, NASA research centers and 
others involved with technology and science 
infusiodassessment and in fostering US 
commercialization efforts. CLARK is a fast track 
24 month-to-launch program lofting a 3-meter 
optical imaging payload, a variant of the successful 
MAPS instrument ("pMAPSM), an X-Ray 
Spectrometer, an Atmospheric Tomography Retro- 
reflector while also incorporating 3 6 explicit 
advanced technologies for space testing. Major bus 
elements including the 32-bit RHC3000 processor 
and SOA ADACS components offer unique 
opportunities to combine otherwise independent 
activities to provide enhancements in both science 
results and in operational efficiencies. The use of 
the pMAPS to detect clouds and prevent down link 
of useless images is but one example. NASA has 
adopted the entire tenant of the small satellite 
mission- form initial design and development, 
through launch and initial orbit, and throughout the 
flight. All of the concepts advanced in this paper 
are included in the CLARK plan which will allow 
the enhancement previously tested equipment, 



software and operational methodologies in an 
expanded context enveloping the disbursement of 
larger volumes of experiment data and in the 
promulgation of other mission information utilizing 
more open Internet accessways to facilitate wide 
community participation in this interesting 
endeavor. The low cost of the entire mission 
makes necessary the reforms cited and includes the 
active participation of the NASA sponsor as an 
IPDT member and not as an outside force passing 
judgment based on periodic reviews. SSTI 
significantly is an Initiative and will add impetus to 
future small satellite programs. In this sense the 
moniker "Pathfinder" seems most appropriate. 
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ABSTRACT 

The use of networked terminals which utilize embedded processing techniques results in totally integrated, 
flexible, high speed, reliable, and scalable systems suitable for telemetry and data processing applications 
such as h4ission Operations Centers (MOC). Synergies of these terminals, coupled with the capability of 
terminal to receive incoming data, allow the viewing of any deJned display by any terminal from the start of 
data acquisition. There is no single point of failure (other than with network input) such as exists with 
conjigurafions where all input data goes through a single front end processor and then to a serial string of 
workstations. 
Missions dedicated to NASA's Ozone measurement program utilize the methodologies which are discussed, and 
result in a multi-mission conJguration of low cost, scalable hardware and soffware which can be run by one 
flight operations team with low risk. 

KEYWORDS 

Embedded parallel processing, Ground systems, Transputers, and Total mission concept. 

1. INTRODUCTION 

At the SPACEOPS '92 conference [ 5 ] ,  it was 
shown that PC's could be used to control 
spacecraft and were capable of high throughput 
and performance if embedded processor 
methods were used [I]. Control centers using 
embedded serial processors were implemented 
for Nimbus 7 (N7) and the Meteor31 TOMS 
(M3lT) missions, and have operated flawlessly 
since their inception in 1987 and 1991 
respectively. 

In 1991, development of embedded 
systems using parallel processing components 
based on transputer technology was begun. In 

1992 we were tasked to develop a totally 
integrated control center using one Flight 
Operations Team (FOT) to operate N7, M3/T, 
and the Total Ozone Mapping Spectrometer - 
Earth Probe (TOMS-EP) missions. This facility 
is the TOMS Mission Operations Center 
(TMOC), and is leading the trend of combining 
similar missions with similar systems into 
multi-mission, single FOT facilities. 

The trend in modern space mission 
control systems is moving towards 
standardizing telemetry systems design [9 ]  as is 
evidenced by the move towards the adoption of 
CCSDS standards. These systems make use of 
the rapid advances in workstation or PC 



technology and contribute towards making the 
multi-mission Mission Operations Center 
(MOC) a reality. This paper will discuss the 
TMOC configuration utilizing embedded 
processing systems suitable for TOMS and 
other missions as shown in figure 1. 

2. EMBEDDED PARALLEL 
PROCESSING : SCOPE AND BENEFITS 

are usually implemented in a serial process. 
Throughput gains are attained either through 
hardware implementation of repetitive software 
processes or the use of higher speed processors 
such as the DEC Alpha chip. Most telemetry 
processing for today's spacecraft can be 
handled in a serial manner, especially if we 
confine our hnctions to engineering or 
command matters. 

For the most part, telemetry processing is a bit The rapid advance of very large scale 
oriented, repetitive, series of operations which integration (VLSI) technology, and the 

I TOMS Mission Operations Center Local Area Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
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Figure 1: TOMS Mission Operations Center (TMOC) Configuration 
Three missions are shown to interface to the NASCOM interface which provides inputs 

to the TMOC. AM mission 'terminals and redundant ones (shaded) are connected through an 
internal LAN. AU servers are switchable from the internal LAN to the NASA ethernet for 

security purposes. 



availability of low cost processors have made it 
feasible to develop high performance, cost 
effective, and efficient parallel computer 
systems utilizing more than one processor, 
while maintaining a software design for 
implementation. These parallel methods lend 
themselves to bit and computationally intensive 
operations such as telemetry analysis, orbit and 
attitude analysis, and science processing and 
result in systems which are scalable, low cost, 
high performance, flexible, and reusable. 

These systems [4,5,6,7] are based on 
the use of transputers as the parallel processing 
device. Transputers feature a built-in hardware 
scheduler which permits more than one 
concurrent process to share the processors 
time, and four DMA links to provide highly 
efficient inter-processor communication and 
data transfer. Hence, if the computation to 
communication ratio of component processes is 
considerably high, and the task allocation is 
uniform; multiple processes can be executed 
efficiently in parallel fashion. This strategy can 
be extended in dealing with future requirements 
by adding extra processing modules. In other 
words, embedded parallel processing offers 
scalability and flexibility to the system. 

For our telemetry and command 
applications, a large body of software has been 
developed which executes on the embedded 
processor, requiring no significant resources 
from the host operating system, with a shared 
memory capability. This sets the basis for doing 
bit operations on the embedded processor 
while the host serves as the man/ machine 
graphical interface. More details on the scope 
of uniting of PC's and transputers as embedded 
processors can be obtained from references 
[2-71. The benefits of utilizing the embedded 
parallel processing technology are: 

a) Flexibility - Systems can capture 
all downlinked data, and immediately begin 
initial processing or data distribution. Systems 

are small, truly transportable, and require only 
normal office surroundings with clock and 
signal as inputs. Standard and non standard 
telemetry inputs can be processed 
simultaneously while commands are being 
output in required formats and rates. 

b) Data Throughput - Base 
throughput rates depend on the number and 
architecture of the components as well as the 
parallel programming design. Rates in excess of 
10 Mbits are achievable on our TOMS-EP 
system with NASCOM deblock only. Other 
levels of decommutation utilizing software 
algorithms slow the effective real time rate 
down to about 50 Kbits sustained for full 
health and safety while simultaneously 
archiving input data at the 10 Mbit receive rate. 

c) Efficiency - System modularity, 
reusability, and ease of implementation lead to 
low costs, rapid implementation, and high 
performance. 

d) Scalability - Systems can be 
built or expanded according to the demand of 
jobs or tasks to be performed and the systems 
can be reused in whole, in part, or with 
additional processing modules. 

In addition, the use of embedded 
parallel processing and transputer technology 
contributes directly toward enhancing the 
unique features of the total mission concept. 
Based upon the granularity of parallelism 
exploited in the design, the system can be 
expanded to achieve the flexibility, reliability, 
and performance desired in the total mission 
system. The Total mission concept will be 
discussed in section 4. 

3. CURRENT CAPABILITIES OF 
THE SYSTEM 

The system architecture utilized in the TOMS 
Mission Operations Center (TMOC) is based 
on commercial off the shelf (COTS) products. 
Low cost, reliable, upgradable, user friendly, 



multifunction, standardized hardware and 
software are just a few of the goals in the 
system design. The TMOC is entirely driven 
by Personal Computers PC's) utilizing the 
Intel Processor family. Embedded parallel 
processing is added to critical systems where 
real-time processing and/ or high 
computational requirements may be needed, 
and hence eliminating the need for high cost 
workstations and related software, as well as 
separate, costly fiont end processors (FEP). 
The ability to selectively add special purpose 
parallel processing modules gives the total 

system great flexibility. At a relatively low 
cost, the system can be reconfigured to support 
many of the current and proposed NASA 
missions. 

The major functional areas are shown in 
figure 2, which include Real-time Command 
and Control, Health and Safety, and Mission 
Planning. The individual control center 
systems are connected via a standard ethernet 
Local Area Network (LAN). This makes it 
possible to transfer data between major system 
fbnctional areas, as well as between individual 

Figure 2 : An overview of the TOMS-EP mission system. The operations center exhibits its major aperations 
-command,health and safety, and mission planning. The center interacts with the DSN or Wallops station via NASA 

communication network (NASCOM), and also with the launch control room, Flight dynamics facility (FDF), 
Jet propulsion laboratory (JPL) and Science processing facility daring its telemetry operations. 



systems. The TMOC interfaces with external 
components by several communication paths 
such as: 

1. The Deep Space Networks (DSN) 
and the Wallops flight facility are utilized for 
support of command, telemetry, and tracking 
for the TOMS satellites. The NASA 
communications (NASCOM) network provides 
the interface between the DSN sites and the 
TMOC at the GSFC facility. The embedded 
parallel processor incorporates the FEP 
internally, making the single PC based 
workstation hlly portable; the internal FEP is 
hlly programmable for many packet formats 
received from TDRSS, DSN, MDM, IOS, or 
raw data from a bit synchronizer. 

2. The Flight Dynamics Facility (FDF) 
provides the attitude determination and 
verification, as well as orbit determination 
support. The FDF products are transferred 
directly to the mission planning systems for 
incorporation into on-line databases. A 
standard ethernet network utilizing TCP1I.P 
provides the interface to the mission planning 
systems. 

3.  The Jet Propulsion Laboratory 
(JPL) and mission planning coordinate and 
schedule all support for different components 
of the mission. Dialup1 dialback modems are 
utilized within the mission planning systems for 
the JPL interface. With the FDF data, JPL 
schedules, and instrumenter's command 
requests, command loads are prepared from the 
databases and transferred directly to the on-line 
Command systems. 

4. The Science processing facility 
receives Level-0 processed TOMS data and 
hrther processes the data to create various 
products. The science facility receives data on 
a daily basis via standard ethernet using 
TCPIIP. Long term trending data is archived 
in the control center on CD-ROM media and 

hrnished to the Science facility on an as 
required basis. 

The on-line systems that are connected 
to the NASCOM network are all identically 
configured systems as shown in figure 1. For 
the TOMS-EP there are four systems on-line: 
a Primary Command system, a Primary Health 
and Safety system, a backup Command system, 
and a backup Health and safety system. Each 
on-line system has a UNIX Operating System 
(0s)  with an X-windows based Graphical 
Users Interface (GUI) supporting the Motif 
X l  lR5 standard. All of the Command, Health 
and Safety, Level-0 processes, and analysis 
applications are written in C language using the 
Motif library. This standardized approach 
enhances the portability of the application 
source code to other platforms, as it may be 
necessary in future. Using UNIX and Motif 
also allows the system to incorporate NASA 
products such as Satellite Telemetry Operating 
Language (STOL) into the Command system. 
Since all of the on-line systems are identical, 
any one may execute the Corilmand software 
or the Health and Safety software. 

Currently, the TOMS-EP command 
system utilizes a command database specifically 
tailored for the EP satellite and TOMS 
instrument. The command system not only has 
Real-time command capability, but also full 
storage and forward capability. These features 
allow for frequent use of stored sequences of 
commands, and preprogrammed matrices that 
will be executed onboard the spacecraft at 
predetermined times. All commands 
transmitted are verified by echo blocks from 
the DSN site and further verified by the 
telemetry downlink. The telemetry downlink 
is in a CCSDS format and is fully 
decommutated in real-time in the internal FEP. 

The TOMS-EP Health and Safety 
system provides a full analysis of both the 



spacecraft and the instrument in real-time. The 
screen format is set up as four quadrants, each 
quadrant may be customized by a satellite 
subsystem. In addition to the four quadrants, a 
general status panel is always visible at the top 
of the screen for a running summary of pass 
statistics. From a pull down menu bar and also 
hot keys, multiple panels are available for 
display by pressing of a button or clicking a 
mouse. Every telemetry point is in a database 
driven lookup table that is being updated in 
real-time through a shared memory interface. 
The embedded FEP does all the 
decomrnutation of the telemetry which places 
the processed data into the shared memory 
interface. Within the database, several things 
are occurring on each entry point such as 
calibration, floating point conversion, mode, 
event and alarm determination. The entry is 
then displayed based on a user defined display 
format. A row of subsystem buttons 
continually show the current status of each 
subsystem by changing the color. Green 
implies a normal operation, Yellow and Red 
indicate potential problems. By moving the 
mouse cursor on the subsystem button and 
clicking the mouse button, the event and 
telemetry panels associated with that subsystem 
are immediately displayed for analysis. In 
addition, there are X-Y plots that may also be 
configured in the display panels. 

Along with the primary Health and 
Safety UNIX based systems, there are several 
standard PC's without FEP's. These PC's are 
configured as standard ofice systems running 
MS-DOS OS and Windows and are connected 
to the LAN. With an X-windows package, 
they are capable of running remote Health and 
Safety sessions in a client/ server configuration. 
The UNIX system becomes the server and 
executes the prime Health and Safety program. 
The DOS PC logs into the server as a client 
and executes a slave version of the same 
program. This configuration allows multiple 

screens of several subsystems to be viewed 
simultaneously. The DOS PC is used to 
transfer telemetry data points from the UNIX 
system and run trend analysis tools such as 
Quattro-Pro, Lotus, Excel or other packages 
that a user is familiar with. A note needs to be 
made at this point, with this type of PC 
environment, a relatively low cost control 
center can be put into full operation. 

A localized LAN is being utilized for 
the control center communications. The 
bandwidth of the LAN can support the slave 
DOS client systems, mission planning, and an 
Astromed stripchart subsystem. The Astromed 
stripchart subsystem consists of four Astromed 
MT95000, 16 channel digital strip chart 
recorders. The four recorders are controlled 
by a front-end PC connected to the same LAN. 
The prime Health and Safety system sends raw 
telemetry directly to the 64 channel subsystem. 
The telemetry points, recorder speed and all 
controls are setup through a pop-up X-window 
during the pass. Any page on any terminal can 
be "popped" up on any other terminal on the 
network. 

4. THE TOTAL MISSION CONCEPT 

The TMOC control center architecture is 
designed for its missions and is self contained 
but can be expanded to include flight dynamics 
and science processing within the control 
center. The system is very modular allowing 
dynamic reconfiguration 'on the fly'. Figure 3 
represents a Total Mission Concept that may 
be implemented within the TMOC requiring 
very little external support by adding the 
following functions: 

1. Flight Dynamics 
a. Integration of some of the Flight 

Dynamics functions directly into the control 
center. Several off the shelf products are now 
available from commercial companies such as 



STORM Technologies and Integral Systems 
Corporation that make this feature doable now 
for attitude computation and mission planning 
products. It is assumed that precision 2-3 line 
elements are available. 

2. Science Processing 
a. The Level-0 product is already 

processed within the control center. The 
system can easily be enhanced by scaling up the 
system compute power by adding parallel 
processing nodes to provide Levels 1, 2, and 3 
processing. These products could then be 
distributed to users and archived. 

b. The addition of image quick look 
capability to verifjr data quality during 
real-time and playback data recorder dumps. 

The Total Mission Concept for a 
control center can be implemented today in a 
very cost effective scenario. The same 
operations personnel could perform all the 
fbnctions listed above fiom mission planning, 
through acquisition, analysis, data archiving, 
and the creation and distribution of science 
products. Multiple missions may be controlled 
by the same equipment and operations 
personnel by just selecting the missipn type on 
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Figure 3: The Total Mission Concept implementation on the TMOC architecture. 
The dotted box exhibits the extension that can be added to achieve the tlight 
dynamics and science processing capabilities to the system to perform orbit 

determination and level 1,2,3 processing. 



screen. The nonreal-time DOSI Windows 
systems are utilized in a multi-purpose mode 
from daily office operations to a client/ server 
based evaluation tool. All of this leads to 
efficient utilization of facilities, equipment, 
personnel and bottom line mission cost. 

5. SUMMARY 

The basis of using Transputers and Alpha chips 
in an embedded processing environment was to 
support the expansion of the Ground System 
from a simple command and telemetry analysis 
system to a system that supports spacecraR 
I&T, command & telemetry, and science 
processing and distribution. The cost 
effectiveness of this Total Mission concept and 
the ability to support multiple satellites 
simultaneously provides for a smaller 
operations staff resulting in an overall lower 
life cycle cost. In today's environment, this is a 
definite benefit when planning new missions. 
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Abstract 

The advent of high speed local area networks has made it possible to interconnect small, 
pokverfbl computers to function together as a single large computer. Today, distributed 
computer systems are the new paradigm for large scale computing systems. However, 
the conmlunications provided by the local area network is only one part of the solution. 
The services and protocols used by the application programs to communicate across the 
network are as indispensable as the local area network. And the selection of services and 
protocols that do not match the system requirements will limit the capabilities, 
performance and expansion of the system. Proprietary solutions are available but are 
usually limited to a select set of equipment. However, there are two solutions based on 
"open" standards. The question that must be answered is "which one is the best one for 
my job?" 

This paper examines a model for tracking stations and their requirements for inter- 
processor conmunications in the nest century. The model and requirements are matched 
with the model and services provided by the five different software architectures and 
supporting protocol solutions. Several key services are exanlined in detail to determine 
which services and protocols most closely match the requirements for the tracking 
station environment. The study reveals that the protocols are tailored to the problem 
domains for which they were originally designed. Further, the study reveals that the 
process control model is the closest match to the tracking station model. 

Introduction 

Tracking stations are a collection of different pieces of equipment, integrated into a single 
system to support cotlmunications between the ground and a spacecraft. The antenna equipment, 
the receiver equipment, the transmitting equipment and associated signal processing equipment are 
built by esperts in their field. Over the past decade, computers have been incorporated into this 
equipment to operate and automate their increasingly complex functions. Today, this conlputerized 
equipment (called subsystems) can be linked together with cornnlunication protocols into an 
operating tracking station. However, the degree of difficulty to integrate these subsystems into a 
single tracking station, and the level of automation that can be achieved, will be a direct function of 



the protocol selected. This paper exanlines a number of non-proprietary protocols that have been 
used or suggested as possible candidates for the tracking station application. 

Today, commercial vendors market computer controlled components for tracking stations. 
As government budgets shrink and commercial exploitation of space grows, these products offer 
cost effective solutions to one-of-a-kind development efforts. However, vendors are looking to 
protect their share of the market and their proprietary products. To this end, some vendors offer 
complete, fully automated tracking stations. However, these turn-key solutions usually provide 
limited services. And in general, single vendor solutions are not attractive to government or 
industry. An "open solution" provides a multi-vendor environment where the best products for the 
job can be integrated into a single system. Commercial inter-processor communications protocols 
that provide an "open solution" while affording protection to proprietary products are needed to 
support the integration of different vendor components into a single automated tracking station. 

Operational Scenario 

An examination of the various candidate protocols is facilitated with a simple model of a 
tracking station. Consider the construction of a new tracking station to be built using commercial- 
off-the-shelf components. Four different companies will provide computer controlled equipment 
that will be integrated into a fully automated tracking station. The elements include: the antenna 
subsystem, the receiver subsystem, the telemetry subsystem and the command subsystem (see 
Figure 1). Each subsystem is operated by a computer integrated with the subsystem hardware. 
The subsystem computer performs specific functions directly related to the subsystem hardware. 
A workstation will be used to automate the operation of the tracking station and will provide a 
central facility to monitor the operation of the tracking station. The workstation and the subsystem 
controllers will be linked together through a Local Network Area (LAN). All of the software for 
these systems will be delivered as executable products. All of the systems will be installed and 
configured without software development, compilation and linking of code. The installation 
process will be automated to the greatest degree possible. 

The operational scenario for this new station implements procedure control through the 
workstation. The workstation allocates the station resources required to support any given activity 
at the station. All high level control functions are initiated from the workstation. In turn, the 
workstation monitors the operation and performance of all the station subsystems and takes action 
to correct anomalies. Individual subsystems must initiate subordinate subsystem operations as 
required. And in turn, individual subsystems monitor the operation and performance of 
subordinate subsystems as necessary. In other words, all operation of the station is coordinated by 
the workstation, but individual subsystems will control and monitor other subsystems directly. 
Support files are managed by the workstation and transferred as required to the appropriate 
subsystem. The scenario outlined above encompasses the six basic functional requirements for 
monitor and control in the Deep Space Network tracking stations (see Table 1). 

Several commercial companies are currently building tracking station components that 
provide an X-Window based Graphical User Interface (GUI) for operation of their equipment. 
Several NASA organizations have also provided an X-Windows based Graphical User Interface 



(GUI) for operation of NASA developed equipment. Since X-Windows is a common solution to 
support remote operation of computers and in current use, we should examine its application as a 
standard for tracking station automation. 

A tracking station built to be operated using the X-Windows protocol would require each 
subsystem to be designed as an x-client. In the example tracking station, each subsystem controller 
would come equipped with a GUI to support its operation. The Station Operations Workstation 
would be used as an x-server to operate each subsystem (see Figure 2). This approach permits the 
development of subsystems in isolation and safeguards the proprietary s o h a r e  of the commercial 
vendors. However, the X-Windows protocol was developed to support terminal operations on 
remote computers independent of the manufacturer. It was not designed to support automated 
operation of the remote computer. Consequently, an operator is required at the Station Operations 
Workstation to run the remote subsystems. In addition, X-Windows makes no provisions for the 
direct exchange of data between subsystems without operator involvement. The operational 
scenario requires subsystems to operate other subsystems and exchange data directly. 
Consequently, X-Windows alone will not fulfill the automation requirements. 

Distributed Computing Environment 

The emergence of the Open Software Foundation's (OSF) Distributed Computing 
Environment (DCE) has prompted speculation that DCE could be applied to the problems of 
tracking station automation. DCE was designed and developed to provide the services required by 
systems with multiple conlputers interconnected by a local area network (LAN) or a wide area 
network (WAN). As the name suggests, DCE services are designed to perform distributed 
computing. An underlying assumption for the development of DCE is that the work performed can 
be independent of location (that is, an application that requests a service is not concerned with 
where the service is performed). An overview of the DCE basic services with respect to the Open 
Systems Interconnect (OSI) Basic Reference Model is shown in Figure 3. There are five basic 
components to DCE: 

1) The Distributed File Services (DFS) in DCE provide extensive tools to manage and 
manipulate files in a distributed computing system. 

2) The DCE Time services provide for the synchronization of computer clocks in a 
distributed computing system. 

3) The DCE Naming and Directory Services contains the names of users, machines and 
resources available in the distributed system 

4) The DCE Management Services provide the tools to operate the distribute system. 

5) The DCE Security Services control access to the distributed system. 

All of these services use the DCE Remote Procedure Call (RPC) to access the network. 

The application of DCE in a tracking station would likely rely heavily on the Remote 
Procedure Call (RPC) for most inter-processor communications. The DCE RPC provides an 
Interface Definition Language (IDL) which is used to create both client and server elements of an 



RPC. The IDL also provides for the common representation of data in different computer systems. 
Once the IDL specification for an RPC is created, the IDL client and server elements are compiled 
and linked on the appropriate systems (see Figure 4). Applied to the example tracking station, each 
subsystem integrated into the station would include a set of client and server IDL definitions. The 
IDL definitions would be compiled and linked on the Station Operations Workstation. In addition, 
client and server IDL definitions would be compiled and linked on each subsystem that directly 
inter-operates with another subsystem. In the example tracking station, the application of the DCE 
RPC approach would produce the following scenario: 

A receiver subsystem is purchased and delivered along with a set of IDL specifications 
to support the operation of the receiver. The client IDL specifications are copied to the 
Station Operations Workstation, compiled and linked. Software is then developed to 
automate the receiver operation using the RPCs. In addition, the receiver operates as a 
client to access the antenna positions' values as a part of normal operations. The 
receiver also operates as a server to the antenna subsystem providing signal power 
measurements as required. The client and server IDL specifications for inter-operation 
of the receiver must be copied to the antenna subsystem, compiled and linked to support 
antenna-to-receiver communications. In turn, the antenna subsystem IDL specifications 
must be copied to the receiver subsystem, compiled and linked to support receiver-to- 
antenna comnlunications. 

A complex, highly automated tracking station would require hundreds (if not thousands) of RPCs 
to operate. Consequently, the management of RPCs will become a critical part of any DCE based 
tracking station. Though the DCE approach may offer a solution to the problems of inter- 
operability, compiling and linking RPCs from different vendors does not guarantee problem free 
integration. In addition, the DCE does not address the burden of software development for the 
Station Operations Workstation to automate the RPC finctions. 

The application of DCE Management Services (called Distributed Management 
Environment - DME) offers an alternative solution to compiling and linking IDL specifications into 
RPCs. The DME services provide high level data object management tools and are based on the 
Common Management Information Service Element (CMISE) standard. A DME based approach 
would be very similar to CMISE approach discussed in more detail in a later section. 

Simple Network Management Protocol 

Simple Network Management Protocol (SNMP) was developed in the Internet community 
to address the monitor and control of devices that support LANs and WANs. Network bridges and 
routers are typical devices where SNMP has be applied. To my knowledge, SNMP is not currently 
used or under consideration for use in tracking station operations. However, SNMP is similar to 
two protocols currently in use at tracking stations and is very similar to those protocols in its basic 
design. Therefore, a review of SNMP serves to identify conllnon elements and finctions in three 
similar protocols. In addition, deficiencies in the SNMP approach with respect to tracking station 
applications are identified. 

SNMP provides a set of services designed to access the Management Information Base 
(MIB) established in a device. The MIB is a collection of objects that represent real resources in 
the device. For example, a network router used to bridge a local area network to an exterior 



communications line will have a network address and sub-network address. Each address can be 
an object in the network router MIB. The SNMP Get service provides for the retrieval of objects 
contained in a remote MIB. The SNMP Set service supports the modification of an object in a 
remote MIB. Also, SNMP has a Trap service that provides for a remote node to report a changed 
condition to a management node. In addition, sofhvare to access SNMP services through a GUI is 
available for workstations. 

The application of SNMP in the example tracking station would find a Management 
Information Base installed on each subsystem (or device). The Station Operations Workstation 
would access each subsystem MIB using the SNMP Get and Set services (see Figure 5). The 
configuration and operation of subsystems would be accomplished using the Set service to change 
objects in the MIB. The status and performance of the subsystems would be determined by 
accessing objects in the MIB through the Get service. Anomalous conditions in the subsystems 
could be reported to the Station Operations Workstation using the Trap service. SNMP provides 
for the common representation of data through the Basic Encoding Rules (BER) to formulate 
messages in Abstract Syntax Notation 1 (ASN. 1). SNMP services could also be used to support 
subsystem-to-subsystem communications. Using the antenna-to-receiver example discussed 
earlier, the receiver would use the Get service to access the antenna positions directly from the 
antenna subsystem. In tum, the antenna could use the Set service to initiate signal power 
measurements on the receiver and access the results using the Get service. Finally, commercial 
software to access SNMP services would be used to automate the Station Operations Workstation 

There are however, a number of problems with the application of SNMP in a tracking 
station. First, SNMP Set and Get services are designed to operate on simple data types: scalars 
and two-dimensional arrays of scalars. Using SNMP Version 1, access to large sets of MIB data 
objects require multiple Sets or Gets. The SNMP GetNextRequest can simplifl the process but 
this limitation still imposes perfomlance constraints where large amounts of data must be accessed. 
SNMP Version 2 will expand the supported data types and add the GetBulkRequest service to 
address current limitations. Also, SNMP does not provide a service to access a directory to the 
contents of the MIB. The contents of the MIB can be determined through interrogation with a 
series of SNMP GetNextRequests, however: it is a time consuming process. A directory to the 
contents of the MIB is necessary to access specific data objects with Get and Set services. In 
addition, SNMP provides no mechanism to establish an alias data object. In the antenna-to- 
receiver example, the object names on both subsystems must match for the antenna or receiver to 
access each others MIB. For example: 

Conlpany A builds the receiver with the name of the data object representing the 
operating radio frequency as "RF-Frequency". Company B builds its telemetry 
processor with the same parameter represented with the name of 
"Operational-Frequency". Under this condition, an SNMP Get made by the telemetry 
processor to access the receiver value of "RF-Frequency" would fail and generate an 
error. 

A service to create an alias data object that could be associated with an existing data object would 
minimize the problen~s of inter-operation of subsystems. Finally, most in~plementations of SNMP 
operate over the User Datagram Protocol which is not a guaranteed delivery service. The 
successful operation of the tracking station will depend on the inter-subsystem communications. 
Consequently, a reliable protocol will be required to support the automation of the station. 



The SNMP services were designed and developed to manage systems performing dedicated 
tasks in local and wide area networks. The functions performed by these systems are limited in 
scope and the services of SNMP reflect that limited scope. The subsystems in the tracking station 
also perform dedicated tasks; however, the scope of these tasks varies over a wide range of 
functions. The contents of each subsystem MIB will be completely different and a directory 
service would simplify the installation and management operations. This deficiency in SNMP 
could be addressed with implementation requirements imposed on the manufacturers. For example, 
a file with a directory to the MIB could be delivered with the product, copied to the Station 
Operations Workstation and made available to an application or user. Similarly, provisions could 
address the creation of alias named objects in remote MIBs. And, reliable transport services could 
be furnished by TCP. However, these implementation requirements amount to amendments to the 
SNMP specification which are unique requirements to the tracking station implementation. 

Common Management Information Service Element 

The successful implementation by the European Space Operations Center of a tracking 
station based on Common Management Information Service Element (CMISE) is a compelling 
rationale for further examination of this protocol. The Consultative Committee for International 
Telegraph and Telephone (CCITT) and the International Standards Organization (ISO) jointly 
developed CMISE as the management standard for equipment in the communications industry. 
The basic approach to the design of CMISE is similar to SNMP, however the eleven services 
provided by CMISE are more extensive and robust. Like SNMP, the services of CMISE are 
designed to manage data objects in a MIB. The CMISE Set and Get services are designed to 
operate on virtually any data type. Consequently, CMISE is not as limited as SNMP. In addition, 
the CMISE Event service is more robust and sophisticated than the SNMP Trap service. Like 
SNMP, CMISE provides for the conlmon representation of data through the BER to formulate 
messages specified in ASN. 1. And also like SNMP, CMISE provides no service to access a 
directory to the contents of the MIB. However, CMISE does provide Create and Delete services 
that could be used to establish alias data objects on remotes. For example: 

Company A builds the receiver with the name of the data object representing the 
operating radio frequency as "RF-Frequency". Company B builds its telemetry 
processor with the same parameter represented with the name of 
"Operational-Frequency". The telemetry processor would use the CMISE Create 
service to establish a data object called "Operational-Frequency" on the receiver and 
associated with the data object "RF-Frequency". The receiver would then respond to 
a CMISE Get "Operational~Frequency". The association of the two data objects 
would be part of the subsystem installation procedure. At the end of the activity, the 
telemetry processor would use the CMISE Delete service to remove 
"Operational-Frequency" from the MIB of the receiver. 

The application of CMISE in the example tracking station, like SNMP, would find a 
Management Information Base installed on each subsystem (or device). The Station Operations 
Workstation would access each subsystem MIB using the CMISE Get and Set services (see Figure 
5). The configuration and operation of subsystems would be accomplished using the Set service to 
change objects in the MIB. The status and performance of the subsystems would be determined by 
accessing objects in the MIB through the Get service. Anomalous conditions in the subsystems 
could be reported to the Station Operations Workstation using the CMISE Event service. CMISE 



services would also be used to support subsystem-to-subsystem communications. Finally, 
commercial software to access CMISE services would be used to automate the Station Operations 
Workstation. However, CMISE makes no provisions for file management. Consequently, an 
additional protocol will be required to move and manage the support files required to operate the 
subsystems and the station. 

Manufacturing Message Specification 

The process control protocol Manufacturing Message Specification (MMS) has also been 
successfully implemented in a tracking station. Originally sponsored by General Motors, MMS 
provides 86 services designed to support automation of factories. Like SNMP and CMISE, MMS 
is designed to manage the data objects in a MIB and provides for the common representation of 
data through the BER to formulate messages in ASN. 1. And also like SNMP and CMISE, the 
systems managed through MMS perform dedicated tasks in the factory. However unlike SNMP or 
CMISE, MMS was designed to support systems that would span a wide range of manufacturing 
operations. Consequently, MMS provides 86 services to manage the resources in an automated 
facility. 

The application of MMS in the example tracking station would find a Management 
Information Base installed on each subsystem (or device). The Station Operations Workstation 
would access each subsystem MIB using the MMS Read and Write services (see Figure 5). The 
configuration and operation of subsystems would be accomplished using the Write service to 
change objects in the MIB. The status and performance of the subsystems would be determined by 
accessing objects in the MIB through the Read service. Anomalous conditions in the subsystems 
could be reported to the Station Operations Workstation using the MMS Information Report 
service and the MMS Event Management services. MMS services would also be used to support 
subsystem-to-subsystem conununications. Unlike CMISE, MMS provides an Identify service, 
GetCapabilityList service and a GetNamedVariableList service which describe the subsystem on 
request. The GetNamedVariableList service provides a directory to the contents of the MIB in the 
form of a list of the named objects contained in the MIB. The integration of different 
manufacturer's subsystems would be facilitated using the DefineNamedVariable and 
DeleteVariableAccess services to establish alias data objects on the station subsystems. Returning 
to the previous example: 

Company A builds the receiver with the name of the data object representing the 
operating radio frequency as "RF-Frequency". Company B builds its telemetry 
processor with the same parameter represented with the name of 
"Operational~Frequency". The telemetry processor would use the MMS 
DefineNamedVariable service to establish a data object called 
"Operational-Frequency" on the receiver and associated with the data object 
"RF-Frequency". The receiver would then respond to a MMS Read 
"Operational~Frequency". The association of the two data objects would be part of 
the subsystenl installation procedure. At the end of the activity, the telemetry 
processor would use the DeleteVariableAccess service to remove 
"Operational-Frequency" from the MIB of the receiver. 

Finally, the MMS file management services like Fileopen, FileRead, Fileclose, FileDirectory, 
FileDelete and FileRename would be used to manage the support files required by the subsystems. 



Beyond the basics, MMS provides services to support the kinds of subsystems commonly 
installed in tracking stations. The MMS Program Invocation Management services are designed to 
support subsystems with multi-tasking operating systems. Using MMS, a standard set of services 
can be used to start, stop, resume or kill programs running on remote subsystems without regard 
for the specifics of the target operating system. The Domain Management services support block 
memory transfers between subsystems. Using the MMS Domain services, subsystem configuration 
tables could be efficiently transferred between the Station Operations Workstation and the 
subsystems. The Journal Management services provide for the logging of activities and events in a 
process control environment. The Semaphore Management services provide support for systems 
with shared resources. In tracking stations with multiple antennas and limited equipment 
redundancy, contention for limited resources can be supported through MMS semaphore services. 

An additional advantage to the employment of MMS, is the availability of "Application 
Enabler" products for use on the Station Operations Workstation to automate station operations. 
These products are commonly found in the manufacturing sector and often referred to as 
"Supervisory Control and Data Acquisition (SCADA)" packages. Used to automate factories, 
Application Enabler products are software packages that can be customized for a specific 
installation without software development. The companies that build Application Enablers provide 
communication drivers to access proprietary devices, like Programmable Logic Controllers 
(PLCs). Today, a number of these companies provide MMS communication drivers. Using these 
products in conjunction with MMS, the, software for the Station Operations Workstation can be 
purchased and configured to operate the tracking station without software development. 

Discussion 

All five protocols surveyed could be used to build a spacecraft tracking station. However, 
each of these protocols were designed and developed for a specific environment. The question is 
'Which environment most closely matches to environment of a spacecraft tracking station?" A 
second question is 'Which protocol will provide commercial vendors with the tools to develop and 
deliver products that can be installed and integrated without software development?" 

Spacecraft tracking stations are composed of devices with dedicated resources performing 
dedicated operations. The antenna subsystem is dedicated to operating the antenna hardware while 
the receiver subsystem is dedicated to operating the receiver hardware. The operations performed 
by these subsystems vary significantly. X-Windows provides an environment for the remote 
operation of these devices but does not provide for automation. DCE provides an integration 
environment but does not relieve the burden of software development. The management of a device 
through its MIB with SNMP, CMISE or MMS can provide automation and relieve the burden of 
software development. However, the limited services of SNMP make it the least likely candidate 
for operation of a tracking station. Given the similarities between CMISE and MMS, what is the 
basis for a final selection? A detailed examination of these two protocols reveals some differences 
to direct a final selection. 

At first glance, the CMISE Get and Set services appear nearly identical in function to the 
MMS Read and Write services. However, there are subtle differences between the two protocols 
that are derived from their intended applications. Consider the factory enviroim~ent: 



A factory is a confined environment where control must be decisive. Arbitrary control of a 
server might create catastrophic problems on the factory floor. Therefore, an MMS client 
must establish an association with a server before a dialog of MMS services can begin. If 
an association can not be established, control can not be initiated. Server systems are 
designed to fail in a safe mode, protecting the plant and personnel. When problems 
develop on the factory floor, MMS-based automation alerts operations personnel to 
investigate the problem and take corrective action. To provide decisive control, the 
exchange of MMS control messages employs confirmed services that require the client 
application receive an acknowledgment from the server application. The MMS Write 
service is a confirmed service that requires acknowledgment for completion. 

Now consider a wide area communications network environment: 

A wide area network is not a confined environment, frequently distributed over tens, or 
hundreds or thousands of miles. Communication device servers are also designed to fail in 
safe mode while redundancy provides for alternative means of communications. Rarely 
does a failure present a threat to life or property. Therefore, CMISE is designed to operate 
with or without an established association. The CMISE Set service can operate in both 
confirmed and unconfirmed modes. 

The difference in these services in important for their respective applications. Corrective action in 
a factory frequently requires human intervention to safe guard life and property. Corrective action 
in a communications network can frequently be accomplished remotely. For example: 

A recurring fault can cause a network router to fail. The router can be designed to reboot 
on failure to safe mode, reboot on failure to diagnostic mode or reboot on failure to 
operational mode. The recurring failure results in the router continuously rebooting. The 
time interval between faults is too short to support the normal establishment of an 
association and leading to a Set service to force the router into the diagnostic mode. The 
unconfirmed Set service provides a mechanism to reset the router to diagnostic mode 
before the fault occurs again. 

Another subtle difference between CMISE and MMS can be seen in the Event services. 

Both CMISE and MMS provide Event services. Though similar in principle, the services 
perform differently reflecting the environments for which they were designed. A detailed 
examination of the event data structures reveal that both CMISE and MMS provide an attribute for 
event-priority. However, only MMS provides an attribute for event-severity. From my experience, 
I believe this distinction is derived from the difference between the communications environment 
and the factory environment. Rarely do events in communications networks produce property or 
life threatening situations. However, events on the factory floor can produce these conditions. 
Therefore, the MMS Event service provides for severity of a failure. 

Consequently, it is my opinion that MMS offers the best fit to the spacecraft tracking 
station environment. Based on experience, MMS provides the commercial vendors with a standard 
for automation. Using MMS, a comm~ercial product can be installed and configured into an 
automate tracking station without site specific software development. And the availability of 
commercial products for factory automation based on MMS, supports this conclusion. In addition, 



MMS based Application Enabler products provide the tools to automate spacecraft tracking 
stations without traditional software development efforts. 
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Table 1. This table provides a comparison of the hnctional requirements (down the left side) 
for monitor and control in Deep Space Network tracking stations and the protocols 
examined in this article (across the top). 

Protocol 1 X-Windows I DCE 1 SNMP 1 CMISE I MMS 
Functional Requirements 
Allocation of station 
resources 
Configuration and Control 

Yes 

of subsystems 
Monitor status and 

Yes 

performance 
Inter-subsystem data 

Yes 

Yes 

exchange 
Event and Alarm handling 

Yes 

No 

Logging 
File distribution and 

Yes 

Yes 

No 

management 
*No software development, 

* Derived requirement to support conllnercial products derived as executable products. 

Yes 

Yes 

No 
No 

compilation and linking 
*Data Object Alias 

Yes 

Yes 

No 

Yes 

Yes 

Yes 

Yes 

No 
Yes 

No 

Yes 

Yes 

Yes 

No 

Yes 

Yes 

No 
No 

No 

Yes 

Yes 

Yes 

Yes 
Yes 
No 

No 

Yes 
Yes 

Yes Yes 

Yes Yes 



Figure 1. 

Subsystem 7-l 
An example tracking station with four computer controlled subsystems inter-connected 
with a workstation through a Local Area Network. 

Figure 2. The application of X-Windows to support tracking station integration and automation 
would require each subsystem to operate as an x-client. The subsystems could be 
operated from the Station Operations Workstation operating as an x-client server. 
However, direct subsystem-to-subsystem data exchange is not supported by X- 
Windows. 
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Figure 3. This figure shows the relationship between the DCE Architecture and the OSI Basic 
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Figure 4. This figure shows the DCE process to create remote procedure calls from DCE IDL. 
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Management Information Base (MIB) on remote systems. In this example, the 
operator workstation provides monitor and control the of subsystems in a simple 
receiver only tracking station through services that access the MIB. 
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Abstract 

As we plan for the next generation of Mission Operations Control Center (MOCC) systems, there 
are many opportunities for the increased utilization of innovative knowledge-based technologies. 

The innovative technology, discussed in this paper, is an advanced use of agent-oriented 
approaches to the automation of mission operations. The paper presents an overview of this 
technology and discusses applied operational scenarios currently being investigated and 
prototyped. A major focus of the current work is the development of a simple user mechanism that 
would empower operations staff members to create, in real time, software agents to assist them in 
common, labor intensive operations tasks. These operational tasks would include: handling 
routine data and information management functions; amplifying the capabilities of a spacecraft 
analystloperator to rapidly identify, analyze, and correct spacecraft anomalies by correlating 
complex datatinformation sets and filtering error messages; improving routine monitoring and trend 
analysis by detecting common failure signatures; and serving as a sentinel for spacecraft changes 
during critical maneuvers enhancing the system's capabilities to support non-routine operational 
conditions with minimum additional staff. 

, An agent-based testbed is under development. This testbed will allow us to: (1) more clearly 
understand the intricacies of applying agent-based technology in support of the advanced 
automation of mission operations, and (2) to access the full set of benefits that can be realized by 
the proper application of agent-oriented technology in a mission operations environment. The 
testbed under development addresses some of the data management and report generation functions 
for the Explorer Platform (EP)/Extreme Ultraviolet Explorer (EUVE) Flight Operations Team 
(FOT). We present an overview of agent-oriented technology and a detailed report on the 
operation's concept for the testbed. 

1.0  Introduction 

Major advances have been made in the process of automating mission operations over the last 
several years. However, in keeping with changing operational requirements and the need to more 
effectively realize cost and manpower savings in the area of mission operations, the necessity for 
more advanced automation technologies is clear. As examples of areas for continued improvement 
consider the following: 

- Mission Operations Control Center (MOCC)*software systems are currently developed using 
classical software engineering paradigms. To bring about added degrees of flexibility in how 
these systems could handle unexpected problems, the engineering of these systems along 
agent-oriented technology lines looks promising. 



Even with the increasing use of expert systems in support of telemetry monitoring and 
command constraint checking much reliance is placed on the manual intervention of operators. 
The use of agent-oriented techniques can effectively provide additional levels of automated 
support in handling these important types of operational activities and further reduce the need 
for manual interventions. 

With increasing automation of mission operations, there is a growing need for more advanced 
approaches to information handling. The use of agent-technology in support of the full 
range of information management functions will significantly reduce the growing 
possibilities of information overload on the part of operators. 

It is becoming apparent that for future automated mission operations, more consideration will have 
to be given to the roles that distributed problem solving and computer-supported cooperative work 
will play. These increasingly important issues can be addressed by employing intelligent, 
distributed processes [6] found in a multi-agent based approach, described in this paper. 

The rest of this paper presents an ontology [12], i.e., a conceptual framework for describing the 
mission operations domain, and an implementation framework for automating the operations in that 
domain. Our approach for dealing with the task of developing an agent-based mission operations 
environment is to first specialize by applying our agent methodology to automate the report 
generation function. Once this is accomplished we will then generalize and apply the agent-based 
approach to other functions in the MOCC as shown in Figure 1 below. Our approach for 
generating the agent-based report-generation solution is to employ an information agent model and 
define agent roles in a multi-agent environment required for this selected subdomain function. 

Spacecraft 

-r--L 

Commands //"...-/ 
Real-Time Data Management System Operations' Workstation 

I Real-Time Operations Displays I 

Spacecraft Subsystems Data Analysis Displays 

Trending 
0 Performance Statistics 

Resource Prof~les 
RepoIt Generation 

Figure 1: An Overview of a Spacecraft Mission Operations Control Center 
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We present related work on the use of agent-based approaches for automating information location 
and retrieval systems and the contribution of our investigation in proving the utility of agent-based 
technology in mission operations. 

2.0 The EPIEUVE Report Generation Process 

The EPEUVE's operational environment is a heterogeneous network consisting of two 
MicroVAXs (VMS), a Sun workstation (UNIX), an HP-9000 workstation (UNIX), and i386 
personal computers, using the X.25 and TCPDP protocol. 

Subsystem engineers for EPEUVE are responsible for daily monitoring of the satellite's 
subsystem performance, detection of anomalous subsystem behavior, weekly reporting of 
subsystem performance, generation of commanding products for subsystem operations, and 
continuing preparation for subsystem anomaly Detection, Isolation, and Resolution (DIR). These 
products reside on heterogeneous distributed computing nodes. Off-line analysis (Trend system) 
provides daily plots of over 600 mnemonics for visual checks of subsystem performance and 
trends. Subsystem engineers' performance is evaluated based on how well they handle a spacecraft 
anomaly, not on their daily activities. For example, based on an analysis of operator activities over 
a period of time, it was concluded that 90 percent of their time is spent performing daily routines. 
Each week, three of the Explorer Platform's engineers spend a total of 40 hours generating a 
weekly report on the performance of the system. The routine activities that consume most of the 
operators' time can be automated to allow them to spend time on more critical tasks. 

Three categories of reports are generated by the Flight Operations Team (FOT) of the EP/EUVE 
system. The three subreports which correspond to the three subsystems of the EPtEUVE are the 
Modular Power Subsystem (MPS) subreport, the Command and Data Handling Subsystem 
subreport, and the Modular Attitude Control Subsystem subreport. Other subreports included in 
the KPS subreports include reports on the Battery Health and Safety, the Solar Array 
Performance, the MPS Neater Duty Cycle, the Critical MPS Events' Summary, and the Thermal 
System. The critical MPS Events' Summary is generated from the computer workstation which 
generates the Real-time and Trend data. 

Adequate preparation for a spacecraft anomaly's DIR is the key to successful spacecraft flight 
operations. The level of preparedness depends on the amount of "spare time" a spacecraft 
subsystem engineer has to study the subsystem, and the time between anomaly detection and 
resolution. Automating the report generation process will allow the spacecraft subsystem engineer 
to devote their time to more productive mission operations such as early detection of anomalies, 
data analysis, and development of scenarios for anomaly prevention. 

The subreports for the Command and Data Handling Subsystem result from collecting six other 
subreports. The subreports are orbit decay (EP/EUVE 's decrease in orbit periods), tape recorder 
performance, clock delta trends, transponder performance, Ultra State Oscillator frequency trends, 
and Modular Antenna Pointing Control. 

3 .0  An Agent-Oriented Solution to Support the Report Generation Process 

An Agent-based FLight Operations AssociaTe (AFLOAT) is currently being prototyped to support 
the FOT in generating weekly reports. Each agent is an entity that can function semi-autonomously 
in an environment where other agents exist, accept instructions from a user, and communicate with 
other agents. In addition, it can be persistent, and can migrate from one node to another to process 
and retrieve information as requested. The agent can operate independently in the background 
without interfering with user's actions. An overview of agent-oriented technology and our 
approach for applying this technology to automate the EPEUVE operations report generation 
process are described in the following paragraphs. 



3.1 An Overview of Agent-oriented Technology 

What is an agent? In the most general form, a software agent as opposed to a hardware agent (e.g., 
a robot) can be defined as an entity that enables a user to specify what the user wants leaving the 
process of hP;II! and when to accomplish it to the agent [3]. Huhns and Singh [5] present a more 
comprehensive definition for a software agent as an active knowledge-based computational entity 
that has knowledge, intentions, and mechanisms for perceiving, reasoning, acting, and 
communicating. An agent, in our initial prototype, is characterized by a subset of the capabilities of 
the agent in this comprehensive definition, as explained in paragraph 3.5. 

3 . 2  Distinction between Agent-based Systems and other Computer System 
Services 

There is general confusion on what agent-based systems are and how they differ from other 
computer system services such as Directory Assistance Programs and Information Brokers [5]. 
Directory Assistance Programs support interoperation between conventional software programs by 
accepting requests and routing them to appropriate programs for execution. Information Brokers or 
Distributed Object Managers such as the Common Object Request Brokering Architecture (CORBA) 
the Distributed Information Manager (DIM) for EOSDIS, and the Dynamic Data Exchange (DDE) 
programs, either statically or dynamically provide access to information making the source of the 
information transparent to the user. In addition to serving as directory assistants, they can also 
execute requests and return results. All these system services use procedures to communicate with 
other objects. True software agents use declarative directives that are more expressive to reason and 
communicate complex concepts with other agents instead of relying on procedural directives which 
are efficient but they are less expressive. 

3 . 3  Agent Types 

An agent's behavior may vary along a spectrum of factors ranging from a controlled learning 
process to self-learning, controlled behavior to full independence, and simple to complex 
interactions. An agent's capability may be simple or complex; its interaction with its environment 
may be reactive or planned (i.e., deliberative). Reactive agents [2] are robot-like with very limited 
internal reasoning mechanisms while deliberative agents [4] have substantial reasoning capabilities. 
The agents in a multi-agent system may or may not coordinate their activities. All the agents may be 
identical or each may be unique, and they may communicate either by directed message passing or 
broadcast. The number of agents may range from a single agent to thousands. As you will see in 
paragraph 3.5, the agents in our prototype will be able to learn; each has some degree of 
independence. The agents can interact with their environment with deliberative reasoning, and 
communicate with one another through direct message passing and multicast via shared memory. 

3.4 Essential Architectural Issues of Multi-agent Systems 

To be successful in developing a multi-agent based system, the following four architectural issues 
must be addressed and the fifth issue is optional: (1) an approach must be established for 
describing, decomposing and distributing tasks among the agents; (2) a format must be defined for 
interaction and communication between agents; (3) a strategy must be formulated for distributing 
controls among agents in which a local control strategy demands that agents communicate only 
their results, or centralized control where one agent assigns all the tasks, or a predefined mixed 
results/tasks share control; (4) a policy must be made for coordinating the activities of agents, 
either by competition through negotiation as in ContractNet Protocol or cooperation through 
centralized or distributed planning; and (5) a rationale should be established for maintaining truths, 
i.e., consistent beliefs and conflict resolutions among agents [6] or mental states or trusts [lo]. Our 



current architecture, described below, can address the five architectural problems. Our initial goal 
is to resolve the first four issues making the resolution of the fifth issue a long-term goal. 

3.5 A System Overview of an Agent-based Solution to Automate Mission 
Operations 

Our objective is to develop AFLOAT as a multi-agent based system where a user interface agent 
interacts with the user to accept user requests, collaborates with other agents at a local host or over 
the Internet in locating, retrieving, and presenting the information to the user in appropriate form, 
with the correct amount and level of detail, and at the right time. An implementation framework for 
AFLOAT consists of an architecture for a software agent, a methodology for implementing the 
interactions between the user and a user interface agent, collaboration between multiple agents, and 
an approach for making background software agents specialize in data retrieval from distributed 
information sources. User-to-agent and agent-to-agent interaction issues are resolved by 
developing a communication protocol, a language format, and an agent migration process across 
networked computer systems. Our strategy for information location and retrieval is based on the 
premise that domain-dependent keywords used by the user will form an index to the information in 
the domain and to the specialized agent. If the key word does not exist, then retrieval is not 
possible, and the user interface agent will issue appropriate advice. Knowledge in AFLOAT can 
be stored as rules, objects, cases (examples), models, and programs. Each agent has access to a 
set of support services such as: creating, destroying, managing, or monitoring the activities of 
spawned agents; mechanisms for message transport; directory of other agents; information 
processing and presentation; and system performance monitoring. 
In addition to supporting on-line and off-line flight operations of the EP/EUVE report generation 
process, agents in AFLOAT can also support the spacecraft platform and instrument Fault 
Detection, Isolation, and Recovery W I R )  services. 

Our architecture for automating mission operations has been designed to address the top four basic 
architectural issues and to be extensible enough to accommodate the fifth. The implementation 
framework is based on a deliberative agent architecture, depicted in Figure 2. The architecture has 
structural elements for data storage, coordination, and monitoring of activities between agents, 
execution of internal and external functions, inter-agent communication, and interface with other 
domains in the MOCC. 

Architecture of AFLOAT's Deliberative Software Agent. Each of AFLOAT'S software 
agents is deliberative, which means that it will reason before it acts. An architecture of such a 
software agent in AFLOAT is displayed in Figure 2. It addresses the issues that must be resolved 
in a deliberative multi-agent based system. The coordinator determines the type of coordination 
(task sharing or result sharing), and coordination policy (negotiation, shared memory, or an 
explicit domain-driven task delegation policy) that will be employed. In AFLOAT, agents 
coordinate their activities by sharing results, and an explicit domain-driven task delegation policy is 
employed since each agent is considered a specialist in a specific domain. The agent's coordinator 
module is also responsible for planning and scheduling the tasks of each agent. Each agent's 
monitor is responsible for monitoring interactions between agents, incoming and outgoing 
messages, the state of the agent, and maintaining a history of the agent's actions. Saving an 
agent's past actions aids it in learning by drawing from experience when presented with new tasks. 
The external models module of each agent maintains global functions that are accessible for use 
by other agents. Each agent must maintain its access rights to external information so as to aid the 
domain agents in the information retrieval process. The internal models module maintains 
functions (such as managing access to the skills of each agent or maintaining its message buffer) 
that are private to each agent and are not accessible to external agents except the AFLOAT executive 
agent. Each agent also has an inter-agent communication module which is responsible for 
validating inter-agent, semi-structured language format, sending outgoing messages, receiving 
incoming messages, and broadcasting messages to shared memory. The brain of each agent is its 



information base where all the modules store their data and other information such as the name 
of the local system management agent (AFLOAT executive), buffers for incoming and outgoing 
messages, each agent's name, type, and state, and messages in shared memory. Communication 
with each agent is done by adding a message to its information base. Each agent can store 
knowledge as rules, objects, cases (examples), models, and programs. The structure of each 
agent, coupled with its behavior (i.e., capabilities) provides it with enough intelligence to respond 
effectively to information retrieval tasks delegated to it. 

I INTERAGENT COMMUNICATION MODULE 

I OTHER 
AGENTS AND/ 

OR USERS I 
Figure 2. Architecture of A FLOA T's Deliberative Software Agent 

An Information Agent Model for Supporting Information Retrieval: Agents in 
AFLOAT are characterized by five "action-oriented [9] capabilities: First, migration, is the ability 
of an agent to move to other nodes to process or retrieve information. This ability can support load 
balancing, improve efficiencies of cammunication, and provide unique services which may not be 
available at a local node. Second, semi-autonomy, is the ability to respond to a dynamic 
environment without human intervention, thus improving the productivity of the user. Third, 
spawning, is the ability to create other agents to support the parent agent, thereby promoting 
dynamic parallelism and thus fault-tolerance. Fourth, persistence, is the ability to recover from 
environmental crashes and support time-extended activities, thus reducing the need for constant 
poling of the agent's welfare and better use of the system's communication bandwidth. The fifth 
and final capability is interaction mechanisms for supporting agent-to-agent and user-to-agent 
interactions. 



Operations Concept for AFLOAT Prototype: An operations concept for the AFLOAT 
testbed prototype is illustrated in Figure 3. It describes the procedures for using agents to locate, 
access, retrieve and present EP/EUVE reports or information located at remote information 
sources. To do this, the user generates a user agent. The user agent requests the system to display 
a set of reporting options. The user then selects one or more items from the list displayed by the 
system. Upon completing the selection process, the user agent generates a report agent and assigns 
it the responsibility of generating the reports. The report agent identifies specific subreports and 
requests the agents' directory manager (or name/skill server) for the names, locations, and services 
provided by agents that can support the generation of requested reports. 
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In addition to knowing the names, locations and services provided by the specialist agent, the 
report agent must also determine if there are restrictions to services provided at certain locations. If 
an access is restricted to information sources or there is an absence of unique services required by 
specialist agents, the report agent may request the reports remotely via message passing. If there 
are no such restrictions, the report agent generates and sends a clone with enough information 
necessary to generate the report to migrate to remote information sources, interact with agents with 
special skills, and retrieve the reports. Allowing the report agent to send its clone to retrieve reports 
while it stays at the user's environment adds some fault tolerance to the system. Therefore, if the 
cloned report agent fails, the primary agent has all the information needed to create another clone. 
Periodically, the cloned report agent informs the primary report agent resident at the user's 
environment on the progress of the report generation process. Steps 1,2, 3,4, and 5 in Figure 3 
explain the interactions between the agents and the report generation process. 
Development Environment and Status and Plans for AFLOAT Project: The  
development environment for implementing AFLOAT is the NASA/Johnson Space Center 
developed C-Language Integrated Production System (CLIPS) version 6.0 with CLIPsTOOL 



software from KNOWARE Inc. (for building the user interface) running on a Sun SPARCstation 
with UNIX operating system, X-windows, and OSF/Motif Style Guide. The application of the 
defmodule construct (in CLIPS) which promotes the partitioning of knowledge bases will enable 
us to achieve agent independence. We have just completed Build 1 of the AFLOAT testbed. This 
build provides location transparency to information sources for generating reports on Battery 
ChargeDischarge ratios of the three batteries on the spacecraft. This build is also being used by 
two George Washington University researchers to investigate the issue of trust of automated 
systems. In their experiment, an operator is assigned a task that helshe must perform plus an 
additional task of monitoring the quality and number of faults correctly detected by the agents. The 
operator's trust level of the agent is based on the frequency and types of incorrect faults. Build 2 of 
AFLOAT will provide the users with the ability to generate reports on the operations of the three 
subsystems, i.e., the MPS, the CDHS, and the MACS from distributed information sources. 

4.0 Related Agent-based Information Retrieval Systems 

Several agent-based information retrieval systems are being prototyped at several research 
laboratories. Most of the research work attempts to resolve the fundamental architectural issues 
described earlier in paragraph 3.4. The research work of Amy Lansky at NASAIAmes [8], and 
Bond and Gasser [I] focuses on multi-agent planning and addresses the issues of coordination, 
synchronization, and control of multiple autonomous agents. Shoham's work [lo] investigates the 
issue of an agent's mental states as they relate to beliefs, intentions, and capabilities. Other research 
on agent-based information retrieval similar to ours include the work by Kahn and Cerf [6] in 
which agents, called Knowbots, each hard coded to perform a specific task, are used to retrieve 
information from digital libraries. Etzioni's work [3] on Softbots employs software agents to 
perform different UNIX tasks to support a UNIX programmer. A very important contribution of 
his work is the ability of the Softbots to retrieve information with an incomplete request. 
Papazoglou and Laufmann [9] employ coarse-grained agents with a semi-structured language and 
message passing to support information retrieval from distributed information sources. The serni- 
structured language format is quite expressive and it can help the agents in communicating their 
goals, results, and states, thus facilitating coordination among the agents. Gio Wiederhold [12] 
employs very coarse-grained agents called mediators which can be used to filter data by resolving 
any mismatches in the data. A major contribution of the mediator approach is the merit of this 
architecture over integrated or federated agent-based system architectures. While it is more difficult 
to implement, the mediator architecture is easier to scale up and add new interfaces than the other 
two. 

While each of the research efforts described above address various aspects of the architectural 
issues of multi-agent systems, AFLOAT'S architecture has been built as an extensible testbed and it 
can address all the basic architectural problems of a multi-agent-based system. In addition to its 
capability to automate distributed information retrieval, it can also support automation of other 
operations such as fault detection, isolation and recovery of satellite subsystems, and other 
domains. Whereas in a large majority of other multi-agent systems, the base prototyping language 
is either LISP or PROLOG which very often is not well received by the operations staff due to a 
lack of experienced programmers; AFLOAT is based on an expressive A1 shell written in C with 
the UNIX operating system, making it readily portable to other platforms and acceptable to 
operations staff. 

5 .0  Conclusion 

The distributed nature of the operations in a satellite MOCC calls for solution approaches to 
problems in the domain to consider the use of intelligent distributed modules instead of isolated 
intelligent systems. Such intelligent distributed modules have been modeled as a multi-agent 
system and prototyped as the AFLOAT testbed to support the automated report generation process, 
and described in this paper. An overview of agent-based technology has been presented with 



essential architectural issues that must be addressed to successfully implement a multi-agent based 
system to support automated mission operations. We have shown how the architecture of each 
agent coupled with its behaviors (i.e., its capabilities represented as an information agent model), 
can be used to resolve basic architectural problems of multi-agent systems. 

The use of multi-agent based designs is not limited to the mission operations domain. They can be 
employed in any environment where the user needs to delegate an associate to perform information 
management activities such as in telecommunications network management, software reuse 
management, and automated -c incident management systems. 
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ABSTRACT 

This paper describes a new station architecture 
for NASA's Ground Network (GN). The 
architecture makes efficient use of emerging 
technologies to provide dramatic neductions in 
size, operational complexity, and operational and 
maintenance costs. The architecture, which is 
based on recent receiver work sponsored by the 
Office of Space Communications Advanced 
Systems Program, allows integration of both GN 
and Space Network (SN) modes of operation in 
the same electronics system. It is highly 
configurable through software and the use of 
Charged Coupled Device (CCD) technology to 
provide a wide range of operating modes. 
Moreover, it affords modularity of features 
which are optional depending on the application. 
The resulting system incorporates advanced RF, 
digital, and remote control technology capable 
of introducing significant operational, 
performance, and cost benefits to a variety of 
NASA communications and tracking 
applications. 

INTRODUCTION 

The NASA Ground Network (GN) station 
architecture has been used very successfully 
over the last 25 years to support a multitude of 
low earth orbiters (LEO's), expendable launch 
vehicles (ELV's), geosynchronous (CEO's) and 
lunar missions in the Spaceflight Tracking and 
Data Network (STDN). The GN RF subsystem, 
based on the Multifunction, polarization 
diversity Receiver (MFR) and the STDN tone 
ranging equipment, still provides extensive 
support to NASA programs. This support 
includes: (1) Shuttle launch and landing at GN 
stations; (2) LEO's, including Small Explorer 
spacecraft at the DSN 26-meter subnet stations; 
(3) TDRS GEO spacecraft at the GN, DSN 26- 
meter subnet, and GRO Remote Terminal 
System (GRTS) stations. Its hardware has been 
upgraded and replaced over the years to 
maintain its ability to provide reliable support to 

NASA's critical missions, but its basic architecture 
remains the same as when the STDN was formed in 
the early 70's from the Space Tracking and Data 
Acquisition Network (STADAN) and the Apollo 
Manned Space Flight Network (MSFN). 

While individual functional blocks have been and 
could continue to be replaced by modern electronics, 
it is expected that the biggest gains will result from 
developing a new system architecture that makes the 
most efficient use of emerging technologies for the 
most dramatic reductions in size, operational 
complexity, and operational and maintenance costs. 

During the past year, GSFCICode 531 has been 
studying new ground station architectures capable of 
high levels of hardware integration. The 
architecture incorporates flexible software 
configurability for implementation of a wide range 
of modes, and is designed specifically for effective 
automation of most operational and maintenance 
functions. The hardware systems are designed to 
mate with the overall station control philosophy of 
the Automated Ground Network System (AGNS). 
AGNS is based on an open architecture comprised 
of loosely coupled station subsystems (such as the 
RF subsystem of concern here) that maximize the 
use of commercial standards and interfaces. 

A highly integrated, automated ground station with 
the capability of meeting stringent Shuttle S-Band 
communications and tracking requirements can also 
serve as the next generation near-earth-to-lunar, 
multipurpose ground terminal. It also lends itself to 
applications requiring compact, transportable 
systems and remotely controlled stations that supply 
direct downlinks to small satellite experimenters. 

This paper briefly reviews current GN station 
architectures and hardware configurations. It then 
presents functional and signal processing 
requirements for the upgrade RF subsystem. The 
advanced station architecture is then described, 
followed by sections detailing the flexible advanced 
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equipment that support this new station 
architecture. 

CURRENT STATION ARCHITECTURE 

The current GN station RF equipment is 
primarily comprised of what is referred to as the 
RER -- Receiver, Exciter, Eange equipment. As 
configured today, these three basic functions are 
distinct equipments, each associated with a 
dedicated rack of electronics. For example, the 
MFR receiver consists of a 7' rack containing 7 
equipment drawers or modules. The exact 
hardware configuration varies from station to 
station depending on specific requirements. A 
typical RER equipment group is comprised of 
about 6-7 equipment racks to support a user 
satellite link. 

The GN station antenna system provides a sum 
signal (23) and two error signals (X and Y) in 
each of two orthogonal polarizations ---- 
resulting in six receiver input channels. The 
MFR performs optimal ratio combining of these 
orthogonal polarized signals and, thus, is 
referred to as a polarization diversity receiver. 
Experience has shown that this is a critical GN 
function that allows continuous operations even 
through significant fades of the polarized signal 
that is dominant through most of a pass. To 
accomplish this processing, and provide 
redundancy to meet stringent reliability 
requirements, 4-5 MFRs are typically used (each 
MFR requiring a rack of equipment) to support 
user services. 

As noted above, substantial equipments are 
currently required to meet GN mission 
requirements. This, coupled with the fact that 
the underlying processing architecture is more 
than 20 years old, places a substantial burden on 
GN operations and maintenance. This situation 
is exasperated as the GN stations are called 
upon to support new and expanded requirements 
as user mission needs evolve. 

DESIGN GOALSIREQUIREMENTS 

General requirements and design goals are first 
presented. Key receiver, ranging, and transmit 
requirements are then discussed, in turn. 

General Requirements. Except for some few 
obsolete requirements (e.g., FM Uplink), the RER 
Upgrade must support all current RER capabilities, 
and meet or exceed associated performance 
requirements. To accommodate Space Station, and 
the Shuttle Launch Support System (SLSS), the 
RER Upgrade must also support SN signal modes. 
This capability can serve as a ground-based SN 
backup capability. Support of both SN and GN 
modes by a GN ground terminal affords the option 
to user missions to reduce transponder power and 
weight by having only a SN mode capability. 

SN modes use suppressed carrier modulation, as 
well as PN spread spectrum signalling. Spread 
spectrum operation also provides benefits by 
allowing NASA to mitigate RF interference into, as 
well as from NASA satcom links --- a key concern 
as the RF spectrum becomes increasingly crowded. 

Receiver. The receiver must perform the following 
basic functions: Telemetry Data Demodulation, 
Polarization Combining, Baseband Telemetry Data 
Processing, Autotrack, Range Tracking, and Doppler 
Tracking. 

Telemetry data demodulation is required for both 
SN and GN signals, involving both residual and 
suppressed carrier formats. Moreover, in the GN 
mode, up to 3 subcarriers may need to be supported 
(e.g., engine data from Shuttle's three main 
engines). The following signal modulations are 
possible, involving symbol rates from 100 bps to 5- 
10 Msps. 

* Carrier PM Modulated by Data, Range Tones and 
PSK Subcarriers (0-3) 
Carrier PM Modulated by Data, CW Range 
Subcarrier (Shuttle) 

* Carrier FM Modulated by PSK-Modulated 
Subcarrier (Shuttle Engine Data) 

* Carrier FM Modulated by TVIAnalog Data 
* Carrier FM Modulated by Digital Data (FSK) 
* BPSK, QPSK, PNJBPSK, SQPN. 

Polarization combining of orthogonal polarized 
signals has been an important and necessary feature 
of the current GN MFRs. The extent that 
polarization is needed varies from spacecraft to 
spacecraft and even pass to pass. Polarization 
combining seems to be particularly critical for high 
elevation passes. 



The antenna system provides X-axis (6x) and Y- 
axis (6y) error signals, each in two orthogonal 
polarizations, to the receiver as part of the 
autotrack function. Analogous to the processing 
of the two orthogonal sum channels (X, and &), 
the receiver must: (1) optimally combine the 
orthogonal error signals for each axis, (2) 
amplitude detect the combined signal, and (3) 
provide the recovered X and Y error signals to 
the antenna tracking system. 

Ranging. The existing GN ranging function is 
implemented in separate equipment from that of 
the exciter and receiver. For the REiR Upgrade, 
an important goal is to integrate the ranging 
function into the receiver and exciter. This 
approach reduces and simplifies equipment, and 
thereby, reduces operations and maintenance 
costs. GN ranging is a tone ranging system, in 
which transit time is determined by comparing 
the phases of transit and receive tones. Tones 
from 500 KHz to 10 Hz are used, in conjunction 
with an ambiguity resolving PN code for range 
ambiguities of 644,000 Krn. An accuracy of 1 
meter (1 o) is required at a GIN, of 50 dB-Hz. 

Transmitter. The transmitter must perform the 
following basic functions: Command Data, 
Modulation, Range Tone Generation, Test Signal 
Generation, Frequency Upconversion (to S- 
band), Range Zero Set, and Command Echo 
Verification. 

For the uplink command signal, the modulation 
is required to provide for (1) GN Mode: a PM 
signal with either datalrange tones directly on 
the carrier or on a subcarrier, and (2) SN Mode: 
PSK signal withlwithout PN spreading. To 
enhance overall operability and maintainability, 
the transmitter must also be capable to operate 
as a test signal generator for the receiver, which 
requires the generation of all the input signal 
modes and formats noted earlier for the receiver. 

In summary the RER Upgrade must not only 
meet current GN and SN requirements, but also 
provide this capability in a fashion that reduces 
costs and enhances operations. Also critical is 
that the Upgrade be compliant with AGNS, by 
facilitating high-levels of automation and 
standard interfaces. 

UPGRADE RER ARCHITECTURE 

In response to the above needs, an upgrade 
architecture has been developed and is shown in 
Exhibit 1. Both uplink command and downlink 
telemetry signal processing are implemented in 
equipment chains or strings. Key features to note 
are: 

A processing "chain" consists of dedicated 
equipments that handle all processing between 
baseband and RF, thereby effectively eliminating 
all switching in operational signal paths 

Levels of reliability are achieved through 
redundant processing chains, which can operate in 
various "stand-by" modes, depending on 
outagelcontingency requirements 

Additional receive chain reliability is achieved by 
configuring two or more receivers within each 
receive chain at the multicoupler output. 

The upgrade architecture is modular, flexible, and 
expandable --- critical characteristics to meet current 
and future growth requirements. Accordingly, each 
station can tailor the specific number of chains and 
redundant units within chains to suit their individual 
needs and service support requirements. For 
example, Shuttle support, which requires high 
reliability, may be achieved with additional 
processing chains andlor additional receiver units 
within a receive telemetry chain. 

This so-called "string" architecture has also been 
adopted by NASA's STGT (Second TDRSS Ground 
Terminal) in response to lessons learned from 
WSGT, which uses a pooled equipment approach to 
architecture. The GN Upgrade architectural 
approach is greatly facilitated by advanced flexible 
receiverltransmitter units (described below) which 
are compact and relatively low cost. Today's rack 
of equipment for a single receiver or transmitter can 
be reduced to a single chassis or drawer within a 
rack. 

In another related effort, all telemetry baseband 
processing is being performed within a single PC, 
further enhancing the "string" architecture approach. 
Based on these efforts and advances in signal 
processing, Exhibit 2 depicts the corresponding 
hardware configuration that supports the advanced 



Exhibit 1: RER Upgrade Architecture 
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Station Architecture. In effect, one command 
chain and one telemettry chain (with two 
receiver units) can be reduced to a single rack -- 
a reduction of more than 4 to 1. 

A receiver design has been developed to meet 
the requirements and design goals noted earlier. 
The receiver, referred to as the Flexible 
Advanced Receiver (FAR), is an evolution of 
the advanced CCDISoftware receiver technology 
developed under sponsorship of NASA 
MQICode 0 (Advanced Systems) and 
GSFUCode 53 1. The FAR is a state-of-the-art 
(SOA) system employing novel architecture and 
advanced technology to provide extensive 
capability in a compact package. Moreover, as 
the name indicates, much of the receiver 
processing is performed in software which 
promotes the desired flexibility and 
maintainability. 

The receiver is comprised of two fundamental 
processing blocks that maximize the use of SOA 
analog processing, employing programmable 
CCD's (Charged Coupled Devices) followed by 
firmware processing, using multiple Motorola 
DSP96002 DSP chips. The CCD is essentially 
an analog tapped delay line with programmable 
tap weights. The FAR CCD is the 2-ATC chip 
which is the latest of Lincoln Lab's 
programmable CCD chips. The 2-ATC chip is 
specifically tailored for NASAISN applications, 
and was developed under sponsorship of NASA 
HQICode 0 (Advanced Systems) and 
GSFUCode 53 1. The resulting architecture is 
extremely powerful, yet flexible to support a 
wide range of signal formats and conditions 
through software changes only. 

Exhibit 3 presents the FAR receiver architecture, 
showing support to all six input channels 
required to handle polarization combining and 
autotrack processing. As shown, there are four 
basic modules whose functionality is highlighted 
below: 

Common IF Module - Tunes 1st IF to a Common Fixed IF (e.g., 
140 MHz) 

- Performs Noncoherent AGC on 

Wideband Input Signal 
Advanced Diversity Demod (ADD) 
- Optimally Combines GN Orthogonal 

Polarized Sum Channels (ZA and &) 
- Optimally Processes SN BSK Quadrature 

Components (I and Q) 
- Demodulates CarrierISubcarriers to Provide 

Telemetry Data & Range Tones 
Autotrack IF Processor (AIP) 
- Provides Digital Difference Channel Samples 

to ASP 
Autotrack Signal Processor (ASP) 
- Combines Dual Polarized Channels 
- Provides Amplitudes to Antenna Subsystem 

for Antenna Pointing. 

Preliminary design analysis indicates that the FAR 
receiver, in its full capability, will consist of 15 
printed circuit boards or cards. Noteworthy is that 
specific functionality is assigned to distinct cards, so 
that a station needing less capability can simply 
remove corresponding cards and save costs. For 
example, a user not requiring autotrack can reduce 
the card set by five. The card set is comprised of a 
combination of COTS (Commercial-off-the-shelf) 
and custom cards. 

The heart of the FAR is the Advanced Diversity 
Demod (ADD) which provides the powerful signal 
processing capability. The ADD high-level 
architecture is shown in Exhibit 4, which depicts the 
analog front-end followed by DSP firmware 
processing. 

The CCD card receives the IF sum channels (I;, and 
&) from the Common IF module. The input IF is 
140 MHz, and is downconverted to a third IF 
through a novel scheme using a Track and Hold 
Amplifier (THA). The THA, whose sample rate is 
controlled using a NCO provides an aliased signal 
component at a lower IF which is extracted by the 
anti-aliasing low-pass filter. 

The lower IF is then IF-sampled by the CCD to 
provide an analog sampled baseband output signal. 
The signal consists of alternate quadrature I and Q 
samples. Relative to conventional mixing to 
baseband, IF sampling eliminates the "sin/cos" 
mixers, and provides all the information in a single 
path, with substantially reduced complexity. 
Moreover, by appropriately adjusting the CCD 
programmable tap weights, the CCD performs as a 
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matched filter in three ways: (1) matching to the 
alternating (1.-1) of the "peaks" of the IF CW, 
(2) data matched filtering by accumulating 
samples from the same symbol within a CCD 
length, and (3) PN code despreading with a 
local PN code (for spread spectrum signalling). 

The CCD weighted-sample accumulation is a 
critical aspect of this unique architecture in that 
it greatly reduces the processing requirements 
imposed on the subsequent digitayfmware 
processing. This, coupled with the wide 
dynamic range inherent in analog processing, 
provide significant benefits over pure digital 
receivers. Furthermore, the 2-ATC chip 
provides two distinct CCDs on a single chip 
(ideally suited for two orthogonal polarized 
signals or quadrature QPSK components) 
offering the potential for compact, low power 
applications. 

The analog CCD output is AID converted and 
provided to the digital cards for signal 
processing-- all in pP firmware. There are four 
DSP cards to handle carrier, subcarrier, and 
range processing. All DSP cards are identical, 
having the same hardware architecture. Key 
features are listed below: 

Four 32-Bit DSP96002 Floating Point DSPs 
- Arranged in a Fully Interconnected 

Modified Hvwrcube Architecture 
- Operating at 20 MIPS each with Full 

Resource Redundancy 
* Design Repetition at Each Processor 

Standardizes Programmer's Interface 
* Serial Communications 

- 4 LAN and up to 8 Serial Ports 
- Eurobus Digital Interface Facilitates 

System Expansion through Memory- 
Mapped Add-On Cards. 

Receiver signal processing uses the receiver 
architecture discussed above to perform the 
following basic functions: (1) Signal Tracking 
(carrier, symbol, PN code), (2) Polarization 
Combining, (3) Subcarrier Processing, and (4) 
Range Processing. All signal processing 
performed to support signal tracking is 
performed in DSP firmware that, in turn, adjusts 
appropriate NCOs to effect tracking. An 
"integrated" receiver tracking approach is used 

in which, for example, the symbol synchronizer is 
used for data-directed carrier tracking operations. 
This improves overall SNR performance relative to 
conventional Costas Loop operation for PSK 
signalling. For the FAR, it is also applied in a 
novel way to optimally demodulate PM modulated 
signals. 

TRANSMITTER ARCHITECTURE 

To complement the receiver performance upgrades, 
and support the overall RER Upgrade architecture, 
a new, flexible transmitter design has been 
developed. The new transmitter architecture, 
described in Exhibit 5, is referred to as the Flexible 
Advanced Modulator/Exciter (FAME). It makes use 
of emerging technologies such as Direct Digital 
Synthesis (DDS) and embedded micro-controllers 
that allow for effective automation. 

The FAME architecture is divided into five 
functional blocks: (1) Baseband Modulator, (2) 
Upconverter, (3) Verification Receiver, (4) 
Synthesizer, and (5) FAME Controller. 

The Baseband Modulator stands to benefit 
significantly from DDS technology. Exhibit 6 is the 
high-level Baseband Modulator architecture, and 
shows the extensive use of highly integrated ASICs 
now available for DDS, Forward Error Correction 
(FEC), and PN Coding. Use of ASICs promises 
dramatic size reductions as well as enhanced 
automatic control capability. To make the 
transmitter as flexible as possible and make efficient 
use of the emerging technology, eight MUXs allow 
for the routing of digitally represented waveforms in 
a variety of paths such that it can assemble a 
diverse set of signal structures. The DDS ASICs 
themselves offer excellent phase and frequency 
resolution with minimal or no calibration. 

SUMMARY 

An advanced station architecture has been designed 
that promises to substantially reduce equipment and 
operational complexity. The architecture is based 
on new, flexible receiver and transmitter units that 
uniquely leverage the state-of-the-art in both analog 
(e.g., CCDs) and digital signal processing (DSPs) 
technologies. Noteworthy is that the capabilities of 
this equipment can simply evolve and expand 
through software changes. 
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Abstract 
A method for providing uniform transparent 
access to disparate distributed information 
systems was demonstrated. A prototype testing 
interface was developed to access documentation 
and information using publicly available 
hypermedia tools. The prototype gives testers a 
uniform, platform-independent user interface to 
on-line documentation, user manuals, and 
mission-specific test and operations data. Mosaic 
was the common user interface, and HTML 
(Hypertext Markup Language) provided 
hypertext capability. 

Introduction 
The Jet Propulsion Laboratory's Test 
Engineering Laboratory (TEL) evaluates new 
technologies for possible use during spacecraft 
system testing. 

Formal test environments are highly structured 
and information intensive. Information that may 
be useful for later analysis of failure reports or 
change requests is not always obvious during 
system test. Clearly, it is better to err on the side 
of collecting data that may never be used. 
Testers also consult numerous reference 
documents, including test plans, handbooks, 
acronym lists, and glossaries. 

For these reasons, spacecraft system testing is a 
paper-intensive operation. The project described 
in this paper addresses this problem using freely- 
available, multi-platform hypertext interfaces. 

Several NASA centers support related work. An 
inter-center working group, ICED l (Intercenter 
Electronic Documentation workgroup) i s  
informally organized to share information among 
groups exploring the use of hyper- and multi- 
media interfaces to testing, operations, and 
ground data systems. 

This paper is organized as follows: the context of 
the prototype, the JPL system test environment, 
is described; next, the development of the 
prototype is  outlined; the transition from 
prototype to product is documented; finally, 
future work is described. 

The JPL System Test Environment 
JPL's Advanced Multi-Mission Operations 
System (AMMOS) is a .  networked computer 
system consisting of 28 software and hardware 
subsystems. Its principle purposes are to 
sequence and uplink commands to spacecraft and 
to process downlinked telemetry. Both testers 
and users provide feedback to AMMOS 
developers about needed repairs and 
improvements in the form of Failure Reports 
(FRs) and Change Requests (CRs) which are 
stored in the Anomaly Tracking System (ATS) 
database. Developers and testers refer to this 
database to prioritize their work. 

  ICED has regularly scheduled teleconferences and 
maintains an on-line repository of findings. The contact 
person for ICED is Anthony Griffith, 
agriffitw jscprofs.nasa.gov. 



Preparation for system test occurs in parallel with 
system development. Test preparations include: 
writing test plans; organizing test cases, data, and 
scenarios into test procedures; defining 
acceptance criteria; and negotiating the test 
schedule. 

System verification and validation includes 
functional, performance, security, and reliability 
testing. Test logs are maintained, reports are 
generated, and FRs are written detailing 
software, hardware, or configuration failures. 
Engineers generate CRs in response to FRs. A 
change board approves or disapproves each CR 
after impact analysis. 

As proof of concept, a variety. of physical 
documents used by testers were converted to 
hypertext. These documents include: 

References: Test Engineering Handbook, 
Acronym List, and Glossary 
AMMOS User manuals and guides 
Flight project specific documents: test 
plans, procedures, and reports 
Articles posted to the Internet about 
software testing. 

More than 4MB of testbed specific documents 
were converted to hypertext. All of these 
documents are accessible through a WAIS (Wide 
Area Information Server) full-text search and 
retrieval [WAIS]. Figure 1 is the result of a 
WAIS search of software testing articles. 

HTML (HyperText Markup Language) was used 
to decorate text with hypertext tags (links and 
anchors), and to make explicit the logical 
structure of documents [HTML]. A client-server 
relationship is a fundamental assumption behind 
the use of markup languages and related 
presentation clients (viewers). That is, authors 
embed tags in their documents to make the logical 
document structure discernible by client viewer 
programs. For example, an author may wish to 
organize information as a bulleted list. Figure 2 
shows the document as authored, and the 
document as presented by two client viewers 
(Mosaic and Lynx [Mosaic, Lynx]). 
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Figure 1. Result of WAIS search 

<LI> Tuesday 
<LI> Uednesday 

Figure 2. HTML, Mosaic and Lynx 
example (cont'd on next page) 



Document URL: 
-........- 

Figure 2 (Cont'd). HTML, Mosaic and 
Lynx example 

It is important to note that the format of the 
presentation is determined by the client interface. 
The advantage of this separation of logical 
structure and format is that HTML clients exist 
for several platforms. A disadvantage, however, 
is that authors cannot be sure of exact placement 
of objects on users' screens. This is unacceptable 
for certain engineering and operations tasks. 

The TEL prototype demonstrates the use of 
graphical data to resolve this problem. Graphical 
data can be traditional images or documents 
requiring a specific display format. Mosaic 
invokes data-specific viewing applications during 
the interpretation of an HTML document. For 
example, mission Sequence of Events (SOE) 
schedules and Space Flight Operations Schedule 
(SFOS) timelines are difficult to represent in 
HTML. The SFOS is a graphical timeline 
representation of critical information contained in 

the SOE. The prototype maintained a uniform 
user interface by launching special viewers for 
these documents from Mosaic. Figure 3 is the 
result of a query for an SOE segment. 

Figure 3 An SOE segment. 

Finally, the prototype's most innovative aspect 
is the access provided to the existing Anomaly 
Tracking System (ATS) database of failure 
reports (FRs). The ATS is essential to the daily 
work of JPL testers. The prototype allows ATS 
information to be queried in a straightforward 
way by any combination of spacecraft, 
subsystem, criticality, date, and other criteria. 

Previously, access to an FR database required the 
use of a commercial relational database interface, 
or telephone calls to support personnel requesting 
that a query be submitted. Using the capabilities 
provided by Mosaic it is possible to significantly 
simplify query formation and submission. This 
makes the FR database accessible to users 
unfamiliar or uncomfortable with relational 
databases. No modification to the existing ATS 
system was necessary. 

Figure 4 is the search form as it appears using a 
Mosaic interface. Users compose a query by 
clicking buttons to choose menu items. The form 
in Figure 4 has been set up to choose a "listing" 
format of all open failure reports. The query is 
submitted by clicking the "generate" button. This 
new interface provides simple and consistent 



access to users from any workstation. Users 
have reported a reduction in time required to 
access the ATS and an increase in utility of the 
ATS system. The result of the query is shown in 
Figure 5. 
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Figure 4. FR database query form 

The Mosiac interface to ATS was implemented 
using a Common Gateway Interface (CGI) 
extension to a World-Wide-Web (WWW) server2 
[WWW, CGI]. CGI extensions are used to 
create interactive documents. Figure 6 illustrates 
how CGI defines the interaction between a 
WWW server and programs run by the server to 
carry out special client requests. User inputs are 
encoded by Mosaic as special Uniform Resource 
Locators (URL) and passed to the WWW server 
[URL]. The server invokes the CGI application 
and passes the user's inputs to it. The CGI 

2 ~ ~ ~ ~ s  httpd v1.3 was used for both the prototype and 
delivered system 

application then carries out the user's request 
(e.g., extracts data from a database) and sends 
the result back to the WWW server in HTML 
format. Finally, the WWW server forwards the 
result back to the client viewer for presentation to 
the user. 
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Figure 5. Result of FR database query 
using Mosaic interface 
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Development of the prototype 
The prototype system was developed over 12 
weeks by three people. It consisted of 
approximately 2000 pages of hypertexted hard 
copy documents, and 1500 lines of Per1 scripts to 
interface with the existing ATS database front 
end [Wall and Schwartz]. 

One of the advantages of using HTML and 
Mosaic viewers was that potential users were 
able to see working prototypes quickly as 
development continued. 

The prototype has provided a foundation for 
future work by demonstrating user-level 
integration of separate information systems and 
providing a uniform view of these systems 
across workstations. 

HTML and Mosaic were chosen over other 
systems for several reasons. Adobe ~c roba t3  
offers excellent cross-platform document 
browsing capabilities, but provides only 
rudimentary support for hyperlinks and does not 
support client-server interaction, making it 
difficult for one server to support multiple 
platforms over a wide area. Hyperman [Crues], 
developed at the Johnson Space Center and based 
on Adobe's PDS (Page Description Language), 
allows personal annotations and stronger 
hypertext capabilities, and will support the client- 
server model in the future. However, neither of 
these tools support "on-the-fly" document 
generation required for access to ATS, nor do 
they allow integration of user-defined viewers for 
unanticipated data types. 

Current status 
The TEL's prototype system has become a 
product supported by the Multimission 
Operations Systems Office (MOSO). The 
production version includes a hypertext form for 
submission of change request (CR) queries, as 
well as forms for submission and update of FRs 
and CRs. A larger effort is under way to convert 
AMMOS user documentation to HTML format, 
and the Cassini project is making much of its 
project documentation available through HTML 
clients. 

Future work 
One problem with using client user interfaces to 
interpret tagged hypertext documents is that 
clients may interpret logical organization tags in 
documents as suggestions rather than 
commands. Clients are free to display documents 
in idiosyncratic ways. In practice, the behavior of 
clients is not as anarchical as it sounds. 

Because of the necessity of absolute format 
control in some engineering and operations 
documents, the TEL is continuing to evaluate 
extensions to HTML. In particular, HTML+ 
[HTML+] promises to provide increased support 
for mathematical symbols, tables, change bars, 
and floating panels (sidebars). 

Second, future prototypes will allow testers to 
attach "personal annotations" as well as MIME 
(Multimedia Internet Mail Extensions) [MIME] 
format objects (i.e., screen dumps, core files, 
support documents, etc.) to FRs. 

Third, the Deep Space Network (DSN) maintains 
a similar problem report tracking database 
accessed by sites worldwide. A system based on 
the TEL prototype and MOSO ATS product is 
being developed. 

Summary 
The TEL prototype demonstrates an integrated, 
consistent view of existing distributed 
information systems using low cost tools. In 
some cases, greater integration is achievable 
using hypertext (i.e. linking references to FRs in 
documents to the FRs themselves). Making 
information available in this way reduces delays 
due to information not being readily accessible 
when needed. 

3~crobat is a trademark of Adobe Systems Incorporated. 
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ABSTRACT 

VITROCISET has in house developed a 
prototype tool named System Dynamic Analysis 
Environment (SDAE), which aim is to support 
system engineering activities in the initial 
definition phase of a complex space system. 
The SDAE goal is to provide powerful means for 
the definition. analvsis and trade-off of 
operations and design concepts for the space and 
ground elements involved in a mission. 
For this purpose SDAE implements a dedicated 
modelling methodology based on the integration 
of different modern (static and dynamic) analysis 
and simulation techniques. 
The resulting "system model" is capable of 
representing all the operational, functional and 
behavioural aspects of the system elements 
which are part of a mission. 
The execution of customised model simulations 
enables: 

the validation of selected concepts w.r.t. 
mission requirements; 
the in-depth investigation of mission specific 
operational and I or architectural aspects; 
the early assessment of performances 
required by the system elements to cope with 
mission constraints and objectives. 

Due to its characteristics, SDAE is particularly 
tailored for non conventional or highly complex 
systems, which require a great analysis effort in 
their early definition stages. 
SDAE runs under PC-Windows and is currently 
used by VITROCISET system engineering 
group. 
This paper describes the SDAE main features, 
showing some tool output examples. 

1. INTRODUCTION 

Modern space systems are evolving towards 
higher levels of complexity in both the 
functional and behavioural domain. This is a 
natural consequence of the increasing reliability 
of technologies based on intelligence and 
automation. 
Spacecraft on board autonomy levels are 
progressively enhanced, and more "intelligent" 
and sophisticated operation control and support 
systems are conceived and developed. 
Such a context demands for a complex 
engineering effort in the first phases of the 
system life cycle, when 

the suitable identification and I or selection 
of mission elements, 
the definition of system functions and 
functional sharing between elements, 
the establishment of a mission operations 
concept, 
the identification of system design and 
performance drivers, 
the validation of system conceptual 
definition w.r.t. mission objectives, 
requirements and constraints, 

imply in depth analysis and trade-off among a 
wide scope of interdependent technology and 
implementation solutions. 
The selection of an optimum mission 
configuration and operational strategy also 
affects heavily elements procurement or 
development and utilisation risks and costs. 
In parallel with the evolution of space operations 
conduct and support technologies, it is therefore 
necessary to adequately improve engineering 
support aids to the conceptual design of the 



mission and its constituting space and ground 
elements. 
This can be achieved through extensive use of 
modern computer aided modelling and 
simulation methods and technologies. 
VITROCISET is working since some years in 
this field, through: 

a methodo1og;ical effort based on the 
definition of an integral modelling 
methodology for a complex system, capable 
to suitably support different kinds of 
representations (operational, functional, 
architectural) for conceptually different 
systems. 
Such a methodology has been derived by 
exploiting commonly adopted description, 
analysis and simulation synthaxes (e.g. OOA, 
SADT, Petri Nets). 
a develovment effort for the integration 
within a unique computer environment of 
system description and analysis capabilities, 
providing in this way the user with a single 
point of access to the whole system 
information, and means for information 
derivation, handling, consistency check and 
executable simulations preparation, 
execution and evaluation. 

o an a~vlication effort, aimed at exploiting the 
computer environment capabilities in the 
frame of concrete projects and at deriving 
from the application experience requirements 
for environment upgrades. 

System definition and analysis methodology has 
been already presented and discussed in 
precedent papers of the same Authors (Ref. 3,5). 
In parallel with the methodology development 
and refinement, VITROCISET has developed a 
PC based tool named System Dynamic Analysis 
Environment (SDAE), which has been 
progressively enriched in the last years up to 
covering with automated support a large part of 
the methodology characteristics. 
The System Dynamic Analysis Environment 
finds its natural application in the fields of 
system operations analysis and systems 
engineering, in the frame of both high level (A 
and pre-B phases) studies related to satellite 

operations and in the system definition and 
design phase. 
Currently, SDAE supports mainly the following 
activities: 

mission and system requirements definition 
and management; 
operations modelling; 
functional static and dynamic modelling; 

0 behavioural modelling; 
e models parametrisation with operational and 

performance attributes derived from mission 
and 1 or system requirements; 

0 executable simulation and statistical 
evaluation of simulation results. 

2. SDAE MAIN PRINCIPLES 

SDAE tool is based on a layered modelling 
approach, depicted in figure 1. 

Level 1 Model 

I Level 2 Model I 

Power SI 

Figure I :  The Eayered Modelling Approach. 

Each hierarchical layer is constituted by a set of 
models which structure and organise system 
information within well defined entities. 
The scope and the purpose of the modelling 
activities vary according with the level of details 
of the system description. 



On top layer, the entities managed by the tool are 
the main mission elements (physical or logical), 
such as the flight element(s) and its supporting 
ground facilities, or the spacecraft environment 
as well. 
Entities can be functionally described as objects. 
in all those static and dynamic aspects which are 
of particular interest for the engineer in order to 
analyse a specific problem for the mission. 
At this stage modelling supports initial mission 
analysis and operations concept definition 
activities, such as selection of mission support 
infrastructure, assessment of operational 
strategies and derivation of related design 
requirements and constraints. 
A core modelling functionality enables the 
definition of dvnamic relationships between 
objects (in terms of e.g. data exchange, events or 
dynamic modification of model parameters 
which affect objects behaviour). 
Lower level models can be progressively defined 
for more specific analyses (e.g. command and 
control concept definition, budget analyses, 
element conceptual design and trade-offs). 
The utilisation of a unique descriptive 
methodology at all the levels of details enables a 
straightforward traceability among the different 
modelling layers. 
At bottom level, the tool can support the 
definition and description of end-to-end 
functional architecture models for the mission 
elements and their sub-components. 
Any object at any level can be customised with 
characteristic parameters and reused in different 
contexts, even though at high level it constitutes 
only a partial view of the described element. 
The execution of interactive simulations is 
therefore supported by a set of configurable 
library modules, including environmental models 
such as e.g. drag models and orbital propagators. 
Simulation input parameters can be derived 
directlv from associated reauirements, as well as 
output parameters can be source for lower level 
requirements through dedicated derivation rules. 

3. SDAE DESCRIPTION 

SDAE tool provides the capability to build and 
execute dynamic operational, functional and 
behavioural models of a system, associating 
model parameters to mission or system 
requirements. 
A high level architecture of the SDAE is 
provided in figure 2. Dotted lines in the figure 
show functionalities which are presently under 
development or test. 

MMI 
1 1 1 

Libraries Simulators 

' g:f 1 1 1 1 
Model Pr p ration 

Figure 2: High Level SDAE Architecture. 

The SDAE is constituted by three separate 
environments: 
o Model Preparation; 

Simulation Run; 
o Evaluation. 

simulation 
Run 

3.1 MODEL PREPARATION B 

Evaluation 

Models are generated by means of: 
o an obiect management facility (under 

development) for the static definition of 
basic model entities and their 
characterisation by means of a set of 
variables; 

o a model editor facilitv for the end-to-end 
description of objects dynamic behaviour and 
relationships or interfaces; 

0 a reauirements management and link facility 
for the models parametrisation with numeric 
parameters derived from mission or system 
requirements. 

The model objects descriptions can be stored 
within object libraries and reused. 
Models can also be interfaced at design time 
with external application specific simulation 



libraries, with which they exchange data and 
status at run-time, providing in this way a 
realistic scenario for the simulation. 
The Model Editor realises the core modelling 
functionality. 
Such an editor is based on a Petri Nets-like 
synthax, and exploits a dedicated extension of 
Petri Nets methodology. 
The editor enables the model dynamic 
specification through: 

a core state-transition network with 
deterministic and lor stochastic 
transitions; 
a predicates editor, which supports the 
definition of network predicates 
(conditions and actions) by means of a 
dedicated simulation language, and 

enables the model link with external 
simulation libraries. 

The Requirements Management and Link 
facility enables the mission 1 system 
requirements handling, through: 

e a requirements database editor; 
a linker between model variables and 
numeric requirements parameters, with 
possibility to specifL input and output 
links, together with derivation rules for 
derived parameters; 

The model preparation environment also enables 
the generation of ad-hoc panels for simulation 
monitor and control. 
An example of SDAE preparation environment 
display output is provided in Figure 3. 

Figure 3: SDAE Model Preparation Environment. 

3.2 SIMULATION RUN The simulation execution environment allows: 
e initialisation of simulation parameters (e.g. 

Once the model has been generated, a simulation duration, step) and variables; 
can be executed by means of the Simulation three different modes of simulation: 
engine of the tool. e batch (the model works stand-alone with 

user interface); 



e step by step (the model stops in case of 
firing conflicts in order to highlight 
decision branches in system behaviour); 
debugging (the user decides which 
transition shall fire, among those enabled, 
in order to experiment predefined 
behavioural paths); 

e capability to stop, continue or restart a 
simulation with the same or different initial 
conditions; 
user interaction in batch mode, by means of 
monitoring and controlling the model 
through customised control panels defined at 
design time; 

e simulation history log; 
on-line display of simulation statistics. 

During the simulation, the run module executes 
the model syntax, interfacing with external 
simulation software. 

The capability of defining firinn conditions for 
the network transitions enables the 
implementation of priorities, in case the 
modelled process is fully deterministic, i.e. no 
resource conflict between concurrent functions is 
allowed. 
The definition of transitions associated actions 
enables the parametrisation of network tokens, 
modelling in this way the availability of different 
kind of resources within the system. 
Examples of simulation execution environment 
display outputs are shown in Figures 4 and 5. 
The shown examples reflect different simulation 
and design objectives, as pertaining to different 
stages of system life cycle. 
The application shown in Figure 4 has been 
developed within ESAJDornier ARTSTOTELES 
Phase A and Pre-B studies. 

Figure 4: Simulation output example: ARISTOTELES ORM Analysis. 

It constitutes the modelling of a spacecraft The overall objective of the study was the 
operational process, the Orbit Raise Manoeuvres definition of an optimum strategy for satellite 
(ORM) execution process, which involves tracking and ORM execution, identifying the 
ground, spacecraft and environmental functions. impacts of the selected strategy onto the flight 

element and ground segment architecture. 



In particular the following topics were addressed 
by the study: 

define the on board autonomy level, working 
on the flexibility of the mission; 
identify a safe orbit maintenance manoeuvre 
sequence; 
ensure required scientific return from the 
system operations viewpoint; 
identify the interrelationship of chosen 
coverage, link budget and memory budget 
with the selected operational strategy; 
validate the sequence of events in the 
operational scenario; 
analyse consequences of failure on the 
chosen design (e.g. redundancy philosophy). 

Figure 4 shows: 
the model of ORM process within the 
Simulation Run Environment display screen; 
the ORM monitor panel, including an orbital 
propagator (external module) outputs and 
significant simulation variables monitoring; 
the Altitude display panel with an 
atmospheric drag model (external module) 
output; 
the log display of satellite contacts with 
Kiruna Ground Station, as computed by the 
orbital propagator. 

The execution of the ORM process model for 
different initial conditions and environmental 
conditions (contact failures scenario) has enabled 
the selection and validation of an operations 
strategy, which satisfied all the system 
requirements in the defined worst case 
conditions. 
The model has also been exploited as a 
breadboard of the process under study, deriving 
and verifying quantitative parameters 
determining the sensitivity of the strategy (and 
therefore strategy failure conditions) to the 
variation of any of the parameters of the model, 
like e.g. the spacecraft decay rate or the altitude 
determination errors, with respect to the 
reference values. 
A wide number of statistical results about the 
process under study has been derived, as the time 
distribution of manoeuvres intervals and of 
manoeuvres size, the deadband utilisation figure, 
the scientific return distribution. 

Finally, concrete impacts on the space and 
ground architecture have been identified on the 
basis of simulation results, especially with 
respect to On Board Data Handling System (in 
terms e.g. of definition of autonomous functions, 
sizing of mass memory required for manoeuvres 
parameters storage) and Ground Station 
architecture (e.g. need for a dedicated ground 
station, which has been derived as an "a 
posteriori" constraint for successful exploitation 
of ORM strategy). 
The application shown in Figure 5 has been 
developed in the frame of ESAISAT CONTROL 
Hermes Board Observability Breadboard (BOB) 
software project. 
The BOB is a spacecraft simulator which models 
the generation and downlink of Hermes 
telemetry, with the scope limited to Guidance, 
Navigation and Piloting (GNP) functions. 
The objective of the BOB is to provide a mean 
(breadboard) for the definition of an optimum 
telemetry strategy, and the verification of how 
this strategy copes with spacecraft observability 
requirements. 
In this context, VITROCISET has been 
responsible for the definition and development 
of the on board Telemetry Generation Assembly 
simulator, which reproduces the generation of 
CCSDS telemetry packets on the basis of on 
board events and operator directives, and their 
delivery to Communications subsystem for 
downlink. 
The Telemetry Generator Assembly (TGA) was 
designed with the SDAE simulation support. 
A behavioural model of the assembly was 
generated and executed, in order to validate 
system behaviour w.r.t. specifications, to 
experiment different implementation solutions 
and to derive performance objectives for the 
software modules in order to cope with system 
requirements. 
The model was able of fully reproducing the 
system behaviour, including partial modelling of 
hardware equipment (disk driver, buffers). 
As an example, the model reproduced the 
following characteristics: 
0 packet generation directives acceptance and 

rejection policy (including input data format 



and parameters check and consistency check 
with current packet generation status) and 
related timing; 
directives processing operations; 
directives scheduling policy (e.g. 
insertioddeletiodupdate of schedule items, 
schedule execution tasks "jumping" in case 
of critical delays) and related timing; 
internal synchronisation and priorities (e.g. 
enabling 1 disabling of packet playback on 
the basis of schedule status, blocking and 
non blocking operations, internal overrides); 

e packet generation policy (e.g. handling of 
measurement variations occurred during the 

generation of a packet, generation policy of 
supercommutated packets). 

The model accepted as an input a timeline of 
telemetry generation directives, and enabled the 
operator interaction by means of issuing at any 
time new directives for the model. The output of 
the model was a list of generated packets, with: 

packet generation and delivery times; 
list of included measurements and related 
values. 

The time resolution of the simulation was chosen 
of 1 millisecond. 

Figure 5: Simulation output example: BOB TGA Architectural Design. 

Figure 5 shows: 
the process model within the Simulation Run 
Environment display screen; 
the test operator monitor and control panel, 
including: 

directives panel for the generation of 
telemetry generation directives by the 
operator; 

* packet generation status monitoring panel; 
current system schedule; 

status of the main system functions. 
The execution of the TGA behavioural model 
provided the designer with a lot of information 
on the system. In particular different scheduling 
policies and packet ,generation policies have been 
tested before selecting the one which optimised 
system functioning under nominal and peak load 
conditions. 
Even though the model was at behavioural level, 
inferences on system performances have been 



derived by setting and changing maximum 
allowed times for software tasks execution, and 
deriving in this way objectives to be pursued in 
single functions implementation in order to meet 
the overall system performances. 
In depth analysis of deadlock conditions has 
been performed, by means of identifying and 
quantifying the relationship between the input 
data rate and the system response, which under 
critical conditions is characterised by a 
degradation in performances due to the skipping 
of packet generation tasks in order to avoid 
propagation of delay with respect to the 
schedule. 
In addition, the system response under different 
modes of functioning (e.g. recorder, playback, 
filler activated 1 deactivated with a predefined 
rate) allowed the determination of packet 
generation rate achievable in the different modes, 
deriving in this way differentiated constraints for 
packet generation function. 
Finally, the partial modelling of some significant 
time consuming hardware functions (access to 
disk, inputloutput operations) enabled the 

assessment of limits imposed by the hardware 
onto system performances. - 

3.3 EVALUATION. 

After the simulation run, the log file is processed 
by an Evaluation environment, which computes 
and displays the main network statistics, i.e. for 
each transition: 

overall number of firings; 
minimum, average and maximum time 
between two successive firings. 

The environment also supports the generation of 
customised graphical reports by means of 
interface with standard Windows facilities and 
the processing of the log file, providing 
statistical figures of predefined network 
parameters and variables (e.g. distribution of 
parameters values across the simulation). 
An example of Evaluation Environment screen 
layout is provided in Figure 6, representing the 
ARISTOTELES ORM process model simulation 
statistics. 

Figure 6: Evaluation Environment output example: ARISTOTELES ORM Analysis. 
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4. CONCLUSIONS 

SDAE prototype implementation has been 
originated with the purpose of investigating the 
system engineering process of a modern space 
system in the first phases of its life cycle. 
In particular, the ultimate objectives of the tool 
were: 
1. to provide an efficient breadboard for 

testing "on the job", within limited 
implementation costs and effort, 
methodologies aimed at: 

ensuring a harmonic and consistent 
growth of system information in this 
phase; 

0 empowering system analysis and 
validation capabilities, especially for 
highly automated or non procedural 
systems. 

2. to derive requirements for methodologies 
assessment and refinement, on the basis of 
concrete engineering needs outcoming from 
the tool application experience. 

SDAE application has resulted to effectively 
support both system analysis and conceptual 
design, lowering the engineering effort for the 
execution of operations analyses and 
architectural trade-offs and providing, by means 
of simulation, significant support to operations 
and system concepts validation capabilities. 
In particular the following characteristics of the 
prototype have been found of particular interest, 
especially in comparison with engineering tools 
available on the market: 
e the flexibility of modelling methodology, 

which enables the easy generation and 
maintenance of "on purpose" models, 
without constraining the engineer to 
rigorous top-down approaches, but at the 
same time providing capabilities for system 
information consistency keeping; 

0 the adequacy of modelling and simulation 
tools to non procedural, event drive 
systems; 

0 the reusability of model objects and 
simulation modules; 

the "live dialog" capability of system 
models with mission and system 
requirements parameters through numeric 
data exchange and derivation rules, which 
highly enhance ability to manage, control 
and validate system information. 

Those positive outcomes suggested the 
prosecution of the internally funded SDAE 
prototyping activity, which currently is being 
performed in the direction of both: 

improvement of tool modelling 
powerfulness and engineering support 
scope; 
increase of tool application experience, 
through the investigation of new 
application areas, such as communications 
and ground data control and distribution 
systems. 
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ABSTRACT 

Since Mariner, NASA-JPL planetary missions have been supported by ground software to plan 
and design remote sensing science observations. The software used by the science and sequence 
designers to plan and design observations has evolved with mission and technological advances.- 
The original program, PEGASIS (Mariners 4,6, and 7), w9s re-engineered as POGASIS (Mariner 
9, Viking, and Mariner lo), and again later as POINTER (Voyager and Galileo). Each of these 
programs were developed under technological, political, and fiscal constraints which limited their 
adaptability to other missions and spacecraft designs. 

Implementation of a multi-mission tool, SEQPOINTER, under the auspices of the JPL Multi- 
mission Operations Systems Office (MOSO) is in progress. This version has been designed to 
address the limitations experienced on previoug versions as they were being adapted to a new mis- 
sion and spacecraft. The tool has been modulai-ly designed with subroutine interface structures to 
support interchangeable celestial body and spacecraft definition models. The computational and 
graphics modules have also been designed to interface with data collected from previous space- 
craft, or on-going observations, which describe the surface of each target body. These enhance- 
ments make SEQPOINTER a candidate for low-cost mission usage, when a remote sensing 
science observation design capability is required. 

The current and planned capabilities of the tool will be discussed. The presentation will also 
include a 5- 10 minute video presentation demonstrating the capabilities of a proto-Cassini Project 
version that was adapted to test the tool. 

The work described in this abstract was performed by the Jet Propulsion Laboratory, California 
Institute of Technology, under contract to the National Aeronautics and Space Administration. 

Keywords: remote sensing science observation, adaptable tool, interchangeable models, digital 
terrain map-defined celestial body 

INTRODUCTION 

POINTER provides functionality analogous to a professional photographer's process of preparing 
for and taking photographs. POINTER supports this process for a remote robotic photographer 
that has no control over the environment where it has been sent to gather images and other data of 
the surrounding phenomenon. The functions which are similar to the photographer's process 
define the foundation of POINTER. These foundation functions are listed and illustrated in Figure 
1. In SEQ-POINTER, the functions have been designed and implemented for multiple missions. 
The mission specific capabilities are incorporated via a process called adaptation. 

1. Cognizant Development Engineer (CDE) 
2. Planetary Observation INstrument Targeting and Encounter Reconnaissance 



Model Celestial Body 

Translate Observation 
Into Spacecraft 
Instructions 

Earth 

Model Spacecraft/Scan 
Platform Pointing 
(observation) 

ReadIModel Star Positions 
Attitude 

Figure 1. POINTER Foundation Functions 

CURRENT CAPABILITIES 

The foun ation functions are augmented by capabilities which allow SEQPOINTER to fit within 4 AMMOS , the multi-mission operations support system being developed by MOSO. The tool 
capabilities with respect to AMMOS are illustrated in Figure 2. The primary capability is the 
interface with the Sequence file. The Sequence file contains spacecraft instructions and ground 
software directions in the form of requests. Requests perform remote sensing as well as fields and 
particles science observations and engineering activities during mission operations. The remain- 
ing capabilities are the interfaces with the Spacecraft & Celestial Body Ephemerides file and the 
Spacecraft Clock file. The Spacecraft & Celestial Body Ephemerides file(s) lump together space- 
craft, planetary, and satellite ephemerides (currently N&) and star catalog(s). The Spacecraft 
Clock file provides spacecraft clock adjustment data referenced by the tool. 

The upper portion of Figure 2 illustrates the primary SEQPOINTER operator displays, the oper- 
ator interface and observation design depiction. The operator interface (left) is an X Window Sys- 
ternmotif application. It provides the operator with capabilities to manipulate observation design 
instructions and to perform a simulation of spacecraft execution instructions which are graphi- 
cally depicted (on the right by the Project module). Figure 3 contains images illustrating sample 
menus (top) and a sequence component (bottom) from the operator interface. The observation 

3. Advanced Multi-Mission Operations System 
4. Navigation Ancillary Information Facility 
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Figure 2. SEQPOMTER in the MOSO AMMOS 

graphically depicted is a perspective projection of Saturn with events (footprints) from a Cassini 
Project instrument. Figure 4 contains a sample image of the same observation from a different 
vantage point than depicted in Figure 2 The implemented module in the Project module family is 
an X-Window ~ ~ s t e m / ' o t i f / P ~ ~ ~ ~ + '  application. The depiction of the target body is data 
driven, based-on a PHIGS data structure that models the surface of the body. The data structure 
can be derived from a variety of sources: an o late-spheroid body shape algorithm or the same 8 algorithm with an electronic version of a USGS Albedo Image file. The Saturnian rings are mod- 
eled in the same fashion. However, the data structure for the rings is created at run-time from ring 
system constants read by the tool. 

ARCHITECTURE 

To facilitate a mission adaptable tool, SEQPOINTER has been organized around the concepts of 
modular executable programs (module families) and interchangeable models. The tool comprises 
three module family groups: infrastructure programs, observation design utility programs, and 
observation activity programs. The groups and some of the constituent module families are illus- 
trated in Figure 5. The infrastructure group consists of module families which contribute the 
underlying data flow architecture for the tool: Operator Interface, Activity Design, Modeler, Posi- 
tion, Project, Present, and Targeting Update. A description of each module appears in Table 1. 

The design utility and observation activity program groups consist of activity and command mod- 
ules, the sequence components of an observation. The design utility program group currently con- 
sists of two module families, Solar System BodyJSurface Point Trajectory and Stellar Position. 
These modules are used to produce geometric and photometric data the operator analyzes for 

5. Programmer's Hierarchical Interactive Graphics System (ANSI-Computer Graphics) 
6. United States Geological Survey 
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Figure 5. SEQPOINTER Module Family Architecture 

Table 1. SEQ-POINTER Infrastructure Module Family Descriptions 

Module Family 

Operator Interface 

Activity Design 

Modeler 

Position 

Project 

Present 

Targeting Update 

designing desired observations. The observation activity program group consists of the module 
families for all levels of sequence components. The sequence components are expanded to com- 
mands and later modeled as the events of an observation. 

Functional Description 

interactive operator and sequence file-request interface 

processes observation activities through module families 
"expanding" activities to the resulting commands 

calculates spacecraftJscan platform and instrument(s) events 
from the commands resulting from expansion of the mission 
dependent activity modules and formats the event data for output 

calculates celestial body and spacecraft position data from inter- 
nal and operator-supplied data or external ephemeris file(s) 

graphically depicts the observation events (footprints) 

reads the output event data file loading a Lotus 1-2-3 spreadsheet 
where charts illustrating event data can be output 

batch sequence file processor for updating all observations in the 
sequence for the latest ephemeris data 



The tool can be adapted to a new spacecraft because the architecture segregates the mission and 
spacecraft dependencies. Adaptation is designed into the tool through function modularization 
and the concept of interchangeable models. The segregation of mission and spacecraft dependen- 
cies into independent and dependent module families is illustrated in Figure 6.  The independent 

..... I Legend: P ..... Spacecraft Independent I 

..... 

Spacecraft Dependent 
Note: CDSF is the script language file 

Figure 6. SEQPOINTER Module-Data Flow 

module families read dependent data file(s) to incorporate mission and spacecraft information. 

Illustrating interchangeable models, the dependent module families in the design utility and 
observation activity groups contain both independent and dependent sections. These modules are 
designed around generic drivers which call plug-in models written in C language functions. The 
calling and return interfaces are defined for each model family. The model family instance con- 
tains or retrieves any model-unique data necessary to calculate the return data. 

For example, the interfaces for the celestial body position model family are: as input, the refer- 
ence (i.e., Sun) and subject (i.e., Saturn) body identifications and the time of the position and, as 



output, the position and velocity vectors of the subject body relative to the reference body. The 
interfaces are the same whether the ephemeris data is interpreted from a conic element set, NAIF 
ephemeris data, or Navigation Team data. Each model instance gathers the data necessary to 
define the vector set at the input time. For the conic element model, it calculates the vector set 
from the conic element set and the necessary celestial body constants. For the NAIF or Navigation 
models, it-interpolates the vector set using the ephemeris file readers. 

ADAPTATION 

Adaptation of SEQPOINTER for a mission and spacecraft is performed manually. An adaptation 
utility program provided by another AMMOS tool is planned to be updated, enhanced, and deliv- 
ered in the future. The following adaptation steps are performed after capability definition to cre- 
ate the mission and spacecraft module suite for the mission specific version of the tool: 

1) identification of the' necessary models and modules for the mission to be adapted, 

2) identification of which existing mission independent models in the model families library sat- 
isfactorily provide the necessary capabilities, 

3) modification of existing mission independent models in the model families library which must 
be altered to provide the necessary capabilities, 

4) design and creation of new models which must be added to complete provision of the neces- 
sary capabilities, 

5) design and creation of the sequence components which define spacecraft instructions and 
translation of the components into a SEQPOINTER specific file format (Lockfile), and 

6 )  compilation of the mission version models and modules to create the executable module suite. 

FUTURE CAPABILITIES 

Enhancements to SEQPOINTER consist of items which were not incorporated during previous 
development cycles due to technological or resource inadequacies, and items which result from 
evolution of the mission operations concept. The changes are taking the operations concept from a 
centralized system using experienced MOS operators to a distributed system where the primary 
users are scientists and their representatives. 

Additions to address the changing environment include enhancements to make the tool more 
usable by a broader user population and closer association with the spacecraft flight software 
operation algorithms. Development of a user interface which provides direct graphical manipula- 
tion of observation events which are reverse-translated into spacecraft instructions has been pro- 
posed. One delayed capability would allow observation design with an irregularly shaped celestial 
body (e.g., asteroid). A new body surface family model would be developed to access a celestial 
body digital terrain map for instrument footprint calculations. Also, a new PHIGS data structure 
translation utility would be included which reads the digital terrain map and produces the data that 
is used to graphically depict the celestial body with the observation instrument footprint events. 
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ABSTRACT 

CHIMES is a critiquing tool that automates the 
process of checking graphical user interface (GUI) 
designs for compliance with human factors design 
guidelines and toolkit style guides. The current 
prototype identifies instances of non-compliance 
and presents problem statements, advice, and tips 
to the GUI designer. Changes requested by the 
designer are made automatically, and the revised 
GUI is reevaluated. A case study conducted at 
NASA-Goddard showed that CHIMES has the po- 
tential for dramatically reducing the time formerly 
spent in hands-on consistency checking. Capabili- 
ties recently added to CHIMES include exception 
handling and rule building. CHIMES is intended 
for use prior to usability testing as a means, for 
example, of catching and correcting syntactic in- 
consistencies in a large user interface. 

1. INTRODUCTION 

With continuing support from the National Aero- 
nautics and Space Administration (NASA, Code 
O), the evolution of the CHIMES methodology 
and toolset has taken place in a series of research 
and prototyping cycles. The goal has always been 
to improve the usability of user interfaces devel- 
oped at the NASA-Goddard Space Flight Center 
(GSFC) by providing user-interface designers with 
an automated design-evaluation capability. Re-. 
cent prototypes have focused on implementing the 
CHIMES concept of knowledge-based compliance 
checking. 

*For further information contact: Walter 
F. Tmazkowski, Code 522.3, NASA-Goddard Space Flight 
Center, Greenbelt, MD 20771 U.S.A. (301)286-8821, FAX: 
(301)286-1768, Email: truszkow@kong.gsfc.nasa.gov. 

Walter F. Truszkowski 

NASA-Goddard Space Flight Center 
Code 522.3 

Greenbelt, MD 20771, USA 

Available user-interface design software provides 
designers with many useful capabilities, with the 
notable exception of any capability to evaluate 
the "look and feel" of a graphical user interface. 
Such interfaces are often evaluated for compliance 
with human factors guidelines or corporate style- 
guide requirements. Evaluation is typically done 
by time-consuming, manual review and usability 
testing. Taking steps to speed up the evaluation 
process, the present CHIMES prototype is capa- 
ble of evaluating the look of single and multiple 
display screens that include alphanumerics, color, 
and graphics. The full CHIMES concept encom- 
passes rulebased evaluation of user-interface be- 
havior. 

CHIMES is intended for use by GUI designers 
prior to formal usability testing, as a means of 
cleaning up a GUI and improving consistency from 
screen to screen. Rules in the knowledge base cri- 
tique the design, and an advice generator offers 
advice, warnings, and tips to the designer. Ex- 
plication of the CHIMES knowledge base and cri- 
tiquing process is the primary purpose of this pa- 
per. 

2. OVERVIEW OF CHIMES DATA FLOW 

Figure 1 provides a conceptual overview of the 
flow of data during a CHIMES evaluation. Mov- 
ing from left to right on the figure, the resource 

, file representing a GUI design is acquired by 
CHIMES and transformed into an intermediate 
representation, which is transferred to the knowl- 
edge base. The acquired GUI design is then sub- 
mitted to analysis and evaluation by the user- se- 
lected rule set. Products of the analysis include 
problem statements ("critiques"), advice, and sug- 
gested modifications. User-selected modifications 





are made automatically by CHIMES and sent to 
the knowledge base for re-evaluation. The re- 
source file representing the GUI design is also au- 
tomatically updated. 

The remainder of the paper focuses on the con- 
tents of the knowledge base, describes the cri- 
tiquing process, presents a case study, and dis- 
cusses plans for enhancing CHIMES. 

3. KNOWLEDGE BASE 

The knowledge base stores a representation of the 
design to be-evaluated as well as the rules that 
encode the heuristics for design evaluation. Each 
rule in the CHIMES knowledge base can be con- 
sidered a critic[l]. Key components of the knowl- 
edge base include the qualitative and quantitative 
heiristics for evaluating the graphical-design and 
use of color in a single display screen and, for mul- 
tiple panels, heuristics on design consistency. The 
knowledge base is implemented in CLIPS[2]. 

Graphical Display Heuristics. CHIMES 
uses guidelines from the OSF/Motifl Level One 
certification Checklist[S] and from the human fac- 
tors literature to evaluate the "lookn of single and 
multiple display panels. The CHIMES approach 
allows compliance checking of requirements and 
guidelines not included in the OSF/Motif defaults. 
For example, the number of type sizes and number 
of fonts per screen, as well as text justification and 
use of highlighting, can be checked for compliance 
with human factors recommendations. 

Color Heuristics. The key human factors recom- 
mendation on color is that it should be used 
for functional purposes, not simply to decorate 
the screen. Functional purposes include attract- 
ing attention to critical data objects, commu- 
nicating organization, indicating status, and es- 
tablishing relationships between distant items[6]. 
To assist GUI designers in the effective use of 
color, CHIMES not only suggests appropriate 
colors but also incorporates its suggestions with 
the designer's functional purposes for using color 
and provides remedies for misuse of color. 

Color heuristics implemented in the most recent 
prototype permit CHIMES to evaluate the consis- 
tency of color usage across multiple panels. The 
tool checks the consistency of both foreground and 

Motif is a trademark of the Open Software Foundation, 
Inc. 

background colors; offers alternatives to the origi- 
nal color combination; allows the designer to pre- 
view different color combinations; and permits au- 
tomatic modification of colors when the user fin- 
ishes making changes. 

The following are a few of the color heuristics a p  
plied in a CHIMES evaluation[5]: 

Pale foreground colors should not be 
used on a very bright saturated green 
background because of the resulting very 
low contrast. 

The same background color should be 
used for both a panel and its items un- 
less there is a functional, user-task re- 
lated reason for using different colors. 

0 Some background colors are not recom- 
mended for use with certain foreground 
colors because of the resulting color in- 
terference. 

These heuristics are implemented in dozens of 
highly specific rules. Once the detected colors have 
been evaluated, CHIMES gives specific advice to 
improve color contrast and legibility. 

Consistency-Checking Heuristics. Consistency is 
one of the primary human factors principles of 
screen design. Consistency of object location and 
screen behavior supports the end user's develop- 
ment of expectations about where to find common 
controls and of how the GUI will respond to user 
input. In general, an interface that reliably meets 
end-user expectations supports more efficient hu- 
man performance as compared to an interface that 
violates end-user expectations. 

As a basis for checking the internal design consis- 
tency of multiple panels or screens, the CHIMES 
knowledge base contains a set of rules on which 
there is general agreement in the human factors 
literature. When departures from consistency 
are warranted in the context of user's tasks[3], 
CHIMES is capable of handling exceptions. 

The following are a few of the consistency-checking 
heuristics implemented in the CHIMES knowledge 
base[5]: 

The typographic elements of data items 
which serve the same type of function in 
a design are consistent within and across 
panels, unless there is a functional or 



user-task related reason for using differ- design patterns. For example, the rule "check- 
ent typographic elements. background-color-accord-pnl" represents a way to 

check item background inconsistency. Once the 
The background color of panels in a de- heuristics are modeled as rules, the CLIPS infer- 
sign is consistent across panels, unless ence engine uses the rules to critique the GUI de- 
there is a functional or user-task related sign that has been acquired by CHIMES. 
reason for using different colors. 

The shadowing of pushbuttons is con- 
sistent within and across panels unless 
there is a functional or user-task re- 
lated reason for using different shadow- 
ing thicknesses. 

Although checking the consistency of location of 
displayed objects presents difficult technical prob- 
lems, CHIMES is capable of checking the place- 
ment of the menubar. The current criterion for 
menubar placement is that recommended by the 
OSFIMotif guidelines[8]: "at the top edge of the 
application, just below the title area of the window 
frame." In the full CHIMES concept, other GUI 
style guides can be encoded as sets of rules in the 
knowledge base and applied upon user selection. 

4. CRITIQUING PROCESS 

The CHIMES heuristics are represented as CLIPS 
rules. A CLIPS rule has two parts: a conditional 
part and an action part. The conditional part de- 
scribes the CLIPS data-memory configuration for 
which the rule is appropriate. (The GUI design to 
be evaluated is represented as facts in the CLIPS 
data memory.) The action part of a rule specifies 
the instructions to be executed when the condi- 
tional part of the rule is satisfied. 

The CLIPS inference engine is the executor that 
determines which heuristics should be used by se- 
lecting and then executing the appropriate rule. 
Three steps are involved in selecting and executing 
rules: 1) match rules; 2) select-rules; and 3) exe- 
cute rules. In the first step, match-rules, the infer- 
ence engine finds all of the rules that are satisfied 
by the current contents of data memory according 
to the inference engine's comparison algorithms. 
The matched rules are potential candidates for 
execution. The second step, select-rules, applies 
some selection strategy to determine which rules 
will actually be executed. The last step, execute- 
rules, fires the rules previously selected. 

Using the CLIPS inference engine and represent- 
ing the GUI design as CLIPS facts allows the rep  
resentation of heuristics as rules to match specific 

4. CASE STUDY 

Aa a preliminary test of CHIMES' ability to de- 
tect human factors problems in a user-interface 
design, we applied CHIMES to a real- world soft- 
ware application known as the Request Oriented 
Scheduling Engine (ROSE). Developed by NASA- 
Goddard, ROSE was designed to meet the needs 
of mission planners and spacecraft operators in a 
satellite ground-control environment [lo]. 

The evaluation of the ROSE user interface was 
designed to meet two goals: 1) to identify human 
factors issues in need of resolution by the ROSE 
developers; and 2) to study how CHIMES can as- 
sist a GUI designer in catching and correcting hu- 
man factors problems. For comparative purposes. 
we conducted both a CHIMES evaluation and a 
heinistic (manual) evaluation[4]. 

CHIMES Evaluation of the ROSE User Interface. 
The CHIMES evaluation took less than 10 minutes 
and detected three problems related to the use of 
fonts and typographic elements. ROSE used more 
than the three fonts permitted by a conservative 
rule in the CHIMES knowledge base. Contrary 
to the convention of using normal style fonts for 
menu options, ROSE used an italic font for o p  
tions in pull-down menus. This use of italics made 
ROSE inconsistent with other OSFIMotif applica- 
tions. CHIMES also detected typographic incon- 
sistencies across widgets in ROSE. Several labels 
for the same kind of button had been implemented 
in mixed case, while others were in all upper case. 

Heuristic Evaluation of the ROSE User Interface 
Three evaluators conducted the heuristic evalu- 
ation. (Two were human factors professionals 
who specialize in user-interface design; the third 
was an experienced designer of GUIs.) They 
spent a total of 12 person hours reviewing the 
ROSE documentation and on-line demonstrations. 
The heuristic evaluation found additional prob- 
lems that CHIMES was not able to detect because 
of current limitations in its knowledge base. 

To detect some of the problems found by the eval- 
uators, CHIMES would need knowledge of user- 



interface behavior. For example, any attempt to 
access the ROSE help facility caused the system 
to crash because this facility had not yet been 
implemented, although a help icon was displayed 
on some screens. CHIMES did not detect this 
problem because its current knowledge base en- 
compasses only the look, but not the behavior of 
buttons. The full CHIMES concept includes eval- 
uation of user-interface behavior. 

The human evaluators found problems in screen 
layout that CHIMES was not able to detect. 
In some instances, interface elements were not 
grouped to aid the user's understanding of their 
interrelationships. Further, the heuristic evalua- 
tion found that certain panel overlays obscured 
useful information. To detect problems of this 
kind, CHIMES would need semantic capabilities 
beyond its current scope. For example, CHIMES 
would need knowledge of user goals and informa- 
tion requirements in order to suggest alternative 
layouts. 

A particularly difficult issue for an automated 
evaluation is the absence of information that 
should be, but is not, displayed. For example, 
the human evaluators noted a general lack of user 
guidance (i .e., instructions displayed on the screen 
to aid the user in navigating through the ROSE 
user interface). Fairly sophisticated capabilities 
would be needed for CHIMES to detect the ab- 
sence of user guidance or other missing informa- 
tion. 

Similarly, advanced semantic capabilities would 
be needed to detect redundant information. The 
heuristic evaluation found, for example, a redun- 
dancy in panel titles, and the evaluator recom- 
mended simplifying the user interface by removing 
the redundancy. 

Problems of appropriate widget selection, iden- 
tified by a human evaluator, pose a significant 
challenge to CHIMES or any automated user- 
interface evaluation tool. For example, five pull- 
down menus were lined up horizontally to perform 
a task that should be performed by a menubar. 
Although CHIMES can detect the misplacement 
of a menubar, it cannot currently assess the ap- 
propriateness of the widgets selected by the user- 
interface designer. 

As highlighted in the case study, the capabilities 
and limitations of CHIMES make it a useful tool 

to aid the user-interface designer, but not one 
that will replace usability testing. In the realm 
of user-interface syntax, CHIMES can reliably d* 
tect both inconsistent design elements and non- 
compliance with style guidelines. With syntactic 
issues cleared up prior to usability testing, such 
testing can then concentrate on semantic issues 
that affect end-user performance and satisfaction. 

5. CURRENT AND FUTURE DIRECTIONS 

The existing CHIMES prototype reads and evalu- 
ates GUIs created in TAE Plus[9]. Although TAE 
Plus supports CHIMES development, it limits the 
designs that CHIMES can evaluate. To make 
CHIMES a useful tool to GUI designers who do 
not use TAE Plus, we are developing an interface 
to 0SF/Motif7s user interface language (UIL)[7], 
which will allow CHIMES to evaluate any Motif- 
based design. 

We are also currently developing a capability to 
allow CHIMES users to customize the knowledge 
base. We have demonstrated that CHIMES can 
work with a knowledge base containing several sets 
of rules. Switching from one set of rules to another 
does not require recompiling. Further, we have 
demonstrated that a rule can be modified through 
the CHIMES user interface and that the modified 
rule can be sent back to the knowledge base for 
execution. Now we are developing a capability to 
allow CHIMES users to set up new guidelines by 
customizing existing guidelines. A new guideline 
can later be loaded into the CHIMES knowledge 
base for evaluating GUI designs. 

Other plans for the future call for research into 
possible uses for CHIMES as an intelligent agent 
and for experimental evaluation of the effects of 
CHIMES capabilities on the performance of user- 
interface designers. 
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ABSTRACT QFD matrices that relate product functions 

A key component of JPL's strategy to make 
space missions faster, better and cheaper is 
the Advanced Multi-Mission Operations Sys- 
tem (AMMOS), a ground software intensive 
system currently in use and in further develop- 
ment. AMMOS intends to eliminate the cost of 
re-engineering a ground system for each new 
JPL mission. This paper discusses SEQ-RE- 
VIEW, a component of AMMOS that was 
designed to facilitate and automate the task of 
reviewing and checking spacecraft 
sequences. 

SEQ-REVIEW is a smart browser for inspect- 
ing files created by other sequence generation 
tools in the AMMOS system. It can parse 
sequence-related files according to a com- 
puter-readable version of a "Software Inter- 
face Specification" (SIS), which is a standard 
document for defining file formats. It lets users 
display one or several linked files and check 
simple constraints using a Basic-like "Little 
Languagen. 

SEQ-REVIEW represents the first application 
of the Quality Function Deployment (QFD) 
method to sequence software development at 
JPL. The paper will show how the require- 
ments for SEQ-REVIEW were defined and 
converted into a design based on object-ori- 
ented principles. The process starts with inter- 
views of potential userq, a small but diverse 
group that spans multiple disciplines and "cul- 
tures". It continues with the development of 

and characteristics to user-demanded quali- 
ties. These matrices are then turned into a for- 
mal Software Requirements Document (SRD). 
The process concludes with the design phase, 
in which the CRC (Class, Responsibility, Col- 
laboration) approach was used to convert 
requirements into a blueprint for the final prod- 
uct. 

THE UPLINK PROCESS 
The multi-mission environment in which 
SEQ-REVIEW is intended to operate is fairly 
complex. This Section introduces the basic 
elements of the uplink process and explains 
where SEQ-REVIEW fits in that process. 

Sequence Generation 
The ultimate goal of the uplink process is to 
allow ground operations personnel to control 
the spacecraft by sending it radio signals that 
the spacecraft can receive, decode and store 
in its memory. The decoded information usu- 
ally consists of commands that are to be exe- 
cuted in a precise sequence at specified 
times. We will refer to these commands as 
"spacecraft commands", and to a set of such 
commands sent to the spacecraft as a whole 
as an "on-bard sequencen. 

Much of the uplink process is concerned with 
the planning, generation and verification of on- 
board sequences. This process can involve 
many people: mission scientists interested in 
planetary data request new observations; 



engineers concerned about the capability, 
health and safety of the spacecraft issue 
maintenance requests; mission planners try to 
accommodate requests into a realistic sched- 
ule; sequence engineers translate high-level 
requests into detailed instructions that will 
cause the spacecraft to perform the required 
tasks; and finally, the flight team must check 
the detailed sequence against all flight rules, 
possibly including rules that were added at the 
last minute to compensate for equipment not 
operating at specification or software bugs 
aboard the spacecraft. 

Analogy with Programming 
The process just described resembles that of 
generating executable code for an ordinary 
computer, an analogy that will be used exten- 
sively in this paper. The spacecraft and its 
sequence are analogous to a microprocessor 
and its machine instructions. The process of 
planning and generating a sequence is similar 
to the task of designing and implementing 
software. Just as software engineers would 
find it impossible to do their job using machine 
code, sequence engineers find it useful to 
work not with the on-board sequence itself, 
but with a human-readable version of it that is 
similar to an assembly language program. 

Of course our analogy between a spacecraft 
and a microprocessor is not perfect. Modern 
spacecraft have considerable processing 
power at their disposal, so that spacecraft 
commands are usually much more complex 
than typical microprocessor instructions. This 
complexity is reflected in the large number of 
arguments required by many commands. In 
spite of this, the analogy between spacecraft 
commands and assembly code remains valid 
in the sense that spacecraft commands are 
expressed in a special-purpose language that 
is hard to understand unless one is familiar 
with the architecture of the spacecraft. 

Translating Requests into Commands: 
SEQ-GEN 
Programming efficiency can be increased dra- 
matically when using a high-level language 

instead of assembly code. The tool that makes 
this possible is the compiler, which translates 
high-level code into assembly code. 
Sequence engineers also find that program- 
ming sequences directly is prohibitively diffi- 
cult, and that time can be saved by expressing 
commands as high-level "Requestsn instead of 
low-level "Commandsn. Something similar to a 
compiler is now needed to translate the former 
into the latter. In the AMMOS system, this role 
is assumed by SEQ-GEN, a program that 
expands requests into sequences of com- 
mands. The figure on the following page 
shows the similarities between the conven- 
tional code development process and the 
uplink process. 

Since SEQ-GEN is a multi-mission tool, it 
must obtain mission-specific information from 
external files. This is unlike most compilers, 
which are hard-coded around the syntax of a 
specific language. A second difference with 
compilers is that SEQ-GEN defines and main- 
tains an internal model of the spacecraft. The 
mission-specific files required by SEQ-GEN 
therefore need to describe the spacecraft 
model as well as the basic commands and 
their effect on the model. Other mission-spe- 
cific files used by SEQ-GEN define high-level 
"activity typesn, which are analogous to sub- 
routines, and flight rules, which are formulated 
in terms of the spacecraft model (see Ref. 1 
for more details on the operation of SEQ-- 
GEN). 

SEQ-GEN generates'two basic output files. 
The first file is the Spacecraft Sequence File, 
which is an ASCll representation of the actual 
on-board sequence. This file is an input to 
another program, SEQ-TRAN, which converts 
ASCll mnemonics into binary code, links the 
program, and performs necessary memory 
management and packetization tasks. The 
second file is the Predicted Event File (PEF), 
which shows in time-ordered fashion the com- 
plete sequence of commands, ground events, 
and optionally the status of the internal space- 
craft model that is predicted to result from the 
Request File. In the following, we focus on the 
PEF. 
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Checking the Sequence: SEQ-REVIEW 
Testing conventional software is a straightfor- 
ward procedure: the worst that can happen is 
that the program "crashesn under the benevo- 
lent supervision of the operating system. In 
space exploration, however, sequence engi- 
neers do not have the luxury of trying again: 
the sequence HAS to work the first time. Sim- 
ulation tools such as those incorporated into 
SEQ-GEN provide valuable help in validating 
sequences. However, the final arbiter of a 
sequence's validity is the sequence engineer 
and other flight team members who review it. 

The main difficulty in checking a sequence is 
to zero in on the information that is pertinent to 
a single flight rule or constraint. The documen- 

tation provided by SEQ-GEN in the form of an 
event file is quite extensive, but that makes it 
hard to read. Traditionally, sequence checkers 
have used a variety of ad hoc methods to deal 
with this complexity: 

- manual inspection of computer printouts 

- BASIC and C programs that "stripn event 
files of unwanted information 

- UNlX "awk" scripts for reformatting event 
files 

The purpose of SEQ-REVIEW is to offer 
sequence engineers and other sequence 
reviewers an alternative, multi-mission pack- 
age that is easy to use, adapt, port and main- 
tain. 



THE REQUIREMENTS . . PHASE 

The SEQ-REVIEW software requirements 
document (SRD) was based on the TQM tool 
Quality Function Deployment (QFD), which we 
briefly outline here. A more detailed account of 
our QFD approach will be found in Ref. 2. 

The QFD Approach 
The emphasis in the QFD approach is on cus- 
tomer requirements and on how to ensure that 
these requirements are reflected, i. e., 
"deployed", through the design process. The 
first step in the process as implemented here 
was to collect information from potential users 
of the software through interviews. Responses 
to the interviews were then analyzed by a 
Committee with representatives from user, 
developer and systems engineering groups. 
The primary goal of this first step was to come 
up with three basic lists: 

- Demanded Qualities, which express 
what the user wants to be able to do 
with the program. Example: easy to strip 
and reformat a PEF. All of these Quali- 
ties were taken from user responses. 
The Committee organized them into 6 
broad categories such as "Sequence 
Validationn and "Ease of Usen, and then 
into additional sub-categories such as 
"fnd stimuli of violationsn and "fiter and 
re-order f ieldsn. 

- Quality Characteristics, which express in 
a quantitative manner how users and 
developers would rate the SEQ-RE- 
VIEW product against other methods for 
achieving the same task. Examples: 
"check one constraint in at most 5 lines 
of SEQ-REVIEW 'Little Language' 
coden; "keep the program to 18,000 or 
fewer lines of coden. 

- Functions. These are program features 
which will allow the product to meet cus- 
tomer requirements. Most of these were 
requested by users directly ("Perform 
time conversion on requestn); a few 
were provided by developers. 

A questionnaire was then circulated, asking 
users to rank the Demanded Qualities in order 
of importance. The responses were used to 
compute an average score for each one of the 
Demanded Qualities. Listed at the top were: 

- "Easy to Strip and Reformat a Filen 

- "Draw Timelines" 
- "Reduce the Amount to Read" 

- "Allow Annotations" 

- "Work with Event Files" 

Some of the least important Qualities were 
"Correlate Event and Request Filesn and 
"Work with Spacecraft Sequence Files." 
Clearly, our users were mostly interested in 
making event files easier to read. 

In the next step of our QFD implementation, 
these user-assigned priorities were propa- 
gated through a set of "correlation matricesn 
that relate the users' Demanded Qualities to 
factors that the developers can influence 
through their design, primarily Quality Charac- 
teristics and Functions. These matrices spec- 
ify whether for any given Demanded Quality1 
Quality Characteristic or Demanded Quality1 
Function pair, the correlation between the two 
members of the pair is (i) nonexistent, (ii) 
weak, (iii) moderate or (iv) strong. 

Based on these matrices, we used a QFD 
software package to compute scores for each 
Quality Characteristic and for each Function. 
These scores were then used to prioritize the 
development process as well as the overall 
objectives for the product. The highest-priority 
items were 

- provide users with a rule definition lan- 
guage (the "Little Languagen) 

- provide a graphic interface that lets 
users specify a rule in under 5 minutes 

- .design the "Little Languagen so that 
users can formulate a rule in 5 state- 
ments or less 

- adapt existing timeline generation soft- 
ware from other.programs (such as 
SEQ-GEN) 



Some of the less important characteristics to provide the reader with a sense of 
were "Ability to add a feature in one week or how the product would operate. 
lessn, and 'Keep the code to 18,000 lines or While these tasks delayed the SEQ-REVIEW 
less". the emphasis was On providing SRD somewhat, we felt that the overall sched- 
users with ways to express rules and ule would not be adversely impacted. First, 
on providing timeline capabilities without re- additional up-front work would make design 
inventing the wheel. and im~lementation easier later on. Second, 

Generating Requirements 
Since the QFD methodology does not pre- 
scribe a specific method for generating 
requirement documents, we had to come up 
with our own. Our first attempt consisted in 
translating the correlation matrices for Func- 
tions and Quality Characteristics into plain 
English. The Functions were used primarily to 
explain the method used to meet the require- 
ments, while the Quality Characteristics were 
used primarily to state testable objectives for 
the finished product. 

our teniative GUI could be turned very easily 
into the first Section of the SEQ-REVIEW 
User's Guide, again saving us time later on. 
Finally, we felt that making our tentative GUI 
available to users early on would contribute 
significantly to the ultimate success of 
SEQ-REVIEW. 

The software requirements for SEQ-REVIEW 
were strongly influenced by two parallel efforts 
that took place in the summer of 1993. 

Prototyping Activity 
First, prototypes were built to demonstrate the 

This first approach was rejected because the fessibility of SEQ-REVIEW. These proto- 
resulting requirements document was hard to typss established afirm basis for the following 
read. The problem was that our lists of Quali- mncepts: 
ties and Functions did a good job of summa- 
rizing user requirements, but did not provide 
the reader with much of a feel for the function- 1. zero in on useful information by letting 
ality of the SEQ-REVIEW product. the user specify patterns and searches 

in a simple, intuitive way 
Our second, more successful approach was to 2. translate sequence files into text files 
realize that the task of stating our require- suitable for input into spreadsheet pro- 
ments was going to be a lot simpler if we first arams such as Lotus 1-2-3 - 
carried out a couple of "pre-designn steps prior 
to writing requirements: 3. express rules and constraints easily by 

writing simple programs in a Little Lan- 
(i) design a tentative Graphical User Inter- guage designed to handle the type of 

face (GUI). This would give us a chance information found in seauence files 
to organize user-demanded features in 
a logical manner. It was also decided to 
implement this preliminary design in 
Visual BASIC and make it available to 
potential users for feedback. 

(ii) show a concrete example of a Little Lan- 
guage (LL) and explain how it relates to 
the desired functionality of SEQ-RE- 
VIEW. This step actually required little 
effort since a LL was already developed 
as part of the prototyping effort (see the 
next Section). While this LL didn't meet 
all the requirements, it is close enough 

4. reformat sequence files by letting users 
specify records of interest and fields of 
interest within these records, using 
either simple pattern definitions or the 
Little Language 

5. build on previous experience by saving 
search patterns and simple algorithms 
so they can be reused in future review 
sessions 

6. allow the program to read arbitrary 
(within reason) text files by specifying 
the file format on-line, as opposed to re- 



compiling a new "ersion of the software 
featuring new hard-coded file formats 

Second, a Quality Function Deployment 
(QFD) Committee was formed. This Commit- 
tee included representatives from potential 
users of SEQ-REVIEW as well as software 
developers. The Committee used the QFD 
methodology to identify desired features and 
qualities that the SEQ-REVIEW product 
should exhibit. How this work was used to 
establish the present requirements was 
described in the previous paragraphs. 

User Interface 
Since the primary purpose of SEQ-REVIEW 
is to display sequence file information to the 
user, it is anticipated that most users will want 
to interact with the program through a 
Graphical User Interface (GUI) similar to that 
used by many text editors. This should be 
qualified in two ways: 

- a small but significant minority of poten- 
tial SEQ-REVIEW users requested the 
ability to control the program through a 
command-line interface, as opposed to 
clicking on buttons and pull-down 
menus; 

- SEQ-REVIEW needs to support "batch- 
moden operation, in which a predefined 
set of commands is fed to the program 
from a command file. In this mode, 
SEQ-REVIEW acts as a "filter", e. g. to 
identify violations of rules not yet imple- 
mented in SEQ-GEN. 

To accommodate these requirements, 
SEQ-REVIEW will be provided in two forms: 
interactive and batch. The interactive version 
will be GUI-based. In addition to the usual 
menu bar and push-button, the GUI will fea- 
ture a special window for command-line input. 
Every SEQ-REVIEW function will be accessi- 
ble as a command line as well as through 
menu selections. "Menu acceleratorsn will also 
be provided; these are short, user-definable 
keystroke combinations that can be used as a 
substitute for menu selections. 

The batch version of SEQ-REVIEW will not 

display anything to the user and will accept 
commands from "standard inpur, which can 
be either the user's keyboard or a text file 
specified to UNlX as a source of redirected 
input. The only use of the batch mode version 
will be to create output (text) files that can be 
read by the user or scanned automatically to 
detect rule violations. It is anticipated that this 
version of SEQ-REVIEW will be used in highly 
automated, Operations-type throughput-criti- 
cal environments. 

The figure on the next page shows our prelim- 
inary design for a toplevel menu of SEQ-RE- 
VIEW that satisfies user-demanded qualities 
and functions. When the user first activates 
the program, only the top (highlighted) line of 
each menu is visible; these lines form the 
"Menu Bar" at the top of the SEqREVlEW 
screen. The expanded menus shown in the 
figure appear when the user clicks on the cor- 
responding menu title in the Menu Bar. 

THE DESIGN PHASE 
The method used to design SEQ-REVIEW is 
essentially the Class/Responsibility/Collabora- 
tion (CRC) approach described by Wirfs-Brock 
et al. (Ref. 3), with the following modifications1 
adaptations: 

(M1)the starting point of the design is the 
SRD, which concentrates almost exclu- 
sively on the user's perspective of the 
program. The requirements do not 
address how the program is supposed 
to accomplish the various tasks. 

(M2)SEQ-REVIEW will rely on the MOTIF 
toolkit for all graphics. Because MOTIF 
has its own class definitions, there is 
potential conflict with internal SEQ-RE- 
VIEW classes. This problem is not really 
discussed in Ref. 3. 

(M3)a specific methodology was adopted 
early on to deal with the fact that 
SEQ-REVIEW needs to be delivered in 
two flavors, GUI and batch. The decision 
was that the two programs would share 
the same object structure, and that 
MOTIF, X Toolkt and X Window calls 



1 Redo I 
Un Xi hli ht Lighig% &lor.. . 

Next 
Previous - 
Goto ... - 

Annotate - 
Start(End) Learn - 
(Un)link Scrolling 

Strips ... 
Formats. .. - 
Constraints ... - 
States ... 
Iransitions ... 
Graphs ... - 
Sclipts.. . 11, 

Programs ... 
Fig. S : e E v I E w  USER INTERFACE 

Timeline ... Build Form.. . 
graph ... Mail Form ... 
Observation.. . Qpen Form ... 

Close Form ... 
Time Conv .... 

would be "dummied upn in the batch ver- This is of course dangerous, since many 
sion. design decisions could be made inadvertently 

(M4)we decided to use a fair amount of while writing scenarios. We avoided this prob- 

Vertical inheritancen in our design, as lem by keeping the scenarios as simple, 

opposed to the Wirfs-Brock strategy "down to Earthn as possible and subjecting 

which emphasizes "horizontal inherit- them to frequent scrutiny. 

The starting point of our design was an index 
of keywords extracted from the SRD. The 
index was then edited into a table of "SRD 
objectsn, to be used as a first step towards 
designing the classes of SEQ-REVIEW. 

As a result of (MI), however, we found that the 
SRD was not "rich enoughn as a source of 
objects when it came to describing the inner 
workings of the program. In particular, it was 
difficult to write scenarios that went beyond 
the user interface. We then decided to use the 
scenarios as a source of objects, rather than 
as a means to check the validity of the design. 

After writing five or six scenarios and looking 
at the objects that would be necessary to sup- 
port them, it became clear that objects fell into 
well-defined classes, and that these classes 
should be organized into hierarchies using the 
inheritance scheme. The resulting classes 
provided our first "draft" of the design. 

A "shelln program, featuring all these classes 
but only some of their responsibilities, was 
implemented in C++. This was done to vali- 
date our design and to make sure that the C++ 
compiler would not object to our inheritance 
scheme. We learned the following lessons: 



- Our design is compatible with the CU 
compilers we are using. 

- Inheritance, which had been the focus of 
our class-building effort, is only part of 
the story. It became clear that classes 
had a definite "personalityn and that 
classes with similar personalities should 
be grouped in separate subsystems. 

This naturally led to the next phase in the 
design: organizing classes into subsystems. 
The need for this was made more pressing by 
the requirement phrased in (M2) and (M3) 
above: we need a clear description of how 
MOTIF is to be interfaced to the rest of the 
system. 

In the next step of the design, we built two 
more prototypes. The first one was a refine- 
ment of the earlier "shell". Although this new 
version was still only a shell, it was able to 
print in indented, scenario-like style what it 
was doing. It also provided a rudimentary user 
interface which demonstrated how the menu 
structure and the callback philosophy of the 
GUI version could be brought into the batch 
version of SEQ-REVIEW. 

The second of these prototypes consisted of a 
MOTIF implementation of the "Define Stripn 
panel of the SEQ-REVIEW user interface. 
This is probably the most complex graphic 
object in the GUI. The prototype therefore 
demonstrated the feasibility of our approach 
and helped focus the discussion of how the 
GUI and batch versions of SEQ-REVIEW 
would coexist. 

As a result of all this prototyping activity, we 
gained the confidence necessary to organize 
our preliminary classes into well-defined sub- 
systems. We feel that our subsystem design is 
robust enough that it will survive any last- 
minute change to the class definitions, and we 
therefore look at our subsystem descriptions 
as the central part of our design. 

CONCLUSION 

ated with spacecraft sequences. The require- 
ments for SEQ-REVIEW were derived from 
interviews of potential customers. These inter- 
views were converted into a requirements 
document using the QFD approach. Require- 
ments were then translated into a high-level 
design using an object-oriented methodology. 
The overall process was facilitated by the use 
of numerous prototypes. Multi-mission 
aspects were built into the requirements from 
the start. 
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ABSTRACT 

The Operations Engineering Lab (OEL) at 
JPL has developed a simple, generic toolkit 
to integrate the uplinkldownlink processes, 
(often called closing the loop,), in JPL's 
Multimission Ground Data System. This 
toolkit provides capabilities for integrating 
telemetry verification points with predicted 
spacecraft commands and ground events in 
the Mission Sequence Of Events (SOE) 
document. In the JPL ground data system, 
the uplink processing functions and the 
downlink processing functions are separate 
subsystems that are not well integrated 
because of the nature of planetary missions 
with large one-way light times for spacecraft- 
to-ground communication. Our new closed- 
loop monitoring tool allows an analyst or 
mission controller to view and save uplink 
commands and ground events with their 
corresponding downlinked telemetry values 
regardless of the delay in downlink telemetry 
and without requiring real-time intervention 
by the user. 

An SOE document is a time-ordered list of all 
the planned ground and spacecraft events, 
including all commands, sequence loads, 
ground events, significant mission activities, 
spacecraft status, and resource allocations. 
The SOE document is generated by 
expansion and integration of spacecraft 
sequence files, ground station allocations, 
navigation files, and other ground event files. 
This SOE generation process has been 
automated within the OEL and includes a 

graphical, object-oriented SOE editor and 
real-time viewing tool running under 
XIMotif. The SOE toolkit was used as the 
framework for the integrated implementation. 

The SOE is used by flight engineers to 
coordinate their operations tasks, serving as a 
predict data set in ground operations and 
mission control. The closed-loop SOE toolkit 
allows simple, automated integration of 
predicted uplink events with correlated 
telemetry points in a single SOE document 
for on-screen viewing and archiving. It 
automatically interfaces with existing real- 
time or non real-time sources of information, 
to display actual values from the telemetry 
data stream. 

This toolkit was designed to greatly simplify 
the user's ability to access and view telemetry 
data, and also provide a means to view this 
data in the context of the commands and 
ground events that are used to interpret it. A 
closed-loop system can prove especially 
useful in small missions with limited 
resources requiring automated monitoring 
tools. This paper will discuss the toolkit 
implementation, including design trade-offs 
and future plans for enhancing the automated 
capabilities. 

INTRODUCTION 

The Operations Engineering Lab (OEL) at 
NASA's Jet Propulsion Laboratory has 
developed a simple, generic toolkit that 



integrates uplink events with downlink 
telemetry information, (often called closing 
the loop,). This toolkit provides capabilities 
for integrating telemetry verification points 
and ground monitoring information with 
planned spacecraft commands and ground 
events in the Mission Sequence Of Events 
(SOE) schedule. In the existing SOE for 
planetary missions, each spacecraft command 
item has a descriptive text field that contains a 
list of related engineering telemetry 
parameters. These parameters are monitored 
by mission controllers using a data monitor 
tool that processes and displays the downlink 
telemetry stream. However, the relevant 
downlink telemetry for command verification 
may not arrive for hours or even days after 
the commands have been sent because of the 
large one-way light times and limited contact 
periods of some planetary missions. The 
closed-loop system will integrate these tasks 
by interfacing the SOE with the real-time or 
non-real-time telemetry data streams and 
automatically append appropriate channel 
values and limit checks with command and 
ground event items. Our new closed-loop 
monitoring tool allows an analyst or mission 
controller to browse and archive uplink 
commands and ground events with their 
corresponding downlinked telemetry values 
regardless of the delay in downlink telemetry 
and without requiring real-time intervention 
by the user. Figure 1 shows a sample SOE 
with integrated telemetry channel 
information. 

BACKGROUND 

An SOE document is a time-ordered list of all 
the planned ground and spacecraft events, 
including all commands, sequence loads, 
ground events, significant mission activities, 
status and resource allocations. The SOE 
document is generated by the multimission 
control team by expansion and integration of 
sequence and ground files. This SOE 
generation process has been automated and 
includes a graphical, object-oriented SOE 
editor and viewing tool running under 
XIMotif. The SOE is used by the mission 
controllers and spacecraft and instrument 
engineers to coordinate their operations tasks, 
serving as a predict data set in ground 
operations and mission control. 

APPROACH 

The Operations Engineering Lab (OEL) 
proposed a research task to design and 
implement a toolkit that allows simple, 
automated integration of predicted uplink 
events with actual downlink telemetry in a 
single SOE document for viewing and 
archiving. This integrated SOE serves as the 
basis for a closed-loop monitoring toolkit that 
can automatically interface with existing real- 
time or non-real-time sources of information 
and display only selected values from the 
telemetry data stream. 

A significant research effort was in the design 
and implementation of the interprocess 
communication interfaces and interactive 
controls for retrieving and passing 
information from a variety of downlink 
processing applications to the SOE tool. A 
flexible approach was chosen to allow 
phasing of planned future enhancements, 
including expansion of the SOE capabilities 
for automated mission controller logs, 
telemetry logging, system test procedure 
execution, and automated command 
verification. 

During the requirements analysis, the JPL 
Multimission Control Team (MCT) indicated 
that the closed-loop monitoring system 
should include automated log keeping 
capabilities for mission controllers in order to 
include their real-time logs in the sequence of 
events. In the current operations 
environment, the MCT logs real-time 
information on specific uplink and downlink 
events on hand-written forms. The MCT 
cannot meet an electronic logging requirement 
without automation tools - manually typing a 
log report would be impossible during 
intense periods. Although the SOE tool can 
currently be used to enter comments and act 
as a logging tool, the mission controller 
logging requirements were very broad and 
not clearly defined enough to implement 
within an already-developed tool such as the 
SOE editor. Thus, we decided to implement a 
separate tool for automated logging that 
would integrate manual log inputs, predicted 
events input files (such as the SOE), real-time 
broadcast data, and output from other 



downlink telemetry processing and 
monitoring applications. 

OEL LOGGING TOOL 

The OEL Logging Tool (OLOG) provides 
automated and manual logging of predicted 
and actual mission events in a graphical easy- 
to-use format. The user interface and pull- 
down menus are completely configurable by 
an individual end-user to meet mission- 
specific needs. An initialization file can be 
read on startup that customizes menu options 
and defaults. The OEL Logging Tool is 
shown in Figure 2. 

The OEL Log Tool provides capabilities for 
manual entries to the log, either by allowing a 
user to select items off pre-defined menus or 
entering text manually into the entry area. The 
pre-defined menus and default values can be 
customized for various teams by creating an 
initialization file. The OEL Log Tool is also 
designed to interface in real-time with 
external input sources (downlink telemetry, 
monitor data, interprocess messages, predicts 
and actuals files), thus providing capabilities 
for automated log entries. The tool is 
designed to allow automated and manual log 
entries to occur concurrently with automatic 
ordering based on time tags. The current tool 
implementation includes several mechanisms 
for communicating with downlink processes 
based the MGDS custom Data Transport 
Subsystem (DTS) services. We have also 
implemented a telemetry data processing 
program that captures and processes data 
from the real-time telemetry data stream or 
spooler files, and passes log messages into 
the OEL Log Tool. 

INTERPROCESS COMMUNICATION 

The OEL Log Tool uses the MGDS DTS 
services to implement message passing 
capabilities. The tool connects to a broadcast 
channel or virtual circuit if a channel option is 
chosen. While processing input events, the 
tool continually checks for pending 
messages. 

Several programs and routines have been 
written to implement real-time downlink data 
processing functions and cooperative 

message passing mechanisms. These 
programs provide a flexible approach to 
process various input data sources, which are 
then reformatted as log messages to be sent to 
the OEL Log Tool. 

* A program that uses a DTS broadcast 
channel or virtual circuit for sending time- 
stamped messages. The OEL Log Tool 
cooperates by receiving and processing 
the messages for input into the log in time 
order. 

A generic routine that uses the MGDS 
Data Transport functions (DTS) to 
connect to a broadcast channel or virtual 
circuit for sending time-stamped 
messages and a corresponding OEL Log 
Tool routine that creates a broadcast 
channel or virtual circuit to receive 
messages. 

A program that reads the output from 
an existing real-time Smart Alarm Tool. It 
processes the output and then sends log 
messages to the OEL Log Tool. 

A program that reads MGDS 
downlinked telemetry data from a virtual 
circuit, real-time broadcast channel, a 
bytestream file, and/or a spooler file 
using the DTS functions. It processes the 
data by parsing telemetry headers and 
checking for selected data types which are 
then extracted, processed, and passed to 
the OEL Log Tool. It uses DTS services 
to send log messages to the OEL Log 
Tool. This program provides a model for 
building additional programs for 
processing data from real-time telemetry 
streams or from data output by other 
applications and then generating log 
messages to be integrated with the predict 
information in the log tool. 

Figure 3 shows the OEL Log Tool and its 
telemetry processing interfaces. 

CLOSED-LOOP SOE TOOL 

The new closed-loop SOE tool is designed to 
allow integration of uplink predict events 
with actual downlink telemetry values. 



Ground event and spacecraft command items 
in the SOE have associated telemetry 
parameters that can be used to verify the 
execution of each command or ground event 
or to establish the state of the spacecraft or 
ground system. These parameters are now 
interleaved with the commands and ground 
events in the closed-loop SOE, for easy 
access and viewing by the analyst. The 
closed-loop monitoring system can 
automatically interface with existing real-time 
sources of information, to capture and 
display actual values from the telemetry data 
stream. The graphical SOE viewing tool 
allows a user to highlight events of interest 
with a mouse on the screen and mark them 
for automatic alarm notification in real-time. 
This tool also allows a user to run the SOE in 
demand mode, specifying any time desired, 
and to search or step through the document 
for events of interest. 

The following capabilities have been 
incorporated into the SOE tool to implement 
real-time, closed-loop monitoring capabilities: 

Real-Time Capabilities: A scroll bar 
has been added to allow for scrolling 
during real-time viewing. Real-time 
viewing can be accessed and controlled 
from a menu. It is possible to step 
through each event under user control or 
to run the SOE in real-time or in playback 
mode. The real-time control capabilities 
are based on an interrupt algorithm. 

Channel Objects: A new item format 
has been defined for the SOE to allow 
creation of a telemetry channel object. 
Each channel object is defined by a 
description field and is associated with 
the uplink predict item preceding it. There 
can be multiple channel objects associated 
with a single uplink event. The 
uplinkldownlink commandlchannel 
integration is based on cross-referenced 
information within the telemetry and 
command dictionaries. 

Channel Options: A new option 
button hm been implemented that allows 
a user to optionally display channel 
records in the SOE. 

Downlink Interface: Interprocess 
communication and data transport 
functions have been implemented to allow 

integration of the downlink telemetry 
stream. 

Figure 4 shows the graphical closed-loop 
SOE tool. 

BENEFITS 

New missions are demanding electronic 
mission controller logs rather than the current 
hand-written reports. Without the automated 
log keeping capabilities in the new OEL Log 
Tool, a controller would spend most of their 
time manually typing in electronic log 
reports. 

The closed-loop SOE and OEL Log Tool 
implementations have laid the groundwork 
for an advanced closed-loop monitoring 
system that can significantly reduce the need 
for operations teams to understand the 
complex set of processing and display tools 
in the existing JPL Multimission Ground 
Data System (MGDS). The current MGDS 
approach requires understanding multiple 
subsystems, and their often subtle interfaces, 
to allow an end-to-end processing of 
downlink data. There is also no current 
method to integrate or compare predict with 
actual values. The closed-loop SOE tool can 
greatly simplify a user's ability to access and 
view telemetry data, and provides a means to 
view this data in the context of the commands 
and predicted values that are used to interpret 
it. In this context, it is expected that 
significant cost savings can be realized from 
the productivity improvements that will be 
realized over the hundreds of current users of 
the SOE document and related uplink tools. 

Some proposed areas of future work include 
expansion of the closed-loop SOE capabilities 
for adaptation to system test, dynamic alarms 
based on tolerances from predicted events, 
automated monitoring of spacecraft and 
ground system configurations at selected 
times, real-time timeline display of the SOE, 
generation of as-flown SOE schedules, and 
automated command verification. An 
advanced closed-loop monitoring system is 
essential to a more automated monitor and 
control system and to significant productivity 
improvements for the smaller missions of the 
future. 
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ABSTRACT 

This papers describes an approach of reusability of software engineering technology in the area of ground 
space system design. System engineers have lots of needs similar to software developers ones: sharing of a 
common data base, capitalization of knowledge, definition of a common design process, communication 
between different technical domains. Moreover system designers need to simulate dynamically their system 
as earlier as possible. Software development environments, methods and tools now become operational and 
widely used. Their architecture is based on a unique object base, a set of common management services and 
they home a family of tools for each life cycle activity. Late 92, CNES decided to develop a demonstrative 
software environment supporting some system activities. The design of ground space data processing 
systems was chosen as the application domain. ELISA (Integrated Software Environment for Architectures 
Specification) was specified as a "demonstrator", i.e. a suEcient basis for demonstrations, evaluation and 
future operational enhancements. A process with three phases was implemented: system requirements 
definition, design of system architectures models and selection of physical architectures. Each phase is 
composed of several activities that can be performed in parallel, with the provision of Commercial Off the 
Shelves Tools. ELISA has been delivered to CNES in January 94, currently used for demonstrations and 
evaluations on real projects (e.g. SPOT4 Satellite Control Centre), it is on the way of new evolutions. 

Keywords: PCTE (Portable Common Tool Environment), Satellite Control Centre, Ground segment, 
computer science, data processing, architecture, simulation, queueing networks. 

This article starts by a presentation of the 
rationale for ELISA development, it describes 
the implemented life cycle, the workbench 
architecture and ends with first conclusions of 
the project. 

FROM SOFTWARE ENGINEERING TO 
SYSTEM ENGINEERING ... 
After several years studying software engineering 
environments, mainly for the needs of the 
Hermes program, it appeared that they become 
operational and that any software project can 
find rather easily satisfling COTS environments, 
methods and associated tools. 
On the other hand, in the area of system 
engineering, the lack of an approved, detailed 
and well-defined common design process, the 
variety of tools and the poorness of 

communication between them, increase 
difficulties when the project size grows. 
The idea that the knowledge acquired in 
software engineering area could help the design 
of space systems was the starting point for this 
new orientation of our activities. 

A REUSABLE TECHNOLOGY FOR 
"SYSTEM" DESIGN ? 

Before trying to show how the technology was 
reused, lets explain it in few sentences. 
Up-to-date software engineering environments 
are based on a so-called "integration platform" or 
"integrated project support environment (IPSE)" 
or "integration framework", in which a variety of 
tools are "plugged-in". The framework offers 
tools integration services, in three degrees: data 
integration via a repository, which role is to 
define, store and control all data needed by 



heterogeneous tools, control integration for 
communication between tools (interoperability) 
and presentation integration for uniform access 
to tools via the user interface. Some frameworks 
also provide process integration services for 
piloting of users activities according to a 
predefined life cycle. Two kind of services 
complete the environment to get a full 
"workbench": "horizontal" services, like 
documentation, configuration management, 
project management which are used in all the 
project phases, and "vertical services'' which 
support individual life cycle activities by means 
of COTS tools (e.g. IDEF tool). 
Such architecture did not seem limited to 
software engineering applications, but its 
adequation for system engineering needs had still 
to be proved. 

ELISA, A FIRST STEP TOWARDS A 
WORKBENCH 

FOR DATA PROCESSING 
SYSTEM DESIGN 

It was thus decided to develop a "demonstrator", 
i.e. a demonstrative environment based on an 
IPSE technology and supporting a coherent and 
consistent set of system activities. The chosen 
application domain was the design of data 
processing systems for ground space segment. 

ELISA (Environnement Logiciel Integre pour la 
Specification &Architectures informatiquesl 
Integrated Software Environment for 
Architectures Specification) users requirements 
specifications were produced in december 92. 
The objectives were: 

- to demonstrate the benefits of software 
engineering P S E  frameworks in the system 
area, 
- to increase CNES experience on three 
points: modeling of a design process, interface 
with a technical knowledge capitalization 
system and integration facilities, 
- to show the interest of specific system tools 
and moreover of an integrated workbench 
with respect to isolated tools. 

ELISA development was then reduced to the 
minimum set of services needed for demons- 
trations and evaluation but as a reusable basis for 
future enhancements. The constraint was to 
reuse as far as possible commercial tools and to 
limit specific developments. 

THE ELISA REPOSITORY: a kernel for 
traceability and reusability. 

ELISA is based on a PCTE repository (ECMA 
and Draft International IS0  Standard). The 
repository is an object management system, 
which allows to define entities with the Entity- 
Relationship-Attributes model, to store them in a 
distributed way and to execute operations on 
them (calls to external tools). The ELISA data 
model has been defined in a modular way (thanks 
to PCTE) leading to an organised network of 
objects representing pertinent information for the 
user (functions, requirements, documents, 
architecture, equipments, simulation scenarios 
and results, etc..). 

In ELISA, links between the objects represent 
either composition relationships, either trace 
relationships. Trace links are used to store 
implementation/ validation relations according to 
the process model steps: for example a computer 
linked to a performance requirement can mean 
that the computer implements it. Traceability 
allows the user to navigate directly between 
heterogeneous objects, to assess requirements 
coverage by architecture trade-offs and to 
analyse the impact of changes of a customer's 
requirement, or a system fbnction. Through the 
trace matrixes produced by ELISA, the list of 
objects impacted by a modification is available at 
any step of the process. 

The ELISA repository is also used as a 
"Technical Memory" storage, a place in the data 
model allows to capitalize information from old 
projects, feedback from previous studies, 
catalogues of hardware and software products 
and also architectural data from previous 
projects realised with ELISA. 



The user can at any time consult and reuse a 
hnctional or physical architecture from this 
technical memory. 

The definition of a complete, coherent and 
efficient data model is one of the tasks that 
require most reflexion, by the fact that it's the 
basis for tools integration and invocation. 
Extension to the data model is easy, but deletion 
or modification of data types seem more delicate 
once the environment is used by several projects. 

WHICH ACTIVITIES 
DOES ELISA SUPPORT ? 

Large projects are composed of a large number 
of complex and inter-related tasks. The initial 
work was to define the reduced life cycle that 
should implement ELISA, this comprises the 
definition of the activities that will be supported 
(WHY), their scheduling (WHEN), the persons 
who will perform them (WHO), the tools that 
will be used (HOW) and the products that should 
be available as inputs and outputs of the tasks 
(WHAT). This work appeared to be hndamental 
for the good achievement of the project. 

The ELISA process model has three phases: 
- System requirements definition, 
- System architectural models design, 
- Physical architectures assessment. 

As it concerns a design process for early phases 
of a space system, flexibility is the major issue 
for an efficient assistance to users. The three 
phases are not purely sequential, but the user can 
complete them in an iterative way. 
The EAST IPSE framework has been chosen, 
mainly for its ability to define, control and 
monitor any user defined process model, through 
the user interface. Different types of users have 
been defined (customer, architect, administrator 
and project manager). When a user starts the 
environment, he can activate tasks that have been 
assigned to him by the project manager. Starting 
a new project according to the ELISA process 
model become a mere operation. 

PHASE I: DEFINITION OF SYSTEM 
REQUIREMENTS 

The first task the designer deals with, is the 
capture of the requirements and constraints of 
the system. ELISA assists him in performing 
three activities: formalization of system and 
hnctional requirements, hnctional architecture 
analysis and definition of the logical sequencing 
of data processings. 

Extract imposed requirements: 
The first step is to deduce from input system 
specifications and customer interviews, the 
information which will be pertinent and/or 
constraining for the system architecture. These 
information are identified as requirements and 
can relate to several system aspects like 
performance, security, integrity, sizing, fault- 
tolerance. 
With ELISA, requirements are managed by the 
LOTUS 123 spreadsheet tool, tables of 
requirements are created and filled-in by the user. 
Requirements are formalized by several 
attributes: an identifier, a textual description, a 
status (to be defined, hypothesis, computed, 
stable) and a value that can be the result of a 
formula computation from other requirements 
values. 
Input specifications and interview notes can be 
stored in the repository if compatible with 
FrameMaker format, traceability links can be set 
towards them in order to keep the origin of 
design choices. 

Analyse the functional architecture of the 
system: 
The second step covers the analysis of the 
system hnctions. ELISA assists the user by the 
integration of the ASA tool supporting the 
IDEFO methodology. The designer creates a 
hnctional model, edit it and refines the system 
hnctions in a hierarchical way, until obtaining a 
tree where leafs correspond to processes or 
software pieces. Each hnction is extracted and 
accessible in the repository as an object, 
automatically linked to its father and sons. 



Tables of functional requirements can here also 
be attached to any function of the tree (node or 
leaf), for enabling the user to add details like 
performances, input and output data volumes or 
activation frequency. 
ELISA ensures the consistency of the functions 
tree and the attached requirements tables; if 
some functions are renamed, moved or deleted in 
ASA tool, the corresponding objects in the 
repository are automatically changed; on the 
reverse, if the user deletes objects in the 
repository, he will receive inconsistency 
warnings. 

Define logical sequencing scenarios: 
Starting from functions and associated 

performance and data flows requirements, the 
designer usually defines a set of data processings 
and looks for their sequencing and 
synchronization constraints. 
Functional analysis only gives a static view of the 
system which is not sufficient, the dynamic 
behavior is represented via "chronograms". 
Chronograms graphically express duration, start 
and end dates of each processing execution, in a 
given time. scale. Several chronograms are 
necessary to analyse nominal and critic paths of 
the system. This step allows to highlight possible 
parallelism, concurrency and synchronization 
constraints between processings. With the 
FrameMaker graphical toolbox, it is possible to 
create, edit as many chronograms as needed 
(exploitation chronograms, telemetry level n 
processing sequence..) and to link them to 
requirement tables and functions. 
At any time, one can query the "technical 
memory" for estimation of some processing 
duration, by comparison with previous similar 
projects. 

PHASE 11: DESIGN OF MODELS OF 
THE DATA PROCESSING 
ARCHITECTURE 

A key feature in system design is to predict 
system performances as soon as possible, in 
order to foresee system evolution ability, 

according to potential customer requests. System 
designers perform trade-offs between central 
processing, distributed, clientlserver or cluster 
architectures and have to propose the best one. 
Alternative solutions are often provided on 
designers experience basis or on hardware 
constraints. But few solutions are in fact really 
studied for a given project. 

The objective of this phase is to come up with 
alternative models of the system hardware and 
software architecture, which all satis@ the 
requirements defined in the previous phase. 

ELISA gives help in three inter-related activities: 
- software architecture modeling, 
- hardware architecture modeling and 
- overall model validation. 

The support to the whole phase relies on an 
integrated toolset for system modeling and 
performance evaluation: MODLINE. It is an 
open environment for modeling discrete event 
systems, developed and sold by SIMULOG (F). 
At the time the ELISA project started, no 
commercial tool with a satisfjing high level user 
interface was available. MODARCH, a new tool 
has been added to MODLINE on CNES request, 
starting from an existing mock-up. 
System designers are rarely familiar with formal 
technics (e.g. petri-nets) or with queueing 
networks, so they need to manipulate 
"macroscopic" and realistic components. With an 
ergonomic graphical object oriented interface, 
MODARCH let them manipulate and compose 
tasks, processors, networks, storage devices, 
terminals.. . 
The tool relies on the queueing networks theory 
(QNAP21 Queueing Network Analysis Package, 
from Inria and Bull F). 
It must be kept in mind that the objective is not 
to monitor precisely the performances of a 
system, but to evaluate roughly the performances 
and sizing capacities of a future system. Most of 
its parameters and then results will be known in 
an approximative way, but in an acceptable 
margin, depending on the current project phase 
(A, B or C). 



Model software architecture: 
The activity consists of defining a model of the 
software application that answers to the 
hnctional architecture of phase I. For 
simplification purpose and demonstration of data 
sharing between integrated tools, ELISA 
implements a single concept: functions; this 
means that a hnction, a software, a processing 
or a task represents the same object in the 
environment. 
From the hnction tree, the environment 
automatically extracts the leafs and generates the 
software tasks each time the user edits the 
MODARCH architecture. 
ELISA again maintains consistency: the 
hnctional analysis may evolve, software 
architecture modifications will automatically 
follow, for example adding a hnction in ASA 
will add a task in MODARCH, but removing a 
function will generate a warning. 
Automation is provided when possible, but the 
user is still free to work in inconsistent states, 
ELISA guides him in a predefined way but does 
not enforce him, at least he is warned. 
The initial architectural model is composed of a 
set of independent tasks (names of leaf 
functions). The designer refines them by filling 
attributes (priority, memory) and activation 
conditions. The behavior of the tasks is defined 
with QNAP2 language and operations (read1 
write in a storage, send message to other task, 
consume CPU, etc..). Four task types are 
provided: sources which allow to activate tasks 
by sending requests, tasks which execute some 
code on reception of requests, in-out tasks for 
modeling files, data bases, exit tasks for deletion 
of requests. This ends with an executable tasks 
network. 

Model hardware architecture: 
The architect now looks for a hardware 
configuration that satisfies the software 
application. Without leaving MODARCH, ' he 
selects components in an equipments data base 
(processors, storage devices, terminals, 
networks..). Each component is typed (a printer 
and a screen are of terminal type, the processor 

type includes workstations and mainfkames), and 
its attributes can be instantiated with user defined 
values (memory, swap, CPU, rates.. .). The 
behavior of the hardware equipments is coded in 
QNAP2 and is hidden to the user, standard 
algorithms, systems (Unix) and communication 
protocols are available. 

A major requirement towards MODARCH was 
the flexibility of the projection of software tasks 
to hardware equipments. With a simple graphical 
link, the user affects a task to a processor or to 
another. No user code is modified if the task is 
moved or if the storage device to which it sends 
write operations is attached to a remote machine. 

The objective is indeed to analyse several 
solutions as easily as possible. The MODARCH 
user interface ensures consistency controls (a 
task can only be mapped on a processor, a 
source can be mapped on a terminal, an in-out 
task can be mapped to a terminal or a storage). 
Each hardware and software component of a 
model can be parameterized (e.g. a CPU size, a 
message length, a task priority), the parameters 
values will be used for simulation purposes. 

At any time, the user can call the other tools, in 
order to have all the system views in his screen. 
When he decides to close his model, the 
repository automatically imports the system 
components and the mapping links between 
software and hardware. New tasks will then be 
created and linked to the processor objects, 
existing ones (functions) will be updated with 
MODARCH information. 

The user can add trace links between new 
objects and previous ones. The result is a graph 
of inter-related objects which allow direct 
navigation between activities (fkom a 
requirement table relating to hnction A to the 
description of the computer which runs the task 
A). The impact of a requirement evolution is thus 
immediately visible if the user lists the traced 
objects; the reverse is true, if a hardware 
equipment evolves, the user can control the 
impact on traced requirements or hnctions. 
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Validate the overall model: 
The last activity consists of executing the 
simulation model and analyzing the results. The 
MODLINE toolset integration in ELISA is 
helpful. 
Simulation scenarios (experiment plans) allow to 
define variation laws for the parameters values of 
the above model. 
Via a single operation, MODLINE automatically 
checks, generates and compiles the code, 
executes and provides results. With a graphical 
results analyzer, the user can edit curvs or 
resources occupation chronograms. An 
animation tool allows to follow messages 
exchanges dynamically and then helps debugging 
of the model. 

objects are set by the environment. Through the 
repository the user can compare output analysis 
chronograms and those issued in phase I, this 
assessment may help him choosing an 
architecture type or another. 

The process is iterative, according to resources 
utilization analysis, the user can change his 
models until obtaining the better optimized one. 

Figure 1 shows the ELISA user interface with 
views on the repository, ASA and MODARCH 
models and a chronogram. 

Each data is stored in the repository: scenarios, 
results, analysis drawings, links to its parent 



estimation), the user can edit a Decision 
PHASE m: ASSESSMENT OF PHYSICAL Justification Document with FrameMaker. 

ARCHITECTURES 

HORIZONTAL SERVICES 
In the last phase, the designer chooses a real 
physical architecture aRer studying several 
implementations for each model (HP, SUN, 
IBM?). ELISA supports four activities: 

- Selection of real equipments, 
- Validation of physical architecture, 
- Cost computation, 
- Choice of physical architecture. 

The tools are the same as above: MODARCH/ 
MODLINE, LOTUS 123 and Frame Maker. 

Select real equipments. The architect selects 
existing physical equipments for each compo- 
nent of the chosen model. Specially, he chooses, 
via the MODARCH component base, a given 
workstation (e.g. SUN Sparc 10) or a given disk 
(e.g. Sundisk), and all their characteristics are 
updated. He may also refine the tasks behavior if 
necessary (e.g. Oracle for a data base model in 
phase 11). When leaving the MODARCH tool, 
the repository is updated with new objects and 
links towards the origin model and functions. 

Validate physical architecture. The validation 
of the physical architecture can be directly 
performed by using the scenarios of the source 
model. The user has to verifL that the physical 
architecture still satisfies the system 
requirements. 

Compute architecture cost. The objective is to 
provide an overall cost for the physical 
alternatives. By affecting a cost to all the 
components in MODARCH and with a LOTUS 
123 integration, the user gets a table of costs he 
can complete and sum. 

Propose an architecture. The end step is to 
give a proposition to the customer. With. all 
information issued by previous steps 
(performances evaluation, requirements 
coverage, fbnctional decomposition and costs 

Documentation with Frame Maker. 
Documentation is a very time consuming task, 
specially in early project phases. ELISA supports 
the user in composing and editing documents 
containing information produced by the tools. 
The "specification document" can be assembled 
in a semi-automated way: the IDEFO graphics, 
the spreadsheet requirement tables, the 
chronogram drawings are imported in a synthetic 
document, from a predefined template. The user 
can yet complete and polish it before printing. 

Configuration management. 
The ELISA framework allows the user to 
manage versions of objects and to generate full 
or user-defined configurations of his project. 
Snapshots of his project will allow to stabilize 
versions of his work. 

Administration tasks. 
The administrator is responsible of the 
environment evolutions, of the repository 
management (save and restore operations), of 
feeding the technical memory, and of users and 
projects management. 

ELISA ARCHITECTURE 

The ELISA architecture is compliant with the 
one defined in the ECMA reference model 
[ECMA 911 and can be represented as in Figure 
2. 

ELISA runs on a Sun SparcStation 2, SunOS 
4.1.3, Motif. 
The PCTE repository is the Emeraude 
implementation. 
ELISA has been developed by CIS1 S.A. 



PCTWEmeraude 
! 

Figure 2: ELISA and the ECMA reference model 

FIRST CONCLUSIONS 

ELISA has been delivered in January 94. 
Architects have been trained to the 
demonstrator. Some demonstrations, at CNES 
and externally, have shown the public interest 
for the subject for the ELISA solution. Studies 
on system engineering environments currently 
raise in the european space and confirm our 
opinion. 
The project allowed to complete our experience 
in tools integration, mainly in the impact of real 
data sharing between tools and the induced 
severe consistency checks. 
The benefits of a system simulation tool are 
clear for the users. Moreover, with the ELISA 
environment, one can measure and better 
understand the benefits of integration like 
traceability, transparency of tools invocation, 
common services , and specially assistance to 
the generation of documentation. 

ELISA has been delivered with an integrated 
real test case based on the CE-GPS project. It is 
currently being calibrated by Matra Marconi 
Space on the operational SPOT4 Satellite 
Control Center. 
Some evolutions are going-on: porting on 
ECMA PCTE, moving to an operational enviro- 
nment, adding demonstrative features (multi- 
platform communications), integration of new 
tools version and process model enhancement. 
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Abstract - A Telos study of 40 recent 
subsystem deliveries into the DSN at JPL 
found software interface testing to be the 
single most expensive and error-prone 
activity, and the study team suggested 
creating an automated software interface test 
tool. The resulting Software Interface 
Verifier (SIV), which was fimded by 
NASAJJPL and created by Telos, employed 
92% software reuse to quickly create an 
initial version which incorporated early user 
feedback. SIV is now successllly used by 
developers for interface prototyping and unit 
testing, by test engineer for formal testing, 
and by end users for non-intrusive data flow 
tests in the operational environment. 
Metrics, including cost, are included. 
Lessons learned include the need for early 
user training. SIV is ported to many 
platforms and can be successllly used or 
tailored by other NASA groups. 

1. Interface Testing History and Problem 
Statement 

The Deep Space Network (DSN) Deep 
Space Communication Complex computer 
environment is highly distributed, with major 
hctions allocated to subsystems. These 
subsystems are hosted in separate computers 
and communicate with each other and JPL 
via a LANAVAN. All communications 
follow negotiated interface agreements 

which prescribe the communications 
protocols, data formats, and data ranges. 

Over the past four years, JPL and Telos 
developers on the Telos DSN Task Contract 
fielded 40 subsystems into the DSN. 
Frequently, mission requirements forced 
subsystems to negotiate new interface 
agreements and to deliver asynchronously. 
The typical subsystem profle was: 

A telemetry, tracking, command, or 
supporting applications 
Communications and hardware intensive 
High reliability requirements 
70K lines of C code, mostly realtime 
Six external LAN interfaces 
Development cost of $70K - $2M 

The study team found interface testing to 
have been the most costly and error-prone 
activity. It proved nearly impossible to 
manually ver@ and all possible data ranges 
and data combinations for all interfaces 
during live tests. This was due primarily to 
excessive requirements for test equipment 
and test persbnnel in high demand. 
Consequently, interface errors sometimes 
were not detected until the subsystem was in 
operational use. 

Metrics collected by the study team 
supported the high cost of testing. Typically, 
3 - 10 attempts were necessary before the 



average interface was successfdly tested. 
End-to-end interface tests required from 5 - 
12 personnel, and multiple tests were 
necessary. Programmers spent a total of 4 - 6 
work months writing unplanned interface 
simulation code to support the test activity. 
In addition, they spent another 2- 4 work 
months per interface in creation and testing 
activities. 

a SW Goals 

The study also showed that overall testing 
accounted for a large part of the 
development effort of the 40 deliveries. This 
agreed with an Association of Computing 
Machinery study of seven large software 
projects, which found that 50% of the 
resources were spent on the overall test 
effort. The Telos study team estimated that a 
comprehensive, automated, reusable test tool 
could save 40% of the current interface 
costs. The team M e r  found that 173 DSN 
interfaces could benefit from this tool within 
the subsequent five years. 

What features would be needed in such a test 
tool? A literature search and interviews of 
personnel involved in testing found that the 
tool should: 

* Understand DSN-specific protocols 
Be flexible and extensible, yet easy to use 

Test interfaces in an exhaustive but 
automated manner 

Provide both realtime visibility into the 
testing and off line results 

* Be available in time to prototype interface 
agreements 
Support developers' unit testing 
Support test engineers' formal testing 
Support DSN end-users' application 

simulation and data flow testing 

In addition, the test tool should combine 
three types of test tools and have the 
following specific capabilities: 

1. Generate Test Data 
Control data to the bit level 

e Produce static, variable, and predicted 
dynamic data 
Simultaneously run in batch mode and 
int eractively 
Send single data blocks at specified 
times and intervals 
Send data blocks or streams to multiile 
destinations 

2. Capture and Compare test data 
Specifl which streams to capture and 
compare to expected results 
Specifl expected data values and 
ranges 

0 View automatic comparison of test 
data to expected values both on- and 
off line 
Mask out data which would not require 
an exact match 

3. Simulate the entire application 
e Create, run, and repeat complete 

application scenarios for multiple 
interfaces of multiple subsystems 
Interactively change the behavior of the 
simulated, scripted application 
View online and printed detailed results 

Telos proposed the Software Interhe 
Verification (SIV) tool with all the above 
hctionality. It was to be rapidly developed 
and fielded with increased fbnctionality 

in two subsequent deliveries. SIV 
was fbnded by NASAIJPL and developed by 
Telos. The SIV provjdes all the functions 



listed above listed above and summarhd in simulate an application session, such as 
Figure 1. sending the data fiom a typical Telemetry 

pass. 

User Inputs 

PI cordigure teat LAN DATA FLOW - ... .. - . - . . . . . . . . .. . . .. . .. . ...? 
a Sdect data flowfiltera 
s Contrd simulation Rcws Simulated Teat Dab ---C 
ra Modify simulated data contents &flow 
ci W r i n t  repoltddumpa ~ 0 e n s r P t e d O u t p u t o P t P  
a Initiate automated (batch) testa 
s Contrd wbsystem 

Intarface 
Dd~nitiona 

AutomPtsd 
Teat Scrim 

Subsystem & 
LAN ConfiurPtion Data 

Schwa Intarface Veritier: 

4 Generates data blocks that simulate inputs from a subsystem 
4 Receives data from a wbaystsm under teat and verifies that the data is 

within valiidatarange 
Prwideswibn reporh, and on-line diaplaya 

Figure 1 SIV Conceptual Operation 

The following steps summarize the typical 
SIV user scenario. 

1. Create an ASCII table describing the 
interface agreement (called a Rapid 
Interface Definition - RID). It contains 
interface definitions, including data types 
and minimum/maximum/expected values, 
incrementing values, etc. (In the next SIV 
version, this will be automatically created 
from the interface agreement. For now, it 
must be typed in once.) 

2. Download the RIDs to SIV fi-om LAN or 
floppy and select which RIDs to use via a 
type-in. 

4. Select which tests to run, such as 
generating test data, logging and 
comparing test data, andfor simulating 
entire applications. 

5. Select which online displays to view 
(detailed data dumps, overall status 
monitoring, or none). 

6. Start the tests and, as desired, interactively 
start/stop/modify ihe data flows via SIV 
type-ins. 

7. When the test is complete, or manually 
terminated, print the test report or 
download it via LAN or floppy. Note 
that the tests can be set up to cycle 
indefinitely. 

3. Select or create application simulation 
scripts, if desired. This will enable SIV to 



Ill. SW Development 

The SIV development team consisted of one 
technical lead who interfaced with the users 
plus one programmer and one half-time 
tester. The primary obstacles to be 
overcome were: 

Users' reluctance to use an unproven test 
tool 
Requirement to support multiple operating 
environments 
Limited budget 

Quick results needed to meet users' 
schedules 

include adding new protocols, porting SIV 
to new hardwareloperating system platforms, 
changing the user intefice, and 
addinglchanging SIV fimctionality. Figure 2 
describes the SIV software architecture and 
major fimctionality. For example, to 
incorporate a new, low-level LAN protocol, 
only the LAN Protocols module of Multi-use 
Software need change. 

In order to meet the budget, time, and 
multiple operating environment constraints, 
the development team reused a working 
skeleton subsystem fiom the Multiuse 
Software reuse library, which had been 
previously created by Telos and had already 
been ported seven hardwareloperating 
system platforms. In addition, existing test 
software fiom other development efforts was 
adapted for use within SIV. 

To overcome the users' reluctance to learn 
and trust new test tools, the technical lead 
concentrated on fiequent communication 
with potential users. This included electronic 
mail, phone calls, visits, demonstrations, and 
presentations. In addition, the team solicited 
feedback and carefidly folded new user 
requirements into subsequent 
demonstrations. This convinced skeptical 
users by providing them continual visibility 
and input into SIV development progress 
and capabilities. 

Although SIV was created as a DSN-specific 
test tool, it was developed in a layered 
fashion to facilitate later porting. This could 

Figure 2. SIV S o w e  Architecture 

W. SW Results 

SWs primary goal was to reduce the cost of 
interface testing and the number of software 
interface errors in the DSN. To achieve this 
goal, skeptical users had to be convinced that 
using SIV would save them time. We 
originally hoped that cost savings due to SIV 
usage would exceed SIV total lifetime costs 
($420K) during SWs second year of use 
(19'96). 



As Figure 3 shows, the goal to obtain user 
acceptance was met with a wide margin. 
SIV was initially targeted for use by only 13 
projects, or user groups, during the 1994- 
1999 time fiame. However, witbin the first 
seven months of development, and one 
month aRer the first release, SIV had 
acquired 23 interested user groups, 10 of 
which have already used the SIV. 

e End users - use SIV to simulate entire 
subsystems for data flow tests, for 
training, and for simulating hard-to- 
create error conditions at the official test 
facilities. 

Metrics have been collected for three 
months: two months before official SIV 
release, and one month following the release 

# 
users I....! 

DEC JAN FEB MAR APR MAY JUN JUL AUG SEp 
W94 (by end) (by end) 

. . .. ... . . .... 
0 interested future users i .......... : originally projected users 

actual users EB revised projection 

I Figure 4 SIV User Interest and Involvement has Surpassed Original Goals 
of version 1. The metrics support the 

In these 23 user groups, there are now three anticipated savings as well as ones not 
distinct types of SIV users: originally considered. 

e Developers - use SIV to unit-test low- The following relates some specific user 
level interfbces m their development reports: 
laboratories. 

The Metric and Pointing Assembly 
Test engineers - use SIV to (MPA) group saved 50 development 
performance/stress test their applications hours otherwise needed to write 
at DSN's official test ficility. simulation code to test a new mterfbce 



which would not be available until well 
after MPA delivered. 

The Central Monitor and Control group 
reported saving 20 work hours because 
of Sn?s ability to insert predicted errors 
in the interfkces. This would have 
otherwise taken several weeks and 
multiple 350-mile round-trips to the DSN 
station to induce the interface errors, test 
whether the assembly reacted correctly, 
and return to make needed software 
corrections. 

Multi-use S o h a r e  saved 80 hours of 
dedicated Test Facility resources and 
associated travel by using the SIV in 
their development laboratory to i d a t e  
and correct a complicated software 
anomaly. 

So far, SIV users have detected and 
corrected the following types of errors in 
their applications, without the need for live 
tests: formatting errors, data range errors, 
routing problems, and errors due to 
misinterpretations of interface agreements. 

The metrics listed in Table 1 represent three 
months of SIV usage by six user groups. 

Let us tackle the difficult process of 
estimating cost savings achieved. Of the six 
user groups, an average of three user groups 
were concurrently using the SIV each month 
for a three month period. To estimate cost 
savings achieved, let us assume the DSN 
average development cost (including burden 
charges) to $67 per work hour and test 
facility usage to $200 per work hour 
(including support personnel, rent, hardware 
maintenance, etc.). These values when 

Table 1. Initial SIV Metrics 

# Subsystem Jntd~ces Tested 11 intexf~ces 

# Data Flaws T d  20ddaflaws 

# Iuterfece Daioitians h a s t e d  63 RJDs 

# ~ t e f ~ E r r a s ~ v e r e d  24 arm c u r d  

EsC Test Facility Time Saved 146 work hours saved 

This exceeds our originally projected cost 
savings of $51K for FY94 and $324K for 
FY95. In more general terms, this minimally 
translates into the developer having more 
time to work on other subsystem 
development areas. It also means more 
available test facility time to other users. 
Overall, SIV usage should siguificantly 
reduce the risk and cost of the typical DSN 
subsystem delivery. 

Est. Additirnal Use Time Saved 

Est. Sirnulatian Code Time Saved 

Est. SlV Learning Curve Tdal Cost 

Additional savings due to automated testing 
using SIV include: 

190 work hours saved 

100 work hours saved 

10.5 work hours 
invested 

Reduced amount of travel to -- and use 
of expensive -- Test Facility 
Faster turn-around times when testing 
within development labs--no need to wait 
for scheduled test times or personnel 
availability 
Costly simulation code need not be 
generated nor maintained 

combined with the savings in the above table 
result in a total savings of $48.6K for the 
three months or $5.4K per user group per 
month. Applying the $5.4K to our projected 
Fiscal Year 1994 (FY94) and FY95 users 
(see Figure 3), results in a total cost savings 
of $216K for FY94 and $875K for FY95. 



* Fewer end-to-end test resources required 
since data content and protocol routing 
can be pre-verified with SIV 
Automated regression tests can be run at 
computer speed 

Although the initial SIV version has just been 
fielded, early results clearly indicate the value 
of automated testing and that SIV met its 
goals and will help test DSN interfices at all 
levels. Developers, test engineers, and end 
users no longer have to be "sold" on using 
automated test tools such as SIV. The early 
results indicate that automated testing will 
continue to pay dividends. 

K Lessons Learned 

What did we do right? 

We solicited user acceptance. The SIV 
Technical Lead spent a considerable amount 
of time with skeptical users to learn their test 
and simulation needs and teach them SIV. 

We held early and Pequent demonstrations. 
These also allowed for design refinement and 
identification of new requirements. When 
acted upon, this was especially important as 
it created user acceptance. 

We selected an experienced stafJ: The 
developers, who were experienced with the 
reused packages and testing in the DSN 
environment, experienced no learning curve. 

We employed signiJicant reuse. The 
completed SIV consists of 8% (or 8K lines) 
application-specific code and 92% reuse 
fiom Multiuse Software and adapted 
simulators and test software obtained from a 
reuse depository. Besides for helping speed 
up the SIV development, the reused software 

had been previously proven, extensively 
tested, and ported to seven platforms. 

What could we have done better? 

We should have allocated more schedule 
time to the demonstrations. Although 
invaluable for the eventual SIV progress, the 
cost of each demonstration was 3-5 work 
days to plan and hold plus 3 work days for 
user requirements change requests, follow- 
up, and action items. 

We should have provided earlier user 
training. This would have lessened the drain 
on SIV personnel for user support which we 
under-estimated. 

We should have held smaller training 
classes customized to the group's needs. 
This would have allowed more customized 
training to better enable the users to 
recognize and use the powers of simulation 
and automation that SIV possesses. 

W. Applicability For Other Groups 

SIV can be successfully used on all large, 
distributed s o h e  development efforts 
where computers interfice over a LAN. 
Although standards, such as the Distributed 
Computing Environment, and Abstract 
Syntax Notation, have great promise, they 
are often too late to immediately benefit 
current, large s o h e  environments. The 
SIV is a flexible test and simulation tool 
which can test other subsystems over a LAN. 
It can be easily adapted to use new custom 
or standard high- or low-level protocols. 

SIV is written in C and currently runs on a 
Sun under the Solaris operating systems and 
on Modcomp's Unix work stations running 



the ReaVix operating system. It can easily be 
adapted to run on all other platforms 
supported by Multiuse Software (PDOS, 
VxWorks, VADSWorks, and OSl2). It is 
currently being ported to run on Intel 80386 
computers (and greater) running a shareware 
Unix variant called Lkux. SIV is M y  
documented and available fiom Telos or JPL 
by request to the authors. We plan to 
implement TCP/IP during F M i n t e r  1994, 
which should make the SIV instantly usable 
by groups outside the DSN. 
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1.0 Introduction 

The Science Operations Center (SOC) for the X-ray Timing Explorer (XTE) mission is an 
important component of the XTE ground system. Its mandate includes: 

Command and telemetry for the three XTE instruments, using CCSDS standards. 

Monitoring of the real-time science operations, reconfiguration of the experiment 
and the instruments, and real-time commanding to address the targets of 
opportunity (TOO) and alternate observations. 
Analysis, processing, and archival of the XTE telemetry, and the timely delivery of 
the data products to the principal investigator (PI) teams and the guest observers 
(GO). 

The SOC has two major components: the science operations facility (SOF) that addresses 
the first two objectives stated above and the guest observer facility (GOF) that addresses 
the third. The SOF has subscribed to the object oriented design and implementation; while 
the GOF uses the traditional approach in order to take advantage of the existing software 
developed in support of previous missions. 

This paper details the SOF development using the object oriented design (OOD), and its 
implementation using the object oriented programming (OOP) in C++ under Unix envi- 
ronment on client-server architecture using Sun workstations. It also illustrates how the 
object oriented ( 0 0 )  and the traditional approaches coexist in SOF and GOF, the lessons 
learned, and how the OOD facilitated the distributed software development collabora- 
tively by four different teams. Details are presented for the SOF system, its major sub- 
systems, its interfaces with the rest of the XTE ground data system, and its design and 
implementation approaches. - 

2.0 Distributed Development 

SOF development is distributed from following points of view: 

Development by a team with components distributed at Hughes STX and the three 
PI team locations at Goddard Space Flight Center (GSFC), University of California 
at san Diego (UCSD), and Massachusetts Institute of Technology (MIT). It also 
implies development under heterogeneous'management structures, as each team 
component has its own management. 
Development on computer systems distributed at above team component locations, 
and internetworked using TCP/IP. This also includes development on 
heterogeneous types of machines. 



SOF development uses the incremental build approach, with builds roughly six months 
apart. It employs the philosophy that the system software will be so modularized that the 
modules can be developed by the components of the team that has best expertise for them. 
Thus the software development related to a particular instrument is allocated to the corre- 
sponding PI team. These include the instrument health and safety, instrument commands, 
instrument telemetry unpacking algorithms, and algorithms to construct physically mean- 
ingful data partitions from the telemetry. 

The rest of the system development is performed by Hughes STX. This includes the over- 
all system engineering, development of abstract classes and base classes, integration of the 
total software system, testing of the system and the subsystem components, and integra- 
tion of the SOF with the rest of the XTE ground system. The overall responsibility for the 
SOF remains with Hughes STX. This includes coordination with the various teams, clear 
definition of the development interfaces, and meeting the software build schedules. 

Legend: Object Oriented Non Object Ori- 
Development 0 ented Development 

GSFC Code 
500 Elements 

?,,,-,,J 

Figure 3-1: SOF interfaces and context within the XTE ground segment 

3.0 SOF Context and Interfaces 

Figure 3-1 shows the distributed parts of the SOF development effort together with the 
relationship of SOF with the rest of the XTE ground system. The SOF box shown in the 
center represents the net result of object oriented development by the PI teams and the 
Hughes STX. It has important interfaces with other ground system elements which are not 
object oriented. The GOF is not object oriented, but it needs to retrieve telemetry data 



products from the SOF generated objects in order to generate the Flexible Image Trans- 
portation System (FITS) files. This interface is provided by data management subsystem 
of the SOF (see Fig. 4-1) that communicates with the XTE FITS Formatter software of the 
GOF using a set of data descriptors formulated according to a data description language 
(DDL) defined by the GOF for this purpose. 

SubsystemConf ig 

Subclasses 
Attributes 

This is the base class for the DesiredConf ig and 
P redictedconf ig classes. 
DesiredConfig 
PredictedConfig 
RWCString configurationName; 
The configuration name. 

RWCString description; 
A descriptive string for the configuration. 
SubsystemConfig 0 ;  

Public Constructors Constructs a configuration with no description or configuration name. 

virtual -SubsystemConfig 0 ;  
Destructor. 
void setConfigurationName (const char* name); 

Public Member Functions Sets the configuration name. 

const char* getConfigurationName() const; 
Returns a pointer to the configuration name. 

void setDescription (const char* name); 
Sets the descriptive text field. 

const char* getDescription0 const; 
Returns a pointer to the description, 
virtual const char* getSubsystemName() const; 

Virtual Member Functions Returns the name of the subsystem. 

virtual CommandScript* getCommandScript() const; 
Returns the command script. 

virtual TelemRate* getTelemRate (const Source& 
source) const; 
Returns a telemetry rate. 

virtual void printshort (ostream& ostr) const; 
Prints a description of the configuration. 

virtual void print (ostream& ostr) const; 
Prints a description of the configuration. 

virtual void printLong (ostream& ostr) const; 
Prints a description of the configuration. 

Figure 3-2: An example of detailed class prototype from command generation subsystem. 

The non Object Oriented interfaces are defined in traditional sense. All the data to be 
exchanged between SOF and an element of the ground system were identified; their for- 
mats were specified; the frequency and mode of each data transfer and the corresponding 
data volume was determined; and the standards to be adhered to were noted. A separate 



ICD was concluded between SOF and the corresponding ground data element (as opposed 
to a single ICD between SOF and all other elements). This approach allowed the logistic 
complexities to be minimized and updates to these ICDs manageable by keeping the num- 
ber of involved parties small. 

The interfaces between the SOF and the components of the SOF to be developed by the PI 
teams were necessarily object oriented. The traditional methods for the interface treatment 
could not be employed in this case. To define the object oriented interfaces, first the class 
hierarchy was developed. The base classes were all allocated for development by the 
Hughes STX team. The subset of derived classes to be implemented by the PI teams were 
specified. The interfaces were defined in terms of the public member functions that these 
classes were required to support. As part of the interface definition, all such classes were 
prototyped; and those public member functions of each class were also prototyped upon 
which the other party depended for the implementation of their code. This set of prototype 
classes and public member functions were formulated early in the development and docu- 
mented in an ICD. An example of such prototype class and its methods with their signa- 
tures is given in Fig. 3-2. 

Separate ICDs were developed with each PI team. Further, the commonality between the 
ICDs with PI teams was explicitly acknowledged to facilitate their development, to avoid 
reinventing the parts already developed, and to manage the configuration of the common 
interfaces. This further facilitated the interface implementation, since the commonality 
explicitly formulated in the ICDs allowed the re-use of the corresponding software devel- 
opment approach among the PI teams. 

4.0 Analysis and Design Approach 

The book "Object-Oriented Modelling and Design" by Rumbaugh, J., Blaha, M., Premer- 
lani, W., Eddy, F., Lorenson, W. (Prentice Hall 199 1) was used by the SOF team to follow 
the Object Modeling Technique (OMT) advocated by these authors. The following proce- 
dure was found useful and worked for the SOF team, even though the various steps 
described below were often concurrently analyzed and subsequently refined via iterations. 

1. The SOF team started with the usual requirements analysis. The requirements are 
sourced from the customer, domain experts, and the users. 

2. The requirements were allocated to a set of high level functions. These functions were 
grouped into the subsystems, shown in Fig. 4-1. A lead engineer was appointed for 
each subsystem. The analysis described below was performed on subsystem basis. 

3. The nouns used in the requirements allocated to a subsystem were potential objects. 
After the redundancy was weeded out and the overlap between the objects was mini- 
mized, the team had a fairly good starting set of the objects. 

4. The associations between the objects can be indicated by the verbs in the requirements 
definition, This led to some objects being identified as the class attributes. The dynamic 
modelling scenarios were used to identify the objects that potentially form the member 
functions.The initial objects set was thus grouped into a set of classes, their attributes, 
and member functions. 
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5. A further analysis of these classes based on the bottom up and top down approaches 
was used to develop inheritance relationships between classes. The classes were then 
generalized to form the abstract classes; various specializations of which led to the 
derived classes. Some classes in each subsystem fell in the domain of expertise of the 
PI teams. Those were allocated for development by the PI teams. Such allocations how- 
ever were not rigid so that they were reviewed as the design progressed and during the 
implementation phase of various builds. 

Telemetry Object Database 

Figure 4-2 shows an example of the object model for the command generation subsystem. 
The SOF design document has such object models for each subsystem and additional 
information as follows: 

1. Subsystem introduction 7. Subsystem interfaces 

2. Applicable requirements 8. Subsystem object model 

3. Operating scenarios 9. Subsystem class hierarchy 

4. Outstanding issues 10. Detailed class design 

5. Major design features 11. Review comments and responses 

6. External interface 

GOF 

The detailed class design is similar to the example presented in Fig. 3-2. 
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Figure 4-2: An example of Object Model from command generation subsystem 

5.0 Development Environment 

SOF decided for a client-server architecture using SunSparc workstations. However MIT 
wanted to use their existing DEC Ultrix workstations for their part of the SOF develop- 
ment. This meant that all development standards and the tools needed to be available on 
these two machines. To keep the development away from specific features of these two 
machines, a SGI IRIS Indigo was acquired to test that the software built on a third plat- 
form. The software development environment of the SOF are summarized in Table 5-1. 

The internet connectivity between the computers on the four sites facilitated the distrib- 
uted software development by the three PI teams and the Hughes STX. This allowed the 
developers to collaboratively debug problems on each others' computers using remote 
logon. It also allowed the periodic deliveries of the software and documentation from the 
PI teams to the Hughes STX for the SOF builds. Monthly meetings of all four components 
of the team were held. Other collaborations were ongoing using electronic mail. Each item 
in table 5-1 and all upgrades were discussed using these forums and kept in a standards 
document. Copies of all XTE SOF documents were available via an anonymous ftp 
account. 



TABLE 5-1: Software development environment of SOF 

Starting 
Software Tool Version 

4.1.3 
I 

Motif 1 1.1.4 
I Objectcenter 1 2.0 

CFront 

I RogueWave tools.h++ 1 5.2 

GNU Make 
Purify 
xteprob (home grown) 

RCS 
TAE+ 

Current 
Version I Comments 

5.6.0.1 
5.2 

4.1.3 I Sun Overating System I 
1.2 I GUI I 

6.0 I C++ library I 

2.0.6 

3.0 

Lapack 1.0 
2.10 

5.6.0.1 Revision control system 
GUI Builder 

X Windows 

4.0 Wordprocessor plus graphics 

C++ Debugger 

AT&T C++ translator 

Math.h++ and Maix.h++ supersets 
Oregon grad. inst. analysis package 

2.0 I Unix style man pages I 

6.0 Object Persistence 

3.70 
2.1 
1.1 

Commercial object oriented data base management systems (OODBMS) were initially investi- 
gated for use in SOF. Ontos was selected for detailed evaluation. A pathfinder analysis showed 
that in the SOF context Ontos had several difficulties: presence of memory leaks, the perfor- 
mance limitations (SOF is required to ingest at an average rate of 64 kilo bits per second and a 
peak of one mega bits per second), and the fact that Ontos persistence mechanism required 
modifying those class library header files which must be persistent. 

make utility 

check memory leaks/corruption 
descrepancy tracking system 

SOF's main data management needs are object persistence and persistent object retrieval. The 
more advanced features of an OODBMS such as sophisticated query capabilities or the trans- 
action commit mechanisms are not required. The RogueWave (RW) Tools.h++ class library 
offers a means of making objects persistent. The UNIX file system together with the Dictio- 
nary classes in RW offer a means of accessing persistent objects; i.e. a way to simulate a global 
namespace. A prototype of the archival portion of the Ingest subsystem using Rogue Wave 
Tools.h++ was roughly ten times faster than the equivalent Ontos version. SOF therefore 
decided to develop internally the mechanisms it needed to satisfy many of its data manage- 
ment requirements. 

7.0 Object Oriented Implementation 

Some practical experiences during SOF implementation are presented in this section. The 
development was facilitated by early implementation of the object oriented interfaces. As can 
be seen from the example in Fig. 3-2, these interfaces were defined in terms of the method pro- 



totypes in C++. The crucial parts of the code were therefore developed and scrutinized 
early in the process. As illustrated in Fig. 3-2, many of the interfaces were defined as vir- 
tual methods. This was very helpful in developing software with complete reliance on the 
PI teams for their instrument expertise and without the need for the Hughes STX engi- 
neers to also acquire such expertise. In fact the virtual method interfaces were often identi- 
cally defined with each of the three PI teams; the specific instrument expertise were 
encapsulated in the way these interface methods were overridden by an individual PI 
team. At the same time the formulation presented a uniform interface to the Hughes STX 
engineers that were independent of the intricacies of the individual instrument subsystems. 
This approach is taken in many important instances including instrument configurations 
specification for command generation and mission monitoring, the telemetry unpacking to 
recover CCSDS packets, to assemble CCSDS packets into physically meaningful parti- 
tions, and to access that infomation from the persistent objects. This is a remarkable 
advantage of polymorphism in object oriented approach. The class hierarchy in such cases 
is illustrated in Fig. 4-2 for the case of instrument configurations. In this case the sub- 
classes of PredictedConfig and DesiredConfig (except those for ACS and Obs) are devel- 
oped by the PI teams while the rest are developed by the Hughes STX. The PI teams are 
free to derive their own sub-hierarchy. 

The C++ templates were helpful. The real-time data ingest subsystem has a real-time 
server that passes CCSDS packets to the real-time clients. A real-time client template was 
developed that proved useful for the PI teams, the health and safety subsystem, the science 
monitoring subsystem, and the mission monitoring subsystem to write their own real-time 
clients. 

The RW object oriented libraries of Tools.h++ proved very useful in saving the develop- 
ment effort on mundane things. The RW persistence and retrieval mechanism however 
was sometimes difficult for new developers to grasp. 

8.0 Conclusion 

Our OODIOOP experience in SOF can be summarized as follows: 
Initial analysis and design activity took a while (the team was also passing through 
a learning phase); but the implementation proceeded pleasantly fast (couple of 
experienced C++ programmers later came on board, and thd example of their work 
was helpful for the rest). 
Our decision not to use an OODBMS proved right. 
The COTS object oriented libraries saved SOF time and cost. 
Design changes due to the management decisions and requirements evolution were 
gracefully accommodated. 
The total SOF team is 11 persons, which is modest compared to similar past 
missions. XTE launch is scheduled for August 1995; the OODIOOP approach has 
so far allowed SOF development on schedule and within cost. 
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Abstract 

Modern space flight mission operations 
and associated ground data systems are 
increasingly dependent upon reliable, 
quality software. Critical functions such 
as command load preparation, health and 
status monitoring, communications link 
scheduling and conflict resolution, and 
transparent gateway protocol conversion 
are routinely performed by software. 
Given budget constraints and the ever- 
increasing capabilities of processor 
technology, the next generation of control 
centers and data systems will be even 
more dependent upon software across all 
aspects of performance. A key challenge 
now is to implement improved 
engineering, management, and assurance 
processes for the development and 
maintenance of that software; processes 
that cost less, yield higher quality 
products, and that self-correct for 
continual improvement evolution. 

The NASA Goddard Space Flight Center 
has a unique experience base that can be 
readily tapped to help solve the software 
challenge. Over the past eighteen years, 
the Software Engineering Laboratory 
within the Code 500 Flight Dynamics 
Division has evolved a software 
development and maintenance 
methodology that accommodates the 
unique characteristics of an organization 

while optimizing and continually 
improving the organization's software 
capabilities. This methodology relies 
upon measurement, analysis, and 
feedback much analogous to that of 
control loop systems. It is an approach 
with a time-tested track record proven 
through repeated applications across a 
broad range of operational software 
development and maintenance projects. . 

This paper describes the software 
improvement methodology employed by 
the Software Engineering Laboratory, 
and how it has been exploited within the 
Flight Dynamics Division within GSFC 
Code 500. Examples of specific 
improvement in the software itself and its 
processes are presented to illustrate the 
effectiveness of the methodology. 
Finally, the initial findings are given 
when this methodology was applied 
across the mission operations and ground 
data systems software domains 
throughout Code 500. 

Introduction 

A recent analysis conducted by the NASA 
Software Engineering Program found that 
over 30% of the NASA Goddard Space 
Flight Center (GSFC)' Code 500 civil 
servants and support contractors spend 
the majority of their time directly involved 



in the management, development, 
maintenance, and/or assurance of 
software (Reference 1). That represents 
over 1600 people out of the total of 5000 
GSFC Code 500 civil service and support 
contractor community. Correspondingly, 
that same analysis found a tremendous 
investment in developed, operational 
software throughout the Mission 
Operations and Data Systems Directorate. 
Not including common off-the-shelf 
varieties of shrink-wrapped word 
processors, spreadsheets, and other 
typical tools, GSFC Code 500 is 
responsible today for some 21 million 
lines of operational code. This represents 
almost half of the 43 million lines of code 
currently operational throughout GSFC 
(Reference 2). Most of that is in one way 
or another involved in the preparation for, 
conduct of, or results analysis from 
spaceflight missions. 

Given the importance of software in 
much of what the Mission Operations and 
Data Systems does and hopes to do, its 
not surprising that more attention is being 
paid to software; the tools and practices 
by which it is engineered; the 
management oversight by which it is 
coordinated and paid for; and the means 
by which products, tools, and know-how 
are disseminated and shared. The NASA 
Software Engineering Laboratory (SEL) 
and its software improvement 
methodology is a premier example of an 
attempt to understand the roles of 
software within GSFC Code 500 and to 
identify and promote practices that real 
experience shows are effective and 
beneficial. 

Software Engineering 
Laboratory (SEL) 

The Software Engineering Laboratory 
(SEL), located in the Flight Dynamics 
Division of GSFC Code 500, was 
developed to study the effectiveness of 
new software engineering technologies as 
part of the existing Code 500 software 
development projects. The SEL is a 300 

person organization charged with 
producing operational flight dynamics 
software for each GSFC space mission, 
but it is also an organization that has 
intentionally and carefully for eighteen 
years experimented with languages, 
tools, and techniques to continually 
improve its software development and 
maintenance process. Within the SEL, 
every software project is considered to be 
an "experiment" where a new software 
technology is injected, its effectiveness 
measured, and if it proves useful the new 
technology is incorporated into the 
software development processes for the 
next project. The SEL organization works 
as a partner with the production 
organization's software developers to 
incrementally improve the software and 
its processes over time. 

Figure 1 illustrates the three key 
components of the SEL environment that 
are critical to the success of improving an 
organization's software development 
process and software products. The first 
component is the development 
organization. This component is 
responsible for the software development 
of a real missions operations or ground 
data system application. This 
organization develops the software and 
documentation using the processes 
provided by the analysis organization. 
The development organization also 
provides software measurements, pro~ect 
characteristics, and lessons learned to the 
analysis organization. 

The second component is the analysis 
organization. It uses the software 
measurements and project data to 
understand the developers' software and 
software process characteristics well 
enough to propose an improvement goal, 
analyze the effectiveness of the 
improvement, package the results, and 
feedback the result to the development 
organization for use in the current and 
future development efforts. The analysis 
component interacts with the development 
component to extract, examine, and 
compare the consequences of applying 
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Figure 1: Components of the Software Engineering Laboratory Environment 

specific methodologies, standards, and 
tools. 

The third component is the support 
organization, which archives the 
information captured from the 
development and analysis organizations 
such as software measurement data, 
process models, training materials, and 
other documentation. 

Over the last 18 years, the SEL has 
worked with more than 100 production 
projects where the software was used for 
mission operations and ground support of 
GSFC missions. In each of these, SEL 
analysts quantitatively assessed process 
changes on the developed software of real 
projects. These software projects ranged 
in size from 4 thousand lines of code to a 
million lines of code (Reference 3). 

Software Improvement 
Methodology 

* Evolutionary not revolutionary 
Continuous 
Incremental 
Bottoms-up rather than top down 
Quantitative software measures 
Software experimenters work . 
with software developers 

These attributes are the key to success. 
Experience in many complex endeavors 
has shown that true process improvement 
takes time and commitment. The culture 
of an established organization must 
continually absorb and adapt to better 
ways of accomplishing its business. 
Experience has repeatedly shown that 
mandating a standard software 
engineering process from the top, for 
example, won't be accepted into an 
organization's culture. The people who 
comprise that organization must be part of 
the evolution of the process, the rules, 
and the techniques that they find work 
best for them in their particular 
environment. 

The key distinguishing features of the The GSFC SEL software improvement 

SEL software improvement methodology strategy focuses around the simple three 

are the following: layer paradigm shown in Figure 2. This 
model recognizes that in-depth 
understanding must precede any attempt 
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Figure 2: SEL Software Process Improvement Model 

to improve. Detailed insight about the 
functions an organization performs, the 
dynamics of their interactions, the quality 
of their products, and the processes and 
tools they apply forms the basis for the 
second "layer" of the improvement 
model. This second layer benefits from 
the ongoing understanding activity to 
define focused, incremental improvement 
experiments. The term "experiment" is 
important, because change must be 
~lanned. instrumented. and comuared. 
 an^ experiments may 'not prove 6elpful 
or at least not be beneficial in the ways or 
to the extent originally conceived. 
Further, the success of each incremental 
candidate improvement requires people 
"buy-in" which can only be gained 
through careful explanation and training, 
application, and results analysis. As 
stated above, true improvement takes time 
and is, by definition, bottoms-up. As 
improvements are shown to be helpful, 
they are packaged appropriately for 
ongoing use by the organization (the top 
layer shown in the figure). Usual 
examples of packaging are well-written 
user guidebooks and training materials. 
The state of the organization's business 

practice is thus altered. The packaged 
processes, tools, training, and guidance 
become that organization's software 
policies and standards. And those are 
effective policies and standards because 
they reflect what the organization really 
does (Reference 4). 

Software Improvement 
Results 

As an example of the application of 
collecting and analyzing of software error 
statistics at GSFC, the SEL collected data 
to determine the impact of the cleanroom 
approach on software error rates. Figure 
3a shows the error rates of the baseline 
approach and two small (20-40 
KSLOCs) development p ro~ec t s  
(Reference 5). Each time the cleanroom 
approach was used, the error rates 
decreased showing that the cleanroom 
approach had a positive effect on error 
detection rates and possibly should be 
adopted as part of the baselined 
development process for Code 552. 
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Another effort focused on the use of 
object-oriented technology with the goal 
of increasing the reuse levels of software 
within the Flight Dynamics Division 
resulted in significant impacts as depicted 
in Figure 3b. The average level of code 
reuse increased from approximately 20% 
in the 1985-1989 time frame to over 61% 
reuse for FORTRAN projects and 90% 
reuse for Ada projects during the 1990- 
1994 period (Reference 3). Such 
improvements provide evidence of the 
benefits potentially derived from the 
application of evolving state-of-the-art 
software engineering practices such as 
object-oriented design. 

Since the SEL has been monitoring and 
measuring the progress of GSFC mission 
operations and ground data software for 
over a eighteen years, the cumulative 
effect of the SEL software improvement 
technique on software error rates was 
analyzed. The software error rate is 
defined as the number of errors per 
thousand lines of code. The analysis 
shown in Figure 4 that the average 
software error detection rate decreased 

from 8 errors per KSLOC to 2 errors per 
KSLOC, a 75% decrease from 1977 to 
1993. This type of information leads to 
well defined models and relationships of 
software parameters supporting improved 
management and control of future 
projects (Reference 3). 

Improvement of the product within Code 
552 (flight dynamics software) by 
changing and measuring results of 
software process changes on real projects 
has produced real gains in error rates, 
reuse, and productivity over the last 5 
years. For a set of similar GSFC projects 
using this methodology since the late 
1980s, the error rates decreased 75% 
(from 4 errors1KSLOC to 1 
errorIKSLOC), reuse increase from 20% 
reuse to 75% reuse, and the productivity 
increased 75% (from 440 staff-months to 
110 staff-months) for an equivalent 
amount of software. 
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Software Improvement 
Within GSFC Code 500 

The basic methodology used by the SEL 
for flight dynamics software was applied 
to the Mission Operations and Data 
Systems Directorate as a whole. In 
accordance with the SEL software 
improvement model, a software 
"baseline" for Code 500 was established 
(Reference 1). The data for establishing 
an understanding of the Code 500 
software and its development and 
maintenance processes was gathered via 

gained through the surveys by reviewing 
software policies, standards, staffing 
data, project plans, and other 
organizational and project data. After 
initial review of the data, we conducted 
roundtable discussions with groups of 
respondents to refine the data and to 
obtain suggestions on how software 
processes might be improved. Finally, 
we conducted one-on-one interviews with 
selected managers to increase our 
confidence that ' our data was 
representative of the software work 
performed by that organization. 

four integrated approaches: a 
comprehensive nine page survey, reviews The published software baseline included 

of organizational and project data, both software product descriptions 

informal roundtable discussions, and (amount of software, cost of software, 

one-on-one interviews. software staffing, software error rates, 
etc.) and software process descriptions 

We sampled the GSFC Code 500 civil (standards used, metrics use, project 

servant and support contractors by volatility, development and test 

selecting respondents from organizations methodology use, training, etc.). This 

performing the majority of the software baseline data was then analyzed. Using 

work. We then supplemented the insight the basic goals of decreasing cost, 
increasing productivity, and decreasing 



error rates, specific areas for potential 
software improvement were identified. 
These areas were researched and a set of 
recommendations for improvement of the 
software product and processes within 
GSFC Code 500 were developed. Three 
of those recommendations are presented 
here. 

Recommendations 

Establishing our understanding baseline 
for GSFC 500 took time, patience, and 
careful analysis. We believe our 
understanding was sufficiently detailed 
and reasonably correct enough to move 
smartly into the second thrust of the 
improvement process; i.e., defining 
focused incremental improvements and 
experimenting with those improvements 
in controlled ways. 

Three major areas that promise large near- 
term payoff for relatively small 
investments are: 

1) Introduction of ongoing. continual 
software improvement into the culture 
of the Directorate 

involvement is critical. So is the 
participation of everyone throughout the 
organization that has anything to do with 
software development and maintenance. 
People must be involved, have influence 
on, and help shape where their 
organization is going. Simply assigning 
another working group or holding an 
occasional meeting won't accomplish the 
sof tware  improvement goals.  
Improvement working teams or Software 
Process Groups must be established at all 
levels (Directorate, Division, and 
Branch). Both process improvement and 
software product improvement need to be 
emphasized. An initial task might be to 
develop a Code 500 approach (not 
necessarily standards) for the 
development and maintenance of 
software. With the help of improvement 
guidance such as the Software 
Measurement Guidebook (Reference 6) ,  
the Software Manager's Guidebook 
(Reference a), SEL experience, and the 
materials from the Software Engineering 
Institute, this hierarchy of Software 
Process Groups could identify, define, 
and implement techniques designed to 
continually improve Code 500's software 
capabilities. 

2) Establishment of an integrated Software Training Program 
software training Drogram 

3) Implementation of an effective 
software measurement program 

These improvements can be accomplished 
for relatively little money and in a short 
time period because significant 
components of what are needed already 
exist. 

Organizational Software Improvement 
Infrastructure 

In order to implement and sustain any 
software improvement change across the 
Directorate, it is necessary to put in place 
a software improvement infrastructure 
throughout the organization. Upper 
management commitment and long term 

GSFC Code 500 could benefit from an 
integrated software training program. 
Our findings indicate that software 
training tends to be focused on specific 
"hot" technologies as opposed to overall 
software process and development of 
personnel for key software positions. 
This goal could be accomplished with a 
bottoms-up approach by allowing project- 
level experiences to drive the content of 
the integrated training program. The 
needed disciplines are at minimum those 
of software project management, 
software requirements management, 
software contractor management, 
configuration management, quality 
assurance, and the software engineering 
life cycle. The courses must be 
consistent in approach, show the role of 
software measurement and feedback in 
the context of each discipline, and be 



tightly integrated to the GSFC Code 500 
approach to software development. 

The curriculum will be most effective if 
each course has an overview version that 
is 3 to 4 hours in length and a full 
duration version (1 to perhaps 3 days 
depending upon the subject.) The 
overview version would be taken by 
everyone involved with software, but not 
directly responsible for that discipline 
area. For example, only software project 
managers and those people training to 
become such managers would take the 
full length software project management 
course. An effective enhancement to the 
basic training program would be on-line 
refresher modules accessible from any of 
the organization's networked 
workstations. 

The basic elements of this training 
curriculum already exist at CSC, SAIC, 
and in the SEL at GSFC. This existing 
courseware and instructors can be tailored 
and enhanced and could be ready for use 
without a long delay or large additional 
investment. 

Continually decrease software cost 
Assist in the management of 
software projects 
Assure timely delivery of products 
Improve software reliability 

Fortunately, practical solutions and 
experience are readily at hand. The SEL 
in GSFC Code 552 is one of the few 
nationally leading organizations that has 
proven, long term experience in the 
definition, analysis, and application of 
software metrics. The SEL-developed 
NASA Software Measurement 
Guidebook (Reference 6 )  will be released 
shortly. Code 500 should adopt a top 
level software measurement policy with 
the local organizations choosing their 
own specific goals for measurement, 
picking the minimum set of metrics 
needed to meet their goals, and 
performing metric analysis and feedback. 
The know-how in this Guidebook 
combined with an integrated training 
program are key improvement tools that 
are easily available. 

Conclusions 
Somare Measurement Program 

We found that little attention is given to 
software measurement in most GSFC 
organizations. Several contracts required 
metrics to be collected and forwarded to 
the government, but little or no analysis 
was being performed and even less in the 
way of improvement feedback into the 
actual projects. The consequence was the 
project and line management and staff had 
virtually no real insight about critical 
status indicators such as the number of 
errors in the delivered code, the amount 
of time any activity actually took, or how 
well the documentation matched the 
design, code, or testing. 

Our recommendation is that GSFC Code 
500 develop an effective, practical 
software metrics program to collect, 
analyze, and provide feedback for the 
following purposes: 

The GSFC Mission Operations and Data 
Systems Directorate has successfully 
developed many millions of lines of code 
for 'ground systems of numerous 
spacecraft. Even so, our analysis of the 
ground and data software systems shows 
that are areas that could benefit from a 
sustainable, continuous software 
improvement program. The Software 
Engineering Laboratory is an example of 
this. In the past five years, the SEL saw 
a 75% increase in productivity and a 75% 
decrease in software error rates in flight 
dynamics projects. The SEL software 
improvement method of working directly 
with the development projects and using 
quantitative measures to test new 
software technologies can be applied 
throughout the GSFC Code 500 software 
domains. 

The SEL approach of understanding, 
assessing, and packaging the assessment 



results was applied to the Code 500 GSFC Code 500 has a superb 
software domains in general. This study opportunity to leverage the isolated 
identified three areas in which GSFC experiences already existent in their 
Code 500 could enhance the success of organization to adopt a broad, experience- 
their software development and based software improvement program 
maintenance projects: institute a that could indeed be a model for both 
Directorate-wide software improvement Government and industry. 
program, develop an integrated software 
training program, and develop a software 
measurement program. We believe that 
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ABSTRACT 

Whilst the pre-launch responsibility for the 
production, validation and maintenance of 
instrument on-board software traditionally lies 
with the experimenter, the post-launch 
maintenance has been the subject of ad hoc 
arrangements with the responsibility shared to 
different extent between the experimenter, 
ESTEC and ESOC. 

This paper summarizes the overall design and 
development of the instruments on-board 
software for the XMM satellite, and describes 
the concept adopted for the maintenance of 
such software post-launch. 

The paper will also outline the on-board 
software maintenance and validation facilities 
and the expected advantages to be gained by 
the proposed strategy. 

1. INTRODUCTION 

In the last decade, the complexity of space 
missions has increased significantly due to the . 
more demanding requirements on mission 
efficiency and quality of mission products. 
Such requirements could only be satisfied by 
designing intelligence on board for increased 
autonomous operation of the spacecraft and the 
instruments in its orbit. 

On-board software and autonomy however 
have a significant impact in the design of the 
ground facilities for the support of the 
mission. Although instrument on-board 
software is designed, developed and tested 
following strict quality assurance procedures, 
experience of past and current missions show 
that the capability of reprogramming 
instrument on-board software from the ground 
is an essential requirement throughout the 
instrument lifetime. 

Conclusions with respect to adequacy of this Certain events during the instrument lifetime 
approach will be presented as well as can create the necessity to modify the flight 
recommendations for future instrument on- software. The causes of change in the on- 
board software developments. board software are manifold : 

Keywords: 
Change of specification ( e.g. errors, 

On-Board Software, System essentially numerical, in the specification 
testing, Software life cycle, of thresholds, calibration, delays, etc. ) 
Software maintenance 

Non conformance of the software with 
the original specifications (e.g hidden 



bugs not detected during testing on 
ground 

0 On board hardware failure following 
which the instrument can only be 
recovered by reprogramming the on- 
board software. This event is the most 
likely reason for the necessity of 
maintenance activity because its 
unexpected nature renders it impractical 
to implement complete autonomy in the 
software with respect to such failures. 

Change in strategy in instrument 
operation ( e.g. changes to improve 
capability o r  efficiency ) 

The complexity of instrument on-board 
software maintenance is directly related to the 
on-board software configuration. 

Different approaches have been taken to 
instrument on-board software maintenance 
from mission to mission. The main variation 
has been the responsibility for actually making 
software corrections and implementing new 
on-board software requirements, which has in 
some cases been done by the experimenters 
and in other by ESTEC and/or ESOC. 

The factors influencing the choice of a 
particular maintenance scheme are : 

availability of expertise 

availability of : 

a Software Development Environment 
(SDE) which contains CASE tools 
supporting on-board software lifecycle 
for development and change of the 
software, verification and validation, 
configurat ion management and 
documentation. The facilities also 
include cross-compilers, cross-debuggers 

and downloaders to compile, load and 
debug the instrument software from the 
host to the hardware target. 

a Software Validation Facility (SW) for 
on ground testing and validation. The 
SVF provides facilities to emulate or  
simulate the hardware environment of 
the instrument on-board software. 
Facilities range from software simulators 
and emulators to replicas of instrument 
on-board hardware systems. 

duration of mission 

2. XMM OVERVIEW 

The X-Ray Multi-Mirror Mission (XMM) is a 
high throughput X-ray spectroscopy mission 
(photon energy range from 0.1 Kev to 10 
Kev), which is the second cornerstone of the 
ESA long term scientific plan. The XMM is a 
facility type observatory open to the 
worldwide astronomical community. The 
scientific payload forms an integrated mutually 
complementary package optimised to fulfil the 
scientific aims of the mission and fully exploit 
the ESA supplied X-ray optics. 

The XMM observatory will offer a major step 
forward in the field of X-ray astrophysics in 
the 21st Century. It is envisaged as a long 
duration facility class mission aimed at 
performing detailed imaging spectrophotometry 
of a wide variety of X-ray sources. The 
observatory will be placed in a 24 hour highly 
eccentric inclined orbit to allow uninterrupted 
observations up to 16 hours using the 
groundstation of Perth ( Australia ). The 
spacecraft consists of a service module which 
carries the payload module. 

The scientific instruments are: 



European Photon Imaging Camera 
(EPIC) 

The XMM x-ray telescope consists of 
three separate co-aligned mirror 
modules, for each of which EPIC will 
provide an imaging x-ray focal camera. 
Each of these cameras will be mounted 
at the focus of the respective mirror 
modules. Two different types of Charge 
Coupled Devices ( CCDs ) will be used: 
one type based on p-n and the other on 
MOS technology. 

e Reflection Grating Spectrometer (RGS) 

RGS features two independent 
instrument chains placed behind two of 
the three mirror modules. Each chain 
incorporates an array of reflection 
gratings which pick off roughly half of 
the X-ray light and deflects it to a strip 
of CCD detectors offset from the 
telescope focal plane. The remaining 
light passes undeflected through the 
grating stack where it can be utilised by 
other instruments located in the focal 
plane. 

@ Optical Monitor (OM) 

OM is a UV I optical telescope with two 
chromatically split channels, the blue 
channel and the red one. Both beams are 
transmitted to the CCDs detectors. 

The XMM spacecraft will be operated in a 
continuous interactive mode from a Mission 
Operations Control Centre (MOC) . XMM 
Science operations will be conducted from a 
Science Operations Centre (SOC) in close 
interaction with the MOC. 

Considering 

* the long duration of the mission (10 
years) 

each experimenter has his own 
SDEISVF 

distributed processor architectures are 
present in the payload 

different languages are used on the 
processors 

the following sections describe how a different 
set of instrument on-board software 
maintenance and validation facilities could be 
assembled, which would allow the SOC, given 
the appropriate expertise, to assume the 
responsibility for instrument on-board software 
maintenance in the majority of the cases. 

Additionally the following items will be 
addressed 

Design choices 

Inclusion of hardware-in-the-loop 

e "worst case" testability 

exception handling in the software 

The current baseline is that the Instruments 
Software will be maintained in the SOC with 
the Instrument Software Subsystem (ISS); 
however during the early phases of the XMM 
mission support from the instrument 
development teams will be available ( e.g. for 
validation ) . 

3. XMM INSTRUMENT SOFTWARE 
MODULES 

This section describes briefly the various on- 
board software modules in the Instruments, 



mostly on different hardware units 
(instruments contain more than one processor 
with a maintainable software module ) : 

In the EPIC experiment SW is present in : 

a) EPIC Mos Data Handling Unit 
b) EPIC Control and Recognition 

Unit 
c) EPIC Pn Data Handling Unit 
d) EPIC Pn Event Analyzer Unit 
e) EPIC Pn Analogue Electronic Unit 

In the RGS experiment SW is present in the 
RGS Digital Electronic Unit running on the 
following processors: 

f) Instrument Controller Processor 
g) Data Pre-Processor 

In the OM Software is present in: 

h) Instrument Controller Unit 
i) Data Processing Unit 

In the following the Software Modules will be 
indicated by the above letters. These modules 
are of different size and complexity, and they 
can be classified in 2 categories: 

@ Running on what is traditionally 
identified as the Instrument Controller 
(a,c,f,h ) 

Running on secondary processor 
(b,d,e,g,i ) 

Regardless of the names used for the Units, 
we will call IC the units interfacing with the 
Spacecraft On Board Data Handling System 
(OBDH ). 

The Software Modules run on different type of 
processor: 

a MIL-STD-1750A ( a,c,f ,g,h ) 
• HARRIS 80C86 ( b,d,e 
a MOTOROLA 56001 ( i ) 

and different language are used: 

a Ada ( a,c,f,h ) 
a C ( b,d,e,i 
a Assembler 1750A ( g 

Assembler is also used on other software 
modules which are on PROM and are not 
modifiable (e.g. bootlloader code for f and h). 

4. X M M  I N S T R U M E N T  
DEVELOPMENT ENVIRONMEN'IS 
( SDE ) 

The XMM instruments are being developed by 
different experimenters across Europe ( United 
Kingdom, France, Italy, Belgien, Germany 
and Netherlands ) with some collaboration 
from USA ( RGS and OM instruments ). The 
consequence is the use of different host 
machines, target processors, languages and 
tools among the instruments. 

Figure 1 summarizes the Software 
Development Environments which are being 
used to develop the various instrument on 
board software modules. 

5. XMM INSTRUMENT ON-BOARD 
SOFTWARE MAINTENANCE 
APPROACH 

The following assumption are made: 

Instrument simulators will be available 
and they will be based on Instrument 
Controller ( ICU ) processor emulator 
running the on-board SW. 



Figure 1 ; Instrument Software Development 
Environments 

experimenter on the other hand has been based 
on the following assessment criteria : 

@ Criticality of the on-board software, 
which covers an assessment of the 
impact an erroneous software 
modification might have on the 
performance of the instrument 

@ Software complexity versus availability 
of expertise, which addresses the degree 
of expertise needed for a specific 
software maintenance during the 
commissioning and the routine 
operations phases. 

Cost aspects which addresses 

- investment costs for hardware, 
software and documentation 
including installation at the SOC 
and training of personnel 

- operations costs at the SOC 
All software modules need to be 
maintained 

6. DEVELOPMENT ENVIRONMENT 
Modification of the instrument on-board 
software cannot damage the instruments 
while the instrument is monitored from 
the ground. 

The Software delivered with the 
instrument flight model ( FM ) has been 
fully validated. 

The purpose is to outline a coherent approach 
in the frame of a plan for the maintenance of 
the software on the various on-board 
processors and during the various relevant 
phases ( development, commissioning and 
routine operations ). 

The trade-off between instrument on-board 
software maintenance at the XMM SOC on the 
one hand and maintenance via each 

The set of activities involved in the 
maintenance of the XMM instrument flight 
software will be executed at the XMM 
Scientific Operations Centre ( SOC ). 

In order to perform. these activities the SOC 
will require a common SDE which will ease 
the maintenance activities and will limit the 
costs. The development environment for the 
Instrument Software will be composed of the 
total set of Software tools used by the 
developers of the Software modules. 

All tools mentioned in the Figure 1 on section 
4 will be available for modification of the 
instruments Software to ensure compatibility 
with the implemented instrument flight 
software. 



Other tools will be used in the development of 
the Software ( e.g. AdaNice HOOD tool for 
the Architectural design of the EPIC Data 
Handling Software), but the use of such tools 
is not considered necessary for the 
maintenance, due to the limited structural 
changes in the code during the maintenance 
phase. 

The development environment will be hosted 
on the smallest set of computer needed to host 
all tools in a version equivalent to what used 
by the developers. At the moment a SUN 
SPARC and an HP9000 are needed to host all 
tools. In order to ensure that the compiled 
code produced by the SOC SDE is compatible 
with that flown during the mission it will be 
necessary to freeze the compilers version at 
the version delivered with the instrument 
Flight Model. 

A configuration management tool should be 
added in order to keep track of changes. No 
configuration information prior to delivery will 
be used. Configuration management will be 
restarted with the Software as delivered for the 
launch. 

Full documentation of the Software 
development will be available on paper as 
delivered by the developers. Electronic form 
of the documents might also be available, but 
no standard format has been mandated. 

The following will be available: 

Source code of all instrument Software 

All "makefile" and any image generation 
procedure used by the developers 

7. VALIDATION ENVIRONMENT 

The validation environment will be different 

for the various type of processors used and the 
functionality of the Software module. The 
main driver of the proposed approach is the 
high investment and maintenance costs 
associated with a SVF based on an 
Engineering or spare Flight model. 

7.1 INSTRUMENT CONTROLLER 

For ICU software ( modules a,c,f,h ), the 
capability of the instrument simulators to run 
the Software will be exploited. This solution 
does not have the fidelity of the actual 
hardware, and therefore its adoption is 
associated with an element of risk. The level 
of risk is related to the degree to which the 
instrument on-board software is sensitive to 
the flight hardware performance ( timing, 110 
performance ). 

Other solution would be the "hardware-in-the- 
loop" design, based on commercially available 
VME cards and hosting the target processors. 
This approach was discarded due to higher 
costs because additional secondary processor 
hardware is needed. 

The use of the instrument simulator as a 
validation tool has the advantage that it 
implicitly contains a realistic environment 
simulation and the means to easily vary this 
environment. The preparation for and conduct 
of validation tests is easier than for an EM 
(Engineering Model ) or  a spare FM ( Flight 
Model ) based system. 

After the unit testing and software integration, 
the new executable image of the module will 
be first executed on the 1750 processor 
emulator for simple tests. 

It will be then loaded on the instrument 
simulator, exercised by TC and stimulated by 
data files reproducing the Instrument data 



flow. The data files used in these tests are 
available from unit tests or calibration tests. 

This will allow to "partially" validate the 
Software before up-linking into the instrument. 
The settings of the instrument simulator will 
allow to simulate Hardware failure in the 
instrument. This strategy for test and 
integration causes some difficulties on real 
time embedded software, as follows : 

Emulators have limited facilities for 
exercising in real time and 
simultaneously monitor the embedded 
software 

It is often impossible to reproduce a test 
100% 

It is very difficult to create a "worst 
case" test 

@ It is difficult to exercise exception 
handling in the software 

The proposed approach is also based on the 
criticality of the Instrument Controller on- 
board software. Error in new images or 
software patches causes no damage to other 
instruments. A power on reset will bring the 
software back to the PROM reference. Full 
ground validation is not required because of 
criticality. The proposed partial validation is 
necessary due to the complexity of some 
software modules. 

7.2 SECONDARY PROCESSORS 

Modification to all other software modules 
will only be tested on the host computers and 
on the processor emulators ( b,d,e,g,i ) with 
data files generated by simulation software or 
collected during instrument testing. The impact 
of software modifications on the secondary 

processors is considered negligible. 
Additionally the XMM instrument simulator 
can not be used for validation because it does 
not emulate the secondary processors. 

Anyhow, the relative simplicity of these 
Software modules makes them easier to test 
except for timing behaviour. Furthermore, the 
modification to these modules are more likely 
to be needed during the early phases of the 
operations, because of the possible difference 
of the actual data from the expected ones. 

During the early phases of the operation (6 
months), the instrument developer teams will 
modify the software using the Instrument 
Software Subsystem at the SOC; validation of 
the Software modules will be complemented 
by the possible use of the test equipment 
available at the experimenter premises. 

After this period, if the experimenter facilities 
are not available, the Software will only be 
tested on the host computers; the last tests 
before declaring the Software operational, will 
be executed on the flying instrument using 
when possible the period of the orbit below 
40,000 Km. 

It is, however necessary, that it be 
demonstrated that changes to the instrument 
software do not adversely affect the 
performance of the system as a whole, either 
functionally or in the consumption of 
resources. This can be done by analysis ( in 
the absence of a validation facility ), or by 
demonstration. 

The responsibility for demonstrating that any 
changes to instrument software will not 
adversely affect the system will lie with the 
XMM SOC during the routine operations 
phase. 



8. CONCLUSIONS 9. RECOMMENDATIONS 

In the XMM SOC project the instrument 
software maintenance problem is tackled by 
setting up a centralised software maintenance 
facility, the ISS ( Instrument Software 
subsystem ) , which will take over the on-board 
software maintenance of all instruments when 
the commissioning phase is over. 

In order to fulfil the requirements and 
responsibilities for such facility the XMM 
SOC requires : 

Q a common Software Development 
Environment ( SDE ) compatible with 
that used by the experimenters to 
produce the flight software and 
maintainable for the mission duration. 
This common SDE will ease the 
maintenance task and will limit the costs. 

For missions with long lifetime, as XMM, 
ESA should take over post launch instrument 
on-board software maintenance. This will be 
more cost effective, since it involves only a 
marginal expansion of existing teams. It will 
also result in a better and more responsive 
service, will simplify the operational interfaces 
and will help continuity of expertise in the 
socs. 

Standardisation of Software Development 
Environments should be managed / mandated 
early in the project in order to reduce the cost 
of the maintenance environment without 
penalising the instrument developers. 
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The proposed solution is based on the analyses 
of the criticality of the XMM instrument on- 
board Software as regards instrument 
performance, on the availability of expertise at 
the SOC during the various phases of the 
mission as well as on a cost estimation. 
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This analysis defines a complete set of ground support functions based on those practiced in real space flight 
operations during the on-orbit phase of a mission. These functions are mapped against ground support 
functions currently in use by NASA and DoD. Software components to provide these functions can be 
hosted on RISC-based work stations and integrated to provide a modular, integrated ground support system. 
Such modular systems can be configured to provide as much ground support functionality as desired. This 
approach to ground systems has been widely proposed and prototyped both by government institutions and 
commercial vendors. The combined set of ground support functions we describe can be used as a standard to 
evaluate candidate ground systems. This approach has also been used to develop a prototype of a modular, 
loosely-integrated ground support system, which is discussed briefly. A crucial benefit to a potential user is 
that all the components are flight-qualified, thus giving high confidence in their accuracy and reliability. 

Introduction 

The satellite ground support domain comprises 
all ground-based (as opposed to onboard) activities 
needed to operate an orbiting spacecraft, including 
the bus and payload. It does not include such 
activities as, for example, instrument data reduction 
from a scientific satellite, image production from a 
weather satellite, or message traffic management 
from a communications satellite; although the 
ground support domain does cover capturing and 
making available the data required by such end- 
user processes. This domain also includes the 
integration of payload plans and commands into the 
overall plan for mission support. The activities 
supported by functions in this domain also differ 
during the prelaunch, launch, early mission, on- 
orbit, and end-of-1ife.phases of a mission. In this 
paper we undertake to define a complete set of 
spacecraft support functions that span the satellite 
ground support domain during on-orbit operations 
for one or more spacecraft. 

The principal motivation for this analysis is the 
belief that satellite ground control systems, 
traditionally implemented on central processor 
systems based on mainframe or mini-computers, 
can be hosted on client-server or other 
architectures, based on high-performance work- 

stations linked in networks. Such systems have 
been proposed within government organizations 
such as NASA and the Defense Department, and by 
numerous commercial firms. 

By looking at the functions covered by two of 
these proposed architectures and applying our own 
spaceflight support experience, we have 'derived a 
superset of functions that covers all the aspects of 
satellite flight support. This set of functions 
facilitates comparison among the numerous 
approaches to distributed, open-system 
architectures that have been proposed in the past 
four years. We also discuss a loosely integrated 
ground support system prototyped at CSC in an 
effort to understand how to move to a distributed, 
open-system architecture while taking maximum 
advantage of the enormous amount of existing 
flight-proven software developed for mainframe- 
and mini-computer-based ground systems. 

Spaceflight Ground Support Functions 

The ground support functions found in the two 
sources investigated for this paper are summarized 
in Table 1. The first column lists the functions 
summarized by A. R. Stottlemyer and his co- 
authors in a paper proposing distributed 
architectures for NASA ground systems 



Table 1 - Two sets of satellite ground support functions 

2 Create Satellite Support Plan 
3 Update Satellite Support Plan 

2 Remove communications artifacts 4 Configure, Test, and Verify System 
3 Spacecraft position and orientation 4.1 Verify Configuration 

3.1 Orbit determination 4.2 Test End-to-end Configuration 
3.2 Attitude determination 4.3 Configure for Operations 

4 Analysis of spacecraft operations performance 5 Perform Satellite Support 
4.1 Trend analysis 5.1 Acquisition of Signal 
4.2 Command Response 5.2 Verify Tracking 

5 Analysis of scientific instrument performance 5.3 Verify Correct Telemetry Stream 
5.4 Verify Frame Synchronization 

5.2 Measurement quality 5.5 Verify Command Link 
5.3 Calibration 5.6 Perform Planned Commanding 

6 Operations planning 5.7 Verify Satellite State of Health 
6.1 Spacecraft operations 5.8 Produce Output Products 
6.2 Instrument operations 5.9 Complete and Verify Support Activities 
6.3 Support environment operations 5.10 Log Activities 
6.4 Supporting analysis 5.1 1 Terminate Pass 

7 Spacecraft command and control 6 Deconfigure Resources 
7.1 Command generation 6.1 Deconfigure Resources 
7.2 Command validation 6.2 Verify Deconfiguration 
7.3 Command issue 7 Orbit Data Collection and Verification 

7.1 Collect Orbit (Tracking) Data 8 Scientific data analysis 
8.1 Data preparation and management 
8.2 Analysis algorithm management 8 Attitude Data Collection and Verification 
8.3 Support for data access and manipulation 8.1 Collect Attitude Data 
8.4 Product generation and distribution 

9 Data acquisition and management 9 State of Health Data Collection 
10 System resource management 9.1 Request State of Health Data 

10.1 Physical resources 9.2 Collect State of Health Data 
10.2 Operations staff 9.3 Process and Verify Data 

1 1  Integration and test 10 Orbit Determination and Planning 
10.1 Predict Orbit 
10.2 Plan Orbit Maneuvers 
10.3 Maintain Orbit Model 

1 1 Attitude Determination and Planning 
1 1.1 Plan Attitude Determination 
1 1.2 Plan Attitude Maneuvers 
1 1.3 Maintain Attitude Model 

12 State of Health Determination and Planning 
12.1 Determine State of Health 
12.2 . Plan State of Health Activities 

(Stottlemyer et al., 1993).The functions in the Satellite Control (ISC) Human Computer Interface 
second column are taken from a Defense (HCI) Working Group (ISC HCI Working Group, 
Department standard drafted by the Integrated 1993). NASA Goddard's Mission Operations 
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Directorate has also begun an extensive campaign 
to take advantage of workstation-based, distributed 
architectures for satellite ground support. 
However, this effort, called the Renaissance 
Initiative, is newly begun and it is therefore 
premature to include it in this analysis. 

These two sets of ground support functions 
represent different views of satellite ground 
support. The Stottlemyer et al. paper was written 
primarily to explore the feasibility of system 
architectures and is not meant to be an exhaustive 
analysis of the ground support domain. Their paper 
nonetheless contains a list of eleven high-level 
ground support functions that we have broken into 
subcategories to facilitate comparison with other 
function sets. This architecture analysis was one of 
the drivers of the Renaissance initiative and in this 
analysis we use it as a snapshot of the NASA 
ground support function set. 

The Defense Department function set is taken 
from an appendix of a standard drafted to define 
DoD's view of the optimum interface between 
humans and computers for satellite ground support. 
In writing this standard, these authors also found 
that they needed a generic set of satellite ground 
support functions, which appears in this appendix 
and which we have taken to represent a picture of 
DoD satellite ground support. 

In defining our superset of ground support 
functions, we made the following assumptions: 

only on-orbit operations considered in this 
analysis 
payload (instruments, e.g.) operations and 
planning not included 
integration of payload commands and 
schedules received through external 
interface included 
no particular institutional organization 
assumed, but system resources can be 
physically separated 

We created the superset of functions appearing in 
Table 2 on the next three pages by combining the 
two function sets in Table 1 and adding elements 

drawn from our own ground support experience. 
We have tried to generalize functions. For 
example, NASA places considerable importance on 
managing onboard flight recorders to maximize 
scientific data return. A more general function 
might be the optimum management of onboard 
resources, for which different operations teams 
might have varying goals such as maximum 
observation time or extended mission life, One 
purpose of our function 1.3.7, integrate commands 
to form command load, is to optimize the planned 
command load within such constraints. 

To organize the listed functions, we set up the 
seven main categories and sixteen subcategories 
shown in the light grey areas of Table 2. These 
areas are collectors of identifiable functions, which 
are in turn mapped against the other function sets. 
To facilitate comparison with reference functions, 
we have mapped them into our categories, using 
broad interpretations. Note that Stottlemyer 
functions 1.1 and 1.2 are not included, because they 
are requirements definition, hence prelaunch and 
not part of the on-orbit phase. This arrangement 
can be modified by adding or deleting lower level 
functions. As we extend this analysis to other 
mission phases, such as launch or end-of life, it is 
reasonable to anticipate that the function set will 
need modification. 

The major categories were chosen by analyzing 
the reference function sets and other models, 
seeking high-level function collectors that would 
span the entire domain of on-orbit flight operations 
and would be significant for all identifiable 
missions. These categories are discussed below. 

Defining the spacecraft state (1) in terms of a 
physical model and its state representation is the 
basis of the spacecraft mission control systems 
developed by the Altair Aerospace Corporation 
(Wheal, 1993). We have called this part of the 
spacecraft state the vehicle state (1 .I), defined by 
the collection of its telemetry values. To fully 
define the concept of the spacecraft state, we have 
added the concept of the dynamic state (1.2), 
reflecting the fundamental flight dynamics 
definition of state as a set of parameters defining 



Table 2 - Superset of ground support functions mapped against previous sets 





6.2 Calibrate Telemetry Conversions 
6.3 Correct Spacecraft Properties and Model 
6.4 Correct for Biases and Misalignment 
6.5 Calibrate Propulsion System 
6.6 Calibrate Tracking Data 
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4.2 
3.2,5,5.3 
4.2 
3.1 
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11.3, 12.3 
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7.1 Simulate Telemetry 
7.2 Simulate Tracking 

- - 

7.3 Simulate Commands 
7.4 Simulate OBC 
7.5 Simulate Vehicle State 
7.6 Simulate Dynamics State 
7.7 Simulate System Resources 
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11 
11 

-- -- 

11 
11 
11 
11 
11 

. 

4.2 
4.2 

- 

4.2 
4.2 
4.2 
4.2 
4.2 



the spacecraft position, velocity, attitude, attitude 
rates, and additional parameters needed to 
determine its dynamics. Carrying this concept to 
its logical conclusion, the process of commanding 
becomes one of making transitions (1.3) between 
states. Note that the command generation defined 
in this category refers to generating commands for 
uplink, distinguished from the command planning 
that appears in the next category. We made this 
distinction because of the potential applicability of 
rules-based systems to generating and integrating 
safe, optimized command loads. 

The concept of mission and spacecraft 
operations (2) appears in all the function sets. We 
have divided this area into two parts. Planning and 
scheduling (2.1) appear in both of the reference 
function sets. The logging and reporting (2.2) 
category is less well represented in the references. 
Here logging refers to making records of actions 
taken, plans executed, and events that have 
occurred. Reports are passed among flight team 
members and to outside parties, and are taken from 
logs, data, and analysis of data. In all the superset 
categories the low-level functions are stated as 
singular, but can be combined to make complex 
functions for multiple spacecraft. For example, 
planning an orbit maneuver might require 
optimizing fuel consumption, the target orbit, and 
tracking and communication opportunities, 
requiring iteration and integration of the individual 
functions. 

Spacecraft communications (3) is taken from 
analysis of Goddard mission operations. Ground 
R F  support (3.1) covers the functions needed to 
establish radio-frequency links between the 
spacecraft and ground controllers, including 
antenna modeling and signal management. Two 
types of data may be received: tracking (3.2), ' 

bearing position and velocity information, and 
telemetry (3.3), reflecting the vehicle state. Data 
flows to the spacecraft as commands (3.4), 
effecting state transitions. 

Large volumes of data, particularly received 
from the spacecraft and resulting from processing, 
are characteristic of the ground support domain, 

making data management (4) essential. As in most 
application domains, this category includes archive 
(4.1), retrieval (4.2), and analysis (4.3) of data. We 
have additionally added reference databa,ses (4.4) 
such as star catalogs, telemetry conversions, or 
rules for applied intelligence processing. 

As found in both reference function sets, system 
operations (5) require functions of their own. 
NASA and DoD functions differ sharply in this 
area. For DoD spacecraft, a ground support system 
deals with multiple spacecraft, while for a NASA 
satellite there is generally a dedicated ground 
system. Using one system for several spacecraft 
makes configuration (5.1) and de-configuration 
(5.2) significant problems. A NASA flight 
operations team generally relies on ground 
resources physically remote from its control center, 
unlike DoD facilities that place all the resources in 
one place. Dealing with distant antennas or 
networks requires additional communication and 
data channels for transactions with remote 
resources (5.3). 

We have added the category calibration (6)  to 
reflect the need to tune the performance of the 
spacecraft and ground support system based on data 
from past performance. Calibration results appear 
in the reference databases of category 4.4. 

There is some question whether simulation (7) is 
a part of flight operations, or a test-and-integration 
function only. We include it on the grounds that 
changes onboard the spacecraft, evolution of the 
mission objectives, and pursuit of operational 
efficiencies will make modification of the system 
and its configuration necessary, requiring testing 
throughout the mission. Also, some mission teams 
utilize simulated data for training, maneuver 
prediction, and operational activity modeling. 

Integrated Ground Support System Prototype 

In 1992, CSC began work on a prototype ground 
system proposed by R. D. Werking (Werking and 
Kulp, 1993), called the CSC Integrated Ground 
Support System (CIGSS). The goal was to 
demonstrate that the functionality needed for 



ground support could be placed on a RISC-based 
workstation under UNIX by taking maximum 
advantage of the large amount of existing ground 
support software. Components were to be re- 
hosted as necessary from other platforms and 
operating systems, and loosely integrated by 
creating file interfaces between pairs of programs. 
Components were to be drawn from the NASA 
Goddard software legacy, obtained fiom vendors, 
or developed if necessary. 

A working prototype has been developed and 
demonstrated, showing the feasibility of this 
approach and giving some insights into the 
software and system engineering needed to exploit 
the large amount of existing ground software on 
workstations. For example, B. S. Groveman and 
his co-workers have rehosted FORTRAN programs 
from IBM mainframe computers, finding the 
transition of computational modules straight- 
forward, but the creation of user interfaces more 
challenging. (Groveman et al., 1994). 

The functions originally proposed for this 
system were command and control, health and 
safety monitoring, flight dynamics, mission 
planning and scheduling, and payload data 
management functions. However, in looking at how 
to combine candidate components, we soon found 
it necessary to have a function set that enabled us to 
describe what a particular set of components could 
do in combination. This experience led us to create 
the superset of ground support functions. 

Conclusions 

We expect that future ground systems will be 
integrated from existing components, certainly with 
some modification and tailoring, but rarely 
developed through the traditional lifecycle. Long- 
time spacefaring agencies such as NASA and DoD 
possess enormous legacies of expensively acquired, 
flight-tested software, and an ever-growing number 
of commercial vendors are offering products for 
spacecraft ground support. The result is a range of 
choices for nearly all the functions needed for a 
ground support system, albeit in complicated 

combinations needing some form of evaluation and 
validation. 

We have, therefore, developed a generic set of 
ground support functions to guide evaluation of the 
functionality of components and to assist in 
choosing an appropriate set to integrate. With 
these goals in mind, we intend to extend this 
exercise in four ways. First, the ground support 
domain is large and complex, and its boundaries 
are not sharp, so we expect to adjust our functions 
as we continue its analysis. Second, we intend to 
cover other mission phases. Third, we intend to 
evaluate different operations concepts and user 
interfaces as a way to minimize operations costs. 
Finally, the function set would make a far better 
evaluation tool if it has quantitative performance 
indices, which we plan to determine through our 
continued evaluation of legacy software and COTS 
products. 

References 

Groveman, B. S., Liang, E. Y., Starbuck, R. A., 
Tamkin, G. S., & Boland, D. E. (June 1994). A 
Recommended Approach to Rehosting IBM- 
Mainframe FORTRAN Software Systems to 
UNIX Workstations, Fourth Annual CSC 
Technology Conference. Atlanta, GA. 

Integrated Satellite Control Human Computer 
Interface Working Group, Department of Defense 
(August 1993). Human Computer Interface 
Standard, Draft 1.0, Appendix A 1. 

Stottlemyer, A. R., Jaworski, A., & Costa, S. R. 
(October 1993). New Approaches to NASA 
Ground Data Systems, Proceedings of the Forty- 
fourth International Astronautical Congress, 
Q. 4.404. Graz, Austria. 

Werking, R. D., & Kulp, D. R. (September 1993). 
Developing the CSC Integrated Ground Support 
System, Poster presented at the Seventh Annual 
AIAA/Utah State University on Small Satellites. 
Logan, UT. 

Wheal, C. A. (1993). Application of State Space 
Modeling Techniques to Satellite Operations, 
Altair Aerospace Corporation. Bowie, MD. 



SOFTWARE PROCESS ASSESSMENT (SPA) 8- 
Linda H. Rosenberg, Ph.D. Sylvia B . S heppard Scott A. Butler 
Unisys Government Systems NASNGSFC University of Maryland 

10265 Aerospace Drive Code 522 Department of Psychology 
Lanharn, MD 20706 Greenbelt, MD 2077 1 College Park, MD 20742 

Abstract 

NASA's environment mirrors the changes taking 
place in the nation at large, i.e. workers are being 
asked to do more work with fewer resources. For 
software developers at NASA's Goddard Space 
Flight Center (GSFC), the effects of this change 
are that we must continue to produce quality code 
that is maintainable and reusable, but we must learn 
to produce it more efficiently and less expensively. 
To accomplish this goal, the Data Systems 
Technology Division (DSTD) at GSFC is trying a 
variety of both proven and state-of-the-art 
techniques for software development (e.g., object- 
oriented design, prototyping, designing for reuse, 
etc.). 

In order to evaluate the effectiveness of these 
techniques, the Software Process Assessment 
(SPA) program was initiated. SPA was begun 
under the assumption that the effects of different 
software development processes, techniques, and 
tools, on the resulting product must be evaluated in 
an objective manner in order to assess any benefits 
that may have accrued. SPA involves the 
collection and analysis of software product and 
process data. These data include metrics such as 
effort, code changes, size, complexity, and code 
readability. This paper describes the SPA data 
collection and analysis methodology and presents 
examples of benefits realized thus far by DSTD's 
software developers and managers. 

1 Introduction 

Effective management of software development 
projects requires continual assessment of the 
development process and the resulting software 
product. The Software Process Assessment (SPA) 
program of the Software and Automation Systems 
Branch (Code 522) of the Goddard Space Flight 

Center (GSFC) was established four years ago in 
order to promote understanding of our software 
development process and to assure the quality of 
our software products. For the purposes of this 
paper, terms are defined as follows: "software 
process" i s  the set of activities and methods 
employed in the production of software; 
"measurements" are raw data relating to the 
development effort or the software; and "metrics" 
are combinations of measurements used to quantify 
a software attribute (EEE-Std-6 10.12- 1990). 

SPA'S ~ r i m a r v  objective is to understand the 
effects Lf diffkren; life cycles, project domains, 
development languages, design methodologies, 
and management techniques on resulting software 
products. We are interested in developing a 
process model that incorporates these issues and 
that supports quality assurance and quality control. 
At present, our guide for process improvement 
involves tracking and analyzing daily activities in 
the context of our experiences and lessons learned. 
These analyses will benefit on-going projects by 
reducing development times, decreasing 
development costs, decreasing maintenance costs, 
and increasing software reliability (Baumert & 
McW hitney , 1992). Future development efforts 
will benefit by having a more accurate basis for 
predictions about development costs and 
schedules. 

The fundamental premise of SPA is that metrics 
will not be used to evaluate programmers or project 
managers. To  foster confidence among the 
programmers, each programmer and project is 
identified by an identification number to maintain 
anonymity. Through working closely with SPA 
personnel, project managers use the metrics to 
improve or evaluate current development 
techniques. Guidelines for using the metrics are 
being developed to assist managers in interpreting 
project results. 
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Figure 1: Measurable Components of the Software Process Assessment 

2 SPA Metrics: Process, Product, and Changes 

2.1 Process Metrics 

SPA involves* the evaluation of process and 
product metrics as  indicated in Figure 1. To 
evaluate process, we focus on the application of 
resources, primarily personnel effort. By 
understanding how personnel resources are 
allocated in different phases, we can begin to 
determine how a project applied a particular life 
cycle model and the effects that life cycle had on 
the allocation of effort. This information can also 
assist in determining stability of requirements by 
tracking the amount of effort that was devoted to 
requirements specification. Requirement 
specification should occur in the initial phases of a 
project's life cycle; work on requirements later in 
the life cycle may indicate instability in the project 
definition (Baumert & McWhitney, 1992; Mills & 
Dyson, 1990). 

2.2 Product Metrics 

To evaluate a product, we analyze the software 
throughout development and after releases. 

Multiple analyses allow comparisbns among 
releases and allow us to correlate effort metrics to 
change data. The frequency of analysis is 
determined by development phase and project 
manager requests. 

Product assessments include metrics such as size, 
complexity, and readability (Rombach, 1990). We 
obtain these metrics using UX-Metric from SET 
Laboratories (Set Laboratories, 1990). UX-Metric 
produces McCabe's complexity metrics, counts 
GOTOs and comments, and calculates size metrics 
(IEEE-S td 1045- 1992). 

Size metrics refer to line counts, such as total lines 
of code (including comments and blank lines) and 
executable statements (measured by delimiters). 
Because we wish to compare metrics across 
different languages, we use executable statements 
as opposed to non-comment non-blank lines 
(NCNB). Executable statements are least affected 
by programmer style (Putnam & Myers, 1992). 

Complexity metrics describe the logical structure of 
the individual code modules. We are initially 
evaluating the structure using McCabe's cyclomatic 



complexity (McCabe, 1976), and the extent of the 
use of the GOT0 statement (especially in object 
oriented design systems) (Booch, 1991). At a later 
time, we will include level of nesting, fan in and 
fan out. 

Readability metrics include the use of comments 
and the average length of variable names. Using 
comments and meaningful variable names 
contributes to the reader's understanding of code. 
Readability metrics, as well as complexity metrics, 
are cited in the literature as contributing to 
understandability of the code, an issue for code 
reading during development and for later 
maintenance of the code (Putnarn & Myers, 1992). 

2.3 Changes to Code 

Additionally, we track the types of changes made 
to the code, when they were made and why they 
were made (Baumert & McWhitney, 1992; SEL- 
87-008). Errors, usability issues, and 
modifications to requirements are all classified as 
changes. In short, a change is anything that causes 
a modification to the code once it has been 
submitted to the project library. Change data are 
collected from the time components are entered into 
the project library until the completion of the 
development effort and, sometimes, throughout the 
project maintenance phase. We are also 
investigating correlations between the number of 
changes per modulelfile and the code metrics. 

3 Data Collection 

The data collection process was designed to ensure 
that the metrics we collected would be reliable and 
relevant, i.e. the data can be used to draw valid 
conclusions and to answer specific questions 
(Baumert & McWhitney, 1992). The data 
collection forms are non-threatening, easy-to-use, 
and non-intrusive. All forms are on-line and are 
distributed and processed electronically. 

SPA uses modified versions of three forms 
developed at  NASA Goddard's Software 
Engineering Laboratory (SEL) (SEL-87-008). The 
forms were modified to encompass the range of 
activities and interests specific to the DSTD. The 
Personnel Resources Form (PRF) provides 
information about effort spent in various 
development activities. It is completed each week 
by all personnel performing either technical or 
management activities on a project. These activities 

have become an integral part of our software 
development process as opposed to mere adjuncts 
done at the discretion of the developers. 

The Component Origination Form (COF) provides 
details about an individual software module. A 
COF is completed each time a component is added 
to the system library. One area of interest is the 
number of components generated "from scratch" as 
compared to the number that are reused (or 
modified and reused) from the DSTD Reuse 
Software Library. 

The Change Report Form (CRF) describes a 
software change and provides a reason for the 
change. A CRF is completed by any person who 
implements a change to the system that involves 
modifications to components in the project- 
controlled source library. 

4 Results 

SPA data have been collected on over of thirty-five 
projects to date. The projects are diverse in 
application domain, use the waterfall or 
evolutionary prototyping life cycles, and are 
written in Ada, C, C++ or FORTRAN. Data for 
some projects were collected using the method 
described above. In other projects, completed code 
was obtained, but no process data were available. 

4.1 Resource Analysis 

The process data collection has yielded interesting 
results. One result is the use of metrics to drive the 
development of a process model. Figure 2 shows 
the total weekly hours by activity across the 
development of a C++ project currently in the third 
build. This chart can give management an 
indication of staffing requirements and can indicate 

'the effects of events such as holidays, winter 
storms, and design reviews. When data from 
several projects of this size and type have been 
obtained, we hope to be able to build a model that 
will help estimate the staffing requirements for our 
specific development environment 

Besides aiding in the development of a planning 
profile for staffing, effort data can be used as 
feedback for current development efforts. One 
measure of the stability of a development process is 
the stability of activities within a phase; earlier 
phases should be largely completed before 
subsequent phases begin. For example, once a 
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FORTRAN Modules 

Extended Cyclomatic Complexity 
Figure 4: FORTRAN Modules 

project has entered the coding phase, requirements- 
related activities should have been, for the most 
part, completed. In Figure 2, the design activity 
that begins on or about 9/3/93, was, in fact, in 
preparation for Build 2. Had this redesign been 
associated with Build 1, it would have been an 
indication of design instability and could have been 
costly to implement. 

Figure 3 shows data from the same project, but 
with a more detailed breakout of life cycle 
activities. This graph shows that all requirement 
activity was completed in the first build. This is a 
good indicator of requirement stability. 
Additionally, the large design effort for Build 1 
appears to have reduced the need for design in 
Builds 2 and 3. According to the project manager, 
the more difficult capabilities were added in Build 
2, hence a larger amount of system testing was 
needed in that build. 

4.2 Code Analysis 

Code metrics can be used for identifying code that 
may be difficult to maintain and for identifying 
modules that may need additional testing. Modules 
with high complexity and/or large numbers of 
executable statements are prime candidates for the 
most extensive testing (Set Laboratories, 1990). 

These modules also need to be well-commented for 
readability (Putnam & Myers, 1992). 

Figure 4 shows data for a FORTRAN project. 
Each square represents a module of code. This 
project contained 906 modules with a total of 
75,537 executable statements. Most of the code 
was FORTRAN 77, but some was older 
FORTRAN IV code. This older code was difficult 
to maintain, but funding to rewrite it  was not 
forthcoming. Figure 4 shows five modules (on the 
right-hand side of the graph) to be exceptionally 
high in complexity as well as being rather large, as 
measured by the number of executable statements. 
Further investigation identified those modules as 
part of the FORTRAN IV code. Using this chart, 
it was argued that code this large and complex was 
expensive to maintain, and an overall rewriting of 
the code was approved. 

For projects currently under development, an effort 
is being made to prevent outliers such as the five 
that were identified in Figure 4. Analysis of 
modules as they are entered into the project library 
allows project managers to identify modules that 
need more testing, more extensive documentation 
andfor division into more manageable components. 
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Figure 5: Number of Changes over Time by Development Phase 

4.3 Software Change Analysis 

Analyzing software changes can provide 
information about the development process as well 
as the product. In Figure 5, the black squares 
represent the cumulative changes for a C++ project 
currently in development. These changes may be 
due to planned enhancements, clarifications, 
requirements changes, or errors. It is expected that 
when this "total" curve levels off, most (if not all) 
errors will have been located, and the code will be 
ready for release. The white squares represent 
changes due to coding errors. In the initial phases, 
changes are not due to errors, but by the time of 
integration testing, most changes are the result of 
errors. Identifying trends such as this one helps us 
to allocate resources, both for testing and for error 
correction. 

5 Discussion 

The initial results of the SPA measurement-based 
process model are encouraging. We are meeting 
our objectives to learn about techniques in applying 
the life cycle in different application domains and 
with different languages. On the basis of 

management interest in the data and its application, 
SPA seems to be succeeding in supplying useful 
feedback during the development process. The 
metrics are also useful in identifying more efficient 
software development techniques. 

The paragraphs that follow contain examples of 
how SPA feedback has helped developers address 
issues in the areas of design, training, budget, and 
quality. 

Example 1: We compared two projects done by 
essentially the same personnel. On the first 
project, personnel used diagramming for both high 
level design and low level design. On the second 
project, they used diagramming on only the high 
level design and instead wrote class specifications 
in C++, the development language. Additionally, 
during low-level design for the second project, 
they standardized on very structured development 
techniques involving object-oriented programming 
and specific call-back mechanisms. Comparing 
SPA data from the two proiects helped to convince 
management that the cganges in m~thodology had, 
in fact, increased productivity. The new design 
methodology will be continued in the future. 



Example 2: SPA metrics have been used to draw 
inferences about training and staffing. Information 
on personnel activities is being used to justify the 
number of hours allocated to various activities, e.g. 
more time spent on training or more time spent 
writing requirements/specifications. The analysis 
of an Ada project indicated that more time should 
have been spent training programmers to use Ada. 
The supposition is that if more time had been 
allocated early in the development cycle to learning 
to program in Ada, the efficiency of the project and 
the resulting code would have been improved. 

Example 3: Another project we studied had 
finished under budget and ahead of schedule. One 
supposition for this outcome was that a larger 
percentage of civil service personnel had been 
added than had been projected or would normally 
have been used on a project of this size. (Only 
contractors' salaries are included in the cost of a 
project, so in a sense civil servants are "free" 
labor.) By using PRF data, we were able to 
differentiate the number of hours and types of 
activities performed by contractors and civil 
servants. As a result, management was reassured 
that the early completion of the project was, in fact, 
due to more efficient development techniques rather 
than an excess of civil servants. Because of this 
analysis, future projects will adopt these 
development techniques. 

Example 4: SPA metrics have also been used to 
settle questions about code quality. An abbreviated 
development schedule caused management to 
question the robustness and maintainability of an 
application. Using the code metrics, we 
demonstrated that the majority of the code met the 
standards used at Johnson Space Center, which is 
known for its emphasis on software quality. 
Further, the metrics were used to argue 
successfully that portions of the code were reliable 
and maintainable and should not be rewritten. 

6 Summary and Future Research 

Metrics are often viewed by managers and 
programmers as threatening, but for the past four 
years they have been successfully collected and 
used to evaluate the development process model 
and software products in the DSTD at Goddard 
Space Flight Center. We attribute this success to 
the strict adherence to anonymity of personnel and 
projects and to non-intrusive data collection 
methods. 

Although it is too early to quantify the financial 
benefits from these analyses, we have seen process 
improvements. For example, the need for training 
in object oriented design methods and in 
programming languages is determined at the start 
of new projects. Design and development 
techniques have been structured and formalized. 
Different testing methods are being identified and 
investigated. 

The design and use of a measurement-driven 
process model has been educational. Everyone has 
become more aware of the structure of the 
development cycle and the characteristics that are 
related to quality program code. Through SPA, we 
continually evaluate our processes, making 
changes and improvements as necessary. Through 
the application of metrics, we expect the software 
development process to be more efficient, more 
predictable, and we expect higher quality products 
that are easier to maintain and reuse. 

Our initial research used only a core metric set that 
focused primarily on code. There is much more to 
be done. We are working on correlating code 
metrics with discrepancy and change data in order 
to develop a baseline and tolerances that indicate 
the quality and reliability. Other code metrics, such 
as physical source statements, logical source 
statements and nesting levels are being investigated 
(Rombach, 1990). In the future we expect to use 
code metrics for certifying code before it is placed 
in the reuse library. We are also researching 
applicable metrics for other phases of the life cycle. 
The goal is to develop acceptability ranges for 
software metrics, at all phases of the life cycle, 
similar to those currently existing for hardware. 
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ABSTRACT 

During the software development life cycle 
process, basic testing starts with the develop- 
ment team. At the end of the development 
process, an acceptance test is performed for 
the user to ensure that the deliverable is ac- 
ceptable. Ideally, the delivery is an opera- 
tional product with zero defects. However, 
the goal of zero defects is normally not 
achieved but is successful to various degrees. 
With the emphasis on building low cost 
ground support systems while maintaining a 
quality product, a key element in the test 
process is simulator capability. This paper 
reviews the Transportable Payload Operations 
Control Center (TPOCC) Advanced Space- 
craft Simulator (TASS) test tool that is used in 
the acceptance test process for unmanned 
satellite operations control centers. 

The TASS is designed to support the devel- 
opment, test, and operational environments of 
the Goddard Space Flight Center (GSFC) op- 
erations control centers. The TASS uses the 
same basic architecture as the operations con- 
trol center. This architecture is characterized 
by its use of distributed processing, industry 
standards, commercial off-the-shelf (COTS) 
hardware and software components, and reus- 
able software. 

The TASS uses much of the same TPOCC 
architecture and reusable software that the 
operations control center developer uses. The 
TASS also makes use of reusable simulator 
software in the mission specific versions of the 

TASS. Very little new software needs to be 
developed, mainly mission specific telemetry 
commutation and command processing soft- 
ware. 

By taking advantage of the ground data sys- 
tem attributes, successfkl software reuse for 
operational systems provides the opportunity 
to extend the reuse concept into the test area. 
Consistency in test approach is a major step in 
achieving quality results. 

INTRODUCTION 

The TASS is a crucial test tool used in the ac- 
ceptance test process for unmanned satellite 
operations control centers (Payload Opera- 
tions Control Centers and Mission Operations 
Centers) at GSFC. The TASS is used for de- 
velopment, integration, acceptance and re- 
gression testing phases of the system devel- 
opment cycle. 

For a software delivery to be completely suc- 
cessfkl, it must meet or exceed all require- 
ments, be delivered on time, within budget, 
and with minimum defects. Typically, varying 
degrees of success are achieved, and ideally 
the software should be delivered to the cus- 
tomer with zero defects. 

To help support testing during the system life 
cycle, the TASS was designed to produce 
quality results in the testing process at the 
lowest possible cost. By utilizing proven 
testing fundamentals, commercial off-the-shelf 



products, open industry standards, reusing Communications (Nascom), and ultimately the 
software and taking advantage of the available spacecraft, through a matrix switch using pro- 
infrastructure, the TASS provides a very cost prietary Nascom lines. These systems all util- 
effective way to complete effective software ize generic core TPOCC software, a software 
testing for numerous project software deliver- reuse library, which is the basis for which the 
ies. mission software is built upon. 

TESTING FUNDAMENTALS TYPICAL TEST SUPPORT SOLUTION 

The goals of a quality software delivery is to 
meet all the requirements, with zero defects, 
on time and within budget. To ensure quality 
software deliveries during the entire system 
life cycle, effective testing is necessary for all 
phases (unit testing, integration testing, accep- 
tance testing, and regression testing). Figure 1 
depicts a typical system life cycle. 

In order to successfully test all phases of soft- 
ware development, a carefully developed test 
strategy must be used. First the test process 
should accurately identifjl defects in a cost ef- 
fective manner and perform this process in the 
shortest possible time. Likewise, availability 
of the necessary test tools has to be maxi- 
mized, and the test tool must be easy to use. 
Finally, the use of automation should be part 
of the process in order to shorten the testing 
time and eliminate human error. 

OPERATIONS CONTROL CENTER 

Next, an understanding of the operations con- 
trol center infrastructure is necessary. At 
GSFC, the operations control center is the fo- 
cal point for the health, safety, command and 
control of the unmanned satellite. The Flight 
Operations Team (FOT) commands and con- 
trols the spacecraft and monitors its health and 
safety via the ground data system. 

The design of the ground data system is based 
on the TPOCC architecture and its reusable 
building blocks. In the operations control 
center, the ground data system includes a pri- 
mary and a backup system. See figure 2. The 
architecture of each system is a distributed 
processing system consisting of a general pur- 
pose workstation, X-terminals, and a real-time 
front-end processor (FEP) connected by Eth- 
ernet. The FEP communicates with NASA 

In the operations control center development 
environment, a tool to simulate the spacecraft 
and the status messages of the ground station 
is necessary to test the operations control 
center ground data systems. The TASS de- 
sign concept is to make use of the software 
reuse library and be able to host its software 
on existing ground data systems. The TASS 
was developed with the capability to simulate 
the Nascom link protocols required to support 
various satellites, generate simulated space- 
craft telemetry streams using the operations 
control center operational data base, and re- 
spond to spacecraft commands. 

Unique implementations of spacecraft memory 
load and dump capabilities are provided. 
Network Control Center (NCC) communica- 
tions protocol are simulated for Tracking and 
Data Relay Satellite System (TDRSS) sup- 
port. In addition, the TASS validates space- 
craft commands and alters the real-time te- 
lemetry stream in response to those com- 
mands. The user has the capability to alter the 
telemetry stream either by data base mnemonic 
or by speciQing the individual bits in the te- 
lemetry frame or packet. Complexity can also 
be added by incorporating various dynamic 
models for the telemetry generating functions. 

The TASStrecords all received Nascom blocks 
and all received spacecraft commands in his- 
tory files that can be viewed for detailed 
analysis through the use of an off-line utility 
program. All system events, errors, operator 
input, procedure input recorded in the event 
log; and spacecraft memory images that are 
saved can be viewed by using the off-line util- 
ity programs. After completing the test, the 
user generates test reports using the report 
generation subsystem. These reports can later 
be used to evaluate the test results during the 
analysis process. 
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Since the test tool is used in all phases of the 
development cycle, it must be readily avail- 
able, easy to use, and cost effective. In a typi- 
cal operations control center, the design pro- 
vides for a primary and a backup system. The 
TASS was designed so that it can be hosted 
on the primary or backup system; thus taking 
advantage of the control center architecture. 
Utilizing the backup system eliminates the 
hardware cost of an additional system, the 
need for additional floor space, power, cool- 
ing, and maintenance. It also eliminates the 
need to schedule Nascom communication lines 
and an externally located simulation system 
during the software development cycle. 
Likewise, in the development facilities with 
similar architectural capabilities, the TASS can 
be hosted on any system string and is essen- 
tially available at all times. 

The hardware configuration that is used to 
host the TASS consists of two distributed 
computers connected by Ethernet and their 
associated peripherals as shown in Figure 3 .  
One of the computer systems is a real-time 
VMEbus based front-end processor. It is used 
to receive and process spacecraft commands 
and to build and transmit the telemetry streams 
utilizing the Nascom link protocols. The other 
computer is a general purpose workstation 

To minimize simuIator development cost, the 
TASS utilizes a proven software reuse library. 
A major component of the software reuse li- 
brary is the generic TPOCC software. Sev- 
enty-eight percent of the TASS software con- 
sists of these TPOCC building blocks. This 
reuse library is also the same core software 
building block for the operations control ten- 
ter. For the TASS, it is used mainly for the 
user interface (display and TPOCC Systems 
Test and Operations Language (TSTOL)) and 
the Nascom interface. Another component of 
the library used by the TASS is the TASS ge- 
neric software that is shared across different 
missions. These components account for sev- 
enteen percent of the TASS software. Finally, 
only five percent of the software is specific to 
simulating each spacecraft. Figure 4 shows a 
breakout of the TASS software reuse for a 
typical mission. To hrther increase reuse, the 
TASS utilizes many industry standards, includ- 
ing C, TCPIP, sockets, XDR, Motif, XI1 and 
RPC. 

Another major consideration in the design of 
the TASS is the user interface. First, to 
maximize usability, the TASS makes use of a 
graphical user interface (GUI) which is based 
on X Windows and fblly adheres to the indus- 
try-standard OSF/Motif principles. Since a 
major portion of the software is common be- 
tween the operations control center and the 
TASS, they maintain a consistent look and feel 
between both systems. Finally, an open dia- 
log with the TASS users is maintained in order 
to provide continued improvement in the test 
process. 

To help automate testing, user inputs from 
both the command line and the GUI are proc- 
essed by the TSTOL, the control center script 
language. By utilizing TSTOL, it is possible 
to log user inputs into a text procedure file. 
This text procedure file can be edited and is 
used to execute an automated test or repeat a 
previous test under user control. The TASS 
provides a means for saving and restoring pre- 
defined test scenarios and results, telemetry 
stream contents, and data structures. This al- 
lows the user to repeat specific tests, retest 
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with known data, or continue testing from a 
given point in the test scenario. 

Another planned feature that is being devel- 
oped to automate testing is called TestIScorel 
Report. This fbnction automates testing of the 
operations control center software in three 
areas: telemetry decommutation, spacecraft 
command processing, and spacecraft memory 
load and dump processing. The TASS system 
"tests" the operations control center software 
and provides a "score" based on the test re- 
sults. Finally, the TASS system provides for- 
matted "reports" that document each step 
performed during the test and the results of 
each step. These features help to test new de- 
liveries and perform regression testing in the 
shortest time possible. 

CONCLUSION 

By taking advantage of the ground data sys- 
tem attributes, it is possible to achieve cost 
effective quality results in testing operations 
control center software. By using proven 
testing fundamentals, industry standards, reus- 
ing available hardware and software, maximiz- 
ing usability and automation, it is possible to 
minimize the time and cost to perform quality 
software testing. 
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ABSTRACT INTRODUCTION 

The Spacecraft Control and Operations System II (SCOS II), is 
intended to provide the generic mission control system 
infrastructure for future ESA missions. It represents a bold step 
forward in order to take advantage of state-of-the-art technology 
and current practices in the area of software engineering. Key 
features include: 

Use of Object Oriented Analysis and Design techniques 

Use of UNlX , C++ and a distributed architecture as the 
enabling implementation technology 

Goal of re-use for development, maintenance and mission 
specific software implementation 

Introduction of the concept of a spacecraft control model. 
This paper touches upon some of the traditional beliefs 
surrounding Object Oriented development and describes their 
relevance to SCOS II. It gives rationale for why particular 
approaches were adopted and others not, and describes the 
impact of these decisions. 

The development approach followed is discussed, highlighting the 
evolutionary nature of the overall process and the iterative nature 
of the various tasks carried out. 

The emphasis of this paper is on the process of the development 
with the following being covered: 

The three phases of the SCOS II project - prototyping & 
analysis, design & implementation and configuration / delivery 
of mission specific systems 

The close co-operation and continual interaction with the 
users during the development 

The management approach - the split between client staff, 
industry and some of the required project management 
activities 

The lifecycle adopted being an enhancement of the ESA 
PSS-05 standard with SCOS II specific activities and 
approaches defined 

An examination of some of the difficulties encountered and 
the solutions adopted. 

Finally, the lessons learned from the SCOS II experience are 
highlighted, identifying those issues to be used as feedback into 
future developments of this nature. 

'This paper does not intend to describe the finished product and its 
operation, but focusing on the journey to arrive there, 
concentrating therefore on the processes and not the products of 
the SCOS II software development. 

scos m 
SCOS II (Spacecraft Control and Operations 
System IT), ref. [10][11][12][13] is the latest of 
ESA's (European Space Agency), efforts to 
increase standardisation and reuse within its 
control systems. SCOS II has as a predecessor 
SCOS I which provides standard functionality 
for the telemetry processing chain and various 
data management features. These standard 
features such as telemetry displays, out of limits 
checking, database maintenance etc. were 
provided as a collection of middleware routines 
and tasks around which a mission would build 
its Telecommanding chain and any other mission 
specific components. SCOS I uses as front-end, 
non standard, custom built workstations 
connected to centralised VAX computers. An 
enhancement to SCOS I which has recently 
been made available provides the same 
underlying functionality but using Sun 
workstations connected to the VAX's. 

SCOS II goes some steps further. In addition to 
the functions provided by SCOS I, it not only 
provides standard telecomrnanding facilities but 
is also designed to allow much more mission 
specific customisation of the kernel system. This 
customisation is readily available as a result of 
the Object Oriented approach and underlying 
technology adopted, and is outlined in the 
sections which follow. 

Martin Symonds (martin@msymonds.demon.co.uk), Steen Lynenskjold (steen@acm.org) and Christian Muller (crnueller@esoc.bitnet) are 
currently assigned to the European Space Operations Centre in Darmstadt, Germany. They have worked for CRI on the management, 
analysis, design, implementation and testing of the Application part of the SCOS II project under a contract with the European Space Agency. 



The approach taken by the SCOS I1 project was 
designed to provide the maximum benefit from 
use of current "State of the art" tools and 
techniques in the field of Software Engineering. 
These were not chosen for their own sake, but in 
order to deliver very real benefits to the 
development lifecycle and the final SCOS II 
products. In particular, the use of Object 
Oriented Analysis and Design techniques, and a 
move towards an open distributed architecture 
based on the use of C++ running under Solaris 
on Sun workstations, complemented each other 
well. In addition, tools such as those used for 
user interface design and implementation helped 
the prototyping and user requirements definition 
considerably. 

Probably the most important design driver was 
that SCOS 11 should be generic. That is, not only 
should it make use of the available technology 
and the re-usability provided by object 
orientation, but it should also ensure that the re- 
use is embedded in the design and not just the 
implementation. 

For example, one can imagine the system 
needing to know about gyros, heaters and 
thrusters. To use the object oriented approach 
one could implement these as separate classes 
and then specialise from them in order to make 
different kinds of gyro, heater and thruster. The 
SCOS I1 approach however has found a way to 
ensure that gyros, heaters and thrusters can all be 
specialised from a single parent, called the 
System Element. The adopted client-server 
concept plus the distributed architecture brings a 
flexible system with high performance. It is 
these extra steps which will deliver some of the 
real power and benefit of SCOS 11. 

OOAWOD 
As well as the standard functional goals and 
requirements of a satellite control system, SCOS 
I1 has a number of other goals for ESA/ESOC. In 
particular these are centred around the concept 
of reuse of the software and tools used during 

the requirements definition, development and 
maintenance phases of SCOS II. SCOS 11 is also 
required to allow easy mission specific 
customisation of the kernel whilst providing for 
the mission specific components to be optionally 
later included into SCOS II. This is achieved by 
implementing a building block approach for both 
the design and use of SCOS 11. 

Previous Mission 

1 = Re-use Existing Soflware 
I 
New Mlsslon Control System 

Figure 1 : SCOS I1 Building Block A ~ ~ r o a c h  

The concept behind this will allow a control 
system to be put together from the SCOS 11 
supplied components, modified SCOS 11 
components and mission specific components. 
This approach is illustrated in Figure 1 where the 
final components of the system are shown as 
being built from each of the various sources. 
This building block approach is supported by the 
use of C++ and the class libraries that the SCOS 
11 project provides, allowing a "mix and match" 
approach to system construction as shown in 
Figure 1. 

In addition to the goals and expected benefits for 
the developers, there are also changes occurring 
for the users. These changes include increased 
involvement in the analysis and design process, 
the capability to represent and control their 
spacecraft through the use of a model and 
changes in the physical appearance of the 
system. 



One of the most significant changes that SCOS the design specification; extending results of 
I1 users have had to come to grips with is the analysis phase 
change in emphasis between focusing on the 
mechanisms used for controlling the spacecraft 
to focusing on the spacecraft itself. For example, 
the tendency in the past has been to think of 
commanding and monitoring of the spacecraft in 
terms of telecommands and telemetry, whereas 
the SCOS II approach encourages focus on the 
actual spacecraft and its components, i.e. those 
objects being commanded or monitored (gyros, 
heaters, thrusters etc.). This manifests itself 

Maintenance and operations - Promoting 
reuse of developed components; concealing 
low level code changes. 

These advantages can be considered a result of 
the tools, methodology and languages used. In 
particular the object oriented concepts of 
encapsulation, inheritance and polymorphism 
allow a number of the advantages listed above to 
be realised. 

primarily as a consequence of the Object The object oriented approach also supports an 
Oriented and Design which iterative lifecycle where iteration is considered 
allows the spacecraft model to be developed as part of the analysis and design process as further 
part of the tasks carried out by the users when detail is added to the analysisldesign model. 

the system' These Figure 2 below shows the iterative nature of the 
features allow the easy expression of physical, lifecycle approach taken, which can be compared 
thermal and electrical relationships as well as with the traditional waterfall lifecycle in Figure 
abstract relationships as and when required by 2 

J. 

the users. 

OBJECT ORIENTATION 

The concepts of object orientation have been in 
the software industry for some years now but it 
is only recently that the tools, methods and 
experience have become readily available to 
allow the widespread take-up of this approach 
and the techniques it supports. The benefits of 
object orientation permeate the entire software 
development lifecycle, from the analysis of user 
requirements through to maintenance and 
operations. The major advantages of object 
orientation within the software development 
lifecycle can be summarised as follows: 

Analysis of Problem Domain - Allowing a 
better understanding of the problem domain; 
encouraging userlanalyst interaction; 
providing a basis for evolution towards the 
design and implementation 

Design of solution - Encouraging 
identification and utilisation of underlying 
commonality within the problem domain; 
providing a means of concealing changes to 

Fi~ure  2 : Obiect Oriented Lifecvcle 

The major difference is that iteration and 
feedback is a fundamental part of the object 
oriented lifecycle, whereas for the traditional 
waterfall lifecycle, this feedback is generally 
only permitted to rectify errors. The object 
oriented approach allows the analysis results to 
be gradually expanded and refined with 
successive layers of detail until the design is 
complete. It is hence of outmost importance to 



define each iteration and its products as part of 
the planning cycle. 

Feedback to 
previous phases is 
allowed to address 
errors. 

I 
Figure 3 : Traditional Waterfall Lifecvcle 

SCOS I1 

In order to satisfy the demands placed upon 
SCOS 11, the project was approached in two 
phases. In the first phase, the technology to be 
used was proven in terms of functionality and 
performance, and the initial analysis work was 
carried out in conjunction with a significant 
amount of user interface prototyping. 

Once the technology had been proven and the 
initial analysis performed, the project moved 
into its main development phase which saw the 
underlying technical services being provided and 
the analysislprototyping activities moving 
forward into design and implementation of those 
generic parts of the system identified in the 
analysis. 

Whilst the initial phase was not a pilot project as 
such, it did allow the project team to get to grips 
with the technology, tools and problem domain, 
providing them with the means to determine the 
route to the system goals as part of the second 
phase. 

The project team structure saw a peak of some 
20 software engineers. Of these, 5 were client 
staff responsible for the overall management, 

technical management and system testing 
support. Industry was represented by two 
consortia, each of 3 companies with clearly 
defined responsibilities. The Application Team 
was responsible for providing the analysis of the 
problem domain and for ensuring that the users 
functional requirements were satisfied. This 
team also carried out extensive functional 
prototyping and is responsible for delivering 
SCOS IT applications. The second industry team 
was responsible for providing the low level 
technical infrastructure such as software to 
handle the transmission and caching of data 
across the network. 

DEVELOPMENT APPROACH 

In describing the development approach, it is 
necessary to understand the standard ESOC 
activities, how these activities were mapped on 
to the phases adopted by SCOS II, the modified 
lifecycle used by SCOS 11 and what were the key 
features of the development under these 
constraints. 

Activities 
ESA software development projects are 
developed according to the ESA Software 
Engineering Standards, ref. [9]. These standards 
recognise five phases of the development 
lifecycle known as: 

User Requirements Definition - definition 
of the problem domain to be solved by the 
system to be procured 

Software Requirements Definition - 
Analysis of user requirements to define a 
model to allow satisfaction of these 
requirements 

@ Architectural Design - Design of the 
hardware and software architecture 
including data and control flow 

e Detailed Design - Design, code and test of 
the system design 



Transfer - Installation of software in target 
environment; performance of acceptance 
testing 

These have traditionally been performed using 
the traditional waterfall lifecycle shown in 
Figure 3. 

Whilst this is a well proven method, it has a 
number of difficulties and inconsistencies. These 
are emphasised when attempting to use this 
approach in an object oriented environment. The 
major difficulty is that in the waterfall lifecycle, 
the output from one phase is the major driver for 
'the following phase, and to a large extent stands 
alone. The object oriented approach however 
encourages successive refinement of the initial 
analysis model right through to the code, without 
being able to easily produce the corresponding 
breakpoints of a traditional lifecycle. This is 
demonstrated by Figure 4 which shows how the 
relationship between the successive phases of a 
traditional approach is less closely coupled to its 
previous phase than that of an object oriented 
lifecycle. 

With the waterfall approach, there are clearly 
defined deliverables at the end of each phase, 
which stand alone. With the object oriented 
approach, each iteration sees further refinement 
and not necessarily a specific stand alone 
product. Each iteration product should be 
defined in a manner that it is tangible; hereby 
giving the management the necessary 
information to monitor progress. 

A /F\ Traditional Waterfall 

00 Iterative Evolution 

Firmre 4 : Use of Lifecycle Products 

Phases 
The SCOS II approach required that the 
development be object oriented yet maintain, 
wherever possible, a correspondence to the ESA 
PSS-05 phases and deliverables. This was not 
easy and became more challenging as the project 
progressed. 

The prototyping and analysis phase 
corresponded closely in some ways to the 
traditional lifecycle with the SCOS II 
development team producing an object oriented 
SRD (Software Requirements Document), ref. 
[2]. It was found that the nature of the object 
oriented analysis was such that the SRD 
activities could in fact be performed in parallel 
with the URD, with final SRD updates lagging 
behind the final release of the URD. During this 
phase, extensive iterative prototyping took place 
in order to: 

help elicit user requirements 

define user interfaces. 

This proved to be a valuable exercise for the 
users. 

The methodology followed for this analysis 
phase was the CoadIYourdon method, ref. 
[5]  [6] [7]. The object/class diagrams were 
created using the OMTool product which uses 
the Rumbaugh notation, ref. [3]. 



The Design and Implementation phase saw traditional documents. This reflects the lifecycle 
SCOS II covering the traditional ADIDD comparison diagram in Figure 5. This is also 
activities. Once more the nature of the object discussed in ref. [4]. 
oriented approach is such that it was found that 
the SRD was more detailed than a traditional 
SRD and addressed a level of detail not normally 
found until AD activities. Similarly, the AD 
documentation progressed to a point where 
traditional DD issues were being addressed. It 
was also noted that the coding and detailed 
design activities were highly iterative, allowing 
the design and software to evolve together and to 
take into account feedback from users. 
Integration however has been more of a 
continuous process rather than one which 
progresses in clearly defined stages. 

The next phase of the project which will 
commence in late 1994, will be to continue roll- 
out of the SCOS 11 kernel in readiness for 
customisation and enhancement by its first client 
missions. These deliveries will consist mainly of 
collections of C++ class libraries that will be 
used by the client missions as a basis for their 
custom and mission specific software 
development. 

Lifecycle Considerations 
The mismatch between the traditional lifecycle 
and that encouraged by the more iterative object 
oriented lifecycle continues to be a source of 
frustration. It is not easy to present documents 
for external review that correspond to some 
degree with the contents of traditional 
deliverables of that phase. Whilst less detail 
could have been documented during the SR and 
AD phases, the nature of the approach stimulates 
an analysis philosophy that repeatedly drops 
down into detail and back up again. It would be 
inefficient to ignore or document this 
information in another fashion. 

A 

Manpower Effort 
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Time 

Fi~ure 5 : Com~arison of Traditional vs. Obiect 
Oriented Lifecvcle Phases 

Figure 5 shows some interesting comparisons 
between the traditional lifecycle and the object 
oriented lifecycle. In particular it demonstrates 
the 00 approach reaching the same level of 
detail overall, but dropping down much sooner. 
Similarly, the corresponding amount of effort for 
an object oriented approach seems to occur 
rather earlier in the development cycle with the 
maintenance level is expected to be less. 

SCOS 11 was able to take advantage of the 
possibility of overlapping phases. Thus whilst 
the UWSWADIDD phases have overlapped this 
has not appeared to hinder development at all. 
This is something of a two edged sword; on the 
one hand it allows rapid progress towards an 
initial version/prototype, while on the other it 
does make the project management more 
complex. 

Whilst SCOS II has produced documentation for 
review, such as the SRD, it has always been 
clear that the level of detail contained in these 
documents has generally been higher than the 



Key Features 
To summarise, the key features of SCOS I '  
which have made it a success include: 

Prototyping - This helped considerably to 
elicit requirements, define interfaces and to 
demonstrate progress to the users. 

The iterative approach - Allowing frequent 
tangible results during both the analysis and 
design phases. 

0 High level (Analysis and Design) - 
Manifested through successive 
refinement of the analysis model and 
refined user requirements. 

0 Low level (Coding and Delivery) - 
Allowing successive deliveries to 
provide increased functionality. 

Object Orientation 

0 User interaction 1 co-operation (Through 
the Analysis Model) - Providing 
increased visibility of the design 
process, for the users and increased 
visibility of the problem domain for the 
developers. 

0 Software Modularity - the 
implementation of the building block 
concept providing clean mechanisms for 
mission specific control systems. 

Management approach 

0 3 groups (client and two teams from 
industry) - Allowing diverse skills to be 
brought to bear on a challenging, state of 
the art project. 

0 split into technical and applications 
areas - Allowing clearly defined 
responsibilities 

0 one infrastructure (bottom up) - Starting 
from the available technology and 
providing services for the applications. 

CONCLUSION 

SCOS I1 is now well on the way to completion. 
It is a suitable opportunity to take a look back 
over the past couple of years and with the benefit 
of hindsight, draw some conclusions from the 
route that we have travelled. 

The project may cost some 50% less than its 
predecessor infrastructure (SCOS I and MSSS)It 
is clear that the approach, technology and tools 
used have led to greater productivity in many 
ways. 

The extent to which the benefits of ease of 
maintenance and later re-use will be realised, 
remains to be seen in client project applications. 
Based on the experience of flexibility to change 
and extent of re-use throughout the development 
phase, we have considerable confidence that this 
will be achieved 

In retrospect it would have been immensely 
useful to have been able to develop a small pilot 
project. This would have enabled a number of 
management, analysis, design, implementation 
and standards issues to be resolved before SCOS 
11 commenced. As it was these had to be 
addressed as part of the ongoing project work 
and sometimes distracted and indeed disrupted 
progress. To tackle a project of this nature and 
complexity where little appropriate expertise 
was available, and to add an increased level of 
complexity by making the SCOS II goal a 
generic system, is a high risk strategy. That this 
strategy is starting to pay off is a remarkable 
tribute to the skills and dedication of the people 
involved in the project. 

0 one requirements (top down) - Starting 
from the requirements and implementing 
using the provided infrastructure 
services. 
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ABSTRACT 

The Earth Observing System (EOS) 
Data and Operations System (EDOS) 
Project is developing a functional, 
system performance model to support 
the system implementation phase of 
the EDOS which is being designed and 
built by the Goddard Space Flight 
Center (GSFC). The EDOS Project 
will use modeling to meet two key 
objectives: 
(1) Manage system design impacts 
introduced by unplanned changes in 
mission requirements and (2) evaluate 
evolutionary technology insertions 
throughout the development of the 
EDOS. To select a suitable modeling 
tool, the EDOS modeling team 
developed a n  approach for evaluating 
modeling tools and languages by 
deriving evaluation criteria from both 
the EDOS modeling requirements and 
the development plan. Essential and 
optional features for an  appropriate 
modeling tool were identified and 
compared with known capabilities of 
several modeling tools. Vendors were 
also provided the opportunity to model 
a representative EDOS processing 
function to demonstrate the 
applicability of their modeling tool to 
the EDOS modeling requirements. 

This paper emphasizes the importance 
of using a well defined approach for 
evaluating tools to model complex 
systems like the EDOS. The results of 

this evaluation study do not in any 
way signify the superiority of any one 
modeling tool since the results will 
vary with the specific modeling 
requirements of each project. 

INTRODUCTION 

A set of criteria specific to EDOS 
modeling requirements was developed 
for evaluating and selecting the most 
suitable modeling tool. These criteria 
identified potential strengths and 
weaknesses of modeling tools which 
would affect the EDOS model 
development time, enabling the team 
to initially screen each product prior to 
evaluating its capabilities in detail. 
This approach ensured timely 
adjustments to the overall EDOS 
modeling plan based on manpower 
estimates for implementing a useful 
EDOS model with the chosen tool. 

The EDOS modeling tool evaluation 
criteria were divided into two 
categories, essential and optional. 
Essential criteria (e.g., modeling of 
high data rates) identified the 
modeling tools which could 
satisfactorily support the development 
of the EDOS model. Optional criteria 
(e.g., model software configuration 
management support) were used to 
identify modeling tool features which 
could aid in  developing and operating 
the EDOS model by its users. A 
ranking and weighting scheme 



enhanced the evaluation process 
further, ensuring that major 
differences between modeling tools 
were well understood by the modeling 
team. The evaluation approach was 
even further refined by requesting 
each prospective vendor to develop a 
sample model of a representative 
EDOS function and demonstrate the 
tool capabilities considered critical for 
developing the EDOS model. These 
demonstrations provided additional 
modeling tool discriminators, 
improving the team's understanding of 
the tool capabilities and enabling them 
to adjust the evaluation scores 
accordingly. A detailed matrix of 
evaluation results was developed on 
an EXCELTM spreadsheet. 

Major categories of the evaluation 
criteria included: Simulation data 
collection and generation of results, 
ease of model development, 
architecture representations (e.g., 
hardware, software, and data), user 
interface, additional development 
effort (necessary to compensate for 
modeling tool limitations and meet 
satisfactory requirements), model 
execution control, tool reliability, 
model platform choices and execution 
speed, documentation and training, 
vendor support, and portability of 

developed models. Additional criteria 
included modeling tool licensing and 
training costs, annual maintenance 
fees, and inherent risks (e.g., tool 
immaturity). The modeling tool with 
the best combination of evaluation 
score, least additional manhours 
estimated, and least implementation 
risk was selected as the most suitable 
tool for modeling the EDOS. If the 
evaluation results in more than one 
technically compliant candidate, then 
cost may well become the major 
deciding factor in the selection 
process. 

The NASA 1 CSC EDOS modeling 
team consisted of experienced system 
engineers, each with a t  least ten years 
of experience in developing functional 
system performance models on various 
projects. Because of their current 
knowledge in the modeling field, they 
were readily able to identifj a number 
of potential candidates for modeling 
the EDOS. Seven modeling packages 
and two modeling languages were 
identified as potential candidates. 
These were either commercial-off-the- 
shelf (COTS) items or available 
through NASA GSFC. Table 1 lists 
the candidate modeling packages and 
languages, in alphabetical order. 

Table 1: Candidate Modeling Tools for EDOS 



EVALUATION APPROACH 

The EDOS modeling team developed a 
well defined, structured approach to 
evaluate modeling tools, consisting of 
the following activities: 

Defining evaluation criteria 
* Identifying available modeling 

tools 
* Screening modeling tools against 

essential criteria 
* Evaluating modeling tools in 

detail 
* Requesting vendors to model a 

sample processing function 
* Selecting the most suitable 

modeling tool for EDOS 

Defining Evaluation Criteria 

The EDOS modeling requirements 
document and the EDOS modeling 
plan were used in identifying and 
defining a uniform set of evaluation 
criteria for modeling tool packages and 
languages. A total of 12 evaluation 
categories (EC) consisting of 101 
essential features and 24 optional 
features were identified. The 
categories are listed in Table 2. 

Identifying Available Modeling 
Tools 

Identifying suitable modeling 
packages and languages as potential 
candidates for modeling the EDOS 
was the second step. The experience 
of the modeling team members, as well 
as a search of available literature, 
produced several candidates. This was 
not intended to be an exhaustive 
search and many packages were not 
identified simply due to the lack of 
available time. 

Screening Modeling Tools against 
Essential Criteria 

All candidate modeling tools were 
evaluated against the essential 
criteria. After an initial screening, 
several modeling packages and 
languages designed for specialized 
applications (such as packet 
switching) were clearly not suitable 
for modeling the EDOS and were 
rejected from further consideration. 

Detailed Evaluation of Modeling 
Tools 

The detailed evaluation assessed the 
capabilities of each modeling tool 
qualitatively. The following scoring 
scheme was used in the detailed 
evaluations. 

Scoring Scheme 

A scoring scheme, ranging from "0" to 
"5", was used to evaluate the modeling 
tools in detail: 

0: The modeling tool has no capability 
(fail). 

1: Only minimal (poor) capability is 
provided, requiring extensive work to 
overcome the problem. The additional 
effort was estimated and included in 
the detailed evaluation matrix. 

2: The capability is less than satisfactory 
(fair), requiring some work 
compensate for the deficiency. The 
additional effort was estimated and 
included in the detailed evaluation 
matrix. 

3: The tool provides a satisfactory 
(average) capability. 

4: The tool provides more than a 
satisfactory (good) capability. 

5: The tool provides an excellent 
capability. 



Table 2: EDOS Modeling Tools Evaluation Criteria 

model structure 

flexibility of simul 

support personnel 



Assessment sf Additional 
Development EEort 

Modeling tool capabilities earning a 
score of 1 or 2 were considered 
deficient. The EDOS modeling team 
carefully reviewed these deficiencies 
and assessed the feasibility of 
correcting them with additional 
development effort. Previous model 
development experience with similar 
modeling packages and languages 
aided in assessing the number of 
manhours required to compensate for 
any shortcomings. Consulting with 
modeling tool vendors also aided in 
arriving a t  the most conservative 
estimates for correcting the 
deficiencies, if possible. 

Modeling of a Sample Processing 
Function 

This step of the evaluation approach 
was invaluable in the selection 
process. The EDOS modeling team 
prepared a sample modeling problem, 
generic In nature, representing an 
aggregation of typical processing 
functions required for EDOS. Each 
modeling tool vendor was asked to use 
the sample processing function to 
prepare a sample model, without cost 
to the project, to demonstrate the 
capabilities of their tool in support of 
the evaluation. Four vendors chose to 
model the sample processing function 
free of charge to demonstrate the 
capabilities of their tools; two did not 
(three did not pass the initial 
screening). Models of the sample 
function were not developed with 
modeling languages because of the 
extensive effort required by CSC 
personnel. There were no 
disqualifications of modeling package 
or modeling language vendors if they 
chose not to develop and demonstrate 

the sample processing function model. 
However, the demonstrations of the 
sample model enabled the EDOS 
modeling team to accurate assess the 
capabilities of those vendors' modeling 
tools. 

Selection of the Most Suitable 
Modeling Tool for EDOS 

All modeling tools meeting all 
essential criteria participated in this 
final evaluation activity. The 
following steps were used to identify 
the most suitable modeling tool for 
EDOS: 

a. The total score for each 
modeling tool was calculated by 
adding all scores for each 
evaluation category (a total of 
12). 

b. The total effective cost for each 
modeling tool was calculated by 
adding modeling tool software 
cost, training cost, and cost for 
maintaining the tool for four 
years. 

c. The total additional 
development effort required to 
compensate for deficiencies of a 
modeling tool and to improve its 
performance to a satisfactory 
level was calculated. 

d. A risk factor (low, medium and 
high) for each modeling tool was 
assessed based on the results of 
detailed evaluation and the 
amount of additional 
development effort (manhours) 
required to improve the tool 
performance to a satisfactory 
level. 



e. The modeling tool with the best 
combination of detailed 
evaluation score, lowest 
manhours for additional 
development effort, and least 
implementation risk was 
selected as the most suitable 
tool for modeling the EDOS. 

S OF EVALUATION 
RESULTS 

Of the nine candidate modeling tools, 
only six: BONeS, DSDS+, OPNET, 
QASE RT, ECSS 11, and GPSS V were 
fully evaluated. The development 
manhour estimates for the two 
modeling languages, ECSS I1 and 
GPSS V were beyond the scope of the 
modeling schedule. Of the remaining 
four modeling packages, DSDS+ and 
QASE RT were chosen as the most 
cost effective modeling tools which 
meet or exceed the EDOS modeling 
evaluation criteria. The data stream 
feature of DSDS+ enables modeling of 
scenarios spanning several days and 
weeks. The separate HW and SW 
architecture components of QASE RT 
provide a more realistic, graphical 
representation of the EDOS. 

LESSONS LE ED 

The following key lessons were learned 
while evaluating the modeling tools for 
EDOS: 

1. The modeling tool criteria should be 
developed from the modeling 
requirements and objectives specified 
for a candidate system. Therefore, 
system requirements and plans 
describing the modeling objectives 
should be complete before defining the 
modeling tool evaluation criteria. 

the essential and optional features 
considered. Non-critical requirements 
having little impact on the system 
development must not be allowed to 
influence the modeling tool selection. 

3. Predetermining optional features 
desired can prevent the evaluation 
process from being misled by a single 
interesting aspect of a modeling tool. 
Several tools had spectacular features 
which, while very impressive, were not 
applicable. 

4. Vendor development of a sample 
model of a representative system 
function to demonstrate the real 
strengths and weaknesses of a 
modeling tool can ease the completion 
of the modeling tool evaluation work 
in a single demonstration session. 

5. The best results are achieved by 
team evaluation of modeling tool 
capabilities, which aids in balancing . 
any bias. 

6. There is no perfect modeling tool 
for any system. Use of additional 
effort, if not major, should not be 
overlooked for overcoming minor 
deficiencies of an otherwise robust 
modeling tool before eliminating it 
from further consideration. 

7. The number of discrete events 
required for modeling a function has 
an extremely detrimental effect on the 
runtime ratio between simulated time 
and real time, due mainly to the 
exceptionally high packet rates. While 
this risk is dependent upon the speed 
of the platform selected, ways should 
be investigated early on to minimize it 
by properly designing the model's 
structure. 

2. The modeling tool evaluation 
criteria should carefully distinguish 
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ABSTACT 
This paper describes the SOHO Instrumenters' 
Operations Facility (EOF) project. The EOF is 
the element of the SOHO ground system at the 
Goddard Space Flight Center that provides the 
interface between the SOHO scientists and the 
other ground system elements. This paper first 
describes the development context of the 
SOHO EOF. It provides an overview of the 
SOHO mission within the International Solar- 
Terrestrial Physics (ISTP) project, and 
discusses the SOHO scientific objectives. The 
second part of this paper presents the 
implementation of the SOHO EOF, its 
innovative features, its possible applications to 
other missions, and its potential for use as part 
of a fully integrated ground control system. 
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INTRODUCTION 
The SOHO mission is part of the ISTP 
program. The SOHO EOF is the focal point 
for instrument operations, experiment planning 
and science data analysis. The EOF will 
support the instrumenters in three main 
functional areas: (1) commanding and 
monitoring of the instruments' health and 
safety, (2) receiving and archiving telemetry 
data, and (3) planning and scheduling of 
coordinated scientific observations. The 
particularities of the SOHO mission have 
dictated and influenced the design of the ECS. 

This paper presents the software design for the 
ECS as well as the physical architecture of the 
EOF. It also discusses the various choices 
made, cost savings and risk mitigation realized 
and the possibilities of reuse of the SOHO 
EOF for other missions. 

SOHO MISSION OVERVIEW 
The ISTP program is an international space 
exploration program involving spacecraft built 

and managed by the National Aeronautics and 
Space Administration (NASA), the European 
Space Agency (ESA) and the Institute of Space 
and Astronautical Science (ISAS). This space 
program is coordinated with ground-based and 
theory investigations. Its intent is to 
coordinate worldwide studies of Sun-Earth 
plasma interaction, solar and heliospheric 
physics and global geospace physics. The 
ISTP program involves several spacecraft: 
SOHO, the Plasma Turbulence Laboratory 
(CLUSTER), the Geomagnetic Tail 
(GEOTAIL), the WIND spacecraft and the 
POLAR spacecraft. 

SOHO is a joint venture between ESA and 
NASA: ESA provides the spacecraft that is 
built and tested in Europe and NASA provides 
the launch vehicle, launch services and the 
ground segment to support all pre-launch 
activities and in-flight operations. SOHO is 
scheduled to be launched in July 1995 and will 
be injected in a halo orbit around the L1 Sun- 
Earth Lagrangian point, about 1.5 million 
kilometers sunward from the Earth. The 
SOHO spacecraft will be three-axis stabilized 
and pointing to the Sun. The total mass will be 
about 1350 kg and 750 Watts power will be 
provided by the solar panels. The payload will 
weigh about 650 kg and consume 350 Watts in 
orbit. 

The SOHO mission duration is 2 years and 5 
months and will consist of three main phases: 
(1) Launch and early orbit phase which starts 
at liftoff and includes the coasting period in 
parking orbit. 
(2) Transfer trajectory phase during which the 
spacecraft will travel from Earth orbit to the 
halo orbit (Some science observations may 
begin during this phase). 
(3) Halo orbit phase which starts with the 
commissioning of the service module and the 
on-board instruments (approximately one 
month), after which the nominal routine 
operations will start for a duration of at least 2 
years. 
SOHO is equipped with sufficient on board 



consumables for an extra four years in orbit. 
SOHO will carry eleven on-board instruments. 

SOH0 Scientific objectives 
The SOHO scientific objectives are to study (1) 
the structure (density, temperature and velocity 
fields) and dynamics of the outer solar 
atmosphere, (2) the solar wind and its relation 
to the solar atmosphere, and (3) the structure, 
chemical composition, and dynamics of the 
solar interior. 

SOHO will carry a set of telescopes to study 
phenomena initiated below the photosphere, 
and propagating through the photosphere, 
chromosphere, and transition region into the 
corona. They will investigate problems such 
as how the corona is heated and transformed 
into the solar wind that blows past the Earth. 

Spectrometers will study the emission and 
absorption lines produced by the ions present 
in the different regions of the solar 
atmosphere, allowing to determine densities, 
temperatures and velocities in the changing 
structures. These measurements will be 
complemented by the "in situ" study of the 
composition and energies of the solar wind: 
particle detectors will sample the solar wind as 
SOHO passes through it. 

While the solar interior is the region that 
generates the kinetic and magnetic energy 
driving outer atmospheric processes, almost no 
direct information can be obtained about any 
region below the photosphere. The neutrinos 
generated by the nuclear reactions taking place 
in the core, are the only direct radiation that 
reaches us from below the photosphere. 
Helioseismology is a relatively new technique 
developed in the last two decades, allows us to 
study the stratification and the dynamic aspects 
of the solar interior. It analyses the acoustic 
and gravity waves that propagate through the 
interior of the Sun and can be observed as 
oscillatory motions of the photosphere. The 
analysis of these oscillations allow us to 
determine the characteristics of the resonant 
cavities in which they resonate, much in the 
same way as the Earth's seismic waves are 
used to determine the structure of the Earth 
interior. To study the solar interior, SOHO 
will carry a complement of instruments whose 

aim is to study the oscillations at the solar 
surface by measuring the velocity (via the 
Doppler effect) and intensity changes produced 
by pressure and gravity waves. This requires 
both high resolution imaging and long 
uninterrupted time series of observations. In 
addition, because it is of prime importance to 
understand the structure of the Sun in relation 
to the oscillation measurements, the total solar 
irradiance and its variations will be measured. 

SOH0 Instrumentation 
The SOHO instruments can be divided into 
three main research groups: helioseismology, 
solar atmospheric remote sensing, and "in situ" 
solar wind measurements. Table 1 provides a 
list of the eleven SOHO instruments, indicating 
the corresponding research group and the 
primary institution responsible for their 
development. 

The helioseismology instruments, GOLF, MDI 
and VIRGO, primarily aim at the study of 
those parts of the solar oscillations spectrum 
that cannot be obtained from the ground 
because of noise effects introduced by the 
Earth's diurnal rotation as well as the 
transparency and seeing fluctuations of the 
Earth's atmosphere. 

The solar atmospheric remote sensing 
instruments, CDS, EIT, LASCO, SUMER, 
SWAN and UVCS, constitute a set of 
telescopes and spectrometers studying the 
dynamic phenomena that take place in the solar 
atmosphere at and above the chromosphere. 
The plasma will be studied by spectroscopic 
measurements and high resolution images at 
different levels of the solar atmosphere. 

The "in situ" investigation of the solar wind is 
carried out by CELIAS and CEPAC, that will 
determine the elemental and isotopic 
abundance, the ionic charge states and velocity 
distributions of ions originating in the solar 
atmosphere. The energy ranges covered will 
allow us to study ion fractionation and 
acceleration from the "slow" solar wind 
through solar flares. 

SOHO will be placed in a halo orbit around the 
L1 libration point. The halo orbit will have a 
period of 180 days and has been chosen 



Table 1. SOH0 Instruments 

Solar atmospheric remote sensing 

"In situ" solar wind measurements 
CELIAS 1 Charge, Element and Isotope Analysis System I Max Planck Institute, Germany __ 
CEPAC I COSTEP-ERNE Particle Analysis Collaboration I University of Turku, Finland 

because it provides a smooth Sun-spacecraft 
velocity change, which is appropriate for 
helioseismology, it is permanently outside of 
the magnetosphere, which is appropriate for 
the "in situ" sampling of the solar wind and 
particles, and it allows permanent observation 
of the Sun, which is appropriate for all the 
investigatidns. 

During in-orbit operations, the Deep Space 
Network (DSN) will receive telemetry during 
three short (1.3 hours) and one long (8 hours) 
passes per day. Outside of passes, the science 
data will be recorded on-board and played back 
during the short passes. The MDI instrument 
generates a high rate data stream that will be 
transmitted only during the long station pass. 
For two consecutive months per year, DSN 
will support continuous data transmission, 
including MDI high rate data. Whenever there 
is data transmission, the basic science data (40 
kbits per second) will be available in near real- 
time at the EOF. 

EOF within the SOH0 Ground System. 
The SOHO EOF is part of the NASA Goddard 
Space Flight Center ground system where it is 
co-located with the Payload Operations Control 

Center and the Command Management 
System. The functions within the EOF are 
focused on instrument operations. A separate 
analysis facility, dedicated to the scientific 
analysis of the SOHO data, will be located in a 
separate building at the Goddard Space Flight 
Center. 

The EOF is comprised of two main elements: 
The ECS which provides the 

communications between the instrumenters and 
other elements of the SOHO ground system. 
The ECS includes hardware and software to 
support the primary functions of instrument 
commanding, telemetry reception, distribution 
and archiving, and science planning and 
scheduling. The ECS includes two specialized 
workstations: the science operations 
coordinator's workstation and the project 
scientist workstation. 

The Instrumenters Workstations (IWS) 
which include hardware and software provided 
by the individual instrument teams dedicated to 
the operation of a given instrument and its 
science analysis for planning purpose. 

The instrumenters may be "resident 
instrumenters" and be located at the EOF 
where they have data processing equipment, or 



IWSs. The ECS supports near-real-time 
commanding capabilities and distribution of 
real-time telemetry for the resident 
instrumenters. The "remote instrumenters" are 
located outside of the EOF, that is at their 
home institution in the US or in Europe. 
Mainly for security reasons, they may only 
communicate with the EOF via file transfer. 
They do not have access to the near-real-time 
commanding and real-time telemetry 
distribution capabilities. They can perform 
preplanned commanding and they can access 
the telemetry data archived within the ECS. 
They may also use the telephone or facsimile to 
communicate with the flight operations team or 
with an EOF resident team member in order to 
request changes in their instrument status. 

The major ground systems elements that 
interface with the SOHO EOF are: 

The Information Processing Division (IPD) 
Packet Processor (Pacor) which captures the 
telemetry data from DSN via NASCOM and 
transfers the real-time telemetry to the EOF. 

The IPD Data Distribution Facility (DDF) 
which provides quicklook telemetry files 
(mainly tape recorder dumps) to the EOF. 

The ISTP Central Data Handling Facility 
(CDHF) which provides orbit and attitude data 
to the EOF and receives other mission support 
data from the EOF. 
* The Command Management System. 
which serves as the intermediary between the 
EOF and the Payload Operations Control 
Center for instrumenter commanding activities. 

The ECS will communicate via the NASA 
Science Internet network using file transfers 
with international observatories and scientific 
institutions including, but not limited to, the 
instrumenters home institutions, ESA, the 
National Solar Observatory (NSO), the ISTP 
Science Planning and Operations Facility 
(SPOF), and the NASA Space Science Data 
Center (NSSDC). 

SOHO EOF DESIGN CONCEPTS 
Several considerations and choices have highly 
influenced the EOF design. 

* Conformity with the spacecraft integration 
and test environment. 
In order to minimize development efforts on 

the part of the instrumenters, the ECS interface 
with the instrumenters was closely modeled 
after the interface provided by the spacecraft 
contractors during the integration and test 
phase. Some modifications have been 
necessary to go from a test to an operational 
environment, but the efforts to maintain that 
protocol as much as possible have greatly 
facilitated the integration of the various 
instrument teamswith the ECS. 

User involvement. 
The EOF users were involved as much and as 
early as possible. Scientists and members of 
the flight operations team actively participated 
in the definition of the functional requirements. 
Additionally, an interface control document 
was developed very early in the project life 
cycle. This was of great benefit when dealing 
with instrument teams that had little contact 
with each other at the beginning of the project, 
and whose main concern at that time was not 
the details of the daily operations. 

Need for adaptability and flexibility. 
The functional needs of the various instrument 
teams are very different. Some SOHO 
instruments, mainly the coronal imaging 
instruments, will be operated interactively 
every day in real-time. Some other 
instruments (CEPAC, CELIAS, VIRGO, 
GOLF) will generally operate automatically 
and will not need real-time operational control 
except for surveillance of housekeeping data. 
Consequently, some teams will need to 
command their instruments and receive the 
telemetry in real-time, while some other teams 
will command in the traditional preplanned 
manner from a remote site and only retrieve 
telemetry files on a daily or weekly basis. 

The instrumenters' requirements on the ECS 
will also vary during the lifetime of the 
mission. All the eleven instrument teams will 
bring in their own equipment for integration 
into the EOF and most of the teams are 
planning to be at the EOF during the initial 
phase of the mission. After the spacecraft is 
commissioned, only 6 teams are expected to 
remain located in the EOF while the others 
teams will return to their home institutions. 

The IWSs are supplied by the individual 
instrument teams and represent a wide range of 



hardware and software. The ECS must 
provide connectivity for each IWS and 
between IWSs. The ECS must be capable of 
establishing connections with the SOHO 
ground e4lements, the analysis facility and 
with the outside world. The ECS must satisfy 
stringent performance requirements. It must 
be able to sustain the real-time telemetry and 
commanding rates, it must have sufficient 
storage capacity to archive the science data. 
Finally, it must be able to support two month 
per year of continuous science operations. 

Software Reuse. 
As much as possible, the ECS design 
incorporates standard off-the-shelf hardware 
and software. The main software systems that 
have been reused in the ECS design are: 
(1) the Transportable Payload Operations 
Control Center (TPOCC), which has been 
used to support what is referred to as "Global 
Services" functions such as inter-tasks 
communications, event generation and event 
logging. TPOCC also provides an extensive 
library of routines that have been reused in the 
ECS implementation. 
(2) the Interactive Experimenter Planning 
System, was used as the basis for the 
implementation of the ECS science planning 
and scheduling functions. These functions 
include batch and interactive scheduling, 
conflict resolution and automatic scheduling 
and re-scheduling of activities. 

Rapid prototyping development approach. 
Several software prototypes have been 
developed during the ECS design phase to 
verify major design choices. In particular the 
following was evaluated or verified: hardware 
performance for telemetry distribution, 
applicability of reused software, and 
demonstration of operator's interface 
implementation to the users. 

Adoption of implementation standards. 
Representatives of the ECS development team 
attended all the science operations working 
group meetings, presented various draft of the 
interface control document, and were able to 
help and participate in the choice of a set of 
standards such as : X-Windows (X l l ) ,  
Motif, Interactive Data Language (IDL), 
TCPIIP Ethernet, Flexible Image Transport 
System formats, Standard Formatted Data 

Unit, Structured Query Language and Standard 
U.S. commercial power and receptacles 

SOH0 EOF IMPLEMENTATION 

Facility 
The EOF facility is located in Building 14 at 
the Goddard Space Flight Center. It consists 
of offices for the project scientist, the science 
operations coordinator and the various 
instruments teams. It also includes a large 
conference room and various equipment such 
as telephones, fax machine, color printer, 
scanner, etc. The ECS equipment is located in 
the science operations coordinator's office. 
The EOF is also located next to the mission 
operations center, where the flight operations 
team will control the day-to-day operations of 
the spacecraft 

Software 
The ECS software is comprised of five major 
subsystems: 

(1) The telemetry subsystem receives the 
real-time telemetry from Pacor and distributes 
it to the resident instrumenters according to 
their requests. It also receives files of 
quicklook telemetry, primarily containing tape 
recorder dumps from DDF. The telemetry 
subsystem archives all the SOHO telemetry 
data for a period of seven days. The archived 
telemetry is made available in the form of files 
to the SOHO scientific community. 

(2) The commanding subsystem supports the 
real-time as well as the preplanned 
commanding functions. It receives the 
commanding data from all the instrumenters 
and it provides a single interface to the 
Command Management System and the 
Payload Operations Control Center. 

(3) The planning and scheduling subsystem 
provides an automated tool to produce an 
integrated and conflict-free observation plan. 
It can merge the individual instrument plans, 
accept input from the science operations 
coordinator, incorporate predefined constraints 
such as DSN schedule and reserved times for 
spacecraft activities. This subsystem was 
based on reused software, but it was re- 
implemented using an object-oriented 



methodology as described in more details 
below. 

(4) The user interface subsystem provides a 
set of windows that will enable the science 
operations coordinator to monitor and control 
activities within the EOF. 

(5) The "global services" subsystem 
supports functions such as inter-task 
communication and event logging. It was 
implemented in large part by reusing the 
existing TPOCC software. 

Other ECS subsystems support E-mail 
functions, time services, system administration 
functions and data base functions. These 
subsystems were implemented making 
extensive use of off-the shelf products. 

Physical Architecture 
The physical architecture of the EOF had to 
accommodate the diversity in IWS hardware 
and operational requirements. It also needed to 
provide efficient communications between 
secure and public networks while satisfying 
security requirements. The SOHO EOF 
physical architecture is illustrated in Figure 1. 
Its main characteristics are: 

(1) Use of high power workstations able to 
handle the real-time data rates, while allowing 
the project scientist and the science operations 
coordinator to monitor the EOF operations 
through X-windows and use science analysis 
software such as IDL. 

(2) Use of a high performance router which 
allows to isolate the ECS and its interface to 
secure networks from the outside world. It 
also separates the ECS "operational" data 
traffic from the IWSs and the data traffic 
associated with science analysis. Based on 
predicted data volumes for each instrument 
team, the IWSs were grouped and connected to 
the ECS router via seven Ethernet "segments" 
terminated by hubs and converters. This 
provides a rather low cost standard connection 
with all the IWSs. The filtering capabilities of 
the router are also used to implement network- 
level security. 

(3) Full redundancy: All elements are 
redundant and data storage is done on a 

Redundant Array of Inexpensive Disks 
(RAID). 

APPLICABILITY OF THE EOF TO 
OTHER MISSIONS 

In many aspects, the SOHO EOF had to be 
customized to the specific requirements of the 
mission such as restrictive interfaces with other 
ground system elements and adherence to the 
pre-existing protocol used in the spacecraft test 
and integration environment. However, the 
EOF contains several "building blocks" that are 
applicable to other missions. In particular, the 
planning and scheduling subsystem was 
designed and implemented with reuse in mind. 
A more detailed description of this subsystem 
follows. 

Planning and Scheduling Subsystem 
The SOHO EOF required a scheduling system 
to find and resolve conflicts between the 
individual schedules from each of the satellite's 
eleven instruments. It had been proposed to 
reuse an existing scheduling system to support 
these functions. The EOF new system needed 
to be flexible, fast and have the capability to 
merge pre-existing individual schedules. Also, 
it was to be supplied to several users: the flight 
operations team within the Command 
Management System and the instrument teams 
that wish to use it for planning their own 
observation sequences. This implied new 
rules, broad kinds of strategies and activities 
that the existing system could not support 
without extensive modifications. This 
presented the opportunity to re-design and re- 
implement the scheduling system using object- 
oriented methods, making it easier to 
customize and port to different environments: 
the Planning And Resource Reasoning 
(PARR) system was developed using an 
object-oriented design and was implemented in 
C++. 

PARR works as an intelligent tactical planning 
tool to put specific activities on a timeline by 
following the strategies and checking 
constraints found in its knowledge base. 
PARR's knowledge base consists of a list of 
strategies used to schedule activities with 
specific times and durations. One particularity 
of PARR is that it uses a combination of 



conflict avoidance and conflict resolution rules; 
this limits the number of searches required to 
build a timeline and accelerates the process of 
building a conflict-free schedule. 

The C++ implementation and the use of classes 
allows to represent abstractions of scheduling 
objects, such as activities, strategies, resources 
and constraints Resources include both data 
that PARR cannot change and data that 
changes as a result of the schedule it is 
creating. Activity classes represent types of 
activity that can be scheduled. Constraints 
represent PARR's conflict avoidance rules: a 
constraint can state how an activity must be 
scheduled in relationship to other activities or 
resources. Strategies represent PARR's 
conflict resolution rules: they are used to place 
activities on the schedule, and to move 
activities when the constraint checking process 
discovers conflicts. PARR also uses several 
paradigms, enabling it to control which activity 
classes are to be scheduled, the order in which 
they are scheduled and the merging of 
schedules created outside of PARR. 

Another feature of PARR is that its user 
interface code has been separated from the 
algorithmic code, making it easier to adapt to 
other applications where the user interface is 
usually the functionality that needs most to be 
customized to respond a special requirements. 

In conclusion, PARR has been designed to 
facilitate its portability. The object-oriented 
nature of PARR and its paradigm constructs 
make it easy to customize for new planning 
and scheduling applications: for each new 
PARR application, the classes of generic 
objects for resource classes, constraints, and 
strategies can be supplemented with 
application-specific types. 

CONCLUSION 

Overall the development of the EOF has been a 
success. Costs have been kept under proposed 
budget. All the initial requirements defined by 
the scientists have been satisfied, and a few 
additional capabilities have been implemented 
without increased funding. The timeliness of 
the EOF development was highly beneficial to 
the other SOHO ground system elements: it 

has provided them with early and precise 
information concerning the interface with the 
instrumenters. This aided in reducing risks to 
the SOHO Project. The basic EOF design is 
applicable to those missions that requires near- 
real-time commanding, real-time telemetry 
distribution, and close communications with 
the flight operations team. Having the facilities 
co-located allows cost savings in development, 
facility operations and maintenance. 
The physical architecture of the EOF allows for 
great flexibility, allowing instrument teams to 
modify or upgrade their software with minimal 
impact. It has allowed to implement a 
sufficient security level while allowing easy 
communications with the outside world: this is 
a basic requirement for the scientific success of 
the mission. Finally its modular software 
architecture makes the ECS a good candidate 
for applicability to other missions 
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ABSTRACT 

The Galileo Jupiter orbital mission using the 
Low Gain Antenna (LGA) requires a higher 
degree of spacecraft state knowledge than was 
originally anticipated. Key elements of the 
revised design include onboard buffering of 
science and engineering data and extensive 
processing of data prior to downlink. In order 
to prevent loss of data resulting from overflow 
of the buffers and to allow efficient use of the 
spacecraft resources, ground based models of 
the spacecraft processes will be implemented. 
These models will be integral tools in the 
development of satellite encounter sequences 
and the cruiselplayback sequences where 
recorded data is retrieved. 

Key Words: Aerospace, mission operations, 
sequence planning, spacecraft modeling 

1.0 THE GALILEO PHASE I1 DESIGN 

The Galileo Phase I1 redesign for Jovian 
orbital operations using the Low Gain 
Antenna (LGA) is driven by the need to match 
the high data acquisition rates with the low 
spacecraft data transmission capability. Many 
changes have been made to both the 
spacecraft and the ground data systems to 
optimize the effective data transmission rate. 
Spacecraft changes include extensive redesign 
of the Command and Data Subsystem (CDS) 
flight software, modifications to the Attitude 
and Articulation Control System (AACS) 
software and selected instrument flight 
software changes. Ground modifications 

include adding noise reduction equipment at 
selected DSN sites, intrasite and intersite 
antenna arraying capability, new receivers and 
signal acquisition equipment and extensive 
ground software changes to support new data 
transmission modes. 

The changes to the flight system are numerous 
and constitute a significant redesign of the 
flight software. The primary modification to 
accommodate the low data rates was the 
switch from Time Division Multiplexed 
(TDM) telemetry modes to a packetized 
telemetry system based upon a highly 
optimized CCSDS packet definition. This 
allows a flexible, prioritized data transmission 
system, eliminating the inherent data 
redundancy of the TDM design. 

Onboard data buffering is implemented to 
allow high rate data acquisition. Central to 
this design is the Data Memory System (DMS 
- tape recorder) which will hold 900 Mbits of 
data. This will be used to store high rate data 
(remote sensing and fields and particles 
science data) acquired during satellite 
encounters and relayed to the ground during 
the orbital cruise phase between encounters. 
For onboard data manipulation and real time 
data acquisition and storage, several buffers 
are implemented in solid state memory. The 
most important are the priority buffer, which 
holds priority engineering and Optical 
Navigation (OPNAV) data, and the multi-use 
buffer, which is used for the storage and 
manipulation of Real Time Science (RTS) and 
the playback of data from the DMS. 



Extensive data editing and compression is 
implemented to reduce the number of bits 
transmitted to the ground. The CDS can 
select or deselect data sources based upon 
mission phase and can edit many of the data 
sources. Both lossy and lossless compression 
schemes have been implemented onboard. 
Lossy compression based upon the Integer 
Cosine Transform (ICT) algorithm has been 
implemented in the AACS software and is 
used to compress images and Plasma 
instrument (PWS) data sets. Compression 
ratios of 2: 1 to 80: 1 can be selected. Lossless 
compression using the Rice algorithms 
(Reference 1) has been implemented for 
selected science data sets, resulting in data 
compression ratios of 1.2: 1 to 5: 1. 

2.0 SPACECRAFT DATA FLOW 

Figure 1 illustrates the typical data flow within 
the flight system. As illustrated, the onboard 
data buffers form key elements of the design. 
Controlling the data input to the buffers and 
the data output to the downlink are key tasks 
for the flight sequences. If the aggregate data 
input rate exceeds the data transmission rate, 
the buffers will fill. Overfilling the buffers will 
result in discarding new data. However, if 
data acquisition is controlled such that the 
buffers empty, fill data is inserted on the 
downlink, lowering downlink efficiency. 
Maintaining the delicate balance of the buffer 
fill state will be a significant challenge for 
Phase I1 operations. 

MULTI-USE 

Figure 1 - Spacecraft Data Flow 



The data input process has three constituent 
parts: the real time engineering (RTE) and 
OPNAV data, which is placed in the priority 
buffer, Real Time Science data (RTS) and the 
Playback data which is processed through the 
multi-use buffer. Real time data (RTE and 
RTS) is taken continuously and is controlled 
by the CDS. Data sources can be selected and 
deselected in accordance with planned 
observations and the data collection mode is 
controlled by the CDS telemetry command. 
Real time data acquisition and the downlink 
telemetry rate are controlled using the same 
command. This links the Real time data 
collection with the downlink telemetry rate via 
one of 90 selectable modes. 

The OPNAV and Playback processes are 
independent of the real time data acquisition 
process, and are intermittent activities. 
OPNAV activities occur prior to encounters, 
and place certain restrictions on both the 
multi-use buffer (where the data is processed) 
and the priority buffer (where the data is 
stored for transmission). The Playback 
process for retrieving the recorded data is 
completely gew for orbital operations. In 
playback, the CDS performs autonomous 
retrieval and processing of the data from the 
DMS, controlled by a special parameter set 
called the playback tables. These tables 
contain information on the format of the 
recorded data, lists the data to be retrieved 
and the editing and compression to be 
performed on the selected data. Playback data 
is placed in the multi-use buffer for 
processing. To control the filling of the multi- 
use buffer a set of buffer pointers have been 
implemented. When playback is active and the 
buffer fill state falls below the low watermark 
(i.e. the downlink rate exceeds the data 
acquisition rate, allowing the buffer to empty) 
the CDS will autonomously control the DMS 
to replay data into the multi-use buffer. When 
the buffer fill state exceeds the high 

watermark, the CDS commands the DMS to 
cease operation and processes the raw tape 
data into completed data packets. This 
process occurs simultaneously with real time 
data acquisition and is exclusive of all other 
record activities. 

2.1 BUFFER MODELING 

The buffer modeling task is necessary for the 
system to work. The highly interactive nature 
of the system and the statistical nature of the 
data compression algorithms necessitates an 
iterative approach to the design of spacecraft 
command sequences for orbital operations. 
With the number of independent variables that 
must be factored, and the accuracy with which 
they can be predicted, precise control of the 
buffer states will be difficult. Without ground 
based system models, the flight system could 
not be operated efficiently. 

To control the buffer fill rate, many variables 
need to be controlled. On the output side, the 
commanded downlink data rate is varied in 
discrete steps over the course of a DSN track 
to closely match the data rate capabiIity 
(Figure 2). These data rate changes must be 
predicted we11 in advance and scheduled in the 
sequence. Any change to equipment 
capabilities or link performance will affect the 
data rate capability and the output from the 
buffers. 

On the buffer input, the various data sources 
must be controlled and the rates at which each 
source generates data must be predicted. This 
includes modeling which instruments are 
selected and deselected, the data editing 
algorithms and the target compression ratios. 
Each of these factors vary as a function of 
time. In addition, the compressibility of some 
of the sources is very data dependent, thus 



Figure 2 - Downlink Telemetry Rate Change Modeling 
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The multi-use buffer requires significant 
modeling to predict its state. The modeling 
can essentially be broken down into two 
separate modeling regimes: the encounter 
phase, characterized by low downlink data 
rates and high rate RTS data acquisition with 
interspersed buffer dumps to tape, and the 
playback phase with higher downlink rates and 
with the Playback process active. 

The bulk of the scientific data is gathered 
during satellite encounters. This includes the 
remote sensing and very high rate fields and 
particles instrument data which is recorded 

directly to tape at up to 806.4 Kbps, and the 
high rate RTS data, which is processed into 
the multi-use buffer. Typically, the desired 
RTS acquisition rate well exceeds the 
downlink rate, filling the buffer. .To allow 
extended high rate data acquisition without 
overflowing the multi-use buffer the Buffer 
Dump to Tape function has been implemented. 
This is a sequence controlled activity wherein 
the CDS will transfer completed Virtual 
Channel Data Units (VCDUs - Memory 
Management Units) from the multi-use buffer 
to the DMS, freeing the buffer for continued 
data acquisition. Since buffer Dump to Tape 
is a sequence controlled activity, it can be 
scheduled to occur between other DMS 
activities. Buffer management during 
encounters consists of predicting RTS data 
acquisition rates and scheduling buffer dumps 
to tape when necessary to prevent buffer 
ovefflow and loss of data. 

During the orbital cruise phase, data is 
retrieved from the DMS via the Playback 
process. Typically, the downlink data rate is 
higher than during encounters and the 
continuous RTS data acquisition is set to a 



lower rate. This allows the playback process 
to transfer data from the DMS into the multi- 
use buffer, process the data and prepare it for 
downlink. Since the replay of data from the 
DMS is controlled via the buffer high and low 
watermarks, the process is self-regulating. 
The modeling task for cruise consists of 
multiple parts: insuring that the high and low 
watermarks are properly set, insuring the RTS 
data acquisition is low enough to prevent data 
loss due to buffer overflow and modeling 
playback data editing and compression to 
recover all of the significant encounter data. 

2.2 MODELING TOOLS 

The Phase I1 ground system has two main 
tools for predicting and controlling the data 
flow on the spacecraft. They are: SEQGEN, 
the primary sequence generation tool of the 
Mission Sequence System (MSS) and 
MIRAGE, a newly developed tool for 
processing data rate predicts and producing 
buffer models. Supporting the generation of 
sequences and the modeling effort are a suite 
of tools to automate the process. New tools 
for Phase I1 are TLMGEN, which provides 
automated generation of spacecraft telemetry 
rate change commands based upon predicted 
capability and the Playback Table Editor 
which generates playback table entries based 
upon the DMS tape map and models playback 
data production based upon processing 
parameters selected. These tools, along with a 
host of existing science and mission design 
tools, provide data input into the modeling 
process and are used for optimizing data flow. 

2.2.1 MIRAGE 

Sequence Automation research group at JPL. 
Plan-It-I1 was developed on an UNIX 
platform using LISP, and specifically 
developed to be extensible for multiple 
missions. Plan-It-I1 provided the capability to 
simulate hnctionally the operations of a 
spacecraft, allow sequences to be staged 
through the model, and rapidly and 
interactively present the impacts of the 
sequence and any proposed changes on the 
spacecraft resources. The Galileo project 
adapted the core of Plan-It-I1 to model the 
Phase I1 design. Modifications include 
incorporating Galileo specific time standards 
and the Phase I1 hnctional design into the 
model, defining new input data types, 
providing new constraint checking algorithms 
and modifications to the user interface to more 
closely resemble familiar planning tools 
currently in use. 

Mirage provides an interactive environment, 
displaying on-screen timelines of sequence 
activities and accompanying graphs showing 
the states of the spacecraft resources. It also 
provides an interface to the details of the 
science planning requests and allows the user 
to add, delete and mod@ these activities. 
This interaction allows the user to explore 
different approaches to a situation, varying 
parameters and displaying the results. This 
results in the rapid development of a viable 
sequence of data collection activities which 
the spacecraft can accommodate. 

MIRAGE will be used early in the science 
sequence design process to analyze the effect 
of the science observations on spacecraft 
resources. Used primarily in the Orbit Activity 
Plan (OAP) level, it will determine if a planned 
set of Real-Time and recorded observations 

The MIRAGE (Mission Integration, Real time generate buffer overflow conditions, monitor 

Analysis and Graphical Editor) modeling tool the usage of the DMS and track the allocation 

is based won an earlier multi-mission of resources to the various science 

sequence planning tool developed by the observations. 



GE will also play an important role 
during sequence execution. Because of the 
uncertainties involved in the 
telecommunications link modeling and 
onboard data compression, the actual data 
flow may not proceed as predicted. Sequence 
tweaking, involving modification of one or 
more data acquisition or transmission 
parameters, will need to be modeled to 
determine the overall effect on the data flow. 
Integral to this process will be the MIRAGE 
analysis of the spacecraft resources. 

2.2.2 SEQGEN 

SEQGEN is an existing sequence development 
tool which takes the OAP level inputs and 
converts the activities into command 
sequences and playback parameter tables. 
SEQGEN is responsible for enforcing many of 
the sequencing rules and constraints checking 
for certain onboard data resources and 
downlink data transmission. For the Phase I1 
mission, SEQGEN was modified to generate 
the playback table entries. These parameters, 
which are independent from the spacecraft 
sequence, instruct the CDS on how the 
recorded data will be processed. Integral to 
the generation of the Playback Table entries, 
the Playback Table Editor allows modification 
of the playback parameters, adjusting data 
selection, editing and compression for the 
recorded instrument data. 

The output from SEQGEN can be routed to 
MIRAGE for modeling. This allows an 
iterative approach to the sequence generation 
process. In the early sequence design stages, 
an activity plan is produced and checked by 
MIRAGE for proper data flow. This product 
is refined into a working spacecraft sequence, 
again using MIRAGE modeling and the 
Playback Table Editor to adjust playback data 
parameters. Once the sequence is executing, 
sequence tweaks to optimize the data flow will 

be verified using MIRAGE before being sent 
to the spacecraft. 

This paper has presented the ground based 
modeling of the spacecraft processes for the 
orbital operations mission using the Galileo 
Low Gain Antenna. The redesign of the flight 
software requires a higher degree of spacecraft 
state knowledge than was originally 
anticipated. In order to optimize the data 
flow onboard the spacecraft and to the 
ground, interactive modeling of the data 
acquisition, buffering and transmission is 
required during the sequence design process 
and during sequence execution. These models 
have been developed concurrently with the 
flight software design, taking advantage of 
existing ground software where applicable and 
developing or adapting software for specific 
modeling and sequence generation functions. 
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ABSTRACT 2. AOST PROGRAM OVERVIEW 

The Consultative Committee for Space Data 
Systems (CCSDS) Recommendations for Packet 
Telemetry (PT) and Advanced Orbiting Systems 
(AOS) propose standard solutions to data handling 
problems common to many types of space 
missions. The Recommendations address only 
spacelground and spacelspace data handling 
systems. Goddard Space Flight Center's (GSFC's) 
AOS Testbed (AOST) Program was initiated to 
better understand the Recommendations and their 
impact on real-world systems, and to examine 
the extended domain of groundlground data 
handling systems. The results and products of the 
Program will reduce the uncertainties associated 
with the development of operational space and 
ground systems that implement the 
Recommendations. 

1: INTRODUCTION 

An overview of the C-2 AOST is presented in 
Figure 2.1 - 1. 

2.1 FLIGHT SYSTEM ELEMENTS 

The C-2 AOST flight system elements include an 
Instrument Simulator (IS), a Video Digitizer1 
PacketizerIMultiplexer (VDPM) and a Wideband 
Transfer Frame Formatter (WTFF). These 
elements have been developed by the GSFC 
Instrument Electronic Systems Branch (Code 738). 

The Instrument Simulator creates simulated 
spacecraft instrument data. The IS is capable of 
simulating data for one to six instruments and 
uses the CCSDS Version-1 Packet format 
(Reference 1). The data generated by the IS are 
input to the WTFF via Fiber Optic Transmitter1 
Receiver Interfaces (FOXI). 

GSFC's AOST Program continues to provide a 
Flight Elemenb GroundElernents 

bridge between the development and widespread 
use of the CCSDS Recommendations. AOST 
Program activities include developing and using 
a Testbed, developing flight-qualifiable 
components, conducting a test program, 
performing studies, and actively disseminating the 
knowledge gained. This paper presents an 
overview of the Capability Two (C-2) AOST and 
the results and lessons learned through AOST 
Program activities to date (July 1994), including 
architectural issues, the proposed standardized test 
suite, and flight-qualifiable components. This 
paper also summarizes the correlation between 
the AOST and the Code 500 Renaissance effort, 

Suppon Equipment and AOST future activities, including SAFE 

implementation of the Space Communications """~*"'con~"'""'"usmersagaf'ow 

Protocol Standards (SCPS) and the Mission 
Operations Control Architecture (MOCA). Figure 2.1-1. C-2 AOST Overview 



The VDPM generates CCSDS Version-1 Packets 
and optionally multiplexes them into Multiplexing 
Protocol Data Units (M-PDUs) (Reference 2). The 
Packet data field contains either video data that 
have been converted to digital form by the VDPM 
or octet-aligned digital data input to the VDPM 
via a FOX1 interface. The VDPM represents a 
standard interface for CCSDS Path Packet Service. 
The M-PDUs or Version-1 Packets are input as a 
single data stream to the WTFF using one of seven 
available telemetry user data input interfaces. 

The C-2 WTFF is designed to serve as a gateway 
providing transfer frame generation using PT and 
AOS services for up to seven user virtual channels 
(VCs). Data arriving from any of the seven user 
data input interfaces are buffered and inserted into 
Version 1 Transfer Frames (VlTFs) or Virtual 
Channel Data Units (VCDUs). WTFF processing 
of the data consists of: Reed-Solomon (R-S) 
header, R-S frame, and bit transition density 
encoding; multiplexing of the frames into a single 
physical data stream; and appending of a frame 
synchronization marker to each frame. The WTFF 
also provides the interface to the ground system 
elements. The WTFF can selectably output data 
on one or two physical output channels. 

2.2 GROUND SYSTEM ELEMENTS 

AOST ground system elements include two Front 
Ends (FEs), three types of Service Processors 
(SPs), a Communications Address Processor 
(CAP) and service management elements. The 
CAP provides a connection to a ground 
communications network (GCN). A network and 
service management system controls, configures, 
and monitors the AOST ground system elements. 

The Microelectronics Systems Branch (Code 521) 
is developing the Advanced Front End System 
(AFES), which provides a multiprocessing 
environment based on a VMEbus open 
architecture. The AFES uses cards based on 
custom Very Large Scale Integration (VLSI) 
controllers to achieve a low cost, high speed, and 
highly reliable implementation. Each custom card 
has a 32-bit microprocessor. AFES components 

are being developed for generic applications and 
are being used in other systems such as the Small 
Explorer (SMEX). Commercial off-the-shelf 
(COTS) cards such as Ethernet and Fiber 
Distributed Data Interface (FDDI) cards and disk 
modules are used wherever possible. 

The AFES provides return link processing 
services, configuration management services, and 
testing and verification services. The AFES 
comprises a front end (AFESIFE) and one of the 
SPs, the AFESISP, housed in a single VME 
enclosure. Frame synchronization, bit transition 
density decoding, R-S header and frame error 
detection and correction, and VC sorting are 
provided by the AFESIFE. The AFESIFE outputs 
data formatted as Space Operations Service Data 
Units (SOSDUs) (Reference 3), a data unit defined 
by the AOST Program. The SOSDU provides a 
mechanism for ground transportation and 
identification of data types consistent with the 
CCSDS Recommendations. The AFESIFE 
transfers SOSDUs to the SPs or to the CAP for 
routing to their user destination(s). The interface 
to the AFESISP is internal to the AFES; the data 
across this interface are formatted as .VC Frame 
SOSDUs. The interface to the ATSPs and to the 
CAP is accomplished using a FDDI LAN. 

The AFESISP is an integral part of the AFES. 
The AFESISP performs CCSDS PT and AOS 
processing on the SOSDUs received from the 
AFESIFE, creating Virtual Channel Access 
(VCA), Bitstream, or Path Packet SOSDUs. The 
resulting SOSDUs are transferred to the AFES 
FDDI network interface function for transmission 
to a predetermined destination address. 

Code 52 1 has also developed a Stand-Alone Front 
End (SAFE) that is identical to the AFESfFE; 
these redundant FE systems enable the AOST to 
process two simultaneous data streams from the 
WTFF. The SAFE also uses FDDI interfaces to 
transfer data to the ATSPs and to the CAP. 

The Data Systems Engineering Branch (Code 564) 
has developed two ATSP implementations using 
solely COTS hardware and operating systems. 
One implementation is using a "Single Board 



Computer" (ATSPISBC) and a real-time operating 
system (VxWorks). The second implementation 
is using a SPARC workstation (ATSPISPARC) 
and a UNIX-based operating system. Both the 
ATSPISBC and the ATSPISPARC use Reduced 
Instruction Set Computer (RISC) technology. The 
input, output, and management interfaces are 
identical for both ATSP implementations. The 
ATSPs receive SOSDUs from the AFES/FE or 
the SAFE via the FDDI LAN and process these 
SOSDUs, providing VCA, Bitstream, or Path 
Packet service processing consistent with 
Reference 2. The goals of the ATSP developments 
are to take advantage of and evaluate the potential 
of the latest technological advancements that 
industry has produced. 

The CAP provides a gateway function for the 
AFES, SAFE, and ATSPs, translating the global 
CCSDS identifiers contained in the SOSDU 
Header to the appropriate user destination 
address(es), and providing protocol translation 
between the AOS Testbed and the GCN. The CAP 
was developed by the NASA Communications 
Division's Advanced Development Branch (Code 
541.3). 

The GCN provides communications interfaces to 
systems external to the Testbed. 

The Service Management (SM) system developed 
for the AOST allows users of a CCSDS service- 
providing network to interact with that network 
in terms of services rather than equipment 
configurations. The service management system 
manages equipment configuration information, 
generates periodic reports about the quality of 
services, and monitors ground system elements 
for fault isolation. The AOST SM function 
provides fault detection, isolation, and recovery 
capabilities for CCSDS data services. The MITRE 
Corporation is developing the Network and 
Service Management elements. 

The current management hierarchy for SM 
comprises a Complex Manager that manages the 
AFES, the SAFE, the ATSPISBC, the ATSPI 
SPARC, and the CAP. Each managed system 
comprises two conceptual components: the data 

processor, which performs the actual processing 
and presents the agent with a local representation 
of managed parameters; and the agent, which 
translates the management information from the 
local representation to a global representation 
understood by the Complex Manager. The agent 
presents the Complex Manager with a view of 
the processor as a collection of abstract functions 
and system operation parameters. The CAP has 
an agent that is integral to the CAP development; 
the AFES, ATSPISBC, and ATSPISPARC have 
SM proxy agents. 

Proxy agents are separate modules that reside on 
the Complex Manager workstation, and are not 
integral to the development of the associated 
ground element. These agents translate the 
Management Information Base (MIB) parameters 
received from the Complex Manager into 
configuration setup tables that are then transmitted 
to the appropriate AOST elements. 

The AOST has developed and tested a 
demonstration version of a standard MIB for 
CCSDS services and protocols (Reference 4). The 
MIB allows the Complex Manager and managed 
systems to exchange management information 
using a common, standard language. The Simple 
Network Management Protocol (SNMP) was 
chosen since it is a well-supported standard 
protocol for managing network elements and 
allows the use of public-domain and COTS 
software for the implementation of the agents and 
Complex Manager. 

3. ACTIVITIES TO DATE 

The C-2 AOST development effort is complete, 
and the testing program for C-2 is nearly complete. 

The C-2 AOST provided five CCSDS AOS 
services: VCA service, VC Frame service, Path 
Packet service, Bitstream service, and Insert 
service. The C-2 AOST also support a non- 
CCSDS service called Space Link Channel (SLC) 
service. The C-2 AOST supports both 
conventional CCSDS data units, VlTFs, and AOS 
CCSDS data units, VCDUs. 



A completely new test program was implemented demand or on a periodic basis. These status data 
for the C-2 AOST (Reference 5). The test program can be displayed in real-time either numerically 
implements the Master Test Suite (Reference 6) or in graphical format; periodic data can be 
to provide a system-independent series of tests graphed over time to monitor data processing 
that can be implemented to verify any systems' history. 
compliance with the CCSDS Recommendations. 

Functional testing associated with the C-2 AOST 
is completed, and research and performance 
testing is in progress. The C-2 program has 
produced a number of results, some related to 
implementation issues associated with the 
development of AOST elements, and others 
related to the CCSDS Recommendations 
themselves. A selection of these results are 
presented in Section 4. 

Flight-qualifiable components have been produced 
from the equipment in the AOST and additional 
flight-qualifiable components are currently being 
manufactured. 

A library of AOST Program and related 
documents continues to serve as a central 
repository of knowledge gained and products for 
the AOST Program. A second AOST Workshop 
has been scheduled for November 1994 to 
disseminate AOST results. 

4. RESULTS 

4.1 ARCHITECTURE 

4.1.1 Service & Network Management 

AOST SM has greatly facilitated the operation of 
the AOST ground elements, and has streamlined 
the testing and analysis process within the Testbed. 
SM controls, configures, and monitors all Testbed 
ground elements from a single workstation, 
providing a focus for AOST ground system 
activity. The SM graphical user interface allows 
the operator to highlight AOST elements, select 
predefined configurations, create new 
configurations, and download these configurations 
to appropriate AOST element(s). SM is also able 
monitor the results of data processing by obtaining 
status information from each element either on 

The AOST SM mitigates sources of error in the 
comprehensive configuration of the AOST by 
centralizing and streamlining configuration and 
control. The service-level specifications 
manipulated at the Complex Manager workstation 
concisely define the comprehensive Testbed 
configuration, and mitigate configuration errors 
often experienced in the past when local system- 
level configurations were used. The simultaneous 
configuration and coordination of several Testbed 
elements via SM has reduced the number of 
configuration mismatches, and has allowed for 
spontaneous development of new scenarios and 
what-if analyses. 

By acquiring and displaying status information 
from multiple ground elements simultaneously, 
SM expedites the analysis of AOST data 
processing activities. The ability to display and 
graph data from multiple sources in near-real time 
has been an invaluable tool to developing a 
comprehensive view of AOST data processing 
activities. SM also maintains log files that permit 
more comprehensive post-test analysis. 

One of the issues related to the development of 
SM was the coordination of the proxy agent 
development with that of the data processors. It 
was necessary to maintain a constant dialog 
between the proxy agent developer and the data 
processor developer during the development 
process to ensure that the system-level 
configurations performed by the proxy agent 
matched the system-level specification within the 
data processor. On several occasions, small 
software changes were made to a data processor 
that required corresponding changes to the 
configurations being managed by the proxy agent. 
SM functionality is predicated on a successful 
communication process to coordinate agent- 
system interaction. 



In the next version of the AOST, the Testbed 
may develop a Network Management Integration 
and Coordination workstation that manages a set 
of Complex Managers. Also, SM may be extended 
to flight elements, either via a direct link or across 
a ground-space forward link. 

4.1.2 Data Latency 

The AOST has been addressing latency issues 
associated with the AOST elements and the 
interfaces between the AOST elements. Low data 
latency is desirable, constant data latency is 
required, and data loss is unacceptable. The AOST 
test program is currently attempting to vary the 
transmission approach across the LANs in the 
AOST to best meet these three criteria. The AOST 
is being subjected to a series of performance tests 
designed to measure and improve data throughput. 
A FDDI LAN analyzer is being employed to assist 
in the analysis of the FDDI LAN components 
and AOST elements. 

Data losses have been experienced on the FDDI 
LANs used to transmit data between AOST 
ground elements. The AOST test program is 
currently investigating these data losses, 
employing strategies to analyze and eliminate 
these data losses. 

The FDDI LAN packet size in use for the AOST 
is predetermined to be 4136 octets in length, with 
4096 octets dedicated to data. A ground rule 
established for AOST regarding the FDDI LANs 
and designed to facilitate low data latency was 
that a single FDDI packet would contain no more 
than one SOSDU. With the exception of Path 
Packet SOSDUs (which vary in length in 
proportion to the packet length) the length of all 
the SOSDU data types handled by the AOST are 
significantly shorter than the FDDI LAN packet 
length. Non-Path Packet SOSDUs use no more 
than 32% of the FDDI LAN packet capacity. 

The AOST will "pack" SOSDUs into FDDI 
packets in an attempt to increase the effective 

FDDI LAN utilization. The challenge is to ensure 
low data latency and data delivery without 
substantially compromising constant data latency. 
Once hardware and software modifications are 
made to effect this change in FDDI LAN 
utilization, tests will be conducted to measure the 
resulting data latencies and the data throughput 
capability. 

Future ground systems that transport data 
consistent with the CCSDS Recommendations 
should consider data transmission methodologies 
that better facilitate the rapid transfer of variable- 
length data units. For example, the use of variable- 
length FDDI LAN packets that more closely 
accommodate the varying SOSDU sizes would 
improve AOST FDDI LAN utilization while 
maintaining constant and low data latencies. The 
equipment currently in use in the AOST does not 
facilitate using variable FDDI LAN packets. 

4.1.3 Data Distribution 

Equipment designed to support data processing 
consistent with the CCSDS Recommendations 
should manage and control each VC data stream 
separately. As built, AOST ground elements do 
not always regard each VC as a separate channel, 
limiting data management and distribution 
capabilities. Furthermore, the inability to manage 
each VC separately impacts other ground elements 
in the Testbed. 

The CAP was implemented within the AOST to 
route data, based on VC, to destinations outside 
the AOST. The CAP is the only AOST ground 
element that can route data to multiple output 
destinations by VC. During the C-2 design phase, 
a decision was made to route the output of the 
AOST FEs and SPs to a single destination by 
Internet Protocol address. The implementation of 
testing scenarios has been limited by the inability 
to route data between the AOST ground system 
elements by VC. For example, scenarios were 
developed to use separate service processors to 
process different VCs emanating from a single 
front end system. It was not possible to selectively 
route data from a single front end to more than 



one service processor. To implement this scenario, 
the front end system was set to "broadcast" data, 
that is, send all the data to all the active service 
processors. While introducing obvious security 
concerns, data broadcasting forces each service 
processors to examine each incoming data unit to 
determine if it should be processed. A service 
processor not designed to perform this query as 
the initial data processing step will suffer certain 
performance degradation as it partially processes 
data before rejecting it. 

A fundamental change in the approach toward 
data transmission is being instituted in the AOST 
to enable each AOST front end system to transmit 
each VC data stream to a separate destination. 
The extra processing required to route each VC 
to a specific destination will have some effect on 
the performance of the front end processors, but 
should result in better service processing 
performance. Implementation and testing are 
necessary to determine the aggregate AOST 
performance improvement. 

4.1.4 Interactive Determination of 
Grade of Service 

In an attempt to achieve a more "data driven" 
system (Reference 7), the C-2 AOST was prepared 
to implement the dynamic model given in the 
"AOS Green Book" (Reference 8), section A.4.1, 
Option-B, for determining Grade of Service. 
Figure 4.1- 1 presents a flowchart representing the 
referenced algorithm. The AOST has identified 
three issues associated with the interactive 
determination of Grade of Service. The first issue 
is related to R-S header decoding (Grade 3), the 
second related to R-S frame decoding (Grade 2) 
when the data zone is populated with an octet- 
repetitive data pattern, and the third is related to 
performing R-S decoding on a VC basis. 

4.1.4.1 R-S Header Decoding (Grade 3) 

The algorithm illustrated in Figure 4.1-1 initially 
attempts to perform R-S frame decoding; the 
presence of the R-S header encoding and CRC 
fields are not considered in this portion of the 

algorithm. If the frame fails R-S frame decoding, 
R-S header decoding is then attempted. There is 
a 3 1 % chance that a frame that is not R-S header 
encoded will pass R-S header decoding with two 
"correctable" errors (see R-S (1 0,6) Header 
Decoding Analysis, next page). When the frame 
is falsely identified as being R-S header encoded, 
the "errors" are corrected changing values in the 
header. The changed header values can result in 
misidentification and misrouting of the frame. As 
the algorithm checks for R-S header encoding 
only after R-S frame encoding has failed, the 
actual probability of a frame being altered due to 
false determination of the presence of R-S header 
encoding is 0.3l(probability of an uncorrectable 
R-S frame encoded VCDU). 

The AOS Green Book, section A.4.1, Option-A 
specifies a dynamic model for determining Grade 
of Service in which header decoding is performed 
first. Using this same analysis, there is a 31% 
chance that a frame that is not R-S header encoded 
will pass R-S header decoding with two 
"correctable" errors when Option-A is 
implemented. 

VCDU/CVCDU 

Interleave 

Fail 
De,"dzing 

Validated 
Grade 2 Header 
CVCDU Error Control 

Error Control 
Decoding 

Validated Error-Flagged 
Grade 3 Grade 3 
CVCDU VCDU 

Figure 4.1-1.Option-B Error Control Decoding 



4.1.4.2 (255.223) R-S Frame Decoding of 
Octet-Re~etitive Data Zone Patterns 

The data used in the AOST is usually simulated 
data that contains octet-repetitive data patterns in 
the data zone portions of the packets and frames, 
e.g., the data zone of a frame would be populated 
with "A5A5A5A5A5A5.. ." (hexadecimal). Tests 
reveal that a frame containing a high percentage 
of octet-repetitive data patterns will be decoded 
and "corrected" when the dynamic model for R-S 
decoding is applied using the (255,223) R-S code, 
whether or not the VCDU is R-S frame encoded. 
An invalid correction can alter header values 
resulting in misidentification and rnisrouting of 
the frame. 

R-S (10,6) Header Decoding Analysis 

CCSDS R-S encoded headers consist of 3 
octets of header data and 2 octets of parity. 
The code can correct up to 2 errors in the 5 
octet pattern. Since parity is derived from the 
3 octets of header data, there are 2(8)(3) = 2" 
possible codewords, and 2(8)(5) = 240 possible 5 
octet patterns. Since parity of the R-S (10,6) 
code is 2 octets in length, a 5 octet pattern has 
a 1/2(8)(2) = 2-l6 probability of being a codeword 
with no error. 

The R-S (10,6) code operates on 4 bit 
"nibbles"; for a 5 octet pattern, there are 10 
nibbles. For each nibble, there is 1 correct value 
and 15 possible incorrect values. The code will 
correct for any of the 15 possible error patterns 
in any one of the 10 nibbles. Therefore, there 
are 15 x 10 = 150 possible single error cases 
that will be corrected for each codeword. 

A 5 octet pattern has a 150 x 2-l6 = 0.0023 
probability of being a codeword with one 
correctable error. 

The code will also correct for any of the 15 
possible error patterns in any one of the other 
9 nibbles for each of the 150 single error cases. 
Therefore, there are 150 x 9 x 15 = 20,250 
double error cases that will be decoded 
correctly for each codeword. A 5-octet data 
pattern has a 20,250 x 2-l6 = 0.309 probability 
of being a codeword with two correctable errors. 

The source of this invalid correction is the fact 
that 255 octets containing octet-repetitive data 
represent a valid R-S codeword. Thus, if any set 
of 255 octets has 239 or more octets that are 
repetitive, a R-S frame decoder will "correct" the 
set to have 255 repetitive octets. A R-S header 
encoded VCDU with an octet-repetitive data zone 
will contain only 10 octets not equal to the data 
zone octets. The following 10 octets will be 
"corrected" to match the repetitive octet pattern: 

* frame primary header - 6 octets 
header parity - 2 octets 

* frame CRC - 2 octets 

For a VCDU of Interleave 5 containing CCSDS 
Version 1 Packets, the R-S frame decoder will 
"correct" the frame first header pointer (2 octets) 
and the packet primary header (6 octets per packet) 
for up to 6 packets in the frame data zone, 
assuming all the packet source data zones share 
the same octet-repetitive data pattern. 

4.1.4.3 R-S Decoding by VC 

The AOS Blue Book (Reference 2), paragraph 
5.4.9.2.1.5.a states, "The presence or absence of 
[R-S frame encoding] is an attribute of the Virtual 
Channel and is pre-specified by management." 
The system performing R-S decoding and 
correction must look at the VC to determining 
whether to perform R-S header or R-S frame 
decoding. Prior to decoding, the value in the VC 
field is potentially erroneous and is therefore not 
a reliable value upon which to base Grade of 
Service determination. 

4.1.4.4 R-S Decoding Conclusions 

The AOST has addressed these three issues by 
prespecifying a Grade of Service for the entire 
physical channel, and limiting the physical channel 
to a single Grade of Service. This approach 
resolves the issues associated with R-S 
specification per VC, and the potentially erroneous 
decoding of both R-S headers and R-S frames 
associated with "on-the-fly" Grade of Service 
determination. While prespecifying a Grade of 
Service for a physical channel is a compromise 
of the Recommendations, it is currently the only 
reliable alternative presently identified. 



4.2 TEST SUITE analogous to the testing performed by a 

The Master Test Suite (MTS) for New AOS 
Implementations, (Reference 6) has been used to 
implement the tests for the C-2 AOST Test Plan 
(Reference 5). The functional test cases used for 
C-2 testing have a one-to-one correspondence to 
the tests identified in the MTS, and the structure 
of each test case is as close to the specifications 
in the MTS as possible. 

There was no single AOST data generator that 
could implement the entire MTS. A combination 
of the C-2 AOST flight elements and a data 
simulation tool developed by Code 52 1, the Test 
Pattern Generator (TPGEN), were used to 
implement portions of the MTS for the C-2 AOST. 
A portion of the MTS could not be implemented 
by any test tool available in the AOST; the error 
patterns identified in some of the MTS test cases 

programmer during integration and development. 
The C-2 AOST Test Program is analogous to an 
independent system verification and validation. 
The C-2 Test Program provided at least one data 
set to test each function identified in the MTS. 

Providing one data set to test each function 
identified in the MTS created significant 
redundancy in the complement of tests. For 
instance, the first test performed, frame 
synchronization, also succeeded in testing 
processing for R-S header decoding, CRC 
decoding, and VC Frame creation. Some 
streamlining of the MTS is appropriate when 
testing is performed at the system level. The next 
iteration of the MTS may provide a streamlined 
set of test cases for testing performed at the system 
level. 

could not be created. The next iteration of the 4.3 CO~PONENTS 
AOST may provide a test tool based on TPGEN 
that provides the full complement of tests in the 
MTS. Two CCSDS-based and one non-CCSDS flight- 

qualified components are being developed: 

The portion of the MTS that was implemented 
provided a rigorous and thorough test of the 
functionality of AOST elements. The AOST data 
generators did not always provide a sufficient 
amount of data, however. Some problems with 
functional production occurred when the systems 
were tested with large data volumes, for longer 
periods of time, from a few minutes to 24 hours, 
and at higher data rates. Systems that successfully 
passed functional tests with brief test data sets, 
composed of only a few hundred frames each 
and processed within 1 to 5 seconds, developed 
anomalies after processing more continuous data 
sets and/or data transmitted at a higher data rate. 
An analysis of the test cases identified in the MTS 
will be performed to ensure that each test case 
requires a sufficient amount of data. 

The MTS defines tests to be implemented at the 
system module level. For example, the test case 
for frame synchronization tests only the part of 
the system that performs frame synchronization. 
The MTS approach of testing system modules is 

* Reed-Solomon Encoder 

* Reed-Solomon Decoder 

* Lossless Data Compressor 

The flight-qualified R-S Encoder features a 
selectable interleave depth (1 to 8) and supports a 
sustained data rate of 200 Mbps. This Encoder is 
currently available fol: flight project use, and has 
been delivered to the Tropical Rainfall Measuring 
Mission and the X-ray Timing Experiment. 

The flight qualifiable R-S Decoder is designed 
and currently scheduled for production at the 
NASA Microelectronics Research Center at the 
University of New Mexico. This chip will perform 
1 to 16 symbol error corrections at a sustained 
data rate of 150 Mbps. The flight qualifiable R-S 
Decoder will incorporate technology allowing the 
production of flight-qualifiable components by a 
commercial foundry. 



The flight-qualified lossless data compressor has other components developed either within or 
been developed and manufactured. This external to the AOST. The AOST has the potential 
compressor chip is available for flight project use, 
and has been delivered for use on Landsat 7. 

to easily incorporate andlor test new components. 

5. AOST FUTURE PLANS 
4.4 KNOWLEDGE TRANSFER 

The knowledge gained through the AOST 
Program is disseminated to a wide audience that 
includes flight projects, users, and ground system 
developers, among others. Workshops provide a 
forum for the exchange of knowledge between 
AOST participants and other interested 
organizations. A library and knowledge database 
have also been created. An AOST workshop is 
scheduled for November 1994. 

4.5 AOST AND RENAISSANCE 

The GSFC Code 500 Renaissance effort is an 
approach to data systems development designed 
to improve quality and lower development life 
cycle cost through the implementation of 
standards, modularity, and reusable components 
(building blocks) supporting varying classes of 
missions and complexity. 

Should the Renaissance effort chose to implement 
a Testbed for the prototyping of building blocks, 
the AOST architectural approach is a effective 
model. The concept of well defined functional 
building blocks on a distributed communications 
network that supports commercial protocols is 
central to both the AOST and Renaissance. The 
redundant front end processors are developed from 
a set of Code 52 1 modular components. The front 
end processors used in the AOST are easily 
reproducible from both COTS and custom 
components. Two of the service processors 
developed in the AOST are also software based; 
one is developed using the C programming 
language on a UNIX platform, making it easily 
transportable to a large number of commercial 
workstations. The FDDI LAN connecting the 
AOST ground system elements can incorporate 

The next iteration of the AOST, Capability Three 
(C-3) will incorporate a forward link capability 
to demonstrate, validate, and verify future 
implementations of the CCSDS Telecommand 
(TC) and AOS (forward link) Recommendations. 
Specifically, the forward link capability will be 
designed to support the SCPS and MOCA. 
Implementation of the TC and AOS 
Recommendations, SCPS, and MOCA will 
necessarily be incremental, since SCPS depends 
on the underlying Layer 1 and 2 services provided 
by the CCSDS Recommendations, and MOCA 
depends on the upper layer services provided by 
SCPS. The incorporation of the forward link will 
require the addition of new ground elements to 
the AOST, as well as enhancing existing ground 
and flight elements. 

6. SUMMARY 

The AOST continues to provide a key source of 
findings and information related to the 
implementation of the CCSDS Recommendations. 
The AOST work will continue through 1995 with 
a Testbed that supports the AOS and TC forward 
link command and uplink data generation and 
processing, SCPS, and MOCA. The AOST 
remains available to support testing of flight 
elements and ground system data processors. 
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ABSTRACT 

The NASNGSFC Network Control Center (NCC) provides communication services between 
ground facilities and spacecraft missions in near-earth orbit that use the Space Network. The NCC 
Data System (NCCDS) provides computational support and is expected to be highly utilized by the 
service requests needed in the future years. A performance model of the NCCDS has been 
developed to assess the future workload and possible enhancements. The model computes 
message volumes from mission request profiles and SN resource levels and generates the loads for 
NCCDS configurations as a function of operational scenarios and processing activities. The model 
has been calibrated using the results of benchmarks performed on the operational NCCDS facility 
and used to assess some future SN service request scenarios. 

INTRODUCTION 

The NASNGSFC Network Control Center (NCC) is the operational manager of the Space . 

Network (SN) which provides communication services between ground facilities and spacecraft 
missions in near-earth orbit. The SN consists of a constellation of Tracking and Data Relay 
Satellites (TDRSs), TDRSs ground terminals, communication and computing facilities, and 
operation personnel. 

The NCC provides the following functions: 

scheduling user support activities 
disseminating schedules to the users and to the SN support facilities 
controlling the services provided by the other SN elements 
maintaining SN status and configuration information 

* disseminating service performance data 
coordinating fault isolation 

* generating performance reports. 

The NCC functions are supported by the NCC Data System (NCCDS) which is a distributed 
computer system composed of a Communication and Control Segment (CCS), a Service Planning 
Segment (SPS), and an Intelligent Terminal Segment (ITS) connected by local area networks. The 
NCCDS performs the scheduling of the SN resources and processes the messages which the SN 
users, the NCC, and other SN support facilities use for requesting services, for controlling the SN 
configuration, and monitoring the SN service performance. 

The Network Control Systems Branch (C0d.e 532) is concerned with the effect on the performance 
characteristics of the NCCDS [ I ]  due to changes in the SN resources (i.e., number of TDRSs and 
ground terminals) and in the number and complexity of the space missions (e.g. EOS and space 
station) requesting SN services. The volume of message traffic and the computational effort will 



increase. The NCCDS performance can be kept to an optimal level by means of changes to the 
NCCDS design by increasing the hardware and software capabilities and, possibly, by improving 
the NCC operational procedures. 

A model of the NCCDS has been developed with the objective of providing a tool for assessing the 
impact on the NCCDS performance of workload changes due to the SN services that will be 
required by future missions and to the new elements that will be added to the SN in the future. 
This tool can also be used for evaluating the effect of possible modifications to the NCCDS design 
and to the NCC operational procedure, and to support the identification of the most cost-effective 
alternative. 

NCCDS CHARACTERISTICS 

The NCCDS functions included in the NCCDS performance model are summarized in Figure 1. 
External messages to and from the NCCDS are exchanged via the Front End LAN (FEL) and the 
High Speed Message Exchange (HSME) which routes the messages to CCS and SPS functions, 
tests the communication links, and logs the messages. The inter-segment traffic is supported by 
the Inter-Segment LAN (ISL). 

Figure-1 NCCDS Functional Architecture 

CCS monitors SN status and performance, sends related data to SPS and operators (ITS) and to 
the SN users when requested. CCS also monitors SN use and processes users' requests for 
reconfiguring the space link and the ground communication link. CCS functions are coordinated 
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with the SN scheduled events stored in a database which is periodically updated from the SPS. 

SPS receives from the Flight Dynamic Facility (FDF) acquisition data messages and transfers them 
to the SN Ground Terminals at White Sands Complex (WSC). SPS also performs the scheduling 
of users' SN resources requests for future events (forecast schedule) and for changes to the current 
schedule. It verifies users' requests, generates and maintains SN resource schedules, and 
disseminates the schedules to WSC, NASA Ground Terminal (NGT), Nascom, Sensor Data 
Processing Facility (SDPF), and Payload Operation Control Centers (POCCs). 

The modeled NCCDS configuration includes the CCS and the SPS computer systems connected 
by the ISL. Each system is composed by a processing component (CPU), storage peripherals 
(drives and controllers of disks and tapes) for databases and log files, and the LAN interface 
components. The model disregards the hardware required for redundancy purposes. 

MODEL STRUCTURE 

The main requirements [2] for the NCCDS performance model are (1) flexibility for assessing 
several alternatives of SN users' needs, SN resources, and NCCDS configurations and operational 
procedures and (2) consistency in comparing results of the assessed alternatives. These 
requirements are satisfied by a model structure that separately models and integrates the NCCDS 
performance factors. 

Figure 2 illustrates the structure of the model. 
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Figure-2 Model Structure 

The NCCDS performance model includes the following main models: 

mission support profile model representing users' requests on the SN resources; 

SN resources model representing the number of TDRSs and ground stations; 



* NCCDS traffic model representing the volume of messages transferred between the 
NCCDS and the outside world; 

* NCCDS operational scenarios model representing the timing of message distribution and 
processing; 

* NCCDS processes model representing the processes performed on each message and the 
resulting data transfer between CCS, SPS, and ITS; 

NCCDS configuration model. 

The mission support profile model represents the daily average level of support provided to the SN 
users and is the main driver for NCCDS message traffic volumes and processing loads. Input to 
this model is the number events (TDRS contacts) and the length of SN resource usage (i.e., K- 
band Single Access, S-band Single Access, and Multiple Access). The input values may be 
directly obtained from the Mission Model Database (maintained by GSFC Code 534) or any 
hypothetical value for "what-if' analysis. Outputs from the model are parameters for the daily load 
to the NCCDS (i.e., the number of supported events, number of changes to the current schedule, 
duration of support) and parameters for the forecast scheduling process (i.e., number of requested 
events per week). 

The SN resource model represents the SN configuration (i.e., number of TDRSs and number of 
antennas per TDRS). It provides values to parameters by which the traffic volume is computed. 

The NCCDS traffic model represents the average volume of messages received and transmitted by 
the NCCDS during a nominal day. The traffic model has been derived from an analysis [3] of 
message flows covering typical SN request scenarios. The messages are divided in six main 
groups (Figure 3): schedule related messages, performance related messages, acquisition data 
messages, configuration related messages, Restricted Access Processor (RAP) monitoring 
messages and communication test messages, and acknowledgment messages. The grouping is 
related to the processes performed on the messages. 
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The model of the NCCDS operations includes two classes of processes (Figure 4): functions 
initiated by the arrival of a message (i.e., data driven processes), and functions initiated by 
commands of the operator or NCCDS procedures (i.e., procedure driven processes). The first 
class of processes is directly driven by the average daily volume of messages computed by the 
NCCDS traffic model. The operators commands or NCCDS procedures that initiate the second 
class of processes is represented with a set of operational parameters which indicates the number of 
initiation per day for each process. 

Figure-4 Operational Model 
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The NCCDS processes model provides the framework for generating the loads of the NCCDS 
resources from the message volumes computed by the NCCDS traffic model. It represents the 
actual activities which the NCCDS performs to process each message. Figure 5 is an example of 
the representation of performance related messages processing. 

The NCCDS configuration model represents the NCCDS processing resources (i.e., CPUs and 
OSs, LANs and protocols, and data storages). It also includes the allocation of the NCCDS 
process to the resources. 
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The NCCDS performance model has been implemented by means of two computational packages 



running on a PC: a spreadsheet (e.g., LOTUS 1.2.3. or EXCEL) and the Automated Distributed 
Architecture Modeling tool (ADAM) which is an analytical queuing modeling tool. The reason for 
splitting the implementation on two packages was to minimize the model development effort and 
cost. 

The spreadsheet component implements the mission support model, the SN resources model, the 
traffic model, and the operational model. It includes a representation of the process model and 
generates the parameter values which are input to ADAM. 
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ADAM [4] has been developed by Computer Sciences Corporation for assessing distributed 
architectures. Figure 6 illustrates ADAM structure. 
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ADAM includes a representation of the traffic model (transaction components), of the processes 
(software components) and of the hardware configuration. The three representations are linked by 
means of allocation references from which the program computes resources workload and 
utilization, and service and latency times. 

MODEL RESULTS 

Input to the model are the characteristics of the missions which use SN services, of the SN 
resources configuration, and of the NCC operational procedures. The model provides traffic 
loads, potential bottlenecks, and message service and response times. 

To date we have successfully calibrated the baseline NCCDS model representing the current 
equipment configuration and the data system functions. We have used actual SN resource requests 
[5] as input to the model and compared the model results with the results of performance 
monitoring executed on the operational NCCDS facility during the same period of time 161. The 
CPU utilization computed by the model was 12% for CCS and 16% for SPS. This compares with 
monitoring measurements of 14% and 18% respectively. 

We have started analysis of future SN resource requests scenarios. Figure 7 shows the CPU 
utilization of the CCS and the SPS when processing the workload generated by three different 
hypothetical mission scenarios. The SN resources ( two TDRSSs) are used with 1000,2000, and 
3000 TDRSS contacts per week by 10 nominal missions. The scenario assumes a worst case day 
in which the Space Transportation System (STS) is flying and forecast schedule generation is also 
performed. 

CPU Utilization 

POCCs Events per weel 

Figure-7 Model Results 



The NCCDS performance model will be used for the assessment of the performance characteristics 
related to various uses of the Space Network services, and alternative configurations of CCS and 
SPS. 
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ABSTRACT 

The Data Systems Dynamic Simulator (DSDS+) is a 
software tool being developed by the authors to 
evaluate candidate architectures for NASA's end-to- 
end data systems. Via modeling and simulation, we 
are able to quickly predict the performance charac- 
teristics of each architecture, to evaluate "what-if' 
scenarios, and to perform sensitivity analyses. As 
such, we are using modeling and simulation to help 
NASA select the optimal system configuration, and 
to quantify the performance characteristics of this 
system prior to its delivery. 

This paper is divided into the following six sections: 

I. The role of modeling and simulation in the 
systems engineering wrocess. In this section, 
we briefly describe the different types of 
results obtained by modeling each phase of 
the systems engineering life cycle, from con- 
cept definition through operations and main- 
tenance. 

11. Recent awwlications of DSDS+. In this sec- 
tion, we describe ongoing applications of 
DSDS+ in support of the Earth Observing 
System (EOS), and we present some of the 
simulation results generated of candidate 
system designs. So far, we have modeled 
individual EOS subsystems (e.g. the Solid 
State Recorders used onboard the spacecraft), 
and we have also developed an integrated 
model of the EOS end-to-end data processing 
and data communications systems (from the 

payloads onboard to the principle investiga- 
tor facilities on the ground). 

111. Overview of DSDS+. In this section, we 
define what a discrete-event model is, and 
how it works. The discussion is presented 
relative to the DSDS+ simulation tool that we 
have developed, including it's run-time opti- 
mization algorithms that enables DSDS+ to 
execute substantially faster than comparable 
discrete-event simulation tools. . 

IV. Summary. In this section, we summarize our 
findings and "lessons learned" during the 
development and application of DSDS+ to 
model NASA's data systems. 

V. Further Information. 

VI. Acknowledgments. 

I. THE ROLE OF MODELING AND SIMU- 
LATION IN THE SYSTEMS ENGINEER- 
ING PROCESS 

As illustrated in Figure 1, modeling and simulation 
are invaluable tools throughout the systems engi- 
neering life cycle, as described in the following 
paragraphs. 

During the concept definition phase, modeling is 
used to validate the operations concepts, and to 
derive preliminary estimates of system requirements. 
For example, an operations scenario for EOS entails 
recbrding of payload data generated onboard the 
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Figure 1. The Role of Modeling and Simulation in the Systems Engineering Life Cycle 

spacecraft during each orbit, followed by periodic 
downlinking of the data during 10 minute contacts 
scheduled with the Tracking and Data Relay Satel- 
lite System (TDRSS). Modeling these scenarios 
provides estimates of the minimum onboard and 
ground-based storage requirements, and the mini- 
mum communications bandwidths necessary to dis- 
tribute all of the data received during a downlink 
contact before data is received for the next contact 
period. 

During the preliminary and detailed design phases, 
modeling is used to evaluate the performance of 
physical resources, configured in a certain topology 
to process the offered workload. The resources 
modeled include CPUs, busses, disks, networks, 
etc., and the workload includes software jobs/tasks 
to be executed, data to be processedltransferred, etc. 
Performance metrics generated by such a simulation 
include CPU utilization, queue sizes, network utili- 
zation, data latency, etc. Thus, simulation of the 
physical design adds an additional level of fidelity 
and insight into the anticipated behavior of the 
system, and the performance metrics generated re- 
flect the practical constraints of the real system, 
above and beyond the theoretical minimums gener- 
ated by modeling the operations scenarios. 

During the integration and test phases, modeling is 
used to identify critical system functions and inter- 
faces, and aspects of the system that have the smallest 
performance margins. Particular attention should be 
paid to these areas during testing, and the simulation 
results can be used to devise stress scenarios for 
subsequent testing. 

During the operations and maintenance phase, mod- 
eling is used to evaluate the impact of any proposed 
changes to the system requirements or system de- 
sign, such that the changes can be well-understood, 
and any side-effects identified. Further, perfor- 
mance benchmark measurements can be taken of the 
real system and compared against the simulated 
results generated in earlier life-cycle phases. These 
benchmark measurements can then be used to vali- 
date the simulation models (and, if necessary, to 
make refinements to the models), thereby enhancing 
the fidelity and level of confidence in subsequent 
simulation activities. 

11. RECENT APPLICATIONS OF DSDS+ 

DSDS+ is currently being used at Goddard Space 
Flight Center (GSFC) to model the space and ground 
segments of the Earth Observing System, at Marshall 
Space Flight Center (MSFC) to model the Space 
Station Freedom Data Management System, and at 



Johnson Space Center (JSC) to model the Space 
Station Freedom Control Center. 

A major component of NASA's Mission to Planet 
Earth (MTPE) is the EOS program at GSFC. EOS 
encompasses many project boundaries, each respon- 
sible for different technical disciplines (e.g. space- 
crafthnstrument command and control, raw telem- 
etry data processing, science data processing, data 
distribution, etc.); several of these organizations have 
utilized DSDS+ to conduct performance assessment 
studies germane to their areas of interest, and in 
addition, GSFC is sponsoring development of an 
end-to-end simulation model of EOS. 

DSDS+ Model of End-to-End EOS System 

The top-level schematic of the return-link, end-to- 
end data flows modeled for EOS is illustrated in 
Figure 2. The bullet-items listed to the right of each 
subsystem in the figure indicate those functions that 
have been modeled to-date. Other functions will be 
simulated in the near future, and the model will be 
updated as the EOS system definition evolves. 

In addition to the wide range of functions noted on 
Figure 2, the following salient features of the model 
are worth pointing out: 

The simulation consists of a single, integrated 
model of thee  distinct segments of the EOS 
architecture: the EOS AM- 1 spacecraft, the 
Space Network, and the EOS Data and Informa- 
tion System (EOSDIS). 

* The end-to-end model is supplemented with 
more-detailed models of the Solid State Re- 
corder, the Telemetry Processing Systems, and 
the network connecting the Science Data Pro- 
cessing Systems. 

* The end-to-end model is being used to quantify 
the performance characteristics of the systems 
and sub-systems within each segment, as well as 
the performance impact of one segment on an- 
other. 

* The fidelity of the simulation results is improved 
by reading external instrument timelines which 
specify the exact data rates of each instrument at 
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each point in time throughout the 16-day cyclic 
period of the spacecraft. (The spacecraft makes 
successive orbits of the Earth, such that the entire 
surface area is viewed after 16 days, and then the 
cycle repeats.) 

* Each iteration of the model (i.e. each "what-if' 
evaluation) is executed for a 16-day simulated 
period, corresponding to the spacecraft cyclic 
period. Each 16-day iteration takes less than 5 
minutes to execute, due to the simuiation optimi- 
zation algorithms described in Section IV of this 
paper. 



The model generates hundreds of statistics that 
depict the performance characteristics from three 
perspectives: end-to-end, point-to-point, and 
sub-system by sub-system. For example, 
Figure 3 illustrates the end-to-end latency of 
NOAA data, assuming that there are no service 
interruptions in the system. As illustrated, in this 
scenario there is a 95% probability that NOAA 
will receive its data in 81 minutes or less, and 
none of its data will be delivered more than 127 
minutes after the time of generation onboard. 
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Figure 3: End-to-End Latency for NOAA Data 

DSDS+ Model of EOS Solid State Recorder 

During the last five years, several different technolo- 
gies and management schemes have been proposed 
for implementation of the data recorders onboard the 
EOS spacecraft. The particular solutions proposed 
have had widely differing effects on cost, size, weight, 
shelf-life, maintainability, and performance. During 
this period, we have applied DSDS+ to evaluate the 
performance metrics of these different technologies, 
and we have determined factors such as: the number 
of recorders required, their capacities, their latencies, 
their required recording and playback rates, their 
impact on the ground data processing system, etc. 

mance benefits. For example, these devices enable 
the different payload data streams to be written to 
different physical partitions, that can then be played 
back sequentially (thereby enabling high-priority 
data sources to be transmitted first), or they can be 
played back concurrently (thereby providing each 
payload with equal access to the downlink channel). 

The DSDS+ results recently obtained by modeling 
the Solid State Recorders are illustrated in Figure 4. 
As indicated, the maximum buffer size required to 
support the EOS-AM1 payloads is approximately 
122.5 Gbits, well below the planned capacity of 140 
Gbits. However, these results are contingent upon 
the assumption that there are "near-perfect" opera- 
tions throughout the end-to-end system. A more 
realistic assumption is that there are occasional 
service interruptions: for example, missed contact 
periods between the spacecraft and TDRSS due to 
loss of signal. TheEOS-AM1 spacecraft makes 233 
orbits during each 16-day cycle, and it is scheduled 
to receive two contacts with TDRSS during each 
orbit; i.e. it receives a total of 466 contacts per 16 day 
cycle. Therefore, we re-ran the Solid State Recorder 
model 466 times, missing a different TDRSS con- 
tact each time. As each simulation executed, we 
obtained the maximum buffer size observed during 
the 16 day simulated period; we then plotted the 
results, which are given in Figure 5. 

EOS-AM1 Solid State Recorder Utllizatlon 

l o  I 

I Simulated Time (Days) I 
The most recent advances in technology now support 
high capacity, space-qualified, solid state recording Figure 4. EoS State 
devices (i.e. memory chips), with significant perfor- Utilization 
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with it that enable the user to define characteristics 
such as the packet sizes to be generated, their inter- 
arrival times, their priorities, etc. If desired, multiple 
instances of an element may be included in the model 
(e.g. multiple data generators), and each instance 
will have its own set of parameters defining the 
specific operations being simulated. 

Models are developed pictorially in DSDS+, using a 
graphical user interface that provides close correla- 
tion between the model representation and the real 
system. Further, the model drawings can be devel- 
oped hierarchically, to any depth required, so that 
complex models can be decomposed into a series of 
detailed sub-level models, as illustrated in Figure 6. 

697/FIg 5 

As illustrated in the figure, events (i.e. messages) Figure Maximum EoS AM-1 "lid State flow from element to element within discrete-event 
Recorder Utilization models. When the event arrives at an element. the 

As indicated in Figure 5, the volume of data buffered 
exceeded the Solid State Recorder capacity of 140 
Gbits on eight occasions (e.g. when TDRSS contact 
number 19 was missed, when contact number48 was 
missed, etc.). Therefore, there is approximately a 2% 
probability (8/466*100) that data will be lost if a 
TDRSS contact is missed. Also, it is worth noting 
that a TDRSS contact can be missed in the majority 
of cases without impacting the maximum volume of 
data that has to be recorded (i.e., the volume remains 
constant at 122.5 Gbits because the worse-case buff- 
ering occurs at some other point in the 16-day cycle, 
and is not related to the TDRSS contact that was 
missed). 

111. DSDS+ OVERVIEW 

The Data Systems Dynamic Simulator (DSDS+) is a 
general-purpose, discrete-event simulation tool. It 
contains an extensive library of pre-programmed 
simulation elements that are connected together by 
the user to represent the real system being modeled. 
Examples of the pre-programmed elements include: 
data generators and sinks, data processors (e.g. CPUs 
with various service disciplines), buffers and queues, 
and data switches and routers. Each of these ele- 
ments simulates a particular function or service, 
which may be tailored by the user to represent the 
specific application being modeled. For example, 
the data generator has a list of parameters associated 

underlying code associated with the element is ex- 
ecuted, and some action is taken to simulate the 
operations of the real system. For example, an 
element that simulates the TDRSS propagation delay 
might hold the event for a quarter of a second before 
forwarding it to the next element in the model. A 
slightly more complex element might calculate the 
transmission delay by dividing the bandwidth (input 
as a user-supplied parameter associated with the 
element) by the size of the incoming event to be 
transmitted. As the model executes, simulation re- 
sults can then be collected automatically, as a func- 
tion of time, simply by observing the flow of events 
in the system, or by observing the sizes of the internal 
queues, etc. 

It should be noted that DSDS+events do not carry the 
real data with them in the model, but rather, they 
carry attributes that define the characteristics of the 
real data (such as the packet size). As illustrated in 
Figure 6, the events are held on a chronologically 
ordered list (called an event calendar) that is main- 
tained by the scheduling engine. The engine re- 
moves the event from the top of the list, it instanta- 
neously advances the simulation clock time to the 
new scheduled time, and it then forwards the event to 
the appropriate element for subsequent execution. 
Thus, there is no relationship between wall-clock 
time and simulated time, and the next event might be 
scheduled for processing in a (simulated) nano-sec- 
ond or a (simulated) day. 
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Figure 6. DSDS+ Simulation Concepts 

However, the time required for a discrete-event 
model to terminate will increase with the total num- 
ber of events to be processed. If each packet is 
modeled as an event, then end-to-end models of 
NASA's high data rate systems will require many 
months to terminate, even when executed on high 
performance workstation-class computers. The rea- 
son is obvious: the real system will be implemented 
by multiple "'super-computers" distributed through- 
out the space and ground segments, each processing 
tens of thousands of packets per second. Therefore, 
how can a simulation model keep pace, since it is 
hosted on a single computer? We have implemented 
a solution to this problem within DSDS+, using a 
hybrid continuous-flow and discrete-event technique 
that we call "data streams". Briefly, the data stream 
methodology takes advantage of the fact that succes- 

sive packets flow through a data system at a constant 
data rate, with relatively infrequent changes in the 
rate. Thus, the system can be modeled by consider- 
ing the impact of what happens when the rate changes, 
without regard to the individual packets that consti- 
tute the data flow. For example, if during some time 
interval, a data source temporarily generates data at 
a rate that exceeds the processing capacity, then the 
queue size (and resultant queuing delay) will in- 
crease linearly with time until the source stops gen- 
erating data, and then the queue size will decrease 
linearly with time (although the queuing delay will 
continue to increase linearly with time until the 
queue is empty). 

The data stream approach is ideally suited to model 
NASA's data systems, since many of the science 



instruments generate data at a constant rate during 
each duty cycle, with relatively infrequent rate 
changes. Therefore, a data stream model is required 
to process relatively few events (each of which 
represent a change in data rate), and it doesn't matter 
that the data rates themselves are extremely high 
(typically, up to 150 Mbps). As a result, we are able 
to utilize DSDS+ to model complex, end-to-end data 
systems, at a detailed-level, for very long periods 
of simulated time and yet generate the results 
within just a few minutes (for example, the 16 day 
simulations of EOS require less than 5 minutes to 
terminate). 

IV. SUMMARY 

The preceding sections have demonstrated that mod- 
eling and simulation are invaluable systems engi- 
neering tools to help define and select the optimal 
system configuration. Further, the performance char- 
acteristics of this system will be known prior to its 
delivery. This is not just because simulation results 
have been generated, but also because modeling is a 
two-way street, and the questions asked in order to 
develop a model usually prompt the systems engi- 
neer to resolve ambiguities or incomplete specifica- 
tions that would otherwise have gone un-noticed. 
Therefore, it is our belief that the steps required to 
develop a model should be undertaken, even if the 
model itself is ne'ver actually constructed. 

Simulation models are also relatively inexpensive to 
develop - far less than the cost of trying to correct 
performance problems subsequently found in the as- 
built system! For example, the DSDS+ simulation 
models of the EOS Solid State Recorder were devel- 
oped in just a few staff-weeks, and yet their pay-off 
has been tremendous: the EOS project has decided to 
increase the recorder capacity to 200 Gbits to prevent 
loss of the science data. 

Finally, we believe that the unique run-time optimi- 
zation algorithms in DSDS+ make it the most suit- 
able tool available to model NASA's end-to-end data 
systems. While there are many excellent commercial 
took on the market, none contain any optimization 
methodologies; therefore, practical constraints limit 

their use to evaluation of localized systems, simu- 
lated for short time durations. 

V. FURTHER INFORMATION 

This paper is presented in conjunction with an online 
demonstration of DSDS+, including the simulation 
models developed recently of NASA's end-to-end 
data system. 

DSDS+ is a NASA-owned tool, and therefore it is 
available free of charge to any NASA organization or 
support contractor. For further information, please 
contact Bill Davenport at (301) 286-5149, or at the 
address given at the top of this paper. 
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Abstract 

The NASA Space Network (SN) consists of 
several geosynchronous communications 
satellites, in addition to ground support 
facilities. Space Network management must 
predict years in advance what network 
resources are necessary to adequately satisfi all 
SN users. Similarly, users of the Space 
Network must know throughout all stages of 
mission planning and operations to what extent 
their communication support requirements can 
be met. NASA, at the Goddard Space Flight 
Center, pe@orms Space Network and Mission 
Modeling using The Network Planning and 
Analysis System (NPAS), to determine the 
answers to these questions. 

Introduction 

The Network Planning and Analysis System 
( W A S )  is a deterministic modeling tool that 
accepts either generically or specifically stated 
communication support requirements. Using 
its own scheduling and orbital determination 
software, the NPAS produces an operationally 
valid schedule. Analysis software can then 
generate a variety of reports such as the 
percentage of satisfaction for users, or the total 
utilization of the SN. Analysts can view 
schedules graphically allowing them to identify 
conflicts easily. 

Detailed in its approach, the W A S  can model 
such difficult problems as antenna blockage and 
support requirements based on the physical 
position of a user satellite. The tool can also 
model such factors as  the effect of solar 

radiation on the  spacecraft and the 
radio-frequency interference between users. 
Also, the NPAS is not limited to the NASA 
Space Network alone. Given the necessary 
information, it can model other space based 
communication networks, a s  well  as 
ground-based networks, both foreign and 
domestic. 

NASA has used the various versions of NPAS 
successfully over the past 15 years as a tool in 
analyzing Space Network loading. The NPAS 
has also changed with the times. It has recently 
been ported to a Unix-based workstation and 
has a new X-window graphical user interface. 
Currently, efforts are in place to develop a 
neural network application for the NPAS. This 
application could be used to obtain an instant 
response to many questions that arise during 
the planning of communication support for new 
space missions. 

Overview of the Space Network 

Modeling with the NPAS at GSFC is applied to 
NASA's Space Network (SN) . The space- 
based portion of the SN is referred to as the 
Tracking and Data Relay Satellite System 
(TDRSS). The TDRSS consists of five 
geosynchronous Tracking and Data Relay 
Satellites (TDRS), two of which are currently 
operational at 410 W and 174" W. Two others 
are held in reserve and the fifth, the oldest and 
least capable satellite in the network, is 
dedicated to support of the Compton Gamma 
Ray Observatory. 

Only low earth orbiting spacecraft can make use 



of the SN. These users can communicate with 
a TDRS at K-band using one of two Single 
Access (SA) antennas or at S-band using SA 
or Multiple Access (MA) Ground-station 
limitations restrict the number of MAR users to 
to about five per TDWS. Even though each 
TDRS has only one MAF, the SA resource, 
due to its heavy use, is by far the most 
constrained TDRSS resource. 

It is the job of the W A S  to determine how this 
network will perform in the future under 
changing conditions. 

Modeling SN Loading 

Modeling different aspects of SN loading with 
the NPAS proceeds along two lines, Space 
Network Modeling and Mission Modeling. 
In theory, SN Modeling methods hold user 
requirements constant and vary network 
resources. This is contrasted by Mission 
Modeling techniques which hold network 
resources constant and vary user requirements. 

Analysts perform SN Modeling by determining 
what combination of TDRSS resources and 
mission priorities result in the best overall 
performance of the SN on a yearly basis. They 
make recommendations to NASA management, 
who then decide what course to adopt. These 
formally approved NPAS models are called 
baseline models and used as starting points for 
further studies. Using such approved 
baseline models, analysts perform Mission 
Modeling. Usually the requests come from 
management of new or prospective mission 
projects, or  from management of existing 
mission projects that are contemplating changes 
to  communications support requirements. 
During the course of mission modeling analysts 
produce variant models that reflect some 
change, or  a collection of changes, to a 
baseline model. End products of Mission 
Modeling are termed standard models to 
differentiate them from true baseline models. 

Regardless of the modeling method selected, 
analysts interact with the NPAS software in the 
same way,  defining network resources, 
mission requirements, and evaluating resulting 
schedules. 

Obtaining Model Parameters 

The model parameters used by the NPAS can 
be divided into two parts, scheduling and 
coverage. Scheduling parameters include 
information about mission support 
requirements. Examples include minutes of 
support needed per orbit and the minimum 
separation between contacts. Coverage 
parameters deal with the geometry between 
user spacecrafts and network resources. 
Locations of the TDRS, the orbital elements of 
the user spacecraft, and information relating to 
the blockage of the user antenna are examples 
of such parameters. 

The process of collecting user parameters is 
conducted in advance of actual modeling. This 
serves to reduce the needed during modeling to 
acquire needed information. 

Capabilities of the NPAS 

Once the modeling requirements have been 
gathered, the analyst can prepare to input the 
parameters into the NPAS. The number of 
steps required in this process is dependent upon 
the type of study being performed and 
similarities between the new requirements and 
existing baseline, variant, or standard models. 
Often times, minor modificationscan be made 
to an existing model to analyze the new 
requirements. 

Usually, the first step taken by an analyst is to 
define the support network. The support 
network can consist of S N  or ground-based 
stations, and is referred to as  the "network 
model." 

Then, missions that would be users of the 
defined network for the year being studied are 
modeled. The combination of orbital and 
coverage parameters of the spacecraft with the 
scheduling requirements of the mission is 
referred to as  the "mission model" for the 
particular mission. 

Once the network and all appropriate mission 
models are created for the year being studied, 
coverage data is generated for each mission at 
each station. From this coverage data, and 
subject to any constraints defined in the 



network and mission models, a schedule for 
each mission and each station can be generated. 

This schedule can then be analyzed using a 
number of applications included in the NPAS 
package. Various mission and station report 
analyses can be requested, and a facility exists 
that allows an analyst to examine graphically 
the schedule and certain coverage events. 

Modeling the Network 

A network model in the NPAS can consist of 
stations, physical antennas, services, and 
crews. Hardware limitations, such as TDRS 
interface channels, may also be modeled. 

SN and ground-network stations can have their 
locations specified in a number of ways. In 
particular, SN TDRS locations can be specified 
as either fixed or moving. In the former case, 
only the longitude and the height of the TDRS 
need to given. In the latter, orbital elements for 
the TDRS are specified by the analyst. 

When creating the network model, the analyst 
has the ability to define constraints, such as 
service availability times and fixed down times. 
Other special-purpose constraints, such as 
allowing scheduling to occur on no more than 
six out of eight SA antennas simultaneously, 
also may be modeled. Events such as planned 
maintenance a lso  a r e  easily modeled. 

These features allow the analyst to define real- 
world support network situations. Some 
examples might include TDRS' that are 
damaged or are otherwise not fully-functional. 
In the course of analyzing SN loading using 
baseline models, the number of single-access 
(SA) antennas available at each TDRS is 
,modified often, and the NPAS Modeling Tool 
interface was designed to ease this process. 

Defining Coverage Parameters 

Embedded within the NPAS is a complete orbit 
and coverage generation system which uses a 
modified GTDS to generate station visibility 
data with accuracy to the nearest second. 
Additionally, a facility exists t o  accept 
externally-generated orbit data. 

An NPAS analyst defines the basic orbital 
parameters of a spacecraft using Keplerian 
orbital elements. Other options exist that allow 
more complex orbit models to be created from 
this point. An example of such a model may be 
one that uses impulsive orbital maneuvering, 
thrust, or transfer orbits. Further modifications 
to the spacecraft orbit can include gravitational, 
solar and drag forces. 

A number of mission-specific coverage event. 
may also be calculated. Some of these mission- 
specific events include mission apogee and 
perigee points, ascending and descending 
nodes, spacecraft or subpoint sun events, land, 
water, and user boundaries. These events may 
be calculated in the coverage event generation, 
and would normally be used for scheduling 
options in the schedule parameters portion of 
the mission model. 

Many missions in the loading studies 
performed using NPAS include mission- 
specific events to direct the mission scheduling. 
One of these missions is Landsat, which 
specifies a number of user and earth boundaries 
over which to schedule. Also, this and other 
spacecraft may only want to schedule when the 
spacecraft or the Earth sub-point is in sunlight, 
and this may be modeled using the mission- 
specific events. 

As another coverage parameter, the analyst also 
can apply an antenna mask to the spacecraft, 
and define the spacecraft attitude and antenna 
orientation. Spacecraft masks are defined for a 
small number of missions in the most recent set 
of baseline models. The effects of masking on 
individual spacecraft has been extensively 
analyzed in variant antl standard models for 
some missions, including EOS and the Space 
Station. For the latter mission, a number of 
masks reflective of the various "build" stages 
were modeled. 

Options exist to determine separation angle 
events between a spacecraft and the sun or 
another spacecraft. Here, the angle apex may 
be located at either the spacecraft or the station, 
and the station may be either SN or ground- 
based. Separation angle events have been used 
in the past in variant models in which mutual 
interference between spacecraft was analyzed. 
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Defining Schedule Parameters 

Tasks to be performed by each mission are 
modeled as schedule requests in the NPAS. A 
schedule request is simply a request for a 
service, or set of related services, of some time 
duration, to be scheduled over a set of stations. 
Each request is subject to a number of 
constraints that can be imposed by the network 
model, the given request, and other schedule 
requests. Additionally, some constraints, like 
mission pre-pass and post-pass times at various 
relay stations, can be applied to all the requests 
of a single mission. 

Each schedule request is  given a priority 
number by the analyst and is subsequently 
scheduled in "highest priority first" order. 
Requests for  different missions may be 
intermixed to allow scheduling of all missions' 
critical requirements before any other 
requirements, if this is desired. The current 
practice, however, is to schedule all requests 
fo r  any  individual mission together, 
and place the missions into priority order. 

Schedule Request 

Most schedule parameter modeling in the 
NPAS is accomplished using generic schedule 
requests. A generic request does not specify an 
exact time at which the defined service or set of 
related services i s  to be scheduled. 
Additionally, the request is typically repeatable 
over periods that extend across the schedule 
span. 

Furthermore, using a generic request, an 
analyst can specify a variable length service 
contact time, in which shorter contact times, 
down to a minimum, can be accepted if the 
maximum length contact cannot be scheduled. 

One mission that is modeled in NPAS using 
generic requests is  TRMM. The primary 
request is one 20-to- 14 minute S-band forward 
service, with concurrent S-band return service, 
event per orbit. Only one generic request 
would be required in the NPAS to model this 
requirement. 

In the above example (Figure l ) ,  the TRMM 
requirement was for two concurrent services, 
"repeatable over the schedule span. Whenever 



two or more services need to be related in some 
manner and scheduled repeatedly over the span, 
a Prototype Event (PE) structure is defined in 
the generic request. A PE is best viewed as a 
"template" for defining a variety of complex 
relationships between desired services. 

There are a number of options and constraints 
that an analyst can model in each schedule 
request in order to accurately represent the 
request in NPAS and to emulate real-world 
situations. One of these options is the mission 
antenna masking toggle. This allows the 
schedule request to use, or not use, the mission 
antenna mask specified in  the coverage 
parameters for the mission. This toggle is 
useful in determining the net effects of blockage 
on the spacecraft visibility. 

A multi-mission shared resources option allows 
a number of selected spacecraft to communicate 
simultaneously over one physical antenna. This 
option could be used to model situations in 
which the Space Shuttle and its payload can 
communicate simultaneously on the same 
TDRS link. 

Many other options exist as well, including 
dynamic rescheduling, in which selected 
higher-priority requests can be removed from 
the schedule if the invoking request did not 
attain a given satisfaction. Once the other 
requests are removed from the schedule, the 
invoking request i s  rescheduled, and the 
requests which had been removed are 
scheduled following. 

Other special scheduling options include station 
and station antenna schedule preferences, 
forced-handover and hybrid support, and 
maximum elevation priority scheduling. 

Some constraints might include a minimum or 
maximum separation between services, or 
scheduling windows, which define repeatable 
periods in which to schedule. Scheduling can 
also be directed around mission-specific events, 
such as when the spacecraft is in sunlight or 
when passing over a desired land mass, for 
example. The request can be directed to 
schedule when these events occur, or they can 
be directed to avoid scheduling at these times. 
Other mission-specific events include any that 

were defined in the coverage parameters for the 
mission. 

Schedule Algorithm Summary 

Three of the more commonly used schedule 
algorithms in the NPAS are the standard PE, 
standard non-PE, and geometric optimization 
algorithms. 

Before any request is processed by these 
algorithms, the set of available time on 
individual station and mission antennas is 
generated. This set, referred to in NPAS 
documentation as "freetimes," consists of the 
mission visibility at each station with any time 
scheduled by previously scheduled requests 
removed. Additionally, any station or station 
antenna or service downtimes, as well as 
mission-oriented station service suppressions, 
would be removed from this set. 

The standard PE and non-PE algorithms select 
events to schedule from this set using the 
aforementioned priority scheme in which higher 
priority requests are scheduled before lower 
priority requests. Further event scheduling is 
performed on a longest-prime-service-length- 
first, first-come, first-served basis. 

The geometric optimization (GO) algorithm is 
similar to the standard algorithms, but the major 
difference is that this algorithm determines a 
large number of suitable schedules for each 
request and chooses the one that maximizes the 
total scheduled time for the request. In GO, an 
initial greedy schedule is  determined by 
selecting the local-optimal solutions from 
partitions of the schedule span. If the total 
scheduled time of this solution is less than the 
predicted maximum, then a backtracking 
process is invoked in which the schedule is 
reevaluated using local-sub-optimal solutions 
from one or more partitions. 

Post-Schedule Analyses 

There are a number of applications available in 
the NPAS that allow an analyst to prepare 
different types of reports from the schedule 
results. For example, it is possible to create 
reports of utilization of service types, antennas, 
and frequencies. Analysts can also generate 



Figure 2 - Sample NPAS Schedule 

1998 - 2000 MDM Bandwidth Levels 

3 - 4  4 - 4 . 7  4.7+ 
Mbps Mbps Mbps Mbps Mbps Mbps 

MDM Data Ranges 

Figure 3 -Results from TRMM Study 



reports of mutual interference between 
spacecraft. Communication channel loading 
can also be analyzed using an NPAS report 
application. 

One of the more frequently used analysis tools 
is the NPAS Resource Plotter (RPLOT). 
RPLOT allows an analyst to view a mission's 
or station's schedule graphically in an X- 
Windows display. A wide range of options 
exists for examining mission- or station-related 
data, where different types of objects to be 
plotted appear in different colors. Mission- 
related data includes raw station antenna 
visibility and mission-specific events, such as 
apogee or a spacecraft-in-sun condition. 
Station-related data includes station antenna and 
service schedules. An example of an RPLOT 
display appears below in Figure 2. 

Recent Work 

As examples of our work, we have two recent 
mission studies performed for the Tropical 
Rainfall Measuring Mission (TRMM) and the 
Earth Observing System (EOS) projects. 

The TRMM project will be launched in 1997 
and will downlink data at 2 Mbps in real-time 
during its 20 minute SA events. Since ground 
terminal equipment (known as the MDM) limit 
the total downlink bandwidth to 6 Mbps,  the^ 
was a concern whether or not the TRMM 
would experience data loss. Analysis using the 
NPAS took into account the downlink rates of 
all 1997 SN users, and showed that there is 
little to no probability that such data loss would 
occur. It also showed that loads on the terminal 
equipment follows an exponential distribution. 
Results are shown in Figure 3. We have also 
recently provided the EOS project with a 
projected schedule of the their EOS-AM1 
spacecraft as modeled in 1998. This 
information will assist them as they size the 
needed on-board solid-state memory. 

Future Directions 

trained, could be used to achieve instant 
responses to specific loading and user 
satisfaction questions. The application would 
be trained by automating numerous database 
modifications, generating schedules, and then 
collating and preparing the data 

NPAS is a changing modeling system that has 
adapted itself to the environment that it is 
designed to model. It has served NASA well 
over the years and will continue to play an 
important role in the analysis of Space Network 
loading. 

We are currently exploring aspects of artificial 
intelligence to help speed parts of SN 
Modeling. SN modeling can be a time 
consuming process. We are now developing a 
neural network application that, once properly 
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ABSTRACT 

After a brief introduction on the need for simulation packages for the analysis and design of satellite 
communications systems, the software tool developed for the European Space Agency (ESA), its main 
objectives and the design choices made during the development are presented. A very concise 
description of the available communications and measurement block follows. The ESA standard 
Telemetry, Tracking and Command (TT&C) system simulator is then introduced along with a 
description of the ESA standard modulation and coding schemes. As an example, the simulation of the 
ranging system which is a non-standard communications block, is described in details. Several 
examples of TT&C simulations outputs are given and compared with measurement results or theoretical 
approximations, when available. Finally, future developments like the support of advanced modulation 
schemes and the dynamic satellite link simulation are presented. 

I. Introduction 

As telecommunications technology progresses, new design tools are required by the system engineer to 
evaluate the performance of more and more complex systems and subsystems. 
In fact, some equipment is so complex that no theoretical calculations can predict what the performance 
is going to be. Sometimes only simplified formulas or "rules of thumb" exist to qualitatively compare 
different hardware implementations. In either case some kind of tools are required to quantify system 
performance under real operating conditions before any expensive hardware bread-boarding or 
prototyping is attempted. Digital computer simulation for the analysis and design of communications 
systems is deemed to be a very powerful tool complementing both theoretical calculations and 
laboratory tests. 
Therefore, the European Space Agency (ESA) has been supporting the development of a sophisticated 
and reliable simulation package for telecommunications systems which would cover all aspects of 
satellite communications, from radio frequency modulation to baseband encoding and decoding. 
As the next step, the modeling of the ESA standard Telemetry, Tracking and Command (TT&C) ground 
station and satellite equipment based on the developed CAD package has been undertaken. 
The requirement was to be able to evaluate telemetry, telecommand and tracking performance with an 
accuracy comparable to the measurement accuracy of real tests on flight and ground station hardware. 
The main objectives of the TT&C simulator are broadly relating to the computer aided design and 
analysis functions: the optimization of the communications link of any ESA's mission, the setting-up 
of the various subsystems parameters, the preliminary assessment of radio frequency compatibility 
between the satellite and the station equipment, the estimation of the end-to-end system performance 
under the mission impairment conditions and operation modes, and the possibility of quantifying 
system degradation due to unexpected events in the mission lifetime. 
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11. The Telecommunication System Simulator 

For the analysis and design of satellite communications systems, ESA has initiated a research program 
with the goal of developing a simulation package encompassing up-to-date communications equipment, 
with a high degree of flexibility in changing parameters and structures yet so user friendly to attract 
engineers not too keen in learning programming languages. 
TOPSIM IV (TOrino Politecnico SIMulator, release IV) [5] is the result of this development. Being 
written in the FORTRAN-77 language, it can in principle be installed on any digital computer 
supporting a FORTRAN-77 compiler although the use of its sophisticated graphics interfaces requires 
that the X Window/Motif software be available. 
The simulator is based on the time representation of signals whereby a band limited signal can be 
uniquely represented by a series of samples taken at the Nyquist rate or higher. This approach has been 
preferred to the frequency domain representation which is not optimal in dealing with feedback loops 
and non-linear devices. However, when complicated filters have to be simulated, the time domain 
approach may result in time-consuming simulation runs; therefore, simulation blocks operating in the 
frequency domain and integrated in the time domain by FFTs are available. 
Linked to the time domain choice is the fact that telecommunications systems normally are 
characterized by a large ratio between the carrier frequency and the useful signal bandwidth. Therefore, 
the complex envelope representation of band-pass signals has been adopted to drastically cut down the 
sampling rate and thus increase the speed of execution. It is well known that a narrowband signal x(t) 
can be represented as: 

x(t) = xp(t) cos 2nfot - xq(t) sin 2nfot 

where xp(t) and xq(t) are the complex envelopes of x(t) and fo is the carrier center frequency. Each 
signal is therefore represented by a three-position vector where xp, xq and fo are stored. The sampling 
rate is determined by the bandwidth of the useful signal (xp, xq) and not by the carrier frequency. 
Since in the time domain representation of signal, the sampling rate must satisfy the Nyquist theorem 
for the element with the widest bandwidth, the multirate option is also available to further speed up the 
run time when different rates are used in different parts of the system (spread-spectrum systems for 
instance.) Special functions like pre-computation, program segmentation and block processing are also 
available to increase efficiency and user-friendliness. 
A very large library of blocks is available (more than 300 blocks modeling communications devices and 
about 30 blocks performing various measurement functions.) The communications blocks encompass 
signal and random generators, analog and digital modems, analog channels and non-linear devices, 
analog and digital filters, carrier and clock recovery circuits, DSP modules, coders, decoders and trellis- 
coded modems. The measurement library includes qualitative measurements (eye patterns, scattering 
diagrams), statistical estimates Cjitters), bit error rate routines, power and power spectral density 
evaluation. 
User-defined blocks simulating more complex subsystems can be written from scratch on a default 
template or by using the supplied TOPSIM routines as elementary building blocks, and then included in 
a personalized library. 
Flexibility, one of the goals of the simulator, is achieved in two different ways: first, none of the 
parameters of the library blocks is fixed to a default number; secondly, the activation of different parts 
of the simulation (program segmentation) to compare different configurations is supported by means of 
simple logic variables. 
~ ~ p l i c a t i o n  programs can be very easily written by drawing the system block diagram on the screen 
with the graphic input interface (GII) and letting it convert the drawing into TOPSIM code. Similarly, 
the simulation outputs can be displayed by the X Window based graphic output interface (GOI) either 
in on-line or off-line mode. 



111. The ESA Sbndard TT&C Simulator 

Of the many different application programs written with TOPSIM, SIMSAT has the task of 
dimensioning all the parameters involved in the link between a TT&C Earth station of the ESA 
Tracking (ESTRACK) network and an ESA, or CCSDS compatible, Near-Earth or Deep-Space 
Spacecraft, or Geostationary Satellite. 
The program allows simulation of simultaneous transmission of telecommand, telemetry and ranging 
signals according to the various ESA standards [I]-[4], and models standard ESA Earth station and 
spacecraft equipment, although different subsystems characteristics can be easily introduced should the 
need arises. 
The most difficult task SMSAT supports is the selection of telemetry and telecommand subcarrier and 
ranging tone frequencies, and their modulation indexes minimizing mutual interference and 
intermodulation due to transponder non-linearity and modulators' spurious signals. 
Available simulation outputs are qualitative measurements (eye patterns, scattering diagrams), statistical 
estimates (timing and phase jitters, ranging and Doppler mean and r.m.s. values), error rates (telemetry 
and telecommand bit and symbol error rates, ranging erroneous ambiguity resolution probability), 
power measurements and power spectrum evaluations. 
Being SIMSAT based on the ESA funded satellite communications simulator, most of the subsystems 
used in both the Earth and the space segment are standard library blocks. For those, trimming the 
various parameters and introducing non-ideal effects (imbalances, skew, non linearity, AMIPM, phase 
noise, etc.) according to both equipment specifications and measurement results has been the major task 
in building the simulator. 
On the other hand, the blocks simulating the ranging equipment had to be written from scratch. 
RangingIDoppler subsystems are in fact not normally contemplated among basic communications 
equipment. 
The standard ESA tracking system, called the Multi Purpose Tracking System (MPTS) has been fully 
modeled, including its sequence of operations (carrier and tone acquisition and tracking, code ambiguity 
resolution, range and Doppler measurement.) 
Among the blocks written to simulate the MPTS are the ranging code and tone generators, the replica 
code and tone generators, the frequency-steered digital tone phase locked loop, the IF and digital 
correlators, the time interval counters and the processing and control module making sure that the 
sequential steps of the tracking process are correctly performed. 

A. The ESA TT&C Systems 

The standard ESA uplinking of commands to the spacecraft (telecommand) is specified to use the 
following modulation scheme: the telecommand data, which is binary Non-Return-to-Zero-Level (NRZ- 
L) encoded, phase shift-keys (PSK) a sinusoidal subcarrier (8 or 16 Hz); the composite video signal 
then phase modulates (PM) the sinusoidal uplink carrier together with the ranging video signal. 
The ranging signal [2], [7], [8] is a hybrid signal composed of a special code phase modulating the 
ranging tone. The resulting video signal phase modulates the uplink carrier sharing its power with the 
telecommand signal. 

The uplink signal is therefore given by: 

SU(~)  = 4 2 ~ ~  C O S [ ~  n fo t + ~ T C  STC(t) + ~ R G  SRG(t)] 
where 

STC(t) = dTC(t) cos(2 n fTc t + IZI) 
is the telecommand video signal, 

SRG(t) = C O S ( ~  n fr t + mr rn(t) ) 

is the ranging video signal, and 



: uplink signal power 
: uplink carrier frequency 
: telecommand uplink modulation index 
: ranging uplink modulation index 
: telecommand baseband data stream 
: ranging code 
: telecommand subcarrier frequency 
: ranging tone frequency 
: ranging code modulation index 
: telecommand subcarrier initial phase 

Telecommand and ranging uplink modulation indexes are selected in order to optimize the TT&C link 
budget. 
For the telemetry signals transmitted from the spacecraft to the Earth station, both NRZ-L and Split- 
Phase-Level (SP-L) binary encoding, Reed-Solomon, Convolutional or Concatenated (Reed-Solomon 
plus Convolutional) channel encoding, and sine-wave or square-wave subcarriers may be selected 
depending on the bit rate and the mission requirements. The resulting video signal finally phase 
modulates the downlink carrier with the ranging signal which has undergone phase demodulation, 
filtering and automatic gain control (AGC). Due to the limited filtering performed in the transponder, 
the ranging signal is normally accompanied by the fed-through telecommand signal. Therefore, 
telemetry, telecommand, ranging and thermal noise share the downlink power. 

The downlink signal is given by 181: 

where 

is the telemetry video signal in case of sinusoidal subcarrier, and 

StTC(t) is the filtered and level controlled telecommand video signal, 

StRG(t) is the filtered and level controlled ranging video signal, 

n(t) is the thermal noise in the transponder ranging channel, and 

: downlink signal power 
: downlink carrier frequency 
: telemetry subcarrier frequency 
: telecommand echo modulation index 
: ranging effective downlink modulation index 
: noise downlink modulation index 
: telemetry modulation index 
: telemetry baseband data stream 
: telemetry subcarrier initial phase 

Calculations of the downlink modulation indexes are reported in [6] whereas analytical expressions for 
SIRG(t) are given in [8]. 



B. Modeling the Tracking System 

The ranging and Doppler tracking system (MPTS) has been modeled by writing a series of user defined 
blocks. Only the most important features will be described here. Detailed descriptions of the equipment 
can be found in [7],  181. 
The ranging modulator is made up of a special code generator, a tone generator and a linear modulator 
where the code synchronously modulates the tone with three operations dependent modulation indexes. 
The code is a periodic signal actually composed of subcodes in a proper sequence and was design to 
allow fast ambiguity resolution. The resulting video signal is fed to the uplink modulator for modulation 
with or without the telecommand signal. 
The Doppler unit performs integrated Doppler measurement on the downlink carrier and estimates the 
expected ranging tone frequency. 
The ranging demodulator performs an I-Q correlation between the received IF ranging signal and the 
replica ranging tone generated on the information from the Doppler unit. After conversion to baseband 
by multiplication with the recovered carrier, the phase error is sent to the digital tone PLL. This 
technique (tone frequency steering) has been devised to use very narrow loop bandwidths yet without 
having too long acquisition times. When the loop is locked, the quadrature correlator IF output is 
correlated with the locally generated replica code in phase and quadrature. The downconverted output 
is filtered and fed to the code ambiguity resolver where the ambiguity resolution logic is implemented. 
The processing and control module interfaces with the various units, supervises the various stages 
involved, i.e. the carrier and tone acquisition, the sequencing of codes for ambiguity resolution, the 
measurement proper, and generates the required statistical outputs (range and Doppler jitter and bias, 
probability of erroneous ambiguity resolution, etc.) 

C. Simulation Examples 

Fig. 1 shows the simulated ESA TT&C space and ground segment. Some of the blocks shown are 
actually macro blocks made up of several elementary blocks like the Ranging System whose internal 
structure is depicted in fig. 2. 
Fig. 3 is a typical result of the system and detailed design phase of a project, the optimization of the 
satellite transponder back-off. The figure depicts the estimated telemetry BER for the IS0  spacecraft as 
a function of the selected back-off. 
Fig. 4 shows the simulated ranging spectrum of a CCSDS compliant mission whereby the ranging tone 
is fixed at 100 kHz. The tone itself, the sideband created by the code modulation and the odd harmonics 
of the tone are visible. This kind of plots can be used to select the telemetry subcarrier frequency. 
Fig. 5 shows the worst case in-phase and quadrature ranging correlators output for the IS0  mission and 
is used to determine the minimum code integration time necessary to perform the ambiguity resolution 
with the mission specific probability of error. 
Fig. 6 shows the in-phase ranging correlator output during ambiguity resolution for the CLUSTER 
spacecraft when no noise is present. The actual curve shows a 10% reduction with respect to the design 
value, due to the limited bandwidth of the flight transponder. This example demonstrates the tool 
capability to quantify system performance degradation caused by subsystem non compliant with 
specifications. 
Fig. 7 and 8 respectively show the simulated and measured spectra at the output of the transponder. Due 
to the limited bandwidth of the modulator, spurious lines at the even harmonics of the bit rate are 
generated. Note the almost perfect match between simulation and measurement. 
Comparisons between simulated and measured telemetry bit error rates (BER), for the cases of 
telemetry only and simultaneous telemetry and ranging, are shown in fig. 9. The theoretical BER value 
for the telemetry only case is also included. The maximum difference between simulation and 
measurement is some 0.2 dB, of the same magnitude of the test equipment measurement accuracy. 



HV. Future Developments 

ESA is currently considering the use of bandwidth and power efficient (suppressed carrier) and spread- 
spectrum modulation schemes for TT&C support of future missions. 
The next generation modems are being introduced in SIMSAT to replace the present standard PSWPM 
modulation. Besides, since suppressed carrier signals are deemed more sensitive to Doppler shifts and 
rates, a dynamic satellite link simulator will be added to TOPSIM. The link simulator is to compute the 
link geometry parameters (slant range, Doppler shift and rate, elevation angle, etc.) and derive link 
budget parameters (carrier-to-noise density ratio, EbINo, etc.) versus time. The generated output file 
will then feed the present simulation program so that a dynamic simulation is performed. 

V. Conclusions 

Based on TOPSIM, a digital computer simulation tool tailored to ESA's requirements in the field of 
space communications, the simulation template for ESA's standard ground and space TT&C equipment 
has been developed. The very accurate modeling of the various ground and space TT&C subsystems 
has resulted in very good matching between simulation results and measurements performed on the 
equipment itself. Thanks to the achieved accuracy, the simulator is very extensively used: 
. during conceptual system design (feasibility or Phase A) to trade off various configurations of the 

same system or different systems performing the same functions; 
. during detailed design phase (phase B) to determine mission specific set-ups (modulation indexes, 

loop bandwidths, correlation times, carrier and subcarrier frequencies, etc.); 
. during the implementation phase (phase CID) to evaluate system performance under the predicted 

mission impairments for which analytical solutions do not exist; 
. after launch to simulate the effects of subsystem degradation's occurred during the mission and 

validate corrective actions on a model prior to trying it out on the flying spacecraft. 
Therefore, although final radio frequency compatibility tests between the space and the ground segment 
are performed on the actual hardware as prescribed by the ESA standards [I], the complete design of the 
TT&C link is done by simulation. Potential problems are likely to be discovered by simulations much 
earlier than the expensive flight hardware is available for testing thereby potentially minimizing 
schedule risks and program costs. 

The performance of the simulator with respect to the actual equipment has encouraged the development 
of a new template including future ESA modulation schemes and a dynamic satellite link simulator. 

VI. References 

European Space Agency (November 1989), RF & Modulation Standard, PSS-04-105, Issue 1. 
European Space Agency (April 1990), Ranging Standard, Vol. I, Direct Earth-to-Space Link, PSS-04-104, Issue 1. 
European Space Agency (September 1989), Telemetry Channel Coding Standard, PSS-04- 103, Issue 1. 
European Space Agency (March 1979), S and SLi Band Coherent Transponder Specifications, PSS-48, Issue 1. 
European Space Agency ( 1986), TOPSIM IV, Design and Implementation of Software for Simulation and Analysis of 
Communication Systems, ESAlESTEC Contract No. 6981/86/ML/JG. 
R. De Gaudenzi and M. Nahvi (1989), Telemetry degradation due to the ranging signal of the multipurpose tracking 
system, CCSDS proceedings, RF and Modulation SubpanellE, NASA Ames Research Center, CA. 
R. De Gaudenzi, E. E. Lijphart and E. Vassallo (1990), The New ESA's MPTS, ESA Journal, Vol. 14, No. 1. 
R. De Gaudenzi, E. E. Lijphart and E. Vassallo (1992), A New High Performance Multi-Purpose Satellite Tracking 
System, IEEE Transactions on Aerospace and Electronic Systems, Vol. 28, No. 4. 







Figure 3. Telemetry BER vs. TWTA back-off 
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Figure 4. Ranging signal spectrum 
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Figure 6. CLUSTER Ranging Correlation 
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Figure 5. IS0  Ranging correlators output 
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Figure 7. Simulated transponder output 
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Figure 8. Measured transponder output 
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A General Mission Independent Simulator (GMIS) 3 s q a - q  
and Simulator Control Program (SCP) 

Paul L. Baker (GST Inc.) 
J. Michael Moore (NASNGSFC) 

John Rosenberger (CTA Inc.) 

The Pur~ose of GMIS and SCP 

GMIS is a general-purpose simulator for testing ground system software. GMIS can be adapted to 
any mission to simulate changes in the data state maintained by the mission's computers. GMIS 
was developed in Code 522 NASA Goddard Space Flight Center. The acronym GMIS stands for 
GOTT Mission Independent Simulator, where GOTT is the Ground Operations Technology 
Testbed . Within GOTT, GMIS is used to provide simulated data to an installation of TPOCC - the 
Transportable Payload Operations Control Center . TPOCC was developed by Code 5 10 as a 
reusable control center. GOTT uses GMIS and TPOCC to test new technology and new operator 
procedures. 

Ideally, mission operations staff should have a variety of simulators to serve several purposes: 

Prediction - compute the future state of a system 
- Evaluate the effects of a proposed operational step, i.e., to answer "what if '  questions. 
- Verify that the planned steps will cause operations that lie within safety and other 

operational constraints. 

Test - supply a time-variable system state to exercise subsystems. 

Training - create a realistic environment for training staff. 
In practice, missions that use TPOCC have one or more simulators. Consequently, GMIS was not 
developed to fill a void; rather, it was developed to offer an alternative with certain advantages: 

1) Convenience - GMIS is easy to setup and use. 

2) Extensible - it is easy to add more simulation functions. 

3) Speed - eventually, we expect GMIS to run very quickly. 
In the present version, we have not achieved these goals in equal measure. The convenience factor 
is high, but the speed seems modest. The features that make GMIS extensible are useful, but there 
is room for improvement. In this report, we will relate some feedback from current GMIS users 
and indicate how we plan to improve the simulator in these three areas. 

The GMIS manages the timing and external data links for optional simulation modules. It accepts 
any number of compiled or interpreted modules. Compiled modules are written in C or C++. The 
interpreted modules are written as procedures in TSTOL - TPOCC @stem _Test and Qerations 
Language . This language is familiar to flight operations team members, but it is not especially - 
easy to use. In fact, programmers often find it difficult to use because it looks familiar but has a 
different syntax compared to programming languages. For this reason, the project developed the 
SCP as a convenience feature. 

The SCP is a graphical, syntax-aware editor for TSTOL. Although SCP is really a simulation 
script editor, its name stands for Simulator Control Program, for historical reasons. SCP helps 
you write a correct TSTOL procedure and then lets you run it with a click of a button. SCP has an 
embedded copy of the TSTOL interpreter so that it can detect and report syntax errors locally. 
Finally, SCP reads and displays all the variable names in the data server's database. That feature 
helps the user find the correct spelling for system variable names. 



60ll Scriot Builder (U1.3) g; SCP and GMIS Interaction Panels 

GMIS always shows the updates to values when it receives them from SCP. The GMIS panel is 
shown in Figure 2 just after the SCP has executed the script in Figure 1. Compiled simulation 
modules are usually designed for a higher throughput and could swamp the display with output. 
Consequently, GMIS does not automatically show updates for such modules. However, compiled 
simulation modules can write progress messages to the display, if they wish. 

File Command I 
Script Name: plb2 

The SCP has two panels that help a user write TSTOL. Suppose we want to add another statement 
to the procedure. We only need to click the mouse at the point where we want the new statement to 

appear. Then, we can go to the Statement Builder 

Simple and easy to use Motif control panels are 
responsible for much of the convenience of 
GMISISCP. The panels strive for the same look-and- 
feel as the panels that are used in the TPOCC control 
centers. 

The SCP has a main panel, called the Script Builder, 
that is used to edit TSTOL scripts. Figure 1 shows a 
copy of the panel at a point where the user has 
completed a simple script. 

This script will loop three times with two seconds per 
loop, and it will set the value of the loop index, i, in 
the system variable, tpex-s 1 i 1. 

The script appears within a Motif Text Widget. All of 

G e l  and pull down th< Script menu. That menu 
$D GMlS U1.3 shows the basic statements of the TSTOL language 

Figure 1: SCP Main Panel the Widget's editing commands are available. The File 
Menu has the usual options for saving and retrieving 
copies of the script. The Command Menu has only one 

option: Execute. When the user selects that option, the script runs and sends data values to GMIS. 
From GMIS, the updated values find their way to the data server. 

File Simulator Display as illustrated in Figure 3. 

Many of the TSTOL constructs in the menu require 
Mission Name: tpocc 

simulator Status: started 

Most Recent Changes: 

Sinulation Started ------------------- 

40 TWCC-DECOM TPEX-SLII I 
42 TPOCC-DECOM TPEX-SLII 2 
44 TPOCC-DECOM TPEX-SLII 3 

multiple lines. For example, all the block 
structures have a starting and ending statement. In 
those cases, the statement builder will insert 
multiple lines and the user simply clicks within the 
block to add the statements that belong there. 
Moreover, some of the TSTOL constructs require 
parameters. That is indicated in the menu by a 
series of periods after the name. The Statement 
Builder helps with two of those: Let and For. 
When the user selects one of these constructs, the 
main area of the Statement Builder changes to 
display a fill-in form with the required parameters. 

Figure 2: GMIS Main Panel 



Figure 4: SCP Data Points Panel 

When the script needs a TPOCC system variable name 
as a parameter, the user can type the name or click on 
the name in the Data Points panel. The Data Points 
panel lists all the current data server variables. For 
example, the user has just clicked SWP- SUP in 
Figure 4. Just before the name was selected, we 
started a L e t  statement in the Statement Builder 
window. When the name is selected, SCP copies it into 

Figure 3: SCP Statement Menu the first entry field of the L e t  statement shown in 
Figure 5. 

The statement that you construct in this window will be copied into the script when you click on 
the Apply option. In this case, we made an error - f oobar is not a symbol TSTOL will 
recognize. We inserted this statement anyhow to produce error messages intentionally. When we 
execute a script, SCP brings up another window to show the dialog with the TSTOL process. 
Figure 6 shows the dialog for this script and the TSTOL error messages. 

LET 

Figure 5: SCP Statement Builder - Parameter Form for "Let" Directive 



:(7 GOT1 TSTOL Command Panel: plb2 

[POI 1069 Procedure GENERIC completed, 
LOO1 TPOCC TSTOL Server initialization complete, 
[POI 1069 Procedure TPOCC-SERVER completed, 
[OOI 1002 TPOCC STOL (TPOCC) processor, TPOCC-TSTOL-25830, activated 
[OI 1 START tstolaaaa22205 
[POI 1080 Warning proc name (TSTOLAAAA22205) does not match name in PROC 
[POI 1070 Procedure TSTOLAAAA22205 started, 
[PI] TSTOLFIRAA22205/2: FOR i = 1 TO 200 DO 
[PI I TSTOLAAAA22205/3: let tpex-sl il= i 
[PI] TSTOLAAAA22205/4: LET SIP-SUP#TPOCC-DECOM = foobar 
1001 1011 syntax error, 1 ine 4 in "/mako2/tpocc/TPOCC11~HP/procs/tstolaa~ 
LO01 1012 in "LET SWP-[SUP#TPOCC-DECOM = foobarl " 
[OOI 1038 Error - stopped at line 5: ""  
[AS] Enter "GO" to continue +,, 

Figure 6: SCP - TSTOL Script Execution Panel 

GMIS Software Desipn 

The design for GMIS has several distinguishing features that are illustrated in Figure 7. A major 
design decision was to provide and maintain two copies of the system variables. The simulator 
modules read from one copy and write to a second. At the end of the time step, any variable that 
has changed is forwarded to the data server. At the same time, the first copy is updated from the 
second. The point of this feature is that it allows multiple modules to contribute to the next system 
state. The full state is written out at once after all the simulation modules have taken a turn. 

The current version allows any number of internal, compiled simulation modules. In addition, the 
SCP can interpret TSTOL procedures and send new data values to the GMIS. The SCP is running 
asynchronously with the GMIS, but the internal modules are synchronized to a strict clock. The 
internal timing is maintained by examining the system clock, computing the amount of idle time 
between cycles, and then programming the Xt System software for the required delay. The basic 
timing cycle is illustrated in Figure 8. 

The current version has the feature - or the implementation restriction, depending upon your 
viewpoint - that it is single threaded. Thus, the software cannot receive from the SCP when it is 
running a model, nor will it start its scheduled time step while a read operation is in progress. In 
future versions, we would like to be able overlap the data server communication with the other 
operations by providing two or more separate threads. 



current system variables 

system variables, next time step 

Figure 7 - The Data Flow in GMIS 
A programmer who wants to extend GMIS with compiled modules must use C++ in the current 
version of GMIS. C++ classes provide most of the routine simulator functions such as timing and 
data communications. The functions are inherited by the simulator modules in the following way. 
To write a new module, the programmer defines it first as a class that inherits from the 
ModelEngineInte$ace class. Then the programmer makes a single instance of the class, which is 
the actual simulator module. When the instance is constructed, it will connect itself with the GMIS 
infrastructure automatically. 

(asynchronous) Mainloop Models Data Server 

Figure 8 - GMIS Timing Diagram 
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Figure 9: The Major Class 
Relationships in GMIS 

The ModelEngineInte$ace class inherits its timing 
properties from a utility class, called 
ScheduledObject, and it acquires access to the 
system variables by a composition operation. In 
simple terms, it contains a pointer to a list of 
system variables. There is a full set of utility 
functions that come with the list as part of a class 
called Tvar. The GMIS effort borrowed the Tvar's 
from another project. Because theTvarrs didn't do 
everything we needed, we made Tvar a subclass of 
a new class STvar that added the new functions. 
This programming trick avoided any modifications 
to Tvar, initially anyhow. We will discuss 
software maintenance experiences later. The class 
relationships are summarized in the Figure 9. 

Features Provided. Features Used 

The GMIS simulator has been in operation for about 18 months. It has been used in experiments 
in the GOTT and by three other projects. The feedback has been surprising because the features 
that are used the most were not the most important during the development. Also, some of the 
most important features during development are used little, or tend to be in the way of use. 
Finally, we had to add features for two projects because there was a reasonable need that was not 
satisfied by the baseline version. As a result, there is currently a baseline version and two 
variations. The feature sets of these versions are summarized in the Table 1. 

As we expected, the built-in connection to the data server has made GMIS a valued tool for testing 
TPOCC related software. The interpreted TSTOL modules have proven more valuable than 
expected. On the other hand, the class libraries have fared poorly in practice. The classes are not 
simple enough to encourage reuse, although a lack of familiarity with C++ may also be a factor. 
Moreover, the C++ class for data server access, Tvar ,  has proven very hard to maintain. Also, 
the T v a r  class only handles asynchronous data and it proved impossible to extend it for 
synchronous data. Consequently, we had to write a special version of GMIS for a project that 
requires synchronous data simulation . Our conclusion is that it may not be a good idea to wrap a 
C++ class around a C library that is not well understood. This is certainly the case with T v a r  and 
the TPOCC data services library. 

A surprising requirement has been the need for simulations in which the simulation calculation is 
performed off-line and written to tape. The GMIS must then read the tape and supply the data at a 
steady pace controlled by the simulation clock. In principle, there is no reason that an off-line 
calculation could not be performed on-line. Indeed, one could keep the simulation software 
wherever it is developed and provide simulated data over a network on demand. In practice, 
software does not move freely and networks are not always connected to each other. For now, 
this requirement is a real one for NASA and it required a special version of GMIS. 



Table 1: Summary of GMIS Features and Their Extent of Use 

Key: 

6. Reusable C++ Classes 

7. TPOCC Data Server Classes 

8. Interpreted TSTOL Simulation Modules 

9. Simulation Tape Playback 

0 feature not supported 
6 feature supported but not used 
O feature supported and used extensively 

6 

6 

O 

0 

Note: 
Version 1.0 is the baseline version; Version 1 .X is a notation 
for the several specialized variants. 

The Future of GMISISCP 

-- 

O 

As the preceding summary shows, there are valuable features in GMIS that complement other 
simulation facilities. However, there is still room for improvement in the three qualities we deem 
important: convenience, extendibility, and speed. 

In the area of convenience, it has long been our goal to have fast, compiled, simulation modules 
that we can start on demand while GMIS is running. Tpese dynamically loaded modules would 
give the experimenters in the GOTT laboratory more flexibility in their tests. This feature should 
appear in the next version. The overall architecture of GMIS will then realize the design shown in 
Figure 10. Presently, all the compiled modules are liriked statically, but that will change to 
dynamic loading in the next version. 

In principle, the module that connects GMIS and SCP is just another producer module. Similarly, 
the module that connects to the data server is just another data consumer. In practice, it may be 
difficult to build a dynamically linked module without revising the extensive body of TPOCC code 
that is reused in these modules. Consequently, these modules will always be statically linked, but 
compilation options will determine whether the modules are present or not. 

The extendibility of the current version is based on C++ classes that offer a variety of scheduling 
features as well as an encapsulated access to TPOCC data services. Only the simplest scheduling 
features are used, however, and the encapsulated access is often more of an obstacle than an 
advantage. For this reason, the next version of may be written in C, without classes. 

The speed of GMIS should be improved considerably if we could overlap simulation calculations 
with system variable output. We plan to explore this possibility as D& - Distributed Computing 



Environment - is phased in. DCE has a built-in capability for multiple threads that should support 
simultaneous network communication and computation. 

For the future, the GOTT laboratory is not limited to TPOCC control center software. In the past, 
the laboratory has hosted OASIS software and we are currently experimenting with software from 
Storm Technology, Inc. For this reason, the GMIS should be independent from a particular 
control center. 

Opt ion al 

Figure 10: Overall Architecture for GMIS 
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ABSTRACT 

A TestIScoreIReport capability is currently 
being developed for the Transportable Payload 
Operations Control Center (TPOCC) 
Advanced Spacecraft Simulator (TASS) sys- 
tem which will automate testing of the God- 
dard Space Flight Center (GSFC) Payload 
Operations Control Center (POCC) and Mis- 
sion Operations Center (MOC) software in 
three areas: telemetry decornmutation, space- 
craft command processing, and spacecraft 
memory load and dump processing. Auto- 
mated computer control of the acceptance test 
process is one of the primary goals of a test 
team. With the proper simulation tools and 
user interface, the task of acceptance testing, 
regression testing, and repeatability of specific 
test procedures of a ground data system can be 
a simpler task. Ideally, the goal for complete 
automation would be to plug the operational 
deliverable into the simulator, press the start 
button, execute the test procedure, accumulate 
and analyze the data, score the results, and 
report the results to the test team along with a 
golno go recommendation to the test team. In 
practice, this may not be possible because of 
inadequate test tools, pressures of schedule, 
limited resources, etc. Most tests are accom- 
plished using a certain degree of automation 
and test procedures that are labor intensive. 
This paper discusses some simulation tech- 
niques that can improve the automation of the 
test process. 

The TASS system tests the POCCMOC soft- 
ware and provides a score based on the test 
results. The TASS system displays statistics 
on the success of the POCCMOC system pro- 
cessing in each of the three areas as well as 
event messages pertaining to the TestIScoreI 
Report processing. The TASS system also 
provides formatted reports documenting each 
step performed during the tests and the results 
of each step. A prototype of the TestIScoreI 
Report capability is available and currently 
being used to test some POCCMOC software 
deliveries. When this capability is fully opera- 
tional it should greatly reduce the time neces- 
sary to test a POCCMOC software delivery, 
as well as improve the quality of the test pro- 
cess. 

1. INTRODUCTION 

1.1 TASS Background 

The Transportable Payload Operations Control 
Center (TPOCC) Advanced Spacecraft Simu- 
lator (TASS) system has been designed to sup- 
port .the development, test, and operational 
aspects of Payload Operations Control Center 
(POCC) and Mission Operations Center 
(MOC) software deliverables. TASS is 
designed to test the majority of POCCMOC 
low-level requirements. The TASS system 
simulates spacecraft telemetry and command 



functions. TASS takes advantage of the 
TPOCC architecture by using the backup 
POCCMOC system configuration hardware 
for the simulator, or TASS can be separately 
hosted on a streamlined version of the POCCI 
MOC. This eliminates the need to schedule 
hardware or Nascom lines during various test 
configurations. In essence, the user has a sim- 
ulator on call at all times. 

TASS has the capability to simulate the 
Nascom link protocols required to support sat- 
ellites and generate simulated spacecraft 
telemetry streams using the POCC'sMOC's 
operational data base (ODB). TASS validates 
spacecraft commands and alters the real-time 
telemetry stream in response to those com- 
mands. The user can alter the telemetry stream 
either by data base mnemonic or by specifying 
individual bits in the telemetry frame or 
packet. Similar telemetry display pages at 
both the simulator workstation and the POCCI 
MOC workstation help identify telemetry pro- 
cessing irregularities. As part of the system 
design, software hooks are available so more 
complexity can be added by providing various 
dynamic models for the telemetry generating 
function. 

In the POCCMOC test environment, the 
TASS system provides a means for saving and 
restoring predefined test scenarios and results, 
telemetry stream contents, and data structures 
to allow the user to accurately repeat specific 
tests, retest with known data, or continue test- 
ing from a given point in the test scenario. 
These features allow the user to perform 
regression tests on new software deliverables 
in the shortest possible time. 

TASS records all received Nascom blocks and 
all received spacecraft commands in history 
files that can be viewed for detailed analysis 
through the use of an offline utility program. 
All system events, errors, operator input, pro- 
cedure input recorded in the event log; and 
spacecraft memory images that are saved can 
be viewed by using the offline utility pro- 
grams. After completing the test, the user gen- 
erates test reports using the report generation 
subsystem. These reports can later be used to 
evaluate the test results during the analysis 
process. 

Unique implementations of spacecraft memory 
load and dump capabilities are provided as 
well as an NCC communications protocol 
when TDRSS support is required. 

1.2 TASS System Design 

A typical POCCMOC system string is used to 
host the TASS software. The hardware config- 
uration to support TASS consists of two com- 
puters connected by Ethernet and associated 
peripherals as shown in Figure 1. These com- 
puters are a real-time front-end computer or 
processor (FEP) in a Versa Module European 
(VME) bus enclosure and a general-purpose 
computer or workstation. The real-time FEP is 
used to process spacecraft commands and to 
build and transmit telemetry streams. The 
Hewlett-Packard HP 9000-7 15 workstation 
allows the user to configure, control, and mon- 
itor the FEP from one or more user terminals. 

TASS makes extensive use of the same 
TPOCC reusable software that the POCCI 
MOC developers use, mainly the user interface 
(display and TPOCC Systems Test and Opera- 
tions Language (TSTOL)) and the Nascom 
interface. The display system is based on X 
Windows and fully adheres to the industry- 
standard OSFMotif principles. TSTOL is the 
user script language which is used to control 
the TPOCC application system (either the 
POCCMOC system or the TASS system). 
TSTOL is also used to develop operational 
scenarios and test procedures. Presently, 
TPOCC reusable software comprises approxi- 
mately 78% of the TASS system. Another 
16% of TASS is reusable from mission to mis- 
sion, such that only about 6% of TASS needs 
to be newly developed with each added POCCI 
MOC mission. 

1.3 Control Center Configuration 

Because of the methodology chosen for the 
overall ground system design, no special 
equipment or system configuration is required 
for TASS. TASS uses the POCCMOC backup 
system string and communicates with the pri- 
mary POCCMOC system string thru the local 
TPOCC switch. In a test configuration, the 
TASS input/output data flow at the switch 
interface looks llke the Nascom interface to the 
primary POCCMOC system string. This 
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architecture is shown in Figure 2. 

The TASS system accepts spacecraft com- 
mands from the POCCMOC and transmits 
telemetry to the POCC/MOC via Nascom con- 
nections on both FEPs. The workstations 
show displays generated by the TASS and 
POCCMOC system. 

2. GROUND DATA SYSTEM TESTING 

2.1 Software Delivery Test Process 

GSFC Control Center Systems Branch is 
responsible for testing the software deliver- 
ables for the POCCMOC systems in the 
TPOCC environment. TPOCC based POCCsI 
MOCs support the WIND, POLAR, 
SAMPEX, FAST, SWAS, SOHO, XTE, 
TRMM, and ACE missions. Testing of these 
POCCMOC systems consists of unit testing, 
integration testing, and finally acceptance test- 
ing. 

Unit testing is performed throughout the soft- 
ware implementation phase by the POCCI 
MOC developers. Unit testing is completed 
prior to delivery of the unit for system integra- 
tion. 

Integration testing is performed before deliv- 
ery to the test team. This testing verifies inte- 
gration of TPOCC generic software and 
POCCIMOC unit software into the POCCI 
MOC system and is performed by an integra- 
tion manager who is supported by the develop- 
ment team. 

Acceptance testing is performed by the test 
team before delivery to GSFC according to a 
comprehensive test plan and procedures. This 
testing verifies the functional and performance 
requirements and is completed prior to deliv- 
ery of the system to operationsluser commu- 
nity. 

2.2 Automating the Test Process 

To achieve the goal of automating the test pro- 
cess, several test methodologies have been 
prototyped. The most promising concept is 
Test/Score/Report. TASS and POCC/MOC 
simularities in system architecture, user inter- 
face, script language, and project data base 

files are some elements that support this sys- 
tem concept approach to automate the test pro- 
cess. 

3.1 Automated Testing in Three Areas 

The Test/Score/Report capability currently 
being developed will automate testing of the 
POCCMOC software in three areas: teleme- 
try decommutation, spacecraft command pro- 
cessing, and spacecraft memory load and 
dump processing. TASS takes advantage of 
the ground system attributes in designing the 
Test/Score/Report capabilities. Both the TASS 
and the POCCMOC systems are using some 
of the same reusable building blocks of 
TPOCC software and running on the same 
hardware architecture. By using this approach, 
TASS can easily add features which enhance 
the automated test process. 

Figure 3 shows the data and control flows 
between the two systems. The TASS system 
simply establishes a socket connection with 
the POCCMOC system in order to make 
requests for data and to receive the data. This 
connection is transparent to the POCCMOC 
system and requires no new software be writ- 
ten on the POCCMOC side. The TASS sys- 
tem also reads the POCC'sMOCYs system 
variable dump file and the ground image file 
which both reside on the workstation's disk. 
The system variable dump file contains all of 
the telemetry parameters located in the opera- 
tional data base as well as counters and status 
information. This file is needed for initializa- 
tion purposes before requests for data can be 
made. The ground image file is used to vali- 
date spacecraft memory load and dump pro- 
cessing. 

Telemetry decommutation is tested in two 
ways. The first way is by comparing the val- 
ues of telemetry parameters decommutated by 
the POCCMOC against the telemetry parame- 
ters commutated by TASS. Ideally, the 
decommutated values should match the com- 
mutated values. The second way is by com- 
paring the limit specifications previously set 
with the status words of decommutated telem- 
etry parameters. Every telemetry parameter 
located in the operational data base is automat- 



r - - - - - -  
I POCC/MOC 

U '  
I I u I 

-,--,,J TPOCC LAN L , , - - ; , 
Figure 3. DataKontrol Flow Between TASS and the POCCIMOC 

ically checked. Each discrepancy is displayed 
as an event message which gives the value of 
the decommutated telemetry parameter and the 
value of the commutated telemetry parameter. 
Summary event messages for the two teleme- 
try decommutation tests state the total number 
of telemetry parameters which decommutated 
correctly, the total number of telemetry param- 
eters checked, and the percentage of which 
were correctly decommutated. 

For spacecraft commanding, the test process 
validates the various fields in the Nascom 
block header for all spacecraft command 
blocks received by TASS and validates the 
individual spacecraft commands received in 
valid command blocks. TASS also checks 
whether the POCCJMOC verified the com- 
mands after they were executed by TASS. 
This is accomplished by making data requests 
to the POCCIMOC for values of command sta- 
tus parameters and counters. Summary event 
messages are displayed which give the number 
of valid command blocks, the number of valid 
commands, the number of commands verified 
by the POCCIMOC, and the percentages for 
each of the above tests. 

The spacecraft memory load and dump pro- 
cessing is tested by comparing the spacecraft 
image maintained by TASS against the ground 
image file maintained by the POCCMOC. 
This test is performed after memory load data 
is sent to TASS from the POCCMOC via a 
spacecraft command and after TASS transmits 
a memory dump to the POCCMOC via the 

telemetry stream. Ideally, the memory values 
maintained by TASS should match values in 
the POCCMOC ground image file. A sum- 
mary event message informs the user of the 
number of bytes that miscompared, the total 
number of bytes in the spacecraft image, and 
the percentage of bytes which had the same 
value. 

3.2 Scoring the Ground Data System 

The initial scoring method will be in terms of 
percentages and raw counts. More experience 
in testing and interpreting the test results will 
be required to develop a better scoring meth- 
odology. 

3.3 Reporting the Test Results 

The TASS system displays statistics on the 
success of the POCC/MOC in each of the three 
areas as well as event messages pertaining to 
the Test/Score/Report processing. The Test/ 
Score/Report display page shown in Figure 4 
is broken up into two sections. The top section 
gives the summary counts and scores for the 
various tests. The bottom section is a scrolling 
region which displays all event messages gen- 
erated during Test/Score/Report processing. 

The TASS system also provides formatted 
reports documenting each step performed dur- 
ing the tests and the results of each step. The 
user can issue reports for each type of test (i.e., 
telemetry, limits, command, memory loads1 
dumps). Report options include showing all 
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Figure 4. Test/Score/Report Display Page 

parameters tested or just those parameters 
which miscompared or were in error. For 
telemetry tests, the report shows the telemetry 
mnemonic, the cornmutated value, and the 
decommutated value. For limit tests, the 
report shows the telemetry mnemonic, the 
commutated value, the limit specification and 
the status word of the decommutated pararne- 
ter, and the decornrnutated value. For com- 
mand tests, the report shows numbers of: 
Nascom block header errors, command errors, 
and commands verified. Finally, for memory 
1oadJdump tests, the report shows the memory 
address, TASS's spacecraft image value, and 
the POCC'sNOC's ground image value. 

4. PRESENT STATUS 

A prototype of the Test/Score/Report capabil- 
ity is available and currently being used to test 
the WIND, POLAR, SAMPEX, FAST, SWAS, 
and SOH0 POCC software deliveries and the 
XTE MOC software delivery. This prototype 
includes the "test" and "score" features 
described in this paper. The "report" features 
(other then the Test/Score/Report display 
page) are currently being developed by the 
TASS development team and are planned to be 
released by early next year. The TASS devel- 
opment team is actively worlung with the 
POCCNOC test team and software develop- 
ers to obtain feedback on the Test/Score/ 
Report prototype. 

5. FUTURE DIRECTIONS 

Basically we have completed our prototyping 
stage of this project. We have been successful 
in implementing this methodology in several 
projects as mentioned in the previous section. 
Future objectives are to automate more of the 
test process by: 1) including additional 
subsystem testing such as attitude, events, 
packet extraction, history, NCC, and' database 
testing; 2) improving the scoring 
methodology; and 3) providing more 
functionality and options for the report 
process. 
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ABSTRACT 

The Microelectronic Systems Branch (MSB) at Goddard Space Flight Center (GSFC) has 
developed a Spacecraft Data Simulator (SDS) to support the development, test, and verijkation of 
prototype and production Level Zero Processing (LZP) systems. Based on a disk array system, 
the SDS is capable of generating large test data sets up to 5 Gigabytes and outputting serial test 
data at rates up to 80 Mbps. The SDS supports data formats including NASA Communication 
(Nascom) blocks, Consultative Committee for Space Data Systems (CCSDS) Version 1 & 2 
frames and packets, and all the Advanced Orbiting Systems (AOS) services. The capability to 
simulate both sequential and non-sequential time-ordered downlink data streams with errors and 
gaps is crucial to test LZP systems. This paper describes the system architecture, hardware and 
software designs, and test data designs. Examples of test data designs are included to illustrate 
the application of the SDS. 

1. INTRODUCTION 

Simulation of spacecraft data is a basic function of any space and ground data system. Over the 
years, many simulation systems have been developed to support spacecraft and ground system 
Integration and Test (I&T). However, very few are capable of testing LZP systems that are based 
on CCSDS recommended data formats [1][2] and require large unique test data sets with complex 
data scenarios. 

In 1992, the Microelectronic Systems Branch (MSB) at GSFC developed a Spacecraft Data 
Simulator (SDS) to support it's Very Large Scale Integration (VLSI) LZP system prototype 
phase one (VLSI LZP-1) development [3]. The VLSI LZP-1 is capable'of performing LZP 
functions for CCSDS packet telemetry at rates up to 20 Megabits per second (Mbps). In order to 
test this system, it was necessary to simulate realistic streams of spacecraft data, including a 
variety of errors and data gaps. The SDS was used to simulate data streams of 750 Mbytes each 
(i.e., 5-minute sessions at 20 Mbps) with all valid timecodes and sequence counts. To emulate 
onboard tape recorders, reversed data streams were generated for playback sessions. To test the 
overlap deletion function, the forward real-time sessions and reversed playback sessions were 
simulated with regions of overlap at the beginning and end of sessions. Many types of errors were 
inserted into selected frames and packets in both overlap and non-overlap regions to fully exercise 
system capability of handling errors. 

The SDS was significantly enhanced through the development and deployment of Fast Auroral 
Snapshot Explorer (FAST) Packet Processing System (PPS), that is based on the VLSI LZP-1 
architecture [4]. The use of Solid-State Recorders (SSR) onboard FAST created many 



complicated data scenarios never before encountered in conventional tape recorder-based missions 
[5]. New functions were added to the SDS to simulate the scenarios, such as, downloading 
thousands of data fragments in a single session, interleaving real-time and playback data with 
identical packets being present on different Virtual Channels (VC), overlap occurring anywhere in 
a data stream, and packet sampl-ing that resulted in non-contiguous packet sequence counts. These 
enhancements enabled the SDS to be used successfully in the FAST PPS system development, 
integration, and acceptance testing. 

Early in 1994, the SDS was upgraded further to support the development of VLSI LZP prototype 
phase two (VLSI LZP-2) [6]. Simulation software was modified to support CCSDS AOS data 
formats, and key hardware components were upgraded increasing the maximum data output rate 
from 25 to 80 Mbps. 

2. SYSTEM OVERVIEW 

The Spacecraft Data Simulator consists of a hardware subsystem and a software subsystem. The 
hardware subsystem provides processing power, data storage, a network interface, and a telemetry 
interface. The software subsystem takes in user specifications and generates simulated CCSDS 
telemetry data accordingly. 

The hardware subsystem, shown in Figure I, contains a simulation processor and a 5.5 Gbytes 
disk farm. The simulation processor is contained in a Versa Module Eurocard (VME) equipment 
rack; it consists of a Master Controller card, an Ethernet Interface card, a Disk Controller card, a 
Memory card, and a MSB-developed Data Generator (DG) card. All cards except the DG-card 
are Commercial Off-the-shelf (COTS) components that provide system base functions for data 
processing, buffering, and network interfacing. The DG interfaces with the disk farm andis used 
to store simulated telemetry data in the disk farm during offline data generation. During a test 
session, the DG retrieves the data from the disk farm, serializes it and outputs it through an 
RS-422 interface or an Emitter Coupled Logic (ECL) interface. The data rate is user-selectable 
from 0 to ~O 'MHZ.  The disk farm parallel architecture enables data transfer at rates up to 128 
Mbps. The disk farm capacity is configurable from 5.5 to 40 Gbytes. 

The software subsystem consists of two major components: the Test Pattern Generator (TPGEN) 
and the Large Volume Data Generator (LVGEN). TPGEN is a menu-driven software package 
that can generate small sets of Nascom blocks, and conventional and AOS CCSDS frames and 
packets for up to 32 VCs and 256 Application Processes (AP). Packet and frame placement is 
user-defined. The data can be either Cyclic Redundancy Checked (CRC) or Reed-Solomon 
encoded, and many types of errors can be inserted in the data. TPGEN has been used to support 
many missions including the Topographic Explorer (TOPEX); Solar Anomalous and 
Magnetospheric Particle Explorer (SAMPEX); and FAST. 

LVGEN is a script-based package. It uses TPGEN to configure "base sets" of frames or blocks 
when the ratio and placement of packets from all sources are defined. It then switches among the 
"base sets" while generating the test data set, with all timecodes and sequence counts increment 
correctly during switches. The only restriction is that all "base sets" must share the same source 
list. 



LAN 

Ser~al data output up to 
80 Mbps (ECL mterface) 

Serlal data output up to 
25 Mbps (RS422 mterface) 

Ser~al data mput up to 

0 
25 Mbps (RS422 mterface) 

Code 521 Commerc~al 
KEY: VLSI Cards Components 

Figure 1. System Block Diagram 

Figure 2 illustrates the information and process flow in SDS data set generation. Spacecraft needs 
are interpreted as requirements and operational scenarios. Requirements are used to design the 
data set and to specify the errors to be injected. The data set design includes simulating the 
expected order, frequency, and content of the data from the spacecraft. This step produces external 
files defining the complexity of the data, scripts encompassing the order and rules for error 
injection and data generation, and the TPGEN catalogs (configuration files) defining the repeatable 
sets of frames. LVGEN uses the products from the data design and error injection stage to 
generate the data. The user interface downloads the test setup, and activates the DG to output the 
simulated data stream using the LVGEN-generated data. 

When a "base set" must contain a larger number of frames than can be defined in a single TPGEN 
configuration file, it is broken down into "subsets," each with a separate configuration file. 
Different versions of the same "subset" may be used to simulate the forward playback scenario 
where identical packets from one source can be transmitted on more than one VC. The start count 
for each file created by LVGEN defines the regions of overlap between the sessions. 

For "complex data," where the transmission of packets out of time order by a spacecraft must be 
simulated, LVGEN fills the sequence count and timecodes for each packet from external files that 
are generated by a Packet Header Definition (PHD) utility based on the test scenarios. The 
simulated science or engineering source data can be simple repeated patterns, or can be read from 
files that may contain real spacecraft data, still images, or other interesting data patterns. 



3. SDS APPLICATION 

The SDS was used to functionally test the FAST PPS system through system development, 
integration, and acceptance testing. This section will describe the strategy used to test the FAST 
PPS which included exercising the functionality and performance of the PPS. The strategy was to 
initially develop the minimum number of data sets which would base-line the functionality of the 
FAST PPS; these data sets will have varying degrees of complexity. The next step was to place 
errors in the initially-generated data sets that would cover the range of errors and performance 
metrics to fully stress the PPS. 

3.1 CALIBRATING DATA SET GENERATION 

The first data set that was generated was referred to as 'clean' or 'calibrating,' i.e., with no errors. It 
consisted of a single session of block-encoded frame data, with 564,131 blocks containing 
300,600 telemetry frames that simulated a 30-minute session at 1.5 Mbps. 

The calibrating data set simulated the expected proportions of the VCs as closely as possible. 
Within each VC, relative proportions of Application Process Identifiers (APID) were configured 
as specified in the FAST Data Management Plan. In order to expedite simulation, frames of the 
same VC occurred in groups of not more than 1280 frames within the telemetry stream. The data 
set consisted of playback and realtime interleaved data, bound on both sides by VC 7 fill data (see 
Figure 3). 
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The playback data, VC 1, was dumped three times during the session at a rate of 1 out of every 5 
frames downloaded. During the time VC 1 data was output, VC 2,3, and 4 data continued to be 
read out in a similar order as when no VC 1 data was being dumped, although the contents of each 
VC were slightly different due to simulation limitations. The first VC 1 dump occurred at the 
beginning of the session; the second dump occurred in the middle of the session; and the last 
dump was a partial dump that occurred near the end of the session. VC 0 was output at a rate of 1 
frame every 8 seconds (approximately 1 frame every 1394 frames at 1.5 Mbps). VCs 2,3, and 4 
were distributed throughout the scenario in alternating groups of each VC. For this data set, it was 
decided that VCs 2 ,3  and 4 would have relative densities 8:0.125: 1. One APID had all its packets 
in VC 3. Several other APIDs had packets in both VC 3 and 4; these APIDs were in VC 4 most 
of the time but switched to having small numbers of packets in VC 3 no more than 20 times 
during the course of the session. 

A group of "non-telemetry" blocks was introduced in the middle of the data stream, to test 
telemetrylnon-telemetry filtering. These blocks had different destination codes or message type 
codes. 

The calibrating data set was generated by LVGEN using TPGEN catalogs, PHD files and user 
developed scripts. Variances in the data content were produced by switching between base sets 
while generating the data. Although the data was Nascom block encoded, the base sets were 
defined by the number of frames and the content of the frame data per base set. 

3.2 DATA SET COMPLEXITY 

Different types of complex data containing multiple segments were simulated to fully test the 
capability of the FAST PPS. "Segment" is a concept referring to a group of packets of the same 
source which has a consistent time order, either forward or reversed. Data is "simple" if there is 
only a single segment received per session per source; data is "complex" if there are multiple 
segments received from a source during a session. For the FAST spacecraft, there are three ways 
in which complex data may be transmitted; each of these data types were simulated in the 
calibrating data set. 

For all sources in VC 2, the FAST spacecraft uses a "sampling" storage algorithm to write data 
into the onboard SSR. Sensor (source) data is compared against a preset threshold. If the data 
value is less than the threshold, the data is filled sequentially into a small buffer storage area on the 
SSR. If the data value meets or exceeds the preset threshold, a sample of the subsequent sensor 
data is sequentially stored in a partition within a larger buffer storage area on the SSR. After the 
larger buffer storage area is full, samples are still taken and compared to all the stored samples 



according to pre-defined criteria. If a new sample is better, it will overwrite an old sample with the 
best value, that may be anywhere from the 1st partition to the Nth partition. As more observations 
are made and the sensor value fluctuates, this scheme will result in segmented data in the SSR. 
When the SSR is dumped sequentially from low to high address, the PPS will receive and 
reassemble data segments that are completely out of time order. 

In LVGEN, the FAST sampling process was simulated by placing the first packet of the defined 
"sample" at the start of the second segment; and the remaining packets were then used to fill the 
second, the first, and the third segments, in that order. This means, among other things, that if the 
playback list, defined by external files, used by LVGEN specified adjacent forward-time-order 
samples, the last packet of the third segment of the first sample was continuous with the first 
packet of the first segment of the second sample. The proportion of the first segment to the 
second segment for each sample was controllable within LVGEN. In the calibrating data set, VC 
2 contained "complex data," with 8 simulated "samples" received in a mixed time order. 

The second source of multiple segments in FAST data was the VC 1 engineering playback data. 
During a pass, the FAST spacecraft may re-transmit stored engineering data several times, 
resulting in several wholly or partially identical groups of packets which must be overlap 
processed to delete redundant data. Multiple transmissions of playback engineering data and the 
mixture of realtime and playback data (albeit on separate VCs) was also simulated in the 
calibrating data set. The third type of FAST data segments result from the splitting of survey 
science data between VC 3 and 4. On the FAST PPS, these two streams, which contain no 
overlapping data, will be processed separately and merged, similar to the way VC 0 and 1 data 
were processed. 

The calibrating data set was a sequential data set, using a sequence count increment of 1. Some 
complexity was introduced to base-line the functionality of the FAST PPS. In this data set, only 
some VC 2 APIDs were fully simulated as sampled. The remaining sources were "simple," i.e., 
a single segment per session. The order of groups of packets within the data stream was specified 
by means of listing the playback order of samples for VC 2 sources in the calibrating data set. 
Two additional calibrating data sets were designed with greater complexity and used to further 
stress the capability of the FAST PPS. They were also used to test non-sequential packet data 
processing. 

3.3 DATA SET ERRORS AND THEIR IMPLEMENTATION 

The SDS was also used to simulate data streams with errors. Three scenarios were needed to fully 
test the FAST PPS: (1) Introduce various types of errors, (2) Introduce a large number of errors, 
5% and lo%, and (3) Introduce errors in sequential and non-sequential data, both partially and 
completely overlapped, to exercise the capability to segment and locate questionable, or 'fuzzy' 
packets. 

The first scenario introduced errors in the calibrating data set to simulate realistic cause and effects 
of data and transmission errors. The errors that can be,generated include: (1) Noise in the 
transmission from space-to-ground, and (2) Noise in the ground-to-GSFC transmission. The 
errors that can be generated, and the resultant effects at block, frame, and packet levels are shown 
in Table 1. 



Table 1. Errors, Results, and Statistics 

To introduce these errors, TPGEN catalogs for the calibrating data set were modified to include 
the errors. To ensure the number of times an error is to be repeated and its location in blocks, 
frames, and packets, base sets were split into smaller sets and the subsequent modified catalogs 
were used in conjunction with LVGEN to generate data with induced errors. For example, to 
generate an error in the 10th frame of a 40 frame base set within a specific repetition of the base 
set, (i.e., frame location,) it was necessary to break the base set into two smaller base sets of 9 and 
3 1 frames, respectively. The sequence of the frames is still maintained, but to inject the error, the 
LVGEN script will treat these two smaller base sets separately. For example, a data set requires 
repeating a particular base set (BS3) 200 times, within which the 102nd repetition will have some 
error introduced in the 10th frame. BS3 is split into BS3a and BS3b, and the script will specify 
repeating BS3 101 times, repeat BS3a once, BS3b once, and subsequently repeat BS3 98 times. 

ERRORS 

Block Synchronization 
Pattern Errors 

Block & Frame CRC 
Errors 

Block CRC Errors 

Frame Synchronization 
Errors 

Frame First Header 
Pointer Errors 

Frame CRC Errors 

Frame Bit Slip Errors 

Packet Length Errors 

Three types of simulated block errors were adequate to test the requirements and statistics at block, 
frame, and packet levels; Block Synchronization Error - by a flipped or incorrect bit in the block 
synchronization pattern; Block Polynomial Error with Frame CRC Error - by an error of one or 
more bits in the Nascom Block; and Block Polynomial Error with No Frame CRC Error - by 
flipped or incorrect errors in the Nascom block header or trailer. 

RESULTS 

Dropped Blocks, Missing 
Frames, Missing Packets 

Tagged Blocks, Bad Frames, 
Bad Packets 

Tagged Blocks, Good Frames, 
Good Packets 

Missing Frames, Missing 
Packets 

Rejected Frames, Missing 
Packets 

Bad Frames, Bad Packets 

Bad Frames, Good Packets 

Bad Packets 

STATISTICS 

Number of Blocks, Number of Block 
Synchronization Errors, Number of 
Block Sequence Errors, Number of 
Frames, Number of [Missing, Back to 
Search, Lock, Check] Frames, Number 
of Packets, Number of Missing 
Packets, Number of Packet Gaps 
Number of Block Polynomial Errors, 
Number of Frame CRC Errors, Number 
of Packet Errors 
Number of Block Polynomial Errors, 
Number of Frames from CRC Error 
Blocks, Number of Packets from CRC 
Error Blocks 
Number of Frames, Number of 
[Missing, Back to Search, Lock, 
Check] Frames, Number of Packets, 
Number of Missing Packets, Number of 
Packet Gaps 
Number of FHP Errors, Number of 
Missing Frames, Number of Missing 
Packets, Number of Packet Gaps 
Number of Frame CRC Errors, Number 
of Packet Errors 
Number of Bit Slips, Number of 
Missing Frames, Number of Missing 
Packets, Number of Packet Gaps 
Number of Missing Packets, Number of 
Packet Length Errors, Number of 
Packet Sequence Errors 



Four types of simulated frame errors were adequate to test the requirements and test statistics at 
frame and packet levels; Frame Synchronization Error - flipped or incorrect bit in the frame 
synchronization pattern; Frame CRC Error without Block Polynomial Error - by one or more 
incorrect bit in the telemetry data field; Frame Bit Slip Error - by dropped or extra bit(s) in the 
frame; and Frame First Header Pointer Error - error in the first header field of the frame. 

Packet length error was simulated to test the system requirements for detection and qualification of 
packet level errors. It was simulated by flipping the last significant bit in the packet length field 
specified in the packet header of the selected packet. 

The next scenario tested the performance of the system and evaluated its capability to process data 
with large quantities of errors. Two data sets with 'High Volume Errors' were designed to test 
these capabilities. They consisted of the FAST VC 2 sources only, with frames and packets 
similar to previous data sets, to simplify generation and predicted results. High-rate sampling was 
not simulated; all sources were a single segment per session. Frame CRC, First Header Pointer 
Errors, Frame Synchronization, Block Synchronization, and Packet Length errors were distributed 
throughout the data set to bring the total percentage of packets with errors or gaps to 5% and lo%, 
respectively. 

The final scenario tested the capability of the system to process the maximum number of sources 
with non-sequential and questionable packet sequence numbers. A data set called SRC200 was 
designed to test the requirement that the FAST PPS was able to process up to 200 sources. It was 
not intended to otherwise simulate the expected FAST telemetry format, neither in APIDs nor in 
packet sizes. The opportunity presented by this non-realistic scenario allowed the SRC200 data set 
to contain several "complex" sources with a full range of segment processing tests, including non- 
sequential and sequential overlap cases. This data set had no induced errors or gaps, but was used 
as the template for a later test set in which the complex data was used to test segment processing 
with fuzzy packets and non-sequential segment processing with errors and gaps. The 200 sources 
were generated by distributing 128 APIDs over VCs 0-6. The frame and packet format for 
SRC200 was the same as for previous data sets. Packet size was specified as 1054 bytes for all 
packets, resulting in one packet per frame for all sources. 

4. CURRENT AND FUTURE DEVELOPMENT 

During 1994, the Spacecraft Data Simulator was upgraded to support development and I&T of 
VLSI LZP prototype phase 2 that performs LZP functions at rates up to 50 Mbps. The Data 
Generator card was outfitted with a new mezzanine that increases output data rates from 25 to 80 
Mbps. The TPGEN and LVGEN data generation packages have been modified to simulate 
CCSDS AOS data for up to 32 VCs and 256 APIDs. To test the system's ability to provide AOS 
services, the SDS simulated AOS Coded Virtual Channel Data Units (CVCDU) consisting of 
Private Data Units for Virtual Channel Access Service, Insert Zone Data Units for Insert Service, 
Bitstream Data Units for Bitstream Service, fixed and variable length packets within Multiplexed 
Packet Data Units (MPDUs) with repeated APIDs on different VCs. The CVCDUs contained 
incomplete and fill packets, and included the full range of errors as described in the FAST PPS 
test scenarios. 

In the current implementation, all error injection scenarios and the foibles introduced in the data 
sets are designed in advance and manually catalogued through the TPGEN menu before the data 
generation process is initiated. As data scenarios get more and more complicated, this can become 



a tedious and time consuming process. Each time a scenario changes, even just adding or 
removing one error, the entire data set has to be regenerated. 

MSB is currently engaging in the development of a second generation data simulation package. 
Based on UNIX platform, this package will be highly modular and script-driven, and can be 
ported to different UNIX workstations. CCSDS telemetry data will be simulated by first 
generating a set of basic data units, then piping it through a series of simulation modules, each of 
which is responsible for one layer of CCSDS protocol or one type of data manipulation. Data or 
error characteristics will be specified through scripts. Graphical-based user interfaces will be 
provided to help users design, generate, modify, and examine their test data sets. While 
maintaining all SDS capabilities as described in this paper, this layered and modularized 
architecture will greatly improve efficiency. 

5. SUMMARY 

SDS has demonstrated its versatility and flexibility by supporting the LZP project through all 
phases of development. Its unique capabilities to simulate realistic spacecraft CCSDS data 
streams, especially SSR data scenarios, proved to be invaluable for system I&T of the VLSI LZP 
prototype phase 1 and 2 systems as well as the FAST PPS. The knowledge and expertise gained 
in the development of the current SDS will be used to develop the new generation of data 
simulators capable of testing systems running at speeds in excess of 300 Mbps. 
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7. NOMENCLATURE 

AOS 
AP 
APID 
CCSDS 
COTS 
CRC 
CVCDU 
DG 
ECL 
FAST 
GSFC 
I&T 
LVGEN 
LZP 
MPDU 
MSB 
Nascom 
PED 
PHD 
PPS 
SAMPEX 
SDS 
SSR 
TOPEX 
TPGEN 
VC 
VME 
VLSI 

Advanced Orbiting Systems 
Application Process 
Application Process Identifier 
Consultative Committee for Space Data Systems 
Commercial Off-the-shelf 
Cyclic Redundancy Check 
Coded Virtual Channel Data Units 
Data Generator 
Emitter Coupled Logic 
Fast Auroral Snapshot Explorer 
Goddard Space Flight Center 
Integration and Test 
Large Volume Data Generator 
Level Zero Processing 
Multiplexed Packet Data Units 
Microelectronic Systems Branch 
NASA Communications 
Polynomial Error Detector 
Packet Header Definition 
Packet Processing System 
Solar Anomalous and Magnetospheric Particle Explorer 
Spacecraft Data Simulator 
Solid-S tate Recorder 
Topographical Explorer 
Test Pattern Generator 
Virtual Channel 
Versa Module Eurocard 
Very Large Scale Integration 
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ABSTRACT 

The Operations Engineering Lab (OEL) at 
JPL has developed the multimission 
command system as part of JPL's Advanced 
Multimission Operations System. The 
command system provides an advanced 
multimission environment for secure, 
concurrent commanding of multiple 
spacecraft. The command functions include 
real-time command generation, command 
translation and radiation, status reporting, 
some remqte control of Deep Space Network 
antenna functions, and command file 
management. The mission-independent 
architecture has allowed easy adaptation to 
new flight projects and the system currently 
supports all JPL planetary missions 
(Voyager, Galileo, Magellan, Ulysses, Mars 
Pathfinder, and CASSINI). 

This paper will discuss the design and 
implementation of the command software, 
especially trade-offs and lessons learned from 
practical operational use. 

The lessons learned have resulted in a re- 
engineering of the command system, 
especially in its user interface and new 
automation capabilities. The redesign has 
allowed streamlining of command operations 
with significant improvements in productivity 
and ease of use. In addition, the new system 
has provided a command capability that 
works equally well for real-time operations 

and within a spacecraft testbed. This paper 
will also discuss new development work 
including a mulf mission command database 
toolkit, a universal command translator for 
sequencing and real-time commands, and 
incorporation of telecommand capabilities for 
new missions. 

INTRODUCTION 

The Jet Propulsion Laboratory has a long 
history of building multimission ground data 
systems that are designed to be easily 
adaptable to new projects. The mainframe- 
based systems of the 1970s have been 
replaced by distributed, workstation-based 
systems as part of JPL's advanced 
Multimission Ground Data System (MGDS). 
The new MGDS provides flexible, extensible 
components that are easily adapted for new 
missions, but more importantly, can also 
support multiple missions concurrently. 
However, as these ground systems have 
evolved, it has become apparent that 
providing advanced tools that help simplify 
and automate the old way of doing business 
is not enough to support the small, low-cost 
missions of the future. In particular, the 
uplink process has been very labor intensive 
for planetary missions and it must be re- 
engineered to provide the simple command 
capabilities that will be needed for missions 
with cheaper, more autonomous spacecraft 
and for operators wanting remote telescience 
capabilities. 



The Operations Engineering Lab (OEL) has 
developed and refined the MGDS Command 
Subsystem to be an adaptable, low-cost, 
multimission component of the overall uplink 
process. As part of our development work, 
the OEL is working with the sequencing 
teams and developers at JPL to re-engineer 
the uplink process so it can provide seamless, 
easy-to-use capabilities for spacecraft 
commanding. The goal is to provide an off- 
the-shelf command package that can support 
large to small missions that need to command 
through the Deep Space Network (DSN). 

MGDS COMMAND 
SYSTEM DESCRIPTION 

The MGDS Command functions include real- 
time command generation, command 
translation and radiation, status reporting, 
remote control of DSN antenna functions, 
and command file management. A 
distributed, network-based, graphical 
interface is provided to give real-time 
command radiation status to users at remote 
sites. This interface was implemented in 
XIMotif. The Command System provides 
security functions including authentication for 
two user privilege levels, internal security 
checks, a central node for controlling all 
command radiation processing, a 
configuration control environment for 
command files, and a mode for non- 
interactive Command viewing. 

The primary control function of the 
Command system is to permit real-time 
transmission of command files and memory 
loads from the ground to a spacecraft. The 
Command Control Graphical User Interface 
(GUI) (Figure 1) provides real-time, 
interactive control of the command 
transmission and radiation to the spacecraft. 
The connection between Command and the 
DSN is a secure process controlled by the 
Data System Operations Team at JPL. These 
operators allocate the connection resources to 
a project mission control team after ensuring 
a clean commanding interface. 

Command files are first transmitted to the 
DSN and held at the receiving end until the 
completeness and integrity of the file transfer 

can be verified. Once there, the user is free to 
put the files in the queue of the Command 
Processor Assembly for radiation to the 
spacecraft either at that moment or some later 
specified command window. The user also 
uses the Command GUI to remotely control 
the configuration of the antenna in terms of 
when actual radiation of commands. 

Any time the user is connected to a DSN 
station, the station returns monitor data which 
is displayed in the Command GUI for 
inspection by the operator; Monitor data 
contains information about the current 
antenna configuration, acknowledgments of 
command file radiation, and constant status 
information including alarms, files at the 
CPA, and receipt of command blocks. 

Command files are generated prior to 
transmission using the Command system or 
the Sequence software system. Both 
processes are similar. A spacecraft command 
sequence is formulated and constraint- 
checked and then the actual commands are 
entered as command mnemonics, encoded 
abbreviations (with parameters) that tell the 
spacecraft what commands to perform. The 
command mnemonics are translated into a 
spacecraft-ready file that contains binary 
translations of the mnemonics, spacecraft 
identification information, start and 
acquisition codes, and file integrity and error- 
detection information. Once the command 
files are prepared, they are stored and made 
available to the Command system through a 
secure database that checks command formats 
and user permissions. Before transmission, 
the command files are reformatted for 
recognition and radiation by the DSN (Figure 
2). 

LESSONS LEARNED 

When the MGDS Command System was 
completed, existing projects were required to 
transition from the mainframe MCCC 
Command System. Voyager was chosen as 
the first project to transition since it had 
entered .its interstellar cruise phase. Their 
experience provided multiple lessons learned 
about simplifying the user interface and 
reducing the number of steps in the uplink 
tasks. 



When the Mars Observer (MO) Project came 
on line as a new project, they had no prior 
system for comparison. Their experience was 
different since they had a much higher 
command rate than the Voyager mission. 
They had also decided not to implement the 
real-time command translation capability in 
the MGDS Command System as a cost- 
cutting measure. This meant that all of their 
command files, even those with only a single 
non-interactive command, had to be prepared 
off-line using the more complex Sequence 
software. As a result, the project was having 
difficulty keeping up with its command rate, 
even in the early cruise phase. When the 
spacecraft went into emergency mode, 
commanding became a 24-hour activity with 
many engineers required in the process. 

There were two lessons learned from the MO 
use of the command system. First, 
eliminating the real-time translator during the 
mission planning phase resulted in increased 
costs in the mission operations phase. 
Second, the number of steps needed to 
prepare commands had to be reduced. In 
particular, the use of the security-controlled 
Command GUI had to be re-evaluated. The 
GUI was required to perform even simple file 
reformatting functions, with no options for a 
command-line interface or batch-mode. This 
reliance on a graphical interface prevented 
automating some steps with simple scripts 
because a user had to be sitting at the 
computer, pushing each button in turn. It 
became apparent that we had to provide an 
off-line command generation capability that 
was based on non-graphical, less restricted, 
command-line interfaces. The secure GUI 
was still essential for transmission and 
radiation of commands. With this re-design, 
DSN resources are only required for the final 
transmission and radiation of the Command 
files to the spacecraft. The impact of this off- 
line capability on required network resources 
is significant. 

Thus, the Command system interface was 
redesigned to allow users to generate 
command files in an off-line environment 
without requiring a connection to the 
command control GUI. First, the translation 
and reformat functions were developed into 

separate, stand-alone programs. The 
translation program translates text mnemonic 
commands into an intermediate Spacecraft 
Message Format (SCMF) file containing 
binary commands expected by the spacecraft. 
The reformat program packages the binary 
commands into the form expected by the 
DSN. These programs can be started up by 
the user on the UNIX command line or 
script, as well as by the central command 
system. The off-line capabilities have also 
allowed script automation to reduce the 
number of manual, interactive steps involved 
in the generation of command files. A 
graphical interface shell was built using the 
JPL-developed PERL scripting language and 
OELSHELL interface building tool. 

This off-line translation toolkit also found 
extensive use in spacecraft flight testbed 
facilities where no connection to the DSN 
was allowed. Testbeds provide an 
environment for testing and validating 
commands on a mock spacecraft. The testbed 
command system sends commands directly to 
the ground support equipment. 

Another lesson learned was the need to 
streamline and simplify the end-to-end uplink 
process. The uplink process involves 
multiple operations and development teams. 
This creates a system with multiple tools and 
interfaces, forcing the user to learn how to 
operate across several different boundaries. 
From a project perspective, there should only 
be a single interface to the uplink process that 
would allow a single user to perform all 
functions including spacecraft sequence 
generation and translation, ground sequence 
of events schedule generation, real-time 
command preparation, mnemonic translation, 
and command transmission and verification. 
The OEL has worked closely with the Mars 
Surveyor Project to implement an integrated, 
graphical interface tool that allows a single 
user to seamlessly perform end-to-end 
functions in the uplink process. 

The successful experience of the early 
projects using the MGDS Command system 
eased the transition of the remaining projects. 
All of the JPL planetary missions have now 
transitioned successfully to the MGDS 
Command System and the mainframe-based 



Command system was decommissioned a 
year earlier than originally planned. 

RE-ENGINEERING 
COMMAND TRANSLATION 

Since both the Sequence and Command 
software provided capabilities for a user to 
generate command files, there were common 
translation capabilities duplicated in both 
systems. The OEL has worked closely with 
Sequence developers to re-engineer the 
translation process and develop a universal 
command translator that can be used by both 
subsystems. The redesigned system includes 
the use of advanced graphics and object- 
oriented techniques. 

The translation functions in the Sequence 
system were based on manually building 
mnemonic-to-bit translation information in 
each project's unique command macro 
language. These project-specific adaptations 
were time-consuming and error-prone. The 
command translation process in the 
Command software was based on a 
multimission Command Definition Language 
(CDL) that can be used to specify command 
mnemonic-to-bit definitions and constraints. 
The CDL file is compiled into a project's 
Command Database. A command database is 
built for each project, but the language 
compiler, database interpreter, and translator 
software is multimission. In the re-designed 
uplink process, the command database 
interpreter and translator software was re- 
built as generic, universal libraries that could 
be called by both Command and Sequence 
software. This multimission, common 
approach will significantly reduce uplink 
costs. 

An illustrative example of CDL code follows: 

? define a memory load message 
MESSAGE: memload-msg(buf: 200) 

FIELDS 
data: 160 ! 160 bit local variable 

END FIELDS 

! declare the kinds of arguments that will 
! be entered by the user 
LOOKUP ARGUMENT: name 

! lookup value below in hex 

CONVERSION: HEX 
LENGTH: 8 
'MEMLOAD' = 'A9' 

END LOOKUP ARGUMENT 
NUMERIC ARGUMENT: address 

! user to enter number in hex 
CONVERSION: HEX 
LENGTH: 16 
! acceptable range 
'OOFF' TO 'FFFF' 

END NUMERIC ARGUMENT 
NUMERIC ARGUMENT: aword 

! user to enter number in hex 
CONVERSION: HEX _ 
LENGTH: 16 

END NUMERIC ARGUMENT 

! read mnemonics from user input 
READ ARGUMENT name 
READ ARGUMENT address 
REPEAT 1 TO 10 TIMES 

(COUNTING WITH nwords) 
READ ARGUMENT aword 
data := data 11 aword 

END REPEAT 

! combine converted input into a message 
! counters like "nwords" are 16 bits* 
buf := name I1 address 11 nwords 11 data 

END MESSAGE 

It defines a memory load message that can 
load up to ten words, sixteen bits each, into a 
certain area of memory. If the user's 
mnemonic input was, for example, 

MEMLOAD; 0A48; 1; 22; 333 
the resulting hex output would be: 

A9 OA 48 00 03 00 01 00 22 03 33 
where the first byte is an op code that 
signifies a memory load instruction, the next 
two bytes are the address to load the data 
into, the next two bytes are the number of 
words in the data, and the remaining six 
bytes are the data itself. 

Since CDL files can become very complex, a 
command generation toolkit is being 
developed to facilitate their creation and 
browsing. The CDL toolkit will include a 
graphical CDL editor, a CDL parser and 
compiler, and various report generators. In 
the future, some text based on-line reference 
tools and a smart editor to help a user create 
mnemonics are planned. 



The first step taken in the development of the 
toolkit was to determine the data structures 
for holding the information contained in a 
CDL file. These structures are accessed 
through a library that is used by all tools in 
the toolkit. Here, an object-oriented approach 
was used. For example, CDL has several 
types of processing routines. So, one of the 
classes was for that of a general processing 
routine. A subclass of the general routine is a 
message routine. Arguments are also objects, 
with lookup arguments and numeric 
arguments derived from a common, more 
general, argument class. For the CDL code 
above, there is one instance of a message 
routine, memload-msg. There are instances 
of both kinds of argument objects: name, 
address, and aword. 

When an object is created, a parent object is 
specified. Whenever an object is destroyed, 
all of its children are automatically destroyed 
as well. For the example above, name, 
address ,  and aword are children of 
memload-msg .  So if the user of the 
graphical editor chooses to delete the 
memlload-msg routine, the code for the 
editor is simply one call to destroy the 
appropriate parent object and all of the child 
objects (which are not useful by themselves) 
are automatically cleaned up. 

CDL objects can refer to each other. For an 
easy example, the READ ARGUMENT 
address statement is itself an object (in this 
case, of class input processing statement and 
child of memload-msg). It contains a 
reference to the object corresponding to the 
argument to be read. Thus, if the CDL editor 
user changed the name of the address 
argument, when the CDL code was saved the 
READ ARGUMENT address statement 
would automatically be written with the new 
name. Note that for this example, the editor 
will not allow the address argument to be 
destroyed until the reference to it in the 
READ ARGUMENT address statement 
is changed or the statement removed 
altogether. It is easy to get a list of references 
to any object. There are many constructs in 
CDL not shown in the example that lead to a 
single object being referred to in several 
places. 

The CDL language was designed years ago 
as part of the old mainframe-based command 
system. It is missing some important 
functionality such as arithmetic and 
comparison operators. CDL was also written 
before the Telecornmand standard, so some 
of its constructs are outdated and intended for 
tasks such as embedding error polynomials 
into the binary commands. In the new 
Command system, any functionality not 
present in the CDL language must be added 
as hard-coded 'user hooks' to the command 
translation software, creating additional 
expense for development and testing. Thus, 
as part of our re-engineering efforts, we are 
incorporating important enhancements and 
simplifications to the CDL language. For 
some of these enhancements, we are 
investigating the use of other process control 
languages such as Spacecraft Control 
Language (SCL) in the uplink process. With 
the object-oriented approach taken and the 
goal of reducing class-specific code, we 
expect it to be easier to make changes to the 
language. 

We are also investigating extending CDL to 
include information that would typically be 
found in a command dictionary such as 
telemetry verification points and flight rule 
constraints. The graphical CDL toolkit is also 
being enhanced to provide a complete 
command definition and dictionary toolkit 
with hypertext references to other mission 
documentation. 

Other recent development work includes 
porting our code to multiple UNIX hardware 
platforms, ANSI-C, and XPG-4 open 
standards. In addition, we are incorporating 
the 1987 Consultative Committee for Space 
Data Systems (CCSDS) "Telecommand" 
standards into the MGDS Command System. 
All future JPL missions will comply with this 
standard. 

TELECOMMAND IMPLEMENTATION 

The.Telecommand service model is a layered 
model which more or less parallels the IS0 
Open Systems Interconnect model. The 
highest two layers of this model, the 
Application Process layer and the System 
Management layer, have not yet been 



specified in detail. It is still up to the 
individual project to define procedures and 
data structures in these layers. The layers 
below this, however, have been specified in 
detail. Our response to the standard addresses 
the Packetization, Segmentation, Transfer, 
Coding, and Physical Layers 

In the Command subsystem, the 
Telecommand (TC) standard is being 
implemented as a generic, batch-mode 
"wrapping service." Clients of the service 
supply the data to be wrapped in ASCII 
formatted files called Command Packet 
(CMD-PKT) files. The service takes 
multiple, one or more, CMD-PKT files as 
input, wrapping the data from each file record 
and time-order merging the results into an 
SCMF file. 

CMD PKT file format 

The format of the CMD-PKT file follows the 
CCSDS Standard Formatted Data Unit 
(SFDU) standard. The I-data (user) section 
of the file is organized as a header section 
followed by a series of data sections. The 
section boundaries are defined with special 
markers, and the information within these 
sections is organized in a "keyword = value" 
format. An example of a header section 
follows: 

$$MPF COMMAND PACKET FILE 
"CMDPKT SEQTRAN.CMDPKTlJOB001 
*OPERATOR Frank Zappa 
*PROGRAM SEQTRAN - MARS 

PATHFINDER V19.0 APR 29, 1994 
"CREATION JPL 94-1 31/09:58:59 
*BEGIN **a** NO DATA ***** 
*CUTOFF **a** NO DATA ***** 
*TITLE ***** NO DATA ***** 
*ZERO ***** NO DATA ***** 
*CMDI?IL ***** NO DATA ***** 
*FILSIZ 6 
*SISVER 04/27/94 
*FRMVER 1 
"CDUACQLEN 22 
*CDUACQ 55 
"CLTUSSQLEN 2 
*CLTUSSQ EB 90 
*CLTUTSQLEN 8 
*CLTUTSQ 55 
*CLTUDLY ENDSTARTIBlTSlO 

The header section contains global file 
information. For example, the value of the 
'FILESIZ' keyword tells you the number of 
data sections which follow. 'CDUACQLEN' 
and 'CDUACQ' together form a specification 
of the acquisition sequence to be used for this 
file. 'CDUACQLEN' is the number of octets 
in the acquisition sequence and 'CDUACQ' 
is the smallest repeat pattern. Using the above 
record, the Telecommand wrapping service 
would generate 22 octets of 55  hex. 

Each data section contains ASCII 
hexadecimal data to be wrapped, along with 
enough information to fill in the 
Telecommand headers. Here is an example: 

$PKT SCGNLD 
PKTVER 1 
SEQFLGS FIRST 
CHECKSUM 947D 
VC 1 
LENGTH 12 
APPID 0 
OPENWIN 82-08011 1 :40:00.000 
CLOSEWIN 82-08011 2:00:00.000 
FRMSEQ 0 
FEC EACSUM55AA 
CTRLCMD NO 
BYPASS YES 
PACKETIZE N 
FRAMING YES 
SEGMENTING NO 
DATA 

OAOl 0000 0200 0001 0002 0003 
000400050006000700080009 

$EOP 

Following the DATA keyword is a sequence 
of ASCII hexadecimal words. This 
represents the binary data to be wrapped. The 
format and structure of this data is known to 
the higher layers of the CCSDS 
Telecommand service model (system 
management and application layers). The 
values of other keywords enable the 
wrapping service to fill in the TC headers. 
For example, the value of the VC keyword 
tells the wrapping service what to put into the 
6-bit 'virtual channel ID' field of the TC 
transfer frame header. 



The creator of this file also has control over 
which layers of wrapping are applied to the 
data. The wrapping service concerns itself 
with the following layers: 

TC packetization layer (TC packets) 
TC segmentation layer (TC segments) 
TC transfer layer (TC transfer frames) 
TC coding layer (Command Link 
Transmission Units (CLTUs), 
consisting of TC codeblocks) 

For example, consider the keywords 
PACKETIZE, SEGMENTING, and 
F R A M I N G .  P A C K E T I Z E  a n d  
SEGMENTING are both set to NO, while 
FRAMING is set to YES. This means that 
the TC wrapping service will consider the 
data to be the contents of a TC frame, and 
will only prepend a TC frame header (and 
may also append a Frame Error Control 
word, if the FEC keyword is set to a value 
other than NONE), before creating a CLTU. 
If PACKETIZE were set to YES, the 
wrapping service would consider the data to 
be the contents of a TC packet, and would 
apply a TC packet header. Then, if 
SEGMENTING and FRAMING were both 
set to YES, the TC packet would be broken 
into TC segments, and then each TC segment 
would be wrapped as a TC frame, before 
creating a CLTU. Currently, all eight 
pe rmuta t ions  of (PACKETIZE,  
SEGMENTING, FRAMING) are allowed by 
the wrapping service, though only three may 
be legal: (NO, NO, YES), (YES, NO, YES), 
and (YES, YES, YES). This flexibility 
makes the name 'CMD-PKT' something of a 
misnomer; perhaps 'CMD-TC' would have 
been a better choice. 

Currently, each data section of this file will 
result in one or more CLTUs. Normally, 
only one CLTU will be created per data 
section; the only thing which can affect this is 
the setting of the FRMSPERCLTU keyword 
in the CMD-PKT header section. If this is set 
to a value N, where N > 0, then no CLTU 
may contain more than N TC frames. So, if 
the amount of data in the data section is large 
enough that when it is segmented, more than 
N TC frames are created, more than one 
CLTU will result. 

Each data record contains a timestamp as 
well. This may be specified as either a 
window (OPENWIN, CLOSEWIN) or an 
execution time (EXECTIME). Times are 
expressed in GMT relative to the spacecraft 
(Spacecraft Event Time, or SCET). For a 
given data record, this means that the data in 
that record will be at the spacecraft, ready to 
be processed, at the given (EXECTIME), or 
within the given window (OPENWIN, 
CLOSEWIN). 

TC Wravuing Service 

This service is implemented as a single 
process which consumes one or more 
CMD-PKT files and produces a single 
SCMF (Spacecraft Message Format) file. 
Each data record of the SCMF file contains a 
single 'spacecraft message', which in this 
case is a CLTU. 

Each CLTU within a record may be preceded 
by an acquisition sequence, depending upon 
the PLOP (Physical Layer Operation 
Procedure) in use by the project. Currently 
two PLOPS are defined in the TC standard. 
In PLOP 1, CLTUs are individually radiated, 
meaning that the physical telecommand 
channel is deactivated after each transmitted 
CLTU. In this case every CLTU in the 
SCMF file must have an acquisition sequence 
prepended. In PLOP 2, the physical channel 
is not deactivated until the last CLTU in an 
'upload' has been transmitted. For our 
purposes, this means that only the first 
CLTU of the SCMF file will be preceded by 
the acquisition sequence. 

The TC wrapping service places the resultant 
CLTUs in ascending time order within the 
SCMF. Further, the timestamp in each record 
of the SCMF is the time of radiation of the 
first bit in the record. This means that in 
going from execution time in CMD-PKT 
file(s) to an SCMF, all times have to be 
backed off by the number of bits in the record 
(multiplied by the time of one bit at the 
current uplink rate), plus any inherent 
spacecraft delay time, plus the appropriate 
one-way light time. All of this is a fairly 
complex operation, since we are merging 
multiple CMD-PKT files, each of which can 



have a mixture of window and execution time 
records. 

CONCLUSION 

TC Wrapping Service Design 

A modular approach was taken in the design 
of the wrapping service. It is decomposed 
into five primary modules, as follows: 

1. CMD-PKT file I/O module. 
2. SCMF file YO module. 
3 .  Light time module. 
4. Telecomrnand module. 
5. Main module. 

The first four modules are implemented as 
libraries. The main module calls functions in 
these libraries. The CMD-PKT file module 
depends upon the Telecommand module as 
well, mainly for validation of TC header field 
values. 

The CMD-PKT file YO module isolates all of 
the knowledge of the format and structure of 
CMD-PKT files. Its set of exported 
functions allow record-oriented I10 (both 
reading and writing) of CMD-PKT files. 

The SCMF file 110 module is directly 
analogous to the above, for SCMF files. 

The Light time module contains functions 
which perform conversion between ground 
transmission times (TRM) and spacecraft 
event times (SCET). This module reads a 
LIGHTTIME files in order to perform its 
function. 

The Telecommand module isolates all of the 
knowledge of the TC data structures. It 
contains a set of functions for validating all of 
the TC header fields values, as well as a set 
of functions for performing TC wrapping. 
This module also maintains a table of project- 
dependent Telecommanding data. Items such 
as default acquisition, start, and tail 
sequences, virtual circuit and application id 
mnemonics, TC codeblock size, and PLOP 
are included in this table. The main module is 
responsible for the overall control of the 
wrapping process, and deals directly with the 
time-ordering issue. 

The Operations Engineering Lab has 
developed the JPL multimission command 
system to provide low-cost, adaptable, 
extensible uplink capabilities to new and 
existing flight projects. The goal in the 
ongoing re-engineering of the command 
subsystem is to create a set of independent 
tools to allow more flexibility for the user and 
to make any necessary customization faster 
and easier for future, low-cost missions. 
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ABSTRACT 

The development of Nascom systems for 
ground communications began in 1958 
with Project Vanguard. The low-speed 
systems (rates less than 9.6 Kbs) were 
developed following existing standards; 
but, there were no comparable standards 
for high-speed systems. As a result, 
these systems were developed using 
custom protocols and custom hardware. 

Technology has made enormous strides 
since the ground support systems were 
implemented: Standards for computer 
equipment, software, and high-speed 
communications exist and the 
performance of current workstations 
exceeds that of the mainframes used in 
the development of the ground systems. 

Nascom is in the process of upgrading its 
ground support systems and providing 
additional services. The Message 
S w i t c h i n g  S y s t e m  (MSS) ,  
Communications Address Processor 
(CAP), and Multiplexer/Demultiplexer 
(MDM) Automated Control System 
(MACS) are all examples of Nascom 
systems developed using standards such 
as, X-windows, Motif, and Simple 
Network Management Protocol (SNMP). 
Also, the Earth Observing System 
(EOS) Communications (Ecom) project 
is stressing standards as an integral part 

of its network. The move towards 
standards has produced a reduction in 
development, maintenance, and 
interoperability costs, while providing 
operational quality improvement. 

The Facility and Resource Manager 
(FARM) project has been established to 
integrate the Nascom networks and 
systems into a common network 
management architecture. The 
maximization of standards and 
implementation of computer automation 
in the architecture will lead to continued 
cost reductions and increased operational 
efficiency. The first step has been to 
derive overall Nascom requirements and 
identify the functionality common to all 
the current management systems. The 
identification of these common functions 
will enable the reuse of processes in the 
management architecture and promote 
increased use of automation throughout 
the Nascom network. 

The MSS, CAP, MACS, and Ecom 
projects have indicated the potential value 
of commercial-off-the-shelf (COTS) and 
standards through reduced cost and high 
quality. The FARM will allow the 
application of the lessons learned from 
these projects to all future Nascom 
systems. 



INTRODUCTION 

The  development  of NASA 
Communication (Nascom) systems for 
ground communications began in 1958 
with Project Vanguard. The low-speed 
systems (less than 9600 bps) were 
developed following existing standards. 
However, the existing communication 
standards could not be used to meet the 
higher data rates and transmission 
reliability requirements demanded by 
next generation of NASA projects. As a 
result, custom protocols and associated 
hardware had to be developed to meet the 
needs of the growing space agency. 

The Nascom protocol that was developed 
in 1968 consisted of a 1200-bit block 
with header information, data field, and 
polynomial error control field at the end. 
Over time, user communication 
requirements increased and the Nascom 
block size was increased to 4800 bits. 
The basic structure remained the same, 
but provided an expanded user data field. 

In the 19701s, development began on a 
system of geosynchronous satellites to 
relay data around the world instead of 
many earth stations. As the Tracking and 
Data Relay Satellite System (TDRSS) 
grew, it became evident the manual 
network control and monitoring would be 
impossible. Nascom began to automate 
its portion of the network. 

Once again, network management 
standards did not exist to meet NASA's 
requirements. Nascom began custom 
development for automated network 
management, using the existing Nascom 
protocol with 1200-bit blocks as the 
management protocol. 

With today's reality of budget reductions 
and the high cost of custom development, 
the use of standards has become as 
important as high-speed and data 

integrity. Fortunately, communication 
standards for both transmission and 
management had been developing over 
the last few years to keep up with user 
demands. 

Nascom began its move towards 
standards with development of an X.25 
network for the PacorIGamma Ray 
Observatory (GRO) project and the 
Mission Operations and Data Systems 
Directorate (MO&DSD) Operational1 
Development Network (MODNET)/ 
Nascom Operational Local Area Network 
(NOLAN) for high-speed local data 
distribution. Now, Nascom is 
developing a high-speed Asynchronous 
Transfer Mode (ATM) network for the 
EOS project and re-engineering its 
automated network management 
architecture to integrate these standards- 
based networks and the existing 
customized network into a centralized 
operations area. 

EXISTING ARCHITECTURE 

Nascom currently has three distinct 
networks with separate management 
systems: the Data Distribution and 
Command System (DDCS), MODNET, 
and the 4800-bit block network. 

The DDCS X.25 network has two nodes 
located at GSFC, a node at Marshall 
Space Flight Center (MSFC) and a node 
at the University of California at Berkeley 
(UCB) (figure I), distributing X.25 
packets at data rates up to 224 Kbps. 
Each node has a redundant backup for 
automatic fail over. It is composed of 
COTS hardware and software with 
integrated network management 
software. The controlling node is located 
in the Nascom computer facility at 
GSFC. 



Figure 1. The DDCS 

The second network is the Mission (MODLAN), and the Information 
Operations and Data Systems Directorate Processing Division LAN (InfoLAN). 
(MO&DSD) Operationall Development This network provides high-speed, 50 
Network (MODNET). MODNET was Mbps, interconnectivity between 
formed in May 1986 through the operational LANs and computer systems 
integration of three division-level at GSFC (figure 2). 
networks: the MOD&DSD Network 
(MNET), Mission Operations Division The LAN technology used by 
(MOD) Local Area Network MODNET is HYPERchannel.  

Figure 2. MODNET 



HYPERchannel, a registered trademark, entities within Nascom to handle the data 
is a generic name for the various network requirements each with their own control 
components and protocols developed by capabilities. The MSS is the original 
Network Systems Corporation (NSC) to Nascom block star network hub (figure 
provide networking capabilities between 3). The MSS provides packet switching 

Figure 3. The MSS 

networked computers. The fastest 
alternative protocol at the time MODNET 
was formed was the 10 Mbps Ethernet. 
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The NOLAN will expand upon 
MODNET's capabilities using a Fiber 
Distributed Data Interface (FDDI) 
backbone with a larger distribution area. 
MODNETmOLAN will be managed by 
Nascom operations using Hewlett- 
Packard's HP Openview network 
management system with ISICAD for 
automated trouble ticketing. 

The final network is the 4800-bit block 
network that distributes data throughout 
the world with data rates ranging from 50 
baud to 2 Mbps. There are two network 
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capabilities for hundreds of 4800-bit 
block users with data requirements 
ranging from 9600 bps to 1.544 Mbps. 
The management control consists of 
custom developed software operating on 
a Sun workstation. 

+ 

The TDRSS network portion of Nascom 
c o n s i s t s  o f  c u s t o m  b u i l t  
Multiplexer/Demultiplexers (MDMs) and 
controllers located at the Johnson Space 
Center (JSC), NASA Ground Terminal 
(NOT), MSFC, and GSFC, a custom 
Digital Matrix Switch (DMS) and 
controller at GSFC, and custom Data 
Link Monitoring Systems (DLMS) 
located at GSFC, JSC, and NGT. This 
network equipment is being constantly 
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reconfigured according to the network 
schedule supplied by the Network 
Control Center at GSFC. In order to 
meet the reconfiguration requirements of 
the network, the Control and Status 
System (CSS) was a custom 
development to provide automated 
network management (figure 4). The 
CSS uses the Nascom 1200-bit block to 
send commands and receive status from 
the network equipment. 

and engineer an efficient network 
management architecture using new 
technology and standards. Computer 
workstations today can process the same 
data that required mainframes ten years 
ago. Standard protocols can send data at 
higher rates and provide interconnectivity 
between different hardware platforms. 
COTS software packages can be found to 
meet almost every need. Custom 
systems are not an effective application of 
limited resources any more. 

Figure 4. The CSS 

MORE WITH LESS 

Do more with less is the motto of the 
world today. Every year, the demand 
increases and the budget decreases. In 
order to maintain communication 
services for the Agency, Nascom has 
begun a project to re-engineer its network 
management architecture. 

The Facility and Resource Manager 
(FARM) is an attempt to step back, 
analyze Nascom's management 
requirements, with an eye to the hture, 

The basic goal of the FARM is to meet 
today's motto, more with less. More 
network operational demands with less 
budget cause additional capabilities and 
requirements to be engineered into the 
systems with less engineering budget. 
Standards, COTS, reuse, and new 
technology are the FARM'S tools. 

Operational Costs 

The biggest cost to Nascom operations is 
the large number of personnel required to 
run the networks. The 4800-bit block 



network is very manually intensive and 
operates in a reactive mode for 
troubleshooting. MODNET, NOLAN, 
and the X.25 networks are a little more 
automated, less personnel dependent; but 
being separate networks, they still require 
additional operations personnel. In the 
near future, Nascom will implement and 
operate the Federal Telecommunications 
System (FTS)-2000 network and the 
EOS Communications (Ecom) ATM 
network. Although these are both highly 
automated networks, they also have their 
own network management systems that 
have to be operated, requiring additional 
personnel. 

from text menus to windowed graphical 
interfaces. Comprehensive operator 
training for each system has to be 
developed, which is time consuming and 
expensive. 

THE FARM ARCHITECTURE 

The FARM is developing the functional 
requirements of all the management 
systems and designing a workstation- 
based distributed network management 
architecture using SNMP between the 
systems. By down-sizing from 
mainframes, using COTS products, and 
Object Oriented ( 0 0 )  development 
methodologies for software reuse, the 

Figure 5. The FARM 
Engineering Costs FARM will reduce engineering costs and 

development time. By consolidating 
Nascom engineering costs largely come multiple network management systems 
from developing and maintaining into a consolidated environment, the 
specialized hardware and software. Until FARM will provide a consistent operator 
recently, to perform real-time processing interface into the different networks, 
of large amounts of data required the use reducing training time and the need for 
of mainframes in conjunction with mini- separate operators for each system 
computers and large amounts of (figure 5). 
assembly code. Add to that a unique 
protocol, requiring specialized hardware, The FARM has five functions: operator 
and you have a recipe for a marching interface, data management, resource 
army of software and hardware engineers scheduling, system automation, and a 
to keep Nascom operational. non-SNMP gateway (figure 6). The 

operator interface will be designed using 
Another cost is training personnel on X-window and Motif standards to 
every new system or network. Every provide a comprehensive graphical user 
one of the management systems operated interface. COTS development tools, such 
by Nascom has a different user interface, as TAE+, will be used to provide rapid 



screen prototyping. This will allow the project is evaluating several vendor 
FARM the capability to provide the most packages for most comprehensive 
efficient user interface in the shortest adherence to requirements. 
amount of time. 

System automation will be provided by 
The data management function will using expert systems. Several of the 
provide storage and retrieval of network COTS management systems also provide 
configuration, management, and expert system development tools. The 

NCC 

SNMP & TCPIIP 

Figure 6. The FARM Functions 

statistical information for the FARM. 
This functional will be performed using a 
Structured Query Language (SQL)-based 
database management system, such as 
Oracle or Sybase. 

The resource scheduling function 
provides the FARM with the ability to 
configure TDRSS network equipment 
according to the network event schedule 
supplied by the Network Control Center. 
A large portion of this function can be 
performed by COTS network 
management software. The FARM 

expert systems will analyze alarms and 
passive circuit monitoring equipment to 
perform pro-active troubleshooting for 
the network. 

The Nascom networks have equipment 
and interfaces with specialized protocols. 
These non-SNMP interfaces will require 
gateways to convert between protocols. 
Again, several of the COTS management 
systems provide the capability to define 
unique interfaces. 



DEVELOPMENT 
METHODOLOGY 

Development costs will also be reduced 
by applying some of the ideas from 
Object-Oriented ( 0 0 )  methodologies to 
enhance reuse of already developed 
components and COTS products. 

The FARM will not use an 00 
implementation language, as the project's 
short schedule, the long learning curve 
for 00 methodologies, and the 
questionable success of 00 projects are 
incompatible. Instead, the ideas within 
00 development that have been designed 
to enhance reuse are being employed. 

The first of these 00 development ideas 
is to perform a problem domain analysis. 
A domain is a problem area defined by 
the user interface, external interfaces and 
interaction of a proposed system. Its 
extent depends, in large, on the definition 
of what a user is. In the case of the 
FARM, users are operations personnel 
and developers. However, the developer 
is a user only to the extent necessary to 
safeguard reuse. 

The problem domain analysis concludes 
with the specification of a development 
framework. The framework consists of 
the components identified in the problem 
domain analysis that appear to be 
candidates for reuse or COTS products in 
the system. 

TESTING METHODOLOGY 

COTS and reusable components are 
integrated into system development 
following System Engineering and 
Analysis Support (SEAS) System 
Development Methodology (SSDM). 
There are different levels of development 
testing required for COTS and reusable 
components depending on their level of 
reusability. The basic idea is that the 

supplied component is assumed to be 
fully tested and working. The task of 
development testing is to ensure it works 
within the system, that the interfaces are 
functioning as stated. System testing 
remains the same: the system is still 
tested to ensure requirements are met. 

The level of testing, and when testing 
begins, depends on the component's 
position in the hierarchy of system 
components. When an entire function is 
reusable or COTS, the lowest level of 
testing required is module testing to 
ensure that the interface matches 
expectations. If the supplied function is 
more-or-less a clientlserver function, then 
integration testing is required to ensure 
that the clientlserver interface is correct. 

Using the definition of a process as the 
smallest stand-alone system entity; 
testing should start at the level of testing 
in the following table: 

Table 1. Testing Requirements 

IMPLEMENTATION PLAN 

Level of 
ReuseICOTS 
One or more 
processes 
Complete 
function 
One or more 
units 
Modified unit 

The integration of management systems 
will be done in a phased approach, 
attacking the manually intensive legacy 
systems first, then moving to the more 
automated standards-based networks in 
later phases. This will allow Nascom to 
replace the expensive custom control 
systems, reducing the software 
maintenance costs. 

Testing Required 

Integration testing 

Integration testing or 
Module testing 
Module testing 

Unit testing 



The CSS and its associated control 
systems in the TDRSS network will be 
re-engineered to provide the framework 
for the consolidated network operations 
center. These systems are the most 
manually intensive, least automated 
systems. By consolidating these systems 
and implementing expert systems 
technology, operational costs will be 
greatly reduced. 

Future phases of the FARM will integrate 
the remaining COTS management 
systems through SNMP interfaces and 
increasing operational automation. 

A FARM lab is being developed which 
will be used to evaluate and test different 
hardware platforms and software 
packages, perform network performance 
analysis, and prototype new technologies 
and configurations for use in the FARM. 
By performing rapid prototyping and 
evaluation on every aspect of the FARM 
development, road blocks and design 
flaws will be identified early in the project 
life cycle. 

CONCLUSION 

The Nascom networks have evolved over 
the last thirty years into what they are 
today. Each system and network were 
developed to meet a specific set of 
requirements to support NASA's 
communications needs. Today, 
technology and standards have matured 
to the point that it makes engineering 
sense, as well as budgetary sense to start 
over from the beginning and re-engineer 
Nascom's network management 
architecture. 
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ABSTRACT 

Along with the Red and Blue Teams 
commissioned by the NASA Administrator 
in 1992, NASA's Associate Administrator 
for Space Communications commissioned a 
Blue Team to review the Office of Space 
Communications (Code 0 )  Core Program 
and determine how the program could be 
conducted faster, better, and cheaper. 
Since there was no corresponding Red 
Team for the Code 0 Blue Team, the Blue 
Team assumed a Red Team independent 
attitude and challenged the status quo, 
including current work processes, 
functional distinctions, interfaces, and 
information flow, as well as traditional 
management and system development 
practices. The Blue Team's unconstrained, 
non-parochial, and imaginative look at 
NASA's space communications program 
produced a simplified representation of the 

space communications infrastructure that 
transcends organizational and functional 
boundaries, in additioh to existing systems 
and facilities. Further, the Blue Team 
adapted the '@ster, better, cheaper" charter 
to be relevant to the multi-mission, 
continuous nature of the space 
communications program and to serve as a 
gauge for improving customer services 
concurrent with achieving more efficient 
operations and infrastructure life cycle 
economies. This simplified representation, 
together with the adapted metrics, offers a 
future view and process model for 
r e e n g i n e e r i n g  N A S A ' s  s p a c e  
communications to remain viable in a 
constrqined fiscal environment. 

Code 0 remains firm in its commitment to 
improve productivity, 'effectiveness, and 
efficiency. In October 1992, the Associate 
Administrator reconstituted the Blue Team 



as the Code 0 Success Team (COST) to 
serve as a catalyst for change. In this 
paper, the COST presents the chronicle and 
significance of the simplified representation 
and adapted metrics, and their application 
during the FY 1993- 1994 activities. 

Key Words: Blue Teams, Complexity 
Reduction, Economies of Scale, "Faster, 
Better, Cheaper, " Life Cycle Effectiveness, 
Mission Operations, Operations Concepts, 
Operations Technology, Process 
Improvement, Reengineering, Reusability, 
Reuse, Simplicity, Space Communications, 
Systems Engineering 

1. INTRODUCTION 

In addition to but separate from the Red and 
Blue Teams commissioned by the NASA 
Administrator, NASA's Associate 
Administrator for Space Communications 
commissioned a Blue Team to review the 
Office of Space Communications (Code 0 )  
core program and advise, within six weeks, 
how the program could be conducted 
faster, better, and cheaper. With no 
corresponding Red Team for the Code 0 
Blue Team, the Blue Team was empowered 
to take an unconstrained, non-parochial, 
and imaginative look at the program and to 
explore strategic options for change. The 
Blue Team met during June-July 1992 and 
filed its report on July 15, 1992. The 
r e p o r t  c o n t a i n e d  f i n d i n g s ,  
recommendations, and initiatives in three 
areas: (1) People, (2) Technical, and (3) 
Financial. (Hornstein et al., 1993) 

At the heart of the technical initiative is a 
s impl i f ied  representat ion and 
characterization of the space 
communications infrastructure that 
transcends organizational and functional 
boundaries, as well as existing systems and 
facilities. This simplified representation 
results from the Blue Team's discovery that 
the numerous and seemingly diverse 
infrastructure systems and facilities can be 
represented by only two functional 
categories. 

These categories are (1) Information 
Handling and (2) R e s o u r c e  
Management and Control. Information 
Handling is the universe of activities 
associated with datdinformation receipt, 
processing (RF and digital), storage, 
retrieval, formatting, distribution, and 
transmission, including sensing of nominal 
and fault conditions. Resource 
Management and Control is the process of 
making decisions about which resources 
will be used for which activities at which 
times; control of operations; and assuring 
the allocation decisions are executed 
properly through all life cycle phases, 
including execution of recovery from 
unplanned events and circumstances, to 
satisfy operations goals and objectives. 

The fulcrum of the simplified representation 
is the set of "jkster, better, cheaper" metrics 
as adapted to fit the multi-mission, 
continuous nature of the space 
communications program. The non- 
conventional adapted metrics are realistic, 
credible, responsive ("faster. and 
c h e u p  e r " ), simpler and smaller 
("better") and are to be employed over both 
customer and infrastructure life cycles, 
rather than optimizing, for example, over 
the development phase to constrain initial 
development costs at the expense of the 
operations and maintenance phase. 

The technical initiative is designed to 
reverse the trend of planning, designing, 
developing, maintaining, and operating 
costly one-of-a-kind systems and facilities. 
The initiative, as submitted on July 15, 
1992, reads as follows: Create, evaluate, 
and select a wholly integrated operations 
concept, leading to an end-to-end systems 
architecture, with full participation of Code 
0 service providers and customers. The 
concept is to be applicable across 
organizational and functional boundaries, 
and not limited to the in place infrastructure 
or configuration of existing systems and 
facilities. The evaluation factors and 
selection criteria will focus on customer 
satisfaction, life cycle effectiveness, and the 
adaptation of the "jkster, better, cheaper. " 



The simplified space communications engineering systems to systems 
representation and adapted metrics are engineering. The focus of this paper is on 
shown in Figure 1. In October 1992, the laying the groundwork for process change, 
Code 0 Blue Team was reconstituted as the promoting the teamwork to accomplish 
Code 0 Success Team (COST) to serve as change, and highlights of the FY 1993- 
a catalyst for changing the process from 1994 activities. 

Figure - 1: Space Communications Representation and Metrics 

2. LAYING THE GROUNDWORK e n g a g e d  in  p rov id ing  s p a c e  
FOR INNOVATION communications services to space 

communications customers, some of whom 
In less than six weeks during June-July are now labeled NASA Strategic 
1992, the Code 0 Blue Team examined a Enterprises. The systems and facilities 
plethora of unique systems and facilities, all were unique in their names and titles, 



organizations and architectures, technical 
components, and budget line items. To 
facilitate the examination of what appeared 
to be vastly distinct and divergent entities, 
the Blue Team diagrammed the systems and 
facilities to seek and formulate comparative 
relationships. However, substantive 
progress did not occur until the team 
stopped scrutinizing how the systems and 
facilities were engineered and started to 
question their purpose(s). A simplified 
representation of the space communications 
infrastructure then began to emerge. 
Through repeated examination of 
similarities in purpose vice diflereizces in 
engineering, the Blue Team was able to 
group the space communications 
infrastructure systems and facilities into 
five functional categories at first, and 
finally to collapse them into only two 
functional categories: (1) Information 
H a n d l i n g  and (2) R e s o u r c e  
Management and Control. 

This discovery by the Blue Team (i.e., that 
the numerous and seemingly diverse 
infrastructure systems and facilities can be 
represented by only two functional 
categories) led to the recognition that there 
are considerable economies of scale to be 
gained and problems to overcome. We, 
organizationally, have become shaped by 
our emphasis on uniqueness. We tend to 
engineer systems rather than conduct 
systems engineering. This practice 
produces locally optimized, narrowly 
focused, and somewhat short-sighted 
solutions that contribute to overall 
infrastructure complexity through the 
accumulation of these many special 
solutions for similar purposes. Our 
heritage of unique solutions (i.e., systems 
and facilities) has fragmented our 
perspective and created barriers. One 
clearly visible barrier is language or 
vocabulary. Heretofore, when defining 
requirements for space communications 
services, the requirements have been 
described in terms of an implemented, or to 
be augmented, system or facility. This 
approach tends to limit the field of potential 
and available solution sets, and continues to 
perpetuate the proliferation of unique 

solutions. This entrenchment is adversely 
impacting mission operations through 
ineffective analysis of trade space 
alternatives. This entrenchment is not 
restricted to the space communications 
program, but occurs throughout NASA's 
strategic enterprises and functions. 

A second key Blue Team finding or 'eureka' 
'deals with the adaptation of the "faster,  
better, cheaper" charter to reflect the multi- 
mission, continuous nature of the space 
communications program. Further, this 
adaptation may be used to guide the 
improvement of customer services while 
accomplishing more efficient operations and 
infrastructure life cycle economies. The 
derivation of realistic, credible, 
responsive, simpler and smaller from 
"faster, better, cheaper" is as follows: The 
Blue Team began its examination with 
"faster" and "cheaper." Both concepts 
seemed obvious, i.e., do whatever in less 
time and with less money. Without giving it 
a second thought, 'doing whatever in less 
time' was related to accelerating system 
delivery schedules or receiving data more 
rapidly at higher rates. On second thought, 
"faster" was less obvious. "Faster" was 
meaningful only in the context of being 
responsive to customer needs. Delivering a 
system capability two years prior to need 
(e.g., launch or encounter) may not be 
advantageous if the implementation of that 
capability creates restrictions in current 
operations or introduces additional costs in 
maintaining and operating the capability. 
"Cheaper" was looked at in terms of the 
agency flight program model and the multi- 
mission, continuous nature of an 
infrastructure model. Using the flight 
program model, costs are tracked, on a per 
mission or spacecraft basis, from beginning 
to end or womb to tomb. However, an 
infrastructure (now labeled as strategic 
functions in the NASA Strategic Plan) spans 
multiple missions and spacecraft. Economies 
are achieved by leveraging the needs of 
multiple customers and accommodating these 
needs through modifications to the 
infrastructure. The Blue Team probed and 
found that emphasis was placed on 
engineering systems, on a mission by 



mission basis, with restrained and controlled 
implementation costs. Although economies 
were gained, the results were sub-optimal 
when one considers that the majority of a 
system's life cycle is spent in the maintenance 
and operations phase, not in the design and 
development phase. Investigating the 
meaning of "better" proved to be both 
enlightening and revealing. In the minds of 
many good engineers, "better" readily 
translates to more whiz bang, e.g., state of 
the art, advanced technology, enhanced 
performance, and inevitably more 
complexity. However, complexity often 
translates into cost and schedule risk 
throughout a system's life cycle. 

From these deliberations and non- 
conventional exchanges of views, it became 
evident that "aster, better, cheaper" was 
being discussed in terms of their units of 
measure. Traditional units of measure (i.e., 
time and dollars) were being used for "faster" 
and "cheaper, " but non-traditional units of 
measure (i.e., complexity and size) had 
surfaced for "better. " In all cases, value had 
to be measured across life cycles, both 
customers and service providers alike. Value 
for "aster and cheaperJ' became realistic, 
credible, responsive. Value for "better" 
became simpler and smaller. 

The two Blue Team discoveries described in 
this section -- (1) that the numerous and 
seemingly diverse infrastructure systems and 
facilities can be represented by only two 
functional categories and (2) that 'Ifuster, 
better, cheaper" is more appropriately 
portrayed as  realistic,  credible,  
responsive, simpler and smaller, 
across life cycles -- constitute a new working 
paradigm for preparing and delivering space 
communications services. This new 
paradigm strongly suggests that we depart 
from our legacy of engineering systems to 
establish the practice of true systems 
engineering. Additionally, it must be 
acknowledged that focusing on similarities, 
rather than on differences, expands the  
solution set for achieving economies of scale, 
while creating opportunities for reducing 
infrastructure complexity. 

3. PROMOTING TEAMWORK 
TO ACCOMPLISH CHANGE 

FY 1993 

In October 1992, the Code 0 Blue Team 
was reconstituted as the Code 0 Success 
Team (COST) to serve as a catalyst for 
change. The COST role was further 
clarified to include complementing line 
management and fostering cooperation (not 
competition) across the Code 0 Family. In 
addition, the COST accepted the challenge 
to include a tactical emphasis in its planning 
and to maintain a balance between this 
tactical emphasis and the strategic (1) 
People, (2) Technical, and (3) Financial 
Blue Team initiatives. Consistent with this 
clarified role, the COST set out to: 

. Promote cooperation and collaboration 
across traditional boundaries 

. Nu~lure innovation by seeking ideas for 
nea r  te rm ac ross - the -board  
opportunities for savings 

. Advocate realistic, credible, 
responsive, simpler and smaller 
solutions 7 

Actively solicit customer participation 

. Encourage use of the simplified space 
communications representation and 
adapted metrics in evaluating system 
implementation projects 

The COST entered into dialogues within the 
Code 0 Family of service providers and 
customers at Headquarters and the field 
centers. These dialogues disclosed that 
many of us were in violent agreement on 
the need to change. While we recognized 
that we shared a heritage of success, we 
also acknowledged that the challenge was 
to reduce the cost of success. This 
challenge, "to reduce the cost of success" 
became the hallmark of the FY 1993 
activities. 



The FY 1993 activities included strategic 
and tactical elements. Formulation of the 
Code 0 Family vision was a strategic 
endeavor to integrate the simplified space 
communications representation, the adapted 
metrics, the Blue Team initiatives, and the 
challenge "to reduce the cost of success." 
The one-page statement and illustration was 
signed by the Associate Administrator for 
Space Communications in June 1993. The 
Code 0 Family vision statement is  to 
reduce the cost of success through (1) 
increased cooperation, (2) improved service 
to and partnership with customers, and (3) 
decreased cost and complexity of the space 
communications infrastructure. 

Two tactical activities were conducted 
during FY 1993. They centered on 
remaining viable in a constrained fiscal 
environment, while pursuing the vision. 
The COST organized and hosted the first 
Space Communications Programmatic and 
Tactical Planning Workshop. Attendees 
included space communications service 
providers and their customers. There were 
two key objectives: 

. Develop a technical foundation and 
teamwork base to facilitate work on 
operations concepts 

. Develop an investment strategy that 
included areas for near term savings 

The workshop teams presented their results 
and recommendations to Code 0 Senior 
Management, including the Associate 
Administrator. The recommendations were 
synthesized into six areas for tactical 
savings and incorporated in the budget 
guidelines. In retrospect, the workshop set 
the stage for teaming across organizational 
boundaries and for testing the value of 
proposed infrastructure modifications in 
terms of customer benefit. 

Also incorporated in the budget guidelines, 
was the announcement of the Code 0 
Investment Program. This program 
provided an open channel for the field 
centers to submit proposals that reduced 
costs, improved services to customers, or 
otherwise contributed to making the Code 

0 infrastructure of systems and operational 
services simpler, cheaper, or  more 
customer friendly. The proposal selection 
criteria were based on (1) Contribution to 
the Code 0 Family vision and (2) Rapid 
Investment Payback - within three years. 
The Code 0 Investment Program was 
intended to build on the teaming started at 
the workshop and create near term across- 
the-board opportunities for savings. In 
retrospect, it was difficult to shed local 
institutional perspectives. Only ten tactical 
winners were selected from sixty-three 
proposal abstracts and twenty full 
proposals. 

4. REDUCING 
THE COST OF SUCCESS FOR 

NASA's MISSION OPERATIONS 
FY 1994 

Early in the year, the COST determined that 
going after strategic and tactical results 
concurrently was not leading to the desired 
state. Line managepent was proceeding 
with business as usual, i.e., working 
within organizational boundaries and 
motivating their employees to do the same. 
Meanwhile, circumstances had overtaken 
the tactical program. 

Process changes to realize substantive 
economies of scale would have to be 
strategic, and technical innovation to reduce 
cost and complexity would have to be 
strategically motivated. Further, "reducing 
the cost of success" actually meant reducing 
the cost of success for mission operations 
for NASA's strategic enterprises and 
strategic functions. With active and intense 
involvement by the Associate Administrator 
for Space Communications, the COST role 
was broadened to encompass agency 
mission operations. 

The COST organized and hosted a mission 
operations workshop. Participants were a 
non-parochial cross section of mission 
operations experience from NASA, industry, 
academia, and another government 
organization. They had been selected using 
the same criteria used to select members of 
the initial Code 0 Blue Team: 



. Independent Thinkers, yet Team Players 

. Recognized for Technical Expertise and 
Professional Integrity 

. Prepared to Challenge the Status Quo 

. Able to Resist Engineering the Solution 
Before Understanding the Problem 

. Experience in engineering systems and 
Systems Engineering; able to distinguish 

. Willing to be Unconstrained, Non- 
parochial, and Imaginative 

. Empowered to Explore Strategic Options 
rather than Producing a Quick Fix 

. Perseverance and Commitment Post- 
Workshop (1 -year continued teaming) 

The workshop theme was NASA Teaming 
Across Organizational Boundaries to Reduce 
the Cost of Success for End-to-End Mission 
Operations. The workshop goal was to 
expressly begin work on changing the culture 
to stimulate innovation and promote 
cooperation and collaboration across 
traditional boundaries for the good of NASA. 
The workshop was to be considered as the 
kick-off meeting for building relationships 
and creating teaming at-rangements to step up 
to the challenge of reducing life cycle costs 
for NASA mission operations. The principal 
workshop objective was to articulate a 
common baseline for services and functions 
necessary to conduct end-to-end mission 
operations. In order to emphasize similrrrities 
in purpose vice differences in engineering, 
the descriptions of these services and 
functions were to be independent of existing 
sys tems,  fac i l i t ies ,  technologies ,  
organizations, and personalities. 

The workshop announcement stated that 
many of us believe the big payoff will come 
from reversing the trend of engineering 
special solutions for similar problems, 
through the identification, development, and 
deployment of reusable components that 

simplify engineering (building and 
maintaining) and operating systems for end- 
to-end mission operations. Achieving an 
agreed to baseline of services and functions 
was seen as a mandatory first step on the 
road to payoff. 

The opening session of the workshop was a 
dialogue between the participants and the 
NASA Administrator. His presence 
reinforced the priority of cooperating and 
collaborating across organizational 
boundaries. At the conclusion of the session, 
he invited workshop representatives to 
continue the dialogue at the next Senior 
Management Meeting to be held June 9, 
1994. The invitation was accepted. 

Preparation for the Senior Management 
Meeting energized the representatives to form 
a non-standard alliance of Code 0 Success 
TeamILifecycle Effectiveness for Strategic 
Success (COST LESS) for Mission 
Operations. This alliance established the 
following goals, technical approach, and 
people process: 

Goals 
Redefine Success in a Constrained Fiscal 
Environment 
Reduce the Cost of Success for End-to-End 
Mission Operations 

Technical A ~ ~ r o a c h  
Reverse the Trend of Engineering Special 
Solutions for Similar Problems 

People Process 
Break Down Barriers and Team Across 
Traditional Boundaries 

The alliance presented to NASA Senior 
Management that the goals would be met, and 
significant savings could be realized by 
improving processes and incorporating them 
into the line organizations. The COST LESS 
for Mission Operations alliance also reported 
that "across traditional boundaries" included 
life cycles, functions, programs and projects, 
as well as organizations. The effort 
envisioned would be multi-dimensional and 
multi-disciplinary in order to achieve example 



results such as (1) Common Vocabulary, (2) 
Reusable Solutions to Simplify Engineering 
and Operations, and (3) Operations Concepts 
to Maximize Value. 

5. NEXT STEPS FOR FY 1995 

In the NASA Senior Management Meeting of 
June 9, 1994, the Administrator noted that 
the key to success is the cross-cutting nature 
of the COST LESS team for Mission 
Operations. It allowed the group to review 
NASA objectively versus as individual 
organizations. With this endorsement, the 
team is  reconvening during Augugt- 
September 1994 to prepare for the next steps 
between NASA's strategic enterprises and 
functions. 
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1. Abstract 
Ever since the first satellite, 

ETS-1, in 1975, 28 NASDA satellites 
in total have been launched. 
With regards to satellite operations, 
NASDA has developed realtime 
TLM/CMD processing systems which - 
could be commonly used for different 
types of satellite. Presently the third 
generation system is operational. 
Meanwhile, the recent trend of satellite 
operations is becoming more compli- 
cated, for example, CCSDS-adapted 
Satellites are emerging and computer 
technology is developing quite rapidly. 
Moreover, NASDA's role in satellite 
operations is changing from mainly 
Satellite Bus operations to experimen- 
tallwhole satellite mission operations. 
Considering these circumstances, 
NASDA has initiated a study for the 
next generation system which is suit- 
able for operations of future satellites 
keeping in mind the following view- 
points. 

Demands from mission support 
* Trend of satellite design 
* Progress of computer environment 

This is an interim report of the study. 

2. NASDA's Present system 

2.1 Tracking and Control System 
The present Tracking and Control 

System is shown in Fig.-1. It consists 
of the followings: 

Network system(tracking stations, 
network control, etc) 
Satellite Operation and Control 
system(TLM and CMD operation) 
Support system(orbit determi- 
nation,planning of operation,etc) 
Space Network system(network via 
Data Relay Satellite; experimental) 

2.2 System Configuration of Satellite 
Operation and Control system 

NASDA's Satellite Operation and 
Control system, based upon the "system 
applying to all satellites", consists of 
the following elements. 

Satellite system 
The realtime on-line subsystem 

and off-line subsystem which are 
composed of satellite functions and 
satellite unique functions. 

* Database Manager 
Single system, common to all 

satellites, to manage database for 
parameters. 

Fig.-1 NASDA Tracking and Control System 

1151 



3. Objectives of the Study 
In this section, necessity of the next 

generation system (named "SOC-X") is 
introduced, addressing the following 
viewpoints: 

* Demands from mission support 
* Trend of satellite design 
* Progress of computer environ- 

ment 

3.1 Demands from mission support 
* Supporting mission 

The present system is made up 
and used for satellite operations without 
making clear distinction of housekeep- 
ing operation or activity of supporting 
missions. 
Hence, NASDA needs a new concept 
for SOC-X, which is "Providing inter- 
face to support mission" on user's side. 

I 

Variety of missions 
The present systems, based upon 

the "concept applying to all satellites", 
have difficulty supporting various 
missions entirely, because of a shortage 
of mission support functions. 

A variety of support functions as 
well as further study on how to 
implement the functions on the 
common system are required. 

3.2 Trend of Satellite design 
Accommodation to CCSDS 

NASDA satellites are adapting 
the CCSDS recommendation. Therefore, 
SOC-X is requested to support the 
corresponding CCSDS communication 
environments. SOC-X will deal with 
both conventional and CCSDS satellites. 

Satellite autonomy and autonomous 
operation 

High performance and autonomy 
of onboard equipments will change the 
tasks of satellite operations on ground 
as follows. 

- Simplification of Command data 
generation scheme 

- Monitoring equipments through 
onboard autonomous supervision 
function in parallel with the 
conventional monitoring of all 
telemetry information 

In addition, operating procedures will 
change over to the new way from 
ground-based actions to onboard auto- 
nomous control. 
NASDA is in now a transition phase, 
and it is necessary to cooperate with 
satellite design. 

3.3 Progress of computer 'environ- 
ment 

Computer environment is rapidly 
advancing more than the time the 
present system was designed. 

Progress in computer technology 
includes: 

- Enabling more complicated 
process 

- Minimizing the cost of 
computer 

- Displaying high value added 
information to the operator 

- Improving man-machine 
interface 

Progress in network environment 
- Network technology of LAN 
- Use of common resources and 

distributed function via LAN 
- High speed WAN, which is 

suitable for LAN 
- Standardization of LAN 

environment 



4. Consideration of SOC-X 

4.1 Concept for satellite operation 
Cooperative operation with the 

mission users becomes more important 
in the future satellite operations. 
Moreover, satellite operation not only 
housekeeps the satellite, but also 
provides functions to utilize satellite 
payloads to the mission users. 
Apparently, it is required to be more 
"mission " and "end-user" oriented. 

4.1.1 Definition of SOC-X 
SOC-X directly interfaces with 

satellite according to the concept of 
"mission" and "end-user oriented". 
It could be defined as a "Provider of 
data between satellite and mission 
users". SOC-X provides mission 
support functions as described below 
and in Fig.-2. 

Providing operation environment to 
users for housekeeping of payload 
and mission execution 
Controlling the satellite safety 

4.1.2 Providing mission environ- 
ment 

The mission operating environment 
provided by SOC-X is for the house- 
keeping of satellite resources, including 
mission equipments, and for the real- 
time mission data interface between the 
satellite and users. 

Housekeeping the satellite resources 
There are many items of resource 

to be managed on satellite. These 
resources are controlled by SOC-X 
while mission users would operate their 
equipment under this controlled 
environment. 
In this configuration, mission users 
are allowed to control only each 
mission part individually. 

* Data interface with satellite 
Data interface function provided 

by SOC-X is the real-time data 
transfer of TLM and CMD including 
transparent data interface, engineering 
data conversion of TLM, and genera- ' 

tion of CMD. 
However, it is undesirable for SOC-X 
to have direct interface with the user, 
in terms of system security and satellite 
safety. Accordingly, it becomes 
important to provide a system which 
satisfies the users' requirements and 
protects the Satellite Operation and 
Control system. 
NASDA is considering a method for 
user interfaces taking into account the 
above aspects, which also include non- 
realtime data interface. 

(Satellite) (Mission) 
M~SSION .............. 
OPERATING 
ENVIRONMENT *....END USER-ORIENTED 

ENVIRONME 

. . . . . .  . . . . .  . . 
. .  . .  . . . . . . . .  .......... ) '.....>.'... . . . . . .  .............. .. . ..................................... ??.;<,:?$*.& < ,>>,........ 1: .::::1.!:::1.:::.: I'.:::.::.:::l;ll:'I:~::j."i'. 

. SOC-X . L .... 1::; ,.,< ;...;.:.: ...... ;:,: . . . . . . . . . . . . . . .  <,,. ;,; .. ;;:...;.;;:::;.;;; .... :.,,;.,;.:;,,; ...... :.:.:,,.i:<i':: . . . . . .  ... .: .::..::;::::.::;.::: .::,,. ..::. . . . . . . .  . . \ 
Tracking and Control Sy st-s , % 

Fig.-:! Environment provided by SOC-X 



4.1.3 Satellite Safety Operation 
SOC-X must provide protection 

to satellite resources. 

* Supervising satellite status 
The present operation takes 

necessary recovery action after detect- 
ing of anomaly by monitoring TLM. 
However, "prediction of anomaly by 
inference" might be the goal. This 
requires the satellite operation planning 
information in order to know how the 
resources will be used. 

Command control of satellite 
Here, the validity of command 

and timing of its transmission are 
verified. This process also takes into 
account the conditions of satellite 
resources. However, to what extent and 
method of these checking should be 
used by SOC-X needs further study. 

4.2 Satellite design trend 

4.2.1 Approach to Mission-oriented 
and Commonality 

The important aspect of this study 
is to overcome the contradiction 
between diversification of mission and 
commonality of satellite operation. 
Needless to say, these studies must be 
made with a close cooperation with 
satellite design and development. 

4.2.2 Adaptation to CCSDS 
CCSDS causes no big impact on 

Satellite Operation and Control system, 
however, it brings about some new 
concept of communication protocol 
between the satellite and ground. 
In NASDA cases, the responsibilities of 
the following two subsystems in terms 
of CCSDS environment are unclear; 
- Network system is responsible for 

the control of all equipments on 
ground and all systems of 
tracking station. 

- Satellite Operation and Control 
system is responsible for the 
control of the satellite system. 

Since it is still new for NASDA to 
develop the CCSDS equipments for 
onboard and ground, an issue on how 
to design s system most suitable for 
CCSDS environment was brought up. 

A conclusion has not been reached, 
but the scope of new Satellite Opera- 
tion and Control system must conform 
to the concept of the CCSDS standards. 

4.2.3 Automatic and autonomous 
Onboard subsystems will be more 

automatic and autonomous for high 
level mission operation, which result in 
reduction of operational load. These 
will cause a change in operation 
leadership on the ground so it is 
important to assign responsibilities to 
both onboard and ground systems 
respectively. 
The operational load will be reduced 
by automatic and autonomous satellite 
operations, but the task of SOC-X 
increases because of the followings; 

Analysis on the cause of anomaly 
and countermeasure actions 
executed by autonomous onboard 
programs 
Verification of pre-arranged 
actions in automatic and autono- 
mous onboard programs, prior to 
its execution 
Control of automatic and auto- 
nomous programs and supervision 
of the operating status 

* Backup for onboard CPU failure 



4.3 Utilization of new technology 

4.3.1 LAN-based system 
A use of new technologies, which 

were not available at the time of the 
present system design, is one of the 
key issues of this study. A LAN-based 
system is one of the concepts for 
SOC-X, which supports activities as 
follows. 

Common use of resources 
* Distributed processing 

Reduction of duplicated functions 

4.3.2 Reduction of operator's load 
One of the subjects for reducing 

operational load is the telemetry 
monitoring. Currently the operator 
needs plenty of information to judge 
satellite conditions, thus it is quite 
important to develop a method where 
the system can predict anomaly. 
Artificial Intelligence(Al1) technology 
may help reduce this task. 

4.3.3 Upgrading the operational 
environment 
It is most desirable to provide 

more practical and condensed informa- 
tion to the operators. One of them is to 
utilize the latest computer technologies. 
It would provide a suitable operation 
environment to support NASDA1s 
mission by: 

Visual information 
* Multi Role terminal 
* Unified man-machine interface 

5. Summary of the study result 
This section is an interim report 

about the concept of SOC-X. 

5.1 Concept of SOC-X 
NASDA1s Tracking and Control 

system, now functioning only as the 
operator of a satellite, would also 
become a provider of satellite mission 
support environment. 
In this concept, SOC-X would provide 
the following environment to mission 
users: 

* Mission-oriented operational 
environment 

* User-oriented interface 
environment 
Satellite configuration management 

5.2 Element of SOC-X 

5.2.1 Concept 
The satellite operations consist of 

housekeeping and mission operations. . 
Hence, the Satellite Operation and 
Control system is provided with Bus- ' 

control and Mission-control functions. 

5.2.2 Bus-controller and Mission- 
controller. 
Bus-controller(B-ctrl), which is a 

system applying to all satellites, is for 
the operation of whole satellite and bus 
equipment. B-ctrl is a front-end 
system to manage the whole satellite. 

Meanwhile,Mission-controller 
(M-ctrl) is a customer-made system 
for each mission operation. M-ctrl has 
TLM and CMD functions for specific 
missions, and a back-end system which 
performs the housekeeping for mission 
equipment and control of mission 
equipments. 



5.2.3 Interface between B-ctrl and 
M-ctrl 

Telemetry data 
In case of copious telemetry fiom 

a conventional satellite, B-ctrl delivers 
necessary telemetry to M-ctrl. With 
regards to the CCSDS cases, its 
telemetry is distributed to B-ctrl and 
M-ctrl individually fiom the CCSDS 
telemetry handling systems, but 
exchange of information between them 
would be done as follows: 
- B-ctrl provides information needed 

to proceed the mission. 
- M-ctrl provides information needed 

to manage the whole satellite 
system. 

Command data 
Mission commands from users are 

generated and checked by each M-ctrl 
for payload safety. At this point, 
satellite safety is managed between 
B-ctrl and M-ctrl by exchanging 
information. 
In case of conventional satellite, 
commands generated by each M-ctrl 
would be transmitted through B-ctrl. In 
other cases, for example, the distributed 
commanding of CCSDS, B-ctrl and 
each M-ctrl generate and transmit their 
individual commands under planned 
conditions. 

5.3 Mission Support 

5.3.1 Service environment 
SOC-X provides the management 

function of satellite configuration. 
This configuration is independent of 
other missions and bus operation, and 
it assures the mission users with 
operation safety. 
Furthermore, operations including the 
housekeeping of onboard mission 
equipment by B-ctrl is also possible. 

5.3.2 End-user oriented service 
Further services are considered: 

* Data transfer 
Realtime communication with 
satellite(e.g.:TLM,CMD) 

* Value added Data transfer 
- Delivery of TLM, which is 

converted to engineering data 
- Generation of CMD, which is 

converted fiom a descriptive 
information to actual command 
data 

Rental terminal 

5.3.3 Interface Configuration 
For the interface configuration 

provided to the users, are there three 
types as follows and also shown in 
Fig.-3: 

Fig.-3 Interface configuration (CCSDS type satellite, for example) 
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* Utilization of NASDA supplied 
tool 

This tool supplied by NASDA, is 
provided with functions necessary 
to perform the mission operations 
for the users. 

* Access to Data GW system 
This Data GW system supplied by 

NASDA, functions as a data gate- 
way for the satellite and user's 
system, and links these two to 
perform mission operation. 
The system provides the basic 
functions to relay the processed 
telemetry data to user's system and 
convert a descriptive information 
from the user to actual command 
data. 

* Development of User Own System 
A mission user develops each 

system by utilizing the functional 
tools supplied by NASDA. 
As the user integrates these tools in 
his system, he is able to perform a 
mission control on his own. 

6. Future subject 

6.1 Future Study 
This paper introduced an interim 

study result. 
So far, several issues have been 
identified. We, for example, have some 
study items with the network system, 
and a certain extent of responsibility 
for SOC-X in terms of "Basic concept 
of NASDA satellite operation in 
futurett. 
Indeed, the key element in developing 
system is to keep in mind conformity 
of satellite design and ground systems. 
We hope to write a final report after 
having the major problems examined. 

6.2 Development schedule 
The current schedule is not yet 

approved. So far, the following 
schedule is being considered. 

FY 
1994 Conceptual Study 
1995 System Study 
1996 Preliminary Design 
1997 Detail Design 
1998 Development 
1999 Integration Test 
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ABSTRACT 

The Mission Operations Division (MOD) at 
Goddard Space Flight Center builds Mission 
Operations Centers which are used by Flight 
Operations Teams to monitor and control 
satellites. Reducing system life cycle costs 
through software reuse has always been a 
priority of the MOD. The MOD's 
Transportable Payload Operations Control 
Center development team established an 
extensive library of 14 subsystems with over 
100,000 delivered source instructions of 
reusable, generic software components. Nine 
TPOCC-based control centers to date support 
11 satellites and achieved an average software 
reuse level of more than 75%. This paper 
shares experiences of how the TPOCC 
building blocks .were developed and how 
building block developer's, mission 
development teams, and users are all part of 
the process. 

1. INTRODUCTION 

The TPOCC is a control center architecture 
which takes advantage of workstation based 
technology to improve mission operations and 
reduce development costs for Payload 
Operations Control Center's and Mission 
Operations Center's in GSFC's MOD. The 
TPOCC architecture is characterized by it's 
distributed processing, industry standards, 
commercial off-the-shelf (COTS) hardware 
and software products, and reusable custom 
software. The reusable TPOCC software is 
integrated with mission applications to provide 

the health and safety monitoring, and 
commanding capabilities for various NASA 
satellites. This includes the capability to 
process and display telemetry, build and send 
'commands, and perform special processing. In 
addition, TPOCC provides a graphical user 
interface and a procedural command language 
that automates ground system and spacecraft 
control. 

The TPOCC development team established an 
extensive library of 14 subsystems with over 
100,000 delivered source instructions of 
reusable, generic software components. By 
encapsulating the basic control ' ceizter 
hnctionality into reusable building blocks, the 
control center design and implementation 
becomes a much easier task. The nine 
TPOCC-based control centers to date support 
11 satellites and achieved an average software 
reuse level of more than 75% (see Table 1). 
The challenges involved in establishing and 
maintaining a cost-effective library of software 
components for ground system development 
include: making the initial investment, getting 
mission teams to adapt a reuse paradigm, 
configuration control, and staying current with 
technology. 

This paper describes the MOD's approach to 
establishing and maintaining the TPOCC 
reusable software. 

2. BACKGROUND 

NASA's Goddard Space Flight Center (GSFC) 
Mission Operations Division (MOD) provides 



Ground Support Systems for a variety of achieved a maximum software reuse level of 
scientific satellites. The MOD designs, about 40%. - 

implements, tests, and delivers control centers 
- both traditional Payload Operations Control 
Centers(P0CCs) and the newer, hnctionally 
expanded Mission Operations Centers (MOCs) 
- that provide command management and 
mission planning functions. Using an 
operations control center, the Flight 
Operations Team (FOT) provides around-the- 
clock support to its spacecraft, typically 
establishing communications contact every few 
hours for a period of about 20 minutes. 
During these brief contacts, the control center 
system fbnctionality allows the FOT to quickly 
evaluate the current condition of the spacecraft 
and transmit the commands necessary to 
maintain its health and control the spacecraft 
and its science instruments. 

Recognizing the many similarities among 
missions, the MOD always has made software 
reuse a priority. Prior to TPOCC, the most 
successfbl reuse effort was the Multisatellite 
Operations Control Center (MSOCC) 
Applications Executive (MAE), which 

The TPOCC project began in 1985 as a 
Control Center System Branch research and 
development effort examining the new 
workstation based technology to hrther 
reduce mission development cost and improve 
operations support. The ICE I IMP Control 
Center was successfblly prototyped using a 
TPOCC system in little more than six months. 
Following this proof of concept POCC 
software was developed for the SAMPEX, 
WIND 1 POLAR, and ICE 1 IMP missions 
simultaneously with the implementation of the 
TPOCC core reusable software. The TPOCC 
core reusable control center software was 
completed with the delivery of TPOCC release 
6.3, in July 1992, and successfblly supported 
the SAMPEX launch. In addition to the 
numerous MOD control center applications 
which TPOCC now supports other.non-control 
center applications utilize TPOCC software to 
reduce their development costs (see Table 1). 
TPOCC software continues to evolve based on 
mission needs and new technology 
opportunities. 

TABLE 1 - APPLICATIONS INCORPORATING TPOCC 

1 Monitoring Platform (IMP) Payload Operations Control I 
Center (POCC), Interplanetary Physics Laboratory 
(WIND) POCC , Polar Plasma Laboratory (POLAR) 
POCC. Solar and Helios~heric Observatorv (SOHO) 

1 POCC, Solar Anamalous & Magnetospheric Particle I 
Explorer (SAMPEX) POCC, Fast Auroral Snapshot 
Explorer (FAST) POCC, Submillimeter Wave Astronomy 
Satellite (S WAS) POCC, X-Ray Timing Experiment (XTE) 
Mission Operations Center (MOC), Tropical Rainfall 
Measuring Mission (TRMM) MOC, Advanced 
Composition Explorer (ACE) MOC 

1 Alenia S~azio Control Center: X-SAR Mission Planning O~erations Svstem I 
I NASAJGSFC Spacecraft Operations Tools: Shuttle Payload Interface Facility (SPIF), I 
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3.  BASELINING THE BUILDING BLOCKS 

Prior to baseling TPOCC software and 
committing to mission deadlines an investment 
was made in a system development concept, 
technology evaluation, and prototyping POCC 
subsystems. The System development concept 
resulted in a series of mandates for both the 
architecture and the management approach for 
mission's which will use the TPOCC 
architecture. 

The management approach taken on TPOCC 
was to institutionally find and manage the 
TPOCC reusable software development and 
architecture. Each mission would then find an 
effort to build a dedicated control center based 
on TPOCC building blocks integrated with 
mission specific software. Enhancements to 
the core reusable software would be evaluated 
on a case by case basis using project finding 
when necessary. 

There were four key TPOCC architecture 
mandates: distributed processing; widely 
accepted industry standards; reusable software 

with clearly defined interfaces; and commercial 
off-the-shelf (COTS) products. 

TPOCC adapted distributed processing as a 
means to scale hardware and software to the 
requirements and complexity of a specific 
mission. Implemented through a clientlserver 
method, finctional data processing capabilities 
are developed as independently executing 
software tasks distributed across a group of 
networked inexpensive heterogeneous 
computers. 

Although all TPOCC software components can 
execute on a single workstation, the current 
generation of TPOCC based control centers 
are hosted on a heterogeneous set of 
processors to meet mission data throughput 
needs. The main hardware components are a 
front end processor PEP) and multiple UNIX 
workstations connected to an Ethernet-based 
local area network (LAN). The FEP, a VME 
chassis containing one or more single-board 
computers using a real-time UNIX-like 
operating system, performs the time-critical 
control center functions. The VME bus 



provides high data throughput between the 
processes hosted within the FEP, while 
reducing data volume on the external LAN. 
The FEP also contains mass data storage, as 
well as additional NASA communications 
(NASCOM) interface hardware for receiving 
spacecraft telemetry data and for sending 
commands and data to the spacecraft. 

Another major contributor not only to 
software reuse across control centers but also 
to the extendibility of TPOCC to other non- 
control center applications is its clearly defined 
and tightly controlled interfaces. Because all 
TPOCC based systems produce software that 
complies with these interfaces, capabilities 
developed by mission development teams can 
be easily shared, either by subsuming the new 
capability into the T P O C ~  reusable software 
base (if the capability is truly generic) or 
directly into other applications that require the 
specific capability. These well defined 
interfaces also make it possible for TPOCC 
compliant applications to share data. TPOCCs 
defined data service protocol allows a loosely 
coupled application to link into a TPOCC 
based system, access its telemetry stream, 
receive updated parameter values in real-time, 
act on that data in its own software, and return 
data to the TPOCC based system for display. 

Adhering to widely accepted industry 
standards was seen as an essential part of 
TPOCCs approach to building a software 
library of components which could be 
compatible with advances in hardware 
technology. The standards used for TPOCC 
hardware components include VME, Ethernet, 
RS 232, RS422, and SCSI. TPOCC software 
standards adheres to open systems 
communications standards such as the 
Transmission Control ProtocoVInternet 
Protocol (TCPAP), external data 
representation (XDR), and network file system 
O\JFS). TPOCCs user interface standards 

include the X-Window System and the Open 
Software Foundation(OSF)/MOTIF software. 

Following widely accepted industry standards 
also puts TPOCC in a position to maximize the 
use of COTS products wherever possible. 
Graphical User Interface, database, 
development tools, and network management 
are a few of the areas where TPOCC has 
utilized COTS products in lieu of costly in 
house development efforts. As a result, 
system enhancements -have become more 
dependent on COTS vendors, making vendor 
reliability an important aspect of technical 
evaluations. 

A significant amount of time was spent on 
doing technical evaluations and prototyping in 
the early phases of the TPOCC project. High 
risk requirements were prototyped and 
workstation based hardware and software 
components were evaluated for its application 
to the control center environment. 
Prototyping continues to play an important 
role in evolving the TPOCC reusable software 
base with technology. 

4. ESTABLISHING A REUSE PARADIGM 
AMONG MISSION TEAMS 

System development based on TPOCC 
software building blocks and TPOCC 
architecture introduced technical and 
management challenges. Initially, TPOCC 
development was localized within a research 
group and focused primarily on developing 
concepts, identieing applicable technology, 
and prototyping high risk areas. Mission 
POCC development teams were accustomed to 
developing, implementing, and testing each 
POCC individually using FORTRAN on a IBM 
or DEC like minicomputers. Both the TPOCC 
development group and mission development 
teams needed to change their perspective. 
Mission developers could no longer view 
themselves as developers of separate and 



unique control centers but rather as 
contributors to the larger body of common 
control center software. 

The first step toward this paradigm shift was 
to introduce the mission development teams 
to the principles and mindset necessary to 
make large-scale subsystem reusability a 
reality. The TPOCC development group 
conducted classes on the TPOCC development 
methodology, system design, and system 
capabilities. Also development teams attended 
vendor training classes on the new technology 
and software implementation environment. 
The third method of training was having the 
mission teams build prototype POCC systems 
utilizing configured TPOCC generic 
subsystems and adding their mission specific 
code. The complete telemetry processing 
path was prototyped for SAMPEX & 
WINDPOLAR in approximately two months . 

Communication and feedback between the 
TPOCC staff and mission development teams 
becomes increasingly important as the number 
of TPOCC-provided capabilities and the 
number of TPOCC-based applications 
increase. A Cohfiguration Review Board 
(CRB) and working group, with a variety of 
representatives including mission development 
teams(contractors and GSFC personnel for 
each mission), the TPOCC staff, users, and 
representatives of other (i.e. non-control 
center) TPOCC based systems was established. 
The working group ensures that everyone is 
kept abreast of the efforts, needs and schedule 
of the collective group. As mission 
development teams identify candidate 
capabilities for generic implementation, the 
CRB determines which candidate capabilities 
are truly generic, schedules their 
implementation, and provides configuration 
control. 

As the number of missions increase, 
requirements for new capabilities grew but the 

TPOCC budget has remained constant. In 
order to make this effort successfbl while 
controlling cost, temporary teams with 
members from the TPOCC group and mission 
development teams are formed to design and 
implement new generic software. In addition 
to providing additional staff to implement 
generic capabilities, TPOCC staff gets insight 
into what portions of a capability are generic, 
and help identify likely differences among 
missions. For the missions, these teams 
provide insight into designing software for 
reusability and experience in differentiating the 
mission-unique elements of a problem from the 
generic. 

Using TPOCC software and architecture 
framework, mission development teams have 
also been able to support unique needs of 
individual spacecraft requirements. The 
WINDPOLAR POCC, supporting two 
spacecraft scheduled to launched within a year, 
handles two physical channels of time division 
multiplexed (TDM) telemetry, while other 
TPOCC missions use the CCSDS standard. 
The SOH0 POCC, scheduled to launch in 
mid-1995, must handle a unique combined 
TDM and CCSDS telemetry format. 

To date, six TPOCC-based applications 
systems have been configured to support eight 
different spacecraft. The first three POCCs 
developed for the SmaU Explorer (SMEX) 
program, SAMPEX, FAST, and SWAS, also 
serve as a case study in determining the levels 
of reuse that can be attained with the TPOCC 
architecture within a series of missions. The 
SAMPEX POCC consists of COTS products, 
67% TPOCC-generic software and 33% 
mission-specific software (see Table 2). By 
reusing both SAMPEX mission-specific 
software and the expanded TPOCC-generic 
software, the FAST POCC achieved an 8 1% 
reuse level. The SWAS POCC, expanding this 



reuse base to include FAST mission specific much of the mission specific code in XTE will 
software, achieved a reuse level of 92%. be reusable in TRMM. 

Two latter missions, XTE and TRMM chose a 
TPOCC-based-MOC approach, integrating the 
traditional POCC, mission planning, and 
command management functions together into 
one system by sharing functionality and 
reusable software which had previously been 
implemented separately. Since the TRMM and 
XTE spacecraft have significant similarities, 

Another indicator of TPOCC reuse across 
missions is the number of new generic 
capabilities asked for by mission development 
teams and users. Totals by mission of new 
generic capability requests, documented as 
Internal Configuration Changes Requests 
(ICCRs), are listed in Table 2. 

TABLE 2 - NASAIGSFC Control Center TPOCC Reuse Data 
Mission Total Total*** 

Project Name Specific Reused System Percent Generic Change 
DSI* DSI DSI Reuse Requests(1CCRs) 

ICE/IMP* * 25407 72552 97959 74% 17 
ISTP series: WIND 43372 8 1895 125267 65% 23 

I POLAR 7414 124934 132348 94% 0 I 
SOH0 43 690 94840 138530 68% 8 

SMEX series: SAMPEX 38308 77 125 115433 67% 16' 
FAST 22707 96534 119241 81% 11 . 

I SWAS 9800 114434 124234 92% 1 I 

*DSI = Delivered Source Instructions 
**Following its initial prototype, ICE/IMP was completely rehosted 
***Number of approved ICCRs from TPOCC Release 2 through Release 12 

5. CONFIGURATION CONTROL and that TPOCC applications be given 

The TPOCC CRB oversees the reusable 
software configuration management as defined 
in the TPOCC Project Support Plan. Because 
the TPOCC Reusable Software forms the core 
of several control centers, configuration 
control is necessary across development efforts 
and it is essential that: 

the opportunity to analyze the proposed 
changes and assess the impact to the 
TPOCC applications 

- Proposed changes [i.e., configuration 
change requests (CCRs)] to mission 
software be visible to the TPOCC project 
and other application teams for analysis, 
and possible reusable implementation 
recommendations. 

- Proposed changes [i.e., internal - Problems detected during testing of the 
configuration change requests( ICCRs)] TPOCC release be documented as 
to the TPOCC software be visible to TPOCC internal discrepancy reports 
TPOCC missions before implementation 



(IDRs) and made visible to all TPOCC 
applications 

- Problems detected during testing of 
TPOCC applications be documented as 
discrepancy reports (DRs) and made 
visible to all TPOCC applications 

- DRs written against TPOCC applications 
are analyzed; assigned to either generic 
TPOCC or a mission development team 
based on the results of that analysis; and 
if assigned to the generic TPOCC, made 
visible to all TPOCC applications. 

- The reusable TPOCC capabilities are 
accurately incorporated in the TPOCC 
Capabilities Document 

5.1 Configuration Baselines 

Two levels of software baselines are 
established for TPOCC reusable software. The 
TPOCC Capabilities Document, analogous to 
a typical system requirements document, 
contains a structured list of TPOCC 
capabilities. A build release plan maps the 
capabilities to specific releases. This 
permanent baseline will be updated only in 
response to ICCRs written against TPOCC 
software or CCRs written against a TPOCC 
application but implemented as a generic 
TPOCC capability. 

The second configuration baseline documents 
the as built TPOCC release. This release 
product baseline consists of the software 
release, design documentation, the TPOCC 
implementation guide, generic user's guide 
sections, test procedures, data, and results. 

The TPOCC Detailed Design Specification 
describes the current design of each generic 
TPOCC subsystem and includes a summary of 
each subsystems functions, a subsystem 
architecture diagram, high level descriptions of 
each task, unit prologs, a calling hierarchy 
within each task, network interface 

specifications, file definitions, and data 
structure specifications. 

The TPOCC Implementation Guide is the 
programmers manual for using and maintaining 
TPOCC generic software subsystem. It 
includes a description of the hndamental 
UNIX concepts that are used in building a 
TPOCC application system, a description of 
the fbnctions available in the TPOCC software 
library, and a description of how to build and 
use each generic TPOCC subsystem. 

The generic user's guide sections describe 
operational aspects of the TPOCC reusable 
software which are incorporated into the 
system user's guides of each TPOCC mission. 
Also the TPOCC Display Page User's Guide is 
provided which describes the methods of 
creating display pages with each release. 

5.2 Software Support Policy 

The TPOCC approach used in - software 
support is similar to that of many operating 
system vendors. The development team makes 
each release of reusable software available to 
application development teams for 
incorporation into their deliverable. If an 
application group elects not to incorporate the 
new TPOCC release then software support 
from the TPOCC development team will not 
be guaranteed. Any reusable software changes 
made by the application teams without 
following the CRB standard procedures for 
configuration control will nullifL TPOCC's 
support agreement with that application. 

New capabilities are scheduled in TPOCC 
releases based on mission need dates, with an 
average of two software releases a year. 
Frequently the TPOCC development team is 
over booked with new capabilities and 
something has to give. Based on priority and 
the required expertise, some ICCRs get 



delegated to application development teams. 
ICCRs that can wait get deferred. An 
applications implementation of a generic 
capability is initially delivered as part of its 
mission specific software and then folded into 
the TPOCC release at a latter time. Larger 
subsystems such as the NASCOM interface, 
packet processing, or Network Control Center 
(NCC) Interface has been implemented with 
TPOCC and mission support staff 

New TPOCC releases are tested in a mission 
independent testbed environment and then 
made available to mission development teams 
for integration with mission specific software. 
A test cycle is completed when an independent 
acceptance test team tests the complete 
application system delivery. Problems 
identified in the applicatidn may, after analysis, 
be found to reside in either the application 
software or in TPOCC. The CRB reporting 
mechanism makes generic problems known to 
all applications. 

Changes to generic TPOCC get initiated as an 
Internal CCR on TPOCC reusable software 
itself or as a CCR written against the missions 
requirements document and presented to the 
Configuration Control Board. Generic TPOCC 
ICCRs are reviewed by both the generic 
TPOCC project and the application groups for 
technical feasibility, cost, and schedule impact. 
Having the user's who initiate the requirements 
attend the CRB has been an important part of 
the success enjoyed thus far. 

6. TECHNOLOGY INFUSION 

New technology advances are incorporated 
into the TPOCC architecture by: integrating 
newlupgraded COTS products, integrating 
new ground system toolslcomponents 
developed by NASA organizations external to 
the MOD, and enhancing TPOCC software. 
An institutional prototyping and technical 

evaluation group looks at various products 
from each area for it's applicability to the 
TPOCC architecture based on mission 
requirements and industry trends. As members 
of the TPOCC Working Group, users and 
mission development teams provide signifcant 
input into the prototyping and technical 
evaluation activities. New systems for trend 
analysis, s/c subsystem monitoring, and s/c 
visualizing have been integrated in TPOCC's 
loosely coupled architecture. The TPOCC 
User Interface continues to be enhanced by 
taking advantage of new MOTIF GUI 
capabilities. 

The workstation era has accelerated the 
obsolesce of computer systems. A 
characteristic of the mainframe & 
minicomputer era was to replace systems every 
five years which effectively reduced any 
reusable s o b a r e  base to zero due to software 
dependencies on the hardware, TPOCC 
software has transitioned between two 
generations of FEP computers and ports to 
Sun, HP, IBM, and VAX workstations. 

7. CONCLUSION 

Averaging 75% of a missions control center 
deliverable, TPOCC software has reduced cost 
and shortened the control center development 
life cycle. Established standards both in 
industry and spac.ecraft development have 
increased the reuse factor to well over 90%. A 
successfbl process for evolving the TPOCC 
software with new capabilities and new 
technology is in place. As projects "Re- 
Engineer" the development life cycle by relying 
more on the TPOCC software maturity 
schedules will continue to be shortened and 
cost reduced. 
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ABSTRACT 

The Multimission Ground Data System 
( M G D S )  at NASA's Jet Propulsion 
Laboratory has brought improvements and 
new technologies to mission operations. It 
was designed as a generic data system to 
meet the needs of multiple missions and 
avoid re-inventing capabilities for each new 
mission and thus reduce costs. It is based on 
adaptable tools that can be customized to 
support different missions and operations 
scenarios. The MGDS is based on a 
distributed clientlserver architecture, with 
powerful Unix workstations, incorporating 
standards and open system architectures. The 
distributed architecture allows remote 
operations and user science data exchange, 
while also providing capabilities for 
centralized ground system monitor and 
control. The MGDS has proved its 
capabilities in supporting multiple large-class 
missions simultaneously, including the 
Voyager, Galileo, Magellan, Ulysses, and 
Mars Observer missions. 

The Operations Engineering Lab (OEL) at 
JPL has been leading Customer Adaptation 
Training (CAT) teams for adapting and 
customizing MGDS for the various 
operations and engineering teams. These 
CAT teams have typically consisted of only a 
few engineers who are familiar with 
operations and with the MGDS software and 
architecture. Our experience has provided a 
unique opportunity to work directly with the 
spacecraft and instrument operations teams 
and understand their requirements and how 

the MGDS can be adapted and customized to 
minimize their operations costs. As part of 
this work, we have developed workstation 
configurations, automation tools, and 
integrated user interfaces at minimal cost that 
have significantly improved productivity. We 
have also proved that these customized data 
systems are most successful if they are 
focused on the people and the tasks they 
perform and if they are based upon user 
confidence in the development team resulting 
from daily interactions. 

This paper will describe lessons learned in 
adapting JPL's MGDS to fly the Voyager, 
Galileo, and Mars Observer missions. We 
will explain how powerful, existing ground 
data systems can be adapted and packaged in 
a cost effective way for operations of small 
and large planetary missions. We will also 
describe how the MGDS was adapted to 
support operations within the Galileo 
Spacecraft Testbed. The Galileo testbed 
provided a unique opportunity to adapt 
MGDS to support command and control 
operations for a small autonomous operations 
team of a handful of engineers flying the 
Galileo Spacecraft flight system model. 

INTRODUCTION 

The Multimission Ground Data System 
( M G D  S )  at NASA's Jet Propulsion 
Laboratory has brought improvements and 
new technologies to mission operations. The 
development of a generic data system to meet 
the needs of multiple missions was intended 



to avoid re-inventing capabilities for each 
new mission and thus reduce costs. The 
traditional mainframe-based data systems of 
the past were expensive to modify and their 
proprietary architectures did not facilitate 
incorporation of new technologies. The 
MGDS is based on a distributed clientlserver 
architecture, with powerful UNIX 
workstations, incorporating standards and 
open system architectures. 

The MGDS system provides a mature, 
relatively stable set of software for real-time 
command and control operations and for off- 
line engineering analysis. The system is 
based on a table-driven approach with simple 
user-oriented languages for specifying 
processing and display functions that allows 
the addition of new missions without 
extensive reprogramming. The standard 
Sun/HP/UNIX end-user workstations are 
part of a distributed operations system that 
places a powerful, flexible, and extensible set 
of operational capabilities at an analyst's 
fingertips. When properly configured, these 
workstations greatly increase the efficiency of 
spacecraft operations. 

ADAPTABLE SYSTEMS 

The Multimission Operations System Office's 
(MOSO) understanding of the MGDS design 
was that multimission capabilities would be 
delivered to allow the users to customize, 
adapt, and tailor the system for their 
individual use. MOSO was responsible for 
developing, installing, and maintaining the 
multimission hardware and software for the 
operations teams, but customizing its 
multimission software was up to the project. 
However, the system has become so 
powerful with over 1.5 million lines of code 
that its 'configurability' and 'extensibility' 
can potentially overwhelm users rather than 
benefit them. The MGDS user guides 
currently stand over one foot high on end. In 
addition, the users don't often refer to the 
user's guides because they don't want to 
know how to use a tool, they want to know 
how to accomplish their operations task 
within the MGDS environment. 

The MGDS Workstation Training Group had 
been frustrated for several years trying to 

train users on workstations which bore little 
resemblance to the configuration the users 
would find in their operations environment. 
Often, there was no standard project 
configuration in the end-user environment 
and users were on their own to transform 
their blank screens into a mission operations 
system. Each user worked individually and 
project-specific files needed for telemetry 
processing and display were passed in an ad- 
hoc manner among team members. However, 
how well a system is tailored for end users is 
often the most important factor in determining 
the degree of system operability and 
efficiency improvements that come from new 
technologies. 

It has become clear that the MGDS system 
and its documentation cannot simply be 
delivered to a project for them to adapt far 
their needs. Adapting the MGDS software 
has become a complex task with a high 
learning curve. This makes adaptation an 
expensive task for individual projects, 
especially since operators within the same 
project will have different needs and 
interfaces with the system. The adaptation of 
MGDS for a power subsystem engineer may 
benefit more from knowing how a power 
subsystem engineer on another project 
customized the multimission system rather 
than how an instrument engineer on the same 
project would do it. Thus, the learning curve 
can be made cost-effective if it can be re- 
applied to several projects, with an adaptation 
team supporting multiple missions 
simultaneously. As an additional benefit, a 
multimission adaptation team will bring 
knowledge and improvement ideas to bear on 
future development and customization of 
MGDS for new projects. 

OPERATIONS ENGINEERING LAB 

Automation and advanced user interfaces can 
help reduce costs only if they are focused on 
the people and the tasks they perform. New 
technologies may only bring minimal cost 
savings if the new system functions much 
like the old one. This often happens since the 
users who write the requirements aren't 
always familiar with the capabilities of new 
technologies and simply use their existing 



system as a model. For example, the JPL 
mission controllers asked for a scrolling 
screen that displayed telemetry values 
representing the latest value of the spacecraft 
clock. This was the way the old system 
allowed them to determine whether there 
were any data outages. The developers gave 
them their scrolling display and operators 
continued to stare at these displays watching 
for outages. An important opportunity was 
lost to automate this process and improve the 
efficiency of operations. 

To solve these types of communications 
problems, the Operations Engineering Lab 
(OEL) was created four years ago to merge 
operations and development activities for the 
Space Flight Operations Section. The OEL 
builds scheduling, command, control, and 
analysis software and currently delivers over 
500,000 lines of code. The development 
philosophy is characterized by iterative 
development with active participation of the 
end-users. Our approach has been successful 
because we involve users and trainers 
throughout development, focus on 
automating essential, time-consuming 
operations tasks, and get implementations in 
the hands of users early. We also have 
operators work in the OEL and developers 
work in operations in order to maintain close 
contact with our users and understand the 
problems that need to be solved. By working 
closely with users, we have learned how to 
use new technology to change the way they 
do business, not just automate the old way of 
doing business. For example, we have built a 
smart alarm tool to automatically perform the 
data outage task described earlier and 
improved mission controller efficiency by 
over 30%. 

CUSTOMER ADAPTATION TEAM (CAT) 

At the request of the trainers and project 
teams, the OEL developers began to work 
closely with mission controllers and 
spacecraft engineers to adapt and configure 
the workstation and MGDS software to meet 
the individual user needs. The project 
configurations were then transferred to the 
trainer workstations to allow more 
meaningful training. This adaptation task, 
started as a grass-roots effort, has evolved 

into a more formal Customer Adaptation 
Team (CAT). A small team of OEL 
developers and operators have supported the 
adaptation of MGDS for the Voyager, Mars 
Observer, and Galileo Spacecraft and 
Instrument Operations Teams. The OEL CAT 
provides direct project support in developing 
workstation configurations, customized 
processing and display tables, automation 
and analysis tools, and a common user 
interface for the project. 

The workstation configuration and user 
interface is designed to provide an integrated 
system view from which a project team can 
operate a mission. The approach was to 
provide the flexibility for both advanced and 
novice operators to run the system to meet 
their individual needs without their having to 
know how to integrate across multiple tools 
and interfaces. We knew that different 
operators would use the system in unique 
ways. For example, 24-hour mission 
controllers want a system that is oriented to 
an analyst monitoring real-time data, 
working interactively at their workstation. On 
the other hand, the spacecraft engineers 
seldom need to view real-time data. They 
typically want hard copy plots and tabular 
printouts of telemetry parameters available 
overnight. 

When the CAT team first started customizing 
the ground system for the spacecraft team, it 
became obvious that the system design forced 
the user to learn many tools and software 
interfaces to perform their analysis task. For 
example, to plot telemetry data, they had to 
use database query tools to retrieve their 
telemetry files, process the data through the 
telemetry processing software, export a 
processed telemetry parameter file and import 
it into a graphical plotting tool, set the axis 
correctly, and print the hard copy plot. The 
operator needed a single, integrated user 
interface that minimized operator interaction 
with the workstation and allowed each 
subsystem engineer to automate their analysis 
tasks. 

The CAT team built a non-real-time telemetry 
toolkit and user interface that integrated the 
existing generic tools in the MGDS. The 
interface design was based on providing 



graphical and command-line interfaces that 
freed the users from knowing the intricacies 
of querying, retrieving, accessing, and 
processing telemetry parameters and 
eliminated the need to know the intermediate 
file interfaces across various tools. With one 
simple command line, a user can ask to plot a 
telemetry parameter for a given time period 
without any knowledge of the tools needed to 
perform that task. Command line interfaces 
are especially important for users who prefer 
to have their processing done off-line. 
Graphical interfaces are provided for users 
who prefer interactive tools. The spacecraft 
engineers would set up overnight queries that 
would produce plots automatically for their 
review when they arrived each morning. The 
cost to implement this system was minimal 
since it was built on top of existing 
multimission capabilities. The interface was 
built using a GUI-building tool 
(OELSHELL) and a powerful scripting 
language (PERL) developed at JPL. There 
are no licensing costs and no compilation of 
C code is required for the graphical or 
command line interfaces. 

A new MGDS subsystem was designed by 
the OEL to deliver these types of end-user 
tools and interface shells. It provides tools to 
fill in the gaps in missing capabilities that are 
discovered after MGDS is delivered, 
including project-specific adaptations and 
unique processing requirements. As a result, 
it is a subsystem that is continually evolving 
and has grown to be one of the largest 
MGDS subsystems. 

This effort has been very successful because 
the CAT team works in the operator's own 
environment, configuring the workstations 
on their desks, building scripts to automate 
their tasks, and .designing interfaces to 
integrate and organize the many software 
tools. In addition, OEL developers do not 
have the significant learning curve facing 
analysts getting familiar with the use of 
workstations, Unix, and MGDS software. 
We also provide hot-line and on-site support 
services for end-users, emphasizing quick 
response time in order to meet the real-time 
operations needs. Our multimission 
experiences mean the lessons learned from 
one project will be transferred to benefit 

another. Also, if we find a missing capability 
in the system, we know who to contact to 
modifj existing software or we will build and 
deliver a new MGDS capability ourselves. 

LESSONS LEARNED 

We have learned many lessons in adapting 
and customizing the MGDS system for end- 
users. The coordination between the OEL, 
the mission operations engineers, training 
personnel, and system administrators greatly 
improved system operability for the users. 
The following are some lessons learned in 
our adaptation activities. 

Distributed systems are essential to provide 
the flexibility needed for incorporating new 
technologies and capabilities required for 
missions of the future. Compared to the 
mainframe-based centralized systems of the 
past, the distributed nature of modern 
systems require a more disciplined approach 
to configuration procedures to ensure 
consistency among all system nodes. End- 
users have control of their own workstations 
and can easily modify processing and display 
parameters. However, this flexibility can 
cause traditionally-structured organizations to 
adopt strong, centralized configuration 
management tools and procedures to prevent 
any potential problems. Often this leads to 
software deliveries that are monolithic, 
irreversible installations with too much 
bureaucratic overhead involved in making 
even small changes. The software delivery 
process needs to be amenable to simple 
improvements and fixes in non-critical 
software. Configuration control of end-user 
tables, scripts, configuration files, and simple 
tools for specific project use need to be . 

handled separately from the core system. It 
must be flexible and be controlled by the 
operations teams. 

The MGDS design recognizes that every user 
has a unique need and the system should 
allow for individual customization of tools. 
However, there was a lack of management 
understanding of the need to staff a CAT 
team for the extensive work required to 
customize a distributed system for users. 
Initially, there was no official follow-on 
support after a system was delivered to 



operations and hence MGDS operability was 
rated poor by users. After the CAT team 
work began, the users' perception of 
operability was dramatically improved even 
though the core system was unchanged. We 
are viewed by projects as the group that 
makes the MGDS system work for users. 
There are big payoffs in providing project- 
specific customization, tools, and interfaces, 
supplemented with on-site support. 
Distributed systems require extensive 
customization to meet the specific needs of 
users and this should not be left to the device 
of each individual user or project. 

been shown in improving system operability 
and reducing cost in operations for individual 
projects. 
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Once a system is customized and automated 
for the end user, the usage of the system can 
significantly increase. For example, because 
we had made the off-line telemetry query and 
analysis process so easy, a much greater 
number of operators than originally estimated 
began to use the system extensively. This 
created serious network loading and disk 
storage problems. 

Automation must be focused on changing the 
way we fly spacecraft, not just automating 
the old way of doing business. The greatest 
cost reductions can be realized if more 
attention is paid to the operators and the tasks 
they perform in order to eliminate tedious, 
labor-intensive processes and to assist in 
improving the reliability of critical tasks. 

The users also want training geared to their 
work in the operations environment. The 
trainers need to know how the users might 
actually use the system in operations. In 
addition to providing standardized 
configurations on training and on project 
operations workstations, the CAT team 
developed specialized follow-on training 
classes focused on the project-specific 
configuration and use of MGDS capabilities. 

CONCLUSION 

JPL's Multimission Ground Data System has 
provided a powerful, adaptable and 
extensible set of operational capabilities at an 
analyst's fingertips. With more emphasis on 
a Multimission Customer Adaptation Team 
providing integrated systems with customized 
configurations and ,interfaces, success has 
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ABSTRACT further customized and extended by using the 
The control monitor unit ( C m )  uses CMU kernel programming interface (KPI) and 
configurable software technology for real-time C. 
mission command and control, telemetry 
processing, simulation, data acquisition, data CMU technology can operate on UNX-based 
archiving, and ground operations automation. notebook computers, desktop computers, single- 
The base technology is currently planned for the board VME computers, symmetric 
following control and monitor systems: portable multiprocessor systems, aid distributed systems 
Space Station checkout system; ecological life using real-time shared memory networks, 
support system; Space Station logistics carrier ethernet, or FDDI-based networks. Fault tolerant 
sy&n and the ground system of the Delta configurations are possible with minor software 
Clipper (SX-2) in the Single-Stage Rocket enhancements. Configuring CMU system-level 
Technology program. software is similar to configuring operating 

systems by editing text files. Multiple 
The CMU makes extensive use of commercial 
technology to increase capability and reduce 
development and life-cycle costs. The concepts 
and technology are being developed by 
McDonnell Douglas Space and Defense Systems 
for the Real-Time Systems Laboratory at NASA's 
Kennedy Space Center under the Payload Ground 
Operations Contract. A second function of the 
Real-Time Systems Laboratory is development 
and utilization of advanced software development 
practices. 

INTRODUCTION 
The control monitor unit (CMU) automates a 
wide variety of ground operations at moderate 
cost utilizing standard software components and 
appropriate hardware. Users can further 
automate and customize the CMU through 
programming languages such as C, UNIX shell 
scripts, defining measurement triggered logic, 
defining derived measurements, and creating 
custom graphical displays. The system can be 

configurations are defined for a multipurpose 
system or a single configuration for a special 
purpose system. 

CMU software technology is being developed on 
Digital Equipment's Alpha AXP computers 
running OSF/1 that conforms to IEEE POSIX 
standard and real-time application programming 
interfaces 1003.1 and 1003.4. The OSF11 user 
interface supports the X/Motif standard. 
Application-specific displays are created with 
SL-GMS, an X windoys-based graphical display 
editor that provides dyriamic real-time graphics 
driven by measurement values. Mission and test 
data definitions are stared in an Oracle database 
that supports red-.time additions and 
modifications of meastirement definitions. 

All data is archived and may be retrieved and 
analyzed in real-time uiing DADiSP, a graphical 
spreadsheet for scientific data analysis. All 
operation and user guide information is 



maintained in an integrated on-line 
documentation system with graphics and 
hypertext facilities provided by the Interleaf 
Worldview environment. 

Performance testing of CMU shows that 
configurations supporting 10,000 to several 
million measurements per second (mps) are 
practical. A two processor DEC Alpha AXP 
21001500 has benchmarked at 170,000 mps. 
Data acquisition interfaces planned include MIL- 
STD-1553B, PCM telemetry, IEEE-488, analog, 
discrete, and serial 110. 

SYSTEM CONFIGURATIONS 
A CMU system may be configured in a variety 
of ways. Two main types of configurations are 
off-line and real-time. The off-line 
configurations are ' standard office-based 
computers that can define a database, simulate 
data acquisition, retrieve, display, and analyze 
data and print it. Simulated data acquisition 
substitutes for actual hardware data acquisition to 
provide an environment for developing custom 
software without utilizing actual end-item 
hardware. An off-line configuration is a DEC 
Alpha AXP notebook or desktop workstation, as 
shown in Figure 1. 
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Software Component 
Component / 

NotebookIDesktop 
Computer 

Real-time configurations support data 
acquisition, end-item commands, and data 
processing. These configurations may be as 
small as a single-board computer or portable or 
desktop computers supporting only a few 
telemetry or MIL-STD- 1553B interfaces. Larger 
configurations with symmetric multiprocessors 
and large archive storage devices are configured 
for handling significant amounts of data for 
extended periods of time from multiple data 
acquisition interfaces. Commercial equipment is 
used to configure fault-tolerant systems. An 
embedded system using single-board computer 
technology is another possible configuration, as 
shown in Figure 2. For large systems where data 
input and output must be physically distributed, 
the CMU is configured with ethernet, FDDI, or 
shared memory networks, as shown in Figure 3. 
Other configurations currently being developed 
include portable and mobile weather-proof 
systems for field use. System configuration is 
accomplished by modifying one or more ASCII 
files. Changes to the hardware configuration 
does not require corresponding software changes. 
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Figure 1. Off-line Configuration Figure 2. Embedded Configuration 
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SOFTWARE CONFIGURATION 
The CMU software architecture has four main 
elements: the kernel, utilities, kernel 
programming interface (KPI), and channels as 
shown in Figure 4. The kernel contains most of 
the common system-independent functions, 
while utility software components are more 
system-specific. The kernel is composed of 
several UNIX processes. Utilities are generally a 

single UNIX process. Hardware utilities are 
unique hardware data acquisition interfaces; user 
interface utilities provide common and custom 
graphical displays; and data processing utilities 
interface to external systems and custom 
processing functions. The KPI is a high-level 
interface for developing utilities that 
communicate with the kernel. All 
communication between the kernel and utilities 

1 External 1 

Data Processing Utilities r\ 

Utilities {q 

Figure 4. Software Architecture 



occur through channels. The four CMU used in static environments where changes in 
architectural elements combine to provide measurements are rare omits the database system 
software functional, architectural, and and uses a simple ASCII table for storing 
performance configuration capability. 
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Figure 5. Distributed Kernel 

FUNCTIONAL CONFIGURATION 
Functional configuration incorporates only the 
required functionality, conserving system 
resources and reducing complexity. A system is 
composed of only the kernel and utility 
components needed to accomplish a specific 
task. A system that requires frequent changes in 
use and measurement definitions is configured to 
include a commercial relational database system 
such as Oracle, whereas an embedded system 

measurement definitions. An off-line 
configuration for data analysis such as a 
notebook computer could omit the commercial 
database and eliminate the memory and storage 
requirements. A system used only for monitor 
and display would not require the CMU archival, 
retrieval, command, and control components. 

ARCHITECTURAL CONFIGURATION 
Channels are the primary mechanism for 
supporting a wide range of hardware and 
software architectures. Channels provide three 
key benefits: (1) hardware configurations do not 
affect the software, (2) a single portable software 
application programming interface is used for all 
channel types, and (3) data transfers have very 
little operating system or application overhead. 

Each channel is a connection between two or 
more software components. A configuration file 
is used during system startup to configure 
channels for a specific hardware implementation. 
Current channel implementations completed or 
planned are: shared virtual memory, VME bus 
physical memory, and shared memory 
networkslreflective memory. Channel support 
for TCPIIP networks is a simple extension. 
Kernel components communicate among 
themselves via channels. Figure 5 illustrates 
kernel components distributed across two 
separate computers. 

Channels follow the UNIX 
open/closelread/write/ioctl model. Functions 
included are: CClose(), CCntl(), Chit(), 
COpen(), CRead(), Wrapup(), and CWrite(). 
Benchmarks of a channel configured for shared 
memory exceeded 2 million mps transfer rates, 
which would normally consume 120 MBIsecond, 
or about 75% of a 160 MBIsecond system bus 
bandwidth. Channels have been ported from a 
32-bit UNIX System V-based operating system 
to DEC's 64-bit OSFII with minor modifications. 



PERFORMANCE CONFIGURATION are time stamped to the nearest microsecond. 
A primary design philosophy of CMU software Nominal automated control delays are on the 
is support for single processor and order of a millisecond. Specialized 
multiprocessor computers. ~ u l t i ~ l e  computers 
are combined for higher performance levels. 
Kernel and utility software components are 
configured to provide the required performance 
by taking advantage of additional CPUs. Figure 
6 shows actual measured data processing rates 
for four different CPU configurations and 
projections for two additional configurations. 
These configurations use commercial symmetric 
multiprocessor (SMP) computers. Performance 
increases of 70% and 100% have been 
benchmarked for two different CMU software 
configurations. These increases occur when 
utilizing a second CPU on a DEC Alpha AXP 
21001500 system. Two 400 MHz 21001500 
computers with four CPUs each connected by 
shared memory networks alone would support 
almost 1.4 million mps of data processing. 
Higher rate systems are configured by using 
additional SMP and single-board computers 
linked by shared memory networks and 110 
buses. 
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configurations using multiple single-board 
computers in addition to the host computer can 
support automated control delays in the tens and 
hundreds of microseconds. 

REUSABILITY 
The CMU promotes reuse in several ways. 
Portable software based on POSIX application 
programming interfaces supports code reuse. 
The kernel/utility/channel software architecture 
provides the ability to configure widely varying 
systems from a single set of software. 
Reconfigurability allows reuse of CMU software 
at the component level. 

In addition to software reuse, CMU is defining 
reuse techniques for all products created during 
development. This would allow custom high- 
performance real-time systems to be developed 
quickly and reliably at low cost. Reusability has 
been extended to modular testing software 
developed and maintained with the production 
software for all levels of testing. Methods for " 
reuse of requirements, requirements traceability, 
and on-line user documentation are also being 
developed and implemented. Analysis and 
design models from Cadre Teamwork/Ensemble 
CASE tools are structured to promote maximum 
reusability across systems. Hardware design 
and documentation follow this same reuse 
philosophy. 

o 200 400 600 800 SOFTWARE DEVELOPMENT 
Measurements/sec (1,000s) An evolutionary life-cycle is being used to 

Figure 6. Data Processing Rates rapidly improve products and processes in 
* Actual Measured Rates support of McDonnell Douglas' and NASA's 

TQM initiatives. Process-based methods such as 

Archival and retrieval rates are scaled to match 
system requirements by combinations of 
magnetic, optical, and tape devices. RAID 
arrays of storage devices are used to achieve the 
required storage capacity and data rates. All data 

the Software Engineering Institute's (SEI) 
Capability Maturity Model have been used over 
the past two years for software process 
improvement. With development cycles being 
reduced to four months between requirements 
and final verification testing, the opportunity for 



process analysis and improvement is much 
greater than that of a conventional two or three- 
year development cycle of a large real-time 
system. As with financial investments, the 
compounding interest effect is already producing 
significant benefits in cost and quality in CMU 
software development. Early evaluation by users 
has already resulted in several improvements 
over the original requirements. These 
improvements can be incorporated with little or 
no impact on cost and schedule since they were 
identified early in development. 

Development techniques incorporated include 
formal inspections of requirements, system 
designs, detail designs, code, test plans, test 
code, and user documentation. Other practices 
implemented are process and product metrics, 
nearly 100% path coverage during software 
unit/component testing, 100% automated testing 
from unit through system verification, and 
extensive use of CASE tools. The first two alpha 
releases of CMU software, AO.l and A0.3, have 
had a delivered defect density of 0.06 defects per 
1,000 source lines of code (KSLOC). This is 
compared to industry results [SEI, 19931 in 
Figure 7. 

Best p0.0, Example 

Industry 
Best 0.20 

CMU A0.3 

0.00 0.05 0.10 0.15 0.20 0.25 

Defect Density (DefectsKSLOC) 

Figure 7. Delivered Defect Density 

Only light operational usage via demonstrations 
and evaluation by the developers and users has 
been experienced since this is pre-delivery 
software. The current software is operational 
two years before its first delivery date, so 
significant random use and testing naturally 
occurs during development. This provides 
further opportunity for defect removal before 
final delivery to the customer. 

Testing was found to remove 3% of all defects 
detected while inspections removed 97%. On a 
per defect basis, inspections are 40 times more 
effective than testing although the testing effort 
is significantly higher than the inspection effort. 
Inspections and testing combined for a total 
defect removal efficiency of 99.87%. 

Figure 8 shows the detected and remaining 
defect densities during each phase of software 
release A0.3. At the conclusion of code 
inspections, the remaining defect density was 
1.53. The remaining defects were removed 
during component and integration testing, 
resulting in a delivered defect density of 0.06. 
The total potential defect density was 49.9. The 
detected defect severity during inspection phases 
averaged 4, or trivial. Average defect severity 
during testing phases was 3, or minor. Only 2% 
of all defects detected were of severity 1 or 2, 
critical or major defects. 

Net project software development productivity 
improved 60% compared to initial releases of 
earlier projects and is much greater than 
published for similar projects [Jones, 199 11. 
Software size is estimated using feature points 
and bottom-up detailed estimates. Software 
product quantity average within 10% of the 
estimates. Software development schedule 
compliance has improved in the first two releases 
from 14% to 6% without using overtime. Release 
A0.3 slipped one week during a six month 
development schedule. 



Remaining 

Operations 

Verification Test 
L 

Integration Test 3 
Component Test 

Unit Test 

unit ~mp.  I 
Detail Design 

System Design 

Requirements , , .  , 1 , , , , , , , , , , , , , , , ,  

Defect Density (defects/KSLOC) 

Figure 8. Development Defect Densities 

CONCLUSIONS Acknowledgments 
Configurable software and hardware technology 'I+he author would like to thank the CMU team 

for demanding ground control and monitor members for their invaluabIe contributions: ~eZKUlhe 
systems has been demonsmted The technology Baker, Rick Bad, Sam Coniglio, Jim Gain% Ray Ho, 

is reusable across small and Iarge systems. Ho Pham, Lawrence Robinson, Bill Snoddy, and 

Evolutionary development combined with Maria Thomas. 
continuous process improvement is an effective 
approach for developing real-time systems 
within budget and schedule constraints. 
Comprehensive inspection and testing contribute 
to world-class quality levels for software 
development. 

REFERENCES 

Jones, Capers (1991). Applied Software 
Measurement. New York, NY: McGraw Hill, Inc. 

Gilb,Thomas (1988). Frinciples of Software 
Engineering Management. New York, NY: Addison- 
Wesley. 

Software Engineering Institute (SEI) - Camegie 
Mellon University (1993). 1993 Software 
Engineering Symposium Conference Notes. 
Pittsburgh, PA: Camegie MelIon University. 



3. Standards 

A New Communication Protocol Family for a Distributed 
Spacecraft Control System 

Andrea Baldi, Marco Pace 
Standardizing the Information Architecture for Spacecraft 
Operations 

C. R. Easton 
A Standard Satellite Control Reference Model 

Constance Golden 
Standard Protocol Stack for Mission Control 

Adrian J. Hooke 
The Space Communications Protocol Standards Program 

Alan Jeffries, Adrian J. Hooke 
The ESA Standard for Telemetry & Telecommand Packet 
Utilisation P.U.S. 

J.-F. Kaufeler 
Packet Utilisation Definitions for the ESA XMM Mission 

H. R. Nye 
Use of Data Description Languages in the Interchange of Data 

M. PignBde, B. Real-Planells, S .  R. Smith 

'i 
Cross Support Overview and Operations Concept for Future 
Space Missions 

William Stallkngs, Jean-Francois Kaufeler 
The CCSDS Return All Frames Space Link Extension Service 

Hans Uhrig, John Pietras, Michael Stoloff 

Proposal for Implementation of CCSDS Standards for Use With 
Spacecraft EngineeringlHousekeeping Data 

Dave Welch 

Page 1185 
1187-1195E--; f 

* Presented in  Poster Session 





3 s v s s g  
A New Communication Protocol Family for a Distributed P-? 

Spacecraft Control System 

Andrea Baldi, ESAIESOCIFCSD 

Marco Pace, Vitrociset Space Division 

Abstract sion mechanism based on a sequence number- 
ing scheme. Such a scheme allows to have 

In this paper we describe the 'Oncepts cost-effective performances compared to the 
behind and architecture of a communication traditional protocols, because reaansmission is 
P~~~~~~~ which was designed to triggered by applications which explicitly 
the communication requirements of ESOC's need reliability. This flexibility enables appli- 
new distributed 'pacecraft 'ystern cations with different profiles to take advantage 
SCOS 11. of the available protocols, so that the best rate 

A distributed 'pacecraft between speed and reliability can be achieved 
needs a data delivery subsystem to be used for case by case. 
telemetry (TLM) distribution, telecommand 
(TLC) dispatch and inter-application commu- 
nication, characterised by the following prop- 
erties: reliability, so that any operational 
workstation is guaranteed to receive the data it 
needs to accomplish its role; efficiency, so that 
the telemetry distribution, even for missions 
with high telemetry rates, does not cause a deg- 
radation of the overall control system perform- 
ance; scalability, so that the network is not the 
bottleneck both in terms of bandwidth and 
reconfiguration; flexibility, so that it can be effi- 
ciently used in many different situations. 

The new protocol family which satisfies the 
above requirements is built on top of widely 
used communication protocols (UDP and 
TCP), provides reliable point-to-point and 
broadcast communication (UDP+) and is 
implemented in C++. 

Reliability is achieved using a retransmis- 

Andrea Baldi (abaldi@esoc.bitnet) works within the Flight Con- 
trol Systems Department at the European Space Operations 
Centre (ESOC), Robert Bosch Strasse 5, D-64293 Darmstadt, 
Germany. Marco Pace (mpace@esoc.bitnet) works for Vitrociset 
Space Division, Via Salaria 1027, 1-00138 Rome, Italy. The work 

Introduction and Context 
SCOS 11 is a generic mission control sys- 

tem, providing a collection of buildings blocks 
upon which a custom control system can be 
implemented with moderate effort (ref. [I]). 
Basic services are provided by the Distributed 
Access Service layer (DAS) responsible for 
distribution, local caching, and retrieval of 
mission information (e.g. TLM and TLC) over 
the network. An Application layer (APP) pro- 
vides basic building blocks for implementing 
mission applications. 

A SCOS II system is distributed and is com- 
posed by several Unix workstations connected 
on a local area network. Each workstation or 
node has a role with associated communication 
requirements determined by the mission con- 
figuration. The role of a node and consequently 
its , communication requirements are deter- 
mined by the applications running on it. The 
following classification is useful to understand 
the different roles a node might play: 

sewer: a node that provides services, usu- 
described in this article was carried out at ESOC under a con- 
tract with the European Space Agency. 

ally data to be consumed by clients. 
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replica: a node that provides services, like a IPC. TLC are dispatched using the IPC to a 
server, but is only available when the pri- central node for uplink. 
mary server is down. 
client: a node that makes use of the services 
provided by servers or replicas, usually data 
to be consumed. 

Servers, replicas and clients can be classified as 
Reliable; in case of a server or replica Reliable 
means that the node supports reliable delivery 
of data; in case of a client it means that it 
requires reliable delivery of data. 

A workstation may play more than one role 
at the same time (e.g. server and client, replica 
and client), therefore the communication 
requirements may change over time. Commu- 
nication and information distribution is 
achieved using the services provided by the 
Inter Process Communication layer (PC) 
which is part of the DAS. Figure-2 A Typical SCOS II Configuration 

Ground Station 
Database Server 

The IPC services are used by the DAS when 
communication is required, but also by the In a such context, where applications have 

APP layer directly as shown in Figure-1 . different communication requirements, classi- 
cal protocols like UDP and TCP are not able to 

Figure-1 SCOSll Software Layering 

The IPC layer has an important role because 
it supports the bulk of the information 
exchange among the different system compo- 
nents. 

A typical SCOS 11 configuration (See Fig- 
ure-2) will be composed by a number of serv- 
ers, clients and replica nodes. The number of 
nodes may change dynamically according to 
the mission phase and configuration, to contin- 
gency conditions, and to the number of interac- 

cope efficiently with all the possible situations. 
The IPC tries to fill in the gap existing between 
UDP, a fast but not reliable protocol, and TCP, 
a reliable but not eficient protocol, defining 
the UDP+ protocol. 

The protocol family available to SCOS 11 
users extends the IP family and provides: 
1. a reliable broadcast service (UDP+), with 

performance not too far from UDP. 
2. an integrated environment where applica- 

tions with different communication require- 
ments can coexist without imposing 
overhead to each other. 

3. the possibility to select the protocol that best 
fits the application's communication 
requirements. 

4. compatibility with the already existing IP 
protocols. 

5. support for fast local communication 
(FIFO). 

tive users connected to the system. Requirements 
TLM data is received at a central node and 

distributed to all the nodes by means of the As introduced before, the IPC layer has to 
cops with many different situations and it is 
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clear that no unique protocol can be designed 
to fulfil all the application requirements sirnul- 
taneously. A protocol family in fact best satis- 
fies multiple and sometimes conflicting needs. 
The following considerations describe the 
trade-offs made in order to satisfy as many 
requirements as possible. 

Communication Schemes 
Allowing different communication schemes 

to coexist in an integrated environment is fun- 
damental for achieving flexibility so that appli- 
cations can use different approaches to data 
distribution such as point-to-point and broad- 
cast. 

The IPC layer supports all these schemes 
providing a single unified abstraction called 
Channel available for any supported protocol. 
A Channel can be seen as an endpoint for com- 
munication which an application can use to 
send or receive data. 

Protocol Scalability 
Scalability is another key requirement and 

the IPC layer fully scales with respect to the 
communication data volume by means of the 
broadcast communication schema. Moreover it 
tries to avoid situations where the unreliability 
of the used IP services, which triggers packet 
retransmission requests, might cause a network 
congestion. 

The retransmission algorithm already tries 
to optimize the policy of lost packets retrans- 
mission using the most appropriate communi- 
cation scheme; broadcast is used for instance in 
the case it is detected that a lost packet is 
requested by several applications. The algo- 
rithm is tunable and it is driven by application 
Hints and information piggy-backed into 
retransmission requests. 

Hints are used to instruct a server about the 
application reliability requirements. They can 
be used to avoid or force retransmission of data 
case by case as well as determine the number 
of attempts the IPC layer carries out before giv- 
ing up the retransmission. 

Protocol Reliability and Speed 
The reliability of the protocol together with 

the speed necessary to cope with a high TLM 
delivery rate is a primary issue for SCOS I1 
applications. Reliability and speed are tightly 
related and an effort to meet both the require- 
ments is made. 

Within the IP family, TCP is a fully reliable 
protocol where the speed is inversely propor- 
tional to the network load, while UDP is a fast 
one with a reliability inversely proportional to 
the network load. 

UDP+ stays in between, is highly tunable 
and tries to fill in the gap existing between TCP 
and UDP (See Figure-3). 

Figure-3 Speed vs Reliability Diagram 

T G ~ ~ ~ ~  

Transparent Reliable Data Delivery 
Giving the user the responsibility of retrans- 

mitting or receiving data lost due to a network 
problem is not acceptable for client applica- 
tions. The recovery of lost data is managed 
automatically by the IPC, without forcing the . 

application to use any recovery policy. 

a 
4 

Asynchronous Communication 

I 

When applications are data driven an asyn- 
chronous communication mechanism is very 
useful. 

The P C  layer provides the concept of a 
Notijj Channel: a channel marked as Notijj 
does not require the attention of the applica- 
tion; the application only needs to define the 
handler to be called on data arrivals. 

The P C  automatically gives control to the 

SPEED 
MAX 



application handler when data is received on 
the Channel. 

Client - Server Model 
The client-server model is a fundamental 

assumption of the SCOS 11 system, and the P C  
layer supports this paradigm. Servers and cli- 
ents can synchronize using IPC services 
according to any convention whose definition 
is left to the application. 

Data Q p e  and Size 

It is not possible to foresee in advance the 
size of data to be carried by the IPC and even 
the type of data. 

The IPC uses a fragmentation algorithm to 
split a user block of data in many small frag- 
ments and to rebuild it at destination upon 
reception of the complete set of fragments. If 
some fragments are lost due to a network prob- 
lems, the P C  is able to rebuild the original 
block requesting only the missing fragments. 

Data Compression and Encryption 
The P C  layer provides hooks for data com- 

pression and encryption to support external 
data distribution. Once the application has pro- 
vided the algorithm, the responsibility to do 
compression-decompression and encryption- 
decryption is left to the IPC layer, before any 
send and receive operation. 

Dynamic Routing 

The applications operating in a SCOS I1 
system will be clients, sewers and replicas, 
communicating using the different available 
schemes. Therefore, a traditional static service 
location mechanism is not flexible enough to 
deal with dynamic relocation of services. 
SCOS I1 uses a network routing system which 
allows such a management scheme, and the 
IPC layer defines virtual services to access 
such facilities when required. 

Applications have the freedom to resolve 
logical service names using the routing system 
or to use directly the physical IP address when 
they initialise a Channel. 

Extensibility and Portability 

The IPC layer is designed to be easily exten- 
sible should the need for the implementation of 
other protocols arise in the future. The extensi- 
bility is made easy by its Object Oriented 
approach, which allows the specialisation of 
any of its classes. This is not limited to IP- 
based classes, but any other protocol can be 
easily integrated into the IPC hierarchy. 

Portability issues are addressed basing the 
P C  software implementation on consolidated 
standards like TCPIUDP on the protocol side 
and POSIX, Unix System V Release 4 for the 
system interface. 

Conceptual Protocol Layering 
The conceptual protocol layering is one of 

the first issues addressed during the analysis 
phase. The Unix environment offers the IP 
family (ref. [4] and ref. [5]) as a baseline upon 
which broadcast protocols can be imple- 
mented. In this scenario two alternatives are 
possible: either to implement the reliable 
broadcast directly on top of IP or to use both 
UDP and IP, redefining some of their services. 
This latter is considered a good compromise 
between implementation cost and duration. 
Figure4 shows the conceptual protocol layer- 
ing, and the role of the IPC in giving the appli- 
cation writers an homogeneous interface. 

Figure4 Conceptual Protocol Layering 
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Many papers address the problem of defin- 
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ing and implementing a reliable broadcast pro- 
tocol, and the possible solutions are based 
either on acknowledge techniques or retrans- 
mission mechanisms (ref. [3]). 

Acknowledge based protocols require an 
extra packet to be sent over the network to 
acknowledge the reception of any packet (or 
range of packets). As the acknowledge is 
received by the originator the packet is consid- 
ered delivered. TCPIIP uses these techniques to 
achieve the full reliability of the protocol. 

Protocols based on retransmission (ref. [2]) 
assign a unique sequential number to any trans- 
mitted packet so that it can be requested again 
when a gap is detected by the client side of the 
protocol. 

When broadcast needs to be supported an 
acknowledge based protocol has high over- 
head, because the network traffic due to the 
acknowledge packets grows proportionally 
with the number of clients. 

Moreover, clients need to register them- 
selves with the broadcast protocol to make the 
acknowledge algorithm aware of the number of 
messages it should get back, before assuming 
that a packet is successfully delivered. 

Both the approaches have advantages and 
disadvantages: 

speed: a retransmission based protocol is on 
average faster, because it does not require 
any acknowledge overhead. 
reliability: a retransmission based protocol 
might not be fully reliable depending on the 
algorithm used for the generation of the 
sequence number. 
scalability: in an environment where the 
number of clients changes dynamically and 
cannot be foreseen completely in advance 
performance must be stable over the time. 
Scalability with an acknowledge based pro- 
tocol is more penalised. 
support for broadcast: it will be the basic 
interface for applications which don't know 
in advance how many clients are on the net- 
work at a certain time. Broadcast can in 
practise be supported by both protocol 
types, (ref. [3]) but in an acknowledge based 

protocol the design and implementation are 
more complex. The reason is that a sender 
should know at any time how many clients 
are currently receiving its packets, and han- 
dle the packet acknowledge consistently. 

Since it was required to provide a tunable 
range of values, both for speed and reliability, 
we selected a retransmission based mechanism, 
which is much more flexible, allowing fine tun- 
ing of both the parameters. Had we selected an 
acknowledge based mechanism, we would 
have had a fixed value for the reliability with 
the speed bound to the network load. 

Moreover the retransmission approach 
offers a solution which fully supports the 
broadcast, making the implementation simple 
enough to be layered on top of existing proto- 
cols with a consequent saving in development 
costs and duration. 

Protocol Behaviour 
The description of the protocol operations 

which follows assumes for simplicity the case 
of one server and one client, but it may be gen- 
eralised to the case of multiple servers and cli- 
ents. The server will be responsible for sending 
data, the client will be responsible for receiving 
data. 

The server keeps sent packets in an internal 
history bufer so that it can satisfy a retransmis- 
sion request from its client. It assigns sequence 
numbers so that a client can identify any prob- 
lems due to the delivery. 

The client part of the protocol uses an inter- 
nal client bufSer to store packets which cannot 
be yet delivered to the application layer, when 
a delivery problem is detected. 

Under normal operation the server broad- 
casts a packet and the protocol stores the 
packet in the history buffer. When the server 
receives a retransmission request it accesses its 
history buffer, looks for the requested packets 
and transmits them again. Once a while the his- 
tory buffer is purged to remove packets which 
will not be required any more, taking care to 
avoid the potential risk of removing still 
requestable packets. 



To keep this risk at a minimum a piggy- 
backed acknowledgement of the already 
received packets is used in the retransmission 
requests. It is important to note that for broad- 
cast communication the piggy-backed informa- 
tion provides just an indication and there is no 
guarantee that a packet will not be requested in 
the future. 

Under normal operation, when a packet is 
received the client protocol verifies that its 
sequence number is correct and then it delivers 
it to the application. The following anomalous 
situations are recognised and handled by the 
client side of the protocol: 

loss ofpackets: when a gap in the sequence 
is detected the retransmission of the missing 
packets is requested. In the meantime out of 
order packets can be received; they are dis- 
carded or stored in the client buffer accord- 
ing to their sequence number. 
duplication of packets: duplicated packet 
are always discarded. 
delay in packet delivery: if a delayed packet 
is received before the retransmitted one, it is 
returned immediately to the application, 
otherwise it is discarded. 

Protocol Family Design 
This section provides the description of the 

architecture of the IPC layer. The architecture 
described is a simplified one showing the main 
classes relevant to the problem domain. Some 
implementation classes have been omitted for 
the sake of simplicity and clarity. 

The description uses a Rumbaugh Object 
Diagram (ref. [6])  where classes have been 
grouped into 3 subjects (Data Handling, Trans- 
port Mechanism and Statistics) according to 
the responsibilities they fulfil in the problem 
domain, as shown in Figure-5. 

Data Handling Subject 
Data handling groups together the classes 

dealing with the SCOS II transfer unit (STU). 
They implement respectively the header and 
the data part of an STU, the fragmentation and 
reassembly of STUs and the storage of STUs 
for the client and server side of the reliable pro- 
tocol. 

The StuHeader class specifies the informa- 
tion needed by the IPC layer to perform the 
transport of the packets on the network, the 
sequence number used by the UDP+ protocol, 

Figure-5 IPC Object Oriented Model 
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the fragmentation information and client hints. 
Services for getting and setting the value of the 
header fields are used by the IPC internally, but 
can also be used by applications to manipulate 
fields containing application-defined values. 
Those fields allow the STU to be tagged as 
belonging to a specified category. 

The StuData class contains the application 
data, of whatever type. Such data are appended 
to the header and sent over the network when a 
send operation is performed. 

The fragmentation layer (Frags2Stu and 
Stu2Frags) takes care of the splitting of large 
packets into smaller ones and of their reassem- 
bly at the destination. In this way the P C  layer 
is able to support the transmission of packets of 
virtually any size. 

The HistoryBufSer and ClientBufSer classes 
implement data structures used by the UDP+ 
transport classes for the storage and retrieval of 
STUs. In particular, ClientBufSer is used to 
temporary store packets which cannot be deliv- 
ered to the application because the retransmis- 
sion of a lost packet is in progress; the 
HistoryBufSer is used to store transmitted pack- 
ets which might be requested when a packet is 
lost. 

Transport Mechanism Subject 
Transport mechanism groups together the 

classes which deal with data delivery for the 
IPC layer protocol family. With the exception 
of the Fifo class introduced for fast local com- 
munication all the classes support remote com- 
munication. 

The Channel class defines attributes and 
services which are common to all the sup- 
ported communication schemes in the IP 
domain. Channel specializes into two branches 
respectively responsible for a TCP-based and 
an UDP-based communication. New IP based 
protocols can be derived from the Channel 
class specialising it at the most suitable level of 
the hierarchy. 

Inheriting from the TcpChan class, two spe- 
cific classes are defined to model the client and 
server side of a connection based communica- 

tion. Both of them provide services for sending 
and receiving STUs and byte streams: the Tcp- 
Client adds connection establishment capabil- 
ity and the TcpServer adds connection 
acceptance capability. 

Also inheriting from Channel, the class 
UdpChan provides services for receiving and 
sending STUs, both with point-to-point and 
broadcast connectionless transmission. 

Classes UdpPlusServChan and UdpPlusCli- 
entChan, reliable components of the P C  layer, 
are derived from the UdpChan class. In princi- 
ple, they could have been grouped together in a 
single UdpPlusChan class because they pro- 
vide the same interface as UdpChan. The rea- 
sons for such separation are: 

typically applications behave either as cli- 
ents or as servers, not as both. 
the resulting implementation is less com- 
plex and easier to maintain. 
the resulting application overhead is 
reduced because applications will only 
include the minimal amount of data struc- 
tures instantiated by the relevant classes, 
being such data structures different in the 
two cases. 

Class Fifo, at last, supports fast local communi- 
cation of STUs through a UNIX FIFO, main- 
taining a similar interface to the one provided 
by the remote communication classes. 

Statistics Subject 
Statistics groups the classes responsible for 

gathering information on volume of data sent 
and received on any UDP based channel. They 
have been introduced to tune and debug the 
internals of the IPC layer, since they provide a 
complete snapshot of the behaviour of the pro- 
tocol including all the information on lost and 
retransmitted STUs. 

Moreover, the Statistics classes have been 
used to implement a performance monitoring 
tool which reports on data and packet rate. Sta- 
tistics are also available to an application for 
any possible usage it envisages. 



Building Applications Conclusion 
The IPC layer offers application writers a 

flexible solution for the exchange of data. 
Applications can in fact exchange STUs using 
the protocol that best fits their communication 
requirements. Moreover applications using one 
of the UDP based protocols can select the relia- 
bility level as they like. It is important to notice 
that applications can be configured to use any 
of the available UDP based protocols, and still 
be able to communicate with each other. 

Data transmitted by an application using a 
reliable server channel (UdpPlusSewChan) 
can be received by an application using a non 
reliable channel (UdpChan) with the only dif- 
ference that lost packets will not be detected 
and consequently not requested. 

Reliable clients (UdpPlusClientChan) can 
also receive data sent over a non reliable chan- 
nel, but in this case the protocol does not per- 
form any check on the sequence number, and 
just delivers the data it receives to the applica- 
tion. 

The following list shows some of the SCOS 
I1 applications or system components together 
with their communication requirements (see 
also Figure-2): 

TLM Receiver and Broadcaster: it receives 
the telemetry from the ground station and 
broadcasts it to the system. It is a reliable 
server and satisfies retransmission requests 
coming from reliable clients. 
History File Archiver (HFA): it archives the 
received telemetry and retrieves it on appli- 
cation demand. As a consequence that all 
the telemetry coming from the ground sta- 
tion need to be archived, the HFA is a relia- 
ble client. At the same time, it satisfies 
retrieval requests on the network, so it is a 
reliable server. 
TLM Cache: it receives real time telemetry 
and makes it locally available to the applica- 
tions. It can be configured either as a relia- 
ble or a non reliable client according to the 
role the node has in the system. 

The use of the IPC layer for more than one 
year in the SCOSII system has shown that the 
initial objectives have been achieved: 
* the retransmission approach together with 

the almost full reliability of the network 
hardware make the degree of reliability high 
enough to guarantee that any node receives 
the data it needs to accomplish its role. 
UDP+ efficiency compares favourably with 
UDP and definitely well with TCP. The 
overhead introduced by the retransmission 
mechanism is a fraction of the benefits 
obtained, especially when considering relia- 
ble broadcast. The results collected using 
the IPC statistics are summarized in Figure- 
6 where the data rates achieved are shown. 
Such figures may vary, however, depending 
on the dynamic tuning the applications per- 
form on the IPC using hints. 

Figure-6 Protocols Statistics for a Typical 
Mission Configuration Consisting 
of 20 Nodes. 

the protocol scalability guarantees that add- 
ing new client workstations does not require 
any reconfiguration and does not impose 
unacceptable network overhead. 
the protocol family has shown to be flexible 
enough to satisfy different communication 
requirements for a wide range of applica- 
tions that need to exchange the same data 



using different protocols. This is achieved 
by the IPC layer through the introduction of 
a common exchange data unit (the STU) 
together with a continuous range of per- 
formances both for point-to-point and 
broadcast communication. It is important to 
note that SCOS I1 applications can commu- 
nicate even with already existing software 
not supporting a STU based data exchange. 

The IPC layer is now complete and stable in 
the interfaces, although its implementation 
evolves as a result of a continuous life cycle 
which includes analysis of statistics, tuning and 
test. 

New generations of Unix already support 
multiprocessor hardware and the time to make 
the IPC layer fully reentrant is mature as multi- 
threaded SCOS 11 applications are under devel- 
opment. To have a full coverage of commonly 
used protocols the IPC layer will be augmented 
in the future to support non IP based protocols, 
like Unix datagram, streams and X25. 
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ABSTRACT 
This paper presents an information architecture 
developed for the Space Station Freedom as a 
model from which to derive an information 
architecture standard for advanced spacecraft. 
The information architecture provides a way of 
making information available across a program, 
and among programs, assuming that the 
information will be in a variety of local formats, 
structures and representations. It provides a 
format that can be expanded to define all of the 
physical and logical klements that make up a 
program, add definitions as required, and import 
definitions from prior programs to a new 
program. It allows a spacecraft and its control 
center to work in different representations and 
formats, with the potential for sbpporting existing 
spacecraft from new control centers. It supports a 
common view of data and control of all 
spacecraft, regardless of their own internal view 
of their data and control characteristics, and of 
their communications standards, protocols and 
formats. This information architecture is central 
to standardizing spacecraft operations, in that it 
provides a basis for information transfer and 
translation, such that diverse spacecraft can be 
monitored and controlled in a common way. 
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INTRODUCTION - * 
The operation and control of spacecraft requires 
data exchange between the spacecraft and its 
control center. Ground control centers must also 
communicate with payload specialists and 
technical support teams in off-site locations. With 
an ever increasing number of spacecraft, and with 
limited resources, multi-program control centers 
are likely to become common. It will be essential 
to standardize many aspects of the spacecraft and 
their control centers. An integrated information 
architecture standard will support this goal by 
providing a common view and understanding of 
data regardless of source. 

The IEEE Standard Dictionary of Electrical and 
Electronic Terms defines data as, "any 
representation such as characters or analog 
quantities to which meaning may be assigned." 
An information architecture provides a formal 
mechanism for assigning meaning, as well as 
defining data in its various representations. 

The purpose of an information architecture is to 
provide a standardized way of identifying, 
formatting, transporting and storing program 
data. Ideally, an information architecture would 



be in place at the beginning of a program, and 
would encompass all program data in a 
compatible format. But the reality of spacecraft 
programs is that such an approach does not 
happen. Designers develop data in various 
formats in many different repositories. A 
program approved information architecture is not 
available at the start if the program. Even if it 
were, it might not be compatible with all of the 
Computer Aided Design (CAD) and Computer 
Aided Software Engineering (CASE) tools to be 
used. In addition, all of the program team would 
have to be trained in the use of the architecture 
from the beginning of the program. Finally, there 
is a need for new, multi-program control centers 
to be backward compatible with existing 
spacecraft designs and data. 

From the above, it becomes clear that an 
information architecture must take into account the 
practical realities of spacecraft programs. It must 
permit local representations of data in local, user 
defined data bases and spreadsheets. It must 
support data exchange among local, user defined 
representations. It must support data collection, 
integration, and validation throughout the design, 
development, test and evaluation (DDT&E) 
phases of the program. It must support the 
promotion of DDT&E data to the operations phase 
of the program, its integration with operations 
data and the eventual post-mission evaluation of 
the program. It must support the operation of 
multiple, dissimilar spacecraft from the same 
control center, including the retrofit for operation 
of existing spacecraft missions. 

DESIRED FEATURES 
A standardized information architecture would 
provide for a basic set features which standardize 
information formats, access to and exchange of 
data. Among these features are the following: 

A common way of naming data - Data names 
control the access to, transport of and utilization 
of the data. No single naming standard will 
suffice for all of these purposes. The standard 
must define a common way of naming data which 
allows for various short form names for various 
purposes. Ideally, all of the short form names 
would be related to the standard by definitive 
rules and program specific data. All such names 
need to be defined in a program dictionary. The 
common way of naming data provides the user 
with a way of locating the data in the dictionary. 

A common wav of accessi- - Data will tend 
to reside in user defined repositories. Access may 
be locally controlled, and access procedures are 
also user defined. To make data readily available, 
the information architecture needs to include a 
directory indicating where data are located and 
how to access the data. Ideally, the architecture 
should support access in the requester's local 
representation. The dictionaryfdirectory would 
then also support conversion of local syntax, 
format and storage between local representations. 

A common way of transportin? data between 
different local remesentations - Data accessible 
over a network may be imported into other data 
bases on demand or automatically imported via 
linkages. When the local representations differ, 
the import routines must be customized to make 
the necessary conversions. With many different 
local representations, conversion can become 
unmanageable. The information architecture 
should define a common transport representation 
which allows each local representation to map to 
and from a single, common representation for 
data exchange. 
A common way o f viewi n g sormatioq - The 
architecture must support user oriented views of 
information. These views are normally organized 
around the spacecraft design, subsystem function 
and mission operations. The same data may be 
important to all such views in differing contexts. 

A common wav of understanding: information - 
Human users and computers need to understand 
the data. The understanding usually comes from 
defined relationships. A human operator sees a 
number displayed next to an icon labeled, "Pump 
1 Inlet Temperature", and understands the data. 
Behind the display, the computer "understands" 
that a particular data item is the inlet temperatrire 
attribute of Pump 1. Thus, humans and 
computers have different needs for data and ways 
of understanding data. Both must be supported 
by the information architecture. 

latin? information A common wav of re - The 
same data may be used in a variety of contexts. 
For example, system architects are interested in 
device connectivity to assure failure tolerance. 
Hardware designers are interested in the same 
information for wiring harness design. Software 
developers need connectivity to relate VO ports to 
commands and data. Test personnel need to 
verify connectivity and 110 function. The 



information architecture must support these 
various relations of information to context. 

TOP LEVEL REQUIREMENTS 
The information architecture must meet a set of 
top level requirements in order to be able to 
support a wide variety of spacecraft applications. 
Some of these requirements are stated below as 
mission goals. 

Be robust enough to describe complex macecraft 
and suacecraft constellations - There is a trend 
toward designing simple spacecraft for limited 
missions and using multiple spacecraft for more 
complex missions. While this trend may make it 
seem that the information architecture need only 
deal with simple spacecraft, the architecture 
should not preclude more complex spacecraft 
which may be developed in the future. 

Support a common view of all spacecraft and 
pavloads - The goal is to provide an operator 
control interface such that all spacecraft can be 
viewed in the same way. Note that this does not 
mean that all spacecraft views are identical. 
Rather, it means that the logical approach to 
accessing and working with spacecraft capabilities 
and functions is the same for all spacecraft. 
Spacecraft will not be designed with the all of the 
same capabilities and functions. Those which are 
the same may be implemented differently. As a 
result, the information architecture will take on a 
portion of the responsibility for providing the 
common view of the spacecraft and its operation. 

Be transaction oriented to support remote 
operation and access - Spacecraft control is not 
limited to working with data local to the control 
center. It involves message exchange with the 
spacecraft, with payload specialists at various 
locations, and consultation with spacecraft 
designers and other specialists. It may involve 
access to remote data bases. The transaction 
orientation separates the action of the operator (or 
software) to access data from the Drocess of 
accessing the data. 

1 

Provide global definitions of information and 
relationship5 - There are two aspects to this 
requirement. First, a program will often develop 
differing definitions of data to serve the design, 
test and operations phases of the program. 
Second, data and definitions will usually vary 
from one program to another. The global 
definitions serve to integrate data throughout the 

phases of a program and to make common data 
definitions available to new programs. Thus, 
once "Control Moment Gyro", "Greenwich Mean 
Time" and "CCSDS Packet" have been defined, 
those definitions can integrate data across a 
program. The definitions are portable from one 
program to another. 

~ u o r t  a vanetv of local remesentations and 
formats - People develop local representations to 
meet local needs. Some of the data in local 
repositories need to be made available to outside 
access. Most of the data can be readily converted 
and transferred. But then the system has multiple 
copies of the same data, with the attendant 
configuration management problems. The 
information architecture needs to support the 
exchange of data among local representations. 
This will not solve the configuration management 
problems, but will make them more tractable. 

Provide for definitions to be transferred with data 
- Many information exchanges will be made with 
the definitions of the information already known. 
As systems become more open, there will be an 
increasing need to transfer the definitions of the 
data with the data. This will be especially 
important in the sharing of payload and spacecraft 
data with outside investigators. One major 
limitation on the ability of investigators to access 
such data is that the definitions are not available 
and may be permanently lost. The information 
architecture should support standardized 
definitions and the ability to store and transfer the 
definitions with the data. 

Be well grounded in proven standards - 
Grounding in existing standards is desirable for 
two reasons. First, it is far more efficient to use 
or modify an existing standard than it is to 
develop a new standard. Second, the 
development and consensus building that have 
gone into forming an existing standard will make 
it easier to form a consensus on an extension to a 
new application of the standard. 

Have the uotential to suugort growth and 
~ e c h n o l o ~ g r a d e  - There are three reasons for 
supporting growth and technology upgrade. 
First, individual programs experience growth and 
upgrade. Upgrade may come from on orbit 
refurbishment, or from new generations of the 
same satellite. Second, a control center may be 
tasked to host controls for an entirely new 
spacecraft or constellation. Third, both the types 
of satellite technologies used and the technologies 



for hosting the information, itself, will change 
over time. Since the information architecture is to 
grow from one program to another, it must 
support the technology upgrade and growth. 

OVERVIEW OF THE STANDARD 
The Space Station Freedom Program developed 
an information architecture standard having the 
features and meeting the requirements noted 
above. Subsequently, the Instrument Society of 
America incorporated this standard into its Field 
Bus standard. It is being considered as a draft 
international standard for field buses. The same 
standard is also under review by the Spacecraft 
Control Working Group of the AIAA Space- 
Based Observing Systems Committee on 
Standards as its information architecture standard. 

SSFP used the terminology, "Data and Object 
Standards" (DAOS) to describe the information 
standard. It includes standards for an integrated 
Data DictionaryDirectory, Object Definition, Data 
Modeling, and MessageData Structure Definition. 
This paper will continue to use the term "DAOS" 
to refer to the several individual standards which 
make up the information architecture standard. 

DictionaryIDirectory Standard 
DAOS uses the term "Encyclopedia" to mean an 
integrated Dictionary and Directory. The 
encyclopedia provides for a single source for 
definitions, contextual references and access 
information. 

The dictionary part of the encyclopedia is based 
on the Information Resource Dictionary System 
(IRDS), (ANSI X3.138 and FIPS PUB 156). It 
defines classes of objects (or families of 
spacecraft devices) as determined by the common 
characteristics of real devices. 

The directory portion of the encyclopedia is based 
on the IS01 IEC Directory Standard (IS0 9594). 
ISOmEC provides rules for naming objects and 
protocols for querying remote directories and 
receiving replies. In the DAOS encyclopedia 
standard, the directory provides information used 
to locate object instances. This includes object 
names, descriptions, and object specific attributes 
(such as location). 

organizing information intermixes the dictionary 
and directory within object descriptions. 

The encyclopedia is comprised of four layers, as 
shown in Figure 1 and recommended by IRDS. 
The top layer defines the schema for the second 
layer, and is not to be altered by the users. 

Defines components in 
Layer 2 4 

Encyclopedia Schema Definition V 
I 

/ Provides ibject instance/ 
device information A 

( DictionaryJDirectory Databases I/ 

Contains "real world" / obje tsidevices / 
"Real World" ObjectslDevices C/ 

Figure 1 Encyclopedia layering 
This top layer specifies such how objects are to be 
defined, how relationships are to be specified, 
what data modeling is assumed, etc. Thus, the 
top layer defines all of the tools to be used for 
defining object classes/device families. 

The top layer can be expanded as needs for new 
definitions arise. Existing definitions will not 
normally be modified. If modifications are 
required, they will normally be included by 
creating new definitions. The definitions are not 
to be modified or extended by the users. 

The second layer provides the object class/device 
family definitions. While there are differences 
between "object class" and "device family", there 
are no differences which are important to this 
paper. An encyclopedia may be developed using 
either or both. 

The directory part of Layer 2 contains rules for The encyclopedia is fully integrated, in that all naming data, syntax rules for storing and information is organized about objects or devices, 
their classes and their relationships. This way of transporting data, and attribute or data types for 

common definitions of data. 



Object classes will be discussed below. An object 
instance or device exhibits the characteristics 
specified for the object class or device family to 
which it belongs. The information about the 
object instances or devices is carried in layer three 
of the encyclopedia. 

Layer four holds the actual objects or devices. As 
such, it is not directly a part of the encyclopedia, 
but is a part of the model for the encyclopedia. 
Layer 3 of the encyclopedia does contain the 
description of these real world devices. 

From the above, it can be seen that each layer of 
the encyclopedia contains the information 
necessary to understand the successive layer. 

ObjectIDevice Model 
The standard is Object Oriented, in that all 
information is categorized as either exchanged 
between objects or describing an object. Objects 
exchange actions, responses and other message 
types. They are defined by attributes, functions, 
events and behavior. The object class structure 
standardizes information definitions. 

An object is anything that is accessible and of 
interest to a user. It may be a representation of a 
physical device, a software function, a message, 
or other. The generic model allows an object to 
be tailored to include just those portions necessary 
to describe it. 

The object model for DAOS is shown in Figure 2. 
Beginning with the upper left hand side, an object 
communicates with other objects via messages. 
(Note that devices are not necessarily constrained 
to communicate by messages.) 

Figure 2 Generic object model 
An action is a specific message type which acts as 
a command. Commands may result in responses 

such as the ability of the object to perform the 
indicated action. Other messages may be defined 
to provide more general information. 

Messages require an interface syntax to define the 
structure and content of the message. 

Attributes are data about an object. For a pump, 
the attributes might include its pressure, speed 
and temperature. Attributes might also specify the 
working fluid, capacity, manufacturer and serial 
number. In general, attributes may be variable 
data about a device, such as its present state, 
status, use, location, etc. They may also be 
invariant data about the device design or 
construction, etc. Some of the invariant data is 
the same for all devices of a class, and is carried 
as object class data. 

Objects will usually perform one or more 
functions. The functions are described as though 
the "real world" object were performing them. 

Objects may exhibit one or more behaviors. 
Behaviors may describe the way an object 
performs its functions, such as a telescope 
slewing in such a way as to avoid pointing at the 
earth or sun. They may describe the response 'tp 
detected failures. They may describe the 
characteristics of action processing and the 
conditions for action responses. 

Objects may contain sub-objects. A sub-object is 
an object which is wholly contained within or 
dedicated to another object. A coolant loop 
contains a circulation pump. The pump contains a 
bearing. The bearing has a temperature sensor. 
Each is an object, and has its own class, function 
attributes, etc. 

Objects may also interface with other objects. For 
example, software is configured with an operating 
system. It may be configured with certain 
application software. The same drive motor may 
be configured with or without a brake. 

An object may detect its own events, such as 
failures and off-nominal conditions. But it is 
more common for an object to be monitored by 
another object to prevent a possibly failed device 
from providing incorrect data about itself, 
resulting in an inappropriate failure response. 

Eqch object must have an object class which 
defines the template for the object. The object 
class identifies each attribute, describes the 
functions and behaviors, defines the syntax and 



format of messages, and identifies sub-object and 
interfacing object classes. 

Messages, attributes, actions, functions and 
behaviors all have class definitions or types. The 
type definitions allow for complex data types to 
contain other data types. Thus a quaternion is 
defined to contain a three component vector and a 
scalar, each of which may defined by units, valid 
ranges, precision, etc. 

Data Model 
The standard uses entity-relationship data 
modeling. An entity is anything someone wants 
to know something about. An entity may 
represent an object or a spacecraft device. 

Attributes describe an entity. In this context, 
attributes include everything which describes an 
entity in isolation from other entities. The 
features of an object, other than its relationships, 
are attributes in this modeling. 

Relationships describe information about an 
object as it is associated with other objects. 
Relationships include information exchanged, or 
messages, as well as many other types of 
relationships. Some of the useful relationships 
are shown in the figures that follow. 

Figure 3 shows a "contains" relationship. In the 
figure, an assembly can contain one or more 
subassemblies. Hardware trees, indentured parts 
lists, bills of materials and logistics data bases 
will use this relationship. 

I 
contains 

Figure 3 "Contains" relationship 
Figure 4 shows the "connects to" relationship. 
This relationship is used to describe such things 
as wiring harnesses and assembly sequences. 

Figure 5 shows the "communicates with" 
relationship. This relationship can be used to 
associate instrumentation with pin-outs on control 
devices. It can also show logical processor 
hierarchies and logical interfaces among software. 

I 
connects to 

Figure 4 "Connects to" relationship 

~ommunicates 
with 

I 
Figm 5 "Qmnwni* with" ~lations hip 
The similar "provides value for" relationship 
connects the source of a data value with the 
process that uses the data value. A temperature 
sensor may provide the value for the bearing 
temperature attribute of a pump device. A square 
root library routine may provide an input to a 
computation. 

Figure 6 shows the logical decomposition of a 
system. Requirements will also follow a logical 
decomposition, and may be allocated to the 
decomposition products of a system. In the 
figure, the functional decomposition is cariied out 
to a point that allows functions to be allocated to 
physical objects such as assemblies, components, 
devices, software objects, etc. 

con 

y has --I L contains 7 

I object /- 
Is 

allocated 
to 

Figure 6 Decomposition relationships 

The above examples show just a few of the 
relationships defined for spacecraft. The 
encyclopedia allows additional relationships to be 
defined as needed. The relationships may be 
defined on line by the users, as can the object 
classes, data types, and object instances. 



Procedures for configuration management have The SSFP construct for names needs a significant been defined for a sing1e Program, but have Yet to amount of work to be adapted to the more general be defined for multiple programs, usage of spacecraft control across multiple 
Data Naming 
The standard uses attribute based naming. A 
name is comprised of a verb (if the name is that of 
an action), an administrative name expression to 
identify the "owner", and a technical name 
expression to identify what is named. 

No single construct of names appears to meet all 
of a program's needs. Descriptive name forms 
with logical, hierarchical structure are preferred 
for browsing through a dictionary or directory. 
The logical structure allows a user to locate items 
in the encyclopedia without prior knowledge of 
the actual name. 

Descriptive names, by their nature, are long and 
syntactically precise. Software developers and 
data bases will not usually devote memory to 
support full descriptive names. Various aliases 
are not only required, but become the "official" 
names for a program by virtue of their usage. 

The alias names should be constructed to meet 
two conditions. First, they need to be able to be 
related to a descriptive name form. The 
descriptive name form does not need to be 
actually stored in an encyclopedia if it is derivable 
from an alias name, the encyclopedia information 
and a rules set. The encyclopedia can include 
logic to permit user browsing without having the 
descriptive name form actually present. 

The second condition for an alias name form is 
that it should be meaningful to the system users. 
An object instance name should include all of the 
parts of the attribute name, but may encode these 
parts and allow portions to be understood from 
the context. If the name is not meaningful to the 
users, it will not be used. 

The exact construction of names must also take 
into account the fact that some names are inherited 
from one program to another. This is true of 
object class names, and the associated attribute, 
action, function, and behavior names. These 
names must not contain an administrative name 
expression that limits them to a single program. 
Program specific administrative name expressions 
are proper for object instances, but may be 
understood from the context of the object. 

programs. 

Data Format, Syntax and Semantics 
The standard provides a means for defining the 
format and syntax of messages, data stores and 
data structures. Figure 7 illustrates the means for 
defining messages, using entity-relationship 
modeling. A message "contains" one or more 
fields. Each field contains a single data item. The 
data item is defined by its data type, as was 
previously described in the data model. 

t contains 

contains 

Data Item I 
fined by 

Figure 7 Message definition 
Similarly, a data base contains files, which 
contain records, which contain fields, each of 
which contains a data item which is defined by a 
data type. 

Data structures are da'ta items which contain sub- 
elements which are meaningful data items. A 16 . 
bit integer might be constructed such that 
individual bits represent the state of individual 
switches in a power control box. Each bit is a 
defined data item, and the integer may also be 
defined as a field in a message, or in processing 
to determine whether the measured switch state 
matches the currently commanded switch state. 
In this case, the integer would be defined as a data 
item with it data type definition, and the type 
definition would include that each bit is a state 
variable. In general, data structures are defined 
by their data types. The data type definitions 
include parsing rules for the structure, similar to 
those of a message. The data types for the 



individual data items in the structure are also 
defined by the data structure data type. 
The information standard provides data type 
definitions for all of the program data. The data 
type definitions are standardized across programs. 
These type definitions provide the semantics 
(meaning) of the data. Data types may be added 
as needed. 

DATA TRANSFER 
Because there is a global set of data type 
definitions, it becomes possible to automate data 
transfers among different local representations. 
Each local representation needs to map its data to 
a common transfer syntax and format. Automatic 
code generators can then be used to for export and 
import conversions. The export conversion puts 
local data into the transfer syntax and format. The 
import conversion transforms the data from the 
transfer syntax and format to the destination local 
syntax and format. Thus, each local 
representation need map only to the common 
transfer representation to make data globally 
available. 

CONCLUSIONS 
Use of an information architecture standard will 
help reduce the cost of developing and operating 
spacecraft by providing a common view of all 
information. o i s  will allow reuse of displays 
and controls and facilitate adapting control centers 
to the control of multiple spacecraft. 

The proposed information architecture allows 
different spacecraft with different views of their 
data to interface with a control center using either 
a common view of the data for all spacecraft, or 
separate views specialized to each spacecraft. 

The proposed information architecture standard 
also supports exchange of data between different 
local representations. It does this by defining a 
mapping between each individual local 
representation and a common data transfer 
representation. Only the common data transfer 
representation needs to conform to the standard. 
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Abstract - This paper describes a Satellite Control Reference Model that provides the basis for an 
approach to identify where standards would be beneficial in supporting space operations functions. The 
background and context for the development of the model and the approach are described. A process for 
using this reference model to trace top level interoperability directives to specific sets of engineering 
interface standards that must be implemented to meet these directives is discussed. Issues in developing 
a "universal" reference model are also identified. 

INTRODUCTION 

The need for a standard approach to identify where standards would be beneficial in supporting space 
operations functions has been expressed by many people in the field. 

* To show a link between the selected standard and the desired benefits of applying the standard. 
To broaden understanding and acceptance of recommended standards. 

* To permit benefits of standardization to be spread across several networks. 

This "standard approach to selecting standards", based on a functional satellite control reference model, 
should not be "benefit dependent"; that is, it should permit identification of standards needed to support 
any specific benefit such as interoperability, cost reduction, etc. Ideally this standard approach would 
apply to all space operations networks and would allow each standard to be easily tied to its supporting 
operational function and therefore the benefits could be evaluated. 

The Air Force has funded the development of such a standard approach that is based on an extension of 
the approach in Vol. 7 of the DoD Technical Architecture for Information Management (TAFIM) 
developed by the Defense Information Systems Agency (DISA). The approach is being applied to the 
Air Force Satellite Control Network (AFSCN). Representatives from other Government agencies and 
the commercial space operations community have expressed interest in extending the initial approach by 
developing a more universal reference model as its basis. Benefits from standardization in one satellite 
control network can then be evaluated for use in another network using the same functional and interface 
definitions. 

BASIS OF REFERENCE MODEL 

Satellite Control Systems can be defined as "A configuration of communications and data processing 
subsystems that collectively provide the capability to control satellites". Implicit in this definition is the 
fact that these systems are used in all phases of satellite control, including prelaunch, launch and early 
orbit checkout, on-orbit operations, and mission completion. Missions include weather forecasting, 
missile warning, navigation, and communications. Mission execution and mission data processing 
systems are not included in this definition, although the capability to perform these mission functions can 
reside on the same subsystems as the ones used for satellite control. Process control systems are an 

Loral Space & Range Systems, 1260 Crossman Ave. S80, Sunnyvale, CA. 94089-1198. 
The ideas presented in this paper were originally developed under contract with the Air Force 
Space and Missile Center/CWl. 



important subset of satellite control systems because their real-time characteristics drive many of the 
system performance requirements. Based on this definition of a satellite control system, it would be 
logical to use already accepted frameworks to tie standards to satellite control functions. In this paper the 
word "standard" refers to an engineering or product standard (physical/electrical interfaces, formats, 
protocols, etc.), not an operations standard (procedural or administrative). 

Information Systems Reference Model. 
The Defense Information Systems AgencylCenter for Information Management has derived a TAFIM 
from the NIST Application Portability Profile and the IEEE P1003.0 OSE models (begun in 1986). This 
architecture defines a target common conceptual framework or reference model for an information 
system infrastructure and the specific applications that the information system must support. It also 
subsumes the widely accepted Open Systems Interface (OSI) reference model within the network 
services and communications area. This architecture, and associated model, is not a specific system 
design. Rather, it establishes a common vocabulary and defines a set of services and interfaces common 
to information systems. DISA's Information Technology Standards Guidance (ITSG) and Adopted 
Information Technology Standards (AITS) documents describe and support this architecture. The 
associated AITS identifies standards and guidelines in terms of the architecture services and interfaces. 
The architecture serves to facilitate the development of plans that will lead to interoperability between 
mission area applications, portability across mission areas and cost reductions through the use of 
common services. 

Satellite Control Reference Model. 
Operations that are unique to satellite control need to be addressed in the Mission Area Applications 
Section of the TAFIM. Therefore specific satellite control services, such as Timing (those aspects 
unique to satellite control), Tracking and Data Relay, Telemetry Processing, Command, Resource 
Control, Contact Execution, and Management were added to those in the generic information systems 
model. Network Services were also broadened in scope to include eartNspace and spacelspace services. 
By moving the major service areas into an OSI-like reference structure, it is possible to establish a 
hierarchical "standard" framework for understanding the relationships between satellite control 
functions. Figure 1 illustrates this framework or Satellite Control Reference Model (SCRM). The 
hierarchy is based on levels of functional abstraction, from management services, down to control 
services, further down to basic computer services and finally down to network and point-to-point 
communications (layers 1 to 6). All of these unique satellite control services would operate at OSI 
Application Layer 7. Functions in layers 7b and above in the hierarchy would relate to the Mission Area 
Applications area in the TAFIM. Functions in layers 7a and below relate to information management 
systems. Note that all services are not used at each location and that these services are not dependent on. 
location nor are they necessarily automated. 

STANDARDS IDENTIFICATION APPROACH 

Since the unique satellite control services are not part of core information management systems, they 
may require standards unique to the satellite control domain that are not covered in the AITS. An 
approach, based on the SCRM, is needed to accomplish this standards identification. Of special interest 
is identification of those standards that are most appropriate to reap the benefits of interoperability. 

The approach is based on describing the functional flows between each of the satellite control service 
areas in enough detail so areas where standards would be beneficial can be easily identified and existing 
standards evaluated to see if modifications/replacements are necessary to achieve the benefit desired. To 



this end, a baseline set of functional diagrams for every satellite control service area has been developed. 
These simple functional diagrams show input, output, and the basic functions provided by each service 
area. In the future we will generalize the functional descriptions related to levels 7b and above, remove 
operational procedures inherent in the functional descriptions and move as many currently "unique" 
satellite control functions into the information management category (black background) as possible. 

Figure 1 STANDARD FRAMEWORK FOR SATELLITE CONTROL 
-Defines functions and interfaces for all services provided- 

Overview of Aporoach, 
The specific approach, which facilitates identification of the relevant standards to apply to development 
and implementation of the satellite control functions, is outlined in the following steps: 

Step 1: Describe the desired benefit of standardization for the relevant program. For each major 
satellite control service area in the SCRM, review the baseline functional diagrams to ensure they 
match the functional flow for the relevant program. If they need to be modified, do so. 
Step 2: Based on the functional diagrams, the desired benefit, and expertise about how various 
services are provided, identify areas where use of standards would be beneficial, (are needed), 
and list these areas so they are tied directly to a relevant function and service area. 
Step 3: For each of the beneficial standardization areas identified in Step 2, identify what 
standards are currently being used and which emerging standards, if any, might be applied to that 
area to achieve the desired benefit. Coordinate with other satellite control organizations for 
review and feedback, and to ensure commonality among interested groups. List these standards 
under the appropriate "standard needed" heading on the form used in Step 2. 
Step 4: From the compiled information, identify what relationships exist among the standards. 
Where multiple standards are used for the same satellite control functions, investigate the 
feasibility of joint adoption of a future common standard and devise an evolutionary path to it. 



For functions where standards are needed but none exist or are emerging, describe how such a 
standard might be developed for the benefit of all networks. 

m ~ l e  of &&cation of Ao~roach to Identify . .  in^ Standard& 
Figure 2 illustrates a functional diagram for the Contact Planning Services function. The primary inputs, 
subfunctions, and outputs are shown, along with a short description of how the services are to be 
accomplished to provide a context for understanding where standards might be appropriate. To increase 
interoperability, the input-output external interfaces are of primary interest. 

INPUT 

P - Twenty four hour schedule 

Pavload - 
- Status and contact requirements 

- 
Prepare resource schedule request for 

the seven day schedule {PAP) 
Coordinate the 24 hour schedule 
Develop Contact Support Plans for 

contacts on the 24 how schedule 

OUTPUT 

P - Resource schedule request for 
contact support (PAP) - - - - Contact Support Plans 

0escription:Contact Planning Services involves the analysis of status and requirements to determine what needs to bt. 
done for the SV. These SV needs are then expressed in a contact support plan (CSP) that results in an agenda for a 
scheduled contact with the SV. The CSP is then provided to Command services where it is executed under the control d 
Contact Execution Services. The resources needed for the contact are requested by Contact Planning Services through the 
PAP input to the seven day schedule prepared by Resource Management Services. 

Figure 2 CONTACT PLANNlNG SERVICES FUNCTIONAL DIAGRAM 

Figure 3 portrays a form used to assess where standards would be beneficial for the Contact Planning 
Services function. The form provides space for indicating what service(s) are interfaced with, the 
interfacing function, and the context (input, output, HCI) and type (Protocol/Format, 
ElectricaVMechanicaVPhysical) of that interface. In addition, there is space for indicating the areas where 
standards are needed and a column for indicating the current standard status, as defined in the lower part 
of the Figure. This assessment approach can then be used for each function within the Satellite Control 
Service areas to assure a level of consistency and completeness in the eventual results. 

Once areas of needed standards are identified, the status of any applicable standards can be more readily 
assessed. The assessment occurs for three time periods: currently, near term and long term. It is 
effective to record this assessment on the same form shown in Figure 3. For the Contact Planning 
function, it was noted that there is no standard format for requesting use of network resources by an 
external user. Standardization on an interface format would facilitate interoperability in scheduling and 
allocation of the network assets. 



SATELLITE CONTROL TECHNICAL REFERENCE MODEL 
ASSESSMENT OF STANDARDS NEEDED AND AVAILABILITY 

available within 6 months. 

FUTURE: Standard is emerging and may be subject to change but is generally headed toward 

GAP: Standard is available as temporary gap-filler. It is recommended for use only if the 
organization is willing to take a moderate investment risk because the final standard 
for the area may or may not be compatable with the gap-filler. 

VOID: No standards in the area and no known emerging one. The absence of a standard here 
may translate into significant risk for long-term planning or investment. 

UNSTABLE: Standards are emerging and rapidly evolving. 

NIA: No standard is needed in this area. This code will be reserved for areas where at first 
glance it would appear that a standard might be useful, but further analysis shows that 

Figure 3 EXAMPLE ASSESSMENT OF STANDARDS NEEDED 
AND AVAILABILITY 



FUNCTIONAL INTEROPERABILITY APPLICATION 

There have been several published definitions for "interoperability" including those in JCS Pub 1-02 and 
MIL-STB-973. According to the JCS Pub 1-02, interoperability is "The ability of systems, units or 
forces to provide services to and accept services from other systems, units or forces, and to use the 
services so exchanged to enable them to operate effectively together". While this definition provides 
overall guidance, more specific information is needed to tie high level (ORB and CON OPS) 
interoperability requirements to specific engineering and operational consequences/benefits. One 
approach is to have overall requirement documents address "how much interoperability" is needed 
between specified programs or domains. That is, to specify the "degree" of interoperability needed. 

Degrees of Intero-perability 
Figure 4 portrays the breakdown of the "Services" to be exchanged, to achieve general interoperability, 
into more specific functions as the domain of application becomes narrower. 

JCS DEFlNlTlO C3 DEFINITION 
Eng. Standards/. 
processes 

Services Exchange DO = Communication Exchange - Ground Network Comm Exchange 0 Ops. Procedures - SpaceIGround Comm Exchange 
Space Network Comm Exchange 

D l  - Command & Control PlatformIResource Control & Contact Processing 
Payload Control 

D2 Management Planning - Management & Planning analysis 

Figure 4 SPECIFIC DEFINITIONS FOR INTEROPERABILITY 

Moving from the General Domain to the C3 Domain, "Services" can be broken into Communication 
Exchange, Command & Control and Management and Planning Services. Moving further into the 
Satellite Control domain, Communication Exchange can be broken into 3 subsets, (Ground Network, 
Space/Ground and Space Network), because of the differences in their application environment. Each of 
these can be specified as a "degree of interoperability" in the satellite control operational environment. 
Command and Control Services can be broken down into Platform/Resource Control & Contact 
Processing and Payload Control for the Satellite Control Domain. Each of these can be specified as a 
degree of interoperability. The Platform/Resource Control & Contact Processing Degree of 
Interoperability was purposely constrained to routine processing functions and resolution of Level 1 and 
some Level 2 anomalies because these can be most readily automated and there is high likelihood that 
many programs will find it beneficial to be interoperable to this degree. The benefits of implementing 
this degree of interoperability are high, but are dependent on basic Ground Network Communication 
Exchange being available. Management and Planning Analysis services in the Satellite Control Domain 
include resolving Level 3 anomalies and require operators to be cross trained on mission and payload 
information. The benefits of this degree of interoperability are dependent on the "lower" degrees of 
interoperability being implemented first. Four of these degrees of Satellite Control interoperability are 
pictured in Figure 5. 



GROUND NETWORK COMMUNICATION EXCHANGE INTEROPERABILITY CONTROL 6 CONTACT PROCESSING INTEROPERABILITY 

Operations Control Oper 

SPACEIGROUND COMMUNICATION EXCHANGE INTEROPERABILITY MANAGEMENT 6 PLANNING ANALYSIS INTEROPERABILITY 

Figure 5 SATELLITE CONTROL DEGREES OF INTEROPERABILITY 

Mapping Degrees of Interoperability to Set of Standard Interfaces, 
As the degree of interoperability increases from D l  to D3, so too does the emphasis on higher levels of 
functional abstraction represented in the SCRM. As shown in Figure 6, Ground Network 
Communication Exchange Interoperability (Dl-a) is accommodated almost entirely within the lower six 
OSI layers, Platform/Resource Control and Contact Processing Interoperability (D2-a) is accommodated 
almost entirely within OSI layers 7b and 7c, while Management and Planning Analysis Interoperability 
(D3) is accommodated almost entirely within OSI layers 7d and 7e. Using this correspondence the 
SCRM can be used to determine the set of interfaces that need to be standardized to support the various 
degrees of interoperability. Determination of which specific set of standards to select for standardizing 
these interfaces can then be performed for the environment of interest. The mapping from definition of 
degree of interoperability to a specific set of standards to be applied is then complete. 

CONCLUSION 

The standard framework and approach described above is still in the process of being developed. It has 
the advantage of being based on the already established OSI and TAFIM reference architectures. 
However, the question of whether the functional interfaces can be defined in enough detail and 



generically enough to be able to produce a baseline model that su&orts all satellite control networks has 
still to be answered. .. . .. 

DEGREE OF RELATED DlSA SERVICE AREAS SET OF SPECIFIC SETS 
INTEROPERABILITY (Functions & Interfaces) INTERFACES THAT OF STANDARDS 
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PLANNING ANALYSIS INTERPROCESS 
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M INTERPRETATION 
STANDARDS 
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PROCESSING ........ ..... 
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INTEROPERABILIN 

SPACEIGROUND AND 
SPACE NETWORK 
COMMUNICATION 
EXCHANGE 
INTEROPERABILITY 

D1-a 
GROUND NETWORK 
COMMUNICATION 
EXCHANGE 
INTEROPERABILITY 

SpwdEarth Link 
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Flgure 6 MAPPING DEGREE OF INTEROPERABILITY TO SET OF STANDARD INTERFACES 

In the six months that this model has been applied to various situations, it has become apparent that some 
of the originally identified satellite control unique functions may be able to be defined as generic 
information systems functions in the future. On the other hand, some of the functions that were initially 
allocated to information systems are really process control functions and may have to use different 
standards than those selected for general information systems to meet the real-time response 
requirements needed. There are several related efforts ongoing and in each a satellite control reference 
model with standard terms and functional flows has proven to facilitate the analysis. 
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ABSTRACT 

It is proposed to create a fully "open" architectural specification for standardized space 
mission command and control. By being open, i.e., independent of any particular 
implementation, diversity and competition will be encouraged among future commercial 
suppliers of space equipment and systems. Customers of the new standard capability are 
expected to include: 

o The civil space community (e.g., NASA, NOAA, international Agencies). 
o The military space community (e.g., Air Force, Navy, intelligence). 
o The emerging commercial space community (e.g., mobile satellite service providers). 

INTRODUCTION 

In response to declining space budgets, the U.S. civil and military space communities both 
have a critical need to significantly reduce the cost of operating spacecraft, while 
simultaneously accommodating requirements for increased mission flexibility and 
capability. The emerging commercial space community has a similar need for low-cost "off 
the shelf" command and control systems that reduce the need for capital and operating 
investment. 

Standardization has emerged as a key weapon in the conflict between new demands for 
space mission complexity and increasingly limited space mission budgets. The command 
and control of space mission systems is an area that is ripe for standardization. For lack of 
standards or guidance, space mission command and control is (by and large) re-invented 
for each mission; this drives up cost because a constant cycle of system redesign results in 
customized, non-automated operations that are highly labor intensive. 

There is a pressing need to develop and emplace new standard user services that allow 
many different types of spacecraft, and their supporting ground networks, to appear 
basically harmonious from the perspective of ground controllers. With such capabilities, 
the spiral of constant redesign can be broken, automation may be deployed, and operations 
and maintenance budgets can be contained. 

The new services should: 

o exploit rapid ongoing improvements in onboard data processing, storage and autonomy 
capabilities by encouraging the spacecraft designers to present simpler, more consistent 
and more mission-independent interfaces to ground operators; 



o import off-the-shelf technologies by integrating a wide range of emerging commercial 
data processing and data communications capabilities into cohesive systems that 
support high performance space mission command and control; 

o enable the mission-independent operation of spacecraft and their supporting ground 
networks by small teams of multidisciplinary personnel whose productivity is leveraged 
by the the widespread deployment of automation; 

o be backwards-compatible with existing space systems so that a smooth transition from 
the present to the future may be observed. 

Many off-the-shelf capabilities currently exist; the primary challenge is to import these 
diverse technologies and to system engineer them into an integrated solution which satisfies 
the unique requirements of space mission operations. 

It is therefore proposed to develop and functionally specify a Space Project Mission 
Operations Control Architecture - "SUPERMOCA" - which will provide the open systems 
framework around which the integration and demonstration of multi-vendor 
implementations of the new approach may occur. 

TECHNICAL CONTEXT 

To control a remote spacecraft, the user formulates command directives, transmits them, 
monitors their execution, and takes corrective action in case of anomalous behavior. The 
spacecraft executes the command directives using various levels of onboard autonomy. 
The control center and the spacecraft exchange information via a space communications 
system that includes both ground and space/ground networks. 

Users in the control center also perform a similar set of actions to configure, monitor and 
control the remote ground data acquisition stations which are supporting the spacecraft. 
To facilitate automation and to reduce human staffing needs, the SUPERMOCA should 
promote a unified approach towards the command and control of the spacecraft and its 
supporting ground systems. 

In the terminology of Open Systems Interconnection (OSI), the SUPERMOCA resides 
within the Application layer and draws upon underlying lower layer space communications 
services. 

Figure- 1 shows the SUPERMOCA operating over a space data network containing: 

o Standardized spacelground data channels, as defined for the civil mission community 
by the Radio Frequency and Modulation standards defined by the Consultative 
Committee for Space Data Systems (CCSDS). 

o Standardized spacelground networks and data links, as defined by the CCSDS 
Recommendations for Packet Telemetry, Telecommand and Advanced Orbiting 
Systems. 

o Standardized upper layer protocols, operating efficiently in a "skinny stack" 
configuration that is currently being defined by the joint NASAIDoD "Space 
Communications Protocol Standards" (SCPS) development program. The SCPS stack 
provides fully secure and reliable file and message transfer services in support of the 
SUPERMOCA layer. 
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Figure 1. Context of Space Mission Control and Command 



ELEMENTS OF THE SUPERMOCA 

The SUPERMOCA provides an "upwards" mission control service interface to the mission 
planning systems which are used to construct the broad profile of desired mission 
activities. "Downwards" it draws upon a space communications service provided by a 
stack of underlying standard protocols. Figure 2 shows these service relationships, and 
postulates a possible internal organization of the layer. 

The potential to achieve "backwards compatibility" with existing spacecraft is fundarnentaI 
to the SUPERMOCA concept: this may be accomplished by locatihg all of the new 
SUPERMOCA architectural elements in the control center, and interfacing with the 
existing communications services that are possibly unique to that spacecraft. By 
retrofitting existing spacecraft into the SUPERMOCA, a smooth and rapid transition to the 
future is facilitated. 

As currently envisaged, the SUPERMOCA contains five elements. Three of these 
elements (the Control Interface, the Decision Support Logic and the Space Messaging 
System) form the heart of the actual process control system. The remaining two elements 
(the Data Architecture and the System Management Architecture) supply the framework 
within which the other elements operate. Because they have great significance throughout 
entire mission lifecycle, the Data Architecture and the System Management Architecture 
also frame the Mission Planning System. 

o Control Interface 

The Control Interface provides a human-oriented mechanism whereby a flight controller 
can specify and monitor the desired sequence of operations to be conducted in a remote 
system. It also provides the translation between high-level human directives and actual 
atomic-level commanded actions at the remote end. 

o Decision Support Logic 

The Decision Support Logic provides the capability whereby rules for command 
execution may be programmed into a distributed inference engine, which may be 
located wholly on the ground, wholly in space, or partitioned in varying degrees 
between the two. Commands may only be issued to end effectors in space when they 
conform to the flight rules that are programmed into the engine. Responses from end 
effectors will be compared against rule-based expectations, and the Decision Support 
Logic may take further preprogrammed command actions based on the observed 
performance. 

o Space Messaging System 

The Space Messaging System translates the machine-readable command calls from the 
user's Control Interface into standard-syntax messages which invoke the desired 
actions and responses in the remote space system. At the receiving end, generic device 
manipulations are translated back into concrete, atomic-level actions via the Control 
Interface. 





o Data Architecture 

The Data Architecture provides the mechanism whereby the precise characteristics of a 
concrete spacecraft system can be captured and described in abstract terms. It allows 
specific spacecraft devices to be described in standardized ways and for this 
information to be compiled into data dictionaries and encyclopedias. These data 
descriptions can be gathered starting at the earliest point in the project design lifecyle, 
thus supporting the progressive and seamless refinement, extension and translation of 
information from conceptual mission planning, tlirough operations, and into post 
mission evaluation. 

o System Management Architecture 

Space mission process control fundamentally boils down to a problem of meeting 
mission success and safety-related criteria. The SUPERMOCA accomplishes this 
through the allocation and control of shared onboard resources, and by managing the 
relationships which describe how individual systems interact with the operating 
environment. To achieve this, "operations envelopes" are assigned to individual users, 
granting them certain "environmental rights" to conduct their operations and consume 
an allocated share of system resources, and certain "environmental privileges" to 
perturb the overall system environment. Providing users stay within their assigned 
envelopes, they are free to operate without detailed supervision. Potentially dangerous 
activities are precluded via a combination of software controls on command execution, 
plus hardware inhibits and interlocks which preclude unsafe or undesirable operations 
from occurring unless the system is prepared for them. 

DEVICE MODEL OR OPERATIONS 

The SUPERMOCA is conceptually founded in terms of a powerful "device model" of 
space mission command and control, which is illustrated in Figure 3. Within this model, 
all of the functions of the space mission are allocated to devices. A device may be physical 
hardware, a software module which serves as a control interface for hardware, a pure 
software function, or a combination of these. Each device has a function or functions 
which it performs: a pump circulates its working fluid; a motor rotates a solar panel; a 
software module calculates the pointing vector to the sun to guide the solar panel drive 
motor. 

Devices exist at many levels; normally, low-level devices will be aggregated into higher 
level devices, such that the operator can issue high level commands to the higher level 
devices, which will themselves orchestrate the function of the low-level devices to 
accomplish a complex function. A complete spacecraft (and, for that matter, its supporting 
ground system) is thus composed of many concrete low-level "space devices" which are 
assembled into complex subsystems that are integrated into an operating mission system. 

A space device has a standardized input/output interface through which the external world 
can know about it, or can control its behavior. This interface can be accessed by sending 
commands and receiving data or status messages. Attributes describe the device: they 
include information about the current operation of the device (such as temperature, mode; 
state, etc.) and descriptors of the device itself (such as serial number, date of manufacture, 
capacity, operating limits, etc.). Attributes can also include information about the intended 
use of the device, such as its redlined operational limits. 





A device may exhibit one or more behaviors: an oven heats at a rate of 50 degrees per 
minute; software sends a particular response to an invalid command; an instrument will 
slew from one pointing direction to another without pointing at the sun. A device may 
issue messages indicating that specific events have occurred: a parameter may be out of 
limits, a function may have failed, or a hazardous condition might be noted. 

Relationships describe the context for a device. A device may be a part of a higher level 
assembly, connected to a particular data bus, communicating with another device over the 
data bus, powered by a a specific power supply, outputting a signal which becomes an 
attribute of another device, and configured with certain software to perform its functions. 

Device types are abstractions which provide a single definition for a family of related 
"virtual devices" (e.g., all valves, or all pumps, or all pointing actuators, or all voltage 
regulators, or all transponders share common features; which means that within a family, 
the same device interface exists for all of them). Therefore the general interface for a 
device type may be stored in dictionaries and encyclopedias that can be re-used and 
inheiited across multiple space missions. 

By masking the uniqueness of a particular space system from its human operator, while 
providing the tools to progressively capture and exploit knowledge across multiple 
systems, the device model for space operations will enable the widespread and progressive 
standardization of the way in which human beings interact with complex, concrete 
systems in simple, abstracted ways. In particular, adoption of the device model will inject 
the discipline of standardized system description throughout all phases of space project 
design: this provides a powerful mechanism for creating a "design to operate" philosophy 
early in the project lifecycle. From the embryonic stages of mission planning, through 
operation and post mission evaluation, a seamless flow of data capture is created. 

CONCLUSION 

It is suggested that a completely standardized mechanism for space mission control is 
within Our reach. By importing and marrying many diverse off-the-shelf technologies, 
powerful new capabilities may be emplaced that contribute significantly to reducing the 
cost of operating space systems. Since the needed capabilities will be functionally defined 
in the form of an "open" specification, the SUPERMOCA will encourage a diverse set of 
compatible implementations to be placed on-the-shelf by the private sector, for shared use 
across the entire space mission community. 
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ABSTRACT 

In the fall of 1992 NASA and the 
Department of Defense chartered a 
technical team to explore the possibility 
of developing a common set of space 
data communications standards for 
potential dual-use across the U.S. 
national space mission support 
infrastructure. The team focused on the 
data communications needs of those 
activities associated with on-line control 
of civil and military spacecraft. A two- 
pronged approach was adopted: a top- 
down s w e y  of representative civil and 
military space data communications 
requirements was conducted; and a 
bottom-up analysis of available standard 
data communications protocols was 
performed. 

A striking intersection of civil and 
military space mission requirements 
emerged, and an equally striking 
consensus on the approach towards joint 
civil and military space protocol 
development was reached. The team 
concluded that wide segments of the 
U.S. civil and military space 

nities have common needs for: 

An efficient file transfer protocol 
Various flavors of underlying data 
transport service 
An optional data protection 
mechanism to assure end-to-end 
security of message exchange 
An efficient internetworking protocol 

These recommendations led to initiating 
a program to develop a suite of protocols 

based on these findings. This paper 
describes the current status of this 

The U.S. civil and military space 
programs are in a state of rapid and 
turbulent change. Both share the 
overarching need to more rapidly 
integrate and deploy space assets, while 
satisfying expanding mission 
requirements in an era of extreme cost 
constraints. Standardization and system 
interoperability are widely agreed to be 
the cornerstones towards achieving these 
goals. Recognizing that both 
communities share the same industrial 
contractor base the joint development of 
common standards and approaches may 
be expected to reap large benefits in 
terms of this nation's overall 
effectiveness in space. 

For many years, space agencies have 
focused on solving the Physical (Layer 
1) and Data Link (Layer 2) problems of 
data transfer through special purpose 
(noisy, bandwidth constrained, very long 
time delay) space channels that connect 
ground users with robotic or piloted 
space vehicles. 

As space missions become more highly 
networked, requirements are emerging to 
provide capabilities at the Network layer 
(Layer 3) and above. Organizations such 
as the Consultative Committee for Space 
Data Systems (CCSDS) have begun to 
address these new needs. At Layer 3, 
CCSDS currently provides an "Internet 



Service" which allows the option to run 
the full stack of commercially-supported 
HSOIOSH services (Transport, Session, 
Presentation and Application) between 
space and ground. The CCSDS Internet 
service is the same as the IS0 8473 
Connectionless Network Protocol 
(CMLP). The Internet Service is paired 
with a special purpose "Path service" 
(using a low-overhead CCSDS Packet) 
which functions as a connection oriented 
network protocol. 

There is mounting opinion that neither of 
these upper layer options can meet all 
future mission requirements. Concerns 
have been voiced about the 
communications overhead and onboard 
processing resource implications of 
operating the fu1.l ISOIOSI protocol stack 
in space, particularly with respect to the 
large amount of on-line protocol 
associated with the IS0 CNLP, the time 
delay sensitivity of the early 
implementations of the IS0 Class 4 
Transport protocol, and the 
comprehensive but "heavyweight" nature 
of the IS0 Layer 617 protocols. The 
CCSDS Path Service is very limited in 
terms of addressing capability, and 
presently has no support of needed upper 
layer functions such as flow control, 
end-to-end ARQ, and file transfer. 

The strong need to provide a more robust 
and efficient set of end-to-end 

unications protocols prompted the 
initiation of the joint NASAlDoD Space 
Communications Protocol Standards 
Technical Working Group (SCPS-TWG) 
to develop more flexible upper layer 
protocol options for space missions. 

The SCPS-WG effort detedned that 
many space missions share a common 
need for an efficient and reliable data 
delivery service to transfer individual 
messages, or files of messages, from 
their source end system to their 
destination end system error-free and 
with their sequence preserved. Many 
missions will also require that these 
transfers be secure. 

Such a service should be standardized, 
easy to use and able to support a wide 
range of mission configurations. The 
protocols which implement the service 
must conserve onboard resources such as 
memory, processing power and 
(especially) co unications capacity. 
They must be capable of supporting 
rapid, reliable on-line data exchange 
during brief contact sessions through 
unique space data channels with a wide 
range of significant propagation delays. 

The development of these standud 
communication data protocols are being 
performed by the SCPS-WG in three 
phases: Exploratory Analysis (FY93), 
Standards Development (FY94/95), and 
Validation (FY95196). The Exploratory 
Analysis Phase has been completed and 
a report is available outlining the 
analysis efforts and their conclusions. 

The remainder of this paper discusses 
the scope of the SCPS-TWG program, a 
overview of the Exploratory Phase 
activities and results, a review of efforts 
to date on the Development Phase 
activities and a summary. 

SCPS-WG SCOPE 

The primary focus of the SCPS-WG is 
to examine standardization of the data 
communications systems which support 
on-line spacecraft control. It therefore 
embraces the end-to-end aspects of the 
control center processes which are 
associated with commanding and 
monitoring the spacecraft and its 
payload, and returning mission results 
via a flow of telemetry, during periods 
when the end systems in space and on 
the ground are connected and are 
exchanging data. 

Dialog between control centers and 
remote spacecraft requires frequent (and 
often two-way) interchange of &gital 
command and response messages 
through space data links. Such 
interchange must routinely cope with a 
data transmission environment that has 
unique characteristics that are not 



encountered in commercial data 
networking. 

The current efforts embrace data 
communications functions at the 
Network, Transport and File Transfer 
(3,4,7) layers. Services of existing (and 
usually different) underlying civil and 
military physical and data links layers 
were assumed. 

EXPLORATORY PHASE 

The SCPS-TWG Exploratory Phase was 
performed during the period of October 
1992 through December 1993 and 
culminated in a report on activities and 
recommendations for initiating the 
development program. The purpose of 
this phase was to assess whether there 
was a common need for data 
communications protocols between the 
civil and military space communities, 
and if there was, what were the common 
functional requirements. Additionally 
the Exploratory Phase was to assess the 
feasibility of adapting existing data 
communications protocols to meet these 
common requirements and to define a 
recommended program of development. 

The SCPS-WG employed an approach 
of simultaneous top-down and bottom- 
up analysis. The top-down activity 
involved a surveying representative, civil 
and military missions to gather a broad 
set of functional and performance 
requirements, and to pinpoint technical 
constraints intrinsic to space based 
communications which must be factored 
into the development of standards. The 
captured requirements and constraints 
were allocated to specific protocol layers 
and fed into the bottom-up activity. 

The bottom-up analysis activity involved 
evaluating the capability of existing off- 

the-shelf data communications protocols 
to perform needed space mission 
functions at each of the layers. As a 
matter of policy, IS0  protocols were the 
first choice for evaluation to maintain as 
much conformance as possible with 
GOSIP and to ensure a high degree of 
interoperability with ground-based 
systems. The selection of commercially 
supported protocols allows the space 
community to leverage the years of 
effort that went into engineering their 
development, and to avoid expensive 
and duplicative re-invention of 
capabilities. 

The missions surveyed during the 
Exploratory Phase were as follows: 

DoD 
- BMD/Brilliant Eyes 
- Global Positioning System 
- Defense Met Sat Program 

NASA 
- Space Station 
- Earth Observing System (EOS) 
- Solar Anomalous and Magneto- 

sphere Particle Explorer (SAMPEX) 
- Tropical Rainfall Measurement 

Mission (TRMM) 
- X-ray Timing Explorer ( 
- Advanced Composition Explorer 

(ACE) 
- Discovery Series 

The mission survey documented specific 
functional services by protocol layer 
(based on the ISO/OSI layered model) 
which were common between the civil 
and military projects. These services 
form the functional data c 
requirements that are being supported in 
the SCPS-TWG protocol stack 
development, and are listed below in 
Table 1. 



Table 1: Functional Hiequirements for SCPS Protocols by ISOIOSP Layer 

The bottom-up review of candidate off- 
thedielf protocols evaluated potential 
protocols by asking the following 
questions: 

Is the functionality provided by the 
protocol necessary for space use, and 
if not can the protocol be easily 

c ted functionality 
provide complete support for space 
use (i.e., is the protocol sufficient in 
its off-the-shelf state or are 
additional capabilities required)? 
Does the selected functionality 
operate efficiently and within the 
cons the space environment, 
or ar ations needed? 
Can the selected space functionality 
be achieved with minor change (i.e., 
is the protocol still commercially 
supportable after modification) or 
does it have to be discarded? 

If the initial IS0 protocol was not able to 
meet the space application needs, then 
other commercially available and 
broadly implemented protocols were 
assessed (such as those used within the 

Internet community). Only once all 
reasonable, off-the-shelf options were 
discarded, was a solution unique to space 
use considered. Results of this review 
are as follows: 

File Transfer - OSI FTAM was 
determined to be too large and couldn't 
be slimmed down through tailoring. The 
Development Phase activity is doing a 
detailed analysis comparing the Internet 
MTP and Space Station File Transfer 
protocols to determine which will form 
the basis for the SCPS-mG fie trmsfer 
protocol 

Transport - Initially the OSI TP4 
protocol was selected, but it too is larger 
than its Internet counterpart and is 
expensive to procure. Subsequently a 
combination of the Internet UDP and 
TCP protocols are being used to develop 
the SCPS-TWG transport protocol. 

Data Security - the SP3 protocol, based 
on the OSI NLSP protocol, is being 
adopted as one option to use with 
existing or soon to be completed 
systems. A skinny version of SP3 



(called SP3-prime) is being developed to 
reduce the bit overhead associated with 
SP3 as an option for fume missions. 

Network - No existing protocol provided 
the functionality required with the 
minimal bit overhead required to 
optimize use of the spacelink resources. 
Therefore a custom protocol with 
elements derived from OSI 8473 and I.P 
is being developed for space 
applications. 

The final suite of protocol services is 
depicted in Figure 1. As illustrated the 
SCPS protocol suite can be run over the 
existing CCSDS protocols used by 
NASA or the DoD SGLS protocols 
which achieves the expected 
interoperability. 

DEVELOPMENT PHASE 

The SCPS-'DVG Development Phase 
was officially begun in January, 1994 
and is planned to nm for 33 - 36 months. 
The first 18 months of this phase are 
focused on developing protocol 

specifications for broad community 
review (equivalent to CCSDS redbooks). 
The remaining 15- 18 months involve 
two or three rounds of distribution and 
comment by the US space community 
culminating in final protocol 
specifications ready for NASA and DoD 
adoption. 

During the first 18 months the 
development teams for each of the 
protocol layers are working in 
conjunction with a systems engineering 
group to develop, analyze, and validate 
the protocol specifications. 

The basic approach to this phase is 
illustrated in Figure 2. Each 
development team will employ a three 
pronged development effort consisting 
of protocol specification development, 
prototype development, and simulation 
analysis. The purpose of this approach 
is to ensure that the specifications 
developed during this phase have been 
properly assessed under the broad range 
of mission architectures represented by 
DoD and NASA missions. 

Figure 1: SCPS-TWG Exploratory Phase Recommended Suite of Protocol Services 



Figure 2: SCPS-TWG Protocol Development Approach 

Most of the analysis will be performed 
via simulation using the MIT NETSIM 
modeling tool. Each of the protocols 
will be modeled using NETSIM and then 
assessed under at least five mission 
architectures and various scenarios: 

- Single earth orbiting satellite 
communicating through relay 
satellites 

- Single earth orbiting satellite 
communicating through ground 
stations 

- Single deep space satellite 
communicating through ground 
stations 

- Multiple deep space satellites 
communicating through relay 
satellites 

- Multiple earth orbiting satellites 
communicating through ground 
stations 

Operational prototypes of the protocols 
will initially be used to benchmark the 
simulation models to ensure the models 
accurately represent actual implement- 
ations. Once analysis and design of the 
protocols is complete, the prototypes 
will be modified to represent the 
recommended protocols defined 'in the 
final specifications. they will then be 
used in a series of proof-of-concept 
demonstration tests. These demon- 

strations are planned to include the use 
of flight equivalent testbeds such as the 
GSFC AOS Testbed, "bent-pipe" testing 
using DoD and NASA on-orbit 
platforms, and the hosting of the 
protocols on a spacecraft which has 
completed its mission phase and is 
available for the evaluation of new 
technology concepts. 

The detailed schedule of activities which 
lead to the first set of protocol 
specifications available for broad 
comrmunity review in Septemkr of 1995 
is presented in figure 3. Note that at this 
time not only will draft specifications be 
available, but some level of functiondl 
prototypes and a sophisticated 
simulation capability will have also k n  
developed. 

In order to ensure cormmunay involve- 
ment in the protocol development 
efforts, the SCPS-WG holds quarterly 
"Users Forums" identified in the 
schedule as SCPS-WG -XX meetings. 
These meetings are designed to provide 
community insight into the protocol 
development and analysis activities. 
Participation from government, industry 
and commercial space ventures is 
welcomed. 
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Figure 3: SCPS Working Group Schedule 

To date initial draft specifications have FTP already completed. Additionally, 
been completed and circulated for efforts to develop models of the three 
review for the file transfer, transport and current protocols are also in 
network layer protocols. These drafts development as is the simulation 
are the first in a series of three SCPS- environment which will model the 
TWG internal drafts which will be various mission architectures and data 
developed prior to full community communications scenarios. 
review in September of 1995. Work is 
proceeding on developing initial 
prototypes for these three layers with a 
prototype file transfer protocol based on 



SUMMARY 

The S63PS-WG efforts has been highly 
successful to date in identifying common 
data communications requirements 
across U.S. civil and military space 
missions and defining a program that 
consists primarily of adapting existing 
communication protocols to meet the 
rigors and unique characteristics of space 

As one indicator of its success the 
Defense Infomation Systems Agency 
(DBSA) has designated the SCPS-WG 
activity as its lead effort for developing 
"thin stack" data communications 
protocols applicable to a wide range of 
applications, including airborne, 
shipboard and in-field communications. 

Another indicator is the recent interest in 
SCPS efforts shown by the commercial 
satellite venture called Teledesic, which 
plans to deploy a constellation of 840+ 
satellites to create a full data 
communications system equivalent to 
ground based systems on-orbit. 

At the last SCPS-TWG Users Forum, 
held in June, 1994; DoD representatives 
working on an existing experimental 
communications satellite initiated 
discussions on how to perform "bent- 
pipe" testing of the SCPS protocol. 

Recently, even representatives of the 
British and French national space 
complexes have begun discussions on 
how to become participating members of 
the SCPS-TWG User Forum. 
Additionally, the SCPS-WG team has 
been coordinating its activities with 
CCSDS members to facilitate the 
acceptance of the final protocol by that 
international body which has shown 
great interest also. 

The importance of this work in NASA 
can be illustrated by current efforts on 
the GSFC Mission Operations Control 
Architecture (MOCA) initiative which 
has stated that in order to achieve 
standardized and autonomous operations 

of GSFC spacecraft communications 
services of the type now being 
developed by the SCPS-WG are 
paramount. Interest from the NASA 
missions surveyed in having these 
protocols was universal. 

Continued success of this program is 
dependent on continued interaction and 
review by the space community at large. 
These inputs can have their most 
positive influence during the cumnt 
initial 18 month activities of the SCPS 
Development Phase while preliminary 
design and analysis are being perlfomd. 
Critical insights and lessons learned need 
to be provided by government and 
industry representatives who have years 
of space mission experience to share. 
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ABSTRACT 

ESA has developed standards for packet 
telemetry (Ref.2) and telecommand (Ref.3), 
which are derived from the recommendations 
of the Inter-Agency Consultative Committee for 
Space Data Systems (CCSDS). These 
standards are now mandatory for future ESA 
programmes as well as for many programmes 
currently under development. However, whilst 
these packet standards address the end-to-end 
transfer of telemetry and telecommand data 
between applications on the ground and 
Application Processes on- board, they leave 
open the internal structure or content of the 
packets. 

This paper presents the ESA Packet 
Utilisation Standard (PUS) (Ref. I) which 
addresses this very subject and, as such, 
serves to extend and complement the ESA 
packet standards. The goal of the PUS is to 
be applicable to future ESA missions in all 
application areas (Telecommunications, 
Science, Earth Resources, microgravity etc.). 
The production of the PUS falls under the 
responsibility of the ESA Committee for 
Operations and EGSE Standards (COES). 

Keywords: Packet Utilisation, Packet 
Structure, COES. 

1. INTRODUCTION 

basic instructions for loading on-board 
registers or for enablingldisabling switches. 

Moreover, the associated - space-ground 
communications techniques guaranteed 
neither a reliable nor a complete transmission 
of telemetry and telecommand data. 

Through the 1980s, there was a progressive 
increase in the use of on-board software to 
implement functions which should logically be 
performed on-board the satellite rather than on 
the ground e.g. control loops with short 
response times, data compression prior to 
downlink etc. However, this software had to 
be remotely monitored and controlled using 
the traditional hardware-oriented techniques. 

This imposed significant constraints on the on- 
board software implementation, limiting its 
flexibility and consequently hampering the 
trend towards more on-board intelligence and 
autonomy. 

In order to overcome these problems, the 
CCSDS recommended the use of telemetry 
and telecommand packets (Refs. 4 & 5) which 
provide a high quality space-ground 
communication technique enabling a flexible 
exchange of data between an on-board 
Application Process and a ground system. 
An Application Process is a logical on-board 
entity capable of generating telemetry packets 
and receiving telecommand packets for the 
purposes of monitoring and control. It is 

In the past, the monitoring and control of uniquely identified by an Application ID, which 
satellites was largely achieved at the is used to establish an end-to-end connection 
"hardware" level. Telemetry parameters between the Application Process and the 
consisted of digitised read-outs of analogue Ground. Many different mappings can be 
channels and status information sampled from envisaged between Application Processes and 
registers or relays. These parameters were on-board hardware. At one extreme, each 
sampled according to a regular pattern and platform subsystem or payload (or part of 
appeared at fixed positions in a telemetry thereof) could contain its own Application 
format. Process. In a more modest design, a single 

Application Process, say within ihe OBDH, 
Similarly, control was performed using fixed- could serve many, or even all the on-board 
length telecommand frames which contained subsystems and payloads. 



The door was now open to implement a 
"message-type" interface between ground and 
space-based applications and thus to move 
towards the realisation of "process control" 
techniques. 

In 1987 ESA set up the Committee for 
Operation and EGSE Standards (COES). The 
primary objective of this group was to define 
those functions which are common between a 
satellite checkout system (EGSE) and a 
satellite control system. Even though these 
systems are used for different objectives and 
in different project phases, the logical interface 
to the satellite is identical and many of the 
functions are similar. Therefore, a common 
system could be used for the pre-launch 
checkout and post-launch mission operations 
both within a given project and also across 
different projects (see Fig.1). 

CONTROL \ I CENTRE I 

Fig.1 Check-out I Operations Commonality 

COES decided to define such a common 
system for missions using the newly defined 
ESA Telemetry and Telecommand packets. 
However, the flexibility introduced by the use 
of packets leads to the possibility of 
implementing a given control function in many 
different ways. It soon became clear to COES 
that its task was only feasible if a clear 
satellite-ground interface existed, based on the 
use of packets. 

Consequently, the first task of the COES was 
to produce a standard which defined precisely 
how telemetry and telecommand packets 
should be used. 

The term "Utilisation" is used in the title of the 
standard, since the intention is that the PUS 
should address all aspects relating to the use 
of packets i.e. the circumstances under which 
they are generated and the rules for their 
exchange, as well as their structure, format 
and content. 

The PUS can therefore be seen as an 
interface document defining the relationship 
between space and ground. 

The PUS contains the following elements: 

C3 operational requirements relating to 
satellite monitoring and control 
functions and to testability; 

* standards for the secondary data 
header of telemetry and telecommand 
packets; 

C3 the definition of a set of PUS Services 
which respond to the operational 
requirements. A Service specification 
includes the corresponding on-board 
Service model and a full definition of 
all the Service Data Units (SDUs) 
supported by the Service i.e. the 
telemetry and telecommand packets; 

C3 standards for the data structures and 
parameter encoding types allowable 
within packets. 

The Operational Requirements cover all 
aspects of Nominal and Contingency 
Operations for the full spectrum of mission 
types and classes. They include generic 
requirements for: 

the different classes of telemetry data 
to be transmitted to the ground and 
the circumstances under which the 
data shall be generated; * the provision of different levels of 
telecommand access to the satellite to 
ensure the maximum degree of 
controllability; * telecommand verification; * the control of on-board software; 

2. SCOPE OF THE PUS * the loading and dumping of on-board 



memories. 

In addition, requirements are identified for a 
number of "advanced" on-board 
functionalities, which may only be required for 
particular classes of mission: 

on-board scheduling of commands for 
later automatic release; 

on-board parameter monitoring; 

on-board storage and retrieval of data; 

@ transfer of large data units (e.g. files) 
between space and ground and vice- 
versa. 

The requirements for Contingency operations 
cover the setting up of a "diagnostic" mode, 
wherein the ground can oversample selected 
telemetry parameters for ground evaluation 
purposes. Also, it should be possible to by- 
pass on-board functions by ground command 
and to operate a function in an off-line mode in 
order to isolate hardware faults. 

The Packet Data Field Header (PDFH) is left 
undefined within the ESA packet standards. 
However, the PUS identifies a fixed structure 
for this header for both telemetry 
telecommand packets, which is shown in 
Figure 2 below 

of the data field header and possibly of other 
aspects defined by the PUS. For example, a 
new version could be defined for packets 
containing multiple Service Data Units, as 
proposed by NASAIJPL for deepspace 
missions. 

The two most important fields in the PDFH 
identify the Service Type and the Service 
Subtype to which the packet relates. The 
specification of the "standard" Services 
provided by the PUS constitutes the bulk of 
the standard and these Services are covered 
in more detail in the next section. 

In principle, 256 Services and, for each 
Service, 256 Service Subtypes can be 
defined. The range from 0 to 127 is reserved 
for the PUS, in both cases, whilst the range 
from 128 to 255 is denoted as "mission- 
specific". The PUS thus has considerable 
growth capability for the later introduction of 
new Services or new Service Subtypes within 
an existing Service. 

Telecornrnand Packet Data Header 

IC Mission 
Telemetry Packet Data Header optionat* 

Version 
Number 

3 bits 

Fig. 2 : Packet Data Field Headers 

The PDFH for telemetry and telecommand 
packets is identical, with the exception that'a 
telemetry packet may (optionally) contain a 
time field for datation purposes. 

Checksum 
Type 

1 bit 

The version number allows for future versions 

3. PUS SERVICES 

Spare 

4 bits 

At present, 17 PUS Services have . been 
defined and these are listed in Table 1 below. 

Sawice 
Type 

8 bits 

S B ~ i c e  
Sub-type 

8 bits Variable 



Telecommand Verification Service 

Whilst none of the PUS Services is 
mandatory, it is expected that all Application 
Processes would implement this particular 
Service. Depending on the operational 
requirements and the on-board capabilities, 
commands can be verified at all stages: 
acceptance, start of execution, intermediate 
stages of execution and completion of 
execution. The selection of verification stages 
and whether positive as well as negative 
acknowledgement packets shall be generated 
can be done at the level of each individual 
command which is uplinked. 

Device Command Distribution Service 

There are 3 sub-services for the distribution of 
hardware-level commands: 

@ distribution at Telecommand Segment 
level; these commands require no 
software for their execution and 
would be used e.g. for unblocking or 
resetting the on-board Packet 
Assembly Controller (PAC); 

@ distribution by the CPDU (Command 
Pulse Distribution Unit) within the 
decoder. These are high priority 
onloff commands which are 
distributed directly (hardwired) to on- 
board devices; 

@ distribution by other Application 
Processes to devices, for example 
over an internal bus. Such 
commands may be used for normal 
operations or in a contingency 
situation e.g. where the normal higher- 
level control of the device is not to be, 
or cannot be, used. 

Housekeepina and Diaqnostic Data 
Reportina Service 

The housekeeping sub-service covers the 
reporting of engineering data to the ground for 
monitoring and evaluation purposes. In order 
to adapt to changing operational conditions, 
the capability exists to define new 
housekeeping packets (or to re-define the 
contents of existing packets). Also, instead of 
systematically transmitting the housekeeping 

data to the ground, an optional "event-driven" 
mode is available. Event-driven means that 
the housekeeping packet is only generated if 
the value of a parameter within it varies by 
more than a prescribed threshold. 

The diagnostic sub-service is used to support 
ground-based troubleshooting, where high 
sampling rates may be required for selected 
parameters 

Statistical Data Reportina Service 

In addition to the direct reporting of 
engineering data to the ground, summary 
statistical data may also be provided, 
consisting of the reporting of maximum, 
minimum and mean values of specified 
parameters over a time interval. 

Event Reportina Service 

This Service covers reports of varying severity 
from "normal" reports (e.g. progress of 
operations) to the reporting of serious on- 
board anomalies. This provides the 
mechanism for on-board functions to report to 
the ground autonomous actions they have 
taken or events they have detected. 

Memorv Manaaement Service 

This covers all aspects of loading and 
dumping of on-board memory blocks, as well 
as performing checksums on specified 
memory areas on ground request. 

Task Manaaement Service 

This Service allows the ground to exercise 
control (e.g. start, stop, suspend etc.) over on- 
board software tasks managed by an 
Application Process. For many missions, this 
level of control may only be exercised in 
contingencies. 

Function Manaqement Service 

This Service provides the "normal" 
mechanism for control of the functions 
executed by an Application Process (e.g. 
activate, deactivate, pass parameters etc.) 

Time Manaaement Service 

This service permits control over the on-board 



generation rate of the Time Packet. In the 
future, this may be extended to cover the use 
of GPS. 

Time Packet Service 

This service is constituted solely of the Time 
Packet which is defined at the higher level of 
the ESA Packet Telemetry Standard (Ref.2). 

On-Board Schedulina Service 

For many missions, it will be necessaly to load 
telecommands from the ground in advance of 
execution, for release on-board at a later time. 
For example, LEO missions, where operations 
must be conducted whilst outside of the limited 
ground passes. 

This Service provides the capability for 
loading, deleting, reporting and controlling the 
release-status of telecommands in an On- 
board Schedule. Telecommands may also be 
time-shifted, without the necessity of deleting 
and re-loading them with new times. 

A telecommand may also be "interlocked" to 
another telecommand, released earlier in time 
from the Schedule. That is to say, the release 
of the telecommand will be dependent on the 
success (or, alternatively, the failure) of the 
earlier command. 

On-Board Monitorina Service 

This Service provides some of the basic 
telemetry monitoring functions which are 
normally implemented on the ground i.e. 
mode-dependent limit, trend and fixed-status 
checking. Out-of-limit conditions are 
automatically reported to the ground. 

Larqe Data Transfer Service 

For many mission, it is anticipated that the 
largest desirable packet size may be much 
bigger than the maximum allowed by the ESA 
standards. This Service provides for the 
reliable transfer of a large Service Data Unit of 
any Type (e.g. a file. a large memory load 
block or a large report) by means of a 
sequence of smaller packets. The Service 
may be invoked either for the uplink or the 
downlink of a large Service Data Unit. 

Packet Transmission Control Service 

This Service permits the enabling and 
disabling of the transmission of packets (of 
specified TypelSub-type) from an Application 
Process. 

On-Board Storaae and Retrieval Service 

This Service allows for the selective storage of 
packets for downlink at a later time under 
ground control. 

In principle, a number of independent stores 
may exist, which may be used for different 
operational purposes. For example, for 
missions with intermittent ground coverage. 
packets of high operational significance (e.g. 
anomaly packets) could be stored in a 
dedicated packet store so that they may be 
retrieved first during the next period of 
coverage. 

A "lost packet recovery" capability may also be 
achieved by systematically storing all event- 
driven packets on-board. 

On-Board Traffic Manaqement Service . 

This Service provides the capability to monitor 
the on-board packet bus (e.g. its load, the 
number of re-transmissions etc.) and to 
exercise ground control over on-board traffic 
and/or routing parameters or problems. 

Test Service 

This Service provides the capability to activate 
test functions on-board and to report the 
results of such tests in the telemetry. A 
standard Link Test ("Are you alive?") Sub- 
service is provided. 

4. MISSION-TAILORING 

An important aspect for the wider acceptance 
of the PUS is that it should be easily to tailor it 
to the specific requirements of a given 
mission. 

This consideration has been at the forefront 
whilst developing the standard and is achieved 
by the following measures: 

@ a mission may choose to implement 
only that sub-set of the PUS Services 
(and/or Sub-services) which it deems 



appropriate to its requirements; 

L3 the structures defined for the Service 
Data Units (the telecommand and 
telemetry packets) identify "mission- 
optional" fields. These correspond to 
the "optional" capabilities within a 
Service (the so-called Capability 
Sets). If a capability set is not 
implemented for a particular Service, 
then the corresponding mission- 
optional fields may be omitted; 

@ for the data type of each field of the 
Service Data Units, the PUS only 
specifies the encoding type (e.g. real 
or integer) with the encoding length 
being specified at mission-level; 

Thus, a mission may remain fully compliant 
with the PUS whilst incurring no detrimental 
impact on its packet overhead as a 
consequence. 

level during the course of 1993, the PUS in its 
present version was approved by the ESA 
Inspector General and thus is now an Agency 
standard. 

The PUS is expected to evolve in the future, in 
an incremental manner, as new monitoring 
and control Services become sufficiently 
mature to be generalised and thus 
standardised. 

ESOC is currently undertaking a major 
mission control Infrastructure development, 
the so-called SCOS-II, which is a distributed 
system based on SUN workstations. SCOS-II 
will provide full application-level support to 
missions conforming with the PUS. 

COES is also specifying the functional 
requirements for a generic system to be used 
for checkout and operation across different 
projects. 
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ABSTRACT INTRODUCTION 

XMM, ESA's X-Ray Multi-Mirror 
satellite, due for launch at the end of 
1999 will be the first ESA scientific 
spacecraft to implement the ESA 
packet telecommand and telemetry 
standards and will be the first ESOC- 
controlled science mission to take 
advantage of the new flight control 
system infrastructure development 
(based on object-oriented design and 
distributed-system architecture) due 
for deployment in 1995. 

The implementation of the packet 
standards is well defined at packet 
transport level. However, the standard 
relevant to the application level (the 
ESA Packet Utilisation Standard) 
covers a wide range of on-board 
"services" applicable in varying 
degrees to the needs of XMM. In 
defining which parts of the ESA PUS 
to implement, the XMM project first 
considered the mission objectives and 
the derived operations concept and 
went on to identify a minimum set of 
packet definitions compatible with 
these aspects. 

This paper sets the scene as above 
and then describes the services 
needed f o r  X M M  and the  
telecommand and telemetry packet 
types necessary to support each 
service. 

The introduction of packet TM and TC 
standards (Refs 1 and 2) has lead to a 
high degree of transparency in the 
operational interfaces between 
satellite on-board systems and the 
related ground systems, offering 
designers the potential for liberal 
definition of the data to be 
transported within TM and TC 
packets. The complexity of the 
on-board and ground systems can be 
greatly influenced by the 

o the type of interaction (or 
service) and 

o the structure and content of 
the packets used in this 
interaction 

Only by careful definition of the 
packet structures and content can it 
be ensured that the satellite is 
provided with the information it needs 
(within command packets) for its 
operations functions and that the 
ground is provided with the 
information it needs (within telemetry 
packets) for execution of its 
operational tasks. This becomes even 
more significant now that satellite 
systems are increasingly implemented 
using on-board software. 

In preparing for the XMM satellite 
development programme, it was 



necessary to define the on-board 
services that will be needed to allow 
the XMM Flight Control System to 
undertake all mission operations. The 
services needed are driven by the 
mission objectives and the associated 
concept for conduct of the operations 
needed to satisfy these objectives. 

The ESA Packet Utilisation Standard 
(ESA PUS) (Ref 3) was the reference 
standard for this the application-level 
interface and defines a wide range of 
services considered necessary for all 
future (unmanned) missions. The 
process of selecting services from the 
PUS and tailoring the packet related 
packet structures to suit the particular 
needs of any particular mission is 
referred to as " missionisation". 

XMM OPERATIONS CONCEPT 

The X-ray Multi-Mirror satellite (XMM) 
is an observatory- in the soft X-ray 
region of the electromagnetic 
spectrum and is due for launch on 
Ariane 5 late in 1999. By virtue of the 
large collecting area of its telescope 
and the highly eccentric orbit, XMM 
will be able to perform long 
observations (upto 16 hours above 
40,000 Km) of X-ray sources with an 
unprecedented sensitivity. 

The satellite and its X-ray instruments 
will be controlled in real time from the 
European Space Operations Centre in 
Darmstadt, Germany, and employing 
a single ground station, will benefit 
from upto 22 hours of telemetry and 
telecommand contact every day, All 
science and housekeeping data will be 

transmitted in real time to the control 
centre for immediate processing (no 
bulk storage on board). In view of the 
on-line nature of satellite operations 
and the nearly continuous visibility 
from the ground and the desire to 
minimise on-board complexity, it was 
appropriate to identify straightforward 
almost "classical" ways for ground 
on-line control of the satellite while 
making use of the advantages offered 
by packets. The concept for safety 
management during planned (and 
unplanned) non-contact periods was 
defined to involve the use of delayed 
execution (time tagged) commands, a 
low degree of on-board monitoring 
and provision of a history of on-board 
events. Further, it was necessary to 
provide for operations maintenance in 
the form of telemetry management 
and definition and interaction with on 
board software. 

XMM FLIGHT CONTROL SYSTEMS 

A further constraint on definition of 
the groundlsatellite interactions and 
hence the TMITC services needed, 
relates to the Flight Control Systems 
infrastructure foreseen for XMM. 
Flight Control Systems for past 
missions (not utilising packets) 
involved handling of the individual 
characteristics of the TMITC schemes 
by mission-specific software modules 
interacting with kernel systems 
offering basic functions only. These 
additional modules were needed to 
convert the peculiarities of the 
satellite data structures into a form 
processable within the kernel systems 



and understandable to the Flight 
Operations Teams. 

Recent advances in ground system 
technology (for example in the use of 
distributed workstation-based control 
systems and object-oriented 
techniques) now  al low the 
development of multi-mission control 
systems offering a palette of services 
to potential users (missions). By 
defining data structure standards 
across the board, commonality 
between missions can be increased 
leading to a corresponding reduction 
in the need for mission-specific 
elements. This is the ultimate goal of 
the ESA PUS, a document now 
entering the approval stage. 

The PUS defines the various 
operational requirements for on board 
functions and services and goes on to 
describe the TMITC packet types and 
structures needed to support these 
services. The PUS then defines the 
format and content of the (variable) 
"Packet Data Field" being the user- 
defined part of the packet and 
including the "Source Data" for 
telemetry (Figure 1) and the 
"Application Data" for commands 
(Figure 3). The PUS further prescribes 
how the "Data Field Header", within 
the Packet Data Field is to be used 
(Figures 2 and 4) : two fixed fields in 
this header are reserved for 
identification of the Packet Type and 
Packet Subtype. In this way, every 
packet in the ground or on-board 
systems is clearly identifiable in terms 
of its function and the processing 
needed. 

XMM however, with its classical 
operations concept did not need to 
take advantage of the wide range of 
services available within the PUS : 
using the PUS as a starting point, the 
XMM project selected those services 
and related data structures of use in 
suppor t ing  t he  opera t iona l  
requirements (as documented in Ref 
4) for all foreseen XMM mission 
scenarios . 

XMM SERVICES 

The services defined for XMM mission 
operations can be considered to fall 
into three major categories as follows 
(as documented in Ref 5): 

1) ON-LINE CONTROL 

Periodic Housekee~ina Telemetrv (TM 
T v ~ e  1) is required to permit. the 
ground to derive and monitor the 
status, health and performance of the 
satellite systems and instruments. 

Device Commands (TC T v ~ e  2) are 
required to configure the on board 
hardware using two subtypes : 
- Pulse commands (Subtype 1) 
- Register load commands 

(Subtype 2). 

Telecommand Verification Service 
jTM T V D ~  31 is required to allow the 
ground to positively verify all uplinked 
commands. Dedicated packets are 
required for each uplinked command 
indicating 
- Successfu l  Accep tance  

(Subtype 1) 



- Unsuccessful Acceptance 
(Subtype 2) 

- Successful Execution (Subtype 
3 

- Unsuccessfu l  Execut ion 
(Subtype 4) 

Non-Periodic Telemetrv (TM T v ~ e  4) 
is required to convey information 
related to non-periodic events (not 
contained in the periodic telemetry) to 
the ground. The service must provide 
for 
- Event Reports (Subtype 1) for 

even ts  o f  operat iona l  
significance 

- Exception Reports (Subtype 2) 
for notification of non-fatal 
errors 

- Major Anomaly Reports 

(Subtype 3) for notification of 
major on-board anomalies 

Task Manaaement Service (TC T v ~ e  
3 is required to control and interact 
with on-board software tasks. The 
service must provide for 
- Start task (Subtype 1) 
- Stop task (Subtype 2) 
- L o a d  t a s k  f u n c t i o n a l  

parameters (Subtype 3) 
- Mode Transition (Subtype 4) 

Science Telemetrv (TM T v ~ e  15) is 
required to transport data from the 
XMM science instruments to the 
ground. 

2) SAFETY MANAGEMENT 

Time Taa Commands (TC and TM 
Tvpe 7) are required to effect 
operations requiring well-defined 
execution times or which need to be 

executed in periods of non coverage 
or to ensure that the satellite is 
returned to its nominal state after any 
critical operation. The service must 
provide for 
- Load a command into the 

time-tag buffer (Subtype 1 ) 
- Report a summary of the 

contents of the time-tag buffer 
(Subtype 2) 

- Report all commands in the 
time-tag buffer- in detail 
(Subtype 3) 

- Report a selected command in 
the time-tag buffer in detail 
(Subtype 4) 

- Delete a selected command 
from-the buffer (Subtype 5) 

- Delete all commands in the 
time-tag buffer (Subtype 6) 

On-Board Monitorina Service (TC and 
TM T v ~ e  8) is required to monitor a 
maximum of 30 parameters during 
periods when the ground does not 
have visibility of the spacecraft and to 
retain the results. The service must 
provide for 
- Enable and refresh monitoring 

(Subtype 1 ) 
- Disable monitoring (Subtype 2) 
- Add to monitoring list (Subtype 

3 
- Delete monitoring list (Subtype 

4) 
- Report the monitoring list 

contents (Subtype 5) 
- Report the resul ts  o f  

limitlstatus checks (Subtype 6) 
- Report the minimum and 

maximum values over the 
period enabled (Subtype 7) 



Non-Periodic Packet Storaae Service 
(TC T v ~ e  11) is required to store all 
non-periodic packets (TC verifications 
reports, event reports, exception 
reports and major anomaly reports) in 
a cyclic buffer to permit the ground 
access to  non-periodic packets 
generated at times when the ground 
has no contact with the satellite 
(planned and unplanned). The service 
must provide for 
- Report stored packets (Subtype 

1) 
- Enable and refresh packet 

storage (Subtype 2) 
- Disable packet  storage 

(Subtype 3) 

3) OPERATIONS MAINTENANCE 

Memorv Maintenance Service (TC and 
TM T v ~ e  6) is required to allow the 
ground to maintain the on-board 
software as needed to compensate 
for hardware failures, to resolve 
software non-compliance with design 
requirements, to account for new 
requirements or to enhance system 
performance. The service must 
provide for 
- Load memory (Subtype 1) 
- Dump memory (Subtype 2) 
- Calculate Memory Checksum 

(Subtype 3) 

Telemetrv Manaaement Service (TC 
and TM T v ~ e  9) is required to manage 
generation of telemetry packets by 
any particular application (on board 
subsystem or instrument). The service 
must provide for 
- Report packet generation status 

(Subtype 1)  

- Enable generation of all TM 
packets (Subtype 2) 

- Disable generation of all TM 
packets (Subtype 3) 

- Enable generation of specific 
TM packets (Subtype 4) 

- Disable generation of specific 
TM packets (Subtype 5) 

Telemetrv Definition Service (TC and 
TM T v ~ e  10) is required to allow the 
ground to define new housekeeping 
packets (for the satellite systems 
only) if necessary for troubleshooting 
or anomaly rectification. The service 
must provide for 
- Report new housekeeping 

packet definitions (Subtype 1) 
- Define new housekeeping 

packet (Subtype 2) 
- Delete new housekeeping 

packet definition (Subtype 3) 

Test Commands (TC T v ~ e  13). are 
required to confirm that the on-board 
link to any application is alive. 

DATA STRUCTURES 

The definition of packet types is only 
completed when the data structures 
needed for each of the identified 
packets types and subtypes are 
expanded down to field level as is 
foreseen in the PUS. The purpose of 
each field, its length and its format 
must finally be agreed between 
satellite system and ground system 
developers. This final stage in the 
missionisation process for XMM has 
been initiated and is also documented 
in Ref 5. 



CONCLUSION REFERENCES 

This paper has summarised the way in 
which the XMM project has gone 
about selecting the on board services 
needed to fulfil the objectives of the 
mission and has outlined the data 
types defined in support of those 
services. One can draw three distinct 
conclusions from this process : 

o Data required for the execution 
of satellite mission operations 
must comply with certain 
standards i f  it is to ensure that 
such operations are conducted 
in a safe and reliable manner. 

o The structures defined for the 
transport of the data must 
follow established guidelines if 
the full advantages of the 
p a c k e t  t e l e m e t r y  a n d  
telecommand standards are to 
be realised. 

o Compliance with the derived 
packet structure requirements 
must be established across the 
whole satellite at system level 
i f  the benefits in common data 
structure definitions are to be 
f e l t  i n  ground system 
development. 
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Figure 1. Telemetry Source Packet Fields (from Ref 1) 
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Figure 2. Telemetry Packet : Data Field Header (from Ref 5) 
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Figure 3. Telecommand Packet Fields (From Ref 2) 

Figure 4. Telecommand Packet : Data Field Header (from Ref 5 )  

PACKET HEADER (48 bits) 
PACKET DATA FIELD 

(VARIABLE) 

PACKET 
LENGTH 

16 

PACKET 
ERROR 

CONTROL 
(Optional) 

16 

DATA 
FIELD 

HEADER 

24 

PACKET ID 
APPLIC- 
ATION 
DATA 

Variable 

PACKET 
SEQUENCE 
CONTROL 

Sequence 
Flags 

2 

Application 
Process 

ID 

1 1  

Version 
Number 

3 

Sequence 
Count 

14 

16 16 

Type 

1 

Data 

Header 
Flag 

1 



Use of Data Description Languages in the Intenhange of Data 

Authors: M.Pign&de, B.Rea1-Planells; European Space Operations Centre (ESOC), 
Robert Bosch Strasse 5, 64293 Darmstadt, Germany; Tel: +49 6151 902216 

- S.R.Smith; Logica UK Ltd, 
75 Hampstead Road, London NW1 2NT, England; Tel: +44 71 637 91 11 

ABSTRACT 

The Consultative Committee for Space Data Systems (CCSDS) is developing Standards for the interchange of information between systems, 
including those operating under different environments. The objective is to perform the interchange automatically, i.e. in a computer 
interpretable manner. One aspect of the concept developed by CCSDS is the use of a separate data description tospecify the data being 
transferred. Using the description, data can then be automatically parsed by the receiving computer. With a suitably expressive Data 
Description Language (DDL), data formats of arbitrary complexity can be handled. 

The advantages of this approach are that (a) the description need only be written and distributed once to all users (b) new software does 
not need to be written for each new format, provided generic tools are available to support writing and interpretation of descriptions and 
the associated data instances. Consequently the effort of "hard coding" each new format is avoided and problems of integrating multiple 
implementations of a given format by different users are avoided. The approach is applicable in any context where computer parsable 
description of data could enhance efficiency (e.g. within a spacecraft control system, a data delivery system or an archive). 

The CCSDS have identified several candidate DDLs: EAST (Extended Ada Subset), TSDN (Transfer Syntax Data Notation) and MADEL 
(Modified ASN.1 as a Data Description Language -- a DDL based on the Abstract Syntax Notation One - ASN.l - specified in the ISOIIEC 
8824). 

This paper concentrates on ESA1s development of MADEL. ESA have also developed a "proof of concept" prototype of the required 
support tools, implemented on a PC under MS-DOS, which has successfully demonstrated the feasibility of the approach, including the 
capability within an application of retrieving and displaying particular data elements, given its MADEL description (i.e. a data description 
written in MADEL). 

This paper outlines the work done to date and assesses the applicability of this modified ASN.l as a DDL. The feasibility of the approach 
is illustrated with several examples. 

Kevwords: Heterogeneous Envimnments, Automated Interchange, Data Description, Modified ASN.1, Demonsbated 
Feasibility 

The Problems of Interchanging Data 

The problems of data interchange are primarily those associated with providing the destination (potentially a 
different computer environment) with all the information it needs to be able to interpret the received data. At 
present, a typical data interchange system is dedicated to a particular flight mission or project. Data is acquired, 
processed, shared to some level with other members of the investigating team and eventually archived. Further, 
documentation of the data and its format may not be complete and up-to-date. This practice results in the need 
for a different interchange data system for each mission and makes the reuse of data and software at some future 
period difficult. . 

Overview of the CCSDS Approach 

The CCSDS approach is to provide standardised techniques for the automated interpreting of data products in a 
heterogeneous computer environment. It puts no constraint on the format of the user data and can thus 
accommodate formats developed by other organisations or user communities. It offers a data labelling scheme 



which permits associating a data instance and its (in principle separate) complete and unambiguous description. 
Further, it allows the development of generic software to support the retrieval, access, parsing and presentation 
of data to satisfy particular application and user needs. Three major stages are identified in the data interchange 
process and are explained in this paper. 

The Data Interchange Requirements 

To achieve the stated aims, the fundamental requirement that has to be fulfilled is the unambiguous description 
of data that has to be interchanged between users separated by both time and space. When received, data have 
to be understood fully. This means that the receiver has to not only be able to read the data from the transfer 
media and understand the basic physical elements of the data (e.g. an integer), but also the receiver must be able 
to understand the real world meaning of the data. For example, there is no point in the receiver knowing that the 
loth and 1 lth bytes of the received data are an integer of value 145, if he also does not know that this conveys 
the temperature of a spacecraft instrument in degrees Kelvin. 

Further, it is desirable that data products be automatically transferable without requiring any conversion of their 
contents. It is also desirable that transfers would be possible regardless of the source or destination computer 
types. In other words, 

e the data must remain in its original form, i.e. does not need to be converted in order to be interpreted at 
the destination; 

a the destination needs to know nothing about the source, regardless of how different the computer systems 
may be. 

Thus, the approach presented in this paper is to use a data description processable on any computer which will 
allow the transmission of data in its native form, i.e. no data encoding will be required. 

The Three Stages of the Data Interchange Model 

In an attempt to establish a logical model of the whole data description process, an initial assumption was made, 
that is that the description of data can be cleanly split between the physical description (called the syntax 
description) and the meaning of those physical elements (called the semantic description). In fact, as the problem 
domain was studied further, it was realised that the description should be split into 3 parts, the same physical 
description as originally perceived, but the meaning component was really 2 separate components: the meaning 
of the physical elements being exchanged and furthermore the methods of combining the physical elements or 
relationships between these elements. Indeed, a generator of data products not only wishes to convey the physical 
data and its meaning, but also how they are intended to be interpreted taking into account their context. Figure 
1 shows the model defined by the CCSDS to represent the following stages of data description: 

Stage 1: Data is initially perceived as a group of bits accessible from a physical medium and is read in 
combination with its syntax description. This tells the user the physical layout of the data on the medium, which 
bits are grouped with each other and how they should be read by common computer hardware (e.g. as integers, 
reals, bit masks, etc). The syntax description must include all the physical bits, all the bits and groupings must 
be named in some way. At this stage it is possible to manipulate the basic values, for example converting to 
another physical representation, e.g. from VAX reals to IBM reals. 

Stage 2: The next stage is when the physical data is read' in conjunction with its semantic description: this 
only describes those parts of the data that the user is interested in fully understanding, i.e. the basic semantic 
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Figure 1: Data Interchange Logical Model 

description could be perceived as a filter that covers the physical layout of the data and only allows those elements 
that are of interest to be seen. In this stage, the relevant information is typically: meaning, units, aliases, scaling 
factor. The elements which are not called out in the basic semantic description are still physically present, but 
not of interest to the user. Different users may use different semantic descriptions which will act as different 
masks over the same physical data and therefore perceive the data product in a different manner. Interfacing to 
the data at this level is the most common method within present day data processing systems. 

Stage 3: The final stage in the understanding of the data is to add advanced semantics: these do not define the 
static meaning of each piece of data, but the way different pieces of data are related to each other. This may be 
specified in a natural language or as a mathematical algorithm or as a process defined in a programmable computer 
language. The elements thus created are called conceptual elements, as they never actually physically exist: they 
are pieces of information that are carried within an application domain. If they were ever written as a piece of 
physical data to a physical media, then this whole process would start from the beginning, i.e. with applying their 
syntax description. Figure 1 shows a 0 at the point where the advanced semantics are applied, this is to indicate 
that some form of processing takes place. For example, the data may contain two integers, named mass and 
volume and for these named physical elements the advanced semantic description may also have a definition of 
density, as being a relationship between the two physical elements mass and volume. 

Applicability of MADEL as a DDL 

As the model shows, a mechanism must exist at each stage in order to link the data perceived so far to the syntax 
or semantic information being added. This paper focuses on stage 1: MADEL has been developed to perform 
the syntactic description of the physical data. Regarding stage 2, it is noted that CCSDS has developed a DDL 



called PVL (Parameter Value Language) suited to handle the basic semantic description (see Reference-2). 
Regarding stage 3, processing is in practice very much application specific. Stages 2 and 3 are not covered further 
in this paper. 

The reasons for selecting ASN.l (see Reference-1) as a starting point of the MADEL development are that ASN. 1 
is an International Standard, is familiar to the CCSDS community and intuitive to understand, even by the non 
expert users. It must be noted at this point that ASN.l is used as a separate DDL for describing data formats and 
not as it was originally designed that is, embedding within the data to be transferred auxiliary information ("ASN.1 
encoding"). Hence, in the process of deriving MADEL, limitations were made as were some extensions added 
in order to fulfil the requirements as stated earlier. The most significant modifications to the IS0  8824 ASN.l 
specification are detailed below: 

Physical Representation of Base Types 

Typical MADEL description statements are SpacecraftID : : = OCTET STRING or Width : r = REAL. 
Since the intention is to keep the physical data in its native form and to have the MADEL description in 
accordance with Reference-1, defaults must be adopted everywhere a complete description of the data is not 
supplied directly by the MADEL description itself. For example how many octets are in SpacecraftID and 
how many bits are used for the mantissa of width and where are these bits located within the real number layout? 
These pieces of information must be provided in some manner, down to the bit level where necessary and are 
catered for by MADEL. 

For example, real numbers are described using the MADEL REAL type whose defaults describe ANSYIEEE 754 
floating point numbers or using a generalised form of the REAL type: this type, to be used for any non 
ANSYIEEE 754 real numbers, provides the capability to fully describe a real number physical layout in terms of 
mantissa, exponent, base, etc; thereby allowing to compute at the destination the real number value from: 

ValueOfRealNumber = -1''s" x Mantissa x Base EvoIK*-BhS 

Real Time Data Selection 

The purpose of this modification to ASN.l is to allow the description of situations where one possibility has to 
be selected among several alternatives at the time the physical data is being received. Such situations are typical 
in space related applications: for example the value of the first byte in the physical data could indicate the format 
of satellite tracking measurement samples -- DopplerIRanginglMeteo --) or a layout word at the beginning of a 
housekeeping telemetry frame would indicate whether commands acknowledgement or memory dumps 
or attitude parameters are contained in that particular frame received on ground. -Tkus, the format of a 
piece of data typically is dependent upon a value of another piece of data (called the discriminant) and it_ should 
be possible to describe this aspect. 

It has been felt that this ability is fundamental to existing space related data products and since at present ASN.1 
does not have it, MADEL has been designed to support it: to this end, the SELECT type has been introduced. 
Thus with MADEL, the discriminant conveyed within the physical data can be processed in order to dictate the 
branch to be selected, without needing any encodingldecoding mechanism. Furthermore, the type of the 
discriminant itself must also be specified, for example, INTEGER, REAL, IASString. The format of the 
SELECT statement in a MADEL description would be: 

Packet : : = SELECT PacketType { - -  PacketType is the discriminant 
WAX!l : AuxiliaryPacket, 
WHKW : HouseKeepingPacket, 



"NS" : NormalSciencePacket, 
Il~slI : Burstsciencepacket 

3 

together with the following discriminant definition: 

PacketType ::= IA5String(SIZE (2)) 

Implementation of the MADEL Interpreter 

The task of interpreting a MADEL description together with an instance of the corresponding physical data is 
achieved (and demonstrated) by prototype software called the MADEL Interpreter. An overview of the MADEL 
Interpreter architecture is shown in Figure 2: this shows the main processes that are involved and the critical data 
structures. 

Figure 2: MADEL Interpmter Software Architecture 

Running the MADEL Interpreter 

The user feeds into the MADEL Interpreter a MADEL description of his data and the physical data file. The 
MADEL description is verified for correctness by the MADEL Description Verifier module. 

The verified MADEL description is then parsed by the Syntax Tree Generator and a syntax tree of the data 
structure defined in the MADEL description is built internally. This internal tree represents the full syntax 
description that is defined including all possible choices or selections. Figure 3 shows a schematic of such a tree 
for a simple data structure: Element A is defined as a sequence of element B (an integer), followed by C (an 
octet) followed by D (a selection) which is dependent upon the value at reception time of the integer B (the 
discriminant). If B-1 then D will be P (an integer), if B-2 then D will be Q (a sequence) and if B=3 then D will 
be R (a real). Finally if Q is selected then this will be a sequence of X (an integer) followed by Y (a real). 
0 The Value Tree Generator then walks down the syntax tree reading the corresponding physical data driven by 
the syntax tree. It sees at the top of the syntax tree that the first element is a sequence, this corresponds to no 
actual physical data, so it creates the top node of the value tree with no data, just a flag indicating a sequence. 
It then goes on to read the elements of the sequence; firstly an integer, so bits are read from the physical data 



and the Value Tree Generator adds a node to the value 
tree which it fills with the local representation of the 
actual value. Following this, the octet corresponding to 
C is read in the same manner. Again the select element 
D corresponds to no physical data, but the selection is 
dependent upon the value of B, so the value of B already 
stored in the value tree is accessed and the relevant 
branch of the syntax tree taken. Say B was 2, then 
branch Q is selected, so this branch of the syntax tree is 
followed and the corresponding branch of the value tree 
created. The resultant value tree is shown schematically 
in Figure 4. Eventually this tree will store the local 
representation of all selected physical data, and the user's 
application can proceed with stage 2 of the model (see 
Figure 1) or access the data using conventional methods. 

Figure 3: Schematic of the Syntax 'bee Generated This link to the local representation of the values 

received in the physical data fulfils the task defined in 
stage 1 of the model. 

Implementation and Support Tools 

The MADEL Interpreter was developed on an IBM PC 
running MS-DOS, with Borland-C++ and MKS Lex & 
Yacc as major development tools. It is written in the C 
language. 

Test data sets, along with -their corresponding MADEL ps- 
descriptions must be generated for test purposes. To this $jFrn2 

.:%> zp. .. ..-w.:.: (--JE%zs, . m.:.:.mg$@ . :x.:.:.:.: . . . .... , ......................... :.:.:. 
end support tbols have been developed. A MADEL 

into the MADEL Interpreter in ASCII text form. The 

b 
description is created with a normal text editor and fed Figwe 4: Schematic of the Value Tree Generated 

physical data can be created interactively and a user interface mechanism has been integrated so that the user be 
provided with facilities to (i) select a MADEL description, then (ii) be guided in the production of associated 
physical test data. 

Conclusions 

The study has shown the feasibility of the CCSDS concept and the analysis performed while developing MADEL 
has shown that, if some simple defaults and extensions are adopted (as have been defined), ASN.l can be used 
satisfactorily as the basis for a suitable DDL. In particular it can fulfil the fundamental need for real time selection 
of data in the description of space related data. It should be noted that an important facet of the work was that 
MADEL, in terms of its syntax, has been kept very close to ASN.l (as defined in the IS0  8824 standard). 

Prototype software (the MADEL Interpreter) was developed which demonstrated that typical space related data 
formats can be interchanged between heterogeneous computer environments and interpreted. In turn, this "proof 
of concept" development and testing helped to improve the overall data interchange model and to identify possible 
future additions to MADEL. User interface aspects were also studied. 



The MADEL Interpreter could become the basis of a set of tools for supporting data interchanges. Data product 
definitions or interface definitions written in MADEL could be generated and given to all users, thus avoiding the 
need for paper Interface Control Documents or paper format definitions. This would ensure that all users have 
a unique, correctly coded product description. 

5 In the longer term, stage 3 of the data interchange model should be looked at with the objective of defining 
standardised approaches and identifying common software services for the processing of advanced semantics. 

EXAMPLES 

- -  Hexadecimal dumps of VAX real numbers were generated on a VAX/VMS computer. 
- -  The corresponding MADEL description was created (this file) and then processed - -  by the MADEL Interpreter on an IBM PC to interpret the corresponding VAX data. 
- -  GFloatNumber structure on VAX - - Word-1 (Sign:l , Exp:ll , Mant:4} 
- - Word-2 Word-3 Word-4 : all (Mant:16) 
- -  FFloatNumber structure on VAX - - Word-1 (Sign:l , Exp:8 , Mant:73 
- - Word-2 (Mant:16} 

- -  Case 1 
- -  GFloatDump Value = -2.0000 Phys. Hex. = CO20 0000 0000 0000 
- -  FFloatDump Value = -2.0000 Phys. Hex. = Cleo 0000 

- -  Case 2 
- -  GFloatDump Value = -64071.5000 Phys. Hex. = ClOF 48F0 0000 0000 
- -  FFloatDump Value = -64071.5000 Phys. Hex. = C87A 4780 

- -  MADEL Definition starts here: 

VaxVmsReals DEFINITIONS : : =  
BEGIN 

List-of-VaxNumbers : : =  SEQUENCE SIZE( 2 ) OF Numbers - -  2 cases in this example 

Numbers : : =  SEQUENCE ( 
GFloatNumber, 
FFloatNumber 

1 

GFloatNumber : : =  REAL ( 
BIAS (1025), - -  bias value 
COMPLEMENT(()), - -  0, 1 or 2's complement indicator 
BASE(2), - -  base value 
MANTISSA-MODE( I), - -  algorithm for mantissa evaluation 
MANTISSA(12,63), - -  mantissa bit positions 
EXPONENT( 1,ll) - -  exponent bit positions 

3 

FFloatNumber : : =  REAL { - -  using ANSI/IEEE 754 defaults for REAL type 
BIAS( 129) - -  except bias which is VAX specific 

3 

END 

MADEL Interpreter Execution Report: 

Symbol Name . . .  : GFloatNumber 
Size . . . . . . . . . .  : 64 Type Name . . .  : REAL 
Exponent-bits = (1..11), Mantissa-bits = (12..63), 



Complement = 0, Base = 2, Bias = 1025, Mantissa-Mode = 1 
PHYSICAL REPRESENTATION . :  11OOOOOO OOlOOOOO 00000000 00000000 

00000000 00000000 00000000 00000000 
HOST REAL NUMBER = -2 

Symbol Name . . .  : FFloatNumber 
Size . . . . . . . . . .  : 32 Type Name . . .  : REAL 
Exponent-bits = (1..8), Mantissa-bits = (9..31), 
Complement = 0, Base = 2, Bias = 129, Mantissa-Mode = 1 
PHYSICAL REPRESENTATION . :  11OOOOO1 00000000 00000000 00000000 
HOST REAL NUMBER = -2 

Symbol Name . . .  : GFloatNumber 
Size . . . . . . . . . .  : 64 Type Name . . .  : REAL 
Exponent-bits = (1..11), Mantissa-bits = (12..63), 
Complement = 0, Base = 2, Bias = 1025, Mantissa- ode = 1 
PHYSICAL REPRESENTATION . :  11OOOOO1 00001111 01001000 11110000 

00000000 00000000 00000000 00000000 
HOST REAL NUMBER = -64071.5 

Symbol Name . . .  : FFloatNumber 
Size . . . . . . . . . .  : 32 Type Name . . .  : REAL 
Exponent-bits = (1..8), Mantissa-bits = (9..31), 
Complement = 0, Base = 2, Bias = 129, Mantissa-Mode = 1 
PHYSICAL REPRESENTATION . :  11001000 O1111010 01000111 10000000 
HOST REAL NUMBER = -64071.5 

e 2: Real 

- -  This example is a special case of the data format discussed in Figure 3 
- -  and illustrates further the dynamics of data interpretation at the destination 

- -  MADEL Definition starts here: 
Example-of-DataRealTimeSelection DEFINITIONS : : =  
BEGIN 

A : : =  SEQUENCE { B, C, D ] 

B : : =  INTEGER - -  specification of the discriminant 
C : : =  OCTET STRING 
D : := SELECT B { - -  B is discriminant for selecting 

1 : P, 
2 : Q, 
3 :  R 

1 
P : : =  INTEGER 
Q : : =  SEQUENCE { X, Y } 
R : : = REAL 
X : : =  INTEGER - -  description of the lowest level elements in 
Y : : = REAL - -  the data format A 
END 

MADEL Interpreter Execution Report: 

. . .  Symbol Name : B 
Size . . . . . . . . . .  : 16 Type Name . . .  : INTEGER 
PHYSICAL REPRESENTATION . :  00000000 OOOOOOlO 
INTEGER VALUE = 2 

- - - 

. . .  Symbol Name : C 
Size . . . . . . . . . .  : 1 Type Name . . .  : OCTET 
PHYSICAL REPRESENTATION . :  OOlO1O1O 
OCTET STRING VALUE = I * '  

. . .  Symbol Name : D 
Size . . . . . . . . . .  : 16 Type Name . . .  : SELECT 
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PHYSICAL REPRESENTATION . :  see symbol B 
SELECTED BRANCH = 2 

. . .  Symbol Name : X 
. . .  Size . . . . . . . . . .  : 16 Type Name : INTEGER 

PHYSICAL REPRESENTATION . :  00000000 10000001 
INTEGER VALUE = 129 

. . .  Symbol Name : Y . . .  Size . . . . . . . . . .  : 32 Type Name : REAL 
Exponent-bits = (1..8), Mantissa-bits = (9..31), 
Complement = 0, Base = 2, Bias = 128, Mantissa-Mode = 1 
PHYSICAL REPRESENTATION . :  O1OOOOOO 01000000 00000000 00000000 
HOST REAL NUMBER = 1.5 
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Abstract 

Ground networks must respond to the 
requirements of future missions, which 
include smaller sizes, tighter budgets, 
increased numbers, and shorter 
development schedules. The 
Consultative Committee for Space Data 
Systems (CCSDS) is meeting these 
challenges by developing a general cross 
support concept, reference model, and 
service specifications for Space Link 
Extension services for space missions 
involving cross support among Space 
Agencies. This paper identifies and 
bounds the problem, describes the need 
to extend Space Link services, gives an 
overview of the operations concept, and 
introduces complimentary CCSDS work 
on standardizing Space Link Extension 
services. 

Introduction 

Future space missions will require the 
support of ground networks operated by 
multiple Space Agencies as well as 
support by multiple Agency 
organizations. Current missions are 
supported on a case by case basis with 
custom interfaces being developed each 
time. This is a time consuming and 
expensive process. CCSDS is 
developing recommendations for 
standards for interfaces and services in 
missions involving multiple Space 

Agencies. The objectives are to reduce 
cost and development time while 
increasing flexibility and efficient 
utilization of resources. 

Future ground systems must replace 
custom interfaces with standard 
interfaces and services to be cost 
effect ive.  Pr ior  CCSDS 
recommendations have focused on 
standardizing the communication services 
between spacecraft and ground stations 
(i.e., the Space Link Subnet). The 
CCSDS Recommendations for Advanced 
Orbiting Systems (CCSDS, 1992a), 
Packet Telemetry (CCSDS, 1992b), and 
Telecommand (CCSDS, 1987a; CCSDS, 
1992c; CCSDS, 1991; CCSDS, 1987b) 
document these Space Link services and 
protocols. 

The proposed concept, documented in a 
CCSDS Report (CCSDS, 1994a) 
describes Space Link Extension (SLE) 
services that extend the Space Link 
services on the ground. Extension is 
accomplished over distance, in time, and 
by adding information. SLE services 
may be distributed across multiple ground 
facilities, such as ground stations, 
mission-related control centers, and data 
processing facilities. These facilities may 
be grouped to provide the services 
required by each mission. These SLE 
Services are applicable between Agencies 



as well as within Agencies with multiple 
ground networks. 

Cross Support Operations Concept 

Cross Support occurs when one Agency 
uses part of another Agency's data 
system resources to complement its own 
system in providing services. 

Cross Support Environment 

A space data system, for a particular 
mission, contains onboard spacecraft 
applications and ground applications. 
Ground applications interact with 
applications onboard the Spacecraft via 
application associations between them. 
The ground and onboard applications do 
not necessarily belong to the same 
Agency that is operating the spacecraft. 
The associations between ground and 
onboard applications are established and 
maintained using telecommunication and 
data transfer services built upon the Space 

Link communication services defined by 
CCSDS Recommendations. 

CCSDS Recommendations are defined 
for Space Link services for the real-time 
transfer of data across the Space Link. 
However, space data systems generally 
require additional features in order to use 
the Space Link services to support 
mission application associations. These 
additional features, provided by SLE 
services, extend the application 
associations beyond the _immediate 
endpoints of the spacelground link. The 
Space Link services are extended from 
onboard applications, attached to onboard 
local area networks, to ground 
applications, attached to terrestrial wide 
area networks. The SLE services provide 
the ability to hold data at one or more 
intermediate points between the peer 
applications. The Space Link and Space 
Link Extension domains are illustrated in 
Figure 1. 

Figure 1 - Domains of Space Link and Space Link Extension Services 
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The ground-resident Space Link 
Extension Component (SLEC) and the 
onboard data system coordinate to 
provide SLE services. A particular 
mission may use all or a subset of the 
SLE services. In providing SLE 
Services, the SLEC performs: (1) RF 
modulation/demodulation at the ground 
termination of the space-ground link, (2) 
ground termination of the Space Link 
protocols used by the mission; (3) value- 
added annotation of the Space Link 
service data; (4) terrestrial networking 
among the ground elements that host the 
ground applications; and (5) interface to 
ground-side Space Link protocol 
processing and ground-side RF 
modulation/demodulation functions. 

The SLEC has three types of interfaces 
with other components: interfaces over 
which mission data flow between the 
SLEC and the Spacecraft; interfaces over 
which space data flow between the SLEC 
and the ground applications; and the 
service management interface between the 
SLEC and Mission Management. Unlike 
the onboard data system service 
interfaces, the SLE service interfaces are 
intended to be standardized across all 
missions. 

The SLE-Spacecraft interface operates 
over an RF medium and executes the 
Space Link protocols specified in the 
CCSDS Space Link Recommendations. 
The ground applications exchange SEE 
Protocol Data Units (SLE-PDUs) with 
the SLEC. The SLEC and Mission 
Management exchange service requests 
and service management reports over the 
service management interface. These 
service requests and management reports 
are used to: (1) configure/monitor the 
ground side sf the RF link and Space 
Link protocol processing associated with 
the interface between the SLEC and the 
Spacecraft; (2) configure/monitor data 
handling within the SLEC; and (3) 
configure/monitor service delivery 
parameters for the interfaces between the 
SLEC and ground applications. 

In addition, the Mission Management 
establishes an association with the 
Onboard Management component of the 
Spacecraft to configure and monitor the 
spacecraft side of the interface. This 
association uses the same set of 
communication services that other 
mission applications use. Figure 2 
illustrates the associations and interfaces 
involved in providing the SLE Services. 

Figure 2 - SLE Associations and Interfaces 
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Cross Support Concepts 

SLE sewices provide access to the 
ground ternination of Space Link 
services from a remote ground-based 
system. They extend the various Space 
Link services as defined in CCSDS Space 

ations. This "extension" 
has thee  aspects: diswnce, infomation, 
and time, An SLE service may be 
completed at a location geogaphically 
sepmated from the place where the lR4F 
signal is rmeived. Infomation is added 
to the Space Link Service Data Units (Sk- 

o compensate for the use of 
 oma at ion over the Space Link 

or infomation about conditions at the 
time of receipt. Information may also be 
added to ensure the data will be useful at 
a later time. The added information is 
called "annotation." 

The systems performing an SLE service 
may belong to different entities. These 
entities may include a different 
organization within the mission's own 
Space Agency or an organization from a 
different Space Agency. The supporting 
organizations may be of varying size or 

structure (e.g., Space Agency, space 
flight center, facility). The notion of 
cross support can be generalized to any 
situation in which multiple organizations 
are involved in supplying SkE Semices. 

As illustrated in figure 3, the systems 
performing an SLE service are grouped 
into Service Complexes by the 
organizations that implement them. Each 
sewice complex has two components, a 
Service Provision component and a 
management component. The Service 
Provision component contains the 
processing functions implemented by that 
Service Complex. The management 
component manages the Service 
Provision component. The management 
of an SLE Service is distributed between 
Service Complexes and the Mission. The 
management component of a Service 
Complex is called Complex Management. 
The component of Mission Management 
responsible for management of SLE 
services is called Utilization Management. 
Service Management is accomplished 
through the manage'ment of the functions 
performed by the individual Sewice 
Complexes that provide the SEE services. 

( Space Link Extension Component 

Figure 3 - SLEC Complex Interfaces 
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If a service is provided by multiple 
Service Complexes, Utilization 
Management coordinates with Complex 
Management in the multiple Service 
Complexes to provide the services 
required by a mission. Utilization 
Management must also coordinate and 
resolve conflict among multiple service 
users. Complex Management represents 
the: functions performed within the 
Service Complex in a standard way, in 

s of the SHgE services provided by the 
complex (not in terms of the equipment 
used to provide those services), and 
without Service Complex-internal details. 
Complex Management provides the 
"firewall" that hides the complexity of the 
Service Complex. 

Cross Support Services 

Cross support may occur between ground 
applications and the SLEC. It may also 
occur between Service Complexes within 
the SLEC. The SEEC builds on the 
Space Link Services by standardizing the 
SLE and Service Management protocols 
and services. Such standardization 
allows a mission to interface with the 
SLEC, concatenating SLE services by 
interconnecting Service Complexes 
within the SLEC, no matter how or 
where the services are implemented. The 
SLE Services support both the Advanced 
Orbiting Systems (AOS) and 
Conventional Systems, Packet Telemetry 
(PT) and Telecommand (TC). The 
following list identifies the SEE services: 

Return All Frames (AOS and PT) 
Return Insert (AOS) 

* Master Channel Frames (AOS and 
PT) 
Master Channel Frame Secondary 
Header (PT) 

* Master Channel Operations Control 
Field (PT) 

* Virtual Channel Frame Secondary 
Header (PT) 
Virtual Channel Operations Control 
Field (AOS and PT) 
Return Virtual Channel Access (AOS 
and PT) 
Return Bitstream (AOS) 

Return Space Packet (AOS and PT) 
Data Set Processing ( A m  and PT) 
Return Internet (AOS) 

* Forward Virtual Channel Access 
(AQS) 
Frame Data Routing (TC) 
Forward Bitstream (AOS) 
Forward Space Packet (AOS and TC) 

0 Forward Primary Header plus VCDU 
(AOS and TC) 
Telecommand F m e  flC) 
Forward coded \rea>i~ (AOS) 
CETU (TC) 
Forward Internet (AOS) - 
Forward Insert (AOS) 

Cross Support Scenario 

An example of cross support is illustrated 
in Figure 4. In this example, Agency A 
sends data from its spacecraft to multiple 
ground stations, which perform all data 
processing functions through the 
extraction of Frame Data. However, not 
all these ground stations belong to 
Agency A. The data is also transmitted to 
a ground station owned by Agency B 
which processes the data in two separate 
complexes. Essentially, the first complex 
performs the Space Link processing and 
delivers all frames to the second. Both 
Agencies deliver space Packets to Agency 
A's Data Processing Complex. While 
this does not affect the service interface, it 
may affect the management interfaces 
between the Agencies. 

Ground Station 1 

Ground Station 2 

Figure 4 - Cross Support Example 



Gross Support Lifecycle 

Cross support of a mission involves a 
Support Contract between Agencies. A 
Support Contract is an agreement 
between a mission and one or more 
Agencies providing cross support. The 
Support Contract life cycle is divided 
into four phases: Agreement, 
Negotiation, Implementation, and 
Utilization. 

The Agreement phase consists of the 
early interactions that set the stage for 
the technical definition of the cross 
support. The Agencies agree on 
objectives of Service Management 
interface and legal and financial 
responsibilities. 

During the Negotiation phase, in the 
Support Contract is negotiated by the 
Agencies. It defines the services to be 
supported by the Service Complex over 
the lifetime of the Support Contract. 
The contract establishes the outer 
bounds of resources accessible by, and 
privileges extended to, the mission. 

The Implementation phase is the time 
allowed for the Service Complexes to 
acquire, develop, and configure the 
resources necessary to satisfy the 
Support Contract. The Service 
Complexes perform testing to ensure 
conformance with CCSDS standards 
and compatibility with peer processes. 

During the Utilization phase, a Service 
Complex provides one or more Service 
Packages to the mission. A Service 
Package consists of the service 
instances and channels in a single 
service complex that provide all or part 
of a service to a user. A Service 
Package duration corresponds to a 
Space Link session, or a "Pass." 

Each Service Package has four phases: 
Preparation, Setup, Execution, and 
Debrief. Different Service Packages 
may be in different phases 
concurrently. For each Service 
Package the following actions occur: 

Preparation phase - Parameter 
values are selected for all 
parameters within bounds of service 
specified during the Negotiation 
phase including any schedule 
information applicable to a 
particular upcoming Execution 
phase. 

Setup phase - Initiation of a 
service, testing of service 
interfaces, and refinement of service 
parameters are perfomed by the 
Service Complex to ensure that the 
service selected during the 
Preparation phase can actually be 
provided during the upcoming 
Execution phase. 

Execution phase - Exchange of 
space data or the delivery of event, 
alarm, and status reports may take 
place between Service Complexes 
and between a Service Complex and 
a user. 

Debrief phase - Accounting and 
performance information about the 
Service Package Execution Phase is 
delivered to Service Management 
and/or the service user 

Complementary CCSDS Work 

A CCSDS Report, S t a n d a r d  
Terminology, Conventions, and 
Methodology (TCM) (CCSDS, 1994c), 
provides terminology and conventions 
appropriate to the development of 
CCSDS Space Link Extension 
Services. 

The TCM establishes a common 
vocabulary based on internationally 
standard terms and conventions for 
describing systems and their 
interactions, from conceptual level 
through the level at which specific 
technologies, protocols, and 
applications are applied to the 
d e v e l o p m e n t  of CCSDS 
recommendations. It specifies the use 
of Abstract Service Definition 



Conventions (ASDC) (ISO/IEC, 
1992), a standard set of conventions 
that complement the better-known 
International Organization for 
Standardization (ISO) Open System 
Interconnection (OSI) service definition 
conventions. This common vocabulary 
and methodology can be used as a 
foundation for expressing concepts of 
operation and architectural 
specifications, leading to the definition 
of specific SLE Services and protocol 
specifications. All SLE Cross Support 
documents adhere to the TCM. 

A Reference Model is also being 
developed by CCSDS for use in defining 
SLE services. The SLE Reference Model 
(CCSDS, 1994b) provides a common 
basis for the development of SLE Service 
recommendations. It provides the 
reference for maintaining consistency 
between all SLE Services. It provides 
descriptions as well as the provision of 
multiple SLE Services. The Reference 
Model also shows the relationships 
among the SLE services, the Space Link 
services that they extend, and the ground 
communication services on which they 
depend. 

The Reference Model defines the 
common functionality, and provides the 
descriptive tools to specify service- 
specific functionality for a Service 
Complex. Examples of Service Complex 
functionality include: extensions to 
communication functions (e.g., 
annotation, addressing); data handling 
functions (e.g., data capture, post-pass 
retrieval); and management functions 
(e.g., Pass set-up, fault isolation). 

CCSDS is currently working on the 
service specification for a single SLE 
Service. The Return All Frames service 
specification (CCSDS, 1994d) describes 
the most basic SLE service in the return 
(space-to-ground) direction. The Return 
All Frames service acquires, 
demodulates, frame-synchronizes, and 
decodes all CCSDS link layer frames 
(Packet Telemetry Transfer Frames or 
Virtual Channel Data Units) of a physical 

channel and delivers those frames to the 
users of the service. The service 
provides both on-line (i.e., near real time) 
and off-line (i.e., delayed or buffered) 
data transfer modes to accommodate the 
variety of access methods typical of actual 
space mission operations scenarios. The 
Return All Frames service is summarized 
in a companion SpaceOps '94 paper 
(Uhrig et al., 1994). 

Future Work 

CCSDS will publish Green Bdoks for the 
Standard Terminology, Conventions, and 
Methodology and Cross Support Concept 
documents and Blue Books for the 
Reference Model and Return All Frames 
Service Specification documents. 
CCSDS Panel 3 also expects to develop 
service specification Blue Books for all 
Space Link Extension cross support 
services. 
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ABSTRACT 

Existing Consultative Committee for Space 
Data Systems (CCSDS) Recommendations 
for Telemetry Channel Coding, Packet 
Telemetry, Advanced Orbiting Systems, and 
Telecommand have facilitated cross-support 
between Agencies by standardizing the link 
between spacecraft and ground terminal. 
CCSDS is currently defining a set of Space 
Link Extension (SLE) services that will 
enable remote science and mission 
operations facilities to access the ground 
termination of the Space Link services in a 
standard manner. The first SLE service to 
be defined.is the Return All Frames (RAF) 
service. The RAF service delivers all 
CCSDS link-layer frames received on a 
single space link physical channel. The 
service provides both on-line and off-line 
data transfer modes to accommodate the 
variety of access methods typical of space 
mission operations. This paper describes the 
RAF service as of the Summer of 1994. It 
characterizes the behavior of the service as 
seen across the interface between the user 
and the service and gives an overview of the 
interactions involved in setting up and 
operating the service in a cross-support 
environment. 

INTRODUCTION 

Widespread acceptance of existing CCSDS 
Recommendations on Telemetry Channel 
Coding (CCSDS, 1992a), Packet Telemetry 
(CCSDS, 1992c), Advanced Orbiting 

Systems (CCSDS, 1992d), and Tele- 
command (CCSDS, 1987a; CCSDS, 1992b; 
CCSDS, 1991; CCSDS, 1987b) has 
facilitated cross-support between Agencies 
by standardizing the link between a 
spacecraft and a ground terminal. However, 
significant impediments to cross-support 
remain because the scope of those 
Recommendations does not include the link 
between the ground terminal and other 
elements of the ground data system. 
CCSDS is addressing that lack through the 
definition of a set of Space Link Extension 
(SLE) services that will enable remote 
science and mission operations facilities to 
access the ground termination of the Space 
Link services in a standard way. 

The most basic SLE service in the return 
(space-to-ground) direction is the Return All 
Frames (RAF) service. Provision of the 
RAF service involves the acquisition, 
demodulation, frame synchronization, and 
error detection/correction of all CCSDS 
link-layer frames of a physical channel, and 
the delivery of those frames across terrestrial 
networks to the users of the service. Frame 
is the term used in this paper as a common 
name for the various CCSDS data link 
protocol data units.1 The users of the RAF 
service split the all-frames data stream into 

l ~ h e  Version 1 return link frame is formally 
known as the Packet Telemetry Transfer 
Frame, and the Version 2 frame is formally 
known as the (Coded) Virtual Channel Data 
Unit. 



subsets based on master channels and virtual 
channels, and extract various data products 
from those channels, as defined in (CCSDS, 
1992c; CCSDS, 1992d) and forthcoming 
Recommendations for other return SLE 
services. 

The RAF service provides both on-line and 
off-line data transfer modes to accommodate 
the variety of access methods typical of 
space mission operations. An online service 
is one that delivers its service data to the 
user at (nearly) the same time that the data 
are received from the space link. An offline 
service is one in which the service data are 
delivered at some time after that at which 
the data crossed the space link. 

CCSDS is in the process of defining the 
RAF service in detail. The RAF service is 
the first of the SLE services for which a 
draft Recommendation is being developed. 
CCSDS expects to submit the resulting 
Recommendation for review and approval 
by its member space agencies in 1995. 
Recommendations for the other SLE 
services will follow. 

This paper describes the CCSDS Return All 
Frames SLE service as it is defined as of the 
Summer of 1994. First, the RAF service 
environment is presented. The environment 
identifies the various participants in the 
provision of the RAF service. Next, the 
behavior of the RAF service is described, in 
terms of the interactions between the user 
and provider of the service. Finally, the 
paper briefly introduces the formal 
techniques being used to describe the RAF 
and other SLE services. 

RAF SERVICE ENVIRONMENT 

As defined in the SLE cross-support concept 
Green Book (CCSDS, 1994a) and presented 
in the companion SpaceOps '94 paper 
(Stallings et al., 1994), all SLE services are 
defined within the context of a s p a c e  
mission and an SLE Component that s u p  
ports that mission. Figure 1 illustrates the 
Return All Frames service environment, 
which is a specific case of the general SLE 
service environment. In the terminology of 
the SLE reference model (CCSDS, 1994b), 
the various entities illustrated in Figure 1 are 
different types of SLE objects. The RAF 
Service User, the Mission Spacecraft, and 
the mission's Space Link Extension 
Utilization Management (SLE-UM - that 
part of mission management responsible for 
managing the acquisition and use of SLE 
services on behalf of the mission) are objects 
of the space mission. The SLE Component 
comprises those functions and systems that 
provide standard SLE services to the 
mission. 

In the general case, the SLE component 
may consist of multiple SLE complexes, 
where an SLE complex is  a collection of 
SLE service capabilities operating in an 
integrated management domain (as seen by 
the SLE-UM). However, the RAF service, 
being the most basic SLE service, will be 
provided by a single SLE complex, referred 
to in this paper as the RAF Service Provider. 
Although the SLE service concept permits 
an SLE complex to be geographically- 
distributed, it is most convenient to think of 
the RAF Service Provider as  being 
completely located at a ground station. 

f RAF Service Provider ] 

Figure 1. RAF Service Environment 



The RAF Service Provider has an RF 
interface with the mission spacecraft, service 
control and data interfaces with the service 
user, and a management interface with the 
SLE-UM. The functions of the RAF Service 
Provider are formally modeled as two 
functional unit (FU) objects: the RF 
Demodulation (RFD) FU and the Acquire 
Frames FU. The RFD FU comprises the 
functions of acquiring the return RF signal 
from the  mission spacecraft,  and 
demodulating the signal to recover a stream 
of digital symbols. The Acquire Frames FU 
processes the symbol stream to synchronize 
upon and capture CCSDS frames, performs 
error detection and correction, and transfers 
the frames to the RAF Service ~se r ( s ) .2  
Frame synchronization and error detection 
and correction are performed in accordance 
with provisions of the Telemetry Channel 
Coding Blue Book (CCSDS, 1992a). The 
SLE complex management function of the 
RAF Service Provider coordinates the 
operation of the RFD FU and the Acquire 
Frames FU. 

BEHAVIOR OF THE RAF SERVICE 

The CCSDS RAF service delivers all frames 
from a single space link channel, including 
fill frames (which by definition have no data 
content and exist only to maintain 
synchronization on the link). A space link 
channel is  a physical channel carrying a 
synchronous stream of frames, separated by 
attached sync markers. 

The wide variety of mission needs and 
Agency capabilities requires flexibility in 
the delivery of the RAF service. This 
flexibility manifests itself through different 
requirementsfcapabilities in the areas of: 

Received data quality: what constitutes 
data that are usable bylacceptable to 
the user of the service 

2 ~ l t h o u g h  only one RAF Service User is 
illustrated in Figure 1, there may be multiple 
users of RAF service receiving the same 
stream of data. 

Data delivery: the combination of 
reliability, timeliness, and complete- 
ness that best fits the user's needs 
Service session initiation: whether the 
service session (i.e., the connection 
between the service user and service 
provider for the purpose of transferring 
service data) is  initiated by the 
provider or the user 
Service status information: how much 
information about the progress of the 
service is needed/wanted by the user, 
and the mechanism for delivering that 
information 

The following sections describes the options 
available in these areas. 

Received Data Quality Options 

This area contains the options for service 
delivery that are affected by the quality of 
the frames acquired by the RAF Service 
Provider. These options are offered to meet 
the varying needs of the user community, 
and to match their ability to deal with 
errored data. Because this is the all frames 
service, each of these options deals with 
entities that have been frame synchronized 
and thus identified as frames.3 The RAF 
service supports two options for received 
data quality: Correct Frames Only, and 
Correct and Errored Frames. 

31n particular, the RAF Service Recommen- 
dation does not provide for the delivery of 
data symbols or bits which cannot be frame 
synchronized. It is recognized that, in cer- 
tain rare cases, anomalies in flight or ground 
systems may lead to conditions under which 
the RAF service can not deliver any data at 
all because the acquired data stream does not 
contain properly-formed frames. Implemen- 
tors of the RAF service are well-advised to 
provide an 'escape mechanism' for the cap- 
ture and possible delivery of such anoma- 
lous data to support troubleshooting and/or 
extraordinary data recovery methods. How- 
ever, the handling of such anomalous situa- 
tions is outside the scope of the RAF Service 
Recommendation. 



The Correct Frames Only option causes only 
frames that have no detected errors to be 
delivered. This option is available only 
when it is known beforehand (either due to 
long-term service agreements or  by 
schedule) that the frames on the channel are 
either all Reed-Solomon (R-S) -encoded or 
all cyclic redundancy code (CRC) -protected 
frames. R-S-encoded frames that 
successfully R-S decode are transferred, 
without the R-S check symbols, to the user. 
R-S-encoded frames that do not R-S decode 
are discarded. CRC-protected frames that 
show no CRC errors are transferred to the 
user as complete frames. CRC-protected 
frames that register CRC errors are 
discarded. 

The Correct and Errored Frames option 
causes frames to be delivered, regardless 
of received quality. This option exists for: 

Space link channels whose frames 
carry data which contains sufficient 
"internal coding" that the user is able 
to reconstruct (through mission-unique 
methods) the data content, or 
Space link channels that carry a mix of 
R-S- and CRC-encoded frames. 

The Correct and Errored Frames option 
might also be useful in helping missions to 
identify flight system and ground system 
problems. 

For space link channels that are known 
beforehand to carry only R-S encoded 
frames, frames that successfully R-S decode 
are transferred (without the R-S check 
symbols) to the user with the indication 
R-S-good, and frames that do  not 
successfully R-S decode are transferred as 
complete, pre-decoded frames with the 
indication R-S-bad. 

For space link channels that are known 
beforehand to carry only CRC encoded 
frames, frames that have no CRC errors are 
transferred to the user with the indication 
CRC-good, and frames that have CRC 
errors are transferred with the indication 
CRC-bad. 

For space link channels that may be carrying 
mixed R-S and CRC encoded frames, frames 
that are successfully R-S decoded are 
transferred (without the R-S check symbols) 
to the user with the indication W-S-good. 
Frames that are not successfully R-S 
decoded are checked for CRC errors, using 
the as-received (pre-R-S-decoded) complete 
frames. Frames that have no CRC errors are 
transferred to the user with the indication 
CRC-good, and frames that have CRC 
errors are transferred with the indication 
CRC-bad. 

CCSDS recommendations for processing 
RAF service into higher-strata services (such 
as SLE packet services) are predicated on 
the use of the Correct Frames Only option. 
Since processing of errored frames requires 
mission-unique methods, the ability to 
process such frames is by definition not a 
part of the standard SLE service suite. 

Data Delivery Options 

The data delivery options reflect different 
levels of reliability, completeness, and 
timeliness. When complete, the RAF 
service specification will define online and 
offline data delivery options. As of this 
writing, only two online options, Complete 
delivery and Timely delivery, have been 
defined.4 

An RAF service instance with the Complete 
delivery option delivers the frames in the 
sequence received, with no ground-induced 
errors, with no frames omitted, and with 
possible large delays. The RAF Service 
Provider buffers the data to compensate for 
data rate mismatch and/or retransmissions. 
The user can specify a maximum delay, 
Tmax. If Tmax is exceeded, the service 
informs the user that Tmax has been 

~ C C S D S  has developed recommendations 
for the use of isochronous virtual channels 
(CCSDS, 1992d). As of this writing, 
CCSDS is determining if these recommen- 
dations result in a requirement for an 
isochronous delivery option for the RAF 
service. If so, it will be added to the online 
delivery options. 



exceeded. When the delay drops below 
Tmax, the service informs the user that the 
delay has been recovered. 

An RAF service instance with the Timely 
delivery option delivers the frames in the 
sequence received, with no ground-induced 
errors, possibly with frames omitted, and 
with an upper bound on maximum delay, 
T-. Due to the nature of the RAF service, 
the data rate of delivery of the RAF service 
is normally a steady-state rate equal to the 
rate of the underlying space link channel 
plus some SLE overhead increment. As 
long as the rate of the RAF service can be 
kept at or  below this steady-state rate, 
frames will be forwarded without buffering 
in the RAF Service Provider. However, if 
frames begin to be buffered in the RAF 
Service Provider (for example, because of 
excessive retransmissions to the service 
user), their delivery latency will grow. If 
this latency exceeds the maximum delay 
parameter Tmax, the RAF service drops an 
appropriate number of frames to drop below 
T,, delay and informs the user that frames 
have been dropped. 

Service Session Initiation Options 

Service session initiation options describe 
the different options by which user and 
provider connect to support the provision of 
RAF service. When complete, the RAF 
service specification will define options for 
initiating online and offline service sessions. 
As of this writing, only the online options 
have been defined, which are Online 
Provider-Initiated and Online User- 
Initiated. 

The Online Provider-Initiated option allows 
the RAF Service Provider to set up the 
connection to the user, based on the 
schedule for the activation of the space link. 
The preconditions for providing an instance 
of RAF service using this option are: (1) that 
the RAF Service Provider has in its 
configuration data base the identification, 
addressing information, startup data quality 
options, and startup data delivery options for 
the user(s) of the RAF service, (2) that the 
RAF Service Provider has been scheduled to 
receive the space link channel associated 

with the RAF service instance, and (3) that 
the RAF Service Provider has been 
scheduled to provide an RAF provider- 
initiated service instance to the particular 
user(s). 

As controlled by the scheduled start time of 
the service instance, the RAF Service 
Provider connects to the service user(s) and 
verifies the user's ability to receive the 
service. Once the service session has been 
initiated, either user or provider can 
terminate the session, but the nominal 
responsibility for closing the session lies 
with the service provider, which it does after 
the space link channel has been deactivated 
and all received data has been delivered to 
the user. 

The Online User-Initiated option allows the 
RAF Service User to set up the connection 
to the RAF Service Provider within a time 
window previously scheduled with respect 
to the scheduled activation of the space link. 
The preconditions for providing an instance 
of RAF service using this option are (1) that 
the RAF Service Provider has in its 
configuration database the identity of' users 
permitted to receive the RAF service, (2) 
that the RAF Service Provider has been 
scheduled to receive the space link channel 
associated with the RAF service instance, 
and (3) that the RAF service provider has 
been scheduled to provide an RAF user- 
initiated service instance to the user. The 
user-initiated service instance can be 
scheduled to begin at any time after some 
specified time prior to the start of the space 
link session (the start time of the schedule 
window is determined on an agencylmission 
basis). The end time of the scheduled 
service instance can be scheduled at any 
time from the scheduled start of the service 
instance up until some specified time after 
the scheduled end of the space link session. 

To initiate RAF service using the Online 
User-Initiated option, the service user 
connects to the Service Provider, in the 
process identifying and authenticating itself 
as a legitimate user of the RAF service 
associated with a particular space link 
channel. Service session requests associated 
with a specific space link session are valid 



only during the scheduled service instance. 
If a service user attempts to initiate the 
service session before the start time of the 
service instance, the service session 
initiation attempt will be denied by the RAF 
Service Provider. A service user may 
initiate a service session at any time during 
the scheduled service instance. This 
includes service sessions that are initiated 
after the start of the associated space link 
session. Service sessions may be suspended 
and resumed during the scheduled service 
instance. Figure 2 illustrates the 
relationships among the space link session, 
scheduled service instance, a possible 
service session, and the resulting period of 
data transfer for the Online User-Initiated 
option. According to the figure, the service 
session is initiated after the start of the 
scheduled service instance, but before the 
actual start of the space link session. In this 
example, the service instance is scheduled to 
go some time beyond the end of the space 
link session to allow for a long buffer 
drawdown when a Complete delivery option 
is selected. The actual service session 
extends beyond the end of the space link 
session, but terminates before the scheduled 
end of the service instance. The resulting 
period of data transfer begins at the start of 
the space link session and ends at the end of 
the service session. 

Once the user-initiated service session has 
been initiated, either user or provider can 
terminate the session, but the nominal 
responsibility for closing the user-initiated 

session lies with the service user. However, 
if the service session extends until the end of 
the scheduled service instance, the service 
session is terminated by the RAF Service 
Provider. 

Service Instance Status Information. 
Service instance status information is  
provided to the SLE-UM and the user of the 
service during the execution of the service 
instance. Service instance status informa- 
tion is conveyed to the RAF service user for 
the purpase of providing information 
necessary for the proper interpretation and 
processing of the RAF service data units. 
Service instance status information is  
conveyed to the SLE-UM for the purpose of 
correlating the performance of the RAF 
service with the performance of the 
underlying RF link and the performance of 
multiple higher-strata services that are 
derived from the data contained in the 
frames delivered by the RAF service. 

When complete, the  RAF service 
Recommendation will define .status 
information associated with both online and 
offline service instances. As of this writing, 
only the online service instance status 
information has been addressed. 

Service instance status information falls into 
three categories: 

Annotation data, which are appended 
to the frames themselves 

r scheduled service instance starVstop 

r service session startlstop I 1 
space link session starVstop 

Time 

period of data transfer 4 
Figure 2 Relationships among Space Link Session, Scheduled Service Instance, Service 

Session, and Period of Data Transfer for the Online User-Initiated Mode 



Frame-sequence-dependent status data 
which conveys information about 
events of interest occurring between 
specific frames 
Frame-sequence-independent status 
data which conveys information about 
trends that transcend individual frames 

Annotation and frame-sequence-dependent 
data are conveyed to the service user so that 
the user may correctly interpret and process 
the sequence of frames received. Frame- 
sequence-independent data are of interest to 
both the user of the service and to the 
SLE-UM: to the user, they serve as a means 
of accounting for the service received; to the 
SLE-UM, they are a source of information 
that can be  correlated with status 
information about related services and RF 
links. 

The core annotation data to be appended to 
every frame consists of: 

The ground receipt time of the frame 
The sequence quality of the frame (i.e., 
the indication of whether the frame is 
the direct successor of the previous 
frame on the space link channel) 
The quality of the frame (e.g., R-S bad, 
CRC good) 

In addition to the above core annotation 
data, CCSDS is investigating methods to 
allow service providers to flexibly add 
annotation data that may be required on a 
mission or Agency basis. 

The frame-sequence-dependent information 
that has been thus far identified consists of: 

Loss-of-synchronization notifications 
that inform the user in a timely fashion 
that frames are missing because of loss 
of synchronization (and not, for 
instance, because of failure of ground 
processing or communications) 
Data delivery threshold notifications: 
- When the Complete data delivery 

option is  in effect, the service 
informs the user when a user- 
specified delay threshold has been 

exceeded, and again (if and) when 
the delay has been recovered. 
When the Timely data delivery 
option is in effect, the service 
informs the user when a user- 
specified data latency threshold has 
been exceeded, and the number of 
frames that have been discarded in 
order to ensure the delivery of 
"fresh" data. 

As of this writing, frame-sequence- 
independent status information is still being 
defined in the categories of periodic reports, 
event notifications, post-pass debriefing 
reports, and journals. 

FORMAL SPECIFICATION OF THE 
RAF SERVICE 

The SLE services, including the RAF 
service, are formally defined within a 
framework based on the International 
Organization for Standardization's (ISO) 
Abstract Service Definition Conventions 
(ASDC) (ISO/IEC, 1992). ASDC provides 
a conceptual model for constructing systems 
of abstract-objects which interact with each 
other via abstract-ports. The interactions 
are defined in terms of abstract-operations, 
and abstract-services are defined in terms of 
groupings of abstract-operations over one or 
more abstract-ports. ASDC provides a rich 
set of concepts and conventions for defining 
the various roles that the components of the 
SLE architecture may play, such as 
user/provider, initiator/responder, invoker/ 
performer, and consumer/supplier. ASDC 
also provides a formal specification 
methodology using Abstract Syntax 
Notation #1 (ASN.l) macros, which serve as 
templates for the definition of the various 
elements of the model. 

CCSDS has adapted the ASDC to the SLE 
environment, defining special subtypes of 
abstract-objects such as SLE complexes and 
functional units. CCSDS has also adapted 
the ASDC ASN.l macros to include 
parameters peculiar to the SLE environment. 
The SLE reference model (CCSDS, 1994b) 
documents the SLE adaptation of ASDC. 



Among other things, the reference model 
defines the set of ASN.1 macros that must 
be populated for each of the SLE service 
specifications. Thus, the CCSDS RAF 
Recommendation will contain ASN. 1 
macro-based specifications that complement 
the "plain English" definition of the RAF 
service. 

SUMMARY 

CCSDS is currently defining the Return All 
Frames service, one of a family of Space 
Link Extension services that will enable 
remote science and mission operations 
facilities to access the ground termination of 
the CCSDS Space Link services in a 
standard way. The RAF service provides all 
CCSDS frames received on a single space 
link channel. Provisions in the current draft 
of the RAF service specification include 
different service options to allow users to 
tailor the service to individual processing 
capabilities and operational philosophies. 
Several forms of service status information 
are provided to report on the status of 
individual frames, time-critical events, and 
long-term service trends. Current plans are 
for the CCSDS Return All Frames Service 
Specification Recommendation to be 
submitted for CCSDS member Agency 
approval in 1995. 
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Abstract 

Many of today's low earth orbiting spacecraft are using the Consultative Committee 
for Space Data Systems (CCSDS) protocol for better optimization of down link RF bandwidth 
and onboard storage space. However, most of the associated housekeeping data has 
continued to be generated and down linked in a synchronous, Time Division Multiplexed 
(TDM) fashion. There are many economies that the CCSDS protocol will allow to better 
utilize the available bandwidth and storage space in order to optimize the housekeeping data . 
for use in operational trending and analysis work. By only outputting what is currently 
important or of interest, finer resolution of critical items can be obtained. This can be 
accomplished by better utilizing the normally allocated housekeeping data down link and 
storage areas rather than taking space reserved for science. 

Background 

This proposal began as a study to optimize the archival of spacecraft housekeeping 
data from the SAMPEX Small Explorer mission for use in long term data analysis and 
performance trending needs. As the study progressed, it became apparent that many of these 
optimization techniques could be put into the spacecraft itself by taking advantage of new 
advances in flight certified microprocessors and the options provided by the CCSDS protocol. 
Future missions could be programmed to detect most of the problems that the ground data 
systems currently look for and provide for higher resolution data to help in troubleshooting 
when a problem arises, filtering out unnecessary data when the spacecraft health is nominal. 

When health and safety data is processed and analyzed, some data that is stored 
onboard in the recorder is filtered out on the ground and discarded. As long as parameters 
remain constant and configurations don't change, this information is redundant and 
unnecessary. Other data is output synchronously at to slow a rate to be of any use for 
anomaly analysis. This data may give indications of a problem, but not enough information to 
know exactly what is going on, or it may mask a problem for weeks or months, even years 
due too periodic sampling of the data that may be asynchronous to brief anomalous events. 

It should be noted that attitude determination was not addressed in this study even 
though attitude data is usually considered a subset of the housekeeping data. Attitude data 



packetization algorithms should be specified so as to meet science data processing 
requirements rather than performance analysis requirements that are usually less stringent. 

Types of housekeeping data 

The housekeeping data for SAMPEX fell into one of six different general categories: 
discrete counters, digital status data, analog data, flight software memory dumps, flight 
software memory dwell data and science quicklook packets. Time was not included in this 
study as a separate category as it is a parameter in every CCSDS packet header and therefore 
usually is not a part of the application data field. Obviously, time must be transmitted in such 
a fashion as to know when each telemetered data value was sampled. 

The first category, discrete counters, is the primary means to monitor and diagnose the 
performance of flight software andlor the command and data handling unit. This data falls 
into two general subcategories. These are counters that infrequently increment and those 
which constantly increment. The counters that infrequently increment include command 
execution counters, command execution error counters and miscellaneous error counters. 
These types of counters are of interest only when they change value. The counters that 
constantly increment include time, task execution counters, and data storage accounting 
statistics. Some of these counters are always of interest, some are only of interest during 
flight software diagnostic testing, and some are only of interest during real-time. 

The second category, digital status data, consists of configuration data (items that can 
be modified by command), error flags, environmental flags (generally indicate some orbital 
characteristic such as day or night delimiters) and informational data. This data is generally . 
supplementary data that helps to determine when something happened and, like the 
infrequently incrementing counters mentioned above, are of interest only when they change. 
Examples of this type of data include spacecraft event messages, calculated onboard table 
checksums, flight software load and dump information and error handler takeover reasons. 

The third category, analog telemetry, is probably the most important data for 
monitoring the health and safety of the spacecraft. What is key here is getting the right amount 
of data to detect problems or degradation without monopolizing the onboard data storage space 
or the down link bandwidth. 

The next two categories, flight software memory dumps and flight software memory 
dwell data, are generally used for flight software maintenance purposes and would probably 
only be output on receipt of a spacecraft command. Handling of this data is an entire subject 
in itself and is not specifically referenced in this paper. 

The last category, quicklook data, is generally handled by onboard microcomputers 
and, for SAMPEX, is only output on receipt of a command. It was only included in the 
SAMPEX study since it is the only source of instrument housekeeping data available in the 
control center. These data packets consist of a one orbit sample of various instrument rate 
counters and housekeeping status. 

Data Processing Functions for Data Analysis and Performance Trending 

The data processing functions done for data analysis and performance trending are 
very similar to the data processing steps for science data analysis. The first step involves a 
quality and accounting assessment to ensure that an adequate amount of data is recovered for 
data analysis and performance trending. The raw data is generally archived to provide a 



backup in the event a data processing error is discovered in the future. Optional data merging 
may be done to combine real-time and playback data or to replace bad quality data with a 
better, retransmitted value. Finally, the data can be sorted by function or subsystem. 

The next step generally involves ingesting the data values and affixed time-tags into a 
database for later access by analysis tools. This step includes processing the data and 
monitoring for high and low limit violations, verifying configuration and discrete state checks 
and optionally performing engineering unit conversions (if the storage database does not 
provide this function). At this point the data may also be processed to provide 
maximum/mean/minimum values of analog values for long term performance trending. This 
data may be processed for single orbits, daily or some other periodic unit of time. 

After the data has been processed and stored in an on-line database, routine data 
analysis can be performed. This routine analysis function can generally be automated and may 
include creation of x/y plots for the thermal, communications or power subsystem as well as 
special processing for power budget monitoring and analysis or for attitude determination and 
control system verification. 

Finally, some sort of orbit propagation may be done to provide a definitive history of 
actual spacecraft position over time. This data can be used both in subsequent anomaly 
investigation or for long term performance trending and is generally needed to isolate 
spacecraft problems that may be due to an environmental factor. In most circumstances, orbit 
accuracy requirements for science data processing are tighter than that required for 
performance analysis and therefore a commercial off the shelf orbit propagator, or ephemeri 
data provided for science data analysis, is sufficient. This data must be stored, or made 
available, to any plotting packages that would have access to the on-line spacecraft database 
and be used for analysis and trending. 

Special data processing may then be required to further analyze any spacecraft 
anomalies. Also, short and long term trending may be done. Short term trending may involve 
comparing a sample orbit signature of a telemetry point with a comparable earlier orbit 
signature to monitor for degradation or orbit patterns. Long term trending may involve such 
things as plotting minimum, mean and maximum values of telemetq points (1 point per orbit 
or day, etc.) over a longer time span to monitor seasonal or longer term trends. Long term 
earth projection plots niay be used to monitor single event upsets or other environmental 
effects on spacecraft performance. 

Onboard packetization strategies 

For the data that is only of interest when it changes, such as command execution 
counters, command execution error counters, other error counters and digital status data, 
onboard storage space could be saved if this data were stored only when something changes. 
Depending on how many telemetry points fall into this category, one or two packet formats 
(more if large amounts of these points exist or if separation by subsystem is desired) should 
be specified. To save storage space if there are more than a few of these points, two packets 
should be defined separating data that is expected to periodically change and data that should 
never, or very rarely, change. 

This data could then be sampled synchronously onboard, formatted into a packet and 
compared to the previous sample. If the comparison showed a difference, the old and new (or 
just the new) packets could be stored. Else, the old packet could be discarded and the new 
packet saved for comparison with the next sample. The sampling rate should be frequent 
enough to provide the time of the change to within a few seconds and should also be frequent 



enough to catch every state transition. If a relay can be powered on and back off between 
samples, the ground operations team may never know that a transition occurred. If there is a 
concern of scheduling reads to quickly, the individual subsystem could maintain a history of 
the last few settings of the discrete and the associated times or just keep track of all transitions 
between readings and set a flag if more than one transition occurred since the last sampling. 

Finally, this data could also always come down in real-time, if there is enough down 
link bandwidth, or could be stored or down linked on command. This would provide the 
ground operations team a sanity check on the data to ensure that a change does not go 
undetected due to a lost packet. Another possibility is to treat some or all of these items as 
spacecraft events and issue an event message containing the telemetry mnemonic, the previous 
and current values and the time of the transition rather than store the full data packet that 
contains a sampling of all of the discrete, infrequently changing values. The configuration and 
counter packet(s) could then be available for storage or real-time down link on command in 
order to provide sanity checks. 

The next type of data is the frequently or constantly changing data. This category 
includes analog data, flight software task execution counters and data storage accounting 
statistics. Analog data, when synchronously stored, is generally compromised. By this, I 
mean that this data is usually stored at a rate that is to frequent when the spacecraft health is 
nominal and not frequent enough for analysis purposes when there is a spacecraft anomaly to 
investigate. 

One way to improve upon this is to take advantage of current flight certified onboard 
computer capabilities (usually required to take full advantage of the CCSDS protocol anyway) 
to move analog and discrete monitoring functions (limit, state and configuration checking) - 
from the ground data system to the spacecraft. This would give the spacecraft the ability to 
detect its own anomalies, take immediate command response to anticipated contingencies and 
provide higher resolution data for use in ground analysis when a discrepancy occurs. Analog 
data could be stored in a circular buffer onboard the spacecraft. This buffer would be sized to 
hold approximately one orbit, or other suitable time increment, of high resolution analog data. 
If a monitor violation is detected by the onboard computer, then the contents of the circular 
buffer, or an appropriate subset of that data, can be transferred to the data storage recorder for 
subsequent ground data analysis of the problem. During the rest of the time, this data could 
be filtered before being recorded such that enough data is always available to do performance 
trending, but higher resolution data is available for anomaly analysis. By allowing this 
circular buffer to be stored or down linked on command, daily high resolution or "typical 
orbit" plots could be maintained. Filtered data would then fill in the rest of the day. 

With a more sophisticated onboard computer, the function of calculating and saving 
the maximum, minimum and mean values for a given telemetry point, on a per orbit or other 
incremental period, could also be migrated to the spacecraft. This could be particularly useful 
for power system analysis, where it is often desired to identify when a current or voltage spike 
may have occurred. Currently this is like looking for a needle in a haystack as the 
synchronous data sampling either results in the spike not being recorded or in the inability to 
determine exactly how long the event actually occurred. By combining min./mean/max. data 
with high resolution data output when a monitor is violated, work on detecting, monitoring 
and isolating power spikes could be greatly enhanced. Also, min./mean/max. data could give 
a good, quick view of the spacecraft thermal performance. 

If the min./mean/max. data was sampled directly from the analog source, or the high 
resolution buffer, a better data set could be obtained onboard than could be calculated on the 
ground from the lower resolution, filtered data that would be stored onboard when spacecraft 
functions were nominal. This would result in better long term trending data. 



Flight software task execution counters are primarily used for diagnostic purposes. 
Since these counters have a possibility of rolling over multiple times each second, this data 
needs to be output at a high rate to be of any use. An output of delta values or messages per 
second, vice absolute counts, could be more useful. Also, since this data is really a diagnostic 
tool, it should be filtered out and only stored or down linked on command, when necessary. 
It is also possible to provide flags to indicate that software tasks are running and execution 
counters are incrementing. Actual counts would only be needed if trying to study 
environmental effects on task loading or to diagnose a new flight software patch. For 
example, on SAMPEX we attempted to see if flight software tasks were running at a 
significantly different load during ground contacts or when over the poles when science data 
output increased due to increased particle events. 

Data storage accounting statistics are generally only used during ground contacts to 
verify that the data stored onboard was completely captured on the ground during a recorder 
dump. Therefore, storage of this data is usually not necessary. However, it may be of 
interest to do a study of how often and when data is stored based on environmental factors. 
Therefore it may be desired to allow storage of this data in a fashion similar to the task 
execution counters mentioned above. 

Another way to save onboard storage space for constantly changing telemetry points is 
to increase the efficiency of CCSDS packetization by increasing the packet size. Each packet 
header requires 112 bits. Packet size can be increased by supercomming the data (multiple 
samples assembled within the same packet), however this requires that the ground data system 
have the capability to split the packet apart and extrapolate the time code. Another way to 
increase packet size is to specify packet contents based on output frequency rather than by - 

source. This allows fewer, larger packet types to be managed by the spacecraft, at a higher 
storage efficiency, but at the expense of being able to sort data by spacecraft telemetry source 
once on the ground. 

The final types of data packets are those which are stored and/or down linked only on 
command. This already implies that this data would only be generated when needed and, 
other than combining data packets if possible, no other optimization techniques are necessary. 

Implications to spacecraft data storage sizing 

Since many of the proposals in this paper suggest event driven rather than 
synchronous data output, it is now more difficult to optimally size the amount of storage space 
needed for housekeeping data. Science data storage space is not optimized if housekeeping 
data storage space is sized for the worst case. 

Therefore it is recommended that housekeeping storage space be sized to hold the 
expected amount of housekeeping data under nominal conditions, allowing for any additional 
storage space that may be desired to allow two or more down link opportunities for any 
particular data dump. Then some space could be reallocated from the science allotment, if 
needed, in order to store higher packet output rates generated when spacecraft algorithm's 
explained above increase the amount of housekeeping data saved. By sharing some science 
storage allocation, science data output can be maximized when spacecraft operation is 
nominal. This shared area could then be reallocated to housekeeping when spacecraft 
problems cause higher packet output rates to be needed. It may even be possible to set this up 
in a way that less valuable science data would be lost in the event of a problem. Even though 
this could result in periodic losses of some of the science data, it should allow more science to 
be recorded during nominal periods when the housekeeping data output is reduced to a 



minimum and could allow for more expedient detection and correction of small problems 
before they become big problems. 

Summary 

By taking advantage of the event driven nature of the CCSDS protocol and by 
migrating some of the basis data checks from the ground to the spacecraft, the output of 
spacecraft housekeeping data can be optimized to provide a more prudent balance with science 
data. By monitoring discrete telemetry, only information on state transitions or counter 
increments need be transmitted to the ground rather than synchronous output of redundant 
data. On command discrete telemetry packets can provide the ground with a sanity check. 
Also, by having the spacecraft monitor analog limits and subsystem configurations, analog 
data output can be throttled to provide increased data output rates when potential problems 
exist while filtering this output during nominal operations. By having the spacecraft calculate 
max./mean/min. data, long term trending of spacecraft performance can be greatly enhanced. 
Finally, by sharing recorder overflow space with science, optimum science output can be 
achieved when spacecraft performance is nominal and finer resolution housekeeping data can 
be output when there is an indication of a performance problem. 
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ABSTRACT 

In an environment characterized by decreasing 
budgets, limited system development time, and 
user needs for increased capabilities, the 
Mission Operations Division (MOD) at the 
National Aeronautics and Space Administration 
Goddard Space Flight Center initiated a new, 
cost-effective concept in developing its 
spacecraft ground data systems: the Mission 
Operations Center (MOC). In the MOC 
approach, key components are integrated into a 
comprehensive and cohesive spacecraft 
planning, monitoring, command, and control 
system with a single, state-of-the-art graphical 
user interface. The. MOD is currently 
implementing MOCs, which feature a common, 
reusable, and extendable system architecture, to 
support the X-Ray Timing Explorer (XTE), 
Tropical Rainfall Measuring Mission (TRMM), 
and Advanced Composition Explorer (ACE) 
missions. 

As a result of the MOC approach, mission 
operations are integrated, and users can, with a 
single system, perform real-time health and 
safety monitoring, real-time command and 
control, real-time attitude processing, real-time 
and predictive graphical spacecraft monitoring, 
trend analysis, mission planning and scheduling, 
command generation and management, network 
scheduling, guide star selection, and (using an 
expert system) spacecraft monitoring and fault 
isolation. The MOD is also implementing its 
test and training simulators under the new 
MOC management structure. 

This paper describes the MOC concept, the 
management approaches used in developing 
MOC systems, the technologies employed and 

the development process improvement 
initiatives applied in implementing MOC 
systems, and the expected benefits to both the 
user and the mission project in using the MOC 
approach. 

INTRODUCTION 

The National Aeronautics and Space 
Administration (NASA) Goddard Space Flight 
Center (GSFC) Mission Operations Division 
(MOD), in partnership with the Computer 
Sciences Corporation (CSC) Control Systems 
Technology Group (CSTG), developed the 
Mission Operations Center (MOC) concept to 
improve the MOD'S spacecraft ground data 
systems. The focus of this effort was to 
enhance system operability and increase 
functionality while lowering development and 
operational costs and shortening development 
time. 

Four key advances within and outside the MOD 
arena contributed to the development and 
refinement of the MOC concept: reengineering 
of the MOD mission operations concept, 
restructuring of management to a mission- 
oriented structure, industry development of 
enabling technologies, and application of 
improvements in system development 
processes. 

Reengineering of the MOD mission operations 
concept provided the framework for developing 
the MOC concept. Restructuring from a 
multimission to a mission-oriented management 
organization provided the vehicle for efficiently 
and effectively implementing the concept. 
Enabling technologies such as powerhl 
workstations and industry standards 



contributed to the feasibility of the concept. 
Improved system development processes in all 
life-cycle phases contributed to the cost- 
effectiveness of the concept. 

DEFINING THE MOC CONCEPT 

Driven by user demands for mission-unique 
systems with improved operability and 
increased functionality, mission profiles with 
accelerated spacecraft schedules, and NASA 
budgets in steady decline, the MOD 
reengineered its overall mission operations 
concept. This activity viewed mission 
operations from an MOD-wide level, with the 
goals of maximizing the operations that a single 
user can perform while minimizing system 
development time and reducing operational and 
development costs. The MOC concept makes 
significant strides toward achieving these goals. 

Before the MOC, the MOD developed ground 
data systems and conducted mission operations 
in host-based, multimission environments 
supported by separate, independent branch 
organizations. For example, the Control Center 
Systems Branch (CCSB) (GSFC Code 51 1) 
developed Payload Operations Control Centers 
and the Spacecraft Control Programs Branch 
(GSFC Code 514) developed mission planning 
and command management systems. As a result 
of the reengineering activity, which 
encompassed the operational fbnctionality of all 
of the MOD's independent systems, the MOC 
system was defined as an integrated, 
comprehensive, mission-unique system with a 
single user interface and the capabilities 
necessary to support the MOD's mission 
operations. 

With a MOC system, the user can, from a single 
workstation, perform traditional mission 
operations including real-time spacecraft health 
and safety monitoring, real-time spacecraft 
command and control, trend analysis, mission 
planning, command generation and 
management, and network scheduling as well as 
newly added operations such as mission 
operations planning and scheduling, real-time 
and predictive graphical spacecraft monitoring, 
real-time attitude processing, guide star 
selection, and spacecraft subsystem monitoring 
and fault isolation . 

The broadened view of the MOD's mission 
operations, free from the past organizationally 
induced partitions of fbnctionality, enables 
comprehensive system engineering that 
considers only the technical aspects of the 
MOC system definition. The resulting MOC 
system eliminates redundant capabilities within 
the MOD; eliminates or simplifies interfaces to 
and within the MOD; and allows for cost- 
effective, systemwide solutions. Because of 
these improvements, a MOC system can be 
developed in less time and at lower cost than 
the traditional, independent ground data system 
implementations. 

MANAGING MOC DEVELOPMENT 

The concept of developing an integrated MOC 
ground data system naturally led to the concept 
of an integrated, mission-oriented management 
structure. To provide the vehicle for efficiently 
and effectively implementing each MOC 
system, both the MOD and CSC restructured 
their management organizations to create a 
single, mission-oriented MOC management 
team. Recognizing the potential for improving 
coordination and communication between the 
mission's MOC system and the mission's 
standalone test and training simulator 
[traditionally developed under the Simulations 
and Compatibility Test Branch (GSFC Code 
515)], the MOD and CSC placed development 
of the simulator under the MOC management 
structure. 

The resulting mission-oriented MOC 
organization is headed by a system manager and 
is supported by a MOC system engineer; 
managers of the major MOC components and 
the simulator; and knowledgeable, technical 
component experts. This approach retains the 
expertise of the traditional organizations and, 
for the first time, combines the functionality of 
the MOD ground data systems previously 
developed by independent organizations under 
a single MOD-level system manager. 

The major advantages of this management 
approach over the traditional approach include 
consolidation of mission budgets; closer 
coordination of system capabilities and 
schedules; integration of a major portion of the 
mission ground system earlier in the ground 



system life cycle; provision for a single point of 
contact to the mission projects and users; and 
improvements in communication, coordination, 
and cooperation among the experts from the 
various ground data systems. Clearly, these 
advantages could only be realized when the 
management authority, responsibility, and 
control rested in the hands of a single, system 
manager whose primary focus was to manage 
development of the MOC system and the 
simulator. 

Consolidating mission budgets under a single 
manager with the requisite responsibility and 
authority simplifies the planning of projected 
budgets and the reporting of actual spending on 
a per-mission basis. Further, single-manager 
responsibility for most of the MOC components 
results in increased flexibility in assigning 
resources among the components that need it. 
With the MOC approach, timely, system- and 
component-level budget decisions can be made 
within the MOC organization from a balanced 
and informed viewpoint. 

Closely coordinating component development 
schedules and the capabilities to be 
implemented according to the consolidated 
MOC master schedule significantly improves 
the readiness of a major portion of the mission's 
total ground system. In the traditional 
approach, one ground data system's capabilities 
and schedules were usually developed with 
limited insight into the needs of the other 
ground data systems. This lack of close 
coordination sometimes resulted in the need for 
additional temporary software to simulate 
missing capabilities and delayed mission ground 
system testing of these capabilities. In the MOC 
approach, simulator and component schedules 
and capabilities are closely coordinated so that 
each MOC component fully supports the others 
and the MOC and simulator systems fi l ly  
support each other at the scheduled time. This 
level of coordination significantly reduces time 
spent waiting for independent ground data 
systems to get synchronized in support of 
mission ground system testing. Although 
planning a MOC development schedule is 
slightly more time consuming and complex than 
in the traditional approach, monitoring 
projected and actual schedules is much quicker 
and easier because there is one composite 
schedule. 

Integrating major portions of the mission's 
ground system during the development phase of 
the life cycle, rather than during the integration 
and test phase, significantly reduces mission 
ground system interface, integration, and end- 
to-end test time. The schedules and capabilities 
of the MOC system components are not only 
coordinated, but the major efforts of integrating 
and testing them and also testing the integrated 
MOC system with the simulator are 
accomplished by the development team before 
delivery of either system to GSFC. In the 
traditional approach, this integration and testing 
occurred after delivery of each of the 
independent ground data systems, when 
interface problems are difficult to isolate and 
repair quickly. The extensive, advanced 
planning of the MOC master schedule, which 
considers the project's test needs, coupled with 
the development team's expertise in integrating 
and testing the MOC system, improves the 
overall quality and readiness of the ground 
system earlier than previously possible. 

Because the MOC organization provides a 
single point of contact, the MOD speaks with a 
unified voice to the mission project and MOC 
system users. Traditionally, a mission 'project 
had to communicate with each of the MOD 
branch organizations, an inefficient and time- 
consuming process. Also, users had to 
communicate with the developers from each of 
the MOD independent ground data systems to 
convey and receive information. The MOC 
approach ensures a direct, timely, and 
consistent flow of information from the MOC 
team to the mission project and the users. For 
example, with a MOC system, there is a single 
set of comprehensive, formal reviews (e.g., a 
single system requirements review, preliminary 
design review, and critical design review) to 
attend and critique; there are fewer documents 
to review and approve than with the traditional 
approach (e.g., a single comprehensive require- 
ments specification rather than multiple ones); 
and, as an added benefit, the resources needed 
to prepare, present, and maintain these formal 
reviews and documents are reduced. 

Improved communication, coordination, and 
cooperation among the technical experts from 
the various ground data systems ensures the 
timely development of robust, cost-effective 
MOC systems. The single, cohesive MOC team 



shares a common focus and a common goal: the 
successfbl implementation of the MOC system. 
The team makes decisions to support this goal, 
relinquishing conflicting demands and diverse 
approaches from the originating organizations 
in favor of a unified management and technical 
approach. 

The MOC system engineer and component 
experts regularly share their expertise and 
insight with each other. Cross-checks of 
understandings highlight discrepancies early, 
allowing them to be solved when resolution is 
less costly. For example, on the X-Ray Timing 
Explorer (XTE) MOC, discrepancies existed in 
early mission documentation describing the 
telecommand packet checksum calculation. 
Because the simulator experts on the team 
knew how the flight software performed this 
calculation, they were able to resolve the 
problem quickly and with no cost impact. 
Typically, with the limited cross-check of 
understandings between simulator and control 
center system experts in the past, a problem 
such as this would not have been found until 
actual ground system integration testing with 
the spacecraft or the simulator, when problem 
repair is more costly. 

The MOC team has also used their broadened 
view of the system to identifjl and implement 
more robust technical solutions. For example, 
the traditional simulator, control center, and 
command management systems each used 
different approaches and different data base 
software to process the mission's project data 
base. For the single, integrated MOC system, 
the team has identified and implemented a more 
rigorous relational data base solution with 
increased hnctionality over any of the 
traditional systems. 

Working as a cooperative team, the MOC 
component experts have identified and 
eliminated redundancy among the components, 
reducing the amount of software that must be 
developed, tested, and maintained. Traditional 
capabilities, as well as new fbnctional 
capabilities, are available earlier. For example, 
the selection of a single user interface means 
that the time traditionally spent developing and 
maintaining multiple user interfaces can be 
spent enhancing the fbnctionality of the selected 
user interface. For the integrated MOC system, 

the team has also eliminated the formal 
interface between the control center and 
command management systems. Significant 
savings have been realized in eliminating the 
formal definition, negotiation, control, 
integration, and testing of this interface because 
these efforts are now performed within the 
MOC organization. Traditionally, several 
separate MOD and mission project 
organizations needed to be involved. 

The most important challenges in defining the 
MOC management approach were to develop a 
mission-oriented organization that retained the 
expertise of the various components of the 
MOC system and to minimize the risks to the 
success of the mission while implementing the 
new technical and management approaches. 

The MOC management approach capitalizes on 
the use of technical and management expertise 
from each of the ground data systems. The 
depth of knowledge provided by these 
component experts, coupled with the breadth of 
knowledge of the system engineer, is essential 
to the success of any MOC implementation. 
Management risks are minimized because 
component experts are part of the MOC team 
and because the best practices from the 
originating MOD branch organizations have 
been selected and implemented. Techniques 
such as the use of multimission working groups 
and matrices of expertise have been expanded 
to encompass the fbll MOC fbnctionality. These 
techniques, successfblly demonstrated in the 
traditional organizations, make possible high 
levels of software reuse across and within 
mission implementations. In the control center 
area, for example, software reuse levels of over 
70 percent are regularly achieved. Technical 
risks are minimized because the selected MOC 
architecture is a natural extension of the in- 
place, highly successfbl system architecture 
described below. Use of these management and 
technical strategies minimizes the risk of the 
overall MOC concept. 

To fbrther reduce the risks, the MOD initiated a 
pilot project in October 1992, selecting the 
XTE mission as the first MOC system imple- 
mentation. The MOD, CSC, and the mission 
project have closely monitored the progress of 
this MOC via various technical reviews and 
regular management reviews. By June 1993, the 



XTE MOC pilot project showed such early 
promise and enthusiastic user support that the 
MOD reassigned the TRMM mission, which 
started development as separate control center, 
command management, and simulator ground 
data systems, as an integrated MOC system 
implementation and a standalone simulator 
under the new MOC management structure. 

IMPLEMENTING THE MOC 

MOC Architecture 

The availability of enabling technologies such as 
powerfbl workstations and networks, 
distributed processing, commercial off-the-shelf 
(COTS) products, and industry standards 
contributed to the feasibility of the MOC 
concept. The effectiveness of their use was 
successfblly demonstrated in the MOD'S CCSB- 
developed Transportable Payload Operations 
Control Center (TPOCC) system philosophy 
and architecture. The MOC concept extends 
the use of TPOCC to cover broader 
fhnctionality. 

The TPOCC architecture is based on the use of 
industry standards, COTS components, custom 
reusable components, and distributed 
processing using clientlserver technology. It 
features interconnected hardware that provides 
systemwide access to data and distributed 
processing that is flexible and transparent to the 
user. It supports the dedicated use of a 
workstation for isolated functions or the use of 
a single workstation for multiple functions. It 
also allows single functions to be spread across 
multiple processors to provide needed levels of 
processing and data throughput. The state-of- 
the-art graphical user interface, which features 
a windowing environment, significantly 
increases system operability. 

The TPOCC architecture is designed to be 
evolutionary in that new technology can be 
inserted into the basic system framework 
without disrupting the overall architectural 
approach. This extendable architecture easily 
supports integration of independently 
developed components that follow its 
fbndamental precepts. 

Each MOC system, which uses TPOCC's 
hardware architecture approach, is sized to 

meet its mission's data and operational needs 
and consists of a network of inexpensive, 
heterogeneous COTS workstations, X- 
terminals, and front-end processors (i.e., single- 
board computers). The architecture reflects a 
commitment to industry standards such as 
VME, Ethernet, RS-232, RS-422, and SCSI. 
For the MOC, a RAID array, optical disk, CD 
ROM, and 3-D graphics devices are added to 
the basic TPOCC architecture to support the 
broader fhnctionality of a MOC. 

The MOC software architecture approach, like 
TPOCC's, consists of distributed processing 
using clientlserver technology, adherence to 
open system communications standards, 
extensive use of COTS products, and 
implementation of reusable custom code. Most 
of the MOC software is written in C or C++ 
and is designed to be independent of the 
hardware, thus making it easily portable to 
other platforms. 

All MOC software components are 
implemented following open system 
communications standards such as the Trans- 
mission Control Protocol/Internet Prdtocol 
(TCPIIP), external data representation. (XDR), 
and network file system (NFS). The commer- 
cial standards for the MOC's graphical user 
interface include X-window and Open Software 
Foundation's Motif software. The use of 
industry standards facilitates incorporation of 
COTS products, generic systems, and 
independently built components without 
impacting the overall software architecture. 

The MOC system is flexible and extendable. It 
supports, from a single workstation, the 
hnctionality previously dispersed among many 
minicomputers and mainframe systems, thus 
increasing the number of operations that a 
single user can perform. The MOC system 
reduces operational costs because multiple, 
independent systems are consolidated; work- 
stations replace more expensive minicomputers 
and mainframe systems, and computer 
operators are no longer needed to support 
multimission computer facilities. 

Process Improvements 

Application of improved processes in the 
requirements, design, implementation, integra- 



tion, and test phases of system development 
contributed to the cost-effectiveness of the 
MOC concept. In an atmosphere of continuous 
process improvement, the MOC development 
teams have applied several improvement 
initiatives to the development of the MOC 
systems. 

The mission MOC teams have improved the 
process of defining the MOC system require- 
ments. During the requirements definition 
phase, joint developer and user teams, some- 
times referred to as Joint Application Develop- 
ment (JAD) teams, define the requirements. 
Using the JAD approach, users familiar with the 
specific mission requirements and operational 
needs and developers familiar with existing 
software capabilities are able to quickly identi@ 
mission-unique needs. The JAD team uses an 
existing set of requirements from other, similar 
missions as a base for defining the new 
mission's requirements. This approach results in 
the timely definition of requirements because 
the JAD team, rather than starting from scratch, 
simply analyzes the baseline and makes 
additions or deletions as appropriate. This 
approach also maximizes the reuse of existing 
software, limiting detailed requirements analysis 
to mission-unique areas. The Advanced 
Composition Explorer (ACE) MOC JAD team 
is using this approach with the XTE MOC 
requirements providing the basis for 
requirements discussions. 

The ACE MOC JAD team is also piloting the 
concept of users and developers jointly docu- 
menting requirements rather than each group 
independently writing and cross-referencing 
separate, configuration-controlled documents. 
The team documents requirements on-line using 
the Requirements Generation System (RGS) 
data base tool. This approach is also expected 
to save considerable time and effort. 

The mission MOC teams have also 
implemented improvements in the design 
process. During the design phase, extensive 
technical exchange meetings are held both 
within a specific mission MOC (i.e., cross- 
function) and across the MOCs of other 
missions (i.e., cross-mission). Each MOC's 
system engineer and component experts 
regularly hold cross-function technical 
exchange meetings to design portions of the 

software so that they can be used by multiple 
components, thus maximizing reuse within a 
mission MOC. In addition, the MOC system 
engineers and component experts regularly hold 
cross-mission technical exchange meetings to 
design specific components into generic and 
mission-unique building blocks, thus 
maximizing reuse across MOC missions (i.e., 
generic component software is designed with 
mission-unique "hooks"). This MOC design 
approach results in a comprehensive, cohesive 
system design that eliminates organizationally 
induced walls between functional components. 

During the implementation phase, the mission 
MOC teams' strict adherence to system 
development standards and use of a standard 
user interface permits multiple components 
(i.e., multiple portions of the system) to be 
developed concurrently. Although this is not a 
new process, its implementation during MOC 
system development is essential. The mission 
MOC teams have also expanded the use of 
advanced COTS software development tools 
such as SoftBench, Branch Validator, and 
PurifL to assist them in writing and debugging 
software. 

The implementation of these development 
improvements allows the mission MOC teams 
to capitalize on three aspects of software reuse: 
reusing existing custom-built and generic 
software components; designing custom 
software with new functionality for future 
reuse; and integrating existing, standalone 
generic systems and COTS products. Each 
MOC team works with users to define mission 
requirements that maximize the reuse of 
existing custom-built and generic components 
(e.g., existing mission software, TPOCC 
generic software) while still meeting each 
mission's unique needs. Sharing requirements 
expertise across each mission allows the MOC 
teams to design custom code for future 
reusability because generic components are 
identified and developed to permit mission- 
unique extensions. Each MOC's design also 
integrates COTS products (e.g., ORACLE) and 
standalone generic systems such as the Generic 
Spacecraft Analyst Assistant (GenSAA) and the 
Generic Trend Analysis System (GTAS). The 
use of these techniques reduces the amount of 
new code needed while increasing functionality. 
For example, approximately 50 percent of the 



first MOC's code and over 80 percent of the system reduces the amount of time necessary 
second MOC's code consists of reusable for mission-level ground system interface and 
components (not including the integrated integration testing because not only have some 
generic systems or COTS products). This of the traditional interfaces been eliminated, but 
percentage is expected to increase as additional also a major portion of the overall ground 
MOC capabilities are implemented for hture system has been tested. 
reuse and spacecraft standards continue to be 
formulated and implemented. BENEFITS OF THE MOC APPROACH 

The mission MOC teams have also instituted 
improvements in the integration phase. One of 
the major challenges for any MOC system is the 
integration of the many components that it 
comprises. Successfkl integration of a MOC 
system is a special and complex problem. The 
complexity of integrating "externally" de- 
veloped components (i.e., components de- 
veloped by other organizations), for example, 
encouraged definition of a formal integration 
procedure. This procedure includes require- 
ments for extensive planning, preparation, and 
monitoring of the integration activity. For 
example, for components developed within the 
MOC organization, the MOC system engineer 
and component managers require demon- 
strations of, and explicit documentation about, 
each developer's software before that software 
is integrated with the total MOC system. In 
addition to these improvements, for the first 
time, the mission's test and training simulator 
has been collocated with the MOC system in 
the development environment, substantially 
improving the developers' ability to test the 
integrated MOC system. The MOC and 
simulator developers' ability to extensively 
exercise their systems before they are delivered 
to GSFC significantly improves the quality and 
robustness of each system. 

During the test phase, the test process has been 
improved by combining traditionally separate 
system, acceptance, and user test teams into a 
single test team (independent of the 
development team) and by moving this level of 
testing from the traditional postdelivery 
timeframe into the predelivery timeframe. The 
combined, concurrent testing by this team 
reduces overall MOC system test time while 
increasing testing effectiveness. When the test 
team finds problems that must be repaired 
before the system is deemed ready for 
operational use, the development team corrects 
the problems. This extensive, independent, 
predelivery testing of the integrated MOC 

The MOC approach provides major benefits to 
its users. Probably the most important of these 
benefits is the integration of mission operations 
with mission specialists collocated in the 
MOC's ofice-like, workstation environment. 
Traditional, host-based systems located in 
various multimission computer rooms required 
that users be able to operate several indepen- 
dent systems. On each of these systems, a user 
could perform only one operation from each 
terminal, requiring that user to monitor up to 
three or four terminals at a time, depending on 
the number of simultaneous operations to be 
performed. The MOC's mission-oriented, 
integrated system, with a windowing environ- 
ment and distributed processing, allows the user 
to perform and monitor multiple operations 
from a single workstation, a vast improvement 
over traditional systems. 

A second important benefit to the user is the 
MOC's state-of-the-art, standardized graphical 
user interface that provides the same "look and 
feel" across all components of the MOC. In 
addition to traditional tabular data displays, this 
interface supports graphical data represen- 
tations such as plots, bars, dials, pie charts, and 
timelines, enabling users to rapidly distinguish 
anomalous situations. Menus and input panels 
are intuitive to operate, and, with only one 
consistent user interface to learn, user system 
training as well as cross-component training is 
simplified. This improved system operability, 
coupled with the increased hnctionality 
provided by a MOC system, provides the user 
with all the tools needed to perform operational 
duties. 

The MOC approach provides many benefits to 
the mission project. The MOC management 
structure provides the mission project with a 
single point of contact for a major part of the 
developing mission ground system. This 
improves and simplifies communication both to 
and from the mission project. 



Another major benefit to the mission project is Carlton D., Vaules, Jr. D., Mandl, D. 
that MOC systems, as opposed to traditional (November 1992). GSMS and Space Views: 
implementations, are less costly and achieve Advanced Spacecraft Monitoring Tools, 
operational readiness in a shorter period of Proceedings of SPACEOPS '92 ( pp. 375-380). 
time. With fewer system interfaces, operational 
and system development complexity and 
associated costs are reduced. MOC approaches 
such as elimination of redundant code among 
components, extensive software reuse, 
integration of COTS products and existing 
generic systems, and commitment to expanding 
the library of reusable custom components by 
designing for future reuse are recognized 
approaches that reduce costs. The MOC 
systems contain more capability and higher 
stability early in the development cycle because 
of the extensive reuse of existing, tested 
software and COTS products. 

SUMMARY 

The MOC approach to ground systems 
development makes great strides toward 
integrating the MOD'S mission operations. This 
approach significantly increases the number of 
operations that a single user can perform 
simultaneously, substantially improves system 
capability and operability, and simplifies user 
training, while reducing operations and 
development costs and shortening development 
time. 

Only 2 years since its inception, the MOC 
concept has realized its initial goals. As the 
MOC approaches continue to mature, and as 
more functionality is incorporated into its 
systems, the benefits to mission projects and the 
user community are expected to grow. 
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1 Introduction 
The aim of ATOS is to allow data to be shared 
by multiple knowledge based and traditional 
applications. 

At ESOC several studies have applied knowl- 
edge based techniques to specific areas of mis- 
sion 'operations, producing a number of 
independent prototype KBSs. The studies 
showed that a great deal of common informa- 
tion was used in many of the applications. 
However, the various prototypes used different 
KB S tools and knowledge representations 
which meant they could not be easily inte- 
grated. The initial objective of ATOS is to find 
a solution to this integration problem without 
imposing a knowledge representation on all 
applications. 

Section 2 examines the problem domain of 
ATOS. Section 3 outlines the ATOS architec- 
ture and section 4 discusses a prototype of the 
architecture and of applications which use it. 

2 SMOS Integration Problem 
A Spacecraft Mission Operations System 
(SMOS) comprises the set of facilities needed 
to carry out all the mission operations. Mission 
operations can be split into four areas: 
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* Mission Preparation. The tasks for the 
preparation and configuration of the 
Mission Control System (MCS) prior to 
the start of the mission, as well as the 
maintenance and updating of the basic 
reference mission knowledge of the MCS, 
during the mission. 
Mission Planning. The planning and 
scheduling of mission operations 
activities. 

* Mission Operations. All tasks involved in 
control monitoring, and reporting. of the 
mission. 
Training / retraining of operations staff. 

In general, independently developed software, 
possibly running on different platforms will 
support each of these areas. The areas, how- 
ever, are far from independent: mission prepa- 
ration produces the database for operations, 
mission planning produces the plan of opera- 
tions to be executed by mission operations and 
the progress of mission operations conditions 
the plan. Furthermore, applications use com- 
plex data and may use knowledge based tech- 
niques. 

There are a number of considerations with 
such systems: 
* Because such systems are large and 

difficult to implement, re-use of many 
applications is necessary to avoid loss of 
investment. 
The required capabilities change during 
the system's working life, for example, for 
new missions, as users' needs change, or 
when new technology (platforms, 
networks .. .) is introduced. 



* The various applications making up the 
whole system are frequently inflexible, 
with rigid and restricted interfaces. For 
example, replanning in the event of 
failures can be cumbersome because of 
the interface between the control and 
planning systems. 
The applications also make use of 
knowledge about the spacecraft, the 
ground systems and the operational 
procedures. Parts of this knowledge are 
held centrally, but a significant amount is 
held locally by the applications, each of 
which may use its own representations 
and conventions. This leads to potential 
duplication and inconsistency of 
knowledge and related problems in system 
maintenance. 

eral user perspectives resulting in several spe- 
cialist applications. To integrate these we need 
a generic communication mechanism for soft- 
ware components, analogous to what the SCSI 
protocol does for hardware components. 

ATOS is a federation-enabling technology. 
Each application (of a federated MCS) has 
only to provide an interface to the ATOS infra- 
structure to allow it to use data (and have its 
data used) by other applications. In effect this 
extends the object-oriented ph_ilosophy to the 
application level by providing a consistent 
interface to a set of applications which a devel- 
oper may use without knowing implementa- 
tion details of the individual applications. 

Although ATOS has been motivated by the 
needs of mission operations, the concepts (and 
possibly even the emerging tools) -are not 

These problems demand solutions: budget reshicted to that discipline. me approach 
restrictions no longer allow the luxury of reim- could be used in any area in which heteroge- 
plementing large parts of systems for new neous applications, possibly originally 
sions. designed to be "stand alone" (i.e. without 

2.1 Solution: The ATOS Approach regard to eventual integration) must be made 
to work together. 

A combination of the following two 
approaches helps to address the problems out- 3 The ATOS Architecture 
lined above: 

This section describes the architecture which 
* Implementation of generic applications realises the approach to integration outlined 

from which specialisations may be built. above. Section 4 describes ~rototvpes of this 
* Use of principles of federation to integrate architecture and of applicatibns &ich use it, 

heterogeneous applications into a single and illustrates how the architecture works in 
system. practice. 

2.1.1 Generic Systems 

Individual parts of a mission operations system 
can take the approach of developing generic 
applications which can be specialised for par- 
ticular missions. The new generation of ESA 
Spacecraft Control Operations System (SCOS- 
11) [6] is a good example of this. In SCOS-11, 
the basic functions of spacecraft control and 
monitoring are implemented as an object-ori- 
ented class library, from which mission sys- 
tems can be built. Specialisations to mission 
needs can be provided using "Implementation 
by Difference" [3]. 

2.1.2 Federation 

Development from generic components is fine, 
but a problem is usually approached from sev- 

3.1 The Mission Information Base 
Each application in the ATOS environment is 
called an ATOS Application Module (AAM). 
AAMs communicate with each other via the 
ATOS infrastructure. 

As shown in figure 1, each AAM has its own 
knowledge base. The Mission Information 
Base (MIB) is defined to be the union of the 
knowledge bases of all the individual AAMs. 
The scope of the MIB is thus very broad and 
encompasses: 

Flight Operation Plans (FOP), including 
timelines (a scheme of mission operations 
activities for a particular mission phase or 
scenario) and Flight Control Procedures. 
Documents, including text and graphics, 
for example the spacecraft users manual. 



* Design information, including the 
behaviour of components of the 
spacecraft. 

* Traditional spacecraft databases, for 
example parameter characteristics and 
telecommand characteris tics. 
Rules and operational constraints of the 
mission; for example, if the spacecraft is 
in eclipse then the payload is on standby. 

Control Mission 

J 

. . . other AAMs 

Model 
u 

Figure 1 AAMs and the ATOS Infrastructure 

The AAMs which manage components of the 
MIB may be physically distributed, may use 
different approaches to structuring knowledge 
(relational, object-oriented, rule based) and 
may use different tools for storing knowledge. 
The MIB is thus a federated database of 
loosely coupled, heterogeneous components. 

3.2 The Functions of the Infrastructure 
The ATOS infrastructure is the glue which 
integrates AAMs. The infrastructure "facig- 
tates" (in the sense discussed in [I]) the inte- 
gration of AAMs by: 
* Routing a message to an AAM which 

provides the information or service 
required by the message. 

Maintaining links between information 
items in different components of the MIB. 

. Detecting significant changes in the state 
of the MIB and informing AAMs 
accordingly. 
Controlling access to the information and 
services provided by AAMs . 

* Maintaining a timetable that describes 
which AAMs can use which services of 
other AAMs and when. This timetable is 
updated by a mission planning AAM. 
Logging messages, as requested. 
Buffering messages before they are read. 

Clearly some of these services are more inno- 
vative and interesting than others. Later sec- 
tions of this paper concentrate on message 
routing, link management and detection of 
change in the MIB . 

3.3 The Ontology of Shared Knowledge 
AAMs must be able to share knowledge. For 
example, the results of mission planning are 
inputs to mission execution; details of a 
detected anomaly are the basis of fault diagno- 
sis. [3] includes a detailed discussion of the 
importance of knowledge sharing in spacecraft 
operations. 

To share knowledge AAMs must have a com- 
mon understanding of concepts and terms 
which is provided by the ontology. 

In ATOS, the ontology is written in a declara- 
tive, formally defined language called Ontolin- 
gua [2] which is: 

Expressive, so that rules and behavioural 
knowledge can be shared between &Ws. 
Independent of any particular approach to 
structuring knowledge. 

Note that although Ontolingua allows terms 
and concepts to be defined using rules, the 
ATOS infrastructure does not infer knowledge 
from these rules - that is the responsibility of 
the AAMs which use the concepts. 

The most basic use of the ontology is as a 
paper standard to which AAMs comply. Thus 
if there is a standard definition of the terms 
"resource", "schedule" and "activity" then 



AAMs which comply with the standard are which only knows about objects in its own 
guaranteed to use these terms in the same way. component of the MIB. 

A second use of the ontology is to derive an Link types are defined in the ontology and 
AAM's knowledge structures. The ontology is have different properties. For example, a link 
written in a formal language (rather than, for type might be defined to be many-to-one, or to 
example, English); it can therefore be trans- be acyclic. 
lated-into the tool-specific knowledge struc- . . . . . ........................ ..... . ........ . . . . . . .... ................................................................. .,.,., , 
tures used by an AAM. This approach gives .:.:.:.:.:.:.:.:.:.:.:.:.:*.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.. 

Y,....................... ___._._.__ . ....................... . . . .......... :.:.:.::::::::=*>::: =:,:.: ......,... . . . 
greater assurance that the AAM complies with @ the ontology and it can also reduce the effort of 
developing the AAM. re3 ..... 
The next section discusses further uses of the 
ontology, including that of routing a message 
on the basis of its content. 

As discussed in section 1.2, the MIB is distrib- 
uted among AAMs, it is not held by the ATOS 
infrastructure. The infrastructure does, how- 
ever, record the types of information in the 
MIB (as defined by the ontology) as well as 
information about selected objects in the MIB . 
The infrastructure does not actually store these 
objects but records their existence, some of 
their attributes and links between them. This 
view of the MIB is called the metabase. 

Figure 2 depicts three example AAMs which 
each manage part of an MIB. One AAM uses a 
relational database, one uses a hierarchical 
database and one stores documents. The exist- 
ence of certain MIB objects is recorded in the 
metabase; this is shown in the figure by a 
dashed line from the MIB object to its meta- 
base image. The figure also shows links in the 
metabase between objects which are managed 
by different AAMs. For example, a tuple in the 
relational database might be described by a 
document to which it is linked. 

The three major roles of the metabase in sup- 
porting knowledge sharing are outlined in the 
following three subsections. Each of these 
roles is based upon the global view of the MIB 
which the metabase provides. 

3.4.1 Links between MIB components 

The above discussion of touched on the first 
of these roles: the metabase stores links 
between objects in different components of the 
MIB which allow AAMs to navigate the MIB. 
Such links cannot be stored by any one AAM 

Figure 2 The Infrastructure Metabase 

3.4.2 Detecting change 

The second role of the metabase is in detecting 
significant changes in the state of the MIB. 
One AAM can request a second AAM to per- 
form a specified action when a specified con- 
dition is triggered. 

For example, an AAM may ask to be informed 
when the voltage of a battery falls below a cer- 
tain level. A condition is expressed in terms of 
the state of the MIB; more precisely, a condi- 
tion is a query over the MIB which evaluates 
to true or false; the condition is triggered when 
the value of the query changes from false to 
true. 



Unfortunately, this approach to detecting 
change has two limitations. The first is that not 
all AAMs will be sophisticated enough to 
detect changes expressed as arbitrary condi- 
tions. The second is that an AAM can only 
monitor its own component of the MXl3 for 
change; no single AAM can effectively moni- 
tor a condition which involves two or more 
components of the MIB . 
The two limitations are addressed by the infra- 
structure and its metabase: the infrastructure is 
able to detect changes to the state of the meta- 
base and, because the metabase is a global 
view of the MIB, the scope of the condition is 
not limited to one component of the MIB. 

This role of the metabase allows dependencies 
between components of the ME3 to be man- 
aged. Imagine, for example, two AAMs one of 
which plans a mission and the other of which 
maintains information describing the design of 
the spacecraft. The metabase holds an abstrac- 
tion of the plan and the spacecraft design, as 
well as links corresponding to dependencies of 
the plan upon the design. The planning AAM 
instructs the infrastructure to inform it when 
there is a change or correction to the design 
which reauires the mission to be re~lanned. 
The AAM then obtains de t2s  of the 
change by querying the design AAM directly. 

3.4.3 Content-based routing 

When an AAM sends a message, it normally 
specifies explicitly the AAM which is to 
receive the message. Sometimes, however, an 
AAM does not know to which AAM to send 
the message. In this case the AAM instructs 
the infrastructure to send the message to the 
AAM which can best provide the required ser- 
vice or information. This is called content- 
based routing: AAMs first advertise their abili- 
ties to process messages, then the infrastruc- 
ture routes messages on the basis of these 
advertisements. 

As a simple example of content-based routing, 
an AAM might advertise its ability to provide 
the voltage all batteries. The infrastructure can 
then route a message which asks the voltage of 
a specified battery to this AAM. 

The infrastructure can perform more sophisti- 
cated content based routing. Suppose, for 

example, an AAM advertises its ability to pro- 
vide information about the power supply sub- 
system. The infrastructure can then route to 
this AAM a message which queries the current 
from the solar array if it knows from its meta- 
base that the solar array is part of the power 
supply- 

3.4.4 Managing the metabase 

The metabase records the existence of some of 
the objects in the MIB and contains some of 
their attributes. Except for links, the metabase 
is a partial copy of the MIB. Objects, attributes 
and links should only be in the metabase if 
they are required for one of the roles of the 
metabase described above. The metabase is not 
expected to be large. For example, an AAM 
which manages documents might record in the 
metabase the existence of each document and 
the date of its most recent issue, but it would 
not hold the text of the document. 

The accuracy of the metabase is, of course, the 
responsibility of the AAMs. For example, if 
the metabase records the voltage of a'battery 
then the AAM which manages the correspond- 
ing part of the MIB must update the metabase 
when the voltage of the battery changes. 

Which parts of the MIB should an AAM copy 
to the metabase? The simple answer is that this 
is a question for the designers of the system 
who decide how to integrate the AAMs. A 
more sophisticated and dynamic approach is 
that the AAM is sent a message which speci- 
fies the knowledge which it must copy to the 
metabase. 

3.5 Messages and their Structure 
In a spacecraft control system, AAMs and the 
infrastructure share knowledge by sending 
each other messages. The meaning of these 
messages is defined at three levels: 
* As discussed in section 3.3, the ontology 

is a dictionary of the terms and concepts 
of spacecraft operations and is expressed 
in Ontolingua. 
A language called Knowledge Interchange 
Format (KIF) is used to express 
knowledge using the terms and concepts 
of the ontology. 



* A protocol called Knowledge Query 
Manipulation Language (KQML) which 
AAMs use to communicate at run time. 

This approach to knowledge sharing is based 
upon the work of the DARPA Knowledge 
Sharing Effort [5] .  

KIF expresses first order predicate calculus in 
a LISP-like syntax. It is not expected that 
AAMs use KIF internally; indeed, it is impor- 
tant that AAMs are not constrained to use a 
particular representation format. AAMs must 
therefore translate shared knowledge to and 
from KZE 

KQML provides performatives, i.e. message 
types, which define the intent of a message. 
Consider, for example, the following simple 
KIF sentence: 

(position sample lower-most) 

This sentence could be the content of any of 
the following three KQML performatives: 
* ask, a query "Is the sample in its lower- 

most position?" with answer yes or no. 
* reply, an answer to a question such as 

"What is the position of the sample?" 
* assert, informing the receiving AAM 

that the sample is in its lower-most 
position. 

The KQML performatives used by ATOS are 
adapted from those described in the draft 
KQML standard and include performatives in 
the following areas: 

Asking and replying to a question. 
Multiple answers to a question can be sent 
as one long reply or as a stream of replies 
each containing one answer. 
Asserting a fact to be added to the 
receiver's knowledge base. 

* Advertising the sender's capability to 
perform a service. 
Instructing the infrastructure to route a 
message to the AAM best able to process 
it. 
Instructing the receiver to perform an 
action when a condition arises. 

Possible arguments of a message include: 

* Content. This is the body of the message, 
for example the actual query of an ask 
message. 

* Language. The language of the content. 
Normally this is KIF but AAMs can 
communicate using other languages such 
as SQL and SGML. If they do so the 
content is not understood by the ATOS 
infrastructure. 
Receiver. The AAM to which the 
infrastructure should send-the message. 

* Reply-with. Whether the sender of the 
message expects a reply, and if so a tag for 
the reply. 

* Receipt. Whether the sender requires a 
return receipt when the message is read. 

* Log. Whether the message should be 
logged by the infrastructure. 

Most messages are from one AAM to another 
(via the infrastructure, of course). Some mes- 
sages are intended for the infrastructure alone; 
for example, messages which advertise an 
AAM's ability to perform a service, and mes- 
sages which query or update the metabase. 

All knowledge held by the infrastructure can 
be queried using KIF and KQML. There are 
two distinct parts of this knowledge: 
* The metabase, the structure of which is 

defined by the ontology of spacecraft 
operations, as discussed in section 3.4. 
The infrastructure database, which 
contains the housekeeping data held by 
the ATOS infrastructure. For example, 
AAMs and their capabilities, message 
logs ... The structure of this database is 
defined by the infrastructure ontology. 

4 Prototypes and Example AAMs 

4.1 The Infrastructure Prototype 
The ATOS infrastructure has been imple- 
mented as a prototype which runs on Unix 
workstations. 

AAMs normally run on different workstations 
which communicate with the infrastructure 
using TCP/IP. At the time of writing AAMs 
must also run on Unix workstations, however, 
it would be straightforward to port to other 



platforms the software which must be linked with telemetry from the spacecraft. If a signifi- 
into the client AAMs . cant discrepancy is detected the Diagnostic 

AAM performs -a rule-based diagnosis-of the 
Two interesting aspects of the prototype are: fault and then corrects the model. 

Storing persistent data. The metabase and 
the infrastructure database are stored 
using a relational database. This requires 
that the ontology is translated to SQL data 
definition language and that KJF queries 
and assertions are translated to SQL data 
manipulation language. 
Translations must also be performed by 
AAMs which do not use KIF internally. 
An important difference is that each AAM 
has its own specific knowledge structures; 
it does not need to translate arbitrary KIF 
queries unrelated to these structures. 
Content-based routing. Advertised 
capabilities, and messages to be routed on 
the basis of their content, are both 
expressed in KIF. Matching a message 
with a capability involves conversion of 
the two KTF expressions to a normal form 
and then unifying them using the 
knowledge in the metabase. 

4.2 AAM Prototypes 
[7] describes a prototype tool called AMFE- 
SYS which maintains a model of a payload: a 
microprocessor controlled remotely program- 
mable Automatic Mirror Furnace ( A m )  for 
growing crystals in zero gravity. 

~~~y data \Discrepancy 

correction 

Figure 3 AAMs derived from AMFESYS, 

The AMFESYS tool has been decomposed 
into three AAMs as shown in Figure 3. The 
Modeling AAM maintains a model of the 
AMF which the Monitoring AAM compares 

The three AAMs use different approaches to 
structuring knowledge (Cu, CLOS and 
Kappa) and interact with each other via the 
ATOS infrastructure. The ontology defines the 
structure of the AMF. 

The following is a fragment of the AMF ontol- 
ogy which specifies a subcl&s of devices 
called Spindles and specifies that each spin- 
dle has a height. The fragment also identifies 
the instances of the class of spindles in the 
AMF: SampleConvSpindle (the sample con- 
veyance spindle) and LampDi s kspindle (the 
lamp disk spindle). 

(define-class Spindles (?x) 
:def (devices ?x)) 

(define-relation Height (?x ?y) 
:axiom-def (and(sing1e-valued Height) 

(range Height number) . 
(domain Height Spindles))) 

(def ine-instance 
SampleConvSpindle (Spindles)) 

(def ine-instance 
LampDiskSpindle (Spindles) ) 

With this ontology, the AAMs can converse 
about the height of spindles. For example, the 
Diagnostic AAM might send the following 
message to the Modeling AAM: 

(ask-one :receiver MODEL 
:content (Height LampDiskSpindle ?h) 
:reply-with rid) 

which might then reply 

(reply :receiver DIAGNOSTIC 
:content (Height LampDiskSpindle 70) 
:in-reply-to rid) 

In these messages ask-one and rep1 y are two 
KQML performatives; : receiver, : content, 
: reply-with and : in-reply-to label the 
message arguments. The language of the con- 
tent of each message'is KIF (the default lan- 
guage of all messages). The meaning of the 
terms in the content of each message is defined 
by the ontology. 



Following the approach discussed in section 
3.3, the AMP ontology has been automatically 
translated into the data structures used by the 
Diagnostic AAM. This kkM is written in 
CLOS, so the translation is from Ontolingua to 
CLOS. 

5 Conclusion 
The paper has discussed the problems of 
implementing complex mission operations 
systems and has described a two-fold approach 
to their solution: build generic applications and 
adopt a standard integration framework. 

We have not mentioned here the possible over- 
lap of with other integration technologies such 
as CORBA [4]. They could provide a basis for 
the more advanced ATOS features. 

Much has been achieved since the initiation of 
the ATOS programme in 1992. We also believe 
that the approach we have adopted may be 
effective not only for the space industry but for 
any industry which needs to integrate applica- 
tions to build complex systems. 
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appropriate functions from the ground to 
the spacecraft. 

Abstract 

The conflict between increases in space 
mission complexity and rapidly declining 
space mission budgets has created strong 
pressures to radically reduce the costs of 
designing and operating spacecraft. A key 
approach to achieving such reductions is 
through reducing the development and 
operations costs of the supporting 
mission operations systems. 

One of the efforts which the 
Communications and Data Systems 
Division at NASA Headquarters is using 
to meet this challenge is the Mission 
Operations Control Architecture (MOCA) 
project. Technical direction of this effort 
has been delegated to the Mission 
Operations Division (MOD) of the 
Goddard Space Flight Center (GSFC). 

MOCA is to develop a mission control 
and data acquisition architecture, and 
supporting standards, to guide the 
development of future spacecraft and 
mission control facilities at GSFC. The 
architecture will reduce the need for 
around-the-clock operations staffing, 
obtain a high level of reuse of flight and 
ground software elements from mission 
to mission, and increase overall system 
flexibility by enabling the migration of 

The end results are to be an established 
way of designing the spacecraft-ground 
system interface for GSFC's in-house 
developed spacecraft, and a specification 
of the end to end spacecraft control 
process, including data structures, 
interfaces, and protocols, suitable for 
inclusion in solicitation documents for 
future flight spacecraft. A flight software 
kernel may be developed and maintained 
in a condition that it can be offered as 
Government Furnished Equipment in 
solicitations. 

This paper describes the MOCA project, 
its current status, and the results to date. 

Introduction 

Most current spacecraft are extensively 
supervised from the ground, and 
spacecraft command and control systems 
have been re-invented by almost every 
new flight mission. This seriously affects 
ground systems reusability, and therefore 
costs for systems development, training, 
software maintenance, and sharing of 
operators among projects. This traditional 
approach is in serious conflict with the 
realities of declining space mission 
budgets. 



The Communications and Data Systems 
Division at NASA Headquarters, through 
the Mission Operations Division (MOD) 
of the Goddard Space Flight Center 
(GSFC), is addressing this problem by 
sponsoring the Mission Operations 
Control Architecture (MOCA) project. 
The objective of this program is to 
develop a spacecraft control and data 
acquisition architecture which will guide 
the development of future spacecraft and 
mission control facilities. The architecture 
is intended to reduce the need for around- 
the-clock staffing of operations control 
centers (partly by increasing spacecraft 
autonomy), enable a high level of reuse 
of both flight and ground software from 
mission to mission, and allow the 
allocation and migration of functions 
between ground and spacecraft missions 
as is appropriate for a given mission 
requirements set. 

MOCA is using a three pronged 
approach: deep involvement of the 
ultimate implementing and operating 
community at GSFC; analysis of current 
mission operations systems, leading to a 
redefinition and standardization of 
architecture; and a survey and assessment 
of available technologies, subsystems, 
and commercially available products, 
with analysis of how to make it all fit 
together. 

Organization and Process 

In order to provide a broad base of 
knowledge and to enhance the ease of 
acceptance of results, the MOCA project 
is being conducted by the MOD as a 
cooperative effort among itself, the 
GSFC Flight Projects Directorate, and the 
GSFC Engineering Directorate. The latter 
is the GSFC's flight systems engineering 
organization. The organizational tools 
used to implement this cooperative 
structure are an ad hoc MOCA Steering 
Group, with members from management 
from NASA Headquarters and from each 
of the three directorates, and a MOCA 
Users Forum, which is  constituted 
primarily of selected, experienced, 

engineering level persons from each 
organization. 

MOCA is divided into two phases, the 
Exploratory Phase (which began in 
February, 1994) and the System Design 
Phase. Each phase will last from one year 
to eighteen months, as required. The 
Exploratory Phase is a rapid but in-depth 
survey of the complexity and scope of the 
problem and an examination of potential 
solutions. The System Design phase will 
both develop and deploy the new 
capabilities required for the system. 

When agreement on the architecture is 
achieved, one or more spacecraft will be 
selected to use as a prototype to finalize 
and prove the data structures, protocols, 
and interfaces between modules defined 
by the architecture. Ultimately, flight 
software elements and corresponding 
ground control modules will be  
d e v e l o p e d ,  m a i n t a i n e d ,  a n d  
configuration-controlled by an inter- 
directorate team. Therefore, the MOCA is 
an architecture, a set of interface 
definitions, supporting protocols and 
application layer languages, that enable 
the standardized commanding and 
supervision of remote space vehicles. 

As this work progresses, i t  will be 
presented to the American Institute of 
Aeronautics and Astronautics (AIAA) 
Spacecraft Control Working Group. It is 
hoped that a NASA or U. S. Government 
agreement on an architecture for 
spacecraft control and a suite of 
supporting standards will result through 
this channel. However, the MOCA 
project focuses on the needs of GSFC 
specifically. 

Approach 

The aim of MOCA is to substantially 
reduce the end-to-end life cycle cost of 
future flight programs by radically 
reducing ground operations costs, 
including development costs. 



MOCA disputes the contention that 
"cheap programs mean dumb spacecraft". 
Instead, MOCA asserts that when the 
end-to-end life cycle costs of a program 
are considered, "cheap programs need 
smart spacecraft". MOCA further 
contends that the technology is currently 
available to have smart spacecraft at very 
little increase in development cost, and 
that in fact most of the basic enabling 
technologies (for example, increased 
computational power, increased memory, 
large solid state data storage) are already 
in flight use. And that therefore what is 
required to achieve the mission operations 
cost reduction objectives are the 
development and implementation of the 
necessary  operat ions concepts ,  
architecture, and standards. 

Preliminary Functional Architecture 

The following is very preliminary, and 
will undoubtedly undergo major changes 
as the MOCA project matures. 

The context of MOCA is "Mission 
Operations Functions", as  shown in 
Figure 1. Therefore the figure shows the 
external interfaces to MOCA. There are 
two fundamental points made by the 
figure. First, it is important to note that 

mission operations functions are the 
domain, regardless of whether the 
functions are performed on the spacecraft 
or on the ground. Second, and equally 
important, flight subsystems and ground 
supporting subsystems are not in the 
MOCA domain, but the interfaces with 
them (and therefore the relevant functions 
performed by them) are. 

The primary driver of mission operations 
is the science planning entity which 
provides both strategic planning 
information (the science plan)-and part of 
the detailed or tactical planning inputs 
(instrument commands). These inputs 
are provided in cycles of various time 
intervals. 

The MOCA functions and processes use 
these inputs to plan and schedule 
resources, coordinate the execution of the 
plan across the resources, monitor and 
assess the status of the resources, and 
feedback lessons learned into the process 
for the next cycle. Since the MOCA. 
functions operate in this cyclic manner, 
the architecture described in this paper 
decomposes the MOCA functional 
architecture based on this planning- 
execution- assessment nature of mission 
operations. Figure 2 depicts the three 
functions which make up the first level of 

Offboard Systems1 Subsystems 
Terrestrial Communications 

Groundspace Communications 
Other 

Figure 1: MOCA External Interfaces 
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the MOCA functional architecture. Also MOCA functions. This paper will not go 
shown in Figure 2 are two entities utilized into detail on these lower level 
by all three functions: the Mission Model representations except to note that the 
and the Mission Database. Scheduling and Planning and the 

System/Subsystem Analysis functions 
The Mission Model constitutes an have been further decomposed based on 
accurate representation of all the short term and long term processes. 
resources the MOCA functions have 
visibility into and interaction with. The 
Mission Database is a repository of actual Preliminary Target Characteristics 
data points either used or generated by the 
mission model and MOCA functions. AU A preliminary analysis of current mission 
three of the primary MOCA functions use operations has lead the MOCA to identify 
these resources but in unique and the following as highly desirable 
different ways. For instance, the characteristics which should be included 
Planning and Scheduling function uses in the MOCA concept of operations, and 
the Mission Model to predict the events enabled by the MOCA architecture. These 
and actions of resources for the next are very early ideas, and will undoubtedly 
cycle. The Mission Command and be subject to significant modifications, 
Control function uses the Mission Model expansions, and deletions as the project 
to compare the real time events and progresses. 
actions of resources against the predicted 
events and actions to ensure operations It appears highly desirable to minimize 
are proceeding as planned and within the number of contacts between a 

spacecraft and the 
ground, a s  i s  
feasible within the 

Mission Model Mission Database cons t ra in t s  of 
mission safety and 
mission 
performance. The 
planning, 
scheduling, 
initiation, conduct, 
and termination of a 
spacelground contact 
i s  expensive in 
itself, and the cost is 
much more sensitive 

Subsystem 
Gntr01 J to the number of 

contacts than to 
duration or data 

Figure 2: First Level MOCA Functions r a t e s .  T h i s  
minimization should 

tolerances. The System/Subsystem be accomplished by making spacecraft 
Analysis function uses the mission model more autonomous than at present. The 
to determine why events and actions did feasibility and acceptability of increased 
not perform as predicted and to provide autonomy should be realized by 
feedback into the model as resources designing the process of achieving 
degrade or change over the life of the autonomy to reduce risk, minimize life 
mission. cycle costs, and maintain flexible control 

of the process by project management. 
Figures 3 through 5 show the next level The process should include the 
of decomposition for the three primary development of ground based backup 



capability to onboard functions, and by 
achieving the autonomy via function 
migration from ground to space as 
operational experience is gained. 

Spacecraft should be made to look 
operationally as much alike as possible. 
Through the use of interface, format, and 
procedural standards to implement a 
"virtual spacecraft" concept, spacecraft 
should be made to appear to the ground 
systems as operationally identical as is 

example of such existing standards are 
the tailored communications standards 
that can be adopted from other non- 
MOCA sources (e-g. Consultative 
Committee for Space Data Systems 
(CCSDS), Space Communications 
Protocol Standards group (SCPS)). Other 
standards, such as for the operations 
functions (i-e. at the Application Layer) 
will be selected by or developed within 
MOCA. 

Figure 3: Functional Decomposition of the MOCA 
Planning and Scheduling Function 

feasible. This will eliminate large parts of 
development and training costs, allow 
operations crews to be shared among 
several spacecraft, and increase the 
reliability of operations. 
Standards should define all operational 
interfaces. Standards should be selected, 
adapted, or, as necessary, developed and 
emplaced at all operational interfaces. An 

The Standards should be used across 
different projects. To achieve the above 
targets, the same standards must be used 
for each flight project. This approach 
minimizes the non-recurring ground 
system development and modification 
costs as well as substantially reducing 
recurring mission operations costs. 



Implementation of the MOCA concepts, 
architecture, and standards should be 
accomplished to the maximum extent 
possible through the use of existing 
standards, existing technologies, work 
accomplished by other similar NASA and 
Department of Defense activities, 
commercial off-the-shelf products, and 
through use of existing testbeds and flight 
opportunities for proof of concept and 
validation. Major redesign efforts and all 
new development for control facilities at 
GSFC should be accomplished in 
conformance with the MOCA standards. 

The Future 

Although MOCA is still in an early phase, 
several key concepts are beginning to 
emerge which appear to be technically 
feasible and economically desirable. 
Among these are: communications 
between ground systems and spacecraft 
by an intermediate or high level process 
control language, rather than by 
commands and telemetry; on-demand 

Eifemal 
lnterfaces 

Command 

- - - - -  - - 
lnterfaces wifh 
ofher Mission 

p#".#---#----m---#*-*----I 
Operations Functions I 

Mission Database 

Figure 4: Functional Decomposition of the MOCA 
Mission Command and Control Function 
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spacelground communications by  It appears at this time that there are no 
spacecraft demand; and eventually a insuperable technical or cost hurdles to 
reversal of current roles in that a achieving greatly decreased end-to-end 
spacecraft may view its supporting life-cycle mission operations costs 
ground systems as a collection of on-call through the techniques of increased 
resources to help it meet its mission spacecraft autonomy, appropriate 
objectives. standards for critical operations 

interfaces, and standard protocols, all 
structured by a common mission 
operations architecture. 

Figure 5: Functional Decomposition of the MOCA 
System/Subsystem Analysis Function 
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ABSTRACT 

The Mission Operations and Data Systems Directorate (MO&DSD) has embarked on a new 
approach for developing and operating Ground Data Systems (GDS) for flight mission support. 
This approach is driven by the goals of minimizing cost and maximizing customer satisfaction. 
Achievement of these goals is realized through the use of a standard set of capabilities which can be 
modified to meet specific user needs. This approach, which is called the Renaissance architecture, 
stresses the engineering of integrated systems, based upon workstationllocal area network 
(LAN)lfileserver technology and reusable hardware and sofiare components called "building 
blocks." These building blocks are integrated with mission specific capabilities to build the GDS 
for each individual mission. The building block approach is key to the reduction of development 
costs and schedules. Also, the Renaissance approach allows the integration of GDS functioni that 
were previously provided via separate multi-mission~acilisies. With the Renaissance architecture, 
the GDS can be developed and operated by the MO&DSD or all, or part, of the GDS can be 
operated by the user at their faciliv. Flexibility in operation conjigurntion allows both selection of 
a cost-efiective operations approach and the capability for customizing operations to user needs. 
Thus the focus of the MO&DSD is shifedfiom operating systems that we have built to building 
systems and, optionally, operations as separate services. 

Renaissance is actuully a continuous process. Both the building blocks and the system architecture 
will evolve as user needs and technology change. Providing GDS on a per user basis enables this 
continuous refinement of the development process and product and allows the MO&DSD to remain 
a customer-focused organization. This paper will present the activities and results of the 
MO&DSD initial eforts toward the establishment of the Renaissance approach for the development 
of GDS, with a particular focus on both the technical and process implications posed by 
Renaissance to the MO&DSD. 

INTRODUCTION 

The MO&DSD provides end-to-end mission support for National Aeronautics and Space 
Administration (NASA) low earth orbit scientific space flight projects. This support ranges from 
establishing the radio frequency (RF) link with the user spacecraft for data acquisition, tracking 
and spacecraft commanding to distribution of captured instrument data to scientific investigators. 
In meeting its charter over the last three decades, the MO&DSD developed significant expertise 
within its organizational elements in building and operating systems to meet requirements in these 
functional areas. As an example, flight dynamics support is provided by one MO&DSD Division. 
That =vision builds and operates institutional, multi-mission systems to support flight missions. 
Other Divisions are responsible for other areas of support. In general, Division systems were 



housed in multi-mission facilities and based on large mainframe computer architectures, to provide 
efficient and cost-effective ground support operations for missions. 

These MO&DSD systems and services reflect a technology environment where large computers 
provided the only viable system solutions, and a science environment that often advocated large 
and complex science objectives and correspondingly complex spacecraft. But now both the 
nature of the users and the technology environment have changed significantly. NASA science 
programs have embraced the "faster, better, cheaper" philosophy as a means of survival in the 
present fiscally constrained environment. Smaller spacecraft are being built with substantially 
reduced budgets and development schedules from those of their predecessors. At the same time, 
the modern computer technology trend is embodied in small, powerful workstations connected via 
a network in appropriate configurations to meet specific processing needs. This combination of 
smaller missions and flexible technology has created enormous opportunity for users and providers 
to find innovative ways of doing business. 

BACKGROUND 

Drivers for change within MO&DSD have come from numerous sources, both external and internal 
to the MO&DSD. Acknowledgment of these led the MO&DSD to actively and collectively seek 
new ways of serving its customers' needs. The drivers and initial analysis activities targeted at 
addressing the consequent challenges are discussed. 

External Drivers for Change 

The nature of the newer scientific missions and the prevailing technology have led to a desire and 
ability on the users part not just to receive data, but to actually operate all or part of the ground data 
system in order to meet the objectives of their missions. The MO&DSD past approach to mission 
operations with shared institutional systems does not possess the flexibility to meet such changes 
in customer needs. Chiefly, because this approach ties solutions for all users to a common 
technology, it also does not possess the resiliency to implement cheaper, streamlined systems for 
mission support where these are appropriate. In addition, customers have felt that dealing with 
several separate multi-mission facilities added complexity in dealing with MO&DSD for mission 
support. This is especially true for the smaller and simpler space flight projects that tended toward 
a more consolidated approach for mission and science planning and operations. Finally, with the 
dramatic reduction in the cost of computing power resulting from the evolution of data processing 
technology, the previous cost advantage of the multi-mission approach based upon mainframe 
computer architectures has evaporated. Flight project customers perceive the MO&DSD past 
approach to mission operations as not being the most cost-effective. 

Internal Drivers for Change 

Recent downsizings of mission budgets coupled with the availability of rapid technology 
advancements have led the organizational elements within MO&DSD to seek alternate solutions for 
development and operation of ground data systems within their functional areas. Utilization of 
workstation1LAN architectures, formalized software reuse, and adoption of commercial standards 
have all been successfully demonstrated within the Divisions for several years. For example, a 
paper published in the SPACEOPS 92 Proceedings ,entitled "SAMPEX Payload Operations 
Control Center Implementation" described the first development of a Payload Operations Control 
Center (POCC) based upon the Transportable POCC (TPOCC) architecture. These technology 
innovations have been beneficial and demonstrated significant cost savings. However, before 
Renaissance they remained generally localized within the various MO&DSD facilities. While there 
were benefits that accrued from collaboration across Division facilities, they had not yet gained 
supremacy as a standard way of accomplishing the MO&DSD mission. 



Architecture Analysis Activities 

Recognizing these drivers, the MO&DSD initiated activities to explore new, consolidated 
approaches for development and operation of GDS for flight mission support. The goals of 
minimizing cost, maximizing flexibility for meeting customer requirements, and reducing 
complexity were established for this effort. A study was commissioned to identify GDS 
architecture approaches that offer significant reductions in cost and development schedules as well 
as increased flexibility for meeting individual customer requirements in establishing mission 
support capabilities. The report recommended an architecture approach that addressed 
implementations from simple to complex missions through integration of support functions in a 
mission-specific instantiation. Implementations would employ reuse over multiple missions and 
incorporate effective standards for commercial product inclusion 

An Architectural Steering Group (ASG) was established to evaluate the recommendations from the 
architecture study report and to determine if the scope of the study should be expanded to address 
space-to-ground and ground-to-ground communications mission support functions. The ASG also 
chose to commission two additional studies: to look at current and future Directorate operations 
concepts to assure that operations as well as development improvements would be realized in the 
new architecture. The ASG activities ultimately led to the identification of an architecture approach 
that stressed the engineering of integrated systems that encompassed the MO&DSD mission 
support functions of flight dynamics, spacecraft command and control, and data capture and 
distribution. These systems would be based on workstation/LAN/fileserver technology and 
reusable hardware and software components called building blocks. The name "Renaissance" was 
applied to this architecture approach. ("Renaissance" is an acronym that stands for Reusable 
Network Architecture for Interoperable Space Science, Analysis, Navigation, and Control 
Environments.) The ASG also determined that the institutional nature of communication services 
should not be changed, though in fact the technology of implementing these services will be 
improved as Renaissance evolves. 

THE RENAISSANCE CONCEPT 

The MO&DSD has embraced change through Renaissance on two fronts. First, is willing to view 
itself as a provider of both systems and services, rather than primarily a provider of services. 
Secondly, is the espousal of particular objectives to facilitate achievement of Renaissance. 

MO&DSD Renaissance Services 

Renaissance divides the domain of MO&DSD mission support capabilities into three areas: mission 
operations, science operations, and centers of expertise (see Figure 1). 
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Figure 1. Renaissance Mission Support Domain 

Mission operations are those functions that are integrated to operate the spacecraft to meet the 
specific requirements for that mission. Similarly, science operations are integrated to achieve the 
science objectives of a specific mission. The functional elements associated with mission and 
science operations are physically embodied within a Mission Operations Center (MOC) and a 
Science Operations Center (SOC), respectively, for each flight mission. Under the Renaissance 
concept, the MOC and the SOC could be integrated into a single center, collocated in a shared 
facility, or geographically dispersed. There is no requirement that either be located at the Goddard 
Space Flight Center (GSFC). 

The third area of the MO&DSD domain, the Centers of Expertise (COE), comprise a permanent 
institutional infrastructure that contains the resources to support the set of flight missions over their 
entire life cycle. Obviously, the key resource within the COE is the personnel with the technical 
skills and experience in the development and operation of GDS. The balance of the COE resources 
include the tools, materials, and processes that are applied by the personnel to develop and operate 
the mission support functions. 

Renaissance Objectives 

The Renaissance architecture approach espouses three major objectives for achieving the goals of 
cost-effectiveness, flexibility, and simplicity for providing mission operations support to space 
flight project customers. Firstly, to assure that developed systems permit integrated operations in 
a stand-alone environment for unique mission support. Development and operation of mission- 



specific systems provides maximum flexibility for customizing the GDS to meet the user's 
particular requirements. The integration of mission support functions for command and control, 
flight dynamics and data processing also presents an opportuncty for reducing the cost of ground 
system development through the elimination of redundant functions that had been replicated within 
each of the multi-mission systems, (e.g., telemetry unpacking). Developments, however, would 
not preclude recombining of functions into multi-mission facilities if this should prove cost- 
effective. 

The second objective inherent with Renaissance is reuse of support capabilities. Here reuse means 
a systematic, planned approach for developing reusable components of ground data systems rather 
than reuse on an ad hoc basis. It implies well-defined interfaces and use of standards to implement 
systems, and an ability to insert new technology readily over time. The construction and use of 
these reusable components, or "building blocks", is the key to reducing the cost of ground system 
development. MO&DSD established a Renaissance Project Team to define -those "building 
blocks". 

The third significant objective associated with Renaissance is the projectized approach to GDS 
development and operation which is aimed at reducing the complexity associated with the present 
user interfaces. Previous mission support systems have of course been coordinated among 
MO&DSD Divisions, but subsystems were implemented in separate facilities and not functionally 
integrated. The new approach calls for completely integrated requirements and integrated testing. 
Establishment of a mission team, led by a Ground System Project Manager (GSPM), provides a 
focal point within the MO&DSD for matters relating to the development and operation of 
MO&DSD GDS. The team defines the mission system, and integrates reusable Renaissance 
"building blocks" with mission-unique building blocks that it develops. The team also assures that 
space flight project customer needs receive strong advocacy within the MO&DSD. 

APPROACH TO ACHIEVING RENAISSANCE 

The ASG selected the Advanced Composition Explorer (ACE) mission for the initial 
implementation of a Renaissance GDS. The mid-97 launch date was close enough to provide for a 
relatively quick demonstration of Renaissance without incurring the risks related to interruption of 
system developments that were already well under way [e.g., X-Ray Timing Explorer (XTE) and 
Tropical Rainfall Measuring Mission (TRMM)]. 

The challenge faced by the MO&DSD teams was to achieve the modular "building block" goals of 
Renaissance, while simultaneously meeting the near-term mission needs of the ACE Mission. 
Schedules, climate and budget would not allow for an extended period of time to prototype 
Renaissance concepts before instantiating them in a mission. Building blocks could not be created 
first, followed by mission-unique pieces. Parallel paths and integrated planning were required to 
achieve the ACE Mission. 

However, this challenge was not as daunting as it might appear. Two factors created a climate for 
success: tight integration of the Renaissance and ACE implementation teams; and extensive 
availability of predecessor systems that meet Renaissance goals. 

Implementat ion Teams 

The Renaissance Project Team, a core group of highly capable engineers, was charged with 
Renaissance building block definition. Their charter was as follows: 



Identify building blocks through examination of ACE and other system (e.g., XTE) 
requirements to determine generic functionality. 

Identify predecessor systems and Commercial Off-the-shelf (COTS) products that could 
meet the building block specifications. 

Identify standards and development processes useful in the Renaissance era. 

Develop plans for transitioning into the Renaissance approach. 

Work with the mission teams, initially the ACE team, to apply the Renaissance architecture. 

This core team was augmented by additional MO&DSD engineers who served to provide input to 
their efforts and to review and critique the outcomes. In particular, those engineers charged with 
implementing the ACE Mission were early and constant participants in the Renaissance effort. 

Predecessor Systems 

Despite the use of the Renaissance name to capture a system concept within the MO&DSD, many 
predecessor efforts on other missions were aligned with the Renaissance concepts, and influential 
in molding its goals and giving confidence that the architecture would be successful. The 
Renaissance concept, in fact, was merely an acceleration and consolidation of various efforts that 
were already occurring naturally within the Directorate. Reliance on these efforts gave credence to 
the possibility of meeting both ACE and Renaissance goals within the aggressive schedule. 
Examples of forerunner efforts include: 

The TPOCC UNIX-based software that supports real-time spacecraft command and control 
and that, prior to Renaissance, was in use or planned for use for the Small Explorer 
missions (SAMPEX, FAST, SWAS), ISTP WIND, POLAR and SOHO, XTE and 
TRMM. The TPOCC brings a legacy of substantial software reuse as well as workstation 
and LAN-based processing. 

The VLSI-based Level Zero Processor (LZP) employed on the FAST mission. This 
system captures spacecraft science data and removes transmission artifacts before 
forwarding it to science investigators. It is integrated into the mission command and 
control facility, and as such is a predecessor to the Renaissance operations approach. 

The Packet Processor (PACOR) I1 distributed system, a multi-mission data capture and 
level zero processing system planned for use by SWAS, TRMM, XTE, HST and GRO. 
PACOR illustrates both system (hardware and software) reuse and distributed processing. 

The Generic Support System (GSS), a reusable system for attitude determination. 

The Generic Spacecraft Analyst Assistant (GenSAA), a tool that allows spacecraft analysts 
to create graphics and ryle-based systems to assist in monitoring spacecraft health and 
safety, and other decision-based situations. 

The Generic Trend Analysis System (GTAS), a reusable spacecraft trending tool. 

All of these systems support in some measure the Renaissance objectives of reusability and 
integrated, stand-alone systems. Figures 2 and 3 capture the extent to which these goals are met in 
missions prior to ACE. 
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Figure 2. Percent Reuse 

Figure 3. Percent Independent of Multi-Mission Facilities 

ACHIEVEMENTS TO DATE 

Early efforts have partitioned the ~enaissance GDS into four sets of services. A Renaissance 
Project Team working group is defining functionality and building blocks for each set. The 
groupings are as follows: 



Spacecraft Communication Services (reconstruction of telemetry packets, command 
transmission, packet annotation, time correlation, and archiving). 

* Spacecraft Data Distribution Services (real-time, quick-look and routine data delivery, data 
subsetting, output logging, and delivery validation). 

User Services (user interface, user tools and application builders, system configuration and 
monitoring, system security, system time synchronization, and data management). 

* Application Services (spacecraft services such as telemetry monitoring, trend analysis, 
attitude support, command verification; planning and scheduling applications for 
spacecraft, science and network activity planning; and uplink applications such as real-time 
commanding and load generation). 

Two additional working groups are assigned to issues that cross all Renaissance services: 

Architecture group, charged with defining the integrated architecture. 

Simulation and testing. 

Many of the promised innovations of Renaissance are being realized within the context of the ACE 
ground system, including largely integrated operations, consolidation of functionality, 
incorporation of new technology and standards, and reliance on the legacy of past systems. Figure 
4 illustrates the architecture proposed for ACE. 

Integrated Operations 

It is intended to incorporate real-time command and control, command and load generation, attitude 
determination and data capture and distribution within the ACE mission operations center. The 
only major MO&DSD ground system function that will still be treated within a separate facility for 
this mission is orbit determination and the ancillary production of maneuver planning aids. The 
ground station and SOC will remain separate from the MOC. (These facilities are not implemented 
by MO&DSD and are traditionally separated from MO&DSD facilities. Future directions will lead 
to the consolidation of MOC and SOC functions. See, for example, related paper in this 
conference, "A New Systems Engineering Approach to Streamlined Science and Mission 
Operations for the Far Ultraviolet Spectroscopic Explorer (FUSE)." 

Consolidation of Functionality 

In two significant arenas, functionality previously developed and performed within multiple 
facilities will be consolidated. Firstly, there will be a single front-end for frame synchronization, 
Reed-Solomon processing, virtual channel separation, and data quality annotation. This front-end 
will be located at the Deep Space Network (DSN) ground station (vs. former performance of 
portions of this function in three MO&DSD facilities). Data will be forwarded from there to the 
ACE MOC. This system will also allow data to be forwarded directly to the SOC for processing, 
if this proves desirable. 

Secondly, a consolidated simulator that will meet the testing needs of all ground system functions 
is planned for development 
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Figure 4. Renaissance Architecture for ACE MOC 

Incorporation of Technology and Standards 

A particular innovation within the ACE ground system is the use of the commercially available 
Transmission Control Protocolfinternet protocol (TCP/IP) protocol to transmit data from the 
ground station to the MOC. This allows replacement or encapsulation of the traditional 4800-bit 
NASA Communications (Nascom) blocks, and eliminates the need for custom systems to handle 
these blocks. Use of this protocol paves the way to ultimately reduce institutional cost for 
providing ground communications because of wide commercial availability and ability to eliminate 
Nascom blocks in the future. 

The ACE ground data system will consist of a series of workstations supporting POSIX and 
communicating via a LAN. Software will be developed in ANSI C, C++ or Ada. While each 
workstation will have particular functionality assigned to it, the ability to move functions among 
workstations for load balancing or recovery from anomalies will be supported. 



The ground system will also use X-windows and MOTIF as interface standards. 

Predecessor Systems 

The ACE ground system will depend heavily on building blocks, either implemented particularly to 
support ACE as the first mission, or derived from predecessor systems within MO&DSD. Table 1 
lists ACE services and their derivation. 

CONCLUSION 

The consolidated Renaissance effort is less than a year old. Progress is substantial, however, due 
to an aggressive project team and integration of predecessor systems already aligned with 
Renaissance goals. Reliance on Renaissance products is allowing the MO&DSD to work with its 
customers in defining low-cost systems whose operations are tailored to the customers needs, for 
example, with the FUSE and the upcoming Small Explorer missions. Early results are promising, 
and the Directorate is committed to sustaining a management approach that will allow Renaissance 
goals to be achieved. 



Table 1. Derivations of Renaissance Services for ACE 

Application 
Services 

Data 
Services 

Space Comm 

*Mission 
Planning 
*Image 
Maintenance 
*RTADS 
Commanding 

.Off-line ADS 

*LZP Product 
Generation 
*LZP RT Proc 
*DSN Monitor 
Block Process 
.CMD Echo 

*Packet 
Services 
.Raw Data 
Logging 

* U P  Ops 
*LZP QA 

*Gen Equation 
Processor 
*Maneuver 
Planning 
*GMT Sync 
Contact 
Prediction 
*Config Monitor 
*State Manager 

*GMT Router 
Server 
*Event Logging 
*Telemetry 
Decom 
*Data Sewer 
*History 

*Load 
Generation 
*Clock 
Correlation 
*Eqn Processor 
*Recorder 
Mgmt 

.Load 
Database 

*Embedded. 
Frame Sync 

*File 
Server 
*DBMS 

Comm 
Software 
*Multicast 
Server 
.Time Server 



Nomenclature 

ACE 
ASG 
COE 
COTS 
DSN 
FAST 
FUSE 
GDS 
GenSAA 
GRO 
GSFC 
GSPM 
GSS 
GTAS 
HST 
ISTP 
LAN 
LZP 
MO&DSD 
MOC 
NASA 
Nascom 
PACOR 
POCC 
POLAR 
RENAISSANCE 
RF 
SAMPEX 
soc 
SOH0 
SWAS 
TCPIIP 
TPOCC 
TRMM 
WIND 
XTE 

Advanced Composition Explorer 
Architec tural steering ~ r o i p  
Centers of Ex~ertise 
Commercial off-the-shelf 
Deep Space Network 
Fast Auroral Snapshot Explorer 
Far Ultraviolet Spectroscopic Explorer 
Ground Data Systems 
Generic Spacecraft Analyst Assistant 
Gamma Ray Observatory 
Goddard Space Flight Center 
Ground System Project Manager 
Generic Support System 
Generic Trend Analysis System 
Hubble Space Telescope 
International Solar Tei~estrial Physics 
Local Area Network 
Level Zero Processor 
Mission Operations and Data Systems Directorate 
Mission Operations Center 
National Aeronautics and Space Administration 
NASA Communication 
Packet Processor 
Payload Operations Control Center 
Polar Plasma Laboratory 
Reusable Network Architecture for Interoperable Space Science 
Radio Frequency 
Solar Anomalous and Magnetospheric Explorer 
Science Operations Center 
Solar Oscillator Heliospheric Observatory 
Submillimeter Wave Astronomy Satellite 
Transmission Control ProtocoVInternet Protocol 
Transpoi-table Payload Operations Control Center 
Tropical Rainfall Measuring Mission 
International Physics Laboratory 
X-ray Timing Explorer 
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ABSTRACT a standard structure, and the interfaces 
between functional blocks are defined with a 

This paper presents an architecture to set of standard protocols. 

develop a multimission operations system, 
which we call DIOSA. In this architecture, a 
component used as a building block is called 
a functional block. Each functional block has 
a standard structure, and the interface 
between functional blocks are defined with a 
set of standard protocols. This paper shows 
the structure of the database used by 
functional blocks, the structure of interfaces 
between functional blocks, and the structure 
of system management. Finally, examples of 
typical functional bloks and an  example of a 
system constructed with this architecture is 
shown. 
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1. INTRODUCTION 

In order to reduce the cost of developing an 
operations system for a spacecraft, an  
approch of developing a system by 
integrating reusable components has been 
proposed (Holder et al., 1992; Mandl et  al., 
1992). In order for such an approach to be 
successful, the function of the components 
must be defined in a structured model of the 
entire system, and the interfaces between 
components must be standardized. 

This paper presents an  architecture to 
develop a multilission operations system, 
which we call DIOSA (Distributed Operations 
System Architecture). In this architecture, a 
component used as a building block is called 
a functional block. Each functional block has 

If the functions provided by a functional 
block can be customized by only changing 
parameters, the functional block can be 
utilized by many missions. The key to do this 
is the standardization of database. This paper 
shows an example of a structure of standard 
spacecraft database. To make a distributed 
system reliable, the interfaces between 
components mus t  be s imp le  a n d  
understandable. This paper presents a simple 
interface structure with which functional 
blocks can communicate with each other 
easily. Automating management activities is 
the key to reduce operational labor (Newsome 
et al., 1992). This paper proposes a scheme 
for managing a distributed operations system. 

Finally, examples of typical functional blocks 
and an example of a system constructed with 
this architecture is shown. 

2. SYSTEM ARCHITECTURE 

2.1 Overall Architecture 

To enable the definition of system 
components and interfaces of a distributed 
system, the architecture of the entire system 
needs to be defined. In this subsection, the 
definition of the concepts of system, complex, 
domain and functional block is given. 

A spacecraft operations system consists of 
some complexes (Fig.1). A complex is a n  
aggregated set of operations facilities located 
a t  one location. Typical examples of a 
complex are (1) a ground station, (2) a 
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Fig. 1 DIOSA Overall Architecture 

spacecraft operations center, and (3) a science 
analysis center. 

A complex is divided into domains. A domain 
is a set of operations facilities managed as  a 
single system. The system configuration of a 
domain is controlled independently from that 
of other domains. I n  other words, a 
configuration change of a domain does not 
affect the configuration of other domains. 
Typical examples of a domain are (1) a set of 
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station, (2) a spacecraft control system for 
one spacecraft a t  a spacecraft operations 
center, and (3) a payload operations system 
for one payload a t  a science analysis center. 

The distinction between complex and domain 
may not be important in some cases. For 
example, if an  entire complex is managed as 
a single system, the notion of domain is 
useless. In what follows, however, we assume 
that the domain is the unit for management. 

A domain consists of functional blocks. 
Functional blocks are basic building blocks of 
DIOSA. Each functional block performs a set 
of functions to operate a spacecraft, and has 
a standard structure which will be defined in 
the next subsection. 

2.2 Structure of a Functional Block 

Each functional block has (1) data ports, (2) 
a management port, and (3) a local SIB (Fig. 
2). 

The data ports are used for receiving data to 
be processed by the functional block and for 
sending data which has been processed by 
the functional block. The communications 
protocols to be used for the data ports are 
rlic~iiccnrl i n  S ~ r t i n n  A Thn n k h ~ r  ~ n r l  nf a -*""-"""" ,.,"""-".. A. *.A" "V*."* "-a- "A .A 

data port is another functional block. 

The management port is used for receiving 
configuration control information and for 
sending status information (Newsome et  al., 
1992). The protocols to be used for the 
management port are discussed in Section 5. 
The other end of the management port is 
usually the Domain Management Functional 
Block. 

Fig. 2 Structure of Functional Block 

FUNCTIONAL BLOCK DATA PORTS 



The local SIB is a local copy of a subset of 
the Spacecraft Information Base (SIB) which 
will be discussed in  Section 3. Each 
functional block retains its own copy of SIB, 
which is downloaded from the Master SIB of 
a spacecraft. Most of the basic functional 
blocks can be used for several spacecraft by 
changing the local SIB and (maybe) replacing 
some of the software modules. 

3. SPACECRAFT INFORMATION BASE 

3.1 Structure of SIB 

The Spacecraft Information Base (SIB) is a 
database which stores all the information 
needed to operate a spacecraft. SIB consists of 
three parts, namely Data Definition Part, 
Behavior Definition Part, and Procedure 
Definition Part (Fig. 3). The Data Definition 
Part is equivalent to a traditional command 
and telemetry database found in most 
spacecraft operations systems. The Behavior 
Definition Part and Procedure Definition Part 
is an online version of the flight operations 
manual (Cipollone et al., 1992). In the future, 
higher-level knowledge on spacecraft should 
be further combined with SIB using a 
technique proposed by Kaufeler et al. (1992a). 

Each part of SIB is generated from the 
spacecraft specifications and the flight 
operations manual. It is important that SIB 

SPACECRAFT INFORMATION 
BASE (SIB) 
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(Com mand sequences) 

Part 2 - Behavior Definitions 
(Spacecraft behavior in terms 

mand and telem 

Part 1 - Data Definitions 
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Format) 

should be used from the spacecraft 
integration and test phases by the spacecraft 
integration team and then handed to the 
flight operations team in an  electronic 
manner. 

In the operations system, SIB is maintained 
in the Master SIB Functional Block, and its 
appropriate portions a r e  occasionally 
distributed to other functional blocks (Fig. 4). 

3.2 Data Definition Part (SIB Part 1) 

The Data Definition Part of SIB defines the 
structure of binary data contained in  
telemetry and command packets (or frames). 
For each command item, any information 
needed to generate a command packet from 
its mnemonic expression is stored (Fig. 5). 
And for each telemetry item, any information 
needed to extract its value or status from a 
telemetry packet is stored (Fig. 5). The 
parameters of the RF links of the spacecraft 
are also stored in this part. 

A standard of packet formats like ESA's 
Packet Utilization Standard (Kaufeler et al., 
1992b) greatly facilitates standardizing this 
part of SIB, thus increasing portability of SIB 
from mission to mission. 

Flight Operations 
Manual (FOM), etc. 

MASTER R 

Fig. 3 Spacecraft Information Base (SIB) Fig. 4 Distribution of SIB 



3.3 Behavior Definition Pa r t  (SIB Part 2) 

This part defines the behavior of a spacecraft 
in terms of command and telemetry. This 
data is used to decide whether or not the 
spacecraft is acting normally, and to give the 
operator a message on what actions to be 
taken in case of an anomaly (Fig. 5). 

Examples of information stored in this part 
are: (1) How the spacecraft reacts to each 
command in terms of telemetry, (2) Actions 
to be taken (or commands to be sent) when 
the spacecraft does not reacts to the 
transmitted command properly, (3) Telemetry 
limit values, (4) Actions to be taken (or 
commands to be sent) if a telemetry limit 
value is exceeded. 

3.4 Procedure Definition Part (SIB Part 3) 

This part stores command procedures. A 
command procedure i s  a sequence of 
commands to accomplish an objective. Other 
command sequences can be called a s  
subprocedures i n  a command sequence. 
Information on resource requirements and 
operational constraints should be stored with 
each command sequence. 

Operations Masseges to 

I Definitions i ......................... ......................... 

Telemetry 
Sequences 

......................... ......................... 
SIB Part 1 : : 

i Definitions : i Definitions i ......................... ......................... 

Telemetry 
Packets Packets 

Fig. 5 Usage of SIB 

4. INTERFACE STRUCTURE 

Standard interfaces between functional blocks 
are obtained by standardizing data formats 
and communications protocols. In this section, 
standard formats and protocols to be used for 
the data ports of functional blocks are 
presented. 

4.1 Data Types 

Data formats to be used for the data ports of 
functional blocks are standardized in two 
categories, namely Raw D& Type and Text 
Data Type (Fig. 6). 

Examples of data of the Raw Data Type are 
command and telemetry packets (or frames) 
and radiometric data. To increase the 
portability of some software, any raw data 
used for spacecraft operations should be 
formatted in a data unit whose structure 
resembles that of CCSDS packets. In this 
way, for example, navigation data generated 
by a spacecraft and hppler  data obtained a t  
a ground station can be displayed .on the 
same screen easily. 

SEQUENTIAL TRANSFER 
Space Data Transfer 

DATA TYPES 

BATCH TRANSFER 
File Transfer Protocol 

- 

- 

Fig. 6 Data Types and Transfer Types 
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To process raw packets, some ancillary 
information needs to be attached to each 
packets. The type of ancillary information 
depends on the application data.  For 
telemetry packets, for example, reception time 
at the ground station and data quality 
information should be attached to each 
packet as ancillary information. In DIOSA, 
this information is called Application Specific 
Ancillary Information (ASAI). 

Examples of data of the Text Data Type are 
event files (sequence of events and 
commands), parameter files (listing of 
parameters), anomaly messages (indicating 
the ocurrence of an anomaly), and state 
vectors. These kinds of data are transferred 
as text files with a standard format so that 
they can be processed with standard UNIX 
tools like AWK. 

4.2 Transfer Types 

Communications protocols to be used for the 
data  ports of functional blocks a r e  
standardized in two categories, namely 
Sequential Transfer Type and Batch Transfer 
Type (Fig. 6). 

The protocols of the Sequential Transfer Type 
are used for transferring data which needs to 
be transferred while it is being generated. 
These protocols can be used for delayed 
transfer as well (e.g. receiving telemetry data 
stored at a ground station) if the user wants 
to use the same software for both realtime 
and delayed data. 

A data delivery protocol, which is called the 
Space Data Transfer Protocol (SDTP), is the 
standard application layer protocol of DIOSA 
for sequential transfer. This protocol is used 
together with a standard transport protocol 
such as TCP/IP or X.25 (Fig. 7). Details of 
SDTP are described in the next subsection. 

The protocols of the Batch Transfer Type are 
used for transferring files. A standard file 
transfer protocol such as  FTP or FTAM can 
be used for batch transfer (Fig. 7). 

Most raw data will be transferred with the 
sequential transfer protocols. However, the 

RAW DATA TEXT DATA 

CCSDS Packets, 
Frames, etc. 

Appl. Specific 
Ancillary Info. 

Space Data FTP, FTAM, 1 Transfer 1 1 etc. 1 
Protocol (SDTP) 

TCPIIP, X.25, TCPIIP, X.25, I etc. I I etc. I 
SEQU ENTIAL BATCH 

TRANSFER TRANSFER 

Fig. 7 Protocol Stack Used for Data Ports 

batch transfer protocols can be used for 
transferring raw data which is already stored 
in a file. Most text data will be transferred 
with the batch transfer protocols. However, 
the sequential transfer protocols can be used 
for transferring text data if it has to be 
transferred immediately after its generation. 

4.3 Space Data Transfer Protocol (SDTP) 

The Space Data Transfer Protocol (SDTP) is 
a connection oriented protocol used for 
delivering sequential space da ta  (e.g. 
sequence of CCSDS packets) from a 
functional block to another functional block. 
SDTP has a capability of (1) requesting data 
transfer, (2) specifying Spacecraft ID (SCID), 
Application Process ID (APID) and other 
attributes of data, and (3) notifying of any 
events related to data delivery (e.g. loss of 
RF signal). The formats of the Protocol Data 
Units (PDUs) of SDTP is shown in Fig. 8. 

SDTP is used as follows. When Functional 
Block Tom wants to receive a sequential data 



DATA PDU FOR RAW DATA 

CONTROL PDU 

Fig. 8 Format of SDTP-PDU 

SDTP 
Header 

SDTP 
Header 

from Functional Block George, Tom opens a 
connection of SDTP with George saying "Hi, 
George. I want to receive packets with 
APID= 5 and SCID=32 in realtime" (Connect 
Request). Then George answers "OK, Tom" 
(Connect Response) and starts data delivery. 
When the data delevery is (or must be) 
terminated, either end of the connection can 
disconnect the connection. 

Standard Text File 

SDTP can be used together with a data 
distribution service as explained below as 
well as in a bilateral mode. 

DATA PDU FOR TEXT DATA 

ASAl 
Header 

In a distributed space operations system, a 
data stream often needs to be delivered to 
s e v e r a l  d e s t i n a t i o n s  s i m u l t a n e o u s l y  
(multicasting). For example, some telemetry 
d a t a  may be monitored by s e v e r a l  
workstations simultaneously. In DIOSA, data 
distribution and multicasting are performed 
by the Data Distribution Functional Block 
(DDFB). A DDFB is placed in every domain 
where i t  is needed. The DDFB of a domain 
acts as the data server of the domain. The 
DDFB receives sequential data from the 
DDFB of another domain or from another 
functional block in its own domain, and 
distributes the received data t.o functional 
blocks in its domain (Fig. 9). 

CCSDS Packet, 
Frame, etc. 

In such a situation, when a functional block 
wants to receive a sequential data, i t  opens a 
SDTP connection with the DDFB of that  
domain requesting transfer of that data. Then 
the DDFB checks whether or not it i s  

11 DOMAIN 11 
Dist FB ,O 

Dist FB Block 

L1 LI 

Fig. 9 Data Distribution With Data 
Distribution Functional Block (DDFB) 

receiving that data, and if it is not, i t  sends 
a request for that data to another DDFB. 
Therefore, the requesting functional block 
does not have to know where the data 
originally comes from. I t  always sends 
requests to the DDFB of its domain. 

5. MANAGEMANT STRUCTURE 

Each domain has a functional block, called 
the Domain Managemet Functional Block 
(DMFB), which manages the functional blocks 
of the domain. Management within a domain 

sDTp 'Or T T Text file transfer 
realtime control for schedule 

and monitor exchange 

Domain 
Man FB 

Fig. 10 lntterdomain Management With 
Protocols of Fig. 7 



Table 1 Some Examples of Functional Blocks 

is performed with the management port of 
functional blocks and a standard network 
management protocol like SNMP. 

Functional 
Block Name 

Domain 
Management 

Data 
Distribution 

Command 
Transmission 

Telemetry 
Reception 

Radiometric 
Data Collection 

Spacecraft 
Control 

Timeline 
Generation 

Orbit 
Determination 

Data Archive 

Data Analysis 

Managinment between domains can be 
performed either with a network management 
protocol or with the protocol suit described in 
Section 4. In  the lat ter  case, schedule 
information is exchanged in Standard Text 
Files with the File Transfer Protocol, while 
configuration change messages and status 
information messages are  exchanged with 
SDTP in realtime (Fig. 10). 

6. EXAMPLES OF FUNCTIONAL 
BLOCKS 

Typical 
Location 

Every 
Domain 

Every 
Domain 

Ground 
Station 

Ground 
Station 

Ground 
Station 

OPS 
Center 

OPS 
Center 

OPS 
Center 

Science 
Center 

Science 
Center 

In Table 1, some examples of functional 
blocks are given. Please note that this is not 
a comprehensive list of functional blocks. An 
example of a n  operations system constructed 
with DIOSA is shown in Fig. 11. 

7. CONCLUSION 

Function 

Manage 
functional blocks 
o f  the domain 

Distribute data 

Transmit 
commands 

Receive and 
decode telemetry 

Collect range and 
doppler data 

Generate 
commands and 
verify results 

Generate 
timelines 

Determine orbit 

Archive data 

Analyze data 

This paper presented the concept of a 
distributed multimission operations system. 

Data Input 

Event fi le (Text Data, 
Batch Transf.), 
Config. change req. 
(Text Data, Seq. Tsf.) 

Various data (Raw 
Data, Seq. Transf.) 

Command data (Raw 
Data, Seq. Transf.) 

Telemetry signal 
(Analog) 

Radiometric signal 
(Analog) 

Event fi le (Text Data, 
Batch Transf.), 
Telemetry data (Raw 
Data, Seq. Transf.) 

Ops request (Text 
Data, Batch Transf.) 

Rangeldoppler (Raw 
Data, Seq. Transf.) 

Telemetry data (Raw 
Data, Seq. Transf.) 

Telemetry data (Raw 
Data, Batch Transf.) 

Data Output 

Status information 
(Text Data, Seq. 
Transf.) 

Various data (Raw 
Data, Seq. Transf.) 

Command signal 
(Analog) 

Telemetry data (Raw 
Data, Seq. Transf.) 

Rangeldoppler (Raw 
Data, Seq. Transf.) 

Command data (Raw 
Data, Seq. Transf.), 
Anomaly msg (Text 
Data, Seq. Transf.) 

Event fi le (Text Data, 
Batch Transf.) . 

State vector (Text 
Data, Batch Transf.) 

Telemetry data (Raw 
Data, Batch Transf.) 

Papers t o  be 
published in journals 



I GROUND STATION (COMPLEX) I 

SCIENCE DOMAIN 

I OPERATIONS CENTER (COMPLEX) I 
Fig. 1 I Example of Spacecraft Operations System 

We plan to develop a prototype in a few 
years to verify the validity of this concept. 
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ABSTRACT 
The theory behind re-engineering a business process is to remove the non-value added activities 

thereby lowering the process cost. In order to achieve this, one must be able to identify where the non- 
value added elements are located which is not a trivial task This is because the non-value added 
elements are often hidden in the form of overhead andlor pooled resources. In order to be able to isolate 
these non-value added processes from among the other processes, one must first decompose the overall 
top level process into lower layers of sub-processes. In addition, costing data must be assigned to each 
sub-process along with the value the sub-process adds towards the final product. 

IDEFO is a Federal Information Processing Standard (FIPS) process-modeling tool that allows for 
this functional decomposition through structured analysis. In addition, it illustrates the relationship of 
the process and the value added to the product or service. The value added portion is further defined in 
IDEFlX which is an entity relationship diagramming tool. The entity relationship model is the blueprint 
of the product as it moves along the "assembly line" and therefore relates all of the parts to each other 
and the final product. It also relates the parts to the tools that produce the product and all of the paper 
work that is used in their acquisition. 

The use of IDEF therefore facilitates the use of Activity Based Costing (ABC). ABC is an essential 
method in a high variety, product-customizing environment, to facilitate rapid response to externally 
caused change. This paper describes the work being done in the Mission Operations Division to re- 
engineer the development and operation life cycle of Mission Operations Centers using these tools. 

1. Introduction 

With NASA budgets becoming tighter 
each year, the Mission Operations Division 
(MOD), which is part of the Mission 
Operations and Data Systems Directorate at 
Goddard Space Flight Center (GSFC), has 
been forced to reevaluate and change how it 
has traditionally built Ground Data Systems 
(GDS). The MOD, as an enterprise, could 
very simply not afford to continue doing 
"business as usual". 

The traditional GDS approach was to 
implement large facilities that supported 
multiple, simultaneous missions, with each 
facility providing a specific type of 
operational support function. The systems 
were also typically developed using the 
traditional development life cycle model, 
with formal reviews for requirements and 
design, and large amounts of formal 
documentation. This GDS architecture and 
development approach may have been 
appropriate given the technology and budgets 



available at that time, but the MOD could no 
longer afford this approach. The 
development cycle was proving to be too 
long and expensive, and the operations costs 
associated with the architecture were 
accounting for too much of the overall 
budget. The MOD enterprise thus set out to 
improve itself in these two areas. 

A new GDS approach has been adopted 
that takes advantage of the relatively recent 
advances in technology and industry 
standards. The new concept is to build a 
GDS that is tailored to a mission or family of 
missions. This required the development of 
an underlying architecture approach that was 
flexible, scalable and evolvable. 

As mentioned, the MOD also set out to 
reduce the development life cycle cost. 
Analysis showed that while operations costs 
could be reduced with the new architecture, 
development costs associated with that 
architecture were not experiencing 
comparable cost savings. This was surprising 
to many since the new architecture employs 
high levels of software reusability across 
missions. The MOD came to the conclusion 
that though reusability was an important 
factor in reducing costs, any further 
substantial savings could only be achieved by 
improving the development process itself. 

The remainder of this paper focuses 
in particular on the MOD's efforts thus far to 
improve the process for requirements 
analysis. Sections 2 through 4 introduce a 
costing method referred to as Activity Based 
Costing (ABC), and the Integration 
Definition for Modelling (IDEF) modelling 
used to support this method. The remaining 
sections describe how this method and tool 
were applied to the MOD's process 
improvement experiment. 

2. Process Engineering with ABC; 
Pricing a Requirement 

In order to manage processes effectively 
and to make appropriate decisions about 
changing them, a detailed and accurate set of 
metrics is essential. Pooled resources tend to 
distort the actual cost of a process. When a 
resource is shared, the traditional method for 
assigning cost to a project is to use the 
average cost of past missions, instead of 
assigning a cost that is tailored to the true 
needs of the project. With the new GDS 
approach of tailoring the system to each 
mission's needs, a comparable costing method 
was needed so that actual mission 
requirements could be individually costed, 
thus yielding a more accurate overall project 
cost estimate. 

ABC is a method devised to model the 
cost of any process which has first been 

. 

decomposed through modeling into primitive 
activities that serve as its building blocks. 
Once the primitive activities have been 
identified, costs can be assigned to those 
primitives. Then optimization of the general 
process can be performed in forums such as 
process improvement committees. 

IDEF is a Federal Information Processing 
Standard (FIPS) that can be used as a tool to 
perform ABC. IDEF actually consists of an 
integrated pair of tools: the activity modeler 
(IDEFO) and the data modeler (IDEF 1 X). 
IDEFO is used to model the activities that 
occur to produce a product or service and 
therefore shows the interrelationships of work 
being done in different groups. IDEFlX 
shows what is being passed between 
processes by defining a template (i.e. a data 
structure) for each item. This provides for 
more accurate, rapid and meaningful insight 
into interactions among groups. An example 



of this might be a form sent to request a 
service from another group. IDEF therefore 
acts as an intergroup coordination tool by 
providing the overall blueprint for the entire 
process. The best way to use this tool to 
coordinate different groups is to put IDEF on 
a distributed network that is accessible on- 
line to all participants in the process. 

3. The Power of IDEF & ABC 

IDEF with ABC allows one to 
continuously assess the implementation of an 
overall process and thereby determine the 
point at which the implementation needs to 
be changed in order to reduce costs. 

For example in figure 1, a conceptual 
process is depicted. The goal is to get from X 
to Z, however there is a constraint that 
regardless of what path is taken, it must cross 

Y as an intermediary point or constraint. For 
example, X might be the start of a project and 
Z might represent having a design. Before 
one can have a design, one must have the 
system requirements which is represented by 
Y. There are a variety of paths to get from 
X to Y, each costing a different amount. The 
cost to get from X to Y is the sum of the cost 
of each of the activities traversed to get from 
X to Y. In this case, path 2 happens to be the 
least expensive. 

But what happens when a technology 
comes along that causes the cost of activity 3 
to decrease from $3.00 to $0.50? This causes 
the least expensive path from X to Y to 
become path 1 instead of path 2. But what 
happens if there are thousands of activities 
performed by loosely coupled groups, with 
each injecting technology to perhaps 
automate an activity in their area? Thus what 

Injection of Technology 
may change cost of an activity 
thus changing optimum path 



looked relatively simple in this example is in 5. Experiment Approach 
reality very complex! 

What happens when the organization 
chooses to solve problems with the same 
processes without considering cost impacts of 
increasing complexity? Without examining 
the activities within processes and removing 
non-value added old activities , unneeded 
constraints are carried along like deadwood at 
extra expense. For example, it may be 
necessary to derive the system requirements, 
but it may not always be necessary to have a 
formal System Requirements Review (SRR) 
if there is a high degree of reusability. 

4. IDEF Nomenclature 

Of course, models created through the 
use of IDEF are more sophisticated than the 
conceptual drawing in figure 1. Figure 2 

mechanism attributes 

Figure 2 Nomenclature for IDEFO and 

depicts the key to reading an IDEFO drawing. 
Note the acronym ICOM helps to identify the 
key elements of an IDEF drawing where I 
represents Input, C represents Constraint, 0 
represents Output and M represents 
Mechanism. One of the key features of IDEF 
is its ability to link the drawings to an 
underlying database. Also, the drawings are 
hierarchical to allow one to reveal more and 
more detail as needed. 

The following steps were taken in 
conducting the MOD process improvement 
experiment: 

Identify target process for 
improvement. 
Gather baseline cost data. 
Define activities that comprise the 
process using IDEFO 
(referred to as AS-IS process). 
Identify potential problem areas. 
Identify the underlying business rules 
using IDEF 1 X 
Develop improved process (referred 
to as TO-BE process). 
Quantify potential cost improvement 
using ABC. 
(1) Show main cost driver activities. 
(2) Identify resource cost drivers, 
e.g., needing specialized skill only 
half-time but required to hire a full- 
time person. 
Measure the new process to verify 
improvement. 

6. Target Process Selection 

In order to define the target process for 
improvement, a typical mission life cycle 
was first defined as follows: 

- Develop System Requirements 
- Design System 
- Build and Test System 
- Operate System 
- Maintain System 

This top level process is illustrated in figure 
3. Although this figure applies specifically to 
the development and use of a Mission 
Operations Center (MOC), it was actually 
derived from a higher level diagram of the 
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typical life cycle for the entire GDS. processes are illustrated in figures 4 and 5 
respectively. Figure 6 shows the underlying 

The next step involved taking some gross cost spreadsheets and figure 7 is an example 
measurements of the different life cycle of the underlying entity relationship model. 
phases to see where the largest portion of the 
resources was spent. The build phase of the A cursory examination of figure 4 , 
life cycle was found to be an increasingly suggested the following problems: 
smaller portion of the total cost. This was 
due to the employment of reusable building a. Function A13 "Negotiate 
blocks. This meant that the major cost Exceptions" is a trigger on Functions A1 1 
drivers no longer resided in the generation of and A12. That is, A13 is required to feed 
software. They instead resided in the other certain previously identified exceptions back 
life cycle phases, primarily developing to their source for reconsideration. This 
system requirements and testing. Therefore reiteration (loop-back) multiplies the effort. 
the greatest remaining potential for cost 
savings was in these other phases. The b. Additionally, there is conflict 
requirements analysis phase was thus chosen between inputs into the "Analyze Mission 
as the target process for improvement. Req." from two different sources. This 

indicates that the changes resulting from the 
7. Process Analysis unresolved constraints and inputs 

(exceptions) perturb the on-going preparation 
The "AS-IS" and "TO-BE" requirements of other requirements, necessitating 



Accepted Mission 



coordination. Thus, management and 
developer resources, as well as operator and 
projects' personnel time, is consumed 
unnecessarily. 

8. Process Improvement 

The AS-IS process has been redesigned to 
largely eliminate feedback as shown in fig. 5, 
TO-BE, while retaining its basic 
functionality. This was accomplished by 
making the Developers, mechanism M3, and 
their personal knowledge of the constraint 
C2, "In-House Capabilities", available to 

A1 1, which is the initiating point in the 
requirements process. This early developer 
involvement has removed many of the 
information interfaces that used to require 
translation and documentation "at-a-distance" 
between A1 1, A12 and A13, and that had 
been burning up a sigmficant amount of 
manpower. To facilitate dynamic person-to- 
person interaction, the process designers 
specified there be a System Definition Team 
(SDT) in order to ensure "eyeball-to-eyeball" 
operator and developer physical proximity, 
which eliminated the shuttling of documents 
back and forth. The Requirements 

I Figure 6 Underlying cost spreadsheets 
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entity realtionship model 

treated in this manner. Since technology 
changes so quickly, this analysis, including 
an activity cost breakdown, has to be 
constantly monitored. The next step, once 
these models are in place, would be to feed 
the results into a simulator such as Work 
Flow Analyzer to do probabilistic analysis 
on the feedback loops. 

11. Conclusion 

Generation System (RGS) replaced this 
physical function by recording the 
agreements in real time, thus furthering the 
cost reduction effect. 

9. Results 

Chart 1 shows the results that were 
achieved. Note that, in spite of the fact that 
they were favored by very high levels of 
reuse, previous missions still required 
significant developer effort to get through the 
requirements analysis process. The shaded 
area indicates the newly installed process . 

Together, IDEF and ABC allow large 
organizations to coordinate their processes 
and to create a living blueprint for changing 
and improving business practices. These 

tools also provide a forum for each individual 
to identify his or her viewpoint and to 
comment on these processes from such a 
perspective. For the business entity and its 
organization to remain viable, and since the 
primary cost savings potential is in the 
process and not the product or product 
architecture, these types of management 
methods must be instituted along with such 
items as product innovation. They in fact 
provide a means to achieve process 
innovation. Finally, without these type of 
tools, large organizations find themselves in 
the situation of making decisions without the 
necessary metrics. 

10. Future Efforts 
12. References 
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ABSTRACT 

Often in the past, standards and new technology 
information have been available only in hardcopy 
form, with reproduction and mailing costs proving 
rather significant. In light of NASA's current budget 
constraints and in the interest of efficieAt communi- 
cations, the Mission Operations and Data Systems 
Directorate (MO&DSD) New Technology and Data 
Standards Office recognizes the need for an online 
information server (OLIS). This server would allow 

Dissemination of standards and new technol- 
ogy information throughout the Directorate more 
quickly and economically 
Online browsing and retrieval of documents 
that have been published for and by MO&DSD 
Searching for current and past study activities 
on related topics within NASA before issuing a 
task 

This paper explores a variety of available informa- 
tion servers and searching tools, their current capa- 
bilities and limitations, and the application of these 
tools to MO&DSD. Most importantly, the discus- 
sion focuses on the way this concept could be easily 
applied toward improving dissemination of stan- 
dards and new technologies and improving docu- 
mentation processes. 

including file transfer protocol (FTP), wide-area 
information server (WAIS), Gopher, and Mosaic. 
From their personal computer (PCs), users can elec- 
tronically retrieve standards information (e.g., Con- 
sultative Committee for Space Data Systems recom- 
mendations), new technology information (e.g., asyn- 
chronous transfer mode), or previous studies and 
results. This server also provides pointers to other 
public servers on the Internet. 

In support of this initiative, the Systems, Engineer- 
ing, and Analysis Support technical support group 
began looking into mechanisms for providing better 
access to standards and new-technology-related 
documentation. A standards database on CD-ROM 
was examined; however, it was found that a local 
PC-based retrieval mechanism is rather cumber- 
some and not easily accessible for the more than 
4,000 users of the MO&DSD community. 

Because Transmission Control ProtocoVInternet 
Protocol (TCP/IP)-based applications are widely 
available for any platform, the technical support 
group concentrated on an open systems approach 
using the Internet as the access mechanism. This 
approach provides maximum accessibility within 
Goddard Space Flight Center (GSFC), across NASA, 
and even to international users. 

INTRODUCTION GOAL 

The Mission Operations and Data Systems The key issue is giving users timely, reliable, and 
Directorate (MO&DSD) online information server relevant information. The overall goal of OLIS is to 
(OLIS) has been established to share the latest make information available, convenient, and easily 
trends, technologies, and standards information accessible to MO&DSD personnel. Users can 
among MO&DSD organizations. OLIS offers the access and share in minutes information that once 
same information via multiple retrieval methods, took weeks to disseminate. Most significantly, OLIS 



focuses on ways to improve awareness of standards, 
new technologies, and documentation processes. 
OLIS was established to show what can be done and 
to encourage other groups to set up similar servers. 

INTERNET SERVICES 

Many available services require only a basic con- 
nection to the Internet, where client applications are 
used to access information servers. More advanced 
clientlserver technologies can access the capabili- 
ties of more basic clients and servers (as shown in 
Figure 1). 

Figure 1 shows, on the left, the various types of client 
programs and, on the right, the various types of 
servers those programs access. These clientlserver 
communications can also occur with both elements 
on the same system so the same process can be used 
to access local files, as well remote files. 

Also shown are two major types of interfaces. One 
is a basic textual interface that can be supported on 

Representative Information 
End user Client applications Servers 

(daemons) 
Text Interlace GUl interface Suwort ADDllCatiOnS 

I /-\ internet 

Figure I .  Hierarchy of ClientlSewer 
Technologies 

full-screen text terminals, such as the VTlOO series. 
This type of interface can be supported by most 
computer vendors and can operate over dialup and 
Telnet connections. The textual interface works 
very well over low bandwidth connections as it only 
uses text and does not include any graphics. 

The other type of interface is the full graphical user 
interface (GUI), which normally provides a more 
user-friendly interface. However, this type of inter- 
face requires an end-user computer system with 
proper windowing capabilities and is not commonly 
supported over dialup links. - 

The support applications (shown at the top of Figure 
1) are used by Gopher- and Mosaic-type clients. 
These applications are activated when the client 
detects an action or file format that cannot be proc- 
essed by the client itself. These applications are 
normally activated after the client has transferred a 
special-format file to the user's disk drive. Support 
applications include Telnet applications or special 
file format processors such as graphics interchange 
format (GIF) or joint photographic expert group 
(JPEG) image viewers, QuickTime or MPEG movie 
viewers, audio file players, or word processor pack- 
ages. 

Domain Name Service 

Remote systems are normally identified by an 
Internet format hostname address such as 
"ddwilson.gsfc.nasa.gov." This name must first be 
converted into a standard four-number IP address 
such as 128.1 83.92.1 44, which can then be used to 
communicate with the remote system. 

A "directory assistance" service, referred to as 
Domain Name Service (DNS), is available that 
automatically looks up IP addresses for a given 
hostname and vice versa. This automated service is 
silently invoked every time an Internet hostname is 
given for connection. The lookup is performed by 
querying a host called a DNS name server. (The 
identity of this server should be provided at the time 
the user's computer is set up for Internet access.) In 
addition to letting user computers resolve IP ad- 
dresses automatically, the DNS maintains entries, 
listing the Internet hostname and IP address of the 
user's computer. This lets remote systems such as 
anonymous FTP sites determine if the computer is a 
registered Internet host. 



Telnet 

Telnet is the standard TCPIIP remote login protocol. 
To "Telnet9' to another system is to run a Telnet 
client program that establishes a connection to a 
Telnet server and then logs on to that system with 
some user ID. This cliendserver combination pro- 
vides a basic, text-only access mechanism but works 
internationally. Connecting to a system via Telnet 
normally looks exactly like connecting via a dialup 
line or direct connection. However, with Telnet, a 
user can support multiple connections to remote 
systems simultaneously. 

On an X-window system, a local window-based 
program such as xterm is used to provide a scrollable 
text window from which a Telnet session is then 
established. On a Macintosh or PC, a window-based 
application [such as the public domain program, 
National Center for Supercomputing Applications 
(NCSA) Mosaic], Telnet, or a commercial package 
can be used to provide the client end of the Telnet 
connection. 

The main limitation of Telnet access is that only one 
system can be accessed per session, and the user 
must know and use the appropriate commands to 
examine information there. Some systems support a 
"guest" login with no password, but most systems 
require individual user accounts and passwords. A 
problem with using Telnet for public information 
access is that it normally requires a user to execute 
too many commands on the remote system. The 
combination of user accounts and extensive com- 
mand capabilities make this is a very poor way to 
provide a large user community access to many 
information servers easily and transparently. 

File Transfer Protocol 

FTP is another information access mechanism that 
has been in existence since the time of the ARPANET 
in the mid-1 970s. To "FTP" to a system is to run an 
FTP server, examine file directories, and download 
or upload files of interest. FTP provides access to a 

thousands of FTP servers set up for "anonymous 
ftp" access. In anonymous ftp, the user can log in 
with a user name of "anonymous" and a password 
(generally the user's name andlor email address) 
and then download files or possibly upload files into 
a special directory set up for that purpose. An anony- 
mous ftp server was set up as the first information 
server for OLIS. 

FTP initially operated in a command line mode (as 
shown in Figure 2), where the user entered FTP 
commands to browse file directories and retrieve 
files. 
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Figure 2 .  Command Line FTP Interface 

More user-friendly, point-and-click, or GUI FTP 
client programs have been developed in the last few 
years. These programs eliminate the need for learn- 
ing FTP commands, but they still provide only lists 
of filenames to choose from. On a Macintosh, Fetch 
is one public domain program that implements FTP. 
It simply asks for the name of the host to which the 
user wants to be connected and then provides a 
point-and-click interface to FTP versus the basic 
command line mode of operation. Users can browse 
file directories and, if the filename is descriptive 
enough, can figure out the content and select files for 
downloading (as shown in Figure 3). 

singe site at a time and requiresexplicit commands Although FTP provides a very widely used mech- 
to disconnect from one site and then connect to anism for access to file repositories, it still provides 
another. However, it does provide basic access to only simple lists from a single server at a time. Users 
anything that can be put into a file. Today, a wide need to know how to locate other servers and explic- 
range of information is digitized and stored in itly connect to them. Therefore, FTP does not really 
files. Users can log on to an FTP server if they provide the sort of easy access desired for wide use. 
have an account and password there. There are also Most FTP sites ask for some sort of password, even 



Figure 3 - GUZ FTP Interface 

if they don't care what it is. The password is a 
courtesy in the event the FTP site wants to record 
log-in access. Also, as a security measure, many 
FTP sites check to ensure that the DNS lists the 
user's P address as a registered host. 

Wide-Area Information Server 

WAIS clienvserver software began appearing in 
1992 and looked very promising for the MO&DSD 
goals of providing easy user access to documents, as 
well as full-text search capability on document 
repositories. A WAIS server was set up on OLIS 
in 1993. The popularity of WAIS increased rapidly 
once public domain implementations of the client/ 
server software became stable and available. This 
was the beginning of the deployment of more 
advanced clients and servers and associated proto- 
cols that allowed users to quickly and easily access 
more than one server site. 

The major feature of WAIS is its full-text search 
capability. When a document is loaded into a WAIS 
server, it passes through an indexing application that 
scans the document and builds a list of all the words 
in the document and their frequency of occurrence. 
This information and a pointer back to the original 
document file are then added to the master indexes 
on the server. An end user uses a WAIS client 
program to format a question to be asked of one 
or more WAIS servers. The question contains key- 
words of interest and pointers to the servers to 
be queried. The client program then establishes a 
temporary connection to a server, asks the question, 
receives the responses, and then drops that 

connection and connects to the next server. After 
querying all servers, the client displays the resulting 
filenames to the user. The user can then select any 
file of interest, and that file is transferred to the 
user's system. 

WAIS clients can be set up to easily query multiple 
servers with minimal user interaction. The user is 
not involved in the process of connecting to or 
disconnecting from each server to be polled. Once a 
question has been established with keywords and 
servers identified, the question can be saved for later 
use. The complete search of the same question can 
then be executed at a later date with a single user 
action. The results are returned in a single list indi- 
cating filenames, together with a score of how fre- 
quently the keywords occur in each file. With WAIS, 
users begin to see the Internet as a large information 
repository. 

An inherent limitation with WAIS is that the indexer 
supports only ASCII text as input format; i.e., graphi- 
cal content must be removed and only the text 
entered into a WAIS server. This presents aproblem 
in that, today, many documents are prepared in 
desktop publishing packages and contain tables and 
graphics, as well as text. To get around this problem, 
a WAIS server can be used to locate documents of 
interest, and then the fully formatted version can be 
retrieved separately. Another limitation is that the 
user is responsible for identifying all information 
sites to be queried. One of the files at a site can be a 
list of other WAIS servers that a user can add to the 
list of sites to be queried. But the user is still 
responsible for identifying each site to be used. 

With Gopher and WWW, pointers to other sites with 
information of interest can be followed more easily 
and transparently, as discussed in the following 
paragraphs. 

Gopher 

Gopher servers exploded on the Internet during 
1993, with thousands in existence today. Gopher is 
a popular menu-based information system that inte- 
grates access to Telnet, FTP, and WAIS in an easy- 
to-use interface. Gopher also provides easy access to 
multiple sites. Users move transparently from one 
server to another with the Gopher client knowing 
which protocol to use to access each server. Thus, 
users spend time searching for information rather 



than trying to determine how to use each service and 
navigate the network. 

TurboGopher (shown in Figure 4) is a Macintosh 
version of a Gopher client that allows users to 
retrieve the same information accessible via a typi- 
cal VTlOO Gopher client. TurboGopher, however, 
provides the following advantages: 

Point-and-click graphical interface 
* Files saved directly to local Macintosh 

User does not have to first log into UNIX host 
When an item is selected from a Gopher menu, one 
of three things happens: 

Lower-level menu on the same system appears 
Connection is initiated to another server and 
menu actually stored there appears 

* Action is initiated, such as a file transfer or 
Telnet session 

The first case is actually a special instance of the 
second. In the second case, for menus served by 
another system on the Internet, TurboGopher auto- 
matically connects to the new system and sends the 
proper low-level commands to retrieve the menu 
being invoked. As the user browses through the 
menu hierarchy, the program automatically switches 
from system to system as needed. In the third case, 
when a user invokes a menu item, some special 
action may be performed (e.g., automatically ini- 
tiate downloading a file). This is implemented 
essentially by FTP-like functionality built into 
TurboGopher, while a Telnet session is initiated by 
activating a support application. 

Worldwide Web 

The WWW project began at the European Particle 
Physics Laboratory (CERN). WWW seeks to build 
a distributed hypermedia system in which all infor- 
mation on the Internet can be accessed consistently 
and easily. Because WWW has the greatest flexibil- 
ity and most user-friendly interface, the OLIS effort 
focuses here. 

WWW is geared toward hypermedia that allows 
selected objects to be expanded at any time to 
provide additional information (i.e., selected objects 
are links to other objects, such as text, sounds, 
images, and animation). The basic building blocks 
of WWW are the HyperText Transfer Protocol 
(HTTP) and the HyperText Markup Language 

(HTML). HTTP describes the communication pro- 
tocol between clients and servers; HTML describes 
the format of the information pages transferred. 

WWW capabilities are comparable to Gopher in that 
WWW is a clientfserver information system running 
on the Internet that provides quick and easy access 
to a wide range of servers. WWW performs the 
functions of Gopher but also supports hypertext 
links that permit the creation of more descriptive 
information for the end user. WWW provides a full 
screen of textual and graphical information with 
individual words, phrases, or icons acting as links 
(shown in Figure 5). The page-formatting capabili- 
ties of HTML can be used to create a wide range of 
point-and-click user interfaces that operate across 
the network. 
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Figure 4 - TurboGopher Interface 

Figure 5. WWW Interface 



The WWW model represents everything (docu- 
ment, menu, index, etc.) to the user as a hypertext or 
hypermedia object. Two navigation operations are 
available to the user: to follow a link or to send a 
query to a server. Two powerful features fall out of 
this hypertext model. One is that almost all other 
information systems can be represented in terms of 
WWW documents. The other is that the WWW 
system has an open but uniform addressing scheme 
that allows links to be made to any objects on 
WWW, WAIS, Gopher, FTP, Network File System, 
or Network News servers. A WWW user can inter- 
rogate WAIS indexes and Gopher servers. The hit 
list returned by a WAIS server (or any other query 
engine) is treated as a hypertext document with links 
to the documents found. Gopher menus (or any other 
hierarchical menu system) are represented as lists of 
items linked to other objects. The hypertext model 
also allows the user to put in a hypertext link, when 
needed, for background information. 

NCSA Mosaic 

Because WWW supports the functions of other 
types of clients and servers, this discussion focuses 
on WWW clients. One of the most popular WWW 
client applications is the free, public domain soft- 
ware, NCSA Mosaic, which is available for PCs, 
Macintoshes, and many UNIX workstations. It was 
developed at the University of Illinois Urbana- 
Champaign and can be picked up from most major 
anonymous FTP sites. With Mosaic and the proper 
support applications, users can explore WWW with 
full access to multimedia information, including 
formatted text, graphics, and sound. Through WWW, 
a user can access Telnet, FTP, WAIS, Gopher, and 
H'ITP systems. 

SpaceOps 94 hypertext link, Mosaic automatically 
retrieves information and displays the SpaceOps 
HomePage (shown in Figure 7). 

If a special file type is referenced on a hypertext link, 
for example GIF format, Mosaic tries to invoke a 
GIF viewer to display the file after downloading is 
completed. GIF viewer software must be installed 
on the local system, and Mosaic must be configured 
to use it. 

Mosaic displays the retrieved information in the 
large scrolling window, and links are followed by 

MO&DSD Online I n f o d o n  Server 
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Figure 6. Mosaic Screen 

When a user starts Mosaic, the program attempts to 
connect to a preset known host; the initial host is at 
the NCSA, but each user can configure their own 
starting point. Once an initial page of information is 
downloaded, Mosaic operates in a true clientlserver 
fashion. The user sees on the screen a graphical 
point-and-click hypertext interface (shown in Fig- 
ure 6). As the user browses through the hypertext 
tree, Mosaic automatically switches from system to 
system and protocol to protocol as needed. 

Figure 6 shows the Mosaic interface and part of the 
MO&DSD Homepage. When the user clicks on the Figure 7. SpaceOps 94 HomePage 



clicking on the underlined hypertext items. One of 
the most important features of the Mosaic client is its 
ability to save "bookmark" or "hotlist" references to 
a user's favorite information locations. Thus, the 
user does not need to know exactly which links were 
followed to find a particular information site. The 
user can access these locations again with a single 
operation using the bookmark or hotlist entry. 

DOCUMENT FORMATS 

One problem with information servers is the wide 
variety of possible formats in which data can be 
available. The MO&DSD server stores all of its 
documents in ASCII format, as well as in the 
document's original format. Currently, there are not 
many bit-mapped images stored on the MO&DSD 
server. Any images placed there are stored in either 
GIF or JPEG format. 

Plain Text Document 

Because ASCII format can deliver textual informa- 
tion to any end user via a wide range of access 
mechanisms, documents are usually loaded onto 
information servers in an ASCII format. However, 
the main problem with this is that all graphics and 
figures in the original (fully formatted) document 
are lost. Furthermore, many documents are prepared 
using desktop publishing packages with paragraph 
wrap and proportional fonts. When converted to 
monospace font'with individual lines of text, these 
documents loose their enhanced appearance. 

All ASCII documents on the MO&DSD OLIS have 
been indexed to the WAIS server to facilitate key- 
word searches. This allows a user to perform key- 
word searches on located documents of interest, 
scan the ASCII versions online, and retrieve the 
original formatted document if desired. 

Fully Formatted Document 

Original document can be stored in a wide range of 
formats [e.g., Wordperfect for Windows, Word for 
Macintosh, Rich Text Format (RTF), or Postscript]. 
Each of these formats can be used to deliver a fully 
formatted document. These files are usually con- 
verted to a single flat file, with a package such as 
BinHex, prior to being loaded on the OLIS. When 
trying to read and process fully formatted docu- 
ments, the end user must have the proper application 

software to reconstruct an exact copy of the original 
document. Eventually, all fully formatted docu- 
ments will likely be stored on OLIS in the following 
three formats: 

* Plain ASCII text for searching and browsing 
(document may not look nice but all the text 
information will be there) 
Single Postscript file containing the whole 
fully formatted document including graphics 
Original word processor format 

MAKING A MACINTOSH 0-R PC 
INTERNET CAPABLE 

To use any of the Internet services described, a user 
must first gain access to the Internet. One way to 
access these services is through a connection to a 
computer that is a full host on the Internet. However, 
in this mode, the user needs to log in to that system 
and use the proper commands to access these ser- 
vices. 

The most powerful way to access these services is to 
have a direct connection to the Internet. This can be 
done from most UNIX workstations, Maciritoshes, 
or PCs. The connection may be via a local area 
network (LAN) or via a dialup phone line. The most 
powerful dialup access involves the use of Serial 
Line IP (SLIP) or Point-to-Point Protocol (PPP). 
These protocols operate between software on the 
user's computer and similar software on a SLIP or 
PPP server that the user can dial in to. The protocols 
then implement an IP connection over the dialup 
line, and the client applications then operate over 
TCPIIP, just like when the user is directly connected 
to a LAN. To get reasonable response with SLIP or 
PPP, a dialup connection of at least 9600 bits per 
second is required. 

For any system to be connected to the Internet, three 
basic things are required: 

Connectivity to some point on the Internet 
* Unique IP address for the user's computer 
* Appropriate TCPIIP software and associated 

application software 
A unique IP address for the user's system is provided 
by the administrator responsible for connectivity. 
A basic communication program with VT100 termi- 
nal emulation and download capabilities is also 
required on the computer. Some common packages 



are Zterm for Macintoshes and ProComm or 
CrossTalk for PCs. 

Macintosh Platform 

For Macintoshes, the major item software required 
is MacTCP to provide TCPIIP support. GSFC has a 
site license, so this is readily available to any NASA- 
owned Macintoshes. Other client and support appli- 
cations are available from Macintosh servers at 
GSFC or numerous anonymous FTP sites. 

PC Platform 

For PCs running Windows 3.1, the main software 
required is the Windows socket interface dynami- 
cally loadable library, "winsock.dll." This provides 
the interface between most applications and TCPIIP 
on the PC. The client and support applications are 
available from PC servers at GSFC or numerous 
anonymous FTP sites. 

SUMMARY 

With Internet access, modern information retrieval 
software, and connection to the MO&DSD OLIS, 
remote users can 

* Easily retrieve well-established standards at a 
local Macintosh or PC 

* Perform online browsing and retrieval of docu- 
ments published for and by MO&DSD 
Search for current and past study activities on 
related topics within NASA or other govern- 
ment agencies prior to issuing a task 
Improve standards and technology awareness 
among peers to ensure a design of interoperable 
systems for cross-support environments 

* Access information at thousands of sites world- 
wide, and make select information accessible 
by others 

Additional potential benefits could be achieved in 
areas such as: 

* Avoiding duplication of effort by being able to 
quickly and easily scan information of activi- 
ties being performed across MO&DSD and, 
eventually, all of NASA 
Faster development of standards documents 
via immediate access to huge reference librar- 
ies and capability for rapid-exchange of docu- 
ments 

* Significant reduction in travel costs through 
easy exchange of information and documenta- 
tion over the network rather than by attending 
meetings. 
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ABSTRACT 

Historically, NASA's cost for developing mis- 
sion requirements has been a significant part of 
a mission's budget. Large amounts of time 
have been allocated in mission schedules for 
the development and review of requirements 
by the many groups who are associated with a 
mission. Additionally, tracing requirements 
from a current document to a parent document 
has been time-consuming and costly. The Re- 
quirements Generation System (RGS) is a 
computer-supported cooperative-work tool that 
assists mission developers in the online crea- 
tion, review, editing, tracing, and approval of 
mission requirements as well as in the pro- 
duction of requirements documents. This 
paper describes the RGS and discusses some 
lessons learned during its development. 

INTRODUCTION 

One of the most important, time-consuming 
and expensive tasks for any mission is the de- 
velopment of mission requirements. For ex- 
ample, consider the contractor time expended 
for development of requirements for the Pay- 
load Operations Control Center (POCC) and 
the Command Management System (CMS) 
portions of two Small Explorer missions. For 
the Fast Auroral Snapshot Explorer (FAST) 
and Submillimeter Wave Astronomy Satellite 
(SWAS), the contractor person-years expended 
were 10.7 and 8.0, respectively (Mandl, 6/91 
943. (The data do not include civil service 

time or time expended on requirements for 
other parts of these missions.) Similar ex- 
penditures for the Xray 'liming Explorer 
(XTE) were estimated at between 15 and 18 
person-years. 

The Requirements Generation System (RGS) 
was developed to help automate the re- 
quirements process. The goal was to reduce 
mission schedules and costs associated with 
the creation and use of mission requirements 
information. We hypothesized that we could 
meet this god by: 

increasing communication about all lev- 
els of mission requirements among the 
many individuals and groups of per- 
sonnel contributing to a mission, 

* providing automated assistance for the 
online development, editing, review, 
tracing and approval of requirements 
and the production of related documents 
and reports, and 

reusing sets of requirements across sim- 
ilar missions. 

RGS CAPABILITIES 

The RGS uses a distributed system archi- 
tecture to encourage online work. The RGS 
was designed for existing desk-top platforms 
(i.e., Macintoshes and PCs). The sections be- 
low present the operations concept. 



Single Mission Database as those found in the Detailed Mission Re- 
quirements (DMR) document, and lower-level 

The RGS uses a single mission database to requirements, such as those found in the Sys- 
maximize communication among mission tem Requirements Document (SRD), are in- 
personnel and to facilitate the online man- cluded. This eliminates the need for trace- 
agement of mission information. The mis- ability across separate documents andlor 
sion-specific database is made available to all databases and allows for the production of re- 
mission personnel from the beginning of a ports that contain requirements at varying lev- 
mission throughout its life cycle. els of detail. Additional documents (e.g., the 

Mission Requirements Request) are available 
Figure 1 shows the mission requirements online for reference and for the explicit trace- 
documents that are produced for a standard ability of DMR requirements to requirements 
mission. The letters above each box list the in parent documents. 
organization (or person) responsible for pro- 
ducing the document. All levels of re- Although working online with the RGS does 
quirements and all requirements documents, not eliminate the need for meetings to discuss 
commentary, and rationale are consolidated issues, it can reduce the time needed to agree 
in the RGS mission database, thus reducing on a set of requirements. Mission personnel 
the time to locate, review and disseminate in- no longer need to wait for the release of a 
formation. Higher-level requirements, such document to review requirements; they can be 

reviewed, and approved or rejected, 
HQ individually. Piecemeal review can 

result in schedule efficiencies. 

Online Entry and Editing - 

The RGS provides a form-based 
graphical user interface for entering 
and editing requirements on-line. 
Requirements may be entered in any 
order. They are numbered by the re- 
quirements developer as they are en- 
tered and may be hierarchical. In 
Figure 2 the first requirement is 
numbered 4 100- 1, the second, 4 100- 
1.1, etc. In this example the section 
of the requirements document (i.e., 
4100) is appended to the beginning 
of the requirement number. This ad- 
dition is optional. 

HQ - Headquarters 
MOM - Mission Operations Manager 

DSM - Data Systems Manager 
EL - Element Manager 
ENG - Engineering 

Figure 1. Requirements Document Hierarchy 



4100 Mission Operations System Requirements 

4200 Flight Software 

Figure 2 : Sample Requirements H 

Users may assign a "level" to each re- 
quirement. This number associates the re- 
quirement with a given degree of detail or a 
given document type (e.g., the requirements 
in the Mission Requirements Request might 
be designated Level 1, the Detailed Mission 
Requirements document Level 2, and the 
System Requirements Document Level 3). 
The requirement level is independent of the 
hierarchical number assigned to individual 
requirements. Mission personnel may de- 
termine the relationship between the levels 
and the hierarchy for their mission. Figure 2 
shows one possible assignment. 

A table of user privileges defines which users 
may enter and edit which sections and levels 
of the requirements. For example, the Mis- 
sion Operations Manager (MOM) might as- 
sign the privilege of enteringlediting the Lev- 
el 2 requirements of Section 4000 to one 
group of requirements developers; Level 3 
requirements for Section 4000 might be as- 
signed to a different group of requirements 
developers. 

On-line Approval/ 
Rejection 

The RGS provides on-line, 
form-based capabilities for 
appropriate mission per- 
sonnel to approve or reject 
a requirement and to at- 
tach associated rationale 
for their decisions. Ap- 
proval privileges for a spe- 
cific level of requirement 
may be assigned to any of 
the mission personnel. 
For example, for Level 2 
requirements, approval 
could be assigned to only 
the MOM; to the MOM 
and Data System Manager 
(DSM); to the MOM, 
DSM and Element Manag- 
er (EM); or to some other 
combination of mission 

'ierarchy personnel. Different EMS 
may be assigned approval 

privileges for different sections of re- 
quirements as appropriate. 

The RGS annotates each mission requirement 
in the database with a "status" that describes 
how far the requirement has progressed to- 
ward final approval. A clearly labeled status 
field distinguishes work-in-progress re- 
quirements from mission-approved re- 
quirements (Table 1). The instant availability 
of newly-developed requirements (i.e., draft or 
pending) provides access to the current think- 
ing on issues and allows for speedier review 
and response from interested parties. Further, 
approving requirements individually (as op- 
posed to waiting for the release of a set of re- 
quirements in a document) can speed up plan- 
ning and design. Finally, the overall view of 
the status of the requirements aids man- 
agement in their assessment of the progress 
that has been made at any point in time. In- 
adequate requirements in a certain mission 
area can be identified, and measures can be 
taken to correct any difficulties. 



Table 1. Status Classifications for Requirements 

Private A requirement that is work in progress, visible only to 
the author (or the working group to which the author 
belongs). 

Draft A requirement that is work in progress, visible to anyone 
with access to the mission. 

Pending A requirement that has been submitted for approval. 
This requirement is considered "finished" but not 
accepted. 

In Acceptance A requirement that has been accepted by one, but not all 
of the parties ~esponsible for approving the requirement. 

Accepted A requirement that has been accepted by each of the 
parties responsible for its approval. 

Rejected A requirement that has been rejected by at least one of 
the parties responsible for its approval. 

Accepted with A requirement that has been accepted by each of the 
Contingencies parties responsible for its approval, but to which the 

DSM has responded with exceptions. 

On-line or Paper-Based Review and 
Reporting 

Any requirement in the mission database 
may be reviewed by any mission user who 
has been granted privileges to access the da- 
tabase. An easy-to-use search mechanism 
allows users to filter the database and to se- 
lect reduced sets of requirements for review. 
The selected requirements may be reviewed 
on-line or printed. Report contents can be 
defined by users using a simple selection 
technique. 

Reviewers are also afforded an on-line 
"notes" capability for attaching commentary 
to individual requirements. The notes are 
then available for perusal by all database us- 
ers. 

HARDWARE AND SOFTWARE 
ENVIRONMENT 

The RGS has a client-server architecture. A 
client-server architecture uses client ma- 
chine(~) and server machine(s), along with 

the underlying operating system and inter- 
process communication systems, to form a 
composite system that allows the distributed 
access, management, analysis, and presenta- 
tion of information. 

The RGS supports both PC and Macintosh 
computers as client machines. Future plans 
include running on UNIX platforms. A Com- 
paq System ProILT comprises the server por- 
tion of the RGS hardware configuration. This 
server houses all the RGS databases, support 
documentation, and database software. 

The RGS server resides on the GSFC Center 
Network Environment (CNE). GSFC users 
access the RGS server from their workstations 
via this network. Local off-site users access 
the CNE via a T1 line, while off-site users not 
local to GSFC access the CNE via the Pro- 
gram Support Communications Network 
(PSCN) Internet. 

The RGS was developed using two Com- 
mercial Off The Shelf (COTS) software pack- 
ages, OMNIS 7 and SQL Server. OMNIS 7, 



manufactured by Blyth Software, is a graph- 
ical user interface package that was used to 
develop the front-end portion of the RGS. 
The front-end executes on the client ma- 
chines and provides the mechanism for users 
to interface with the RGS database. The 
front-end is responsible for soliciting queries 
or directions from the user for purposes of 
data update, analysis and retrieval and for 
presenting the results of queries and com- 
mands to the user. The front-end may also 
perform data analysis on the query results re- 
turned from the server. 

SQL Server, a relational database man- 
agement system marketed by Microsoft, Inc., 
was used to develop the RGS databases. The 
functions of this server component of the 
RGS custom software are to respond to user 
queries issued by the client machines and to 
manage the RGS requirements databases and 
document library. 

DISCUSSION 

The primary goal in developing the RGS was 
to produce a system that improves the de- 
velopment of mission operations. To date 
the RGS seems to be fulfilling that goal. The 
system is currently being used for five mis- 
sions, and there are plans to use it on another 
six missions. Estimates are that requirements 
costs will be cut at least 50%, with even larg- 
er savings for missions that are similar 
enough to reuse major portions of the mission 
databases (Mandl, 1994). 

A second reason for developing the RGS was 
to learn about client-server, computer- 
supported-cooperative-work (CSCW) sys- 
tems. This section discusses some lessons 
learned from development of the RGS. 

Lesson 1: Plan on Becoming a Full Service 
Organization 

dle in using an electronic meeting scheduler is 
that all participants must be able to read and 
respond or the scheduling activity is harn- 
pered (Grudin, 1990). Similarly, deployment 
of the RGS as a CSCW system would be use- 
less if mission personnel couldn't access re- 
quirements online. 

Providing physical access to the RGS for all 
mission personnel required more resources 
than originally anticipated. Originally, the 
RGS team had expected to supply the RGS 
application, the COTS packages (OMNIS and 
SQL Server), training, a user's guide, and an 
RGS hot line service for responding to ques- 
tions. Additionally, we planned to provide for 
maintenance of the server and the centralized 
database for each mission. We later de- 
tennined that we had to become a "Eull ser- 
vice" organization. Many of the end users, 
spread across the Center and beyond, did not 
have the expertise to acquire and install the 
software to run a client-server system. Client- 
server software is more difficult to install than 
software packages that reside on an individual 
workstation. Generally Macintosh in- 
stallations generally were done quickly, but 
PC installations often required extensive anal- 
ysis. Sometimes it took several hours to get 
the RGS installed. Conflicts with existing 
mail and other resident user packages were 
the rule as opposed to the exception. 

Additional chores included wiring offices to 
get users networked to the CNE, and sup- 
plying and installing communications soft- 
ware and Ethernet cards. In the case of off- 
site contractors who-did not access the RGS 
server through the Internet, we provided ex- 
pertise in dealing with the telephone company 
to obtain communication lines. 

The extra services were time-intensive and 
expensive. Had we not had resources to ex- 
pend for these tasks, the whole project might 
have failed. 

Computer-supported cooperative-work sys- 
tems are only useful when there is a critical 
mass of users. For example, the major hur- 



Lesson 2: Employ Users' Groups with Full 
Representation 

Working with users' groups is an integral part 
of the methodology of the client-server de- 
velopment team. We established an RGS Us- 
ers' Group at the beginning of the project and 
met monthly thereafter to determine the re- 
quirements for the system. The Users' Group 
discussed the types of users and the ca- 
pabilities each would need to do the mis- 
sion's work. In some cases we used detailed 
scenarios of the tasks to be done by the in- 
dividual types of users in order to determine 
that we correctly understood the re- 
quirements. 

The RGS Users' Group was very helpful in 
defining requirement and developing a de- 
sign. However, one type of user, the Data 
System Manager, was not represented in the 
beginning. Users who were present were not 
able to represent adequately the functions 
needed by the DSM. For a later release of the 
RGS we redesigned several features to in- 
clude those functions. We concluded that an 
efficient development methodology for 
CSCW projects absolutely requires the active 
involvement of every type of user, regardless 
of their amount or type of use. 

Lesson 3: Design for Flexibility 

One original'goal of the RGS was to design a 
system specifically tailored to handle the 
Goddard Mission Operation and Data System 
Directorate's method of developing and man- 
aging mission requirements. The reasoning 
was that mission personnel were accustomed 
to a largely paper-based process, and con- 
vincing them to adopt an automated system 
could be done best by making as many of the 
elements of the automated process as fa- 
miliar as possible. Other requirements sys- 
tems that were reviewed did not provide the 
specific kinds of functions that are needed to 
satisfy the Mission Operation and Data Sys- 
tem Directorate process. To this end the 
RGS developers and potential users worked 
together to define the user types and the 

functions each would perform. The RGS 
team incorporated those functions into the de- 
sign. 

The first two releases of the RGS were suc- 
cessful because of this approach. However, 
further discussions, often with the users' 
groups, highlighted the need for differences in 
capabilities from mission to mission. Ex- 
amples include the desire to change the priv- 
ileges of users and user types, to use the RGS 
for different types of documents (as opposed 
to the DMR for which it was originally de- 
signed), to tailor the approval processes for in- 
dividual missions, to create different docu- 
ment structures and formats, and to create 
traceability to a wider range of parent docu- 
ments. In short, the original description of 
RGS capabilities was well-defined and rather 
rigid. As more users became involved, they 
requested more flexible capabilities to suit 
their mission's style of operating. 

One approach to making the needed mod- 
ifications would be to hand-tailor the RGS 
software for each mission. This approach was 
rejected because of the inherent software 
maintenance costs, the problems of managing 
multiple versions of the same software, and 
the limitations of what can be changed in soft- 
ware with a short turnaround time. 

Instead we chose to design generic ca- 
pabilities. The latest version of the RGS has a 
flexible set of functions that can be tailored to 
a particular mission's need by the mission per- 
sonnel. Beginning with Release 3, mission 
personnel may configure the RGS, without 
assistance from the developers, to allow the 
definition of any of the following: 

* any number of mission-specific user 
types (e.g., a requirements developer, 
MOM, DSM, EM, read-only user, and 
other mission-defined users). 

a mission-specific structure for a re- 
quirements document (showing what 
sections are to be included). 



* mission-specific requirement levels, al- 
lowing for a greater level of detail beyond 
the standard three document levels (i.e., 
M R . ,  DMR and SRD). 

* mission-specific acceptance privileges 
(determining what approvals are nec- 
essary for what sections and levels of re- 
quirements). 

These flexible capabilities made the RGS a 
more general purpose tool. We also expect 
them to reduce the software maintenance re- 
quired for the RGS. 

Lesson 4: Plan to Deal with Changes in 
Work Flow 

In the past, mission personnel developed re- 
quirements in a sequential fashion, largely 
completing and approving higher-level re- 
quirements documents before lower-level re- 
quirements were defined. Often one group 
of requirements developers wrote higher- 
level requirements and another group lower- 
level ones. 

Use of an open database promotes changes to 
this traditional work flow. Requirements at 
any level can be entered at any time. Mis- 
sion personnel can add information as soon 
as it becomes available. One section of the 
requirements can be completed at the lowest 
level before another section is begun at a 
higher level. Additionally, documents per se 
become less important. Requirements can 
now be reviewed and approved individually, 
or in sections, as opposed to at the "docu- 
ment" level. While these changes can impact 

the schedule positively, this flexibility may be 
upsetting to team members who are used to a 
more structured process. Managers need to be 
prepared to establish procedures to deal with 
the changing work arrangements that ensue 
from automation of this type. 
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AN OPPORTUNITY ANALYSIS SYSTEM FOR SPACE SUR- 
VEILLANCE EXPERIMENTS WITH THE MSX 

Ramaswamy Sridharan, Gary Duff, Tony Hayes, and Andy Wiseman 
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Abstract - The Mid-Course Space Experiment consists of a set of payloads on a satellite being 
designed and built under the sponsorship of Ballistic Missile Defense Office. The MSX satellite 
will conduct a series of measurements on phenomenology of backgrounds, missile targets, plumes 
and resident space objects (RSOs); and will engage in functional demonstrations in support of 
detection, acquisition and tracking for ballistic missile defense and space-based space surveillance 
missions, A complex satellite like the MSX has several constraints imposed on its operation by 
the sensors, the supporting instrumentation, power resources, data recording capability, 
communications and the environment in which all these operate. This paper describes the 
implementation of an opportunity and feasibility analysis system, developed at Lincoln 
Laboratory, Massachusetts Institute of Technology, specifically to support the experiments of the 
Principal Investigator for space-based surveillance. 

1.0 INTRODUCTION 

The Mid-Course Space Experiment consists of a set of payloads on a satellite being 
designed and built under the sponsorship of Ballistic Missile Defense Office (formerly, Strategic 
Defense Initiative Office) of the Department of Defense. The major instruments are : 

1. A set of sensors being built by Utah State University, called SPIRIT 3, covering 
the spectral range from 4.2 p to 20 y in the long wave infra-red band. 

2. A set of sensors operating in the ultraviolet and visible wavelengths (0.1 y - 0 . 9 ~  ), 
called UVISI, being built by Johns Hopkins University's Applied Physics 
Laboratory. 

3. A broad-band visible wavelength sensor ( 0 . 4 ~  - 0.9p), called SBV, being designed 
and built by Lincoln Laboratory, Massachusetts Institute of Technology. 

4. A set of sensors for monitoring and measuring contamination of the mirrors and the 
space around the MSX. 

The satellite bus is being built by JHUIAPL who is also acting as the integrator for all the 
sensors and associated systems. The MSX satellite, shown in Fig. 1, is due for launch in late 94 
from the Vandenberg launch complex. It will be in a nearly sun -synchronous orbit with an orbital 
inclination of 990 and an orbital period of 103 minutes. 

The MSX satellite will conduct a series of 
measurements on phenomenology of backgrounds, 
missile targets, plumes and resident space objects 
(RSOs); and will also conduct functional demon- 
strations in support of detection, acquisition and 
tracking for ballistic missile defense and space- 

+z ,6J- based space surveillance missions. Eight Principal 

Investigators are associated with the MSX project. 
The area of interest in this paper is the surveillance 

Fig. 1. MSX spacecraft of resident space objects from a space-based 
platform. The Principal Investigator for Space 

Surveillance is located at Lincoln Laboratory, Massachusetts Institute of Technology. The SBV is 
the major instrument being used in space-based satellite surveillance experiments.The command 
and control center for the SBV, called SPOCC, is also at Lincoln Laboratory. All space surveil- 
lance experiments are conducted by the Surveillance PI using the resources of SPOCC. 



The conduct of experiments with the MSX has a long planning cycle, similar to NASA 
scientific satellites. A key aspect of experiment planning is the analysis of the opportunities 
available for conducting any experiment, taking into account geometric and spacecraft constraints. 
A software system has been built in SPOCC to support the opportunity analysis for space-based 
surveillance experiments. We describe, in this paper, the process of computing the opportunities 
for and analyzing the feasibility of space-based surveillance experiments with the MSX and 
illustrate it with an example. 

EXPERIMENT PLANS 
DATA ANALYSIS ,A, 

The SBV Processing, Operations and 
Control Center, located at Lincoln Laboratory, 

MSX Massachusetts Institute of Technology, 
generates the necessary commanding for the 
MSX and its sensors for all space-based space 

OPPORTUNITY ANAL 
surveillance experiments designed by the PI 

COMMANDING for Surveillance. SPOCC also converts and 
calibrates the returned science data fiom the 
SBV before turning them over to the SPI's 

SPACECRAFT CONTROL Surveillance Data Analysis Center. The data 
DATA DOWNLOAD flow is illustrated in Fig. 2. JHUIAPL's 

Fig. 2 : Data Flow for Surveillance Experiments 
Mission Operations ~eLter  is in overall charge 
of the spacecraft. 

2.0. MSX AND ITS INSTRUMENTS 

It is necessary to have a working knowledge of the MSX spacecraft, its sensors and their 
interaction to understand the functioning of the Opportunity Analysis System. 

Figure 1 shows the body reference axes defined for the MSX spacecraft. All major sensors 
on the MSX have their fields of view substantially co-aligned along the +X-axis. 

The MSX will be launched into a near-sun-synchronous, 99 deg. inclination orbit with an 
orbital period of 103 minutes. The satellite will have shadow periods as long as a third of the orbit 
due to the initial value of the right ascension of the ascending node. It carries a set of Nickel- 
Hydrogen batteries for powering the spacecraft operations during eclipse. The batteries are 
recharged by the solar panels. 

The MSX carries two redundant tape recorders for high bandwidth data recording. The tape 
recorders are operated singly (or in parallel for critical data). Each unit is capable of recording 36 
minutes of data at 25 Mbls or 180 minutes of data at 5 Mbls. 

The SPIRIT 3 infrared sensor has a dewar containing solid hydrogen to cool the focal 
planes to 10°K. The lifetime of the sensor is critically affected by the rate of dissipation of the 
Hydrogen. This sensor writes out its data almost entirely to the tape recorder.There is a set of ultra- 
violet and visible wavelength imagers and spectrometers on board, collectively called the UVISI. 
These instruments also use the tape recorder for storage of experiment data. 

The SBV is the third major sensor on board the MSX. This sensor is comprised of a 6-inch 
aperture off-axis rejection telescope, a camera with 4 CCD chips with a total field-of-view of -6Ox 
1.4', a Signal Processor for data compression and an Experiment Controller. The Experiment 
Controller controls SBV operations and has a large data buffer to store science data processed by 
the Signal Processor. Raw science data can be written out to the tape recorder. 



The MSX supplies power, data handling, telemetry, commanding and ointing capability B for all the sensors on board. Expected pointing accuracy is of the order of 0.1 on board around all 
axes. The attitude processor data can be further processed in the ground-based Attitude Processing 
Center to yield a pointinglattitude knowledge of a few arcseconds. 

The MSX weighs -6000 lbs. on the ground and is due to be launched on a Delta 2 launch 
system in Nov. 94. The launch will be from the Vandenberg Air Force Station. 

3.0. SPOCC SUPPORT OF SURVEILLANCE EXPERIMENTS 

SPOCC, as mentioned earlier, is the mission planning node for all experiments of the 
Principal Investigator for Surveillance. 

The major tasks of the mission planning system in SPOCC are: 
1) to permit a study of the opportunities available for an experiment; and 
2) to generate the necessary commands to the sensors and the spacecraft to execute the 

experiment. 

This report concentrates on the opportunity analysis.The major question answered by opportunity 
analysis system is: 

When can an experiment be conducted? 

The answer to this seemingly simple question is complicated by the following requirements: 
1. Opportunities have to be computed for a month, six weeks before the start of the. 

month, due to the long planning cycle for the YSX. 
2. A feasible opportunity implies that an experiment, as defined, can be conducted 

within the available time and without violating constraints on the spacecraft or the 
sensors. 

urces consumed ( both renewable and non-renewable ) 
by the experiment must be within 

limits allocated to the experiment. 

A software system has been built in SPOCC 
to conduct opportunity analysis for 
surveillance experiments. Figure 3 captures 
the essential components of the System. 

v sURVElLLAN=E This system is invoked by a file of 
OPpoRTUNrrlEs commands in a high level interface language 

u u 

called Surveillan& Language for Experiment 
SLED : SBV LANGUAGE FOR EXPERIMENT DESIGN ~~~i~~ ( ~ ~ f .  1). ~h~ SLED code can be 
IMT : INSTANTIATED MISSION TIMELINE 
SSIP : SPACE SURV. INTERFACE PROCESSOR written by a user, which is the predominant 

mode for most experiments involving the 
Fig. 3 : Opportunity Analysis Software System collection of data on a single resident space 

object (RSO). SLED code can also be 
generated automatically by the Space Surveillance Interface Processor (SSIP), whlch is the mode 
for multi-RSO experiments and for experiments which have to be conducted with short notice 
(called Quick Reaction Events). 

The components of the Opportunity Analysis System are described below. 



3.1. SLED 

The Surveillance (or SBV) Language for Experiment Design is a structured high-level 
language for describing space-based surveillance experiments with the SBV; and to a limited 
extent, with the SPIRIT 3 and the UVISI sensors. Principal characteristics of SLED are: 

1.  The language has a precise syntactic and logical structure. 
2. The language permits description of a space surveillance experiment independent of 

detailed timing information. 
3. The syntactic and logical structure is expandable to adapt to new requirements. 

The fundamental requirement in the design of the SLED is to free the experimenter from the 
details of timing and control of the MSX and instead let himher concentrate on the objectives and 
the logical design of the experiment. 

3.2. The Simulator 

The Simulator is the heart of the Opportunity Analysis System in SPOCC. 

The Simulator parses and compiles the SLED code into a detailed event timeline which 
models the temporal flow of the experiment as a set of 
timed events for the sensors and the spacecraft. Each (GwqMG) 
event implies a state change for the MSX andlor its 
instruments. The cost of each event is also accumulated 
by the Simulator. A block diagram of the Simulator 
functions with inputs and outputs is shown in Fig. 4. 

t 
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3.2.1. The Parser PARSING AND ERROR CHECKING . 

CONTROLLING SENSORS AND S I C 

All SLED code is parsed by the front end of the MODELLING GEOMETRICAL VARIABLES 

Simulator. The functions of the Parser are : MODELLING RESOURCE COSTS 

1. Check the SLED code for syntactic and Fig. 4 : Functions of the Simulator 
logical consistencv. 

2. ~ k e c k  the implied modes of operation of the sensors for logical 
consistency. 

3. Create ordered tables of the modes of operation of the sensors, and where 
applicable, their components. 

4. Create ordered tables of the mode of operations of the MSX. 

The tables built by the Parser are used by the entire Mission Planning System. 

3.2.2. Spacecraft and Sensor Modelling 

The Simulator has to create all the necessary events to render the MSX ready to collect data 
- including all turn-onloff of components and the attitude maneuvers necessary to re-orient the 
satellite before, during and after the experiment. The Simulator also creates events for commanding 
the sensors to collect, process and store the experiment data. Further, the Simulator concatenates 
all these events into an ordered timed set for further processing by the rest of the mission planning 
system. 

3.2.3. Geometrical Modelling 

The instruments on the MSX, and the MSX itself, impose several geometrical constraints 
on the pointing and orientation of the spacecraft. These constraints are divided into hard (potential 



for damage) and soft (high resource usage). Significant constraints are summarized below. 
Control of cryogen depletion on the SPEW 3 instrument is required to prolong its useful 

life. Hence the thermal input into the telescope axis from the sun and the earth must be kept low. 
This results in the following pointing constraints (see Fig. 1 for body reference axes): 

1) The X-axis (which is the common telescope axis) should be kept away (> 300) from 
the sun direction(hard) and > 63' from the nadir (hard) . 

2) The +Y-axis, which defines the open or exposed side of the dewar containing the 
cryogen, should be kept > 90' away from the sun (soft). 

3) The -Y-axis which defines the convex side of the SPIRIT 3 sunshade, should be 
kept < 90' from the nadir (soft). 

Other 
1) 

major pointing constraints are : 
The UVISI sensors require that the +X-axis be not pointed near the sun(had) or at 
the solar specula point on the earth(hard) when they are on. 
The SBV telescope field of view cannot be pointed at the sun for more than 15 
minutes (hard). The SBV should be pointed at least 25' away from the sun for good 
data (soft). 

3) The -X axis of the spacecraft cannot be pointed at the sun directly for fear of 
heating the battery (soft). 

The Simulator models all the angles relevant to these geometrical constraints during a data 
collection. The precise values for the constraints are yet to be refined. The MOCARH, referred to 
earlier, will be the formal document for operational constraints. 

The Simulator also propagates the orbit of the MSX and of any RSOs requested. Geomet- 
rical visibility of the RSOs and solar illumination of both the RSOs and the MSX are computed. 
Further various relevant phase and aspect angles are calculated. Finally, visibility from a set of' 
ground-based downlink contact stations is also computed. 

3.2.4. Resource Usage Constraints 

The Simulator has a detailed model for the power usage on board and the power generated 
by the solar panels. Knowing the initial state of the battery, the depth of discharge is computed. 

The tape recorder on the MSX and the data memory in the SBV are finite resources for 
recording science data. The Simulator monitors their usage and either terminates the experiment, in 
the case of the tape recorder, or requires a downlink contact, in the case of the SBV memory, when 
no more data can be written out. 

The SPIRIT 3 sensor has a finite quantity (-900 liters) of solid hydrogen for cooling its 
focal planes. A cryogen depletion model has been developed by the instrument manufacturers that 
predicts the quantity of hydrogen lost as a function of thermal input from the earth and the sun. The 
Simulator uses this model to compute cryogen depletion while simulating an experiment. 

The Simulator has a thermal model for key parts of the spacecraft, viz., the SPIRIT 3 
baffle, the tape recorder heads and the battery. The baffle temperature affects the sensitivity of the 
SPIRIT 3 sensor significantly. The other components have been identified by their manufacturers 
as being prone to damage due to large temperature excursions. Hence, the temperature rise of these 
components during an experiment is estimated by the Simulator. 

3.3. PROGRAPH Display System 

The Simulator creates a number of output products. Of relevance to the Opportunity 
Analysis, however, is the following. 



The Simulator writes out into a file all the resource usage and geometrical computations 
during the data collection event simulated. The PROGRAPH processor displays all of these 
variables in graphical form on a display. This enables the user to visualize the experiment cost and 
modify the SLED code appropriately to reduce the cost if necessary. 

PROGRAPH is implemented with a commercial software package called PVWAVE. All 
variables are plotted on the against elapsed time during the data collection. The user can select any 
graph(s) to be expanded and displayed. 

Visual analysis is aided by the following capabilities of PROGRAPH: 
1) Display of a selected graph. 
2) Display of selected variables in a graph. 
3) Re-scaling of x and y axes on the graph (time elapsed during the datacollection 

event is always the x-axis in the graph). 
Generally, the analyst uses the X-axis constraints on the MSX and the power usage graphs as key 
indicators of the feasibility of an experiment. 

3.4. GOOD-TIMES Process 

The final step in the Opportunity Analysis process is to examine the values of the various 
parameters displayed by PROGRAPH and pick intervals of time when the experiment can be 
conducted while observing all constraints and not exceeding allocated costs. 

The input data to PROGRAPH can be automatically analyzed by a process called 
GOOD-TIMES. Apart from the PROGRAPH data, a task file drives the GOOD-TIMES proces- 
sor. The task file specifies the range of values permitted for each parameter. When invoked, the' 
GOOD-TIMES process examines the entire PROGRAPH data and finds time intervals that satisfy 
all the constraints in the task file. The output is captured in a Surveillance Opportunities File which - 
is the major data product produced by the Opportunity Analysis System and sent to the Mission 
Operations Center at JHUIAPL. 

4.0. AN EXAMPLE 

A geosynchronous surveillance experiment will be taken as an example here. The 
requirement, as set by the Surveillance PI'S experiment plan, is to survey any part of the geosyn- 
chronous belt for 3 consecutive hours using the SBV and its on-board signal processor . 
The geosynchronous belt is quite heavily populated with resident space objects. A space-based 
optical sensor like the SBV has the ability to efficiently survey and collect data on all the RSOs in 
the belt, unlike a ground-based sensor, which is restricted in coverage by geographic location and 
inhibited in its operation by daylight and clouds. Hence a geosynchronous surveillance experiment 
is kev to demonstrating the utilitv of mace- " 
baseh surveillance. 

.I I 

In the present example, the search 
strategy chosen was to point at a location in 
right ascension in the geostationary belt and 
vary the declination in steps between +3S0 
and -3.5'. Fig. 5 depicts the search strategy. 

The MSX is due for launch in late Fig. 5. Geosynchronous Search 
'94. However, for the purpose of this study, 
the launch date was chosen to be Oct 93. Stare at fixed point in Geosynchronous Belt 
Orbital elements were specified by the MSX 



program. 

Two optional roll laws for the MSX are used in this example: 
1) the -Y axis is pointed as close as possible to the nadir (-Y-TO-EARTH) 

and 2) the -Y axis is pointed as close as possible to the sun (- Y-TO-SUN). 

Roll law refers to the rotation of the MSX about its common pointing or +X - axis. The first roll 
law minimizes the thermal input into the SPIRIT 3 telescope from the earth because the convex side 
of the earth(sun)shade (its bottom) faces the earth all the time as the MSX orbits the earth. Thus the 
cryogen is conserved. The second roll law enables the solar panel axis (the Z-axis) to be as close to 
perpendicular to the sun as possible because the MSX orbit is near-polar and near-normal to the 
earth-sun line. Thus the solar panels can be rotated about the Z-axis for maximum solar illurnina- 
tion and power generation. These are the type of soft constraints that an analyst examines to assess 
the resource usage of the experiment. The effects of the roll laws on the cost of the experiment are 

illustrated below. 
l3zEl 

$@B +@ Fig. 6 shows the orientation of the SBV focal 
plane, which is extended along the Z-axis, 
under the two roll laws. The focal plane 

- 7 consists of 4 CCDs, each with 420x420 
pixels, butted against each other. The 

mi3 m individual field-of-view is 1 . 4 ' ~  1.4'. The 

ROLL LAW -Y to EARTH ROLL LAW -Y to SUN 
total FOV is -6.6Ox1.4' because of distortion 
effects of the off-axis reimaging optical 

Fig. 6 : ROII Laws and SBV Focal Planes system. The figure shows that with the -Y- 
to - earth roll law, the focal plane is rolled as 

the MSX circumnavigates the earth in its orbit yith the -y - axis maintained pointing 
at earth center. Such an orientation reduces the thermal input from the earth into the SPIRIT 3 
aperture (+X - axis) thus helping to keep it cold. The focal plane, on the other hand, stays invariant 
in space under the -Y - to -sun roll law. Such an orientation allows the solar panels to be rotated 
about the Z-axis for maximum power production, but at the price of greater thermal input from the 
sun into the +X-axis with the consequence of higher cryogen depletion. 

80 
BATTERY W fw 

Figure 7 shows the estimated depth-of- '" 
discharge of the battery as a result of the 60 

u 

experiment being conducted for 24 hours with f = 40 

the two roll-laws. There is a periodic com- 2 3o OLL LAW -Y to SUN 

% ponent in battery depth of discharge that arises ,, 
from the orbital period of the satellite - recall 10 

that the MSX is in earth shadow for part of the o 
0 10000 20000 30000 4MMO 50000 600W 7000 80000 90000 orbit. There is a secular component, clearly TIME ( ascon& ) 

evident in the graph for the roll law "- Y-TO- Fig. 7 : Battery Depth of Discharge 
EARTH that is due to the inadequate re- 
charging of the battery in the illuminated part of the orbit. A requirement is that the battery be not 
depleted by more than 40% routinely with 60% as an extreme limit. It is evident that the experiment 
has to be cut short at -28000 seconds with the first roll law. However, when the "-Y-TO-SUN 
roll law is used, the solar panels can be rotated for maximum power production and hence the 
depth-of-discharge does not have a secular component. Therefore, the experiment can be continued 
indefinitely from a power perspective. 

The gain in power, and in the battery depth-of-discharge, however comes at a price. The 
temperature of the baffle of the SPIRIT 3 telescope (inside the sunshade shown in~Fig. 1) is 
affected by the thermal input into the aperture; and, further, the cryogen depletion is related to the 
thermal input and the baffle temperature. Also, the baffle temperature directly affects the noise 



SPIRIT 3 BAFFLE TEMPERATURE 
input into, and hence the quality of, the data 
from the focal plane of the SPllUT 3. Fig. 9 
shows that, while conserving battery power, the 
roll law "-Y-TO-SUN" causes a more rapid rise 
of the baffle temperature, and consequently, 
cryogen depletion. battery power, the roll law 
L'-Y-TO-SUN" causes a more rapid rise of the 

re, and consequently, cryogen 
, the baffle cools very slowly and 

Time (seconds) 
ty for any subsequent 

experiment using the SPIRIT 3 is degraded for a 
Fig. 8 : Baffle Temperature longer time than if the roll law "-Y-TO- 

EARTH were used. 
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The orbit of the MSX is not quite sun- 70 

synchronous. It precesses with respect to the sun 
slowly. Hence, the power balance between the I solar panels and the battery changes over a periodp 40 

of time. Figure 9 illustrates the effect of the time yr 30 

of instantiation of an experiment on the power '" 
balance. A 24 hour long geosynchronous 10 

experiment conducted in July 94 depletes the 
0 

0 ' 10000 20000 3WW 4MMO 5W00 60000 70000 BOOW SOW0 

TUE ( reon& ) battery more rapidly than if it were conducted in 
Jan. 95. The difference is entirely due to the fact Fig. 9 : Effect of Time of Instantiation 

that the periods the MSX is in earth shadow are 
much shorter on the latter date. 

5.0 SUMMARY 

A successful Opportunity Analysis System has been developed in SPOCC to facilitate the 
scheduling of the Surveillance Principal Investigator's experiments on the MSX. The system uses 
knowledge of relevant geometries and spacecraft and instruments constraints to model the cost of 
conducting an experiment. The system has been tested extensively and fully supports the long 
experiment planning process associated with the MSX. 
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Introduction 

The most fundamental objective of all 
robotic planetary spacecraft is to return 
science data. To accomplish this, a 
spacecraft is fabricated and built, soft- 
ware is planned and coded, and a ground 
system is designed and implemented. 
However, the quantitative analysis 
required to determine how the collection 
of science data drives ground system 
capabilities has received very little 
attention. 

This paper defines a process by which 
science objectives can be quantitatively 
evaluated. By applying it to the Cassini 
Mission to Saturn, this paper further 
illustrates the power of this technique. 
The results show which science objec- 
tives drive specific ground system 
capabilities. In addition, this process can 
assist system engineers and scientists in 
the selection of the science payload 
during pre-project mission planning; 
ground system designers during ground 
system development and implemen ta- 
tion; and operations personnel during 
mission operations. 

1. Approach 

The basic approach has both the science 
community and the ground system 
define a set of matrices. The science 
matrices define the main objectives of 
the mission, who will collect them and 
when. The ground system matrices 
define the characteristics that drive 
ground capabilities and an estimate of 
when each service can be provided. 
Together, the set of matrices represents a 
powerful analytic tool. 

To begin, the first matrix created (and 
the most fundamental) is the matrix that 
explicitly establishes which science 
objectives can be met by each 
investigation. This matrix h o w n  as the 
"Science Objectives vs. Investigation" 
matrix, ensures that the objectives of the 
missions can be met by the selected 
investigations. 

Once the "Science Objectives vs. Inves- 
tigation" matrix is completed, a second 
matrix, which establishes the times 
during the mission (i.e., epoch) where 
each objective is captured is created. 
This matrix identifies the importance of 
each epoch based on the acquisition of 
science objectives. Epochs Bre deter- 
mined either by orbital events (e.g., bow 
shock crossing, satellite closest 
approach, etc.) or by investigation 
characteristics (e.g., the time when the 
target body fills the narrow angle camera 
field-of-view). 

Next, the science community creates a 
matrix which defines "types of observa- 
tions" the spacecraft must perform to 
obtain the desired science. The obser- 
vation type only represent activity that is 
external to the science instruments. It is 
assumed that instrument internal 
commands can always be sent to the 
spacecraft when two-way communica- 
tions has been established. 

The last matrix generated by science 
defines which ground system resources 
are needed for each observation types. 
This matrix, known as the "Operations 
Characteristics vs. Observation Type" 
matrix, allows the science community to, 
independently from the Ground System 
(GS), evaluate which ground resources 
are needed by their investigation. 



During the development of these 
matrices, the GS defines its own tables. 
The first of these defines the mission 
operation characteristics (i-e., those 
characteristics that drive mission ops 
cost) and their associated dynamic range. 

Next the GS generates the "Operations 
Characteristics vs. Orbital Segment" 
matrix. This matrix is the GS's best 
estimate of how its ground resources will 
be used during the course of the mission. 
It show what level of resources are 
needed for each segment of the mission. 
Once generated, the observation types 
(based on the GS's characteristics) are 
compared to this table. The results 
show which science objectives are in 
jeopardy by the current allocation of GS 
resources. 

By identifying conflicts early, the GS 
and science community can negotiate 
how to reallocate resources to design a 
ground system that is within budget, 
consistent with mission plans and 
responsive to the needs of the science 
community. 

2. 1 Science Matrices: 
Science Objectives vs. Investigation 

The first set of matrices captures the 
mission's science objectives. These 
objectives usually fall into one of four 
categories: atmospheres, magneto- 
spheres, rings and satellites. In some 
cases, categories may need to be added, 
removed or modified. In the Cassini 
example, the addition of a Titan category 
is required. In each category there are 
approximately five to ten explicit science 
objectives. 

This set of matrices have one matrix for 
each category. Each matrix shows 
which objectives are captured by which 
investigation (see fig. 1 "Cassini Titan 
Science Objectives"). During pre- 
project development, the proposed 
generic instrument payload (i.e., 
imagers, spectrometers, radiometers, 
mass spectrometers, magnetometers, 

etc.) are evaluated against their corre- 
sponding science objectives. This 
ensures that the ~ r o ~ o s e d  instrument 
payload captures ah t6e science that the 
spacecraft is designed for, confirms that 
no proposed investigation is redundant 
with another and that no investigation 
exceeds the scope of the mission. 

During development the selected pay- 
load is again evaluated against the 
science objectives. This confirms that 
between pre-project design _and project 
start (and the selection of investigations) 
the desired set of science objectives are 
indeed captured by the spacecraft's pay- 
load. Once evaluated, these matrices are 
placed under project change control to 
ensure that the contributions from each 
investigation are explicitly stated and 
that their requirements do not continue 
to grow. 

2.2 Science Matrices: 
Science Objectives vs. Orbital Segment 

Once the science objective matrices have 
been developed, the times in the mission 
when the science objectives are acquired 
needs to be established. For a "swingby" 
mission, like Voyager, the encounter 
period may be divided into segments and 
geometric events (e.g., approach, far 
encounter, near encounter, planet closest 
approach (CIA), satellite CIA, post 
encounter). For an orbiter mission 
which studies temporal variations of a 
target for many years, orbital segments 
are created by the identification of 
geometric events. As an example, the 
Cassini mission starts with Saturn Orbit 
Insertion (SOI) and then has its 
associated geometric events: 

1. atmospheric (e.g., atmosphere 
occultations, phase angle, etc.) 

2. magnetospheric (e.g., bow 
shock crossings, satellite wake 
crossings, etc.) 

3. ring (e.g., ring plane crossing, 
ring occultations, etc.) 

4. satellite events (e.g., Titan 
encounters, targeted icy 
satellite encounters, nontar- 
geted icy satellite encounters) 



SCIENCE MATRICES 

CASSINI TITAN SCIENCE OB JECTNES 

CAPS ISS MAG KPWS UVIS VIM8 
ABUNDANCE a  a  a  
CHEMISTRY • • 
CIRCULATION e o o  
MAGNETOSPHERE l . @ a  

Fig. 1: This marix shows which investigations 
capture each science objective. 

CASSINI 
SCIENCE OBJECTIVES vs. ORBlTAL SEGMENT 

/ 1 - Major Observation Period 
2 - Minor Observation Period 
N - Not Applicable 

Fig. 2: This marix identifies the importance of each 
epech in the orbit based on science objectives. 

CASSINI 
SCIENCE OBJECTNES vs. OBSERVATION TYPE 

Science Objective Prime Obs Type C 
TITAN ' 

Abundances UVIS Mosaic Auroral Sc 

Fig. 3: mis  marix defines activities that the spacecraft - 
must perform to obtain the desired science. 

CASSINI 
OPS CHARACTEBISTICS vs. OBSERVATION TYPE 

Concurrent Activities 

Fig.4: This marix allows the science community to 
independently evaluate Ground System resources. 



Once segments are defined from the 
geometric events, a matrix of science 
objectives vs. orbital segments is  
developed (see fig. 2 "Cassini Science 
Objectives vs. Orbital Segments"). It is 
important to note that the sum of the 
segments defines the entire encounter or 
orbital tour. If it does not, then the 
addition of "place holders" may be 
necessary. "Saturn Orbital Ops" is an 
example of a Cassini orbital tour place 
holder. This place holder is needed 
because some high priority observations 
are bound to orbital characteristics and 
not just particular geometric events. 
These high priority events dictate that 
"Saturn Orbital ODS" be divided into 
high activity and low activity segments. 
Only high activity periods contain high 
priority events. The low activity 
segments are for the remainder of the 
orbital tour 

An example of an observation which 
requires a high activity period is a stellar 
ring occultation. This important 
observation is tied to both a geometric 
event and orbits with relatively high 
inclinations. For Cassini, these orbits 
occur early and late in the orbital tour. 
A low activity period may contain 
periodic fields, particles & wave 
measurements. These measurements are 
critical to the understanding of the 
magnetosphere but may be done 
anywhere in the orbit. The spacing of 
individual observations do not matter as 
long as complete coverage of the orbit is 
obtained. 

2.3 Science Matrices: 
Validation of Orbital Segments 

The "Science Objectives vs. Orbital 
Segment" matrix is used to determine the 
times in the mission when the science 
objectives are achieved. A "l", "2" or 
"N" is placed in each cell of the matrix 
to identify the degree in which the 
objective was captured during the 
particular orbital segment. A "1" indi- 
cates that the objective was met during 
the particular orbital segment. A "2" 

indicates that some portion of the 
objective was met; and an " N  indicates 
that the objective could not be obtained 
at this particular time. 

Once the entire matrix is finished, all 
cells with an "N" are shaded for 
readability. This matrix can now be 
used to validate that the set of orbital 
segments is complete. The validation 
process is first performed on the rows 
(i.e., science objectives). Each row must 
have at least one "1" or a "2" in it. If it 
does not, then the objective is not 
captured with the c k e n t  set of orbital 
segments. This implies that either the 
objective should be removed or a new 
orbital segment (which would capture 
the objective) be added. 

Next, the columns are checked for 
internal consistency. At least one "1" or 
"2" should be in every column. If it does 
not, then the .column (i.e., orbital 
segment) is unnecessary and should be 
removed from the matrix (In this case, 
some columns do not contain a "1" or a 
"2" because this figure is only a part of 
the complete matrix). It is desired for 
simplicity that the final matrix have the 
least number of columns. The end result 
is a table that explicitly defines when in 
the mission specific science objectives 
are obtained. 

2.4 Science Matrices: 
Define Observation Types 

Science investigators next define obser- 
vation types. An observation type is an 
activity needed by an investigation in 
order to capture a scientific objective. 
The investigator only needs to define 
those types of activities that impact 
ground system resources. Any activity 
that is performed internal to the 
instrument does not need to be consid- 
ered as it only drive the investigation's 
resources. 

The observation types are used to ensure 
that the GS has the correct resources in 
place as determined by the investigators. 
An example of an observation type is a 



"mosaic". The shuttering of a single 
image, a UV atmospheric occultation 
observation and a mass spectrometer 
sample of the atmosphere (by orienting 
the spacecraft into the ram direction) all 
fall under the same observation type 
(i.e., 1 x 1 Mosaic). In each case, the 
investigation needs to orient its field of 
view in only one specific direction. 

Observation types are determined by 
creating a table of science objectives, 
investigation that provide "notable 
contributions" (a.k.a prime investiga- 
tions) and then defining the proposed 
observation type (see fig. 3 "Cassini 
Science Objectives vs. Observation 
Type"). The first Titan science objec- 
tive, "Atmospheric Abundances", lists 
the investigations that were identified as 
prime in the "Science Objectives vs. 
Investigation" matrix (see fig. 1). For 
each investigation in a particular science 
objective, an observation type is 
identified. 

While identifying observation types, it is 
important to remember that the number 
of types be kept to a minimum. This is 
driven by the fact that the larger the 
number of types, the more resources 
have to be spent by the GS to capture 
them. Thus, if Titan spiral radiometry 
scans and Saturn limbtrack maneuvers 
can both be performed by the same 
spacecraft routine (i.e., "maneuver" 
observation type), than a cost savings 
will be realized. 

Once all the objectives have been 
assigned an observation type, a summary 
of the different types is compiled. In this 
case, Cassini has six basic observation 
types: 

1. Articulation - Mechanical 
Motion of Cassini Plasma 
Spectrometer, Cosmic Dust 
Analyzer & Magnetic Imaging 
Instrument 

2. Langmuir Probe Operations - 
Radio & Plasma Wave 
Science Experiment 

3. Maneuver - RADAR Radio- 
metry & Radio Science Limb- 

tracks 
4. Mosaics (m x n) - 

a. 1 x 1 (e.g., Imaging, 
Integration or Stare) 

b. 1 x m (i.e., Scan) 
c. n x m (i.e., Mosaic) 

5. Roll - Spacecraft Roll at 0.26 
deg/s for Fields, Particles & 
Waves 

6. Sounder Mode Operations - 
Radio & Plasma Wave Science 
Experiment 

This list contains all activities that the 
GS has complete or partial responsibility 
for in order for the investigations to 
achieve their science objectives. In 
addition, this list begins to define the 
fundamental activities that could be built 
into the ground system prior to the 
orbital tour. With good system engineer- 
ing, these activities should only require 
changes to their parameters in order to 
be used during the mission. 

2.5 Ground System Matrices: . 
Operations Characteristics vs. Dynamic 

Range 

The GS, in turn must define which 
characteristics during operations drive its 
resources. For each characteristic a 
range of values are defined to establish 
its dynamic range. As an example, the 
repetitiveness of a sequence directly 
drives the amount of resources (i.e., 
dollars) that must be utilized to develop 
command loads. The range extends 
from none, where each sequence is used 
only once (i-e., unique); to high, where 
each sequence is used many times. 
Obviously the more frequently a 
sequence can be used, the greater the 
cost savings during operations. 

For the Cassini mission, operational 
characteristics fall into five areas; 
sequencing, spacecraft, navigation, 
systems and real-time operations. In 
each area, characteristics which drive 
operation costs and their associated 
dynamic ranges are identified. It is im- 
portant to note that each mission has its 
own unique cost drivers. As such, 



operational characteristic tables must be 
generated for each mission. 

2.6 Ground System Matrices: 
Operations Characteristics vs. Orbital 

Segment 

Once the GS establishes its operations 
characteristics, an "Operations Charac- 
teristics vs. Orbital Segment" matrix is 
produced. This matrix allows the GS to 
scope where in the mission specific 
resources are necessary based on the 
relative importance of each orbital 
segment. The level of resources placed 
in each cell are done based on the 
mission plan and in accordance with the 
available GS resources. The final matrix 
represents the GS's best estimate of 
when specific capabilities must be in 
place in order to achieve the objectives 
of the mission. 

It must be mentioned that in actuality 
resources can not be added and 
subtracted as frequently as indicated by 
the change of orbital segments. Person- 
nel must be trained in advance of their 
need date and must remain at their task 
for at least a number of months. An 
employee can not be hired for a task for 
five days only to be removed for the next 
three weeks. However, the allocation of 
ground resources does identify the ebb 
and flow of resources and thus help 
determine the level of effort that must be 
applied at different times in the mission. 

2.7 Science Matrices: 
Operation Characteristics vs. 

Observation Type 

With the generation of the GS's 
operation characteristics. the science 
representatives (i.e., project Scientist, 
Principal Investigators, Experiment Rep- 
resentatives, Investigation Scientists, 
Science Coordinators, etc.,) produce the 
ops characteristics vs. observation type 
matrix (see fig. 4 "Cassini Operation 
Characteristics vs. Observation Type"). 
This matrix, endorsed by the science 
community (independent from the 

ground system), establishes what re- 
sources are needed by the investigations 
in order to capture a specific type of 
activity. It is this matrix that will be 
used against the GS's estimate of the 
availability and allocation of its 
resources. 

3.0 Application 

As an example of the application of 
these matrices, Cassini RADAR scans 
will be analyzed. First find which 
objectives require RADAR scans. To do 
this, look at fig. 5, "Cassini Science 
Objectives vs. Observation Type". 
Determine the obiective(s1 for which 
RADAR is the p r h e  investigation and 
the observation type is "scans". For this 
particular case, RADAR scans are only 
needed at Titan to determine the 
"State/Composition of Surface". 

With the science objective known, use 
the "Cassini Science Objectives vs. 
Orbital Segments" (see fig. 6 )  to deter- 
mine when the particular objective may 
be acquired. The table indicates (by the 
presence of "1s" or "2s") that scans are 
only needed during the "Probe" and 
"Titan" orbital segments. When we 
apply the fact that RADAR will not be 
used during the probe mission, then we 
realize that the GS only has to provide 
the capability for RADAR scans during 
Titan swingbys 

Next return to the "Cassini Ops 
Characteristics vs. Observation Type" 
matrix (see fig. 7). From this matrix 
remove the RADAR scan column and 
compare to the he "Titan" column from 
the "Cassini Ops Characteristics vs. 
Orbital Segment " matrix (see fig. 8)". 
For ease of review, the orbital segments 
not needed for RADAR scans have been 
shaded gray. 

The requirements of the RADAR scan is 
then compared with the capability pro- 
vided by the GS. For this example, areas 
in the RADAR column which require 
more capability then the ground has 
provided were shaded gray. In this 



RADAR SCAN EXAMPLE 

CASSIM 
SCIENCE OBJECTIVES vs. OBSERVATION TYPE 

I Science Objective I Prime I Obs c o m e 3  

CASSINI 

Fig. 5: First find which science objectives require SCIENCE OBJECTIVES vs. ORBlTAL SEGMENT 

RADAR scans. In this case, only 
"State/Comp. of Surface" of Titan. 

2 - Minor Observation Period . 

CASSINI N - Not Applicable 
OPS CHARACTERISTICS vs. OBSERVATION TYPE Fig. 6: T1h surface composition measured during Probe 

and Titan segments. However, during the probe 
mission, the main antenna will be used for data 
relay not RADAR. Thus, RADAR scans only 
needed during Titan passes. 

Dev. Tie/Execute Time 

v Y 

Fig. 7: Investigators, independent from the GS, generate 
the ground capability needed for each 
observation type. 

v \ CASSINI 

OPS C H A R A ~ S T I C S  vs. ORBITAL SEGMENT 

Fig. 8: Compares GS capability with the science requirements 
needed to capture science objectives. Identifies which 
activities need to be simplified, which 13s capabilities needs 
to be reallocated, or which activities may be at risk. 
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example three areas (i-e., development 
timelexecute time, repetitiveness of 
sequence and simulation effort) are in 
conflict. If we look at the "Simulation 
Effort" row on this table, we see that the 
GS does not plan to simulate RADAR 
sequences. However, from a science 
point of view, RADAR sequences 
must be simulated. This apparent 
discrepancy results in one of the 
following: 

1. GS reallocates resources to 
simulate all RADAR scans, or 

2. The RADAR Team uses its 
own resources to simulate 
scans prior to submitting their 
sequences to the GS, or 

3. Nothing is changed and the 
projects excepts the greater 
risk of science data loss 
during RADAR scans 

4.0 Conclusion 

The use of these matrices by the science 
community and the project's ground 
system allows both groups to understand 
what and when types of observations can 
be performed. The results make the 
science community sensitive to the limits 
of the ground resources and thus, reduce 
the amount of "creeping" science 
requirements. In turn, the GS will be 
more responsive to the needs of the 
investigators in order to return the 
primary science objectives of the 
mission. 

Once the matrices have been developed 
and analyzed, potential misallocation of 
resources will become evident. The 
areas where investigator's requirements 
are greater than the available resources 
will drive the GS and science commu- 
nity to one of three possibilities: 

I. Reallocate GS capability to 
meet the observation, or 

2. Decrease the observation 
type's complexity by trans- 
ferring the responsibility to 
the investigator, or 

3. Leave resources as is and 
accept the greater risk of data 
loss 

The approach stated in this paper may be 
applied during advanced mission 
planning in order to select a spacecraft's 
science payload; during ground system 
design to ensure the ground system's 
compatibility with the investigations; 
and during operations to quantify where 
ground resources need to be applied to 
return the quality of science data 
demanded by a first rate planetary 
exploration program. 
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ABSTRACT 

The Mission Operations and Data Systems Directorate (MO&DSD, Code 500), the Space 
Sciences Directorate (Code 600), and the Flight Projects Directorate (Code 400) have * 

developed a new approach to combine the science and miqion operations for the FUSE 
mission. FUSE, the last of the Delta-class Explorer missions, will obtain high resolution 
far ultraviolet spectra (910 - 1220A) of stellar and extragalactic sources to study the 
evolution of galaxies and conditions in the early universe. FUSE will be launched in 2000 
into a 24-hour highly eccentric orbit. Science operations will be conducted in real time for 
16- 18 hours per day, in a manner similar to the operations performed today for the 
International Ultraviolet Explorer. 

In a radical departure from previous missions, the operations concept combines spacecraft 
and science operations and data processing functions in a single facility to be housed in the 
Laboratory for Astronomy and Solar Physics (Code 680). A small mission operations 
team will provide the spacecraft control, telescope operations and data handling functions in 
a facility designated as the Science and Mission Operations Center (SMOC). This approach 
will utilize the Transportable Payload Operations Control Center (TPOCC) architecture for 
both spacecraft and instrument commanding. Other concepts of integrated operations being 
developed by the Code 500 Renaissance Project will also be employed for the FUSE 
SMOC. The primary objective of this approach is to reduce development and mission 
operations costs. 

The operations concept, integration of mission and science operations, and extensive use of 
existing hardware and software tools will decrease both development and operations costs 
extensively. This paper describes the FUSE operations concept, discusses the systems 
engineering approach used for its development, and the software, hardware and 
management tools that will make its implementation feasible. 



MISSION DESCRIPTION 

The FUSE science program will address fundamental problems in such diverse areas as 
composition and properties of interstellar gas and dust, stellar explosions and mass loss, 
galactic dynamics, active galactic nuclei, and planetary magnetospheres. Many of these 
problems require long exposures (15-50 hours) of faint objects. Among the most 
important and demanding FUSE science is the study-of trace species in interstellar and 
intergalactic gas using absorption spectroscopy of faint, distant sources, such as active 
galactic nuclei and quasars. The deuterium-to-hydrogen @/H) abundance ratio is a critical 
parameter for understanding the Big Bang and the chemical evolution of the universe. 
FUSE will address this problem by measuring the D/H ratio in a wide range of 
astrophysical conditions representing different evolutionary histories, degree of stellar 
development, and chemical mixing. These problems require high spectral resolution and 
instrument sensitivity in the wavelength range 910 to 1220 Angstroms. The mission 
design lifetime is three years to provide sufficient observation time to meet the science 
exposure time requirements; the mission goal is five years. 

The FUSE Principal Investigator at the Johns Hopkins University(JHU), Baltimore, 
Maryland, leads a university-government team which will build and test the FUSE 
instrument. The instrument team includes JHU, University of Colorado at Boulder, 
University of California at Berkeley, and the GSFC Engineering Directorate (Code 700). 
Canada and France are partners in the FUSE mission and are providing critical elements of 
the instrument to JHU. FUSE operations are the responsibility of the GSFC Laboratory 
for Astronomy and Solar Physics. 

Since the start of the Phase B there have been major changes in the FUSE mission concept 
in order to meet programmatic requirements while maintaining scientific performance. The 
result is a new, innovative normal-incidence optical design, a dedicated spacecraft to be . 
built at GSFC, a Delta TI launch, and a 24-hour highly-eccentric, geosynchronous orbit 
(600 km perigee, 71000 krn apogee) which provides about 18 continuous hours of 
unocculted, low radiation background science time per day (see Figure 1). This occurs 
when the spacecraft is at altitudes greater than about 30,000 to 40,000 kilometers. 

/ Perigee: 600 km \ 
I \ 

altitude 

Apogee: 70,972 km 

Figure 1 
FUSE Orbit Geometry 



FUSE OPERATIONS CONCEPT 

Through a series of trade studies involving the instrument, spacecraft, and ground system, 
a new operations concept was developed. In addition to lowering total mission costs, low- 
cost mission operations was a major objective of this process. 

The principal characteristics of the FUSE operations concept are summarized as follows: 

* Science operations take place 18 hours per day, and only when the spacecraft is at 
altitudes above 30,000 km. 

Spacecraft telemetry rate is 64 kbps, using one of two omni-directional antennas. 

* Two ground stations can provide coverage of 19-20 hours per day; only a 10m dish is 
required to provide adequate link margin (3db). This coverage requires one station in 
the Northern Hemisphere and one in the Southern. Wallops Island, VA, and Canberra, 
Australia, were used for analysis purposes. This wide geographical separation is 
required due to the high eccentricity of the orbit. 

Spacecraft and instrument command and control is generated and executed in real time. 

All ground system functions are located in the Science and Mission Operations Center 
(see Figure 2). 

- Data capture and level zero processing 
- Spacecraft and instrument command and control 
- Science/mission planning and scheduling 
- Orbit determination (flight dynamics function) 
- Trend and performance analysis (with support of instrument and spacecraft teams) 
- Science data processing, calibration, distribution, archiving 
- Science program management 
- Guest Observer proposal support 

* A number of functions and processes are automated in order to reduce the work 
complement of the ground operators. 

- Spacecraft and instrument health and safety functions in flight software 
- Health and safety monitoring in ground system 
- Data capture and data retransmission 
- Level Zero processing 

* Constraints imposed to simplify operations 
- No operations will take place during the lower portion of the orbit when FUSE 

traverses the trapped electron and proton belts. 
- No spacecraft maneuvers outside periods of direct contact. 
- No science operations required during shadow periods. 



ASTRONOMICAL 

Figure 2 
FUSE Science and Mission Operations Center 

Real time requirements include the ability to execute interactive, real-time control of the 
instrument and spacecraft. The daily real-time contact must occur when the spacecraft is at 
altitudes above 30,000 km to use the low radiation portion of the orbit. Health and safety, 
housekeeping and science data will be monitored autonomously in real-time to avoid 
possible data loss due to anomalies or improper operations. The target and guide star 
identification and acquisition process is interactive with the ground. Adjustments to the 
instrument fine alignment are required every two hours or less; commanding the spacecraft 
and instrument will occur on a frequent basis. 

FUSE Guest Observers and the Instrument Team will have electronic connections to the 
SMOC for proposal submission, observation planning and execution, and science data 
evaluation and retrieval. Level zero data will be available to scientists shortly after receipt 
in the SMOC and processed science data within 2 days. The mission data will be archived 
at the National Space Science Data Center (NSSDC). 



FUSE DEFINITION PROCESS 

Ground and flight segment engineers and scientists have been heavily involved throughout 
the FUSE definition process. This breadth of involvement has allowed mission-wide and 
life-cycle trade studies to be conducted and informed design decisions made based on study 
results. A team consisting of the Project Scientist, the Spacecraft Manager, Instrument 
System and Operations Engineers, Ground Data Systems Engineers, Operations Scientist, 
Mission Operations Manager, and Flight Dynamics Systems Engineer was established to 
create a flight and ground system concept that meets the mission requirements. The revised 
concept was reviewed periodically by the Principal Investigator and the FUSE Project. The 
ground system concept described above was ultimately one result of this process. Since 
operational considerations were an integral part of the mission and life cycle trade studies, 
the operations and ground system concept developed continuously with the restpf the 
mission concept. 

The orbit selection was the first major trade study. The 24-hour orbit described above 
provides several significant advantages over a low-earth orbit for the FUSE mission. This 
orbit decision minimizes the mission lifetime for the mission's science program, lowers 
mission complexity (operations, spacecraft, and instrument), maximizes time outside the 
radiation belts for low background science by providing 2 to 3 times the observing 
efficiency of LEO, provides a lOOX improvement in target visibility, radically simplifies 
science and mission scheduling, provides continuous observing periods for long 
observations, and simplifies faint-object target acquisition. 

These factors, combined with the utilization of real-time control of the instrument and 
spacecraft, reduce the number of functions and subsystems in the flight and ground 
segments. Such simplifications lower system complexity, lower development and testing 
costs, lower software maintenance costs, and reduce operalions support staff. Specifically, 
a high-rate data downlink, command management system, planning and scheduling 
system, and automated target and guide star acquisition system were either deleted from the 
FUSE mission concept or significantly simplified. Many other design trades were made to 
optimize the mission design concept and reduce cost. 

The fact that FUSE is operated in real time, has one instrument, one common destination 
for all data, and a low rate for data downlink made possible the consolidation of the 
spacecraft and science operations. A single Mission Operations Team will be trained to 
perform both science and spacecraft operations. The current concept plans to staff each 
operational shift with two console operators (one for the spacecraft, one for the instrument) 
and one resident astronomer. The operations staff will be assisted by autonomous 
functions in the ground system for health and safety monitoring, data capture and 
retransmission, and Level Zero processing. These are very significant, because by 
automating these activities the operations staff will have significant portions of their time 
freed for more intellectually challenging and critical work, such as calibration, planning and 
scheduling, preparing for the next science observation, and of course spacecraft and 
instrument commanding. 

The SMOC will be a joint development by Codes 600 and 500 and the FUSE instrument 
team. The objective is to reduce documentation (e.g., a single requirements document for 
the FUSE ground system), reduce and simplify interfaces, and reduce staffing and facility 
requirements. The SMOC will be one of the missions to be implemented utilizing services 
and products of the Code 500 Renaissance system. 



FUSE DEFINITION METHODOLOGY 

The FUSE Project has adopted a Functional Analysis methodology to achieve an end-to- 
end systems approach to mission concept development. FUSE is the first project at GSFC 
to employ this process across the entire mission starting in the definition phase. 
Functional analysis is the process of identifying, describing and relating the functions a 
system must perform in order to fulfill its goals and objectives. The primary analysis tool 
is the functional flow block diagram. These diagrams show the network of actions that lead 
to the completion of a function. It is part of the end to end flow of level one activities that 
leads to the system definition. The process starts with requirements, followed by 
functional analysis, and ends with system definition. 

The mission phases that were defined to be studied were development, prelaunch, launch, 
mission operations, and end of mission. Each mission phase was further broken into sub- 
phases, and sub-phases into functions. This allows the systems engineers to evaluate the 
functional relationships and dependencies across subsystems and between flight and 
ground segments. In addition, the interdependencies at the function level can be traced to 
higher levels. The functional flow diagrams will be used to allocate and validate 
requirements at the subsystem level. 

This process helped to identify major areas of the mission for further study, such as the 
critical topics for the FUSE End-to-End Data System Study. The main objectives of this 
study are: to characterize the space to ground link, the command and data handling 
memory sizing and the on board bus traffic; and to establish a baseline of the data rates and 
identify "tall poles" in the instrument, observatory and ground data systems. Among the 
important outcomes of this type of study are the identification of missing requirements, the . 
identification of the requirements that drive the complexity of the system in terms of data 
and the validation of the operations concept. In parallel, the FUSE Operations Concept 
Document was written. Through this process the mission operations concept is 
"engineered" like the other components of the mission. 

CONCLUSION 

Because of its need to dramatically reduce costs, and its success in achieving this goal, the 
FUSE mission is a pathfinder for NASA's low-cost mission operations objectives. A 
tightly integrated team and consideration of end-to-end operations issues in all phases of the 
FUSE mission contributed substantially to the development of this approach. 
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ABSTRACT development cycle. 

This paper will discuss proposed Flight 
Operations methodologies and 
technologies for the Earth Observing 
System (EOS) Operations Center (EOC), 
to reduce risks associated with the 
operation of complex multi-instrument 
spacecraft in a multi-spacecraft 
environment. The EOC goals are to 
obtain 100% science data capture and 
maintain 100% spacecraft health, for each 
EOS spacecraft. Operations risks to the 
spacecraft and data loss due to operator 
command error, mission degradation due 
to rnis-identification of an anomalous 
trend in component performance or rnis- 
management of resources, and total 
mission loss due to improper subsystem 
configuration or mis-identification of an 
anomalous condition. This paper 
discusses automation of routine Flight 
Operations Team (FOT) responsibilities, 
Expert systems for real-time non-nominal 
condition decision support, and Telemetry 
analysis systems for in-depth playback 
data analysis and trending. 

INTRODUCTION 

The Flight Operations Segment (FOS) of 
the EOS Core System (ECS) is currently 
in early stages of the design process. The 
Preliminary Design Review (PDR) is 
scheduled for December 1994, and the 
concepts discussed in this paper will be 
refined as we progress with the 

The FOS will provide the command and 
control system for EOS instruments and 
spacecraft. The EOC will be located at 
NASA Goddard Space Flight Center 
(GSFC) to generate commands to the 
instruments and spacecraft of NASA 
within the International Earth Observing 
System (IEOS) as well as monitoring the 
health and performance of these flight 
elements. 

International partners flying instruments 
on NASA EOS spacecraft will be able to 
provide these functions for their 
instrument from their own center. 
Principal Investigators (PIS) and facility 
instrument teams will participate in 
monitoring their instruments and in 
resolving instrument anomalies from their 
home institutions through use of an 
Instrument Support Terminal (IST) 
Toolkit, a special set of software that will 
be run on a local computer workstation. 

AM-1 will be the first mission to be 
supported by the EOC FOT, it is 
scheduled for a June 1998 launch. Other 
missions currently scheduled to be 
supported from the EOC include: AERO- 
1 (9100); PM-1 (12100); ALT-1 (6102); 
CHEM- 1 (1 2/02), AM-2 (6103) ; AERO-2 
(9103); PM-1 (12105); AERO-3 (9106); 
ALT-2 (6107); CHEM-2 (12107); AM-3 
(6108); AERO-4 (9109); PM-3 (12110); 
ALT-3 (6112); AERO-5 (9112); and 



CHEM-3 (12112). At full capacity the 
EOC FOT will be required to support up 
to 7 missions (five on-orbit, one in pre- 
launch stage, and one mission in a 
"decommissioning" stage). 

Systems will be in place well before the 
launch of the first EOS satellite to provide 
the full functionality required to support 
it. The command and control functions 
will be brought on-line and fully tested 
with simulated EOS data in operational 
scenarios. 

After the EOS missions are on-orbit and 
providing high volumes of data, the EOC 
will continue to evolve and add 
capabilities in response to new 
requirements and lessons learned through 
its use. This evolution will be in the form 
of planned EOC upgrades. Continued 
prototyping will occur, and development 
of EOC will be actively sought. This 
continuing evolution will enable the EOC 
to incorporate advances in data system 
technologies, as well as adapt to changing 
user requirements. 

The FOT shall provide mission operations 
support with technical directives from the 
NASA Mission Operations Manager 
(MOM) and the EOS Project Scientist. 
Coordinated mission planning, 
scheduling, and commanding operations 
shall be performed by the FOT in 
accordance with the MOM'S policy 
guidelines and directives. Instrument 
science planning and scheduling 
operations, including conflict resolution, 
shall be performed under the general high 
level direction and guidance of the Project 
Scientist. The FOT shall perform 
operations necessary at the EOC to ensure 
that the ECS FOS achieves the functional 
and performance requirement of the ECS 

specification. These functions include the 
following services: operation planning and 
scheduling; command management; 
commanding; telemetry processing; 
observatory and instrument monitoring 
and analysis; data management; element 
management; and user interface services. 

With increased complexity of space and 
ground systems, and interactive science 
operations there will be an increase in the 
level of complexity of onboard resources 
and constraint management. Current tools 
for assessing the state of the system 
require that FOT members mentally 
convert alphanumeric data into a mental 
model and reason about the model. 
Automated logic checking is performed at 
the parameter level, leaving subsytem and 
system level assessment as a human task. 
Because of this FOT effectiveness is an 
issue that promises to grow in the future. . 

The ECS FOS will supply tools that 
reduce FOT sensory requirements. This 
will be accomplished through the 
development of automated routine FOT 
responsibilities. A Decision Support 
System, and the EOC Telemetry Analysis 
system will be the main tools used to 
automate these responsibilities. The goal 
of these systems is to aid in complex 
parameter checking, and system level 
reasoning checks for the FOT. These 
tools will also support real-time resource 
and constraint management. In the EOC 
these tools must effectively manage 
multiple payload sets in a dynamic 
resource allocation environment. 

Automation of expected versus actual 
state analysis process will greatly aid the 
FOT. FOT productivity gains will also be 
achieved by visualization tools for 
assessing system status. These 



visualization tools will support graphical 
representations of system level data with 
the capability of rapidly expanding the 
displayed information down to the 
parameter level. The promise of improved 
visualization techniques is that the FOT 
will be able to monitor systems by 
exception, rather than through 
surveillance. Each of these methods has 
the promise of improving FOT 
efficiencies and reducing mission critical 
risks. 

AUTOMATION OF ROUTINE FOT 
RESPONSIBILITIES 

In traditional control centers significant 
labor is expended for routine operations, 
such as monitoring subsystem displays, 
and supporting poorly engineered 
interfaces for the negotiation of external 
services (e.g., communications, flight 
dynamics). An ECS FOS goal is to 
automate and standardize these interfaces. 
This will result in increased operational 
efficiency, lower system life-cycle costs, 
and reduced operational risk. 

The FOT will depend heavily on the 
accuracy and quality of spacecraft 
manufacturer and FOS documentation and 
information. Deficiencies in either 
spacecraft or FOS documentation or 
ground system test results will increase 
the level of mission risk, reduced mission 
effectiveness, and result in higher life- 
cycle costs. These deficiencies will lessen 
the FOTs ability to provide accurate 
responses to anomalies. 

The amount of information required for 
operating a spacecraft is staggering. In a 
traditional control center this data is stored 
on paper in an ad hoc manner. This 
information is usually not organized in a 

way that allows quick access by the FOT 
for real time operations. Frequently this 
data is not kept on paper at all, but is 
retained in the minds of experienced FOT 
members. 

We have proposed an extensive on-line 
technical information database for the 
missions controlled from the EOC. This 
system would allow for rapid information 
access through keywords, such as: 
subsystem name, and telemetry or 
command mnemonics. The information 
stored within this database will be 
integrated to the system level. The 
database will also serve as a repository of 
system specification, drawings, simulation 
and test data, historical data, operations 
procedures, and contingency plans. 

Traditional control center operations 
involve a large number of alphanumeric 
displays monitored routinely by subsystem 
specialisk with relatively little automatic 
checking of data, except for simple limit 
checks. The EOC operations concepts for 
FOT real-time monitoring calls for most 
monitoring to be performed by exception 
when specified rules are violated, when 
telemetry does not match predictive 
models, or when telemetry behavior is 
similar to previously known anomalous 
patterns. 

The EOC telemetry displays will be at a 
system level, integrating pictures and 
hierarchical diagrams of spacecraft 
subsystems with detailed presentation of 
subsystem data. Both "idiot lights" and 
dense information displays will be 
provided and further integrated with 
analytic tools that provide data exploration 
capabilities. 

With the insertion of more powerful 



workstations and operating systems, 
complex analytic tasks will be performed 
in real time on a non interfering basis. 
This will result in lessening the 
traditional distinction between on-line and 
off-line systems. As an example, upon 
the detection of a major system event or 
anomaly, the FOS software might 
formulate a list of information relevant to 
the problem at hand and automatically 
provide pop-up windows displaying and 
organizing this information along with 
appropriate recommendations. 

EOC DECISION SUPPORT SYSTEM 
(DSS) 

The EOC FOT will utilize the proposed 
DSS to provide long-term analysis support 
and reduce mission critical risk factors. 

The EOC DSS should encapsulate 
knowledge from previous missions. 
Spacecraft knowledge is often lost from 
mission to mission. In the life of a single 
long duration mission key operations 
knowledge may be lost due to personnel 
attrition. The EOC DSS is envisioned to 
disseminate this knowledge across the 
missions supported by the EOC. 

The FOS DSS will have the following 
characteristics: 
a. Access to comprehensive detailed 
spacecraft and operations knowledge to 
provide a systems perspective. 
b. A library of extensive tools that are 
readily adaptable to a number of problem- 
solving activities. 
c. A robust pattern-matching capability for 
matching experience to new problems. 

The DSS will provide the following 
functions: 

a. Support in-depth spacecraft and ground 
system long-term analysis. This will use 
the DSS integrated knowledge base 
subsystem in a graphical nature. 
b. Assist in identifying and resolving 
space and ground system problems in a 
proactive manner. 
c. Assist in developing plans for 
correcting current and future problems 
through consistent application of domain 
knowledge. 

EOC TELEMETRY ANALYSIS 
SYSTEM 

An often neglected, but important aspect 
of risk reduction in FOT activities is off- 
line analysis. In traditional control centers 
this is principally supported through 
relatively primitive trending and data 
analysis tools. These primarily include 
paper listings of trend data that ai-e 
analyzed by subsystem engineers to 
determine potential degradation of 
components. 

Careful and continuous analyses of data 
can improve the lifetime of a spacecraft 
and reduce risks associated with 
catastrophic failures. The ECS FOS 
software will contain on-line and off-line 
support capabilities' tools that provide 
rapid analysis of real-time and post-pass 
spacecraft behavior, and more direct user 
management of spacecraft activities. 

Heritage and lessons learned from NASA, 
and NOAA missions will be utilized in 
developing the EOC Telemetry Analysis 
System. Specifically these missions 
include Landsat, EPIEUVE, GOES, and 
HST. 

The EOC Telemetry Analysis System, 



includes increased use of workstation- 
oriented interactive data analysis and 
visualization tools to support both 
spacecraft and subsystem analysis. It will 
scan for anomaly signatures derived from 
component histories. For example, 
changes in battery chargeldischarge ratios 
provide early warnings of battery failures. 
Such signatures would be stored in an 
operations knowledge base and used to 
predict component failures. 

Proposed specifics of the EOC Telemetry 
Analysis System include: 
a. Support of automatic searches for 
interesting data and couplings: Such as, 
problems caused by couplings between 
attitude and powerlthermal subsystems. 
Unusual iterations would be automatically 
detected and presented for further analysis 
in our proposed system. 
b. Comparison to recent trends and 
manufacturer's specifications: Sudden 
changes in trends or specification would 
be immediately presented for more detail 
analyses. 
c. Graphical presentation of knowledge 
in discipline-relevant formats: This 
includes the presentation of analyses in 
understandable formats, overlaid on 

spacecraft diagrams or in multi- 
dimensional presentation that facilitate 
data understanding and exploration. 

CONCLUSIONS 

The EOS FOT will benefit by having the 
proposed FOS architecture and tools. 
These benefits include: improved system 
performance since FOS is more 
responsive to user needs; reduced risk of 
spacecraft andfor data loss; lowered 
operations costs; reduced time and cost of 
supporting new missions by enhancing 
the design of the existing ECS FOS 
software; reduced operator training time 
and providing for retention of experienced 
operations personnel knowledge; 
increased job satisfaction among FOT 
personnel by automating performance of 
routine actions; provide for the capability 
to insert new technologies/products into 
EOC faster; and provide a more 
transparent, less obstructive interface 
between science users and the instrument 
and science data they use. 
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Abstract 

The Earth Observing System (EOS) Data 
and Operations System (EDOS) is being 
developed by the National Aeronautics and 
Space Administration (NASA) Goddard 
Space might Center (GSFC) for the cap- 
ture, level zero processing, distribution, 
and backup archiving of high speed 
telemetry data received from EOS space- 
craft. All data received will conform to the 
Consultative Committee for Space Data 
Standards (CCSDS) recommendations. The 
major EDOS goals are to: 

Minimize EOS program costs to 
implement and operate EDOS 

* Respond effectively to EOS 
growth requirements 
Maintain compatibility with exist- 
ing and enhanced versions of 
NASA institutional systems re- 
quired to support EOS space- 
craft. 

In order to meet these goals, the following 
objectives have been defined for EDOS: 

Standardize EDOS interfaces to 
maximize utility for future re- 
quirements 
Emphasize life-cycle cost (LCC) 
considerations (rather than pro- 
curement costs) in making design 
decisions and meeting reliability, 
maintainability, availability 
(RMA) and upgradability re- 
quirements 

* Implement data-driven operations 
to the maximum extent possible 
to minimize staffing requirements 
and to maximize system respon- 
siveness 
Provide a system capable of si- 
multaneously supporting multiple 
spacecraft, each in different 
phases of their life-cycles 
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Provide for technology insertion 
features to accommodate growth 
and future LCC reductions dur- 
ing the operations phase 
Provide a system that is suffi- 
ciently robust to accommodate 
incremental performance up- 
grades while supporting opera- 
tions. 

Operations concept working group meet- 
ings were facilitated to help develop the 
EDOS operations concept. This provided a 
cohesive concept that met with approval of 
responsible personnel from the start. This 
approach not only speeded up the 
development process by reducing review 
cycles, it also provided a medium for 
generating good ideas that were immedi- 
ately molded into feasible concepts. The 
operations concept was then used as a basis 
for the EDOS specification. When it was 
felt that concept elements did not support 
detailed requirements, the facilitator process 
was used to resolve discrepancies or to add 
new concept elements to support the 
specification. This method provided an 
ongoing revisal of the operations concept 
and prevented large revisions at the end of 
the requirement analysis phase of system 
development. 

1.0 Introduction 

EDOS operations supports end-to-end data 
delivery for EOS spacecraft. The operations 
concept describes the strategic, tactical, ex- 
ecution and post-execution phases for EOS 
Ground System (EGS) elements, and de- 
scribes the role of EDOS in eacd phase. In 
support of these phases, the concept de- 
scribes EDOS operations in r~lation to cur- 
rent and future GSFC Mission Operations 
and Data System Directorate (MO&DSD) 
institutional systems and EOS systems. 
These include the Tracking and Data Relay 
Satellite System (TDRSS) Ground 



Terminals (TGTs), the Network Control 
Center (NCC), EOS Communications 
(Ecom), as well as EOS Core System 
(ECS) facilities, including the EOS 
Operations Center (EOC), Distributed 
Active Archive Centers (DAACs), and 
other EGS elements. 

The approach used for developing an op- 
erations concept is almost as important as 
the concept itself. In order to be an effective 
concept, it must be well thought out and in 
agreement with the interested parties 
(systems engineers, interface organizations, 
and management). The approach must also 
allow change. This includes a discussion of 
the development of alternative concepts, 
and the tradeoff and other engineering anal- 
yses performed in selecting and developing 
the baseline operations concept. The signif- 
icance of the operations concept in the de- 
velopment of the detailed EDOS functional 
and performance specification and interface 
requirements is described as the "proof of 
concept" of the development method. 

2.0 EDOS Operations Concept 

EDOS is the EOS data handling and 
delivery system maintained and operated by 
the MO&DSD. The development and 
implementation is being managed by the 
Information Processing Division (IPD), 
Code 560, of the MO&DSD at the GSFC. 
EDOS provides capabilities for handling 
data for EOS spacecraft that adhere to rec- 
ommendations established by the CCSDS. 
Specifically, EDOS provides capabilities 
for return link data capture, data handling, 
data distribution, backup archival data 
storage, and forward link data handling. 
EDOS supports ground to ground data 
communications for data delivery using a 
set of approved protocols. Reliance of 
EDOS on these spacelground and ground to 
ground standards facilitates mission 
interoperability and will result in lower 
life-cycle costs for NASA. EDOS supports 
all levels of MO&DSD and EOS end-to-end 
testing in preparation for EOS spacecraft 
launch readiness, by utilizing the 
operational system without interrupting on- 
going operations. Data delivery is provided 
by the SN, EDOS, and Ecom. SN provides 
spacelground data communications. The 

SN consists of the Tracking and Data Relay 
Satellite (TDRS) constellation, the TGTs, 
and the NCC. The TGTs include the White 
Sands Ground Terminal (WSGT) and the 
Second TDRSS Ground Terminal (STGT). 
Spacelground data communications for 
emergency operations are provided by the 
Ground Network (GN), Wallops Orbital 
Tracking Station (WOTS), and the Deep 
Space Network (DSN). Ecom includes the 
wide area network and the Ecom 
Management capability, which provide 
ground to ground data communications 
support for the SN, EDOS, and EGS 
elements. EGS elements include the EOS 
Operations Center (EOC), the Distributed 
Active Archive Centers (DAACs), or other 
associated data handling facilities, such as 
the National Oceanic and Atmospheric 
Administration (NOAA). 

There are three EDOS facilities. The Data 
Interface Facility (DIF) is located at the 
White Sands Complex (WSC) near Las 
Cruces, New Mexico. The Data Production 
Facility (DPF) is located in Fairrnont, West 
Virginia. The Sustaining Engineering 
Facility (SEF) is located in the Data 
Operations Facility (DOF), Building 28 at 
GSFC in Greenbelt, Maryland. 

The capabilities that EDOS provides are 
grouped into categories of services. These 
services are allocated to the three EDOS 
facilities. EDOS services include the data 
delivery services outlined in the previous 
section and the services that support EDOS 
operations. The service categories are des- 
ignated as return link processing, forward 
link processing, operations management, 
production data handling, data archive, 
system support, and engineering support. 
The DIF provides return and forward link 
processing services. The DIF also provides 
operations management services for DIF 
processing services and for the centralized 
EDOS operations management. The DPF 
provides production data handling, data 
archive, and DPF operations management 
services. Return link services are provided 
according to mission-specific requirements. 
The SEF provides sustaining engineering 
services, the EDOS system support coordi- 
nation services and operations monitoring. 
System support services are provided at 
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each of the three facilities to support the op- minimized processing delay through 
erations at the respective facility. EDOS, as required. 

2.1 Return and Forward Link Plavback Processing. Playback processing 

Processing Operations restores "as recorded order" to spacecraft 
tape recorded data received by the frame 

The DIF return and forward link processing ~Gchronization function in r&erse order. 

services provide for the receipt, capture, Playback data received in forward order are 

processing, and transfer of digital data that processed and stored as received. Transfer 

conform to applicable CCSDS of playback data commences after the 

communication services recommendations. completion of the TDRSS Service Session 

EDOS acts as an interface between the EGS (TSS). 

and the SN. Return link processing 
removes communications artifacts and 
provides computer ready data sets to the 
EGS. Telecommand link and physical layer 
services are provided for forward link data 
received via Ecom from the EOC and 
delivered to the EOS spacecraft via the 
TDRSS. Data capture is provided for return 
link data received from spacecraft via the 
TDRSS. Return link services include real- 
time and rate buffered Path and VCDU 
services. Return link data can be delivered 
to any appropriate EGS destination. All 
data handling services, return and forward 
link, include data quality assurance and 
accounting. 

The DIF processing services are highly 
automated data-driven services using man- 
agement information provided by the DIF 
operations management service. The man- 
agement information represents service re- 
quirements for data processing and defines 
the parameters the DIF will use to process 
and deliver data. The DIF incorporates 
built-in test capabilities in support of on- 
line operations. 

The DIF provides the following capabilities 
for the processing and delivery of mission 
data: 

Data Capture. All return link data, including 
fill data, are captured and stored for 30 
days after receipt by EDOS for use in re- 
covery processing. 

Return Link Real-time Processing. 
Real-time processing receives and pro- 
cesses all return link data, and delivers 
CCSDS Service Data Units (SDUs) (e.g., 
Virtual Channel Data Units (VCDUs), 
CCSDS packets) to EGS elements with 

Rate Buffering. Rate buffering is the pro- 
cess in which data from an EOS spacecraft, 
transmitted to the ground during a TSS, are 
completely received by EDOS at one data 
rate and transmitted to destinations at 
negotiated reduced data rates. 

Forward Link Real-time Processing. The 
DIF provides the capability to process for- 
ward link data in support of CCSDS 
Telecornmand services. 

2.2 Production Data 
Processing Operations 

The DPF provides production data handling 
services for return link mission data re- 
ceived from the DIF. production data 
handling services annotate and remove, 
when possible, communications artifacts 
and data anomalies due to spacecraft 
operations. These services include 
production data processing and quick-look 
data processing. 

Production Data Processing. Production 
data processing of return link CCSDS 
pack6 data is th;: process in which packets 
from one or more TSSs are sorted by appli- 
cations process identifier (APID), forward 
ordered by packet sequence count and time, 
and quality-checked. A production data set 
(PDS) consists of production data 
processed packets, quality and accounting 
summary information. Production data sets 
have redundant and previously processed 
packets deleted, and may be delimited by 
time interval, number of packets, number 
of octets of data, or TSS boundary. 

Quick-look Data Processing. Quick-look 
data processing is similar to production data 



processing except redundant packets are not 
removed and the content of a quick-look 
data set (QDS) is limited to either all pack- 
ets received for a single APID during one 
TSS or all packets in one TSS in which the 
quick-look flag is set in the packet sec- 
ondary header. Quick-look data processing 
may be performed on up to five percent of 
return link data received over a 24-hour pe- 
riod. Quick-look data processing demands 
in excess of five percent will be detected 
and the EOS System Management Center 
(SMC) will be notified about possible 
degradation in EDOS support. The packets 
contained in a QDS are included in produc- 
tion data processing. Specific operational 
requirements for quick-look data process- 
ing will be contained in the Operations 
Agreement (OA) document between the 
EGS element and EDOS. 

2.3 Data Archive Operations 

The DPF data archive service vrovides a 
long-term storage capability as'a Level 0 
data backup to the DAACs. The PDSs cre- 
ated by EDOS are stored for the life of EOS 
plus 3 years. Retrieval of archived data is 
expected to occur infrequently. Retrieved 
PDSs together with quality and accounting 
information are delivered to the requesting 
DAAC as Archive Data Sets (ADSs). The 
data archive service can recover from lost 
or damaged PDSs by receiving and storing 
DAAC to EDOS Data Sets (DEDSs) from a 
DAAC. 

2.4 Operations Management 

EDOS operations management services 
provide the management capability for all 
EDOS resources and services. These ser- 
vices provide highly automated system 
monitoring and control capabilities and 
manage the operation of EDOS services. 

The DIF and DPF operations management 
(OM) capabilities monitor and control the 
systems that implement the services of the 
respective facility. These management ca- 
pabilities receive, consolidate, and analyze 
system performance data as well as respond 
to service requests received by the EDOS 
service management (SM) capability. The 
DIF and DPF OM capabilities transfer ser- 

vice status information to the EDOS SM 
capability for service reporting. 

2.5 System Support Operations 

System support services are provided at all 
three EDOS facilities. These services in- 
clude the capabilities for integration, test, 
and verification (IT&V), fault isolation 
support, and maintenance support for the 
processing services at each facility. 

The EDOS IT&V capability provides tools 
to support EDOS and external testing. 
Maintenance support capabilities at each 
facility provide tools for managing the 
maintenance of systems at the respective 
facility. The EDOS IT&V and maintenance 
activities are coordinated by the system 
support service at the SEF. 

2.6 Sustaining Engineering 
Operations 

The EDOS sustaining engineerin.g 
capability provides an environment for the 
development of system enhancements, 
trouble-shooting and hardware and 
software updates to the operational system. 
The environment supports tracking of the 
operational system performance and 
maintenance history, and the development 
and evaluation of system changes and the 
evaluation of new technologies and 
requirements. 

3.0 Operations Scenarios 

The EDOS operations concept includes 
several operations scenarios to clarify sys- 
tem and interface functional interactions. A 
typical scenario describes real-time return 
link operations during a TSS. 

3.1 Real-time Return Link 
Data Processing Scenario 

a. TGT transfers Channel Access Data 
Units (CADUs) from each TDRSS service 
channel to the designated DIF TGT ports. 
Data capture recognizes data are present and 
starts storing CADUs, including fill 
CADUs. (The following steps apply to 
each TDRSS service channel) 



b. VCDU service. The return link process- 
ing (RLP) service frame synchronizer rec- 
ognizes CADU frame sync pattern, per- 
forming bit inversion and CADU reversal 
as required. The frame sync is stripped off, 
status data is collected and sent to the D F  
OM, and the VCDU is passed to the Reed 
Solomon (R-S) decoder. The R-S decoder 
decodes the applicable portion of the 
VCDU (header and/or entire VCDU),and 
strips off the R-S code. The RLP deletes 
fill VCDUs, generates an EDOS Service 
Header (ESH), collects status data for the 
ESH and sends status data to the DIF OM. 
Time and date of CADU receipt by the DIF 
is added to the ESH and the ESH is ap- 
peni-led to the VCDU, creating a VCDU 
EDOS Data Unit (EDU). Services for the 
VCDU are determined in the RLP by 
checking the service requirements for the 
VCDU-ID [spacecraft ID (SCID) and vir- 
tual channel ID (VCID) located in the 
VCDU header]. Command Link Control 
Words (CLCWs) are extracted from 
VCDUs and transferred in real-time with 
the source VCDU ESH to the EOC. VCDU 
EDUs not requiring Path service are stored. 
VCDU EDUs requiring real-time service 
are transferred to the requesting EGS ele- 
ments. VCDU EDUs requiring Path service 
are sent to the Path service processor. 

c. Path service. VCDU EDUs are disas- 
sembled: packets are extracted and re- 
assembled. Packet fragments with headers 
are filled out with fill data. The source 
VCDU ESH is retained, packet quality and 
accounting data are added to the ESH and 
the ESH is appended to each related packet, 
creating packet EDUs. Packet EDUs are 
then stored. Packet EDUs requiring real- 
time service are concurrently transferred to 
the requesting EGS elements. 

e. The DIF OM collects service processing 
status data from each of the D F  processing 
services during processing activities. 
During a TSS, the EDOS SM collects these 
data from the DIF OM and also Ecom's 
service status data, compiles the data into a 
customer operations data accounting 
(CODA) Report, and sends the report to the 
EOC, nominally every 5 seconds, during 
the TSS. SN performance messages are 
received from the NCC and used at the DIF 
along with other status data and SN 
schedule data by the operators for fault 
isolation. The DIF OM also does 
quantitative and quality determination for 
DIF operators and for TSS summary re- 
porting. The EDOS SM also receives TGT 
performance data via the NCC. The EDOS 
SM operator compares TGT performance 
parameters with the RLP status data for 
fault isolation. 

4.0 Operations Concept 
Development Approach 

Traditionally, the responsibility for drafting 
an operations concept for a new system lies 
with one or two knowledgeable people who 
have had some experience in the past with 
such documentation and who have partici- 
pated in high level requirements meetings 
and discussions with the system project 
personnel. The concept is drafted and dis- 
tributed for review. After several draft re- 
visions, the concept eventually gets honed 
into an acceptable product. At best this 
method is a compromise of ideas (concept 
features) of how the system should operate. 
At worst, the concept may be lacking in 
support of key requirements. This could be 
caused by reviewers misinterpreting the 
concept or the writers misinterpreting the 
reviewers' intentions in their comments. 

d. VCDU EDUs and packet EDUs requir- There is more chance for this to happen if a 

ing TSS post-operations services are stored new system is different or more complex 

in a manner that facilitates rapid access, in than existing systems. Reviewers may not 

order to start transferring multiple EDU be persistent enough in their reviews to en- 

files to destinations within 5 minutes. sure compliance with their change requests. 

Stored files are identified for the type and The traditional method was initially tried in 

priority of post-TSS processing needed: developing the EDOS operations concept. 

quick-look data processing, playback pro- After several unsuccessful attempts to 

cessing, rate buffering, and production data satisfy reviewers, a facilitator approach to 

processing). the development was tried. 



The EDOS Project formed an operations 
concept working group (OCWG) consist- 
ing of EDOS systems engineering team 
(SET) members. The OCWG was 
composed of government and contractor 
project support personnel who had partici- 
pated in Phase B studies and were respon- 
sible for the requirements analyses for 
EDOS. The OCWG met regularly and rep- 
resentatives of systems with EDOS inter- 
faces were invited to participate in the con- 
cept discussions. Each member was 
allowed to express his or her ideas and 
critique the other members' ideas. Members 
shared facilitating of the meetings. This 
avoided over dependence of any one person 
and also avoided the "leader" instinct of 
some of the members. It also increased the 
homogeneity of the meetings. Agendas 
were followed at each meeting. A member 
was delegated to write the minutes 
(including concepts developed). These 
minutes were reviewed in detail at the next 
meeting prior to proceeding with new 
business/concepts. This gave the members 
an opportunity to correct or improve the 
concept as recorded and reach further 
agreement. An important feature of this 
method is that a consensus was reached 
among the responsible project personnel 
before a draft document was started. This 
meant that the critical part of the concept 
development was basically finished before 
documentation began. Another feature was 
that each member's technical knowledge 
and familiarity with the system require- 
ments were enhanced during the process. 
This was important during the next phase 
of system development which was the re- 
quirement analyses for the EDOS specifica- 
tion. During this phase, the operations con- 
cept was used to understand what require- 
ments were needed for the specification. If 
the concept was found lacking, the facilita- 
tor method was used to develop new or im- 
proved concept features. Since this method 
had been used previously and by the same 
personnel, it was easy to re-institute the 
process. 
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Abstract 
Despite our awareness of the mission 

design process, spacecraft historically have 
been designed and developed by one team 
and then turned over as a system to the 
Mission Operations organization to operate 
on-orbit. By applying concurrent engineer- 
ing techniques and envisioning operability 
as an essential characteristic of spacecraft 
design, tradeoffs can be made in the overall 
mission design to minimize mission lifetime 
cost. Lessons learned from previous space- 
craft missions will be described, as well as 
the implementation of concurrent mission 
operations and spacecraft engineering for the 
Near Earth Asteroid Rendezvous (NEAR) 
program. 

Jntroduct~oq 
The traditional approach of system de- 

velopment (requirement definition, specifi- 
cation development, preliminary and de- 
tailed design, fabrication, and test) is a long, 
cumbersome, and frequently costly process. 
Current system engineering techniques for 
system development such as concurrent en- 
gineering and rapid prototyping can be much 
faster, and, consequently, cheaper. There 
may be increased risk in this approach, how- 
ever, the benefits generally outweigh these 
risks. In cost and schedule constrained pro- 
grams such as Discovery programs, higher 
risk must be tolerated to achieve the goals of 
faster, better, and cheaper. 

Concurrent engineering is defined here as 
the simultaneous development of two or 
more interacting systems from the earliest 
stages of the system life cycle through the 
design and development process. System 
engineering includes in part the allocation of 

* Member, Senior Professional Staff 
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system requirements to subsystems, and 
when two or more subsystems' requirements 
overlap, or when a system-level requirement 
could be handled by two or more 
subsystems, concurrent engineering 
techniques can be used to arrive at an 
optimal solution. This paper will describe 
what is meant by concurrent engineering as 
it applies to the development of space 
systems, focussing on the concurrent design 
and development of a spacecraft and the 
mission operations system that will be used 
to operate it on orbit. The benefits and costs 
of concurrent engineering in this application 
will be discussed, and concurrent en- 
gineering methods will be presented. Then, 
specific examples of lessons learned from. 
past space system development programs at 
the Johns Hopkins University Applied 
Physics Laboratory (JHUIAPL, or APL) will 
be presented, along with a work-in-progress 
snapshot of concurrent engineering in 
practice on the Near Earth Asteroid 
Rendezvous (NEAR) mission . 

Concurrent Enpineering of Space Svstem~ 
A space system includes a spacecraft and 

the systems with which the spacecraft will 
be operated once it is in space (the mission 
operations system, or MOS). At the very 
start of a mission, requirements are allocated 
between the spacecraft and the MOS (e.g., 
existing MOS infrastructure may require a 
certain frequency for uplink and/or down- 
link, requiring the spacecraft telemetry sys- 
tem to be built in compliance thereof), ide- 
ally by a mission system engineer. After 
these top-level allocations are made, re- 
quirements in both systems are further allo- 
cated to subsystems within each, by the cog- 
nizant system engineers. Even when re- 
quirements are allocated along clear lines, 
simple decisions in one system can have 



great affects on the other. A mission system rectly to solve any anomaly that might arise 
engineer is crucial to resolve conflicts, and on the spacecraft. 
to Lake decisions as to what requirements 
should be done where. 

As the spacecraft and the MOS are being 
designed, constant communication between 
the two development activities is crucial in 
order to end with a space system that works 
well as a whole. Therefore, the communi- 
cations between spacecraft subsystem design 
efforts and MOS design efforts must include 
design decisions as they are being made. 
Communication must occur at the lowest 
possible level, between individual engineers 
responsible for subsystem design if possible. 
In some cases, relatively minor changes in 
spacecraft or instrument design can signifi- 
cantly save in operations costs. For exam- 
ple, thermal and power robustness may 
eliminate the need for complex analysis of 
every maneuver sequence, saving time and 
money in the development of sequence up- 
loads. 

A mission level system engineer should 
be designated at the start of a program by the 
program office, with the capability and re- 
sponsibility to perform requirement trade- 
offs at a high level. Too frequently, all 
flexibility and operability is pushed onto the 
ground system and mission operations func- 
tions to save development costs in the space- 
craft. This is often the correct approach 
(complexity bersus reliability tradeoffs in 
the spacecraft can be prohibitive), however, 
in the current budget environment, this is not 
always the optimal approach. 

Benefits 
There are many benefits to designing 

major elements of space systems concur- 
rently. Concurrent engineering allows opti- 
mal systems solutions across disciplinary 
boundaries, with the added bonus of often 
doing so in less time at a lower cost. One 
inevitable outcome is the education of engi- 
neers about each other's systems. In the case 
of spacecraft subsystems and mission opera- 
tions, the better mission operations under- 
stands the spacecraft, the more safe, effi- 
cient, and reliable mission operations is go- 
ing to be. The better trained and educated 
the mission operations team is the better 

In the development arena, concurrent 
engineering can allow for more flexible re- 
sponse to changes in requirements. If a re- 
quirements change is forced on the space- 
craft late in the design cycle, it is often very 
costly to modify flight designs. If the MOS 
is able to respond to the requirements 
change, costly delays in the spacecraft de- 
velopment program are often avoided, albeit 
at some potential expense to the MOS de- 
velopment effort. 

Finally, if a spacecraft is designed from 
the outset with operability in mind, fewer 
people may be required to operate it. Since 
personnel are usually the driver for mission 
operations post-launch costs, lowering the 
number of personnel required to operate a 
spacecraft can dramatically reduce mission 
operations', and thus the overall program's, 
costs. 

costs 
Concurrent engineering does not come 

without costs. There is often an increase-in 
the time required for communications be- 
tween detrelopment groups. This is espe- 
cially true early in the program, during con- 
ceptual and preliminary design phases when 
teams may be small and design time pre- 
cious. During the system development pe- 
riod, subsystem teams can not just build 
their box in isolation. They must continue to 
work with other elements as designs are so- 
lidified, to ensure a working system at the 
end. 

Finally, perhaps the most critical time 
consuming effort is in convincing all team 
members that concurrent engineering is a 
worthwhile effort. Concurrent engineering 
runs counter to traditional subsystem devel- 
opment processes. Often, concurrent engi- 
neering can seem to overstep 'turf,' when 
for instance a mission operations person re- 
quests changes in the command system de- 
sign. A strong mission systems engineer can 
smooth the turf battles, but it is time con- 
suming. Once everyone realizes that the 
true end product is the space system, not a 
subsystem, these concerns tend to go away. 

they will be able to respond quickly and cor- 
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Methods 
Two methods are currently being used at 

APL by the mission operations organization 
in conjunction with spacecraft development 
programs to enable the concurrent engineer- 
ing process for space system development. 
These methods are the identification of a 
spacecraft specialist in the early prelaunch 
phase, and the development of the spacecraft 
ground system ICD. 

The Spacecraft Specialist 
The spacecraft specialist is responsible 

for providing the bridge between mission 
operations and the spacecraft development 
team. This person should ideally have both a 
spacecraft hardware and an operations back- 
ground. 

During the initial phases of the mission, 
the spacecraft specialist job is to work with 
the spacecraft system engineer, and subsys- 
tem designers, to ensure operability is a con- 
sideration in all design phases. It was found 
on previous programs that just asking sub- 
system designers to think about operations 
did not work -- someone was needed, paid 
for by mission operations, whose job was to 
look over the shoulders and comment on de- 
signs as they evolved. 

Early on, as mentioned above, some sub- 
system designers felt that mission operations 
was intruding into their territory. As time 
went on, though, almost all came to under- 
stand and appreciate, and in some cases even 
demand, the perspective brought to the table 
by the spacecraft specialist. Critical to this 
success, however, is the credibility of the 
spacecraft specialist. 

The SpacecraftlGround System PCD 
One of the primary products of the 

spacecraft specialist in the early program 
phases is the SpacecraftIGround System 
Interface Control Document (ICD). This 
document captures the interface between the 
ground, both the GSS and the MOS, and the 
spacecraft, and should be completed before 
the spacecraft Critical Design Review 
(CDR). For each spacecraft system, and 
subsystem, the ICD defines commands, 
telemetry, and operating rules, as they are 
known at that point in the program. With 
this document in hand, the ground system 

development team can proceed to build the 
command and telemetry processing system, 
and the spacecraftdevelopment team can 
proceed with the development, integration 
and test of their subsystems. 
Communication between the teams is still 
required, though; the ICD is the beginning 
of the process, not the end. 

Like most documents, the 
Spacecraft/Ground Systems ICD is most 
useful during its development, not by its use. 
Requiring that both mission operations and 
the spacecraft subsystem personnel think 
about command formats, telemetry, and op- 
erating rules very early, in order to develop 
the ICD, is the very essence of concurrent 
engineering. 

Space Svstem Development: Past 
Ex~erience 

Over the years, the Applied Physics 
Laboratory has built over fifty spacecraft. 
Virtually all of these were one-of-a-kind 
spacecraft built for a specific research pur- 
pose. With this history comes an institu- 
tional way of doing business. Programs 
have tended in the past to be very focused on 
the spacecraft. As current missions have re- 
quired more of a mission focus, the institu- 
tional ways of doing business are changing. 
On previous missions, there were a number 
of areas where concurrent engineering might 
have reduced the cost of mission operations 
development and implementation, helping to 
reduce overall mission costs. Areas of 
spacecraft design where mission operations' 
input early on might have proven beneficial 
include spacecraft commanding, telemetry, 
onboard memory management, onboard data 
processing, and the testing and testability of 
some subsystems. Examples are given below 
of specific lessons learned on recent APL 
space system development programs. In 
some cases these examples refer to the stan- 
dardization of designs throughout the space- 
craft, while others refer to particular design 
change recommendations to make opera- 
tions more efficient. 



Commanding 
Mission operations' sole connection to 

the spacecraft after launch is through the 
command and telemetry links. The only 
path for mission operations to affect any- 
thing on the spacecraft is via commands 
from the ground. In the early days of space, 
spacecraft were launched with fixed time- 
lines of activities; no changes from the 
ground could be made. Now, of course, 
spacecraft are built to respond to ground 
commands to carry out activities. The de- 
velopment of the commands to be sent to the 
spacecraft is, in fact, the primary focus of 
mission operations today. Therefore, de- 
signing the command interface to the space- 
craft with operability offers perhaps the best 
opportunities for a more easily operable 
spacecraft, which in turn can reduce the size 
of mission operations considerably. One 
particular area of interest is in the types and 
formats of the commands themselves. 

A standard command format being man- 
dated throughout the spacecraft would en- 
able the mission operations team to develop 
a standard mechanism for the automated 
generation of commands. Hard-coded work- 
arounds in flight software that require spe- 
cial command types not only escalate the 
cost of development, but reduce the speed of 
an automated command generation process. 
A standard command format should be ap- 
plied to serial data commands, which might 
include an "opcode" at the start of the data to 
indicate the command type or functionality. 
Mode change commands should not be of 
the type where each bit addresses some par- 
ticular function; to change a single element 
with such a system, each bit must be respec- 
ified to its current state. This is a nightmare 
for mission operations! As an example, one 
program had a command design where four 
bits of a serial data command represented 
the enabling and disabling of four different 
data formatters. Every time one particular 
formatter was to be enabled, the previous 
state of the others had to be known. If the 
wrong state had been assumed, the com- 
mand may have inadvertently disabled one 
formatter that should have remained en- 
abled. This could have caused something as 
critical as communication of spacecraft 
housekeeping data suddenly being lost when 

science data was enabled for on-board 
recording. If the function of controlling 
each formatter had been made a separate 
"opcode," each formatter could have been 
controlled individually without having 
known each other's previously commanded 
state. The creation of the command loads 
would have been easier, the checking of 
those commands loads more reliable, and 
mission operations workload reduced signif- 
icantly. 

Standard command formats also may re- 
duce mission operations development costs 
by making spacecraft state determination 
and tracking easier. Lower fidelity models 
of the onboard processor, its memory, and 
its state would still provide all necessary 
functions, but require less design, develop- 
ment, and maintenance, thereby reducing 
costs. Automated command generation 
schemes also can reduce personnel require- 
ments. 

Telemetry 
To assist in the area of spacecraft control 

and performance assessment, every com- 
mand, whether executed in real-time or de- 
layed, must have telemetry which allows for 
the verification of proper execution or rejec- 
tion. For serial data commands some means 
of verification are required (at a minimum 
the data should be reflected back into 
telemetry). This is essential in determining 
that a command was not only correctly re- 
ceived by the command system and trans- 
mitted from the command system to an on- 
board subsystem, but was in fact properly 
executed by the intended subsystem. 

Tracking what the spacecraft has done 
since the last contact with the ground is very 
important for mission operations. To support 
this requirement, the spacecraft should have 
a command history buffer. The size of this 
buffer should be changeable by uplink 
command. Stored commands and com- 
mands from macros should be logged, but 
not necessarily data loads. Downlink of the 
buffer may be by ground command, to con- 
serve downlink bandwidth. This history 
buffer capability allows for the assessment 
that a command was rejected for reasons 
other than not being properly transmitted 
from the command system. This allows 



mission operations to assess spacecraft sion progressed, certain parameters which 
health more easily and quickly, an important were "hard-coded" became invalid. In these 
factor especially on low earth orbiters with cases it would have been beneficial to re- 
short ground contact durations. place those with other critical parameters. 

Memory Management 
Other means of standardization include 

the uplinking and downlinking of on-board 
processor's memory locations or specifically, 
the use of data structures. Data structures 
allow the loading of a processor's memory 
without knowing the exact locations, which 
could change should the processor's code be 
re-linked. The functionality of the proces- 
sor's software should allow for the uploading 
and downloading of these data structures by 
a specific ID number. On a recent mission 
this capabiltity was not built into the flight 
software, requiring the downlinking all of 
the data structures at once as opposed to 
each data structure individually by ID. This 
created the requirement for additional 
ground software that would search through 
the entire downlink and find the particular 
one of interest. 

Onboard Data Processing 
On spacecraft where housekeeping data 

is not continuously recorded, there should be 
a capability for a buffer which allows the 
routine periodic sampling and storage of 
critical parameters. Most likely, throughout 
the life of a spacecraft's mission, different 
parameters will vary in their criticality. 
Therefore, the capability should exist for 
allowing ground commands to change which 
parameters are sampled and their periodic- 
ity. The buffer obviously must have a par- 
ticular size limitation, so in cases where data 
will be lost because it cannot be downlinked 
for long periods of time, it would be highly 
desirable from a mission operations assess- 
ment perspective to be able to download this 
data to the on-board recorder for later re- 
trieval. On a previous spacecraft a similar 
type buffer was limited to the sampling of 
certain unchangeable parameters and its ca- 
pacity allowed for up to 5 orbits of sampling 
at a rate of one sample per 200 seconds. The 
rate was changeable; however, as the sam- 
pling rate was increased, the amount of time 
between required downlinks was reduced. 
In these cases, it would have been advanta- 
geous to have the capability of transferring it 
to the on-board recorder. Also, as the mis- 

Such a capability would give mission 
operations insight into spacecraft state be- 
tween contacts and allow performance as- 
sessment and trending of critical parameters 
as they vary throughout a mission. 

Testing 
Also in the area of performance assessment, 
for any processor or recorder (either solid 
state or tape), there should be a method of 
loading a standard data test pattern in each 
processor or on each tape such that it may be 
downlinked through telemetry and run 
through a bit-by-bit comparison to a ground 
image of the same pattern to certify memory 
validity and periodically measure bit error 
rates. 

Summary of Lessons Learned 
In all of these cases, if the Mission 

Operations Team was involved in the speci- 
fication of spacecraft design requirements, 
the overall mission operations cost would 
have been reduced through both a lowering 
of system development costs and an increase 
in efficiency in the performance of mission 
planning, control, and assessment tasks. 

Use of Concurrent engineer in^ on the 
NEAR Mission 

The Near Earth Asteroid Rendezvous 
(NEAR) program was officially turned on in 
December of 1993. Prior to that, a small 
study team had been working on the concep- 
tual design of the mission and the spacecraft. 
In August of 1993, mission operations was 
asked to provide input as to spacecraft de- 
sign considerations for the NEAR mission 
which would enhance operability. Below, 
the input provided for spacecraft design 
features are listed, and the current status of 
each is described. Following that, other ac- 
tivities highlighting the use of concurrent 
engineering on NEAR are described. 

It must be strongly emphasized that the 
NEAR space system is still being designed; 
as of the writing of this paper (July 1994) 
both the spacecraft and the mission opera- 
tions system are in the design and develop- 



ment stages. What follows is a snapshot of 
work-in-progress; by the time of the 
SpaceOps '94 symposium, (November 
1994) the spacecraft will have passed its 
critical design review, and the presentation 
for this paper will update the following ma- 
terial. 

Mission Operations Inputs for NEAR 
Spacecraft Design 
The following items (numbered) were 

listed by mission operations in August of 
1993 as design considerations for the NEAR 
spacecraft, and can be seen to come from the 
experiences described above. They are 
listed in no particular order: 

1. "Spacecraft and RF system must 
have powerfthermal margin to transmit con- 
tinuously for 8-hour contact. If a contact is 
delayed, actual transmission time may be 
longeryy 

Current Status; The NEAR spacecraft 
can transmit continuously during all mission 
phases. 

2. "The spacecraft will have a data 
summary area in the command and data 
handling (C&DH)system computer. The 
'Data Summary' requirements include: 

- At least 5 data points for each impor- 
tant telemetry parameter (high, low, average, 
time of high, time of low) 

- A variable length 'Anomaly Data' area 
where data triggered written by the auton- 
omy system is stored." 

Current Status; The WEAR spacecraft 
C&DH software requirements specification 
includes all of the above requirements. 

3. "The NEAR Solid state recorder 
(SSR) memory must be non-volatile." 

Current Status; The NEAR spacecraft 
solid state recorder memory is volatile - 
shutting off the power causes the data to be 
lost. However, the power should never have 
to be turned off, so this is not a seen as a 
critical issue by mission operations. The 
SSR is a purchased component, with an ex- 
isting design, and designing a new recorder 
would have been cost and schedule pro- 
hibitive. 

4. "Realtime telemetry must be avail- 
able to the SSR and telemetry system simul- 
taneously." 

Current Status: The NEAR spacecraft 
can both record and downlink housekeeping 
('realtime') data simultaneously. This fea- 
ture can be used to prevent the loss of space- 
craft housekeeping data in the event of a 
transmission error. 

5. ."The SSR must have random access 
capability. Downlink of selected time peri- 
ods of selected parameters is required." 

Current Status: The NEAR solid state 
recorder has some capability for random ac- 
cess, but not by time and parameter. The 
ground will have to model data recording 
functions in order to know what particular 
SSR memory addresses to downlink for par- 
ticular data. The onboard data rates of all 
instruments and subsystems are controlled 
by ground command, so this is not seen as a 
problem. 

The following items concern the onboard 
spacecraft telemetry processing and anomaly 
detection and correction processes, collec- 
tively known as autonomy 

6. "Autonomy rules should include 
chaining (i. e. if A is true, then check if B is 
true, then take some action) and arithmetic 
(i.e. allow the multiplication of a voltage and 
current telemetry parameters to check on 
power consumption." 

Current Status: The onboard autonomy 
does not allow for arithmetical functions on 
telemetry, but it does allow for limited logi- 
cal checks (ANDs and ORs of particular 
telemetry values). Mission operations and 
the flight software team are still negotiating 
this requirement. 

7. "Autonomy should have access to 
SSR (to support onboard trending in case of 
fault detection)." 

Current Status: This has not been de- 
signed into the system. 

8. "Autonomy should be able to write 
data and conclusions to anLAnomaly Data' 
area of the 'Data Summary'." 

Current Status: The onboard processor 
will capture that information which caused a 



particular autonomy rule to be triggered. 
The data will be stored in a known location, 
and can be downlinked. 

9. "To minimize commanding, a data 
region accessible to commands is neces- 
sary." 

Current Status; The intent here was to 
reduce the amount of commanding required 
by allowing mission operations to uplink 
changes in data for previously transmitted 
commands. As the design matured, mission 
operations and the software team agreed on 
a scheme utilizing onboard sets of com- 
mands, called macros, invoked by a smaller 
set of uplinked commands. All macros are 
uploadable, changeable, etc., and can be 
used over and over again. A great deal of 
preparation will go into the design of the 
macros to ensure their reusability. 

Other NEAR Concurrent Engineering 
Activities 
Significant interaction between the 

spacecraft and mission operations systems 
design efforts is occurring in the areas of 
flight and ground software. Regular meet- 
ings are held, conducted by the flight soft- 
ware system engineer, the MOS software 
lead, the mission operations manager, and 
the cognizant technical leads for specific 
subsystems under discussion each meeting. 
Requirements are negotiated, specifications 
reviewed, and implementation issues aired 
and resolved among all the parties. 
Additionally, the mission operations man- 
ager has been asked to be on the review 
panel of the flight software preliminary de- 
sign review. 

Mission Operations and the spacecraft 
design team are working together shoulder 
to shoulder, in many other areas. Load 
management schemes, maneuver algorithm 
design, etc. are all being worked on together 
to mike sure the final space system design is 
a good one. All teams seem to recognize the 
importance of strong spacecraft/operations 
interaction at this important stage of the 
NEAR mission. 

Conclusions 
Concurrent engineering is a technique 

which can work to provide a better space 
system, in less time, while substantially re- 
ducing total progfam costs. Inherent advan- 
tages of teams working together are gained, 
at the cost of a little more communication 
and flexibility. Based on our belief in the 
benefits of concurrent engineerirg and 
lessons learned from previous space mis- 
sions, the NEAR mission operations team is 
taking an aggressive (but tactful!) approach 
to concurrent engineering of the spacecraft 
and the mission operations system. Lessons 
learned from past space systems develop- 
ment programs have given the NEAR pro- 
ject team a leg up, and we are using those 
lessons to our advantage. The NEAR pro- 
ject is using concurrent engineering as the 
basis for the system design, and both the 
spacecraft design team and mission opera- 
tions are profiting from the close working 
relationship. The payoff to date is evident; 
we are confident that future payoffs of this 
approach will enable NEAR post-launch 
costs ro be constrained to an optimal level. 
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