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EXECUTIVE SUMMARY

The Third International Symposium on Space Mission Operations and
Ground Data Systems (SpaceOps 94) is being held November 14-18, 1994, in
Greenbelt Maryland, USA, and is hosted by the NASA Goddard Space Flight
Center. More than 400 people from nine countries are attending. This
symposium follows the Second International Symposium that was hosted by the
Jet Propulsion Laboratory in Pasadena, California, during November 1992. The
First International Symposium on Ground Data Systems for Spacecraft Control,
conducted in June 1990, was sponsored by the European Space Agency and the
European Space Operations Centre.

The theme of this Third International Symposium is "Opportunities in
ground data systems for high efficiency operations of space missions".
Accordingly, the Symposium features more than 150 oral presentations in five
technical tracks:

* Mission Management
* Operations

¢ Data Management

¢ Systems Engineering

¢ Systems Development

These five tracks are subdivided into over 50 sessions, each containing three
presentations. The presentations focus on improvements in the efficiency,
effectiveness, productivity, and quality of data acquisition, ground systems, and
mission operations. New technology, techniques, methods, and human systems are
discussed. Accomplishments are also reported in the application of information
systems to improve data retrieval, reporting, and archiving; the management of
human factors; the use of telescience and teleoperations; and the design and
implementation of logistics support for mission operations.
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FOREWORD

We welcome you to SpaceOps 94! The Goddard Space Flight Center is pleased
to host and sponsor our biennial symposium this year. We intend to maintain the
same high standards set by our predecessors--the Jet Propulsion Laboratory in 1992,
and the European Space Agency with the European Space Operations Centre in 1990.

Like other participating organizations, we benefit from the shared knowledge
and combined experiences that are topics of discussion at the SpaceOps 94
symposium. Best of all, we benefit from seeing each other face-to-face and having
the opportunity to discuss in person technical issues of mutual, often compelling
interest.

The large number of papers submitted to the SpaceOps 94 committee for
acceptance and the projected attendance of over 400 of our colleagues should mean
we are in for another splendid symposium this year. We believe these numbers
mean that biennial meetings of our international space mission operations
community are needed and are viewed as productive.

During the four days of our Symposium, more than 400 people from nine
countries will hear more than 150 papers presented, as well as keynote, plenary, and
panel talks by individuals from throughout the world. The papers in this
proceedings document describe a wide range of ideas and experiences in our field
that are developed from the perspectives of international space programs and their
supporting industries.

Our review of the papers indicates that future space mission operations will be
strongly influenced by the following kinds of challenges and objectives:

Empowering operators to perform at higher intellectual levels by the
increased use of artificial intelligence

e Standardizing protocols, formats, databases, and operations to enable
simultaneous and economical support of multiple missions

* Dealing with the science data avalanche

¢ Converting yesterday's and today's mission experiences into the "corporate
knowledge" databases of tomorrow

* Sharing national resources in cooperative space ventures.

We wish you a rewarding week. We also wish for, and look forward to, greater
interaction between our people and our countries--not just at our symposia, but in
our everyday working world as we learn to achieve increasingly successful and
productive space mission programs.

Dale L. Fahnestock Donald D. Wilson
General Chair Executive Committee Chair
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PREFACE

I would like to acknowledge the fine support of Laura Capella, Todd Del
Priore, and April Johnson in the preparation of the manuscript for this document,
which included entering data and creating FileMaker Pro scripts on the Macintosh
computer to produce the the table of contents and author index.

If you have Internet access, I invite you to navigate to the NASA "Hot Topics"
page using URL address http:/hypatia.gsfc.nasa.gov/NASA_homepage.html.
Possibly, using this path, you already may have accessed the World Wide Web
information pages on SpaceOps 94, and we solicit your comments on what you find
there. It is reasonable to assume that the call for papers and other information on
the next SpaceOps (in 1996) will be similarly accessible a few months in advance.
Please inform potentially interested colleagues regarding this information resource.

/4

James L. Rash/NASA/GSFC
Editor
Publications Committee Chair
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Abstract

Matra Marconi Space (MMS) occupies a leading
place in Europe in the domain of satellite and space
data processing systems. The maturity of the
Knowledge-Based Systems (KBS) technology, the
theoretical and practical experience acquired in the
development of prototype, pre-operational and
operational applications, make it possible today to
consider the wide operational deployment of KBS's in
space applications. In this perspective, MMS has to
prepare the introduction of the new methods and
support tools that will form the basis of the
development of such systems. This paper introduces
elements of the MMS methodology initiatives in the
domain and the main rationale that motivated the
approach. These initiatives develop along two main
axes: knowledge engineering methods & tools, and a
hybrid method approach for coexisting knowledge-
based and conventional developments.

1. Introduction

Matra Marconi Space (MMS) occupies a leading
place in Europe in the domain of satellite and space
data processing systems. It has a long experience, as
architect of both types of systems, in the integration of
hardware and software components, man-machine
interfaces, knowledge and data management systems,
etc.

The development of methods and supporting
environments is a part of MMS missions. MMS has a
confirmed expertise in the domain of system
engineering methods and tools. For instance, MMS
has co-authored the HOOD design method (dedicated
to the architectural and detailed design of large real-
time and embedded Software applications) and is
involved in the working group in charge of proposing
evolutions of the method.

MMS has also acquired a theoretical and practical
experience in the development of Knowledge-Based
Systems (KBS) through numerous R&D, pre-
operational and operational projects generally
sponsored by CNES (the French space agency), ESA
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or other customers such as ARIANESPACE. The
development activities conducted at MMS in the
eighties have allowed to demonstrate the benefits of
KBS to assist users in operation environments. That
experience has also led to a robust in-house KBS
development methodology.

It is now possible to consider the wide operational
deployment of KBS's in space applications. In this
perspective, MMS has to prepare the introduction of
new methods and support tools that will form the basis
of such systems development as well as their
cooperation with more conventional methods [10].
After a brief description of the MMS approach in the
field of space diagnostic support systems
development, this paper develops the methodology
issue that MMS is currently tackling and presents an
experimentation of a hybrid method approach in the
diagnostic systems field.

II. Spacediagnostic support systems: the DIAMS
programme

MMS has been investigating and experimenting
spacecraft diagnostic support systems for eight years.
The DIAMS concept, initiated in 1985, led to the
development of a prototype expert system dedicated to
the Telecom 1 Attitude and Orbit Control System [7]
DIAMS-1, and to the present Telecom 2 Expert
System [8], DIAMS-2, covering a whole satellite
(platform and interfaces with the payload), which was
installed in the Satellite Control Center at the
beginning of 1993 [3].

One of the main advances realized through DIAMS-
1 was the decomposition of the Knowledge base (KB)
into different types of Knowledge Islands (KI)
representing different domains of expertise.
DIAMS-1was implemented in Emicat (an object
dialect on top of Prolog).

The next generation called DIAMS-2 was a near
operational system developed on top of a KEE/
CommonLISP platform. It is a hybrid system
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combining decision-tree based symptom-hypothesis
associational reasoning to initiate and to focus the
diagnosis, and the DIAMS-1 model-based techniques
to complete the diagnostic reasoning on particular
functions and to provide the final isolation of the
fault.

In DIAMS-2,comprehensiveness and efficiency
was priviledged against fineness of representation and
reasoning. Simplified representations well suited to
the practical problems faced in space industry were
introduced as a first approximation. A progressive
refinement of the models and of the reasoning
paradigms selected (for instance to include the
handling of incompleteness, uncertainty and time) is
now being considered in the definition of a new
generation of knowledge based systems, DIAMS-3
[41,[5].

DIAMS-3 is being implemented in C++ and uses
the ONTOS Object Oriented Database Management
System for knowledge storage and retrieval. Beyond
the porting into C++ of the DIAMS-2 machinery,
DIAMS-3 will provide generic model edition services
and C++ libraries of operational standard for handling
time, incompleteness and uncertainty. These libraries
could also be reused in other KBS development
projects.

Other important objectives of DIAMS-3 concemn
tigher integration with other knowledge-based
systems like data analysis or procedure management
tools and more generally the complete integration of
that kind of tools in the operational loop [11].

II1. Methodology issues

Spacecraft Control Centers (SCC’s) have to process
large amounts of data from which the relevant
information is generally difficult to extract and may
require the use of KBS for instance for data analysis
and diagnosis (such as those belonging to the DIAMS
family). Knowledge-based planning and scheduling
or procedures management tools can also be useful to
master the management and execution of complex
operational tasks. These different categories of KBS’s
generally need to communicate with the operational
environment, i.e to exchange information with
conventional software or databases. In addition, the
embedding of the various kind of software
components (including KBS’s) into hardware and at a
higher level into a system with its organizational logic
has to be taken into consideration.

An example of typical Satellite Control Center
functional architecture is provided in tablel
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Table 1. Typical SCC functional architecture

Core system Databases, data storage and retrieval
and Time synchronization and distribution
Common Local Area Network(s), communications
. Distributed environment monitoring and
services control
Operation documentation management.
Procedural Data reconstruction and distribution
applications Flight dynamics monitoring and control
Operation procedures construction and
execution...
Knowledge- Data analysis
based Diagnosis )
applications Planning/Scheduling...

Various methods, tools, languages, models, or
architectures are used to develop these different
kindsof components. To give an example, in many
SCC’s development projects currently conducted at
MMS, SADT and HOOD are used for the analysis
and design of conventional software, and the
MERISE Information System Design methodology
(including Entity-Relationship diagrams) is used for
the database components. The operational integration
of KBS’s in SCC’s thus raises two kinds of
methodology requirements:

Well-suited methods and tools are required for
expertise analysis and knowledge modelling,
knowledge verification & validation, or KB
Administration and Maintenance.

rod
The elaboration of a methodology framework for
the cooperation between knowledge engineering
and SW engineering methods and tools is an
essential requirement to guarantee the safe and
efficient cooperation between KBS’s and
conventional applications within a same
operational environment.

Rather than expecting the advent of the ultimate
methodology that would allow to develop all types of
system components within the same integrated
methodology, a pragmatic solution, experimented by
MMS, consists in adopting a hybrid method
approach. In such an approach, the task of building
the integrated application is carried out by developing
all the system components within a methodology
framework that allows the use of the most suitable
existing methods in the successive phases of the
development.

This approach of course requires to define
correspondences between models for cross validation



purposes but it carries a number of very interesting
properties. For instance, it allows to benefit from the
experience gained with the existing methods, allows
to use existing tools supporting the methods, avoid
problems such as compatibility with existing models
(SCC’s HOOD models for instance) or the costly
training of a large number of people to a new method.

A hybrid method approach for KBS development
grounded on KADS, HOOD and OMT has been
successfully experimented by MMS through the
development of the new generation of diagnostic
support systems (DIAMS-3). This approach is
detailed in the next section.

IV. The hybrid method approach experimented
in DIAMS-3

1. Selected methods
Knowledge Engineering methods

The CommonKads method [14] which is now a
knowledge engineering method rather popular in
Europe supported by off-the-shelves tools has been
selected as the DIAMS-3 Knowledge Engineering
method. Its founding principle is Knowledge Level
Modelling. The purpose of the knowledge-level
model is to make the organization of knowledge in the
system explicit independently of any representational
issue (symbolic representation in terms of rules,
frames, etc.) and, a fortiori, of any implementation
level issue. The CommonKads model set is briefly
presented in table 2:

Table 2. The CommonKads model set

HOOD and OMT were selected:

+ HOOD [12] is a design and development method
for large technical and real time software systems.
It resulted from the merging of Booch’s Object
oriented design approach and Abstract Machines
methods. The definition of the method was
sponsored by ESA and started in 86. Since its birth
in 1986, HOOD has become the most commonly
used design method in the european space
industry. It is now the reference design method for
the SW projects sponsored by the European Space
Agency. HOOD is a hierarchical design method
offering two kinds of interesting relations between
objects: the “use” relation to express that one
object requires the services of other objects and
the “include” relation to express that one object,
the parent, is fully implemented by the child
objects it contains (cf Figure 1.)

Figure 1. HOOD object: graphical representation

T
f

Operation_1f -
Operation_2- - -« - -

Object_name

Op_1
Op_ 2

-

»  OMT (Object Modelling Technique) is an object-
oriented software development method which

" ) . extends from problem formulation and
Organizational provides an analysis of the R Tvsi .
model organizational environment in which the Feqmremems_ analysis, to design and
KBS will run implementation. It has been defined by James
: : . Rumbaugh & al. [13] from the General Electric
Task model Descxpes }he rleal-lx.fe tasks executed in the Research center (USA). This method proposes
organizational environment three kinds of models to describe the different
Agent model Describes the properties of agents that views of a system (cf Table3)
perform tasks specified in the task model
- Table 3. The OMT model set
Communication | Describes all transactions between agents
model Object model Static, structural view of the system
showing objects structure and relationships
Expertisemodel { Organizes problem-solving knowledge in between them
four layers: domain, inference, task and
strategic knowledge Dynamic model | Temporal, behavioral view of the system
. . Functional Transformational, functional view of the
Software Engineering methods_ model system

Having assessed that the association of KADS with
object-oriented analysis and design approaches could
provide a suitable basis for developments of systems
such as DIAMS-3, two complementary methods
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The evaluation work has been focused on the object
modelling technique from which the methods draws
its name.




2. DIAMS-3 Specification

Two main kinds of output have been provided at the
end of this phase:

« Software requirements (following a template close
to the Software Requirements Document template
recommended in the ESA PSS-05 standard [6])
including both functional and non functional
requirements for the overall diagnostic tool.

e A CommonKADS Expertise model for the
cognitive parts built with the support of the
KadsTool tool. This model is briefly described in
the next paragraphs:

Strategic knowledge

The KB is partitioned into knowledge islands
(KI’s). A KI contains all the knowledge items needed
to investigate (i.e. confirm or infirm) some global
hypotheses. A strategic-level Investigation Procedure

is used to select a path among pending hypotheses and
to navigate from KI to KL

Domain knowledge is generally represented by
hierarchies of concepts and relations between
concepts. A domain ontology describes the terms that
will be used to formulate statements about the
application domain. Domain knowledge may further
be specified with the help of some meta-descriptions
- model ontology - that specify the type and structure
of the domain models.

The diagnostic tool model ontology has been
mainly represented by two “consist-of” hierarchies
structuring:

o the satellite FDIR (Fault Detection and Isolation
Recovery) static knowledge and

» the diagnostic session dynamic knowledge
introduced as an example in Figure 2.

A complete description of domain knowledge may
be found in [1].

Inference & task knowledge
The inference knowledge specifies the basic

inferences that can be made with the domain
knowledge.

The task knowledge describes the problem-solving
tasks. Tasks are specified through a task definition
and a task body. The task body decomposes the task
recursively in terms of activities (other tasks) needed
to achieve the task goal. A task description is
generally associated to an inference structure and
expresses a control flow on the inference structure.

The top-most inference structure and task
description of the diagnostic tool Expertise Model are
represented in Figure 3. and Figure 4.

3. DIAMS-3 Preliminary Design

HOOD and OMT have been used in a
complementary way for preliminary design in the
sense that:

+ HOOD has mainly been used for the top down
decomposition of the application into abstract
machines and for an easy representation of
interactions of the diagnostic system with external
resources such as reasoning schemes. It supported
the preliminary design of the diagnostic system
shell.

Figure 2. Diagnostic session knowledge “consist_of” hierarch
£ 8 Ly

4 Current_Satellite_Configuration}

cument_syndrom

current_Ki

Session_Knowledge

cument_hypotheses

Qualification} -
Observable

investigated_hypotheses]

pending_hypotheses]|

KI_hypotheses|

KI_Specific_Session_Entities,

expected_manifestations]

R_KI_hyp/expect_manifs}

Temporal_Constraint_Network_Entities]
Reasoning_Schemes_Entities
Uncertain_Causal_Network_Entities]
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Figure 3. Diagnose Inference structure

Knowledg

y

seloct_next_hyp

I next_hypothesis I

Figure 4. Diagnose Task description

Roles
Input

hi : Initial_hypothesis

Si : Initial Syndrom

Conf: Current_Satellite_Configuration

Obs : Satellite_observability_knowledge

Output

C : diagnostic conclusions

Sf : final syndrom

Control roles

KI : Knowledge_Island — in current investigation

H : Current Hypotheses

S : Current Syndrom

KI_hyp : output_KI_hypotheses — deduced from KI Investigation

KI_sym : KI_Symptoms — observed during KI_investigation

h : next_hypothesis to be investigated
Body
DIAGNOSE(hi,Si,Conf,0bs —> (C.Sf))=

S=S8i,h=hi, H={}

WHILE "select_next_hyp" retumns an hypothesis
get_KI(h —> KI) - retums the KI associated to hypothesis h

INVESTIGATE(K1,S .Conf,0bs —> (KI_hyp.XI_sym))
Update_current_hypotheses(H KI_hyp —> H)—add KI_hypin Hand
update hypotheses plausibilities
Add_symptoms(S.KI_sym => §)

Select_next_hyp (H,S —> h) - select next pending hypothesis h
according to diagnostic focusing rules and set h status to "not
pending";

END WHILE

C=H, Sf=8
Realization INVESTIGATE
Actlvates Inference diagnose
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o The OMT design process is not hierarchical but
OMT offers a very powerful object modelling
technique including of course modelling of
inheritance. OMT has mainly been used to design
the domain objects classes and relationships
between these classes.

An example of HOOD object graphical description
extracted from the documentation generated by the
HOODNice tool is provided in Figure 5.

This description shows the decomposition of the
object “Diagnoser” which is itself included (with
other objects such as “KB_administrator” or
“KB_interface”) in the decomposition of the top level
object called “Diagnostic_System”. This figure
shows “use” relations between Diagnoser internal
objects and external objects (e.g., KB_interface) or
objects belonging to the Diagnostic System Software
environment (e.g., Temporal Constraint Propagator -
TCP- and Valuation Based System -VBS- handling
temporal and uncertain reasoning)

An example of OMT sheet extracted from the
documentation generated by the OMTool tool is
provided in Figure 6. This example shows a
preliminary design model for KI_hypothesis and
Knowledge_Island domain objects.

4. DIAMS-3 detailed design

Only OMT has been used to support the detailed
design activity. This allowed a direct mapping to C++
object classes. OMT has also been used to maintain an
up-to-date view of the detailed design model during
the coding activity.

Classes identified in OMT preliminary design
appear as ONTOS persistent classes in the detailed
design model and methods corresponding either to
administration methods or to basic inference
mechanisms have been attached to these classes. An
example of such a persistent class is provided in
Figure 7.

Objects identified in the Diagnostic system shell
HOOD preliminary design model appear as non-
persistent classes in the detailed design model . An
example of such a class is provided in Figure 8. In this
case, services provided by the “Hypotheses manager”
in preliminary design are dispatched in two classes: a
semantic class used in the diagnostic process and a
graphical class used to manage the Man-System
dialog (its content has been masked to simplify the
figure).



Figure 5. Diagnoser Hood Object graphical description

e
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Figure 6. OMT sheet including KI_hypothesis subclasses and KI_hypothesis-KI relationships
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Figure 7. The KI_hypothesis class

Figure 8. The Hypotheses_manager semantic and

KI_hypothesis

graphical classes

-plausibility:Uncertainty
-investigated:CA_Boolean

Hypotheses_manager

-hypotheses_rep_ptr: Hypotheses_repository*

+Investigated():const CA_Boolean
+Investigated(new_status: CA_Boolean):void
+Plausibility(): const Uncertainty&
+Plausibility(new_plausibility:Uncertainty&):void
+ls_more_plausible(const KI_hypothesis&) -

-hypotheses_iter_ptr: Hypotheses_iterator*

+Init_Hypotheses_manager():void
+Update_plausibility(h:Kl_Hypothesis,p:Uncertainty):void
+Mark_investigated(hyp:KI_Hypothesis):void
+Select_next_hypothesis():KI_Hypothesis

+Uninvestigated hypothesis_|left():CA_Boolean

G_Hypotheses_area
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5. Experience Feedback

Each of the selected methods carries advantages
and drawbacks. Taken as a whole, the set of selected
methods exhibits complementary features allowing to
progress in the elaboration of guidelines for selecting
alifecycle model and a combination of methods well-
suited to a particular application project. This is
further detailed hereafter.

CommonKADS

The CommonKADS modelling approach is mainly
focused on the analysis phase and cannot be
considered as a comprehensive methodology that
provides guidance and support in all phases of
operational KBS development projects.The
application development experience showed that
people with a practical experience in SW engineering
got acquainted rather rapidly with the KADS
approach.

The use of KADS allowed to establish a common
universe of discourse over the project. KADS models
were found very useful by the newcomers and eased
their integration in the project team.

HOOD

The use of the HOOD method allowed the top-
down decomposition of the application into modules.
This provided a convenient basis for the specification
of the man-system interfaces and the modelling of
interactions with external resources (other KBS’s,
database systems or procedural applications). The
HOOD modelling approach has been designed to
facilitate the structuration of large projects. In the
early phase of the application development, its use
indeed simplified the task sharing between team
members

However the main drawback of the method resides
in its lack of support for the modelling of inheritance,
which is a critical requirement when developing KBS,
and, correlatively, the absence of C++ code generator
in the tools that support the method. This feature
prevented the selection of HOOD as the application
detailed design method.

OMT

OMT offers a powerful object modelling technique
which tumed out to be well adapted for the
preliminary design of classes corresponding to
domain objects and for the detailed design of the
whole application. In addition the support tool used
allowed to generate C++ code skeletons based on the
OMT object model components.
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Among the methods investigated, OMT is probably
the one which is the closest to the ideal
comprehensive methodology that could be applied to
all kind of system components - KBS’s, conventional
applications, database applications, etc. - in all phases
of integrated systems lifecycle. Notice for example
that MMS is using OMT for two KBS projects:
“Architectural concept for Spacecraft Operations
Automation” (sponsored by ESA/ESOC) which aims
at integrationg various KBS(procedures management,
data analysis, planning/scheduling) within the current
ESOC control center (SCOS) and “Ogre”, a KBS for
ARIANES tests data analysis and reports generation
(sponsored by CNES). However the method is still
rather young - support tools of industrial standard are
only emerging - and not widely used for operational
system developments in space. Notice also that in
Europe, ADA remains the reference language for
real-time systems developments and that HOOD will
probably remain the reference method for such
developments for a few years still.

V. A hybrid methodology framework for
co-existing conventional/knowledge-based
developments

The method cooperation approach straightforward-
ly derives from the operational continuity principle.
This requirement states that as organizations are hard
to change, and as old applications and organizations
have to be maintained while introducing new system
capabilities, it is important that applications be devel-
oped on a modular basis to enable an incremental de-
velopment and maintenance strategy.

This principle at the application level translates into
a dual principle at the methodological level that could
express as follows: when people have a good working
knowledge of a given method that has proved to be
well-suited to a given class of system components it is
preferable to let them use the known methods and to
limit the enforcement of new methods to system
components and development phases which are not
well covered with the existing methods.

Rather than developing a comprehensive
methodology, the proposed approach is thus to define
a framework that supports the cooperation between
methods.

Table 4 introduces a first instance of such an hybrid
approach that synthesizes the main results of the
method evaluation work as well as other results
coming from a comparison of KADS, MERISE,
SADT and OMT methods [9]. This table associates a
set of methods or languages to each lifecycle phase.
Such sets of methods can be interpreted either as



alternatives methods (e.g., KADS/ OMT for domain
objects modelling) or complementary methods (e.g.,
HOOD/OMT for preliminary design) or as possible
mappings between models for cross_validation
purposes (e.g., KADS/MERISE where KADS is used
for Knowledge_based components and MERISE for
SCC operational databases).

The method cooperation approach also requires to
manage the correspondence between different
representations of the same objects at each step of the
development process. This is particularly needed for
objects encapsulating knowledge & data exchange
services between different subsystems and to perform
the cross-validation of models. This question has also
been investigated in [9]

Table 4. Method componendts for operational integration
of KBS’s in space environments

Functions / Tasks /

Lifecycle phase Data / Domain Objects

Inferences
Analysis KADS, MERISE, OMT KADS, SADT, OMT
Preliminary design OoMT HOOD, OMT
Detailed Design OMT OMT
Coding C++ C++

Conclusion

In this paper, we have presented a hybrid
methodology framework that could contribute to the
operational integration of KBS’s in SCC’s as this has
been demonstrated on the example of diagnostic
support systems.

Experience feedback coming from MMS current
KBS projects using OMT for the whole lifecycle will
also provide valuable inputs for assessing this hybrid
methodology framework.

Further goals for MMS in this area are to refine the
proposed hybrid approach through elaboration of
rules for the maintenance and updating of hybrid
models in the coding phase (including the
management of traceability links). The situation of
prototyping and V&V activities wrt. the proposed
hybrid approach are also being investigated.
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Abstract

The Spacecraft Control and Operations System
II (SCOSII) is the new generation of Mission Con-
trol System (MCS) to be used at ESOC. The system
is generic because it offers a collection of standard
functions configured through a database upon
which a dedicated MCS is established for a given
mission.

An integral component of SCOSII is the support
of a dedicated Operations Language (OL). The
spacecraft operation engineers edit - test - validate
and install OL scripts as part of the configuration of
the system with e.g. expressions for computing
derived parameters and procedures for performing
flight operations, all without involvement of soft-
ware support engineers.

A layered approach has been adopted for the
implementation centred around the explicit repre-
sentation of a data model. The data model is object-
oriented defining the structure of the objects in
terms of attributes (data) and services (functions)
which can be accessed by the OL.

SCOSII supports the creation of a mission
model. System elements as e.g. a gyro are explicit,
as are the attributes which describe them and the
services they provide. The data model driven
approach makes it possible to take immediate
advantage of this higher-level of abstraction, with-
out requiring expansion of the language.

This article describes the background and con-
text leading to the OL, concepts, language facili-
ties, implementation, status and conclusions found
so far.

Introduction

The need for the SCOSII OL has matured
through the long experiences ESOC have had
with the use of configurable generic MCS’s. As
any other previous ESOC MCS, SCOSII will
be configured through databases containing the
mission specific knowledge.

This knowledge will not only need to be
efficiently defined, but also validated and then
maintained, due to the pre-launch test results
and/or the frequent changes which do occur
during the lifecycle of a mission.

The SCOSII OL concept is designed to aug-
ment the traditional ways an operation engi-
neer specifies mission specific configuration
data to cover as well knowledge which is algo-
rithmic or procedural in nature. Thus it is
essential to support the operations engineer in:

+ specifying and maintaining the mission
knowledge in a natural, concise and
intelligible manner - without requiring a
detailed software understanding or sup-
port of software engineers;

 defining the mission knowledge in con-
text-specific dedicated environments,
whereby both the HCI and the allocated
constructs are specifically designed for
each particular information type;

» validating the specified knowledge by
means of ‘on-line’ checks and testing
capabilities.
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Background and Context

For any mission has been the demand to
derive information from the format which is
provided through the spacecraft telemetry
parameters. The most frequently used deriva-
tion is that of applying a (linear) calibration to
convert raw values into engineering units. The
calibration is defined by providing value pairs
as part of the database configuration.

Although calibrations satisfy a large per-
centage of the derivation needs, they do not
provide a sufficient mechanism as there is as
well a need to compute derived values by com-
bining other values using an algorithmic trans-
formation.

In the Multi-Spacecraft Support System
(MSSS) these algorithms were specified on
paper by an operations engineer and subse-
quently coded by a software engineer. In
SCOSI the operations engineer writes the algo-
rithm directly in FORTRAN expanded with a
few syntactical constructs to e.g. reference a
previous value of a parameter. In both cases the
resulting FORTRAN code is compiled and
linked with the operational control system soft-
ware. An error in the algorithm will not be
detected before a run-time crash occurs. The
turnaround time for changes has from an oper-
ational perspective a significant and unwanted
delay. Neither systems support version and
configuration control functions.

The Spacecraft Performance and Evaluation
System (SPES) offers a significant improve-
ment as it allows the users through a dedicated
language to define expressions, compute aver-
ages, etc. SPES is however limited to work in
an off-line context on historical values and has
no integration with the control system as such.

The possible largest driver for the require-
ments is the wish to formalise and incorporate
executable operation procedures written in the
OL within SCOSII. Whereas algorithms for
derived values do not necessary have to be
explicit in the run-time context, procedures do

690

have to: one property of a procedure is its inter-
active nature involving a close dialogue with a
human operator through a procedure execution
display.

Within ESA, check-out systems have for
some time provided capabilities of defining test
procedures through special languages; the most
significant ones being ETOL (ESA Test Opera-
tions Language), ref. [10], and ELISA
(Extended Language for Instrument and Space-
craft AIV), ref. [9]. These check-out languages
focus on regression testing capabilities.

Two ESOC studies have demonstrated the
feasibility of executable procedures within
control systems, namely the Expert Operator’s
Associate (EOA) study, ref. [12], and the Mete-
osat WorkStation (MWS) study, ref. [13] - the
latter now being used operationally. Both
projects focused on the internal representation
of procedures and the interactive nature of their
execution with close coupling to the human
spacecraft operator.

The User Terminal Study at ESTEC, ref.
[8], has shown the advantages of an object-ori-
ented language in combination with a mission
model. The User Language Study at ESOC,
ref. [7], was initiated with the purpose of pro-
viding inputs to the SCOSII OL and has proven
a number of concepts; in particular the advan-
tages of a layered implementation centred
around the explicit representation of a data
model. Both studies focused on the configura-
bility aspects of the system and associated lan-
guage capabilities.

From a technological view the existence of
powerful UNIX utilities such as lex and yacc,
the ideas behind database languages as SQL,
advances in workstation performance, and the
maturity of object-oriented concepts have fur-
ther made it possible to implement the OL.

SCOSII, ref. [11[21[31[4]1[5]1[6][14], is the
new generation of generic control systems to
be taken into use at ESOC; the first client mis-
sions being Huygens (97), Artemis (97) and



Envisat (98). SCOSI is a distributed control
system running on powerful UNIX worksta-
tions connected through a local area network.
SCOSII has been engineered for high perform-
ance throughput; in particular to optimise the
parallel access to real-time and historical data.
Further emphasis is put on the configurability
of the system to incorporate a mission model,
hereby offering a higher level of abstraction
than that traditionally provided by telemetry
parameters and telecommands. A new Human-
Computer Interaction (HCI) concept has been
adopted based on closer data integration and
referential capabilities.

Concepts

SCOSII is a generic system which is config-
ured by adding missing specific knowledge,
which may be categorised into:

* declarative knowledge, e.g. calibration
curves, parameter structures, etc.; speci-
fied through dedicated form based HClISs;

* expressive knowledge, e.g. derived
parameters, command validation condi-
tions, etc.; specified through the OL,;

» procedural knowledge, e.g. operation
procedures, report procedures, etc.; spec-
ified through the OL;

» special knowledge, i.e. non-generic mis-
sion information typically requiring a
software expansion to SCOSII.

It is difficult to define the borderline of
when to use declarative or expressive knowl-
edge, i.e. when to use the OL. The definition of
specific items within the database have typi-
cally both a declarative and an expressive part.
The identifier, description, etc. of a Parameter
is defined by declarative knowledge, whereas
its validity criteria is defined by expressive
knowledge. Due to this ‘mixture’ of declarative
and expressive knowledge inherent to most
database parts, the way the user interacts with
the system needs to reflect this fact. Neither a
pure (traditional) forms interface nor a pure OL
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definition environment would suffice, both
need to be accessible in a homogeneous man-
ner from within the same HCI.

An operations language needs to interact
with the control system to be able to access
data held by the control system which is of
operational importance to get e.g. the validity
status of a telemetry parameter; request serv-
ices to e.g. send a telecommand; and change
data to e.g. store the results on an evaluation of
a derived parameter.

Interaction Layer

HCI

Figure-1  Layered Model

A layered approach has been adopted for
the SCOSII OL as shown in Figure-1. The
three layers are:

» Interaction layer, i.e. the user interface of
the system which may interact with the
physical layer directly or with the logical
layer;

» Logical layer, centred around the OL
containing the data entities which are
manipulated via constructs in the lan-
guage;

* Physical layer, providing the generic
services of the control system.

The access from the logical to the physical
layer is dictated by an explicit data model. The
data model is object-oriented as it represents
physical layer objects with attributes and serv-
ices accessible to the OL.



It supports the explicit representation of
inheritance, aggregation and association rela-
tions. This enables the OL to facilitate naviga-
tion through related objects, e.g. from a
command to the parameter used within its post-
execution verification checks.

The data model serves as a ‘contract’
between the logical and physical layers, it can
not be changed through the OL itself. This does
not imply that the data model is static, changes
are just controlled through a mechanism within
the physical layer. Any change to the data
model is propagated to the logical layer.

The physical layer within SCOSII is itself
based on an object-oriented implementation,
i.e. the differences in representation between
the logical and physical layers are less than
would otherwise have been the case. The direct
implication of this is that the logical layer is
‘slim’: it mainly serves to present physical
layer objects to the operations engineer while
hiding implementation details and offering pro-
tection against illegal access. The intelligent
behaviour always rests within objects of the
physical layer, i.e. if the physical layer does not
support a certain function it will neither be
available within the OL.

SCOSII supports the representation of a
mission model, allowing to organise the mis-
sion knowledge according to a structural repre-
sentation of system elements, e.g. a gyro or a
heater. The OL can access these higher level
objects in the same way as any other object
within the physical layer, i.e. it does not require
a language expansion to take advantage of
these.

It is transparent to the OL whether it
accesses static (database configuration data,
e.g. parameter characteristics) or dynamic
(processing data, e.g. latest parameter value)
data. Although the OL does offer facilities to
explicitly request historical data; the concept
of time is nominally managed through the
application using the OL. A parameter display
may be put into retrieval mode, the validity of
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each parameter is calculated on the basis of
current values of any contributing parameters.

It is further transparent to the OL that
SCOSII is a distributed system. All aspects
dealing with data distribution and synchronisa-
tion are handled fully by the physical layer.

The OL is an interpreted language. The rea-
sons for this choice have mainly been that at
least operation procedures are interactive of
nature involving communication with a human
operator - for which an interpretation was
believed most adequate.

All OL definitions form part of the database
configuration of a SCOSII system. They are
therefore underlying strict version and configu-
ration control.

Language Facilities

The OL is a strongly typed language, which
enables the detection of a range of errors at
preparation time during database configuration
rather than causing an error at execution time.
The data model forms part of the type system
within the OL; accessing the physical layer
objects in a wrong way will be detected prior to
its execution.

The executable unit within the OL environ-
ment is an OL Script. A script may be as simple
as a single boolean expression or as complex as
the full directives of a large flight operations
procedure. A script is composed of two parts: a
declaration part (local variables and function
definitions) and an executable part (statement
list).

The access to the physical layer objects is
governed through the explicit existence of an
object-oriented data model. Figure-2 illustrates
a segment of a script to calculate the value of
the derived Parameter P117. If the status of the
limit of Parameter P112 is above limits, then
the engineering Value of P117 is set to the
upper limit definition of P112; otherwise it is
set to be the engineering Value of P112.



{
if (P112.1imit == ABOVE_LIMITS) then
P117 := P1l12.limit.upper;
else
P117 :=
endif;

}

P112;

Figure-2  Operations Language Example
Figure-3 shows the data model correspond-
ing to this example. A Parameter is character-
ised by its name, description, limit, raw and
engineering Values. Each Class may have a
default attribute (marked with a ‘*’): for the
Parameter the default is its engineering Value.
A Parameter offers a service delta which
allows to access historical samples. A Value is
characterised by its value (default) and validity.
A Limit is characterised by its status (default),
lower and upper limit definitions. Notice that
due to the concept of default attributes, the

expression ‘P112° evaluates as
‘P112.eng.value’.
Parameter
name parameter
description [
delta(sample)
limit
Limit
status{*)
lower
eng(*) raw upper
Value
value(*)
validity
Figure-3  Logical Layer Data Model

Figure-4 shows the representation of a
Heater system element within the logical layer.
A Heater is characterised by its switch-status
(on-off) and power-status (on-off) attributes,
and offered service to switch it either on or off.
The OL can operate on heaters in the same
manner as on parameters shown earlier.
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Heater

switch-status|
power-status

switch(state)

if

endif;

(....) then
heaterl3.switch(ON);

Figure-4

System Element Logical

Data Model and OL Example

The OL is, besides from its integration with
the data model, a straight-forward imperative
language. Table-1 provides an overview of the

major language constructs.

Layer

Table-1 Operations Language Constructs
Statements Expressions Functions

assignment value mathematical
wait reference statistical
function invocation | function invocation | bit manipulation
goto-label boolean expression | time
if-then-else numeric expression | object creation
select-case string expression object copy
while-do time expression
repeat-until list expression
for-in-list -do set expression
for-to-step-next matrix expression

vector expression

map expression

The generalised approach of interfacing
physical layer objects governed by the data
model is not in all cases adequate. A trade-off
has to be made whether to provide a more tar-
geted syntax for particular kinds of knowledge.
It is expected that specialised ‘mini languages’
extending the OL syntax will evolve - typically
also offering dedicated HCI support. However,
the baseline is that these shall be mapped onto
the kernel OL at the syntactical level, i.e. in
terms of macro expansion. This ensures that
the intelligent behaviour stays within the phys-
ical layer of the MCS.

Implementation

The OL facility is implemented as any other
SCOSII software: it is specified and designed
using an object-oriented method (OMT, ref.
[11]), and programmed in C++. The UNIX util-
ities lex (scanner generator) and yacc (parser
generator) are used to construct the parse tree.



Due to the fact that the OL scripts form part
of the database configuration and hence are
defined in the preparation phase, the parse tree
is built already at this stage to improve the per-
formance in the execution phase. The parse
tree structure is used directly by the interpreter.

root
Value
Parse Node value
validity
leaves
| attr name
LL Object
Global Context
PL
Global Name Table Object
service mapping
lookup type

Figure-5  Physical Layer Interface Class Dia-

gram

The physical layer interface is illustrated in
Figure-5. A Parse Node is a component of the
parse tree and is characterised by an identifier.
It references its root Parse Node and all of its
sub Parse Nodes. A Parse Node is evaluated
within a particular Context. A Context maps
identifiers onto Values and offers a lookup
service. The Global Context is a special kind of
Context which interfaces a Global Name Table
provided by the Physical Layer (PL). The Glo-
bal Name Table offers a lookup service taking
as input a character string (e.g. “P112”) and
returning a reference to the corresponding PL
Object.

A Value is characterised by its value and
validity status, which is used to propagate the
effects of non-valid values throughout the eval-
uation of expressions: if a Value is computed
on behalf of non-valid Values, it is itself to be
considered non-valid.
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A typical example of a non-valid Value is
the state of a switched-off (or redundant) unit
which still is being sampled and echoed
through telemetry.

A LL Object is a special kind of Value. It is
structured as a record, containing a Value for
each of its attributes.

Any object within the PL which needs
access from the LL inherits the properties of
the PL Object, hereby ensuring the proper
interface to the LL. A PL Object is character-
ised by its fype and contains a service mapping
relating requests from the LL onto C++ func-
tions of the PL. All LL Objects are attached to
one PL Object. At run-time only the PL
Objects actually used are related to LL Objects.

An initiative is currently being undertaken
to further generalise the physical layer inter-
face by adopting the Model-View-Controller
(MVQC) architecture, ref. [15], with the purpose
of using identical interfaces from both the
interaction and the logical layers to the physi-
cal layer, see Figure-1. The first prototypes
with this architecture have demonstrated prom-
ising results.

Handler
schedule
execute

Script User Script
name definition
execute status
parse
execute
Figure-6  Script Class Model

The Handler, illustrated in Figure-6, con-
trols the execution of any Script. It offers two
services: schedule, which determines the order
in which scripts are executed, and execute,
which invokes the script execution.



A Script is characterised by its definition,
i.e. a textual representation of the script, and its
status - e.g. whether it has been parsed. It
offers two services: parse, which builds the
parse tree of the script, and execute, which
requests the execution of the script. Any appli-
cation using scripts have to inherit from the
Script User class, which provides the mecha-
nism to interface the OL environment and
request the execution of scripts.

The initiative to execute scripts nominally
comes from an application using the OL. The
Handler has to deal with the incoming execu-
tion requests. Currently a very simple schedul-
ing mechanism is implemented; it is foreseen
to expand this into a finer-grained mechanism
taking aspects, like priorities and pre-emptive
scheduling, into account.

Nominally a script will be version control-
led as part of its using entity: e.g. the validity
criteria of a parameter specified as an OL
boolean expression is seen as part of the corre-
sponding parameter version. If the validity cri-
teria is changed, then a new version is
associated with the whole of the parameter it
belongs to. The granularity in terms of at which
level of detail to manage versions is decided on
a mission specific basis.

No language constructs to deal with paral-
lelism or script execution synchronisation are
provided. It is believed that such aspects are
better managed by the physical layer. Within
the OL conditions can be defined as e.g. an
interlock (execute upon successful verification)
between two operation procedure execution
requests. The physical layer knows about the
conditions and observes these while servicing
the related execution requests.

At this stage only basic OL editors and exe-
cution displays are provided. It is expected to
expand the tools with a debugger and test tool,
enabling the operations engineer to test and
validate Scripts locally on a workstation.
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Status

SCOSH is under development. A Basic Sys-
tem has recently been delivered comprising
functions equivalent to those offered in the
existing generic MCS’s used at ESOC. A
reduced OL facility covers only expressive
knowledge and simple tools. Further evolution-
ary releases are planned: ‘

» release 1 (1Q95), adds e.g. mission mod-
elling capabilities and executable opera-
tion procedures. The OL facility covers
procedural knowledge and simple tools.

* release 2 (1Q96), adds e.g. advanced
mission modelling and semi-automatic
operation procedure execution. The OL
facility is complete with tools.

* release 3 (1Q97), adds e.g. integration
with knowledge based applications for
automatic operation procedures execu-
tion.

FOPGEN, a WYSIWYG tool to support
editing, display and printout of operational
documentation, will be fully integrated with
SCOSIL It provides advanced editing features
and read/write access to the SCOSII mission
database. FOPGEN will generate operation
procedures in the SCOSII OL.

In parallel with the SCOSII development,
two major studies have been initiated: ATOS-4
exploits the use of knowledge based technol-
ogy in e.g. the context of procedure execution
based on SCOSII and the OL; Productline for
Compact Ground Facilities investigates the
integration of check-out and operation control
systems, with particular emphasis on the lan-
guage aspects.

The Committee for Operations and EGSE
Standardisation (COES) is currently active to
standardise the ground segment infrastructure
systems within ESA. A particular subject cov-
ers the standardisation of the human-computer
interaction of which a dedicated language is
seen as an integral part.



The SCOSII OL will be a significant con-
tributor to this standardisation work; the OL
itself will be made compliant to the forthcom-
ing standard.

Conclusions

The SCOSII OL provides support to the
operations engineer for the configuration of a
MCS with mission specific data to include
expressive and procedural knowledge, hereby
clarifying the borderline between the mission
specific and generic elements of a MCS. The
turn-around time for a change is drastically
reduced as it does not involve any software
modifications.

It does not cover the declarative knowledge
for which the existing forms based HCI have
proven to be efficient. A mixed approach has
hence been adopted where only a subset of the
configuration data is specified through the OL.

The existence of an explicit object-oriented
data model ensures a clear framework for the
interface to the physical layer of SCOSII.

The language is on purpose ‘kept simple
and stupid’, expecting the intelligent behaviour
to be provided by the physical layer objects.
This facilitates improved performance within
the OL environment.

The language is bound to SCOSII. As there
is no intelligent behaviour within the logical
layer, it depends upon the level of services
offered by the physical layer. The direct impli-
cation of this is that although the architecture
concepts could be adopted, it makes little sense
to port the language environment to a different
platform than SCOSII.

The data model approach, although flexible,
has the possible disadvantage that porting OL
scripts between missions can be difficult as
each mission could have their own different
data model. This is however a property of any
generic system, not just the SCOSII OL envi-
ronment.
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With the planned expansions of SCOSII to
cover extensive mission modelling capabilities,
the added level of abstraction within the physi-
cal layer will allow the OL to take immediate
advantages of this due to the generalised data
model approach, without requiring syntactic
nor semantic changes to the language. It is
expected that the full advantages of the SCOSII
OL will be demonstrated at that stage.
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Abstract

Matra Marconi Space (MMS) has been developing
spacecraft diagnostic support systems for eight years. The
DIAMS program, initiated in 1986, led to the development
of a prototype expert system, DIAMS-1, dedicated to the
Telecom 1 Attitude and Orbit Control System, and to a
near-operational system, DIAMS-2, covering a whole
satellite (the Telecom 2 platform and its interfaces with the
payload), which was installed in the Satellite Control
Center in 1993. The refinement of the knowledge
representation and reasoning is now being studied,
focusing on the introduction of appropriate handling of
incompleteness, uncertainty and time, and keeping in mind
operational constraints. For the latest generation of the
tool, DIAMS-3, a new architecture has been proposed, that
enables the cooperative exploitation of various models and
knowledge representations. On the same baseline, new
solutions enabling tighter integration of diagnostic systems
in the operational environment and cooperation with other
knowledge intensive systems such as data analysis,
planning or procedure management tools have been
introduced.

I. Introduction

Spacecraft (S/C) operations have pioneered the
introduction of the Knowledge-Based Systems (KBS)
technology in Space. The prototyping activities
conducted in the eighties have allowed to demonstrate
the potential of KBS to assist in controlling space
systems. Knowledge-Based Systems in S/C Control
Centers (SCC) have proven to have a high potential
for
assisting spacecraft engineers in monitoring and
analyzing S/C data, and in diagnosing on-board
failures from the knowledge of the S/C state
obtained through the telemetry.
assisting S/C engineers in complicated operations
where the exact sequence of operations is
determined by external constraints and by the actual
S/C state at each step.
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Spacecraft Assembly, Integration and Test (AIT) is
also becoming a knowledge intensive activity that
requires appropriate knowledge-based assistance. Due
to the increasing complexity of space systems, an
increasing number of parameters have to be tested
before launch through more and more elaborated test
procedures. At the same time, the duration of the AIT
phases is continuously decreasing. This makes the
AIT phase a critical phase in almost all present space
projects and increases the pressure on the
development teams.

The use of knowledge based systems for emergency
management, fault diagnosis, resource management,
replanning/rescheduling, etc. and the operational
integration of such facilities in future ground
infrastructures (SCC’s, AIT environments) should
help lowering the risks in problem diagnosis and
selection of recovery actions, avoiding mis-diagnosis
that might endanger the system in-orbit or under test,
and eventually reducing the overall cost of the AIT &
operation phases.

These general considerations motivated the launch
of the DIAMS program by the mid-eighties. DIAMS
is a step-wise fault diagnosis expert systems
development programma initiated by Matra Marconi
Space with support from CNES in 1986.The analysis
of the DIAMS programma illustrates the progressive
approach adopted by MMS to master the inherent
complexity of the knowledge required while
delivering successive generations of knowledge-based
tools that can actually provide support in spacecraft
operations.

II. DIAMS-0: the first steps

First experiments in the domain of diagnosis were
conducted in 86. An early mock-up was developed in
Smalltalk. It allowed to confirm some basic
knowledge representation and reasoning principles



and particularly the importance of model-based
approaches and  object-oriented  knowledge
representations.

The Object-Oriented (OO) paradigm was found
well-suited to the implementation of knowledge
-based systems. In the OO paradigm, each elementary
problem-solving competence may be attached as a
method to one or several domain object classes.

The Model-Based approach clearly distinguishes on
the one hand the application domain which is
modelled in terms of functional or behavioral
components and on the other hand generic reasoning
mechanisms that can interpret such models and work
on them. KBS implementing the model-based
approach may be decomposed into
domain-independent modules - the KBS shell - on the
one hand and domain-specific Knowledge Bases (KB)
on the other hand. The KBS shell implements the core
of the inference process (basic knowledge
representation and reasoning mechanisms, general
problem-solving  strategy) and the external
communication services (user interface, interface
with the operational environment). It is generally
reusable for other target systems of the same nature,
possibly through customizing of the external
communication services. The Knowledge Bases are
generally specific to the target system (a specific S/C
system or subsystem for instance).

III. DIAMS-1: Establishing the founding
principles

The development of a first generation of diagnostic
tools, DIAMS-1, started in 1986. The project was
co-sponsored by the French Space Agency. It led to
the delivery of a prototype Expert System dedicated to
the TELECOM 1 Attitude and Orbit Control System
(AOCS) [7]. The selected implementation platform
was the SUN/UNIX environment and an
object-oriented dialect on top of Prolog called Emicat.
Graphical interfaces were developed on top of
Sunview. The prototype was installed in the
TELECOM 1 SCC and evaluated by the operation
staff in 1989 [8).

Setting up the basic knowledge representation and
reasoning mechanisms "

Knowledge Islands

One of the main advances realized through
DIAMSI1 was the decomposition of the knowledge
base into different categories of so-called Knowledge
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Islands (KI) representing the different domains of

expertise required for diagnosis

« hierarchical decomposition of the system into
functions with identification of basic commands
and observables

» qualitative models of behavior

« shallow knowledge required for solving the most
common problems or to deal with situations where
the expert understanding is not deep enough to
include a functional or a behavior model

The notion of knowledge island turned out to be
particularly well-suited to- the management of the
different natures of knowledge. It greatly facilitated
the KB maintenance and incremental refinement. It
also made easier the local implementation of new
types of knowledge, including new or refined
knowledge representation paradigms designed to
achieve a finer representation.

Functional knowledge

The functional model consists of a set of functional
diagrams, grouped into knowledge islands, and
describing at the component level:

« the functional elements of the system,

« the functional links, representing possible
influences between functional clements,

« the observable parameters (telemetry) associated to
some of the functional links, and the available
telecommands.

The functional model is hicrarchical and its deeper
level corresponds to the limits of the satellite
commandability and observability. It depicts
telecommands and telemetries connections and
corresponds to the switching diagrams used in S/C
operation engineering activities (figure 1).

Figure 1. Example of functional diagram




For each functional element, a propagation function
defines how abnormal influences received are
propagated to other elements, under the assumption
that it is nominal (not faulty). It describes how this
component responds to abnormal input influences, or
how its inputs can be abductively suspected when its
outputs are in abnormal states.

The main justification of this hybrid model based
approach is that, because the systems modelled are
very complex, the functional elements do not have a
general description of their behavior. In other words,
the model is not built to provide predictions of all the
possible behaviors of the modelled system. It is rather
a qualitative representation of the possible fault
propagation between the components of the system.
The fault modes of the suspected unit(s) are defined
only by their signatures in terms of abnormal
output(s). Fault modes do not need to be
systematically identified a prior. Interactions
between components can stand for all kinds of
physical signals (e.g. electrical, command signals,
thermal influences). A very restricted set of states has
been shown sufficient in most cases to represent the
propagation of faults over the functional layouts.

Diagnostic reasoning in a functional KI may be
decomposed into three fundamental tasks which are:
« hypotheses generation: given suspect links pointed

out by a behavior analysis or by previous analyses
in other functional KI's, find out which functional
elements might account for the symptoms. This
result is achieved by backward propagation of the
anomalies through the links between the functional
elements, using the propagation functions
abductively.

» hypotheses elaboration: given the set of suspected
functional elements given by the reasoning in the
previous step, determine what the impact of their
fault would be on the observables of the KI
currently investigated. This is achieved through
forward propagation through the links, using the
propagation functions deductively.

¢ hypotheses discrimination, that is discriminate
among the hypotheses coming from the first step by
adding more information about other observable
parameters generated at the second step. The
principle of the diagnosis is then to enter a
discrimination loop between the possible causes.
The system selects an observable according to
various criteria, like the reliability of the measure or
the discrimination power of the observable, and

then asks for its qualification. Depending on the
nature of the response, some possible causes are
discarded (the ones which are incompatible with the
qualification of the observable given by the user). If
there are still discriminating observable parameters,
another step of the loop is entered, otherwise the
result of the diagnosis is either a single cause or a
set of non discriminated possible causes.

Behavior knowledge

The behavior Knowledge meets the requirement for
system level knowledge that allows to rapidly get a
partial conclusion about the origin of the problem
(reconfiguration criterion, global fault corresponding
to some system state variables) and then to focus the
attention on some subfunctions of the functional
model and so to limit the exploration of the functional
model to these subfunctions.

Standard forms were defined to capture the AOCS
behavior knowledge. These forms were used to
specify in a systematic way all the observables (e.g.,
the roll angle), system variables (like the nozzle firing
command or the nozzle state variable) and the
observable manifestations (e.g., the displacement of
the S/C nutation center along the roll axis after an
actuation sequence) necessary to represent the
behavior of the system together with the relationships
existing between these different elements. The
behavior model also contained a number of causal
relationships representing the AOCS automatic
reconfiguration logic. Once this information was
entered in the KB, the KBS shell could build the
causal graphs relating system variables, fault modes,
and observable manifestations, and discriminate
between them using the same generic inference
mechanisms as in the functional model (figure 2).

Figure 2. Examples of behavioral relationships
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Lessons learned from the experimentation phase

The main results of the experimentation phase were
gathered in a document jointly elaborated with the
Telecom 1 operations [8]. The experimentation of the
prototype was very useful in clarifying the situation
and mission of the expert system in the SCC and in
refining the operational requirements. It confirmed
DIAMS-1 basic knowledge representation and
reasoning mechanisms. The general conclusion was
that the DIAMS approach improved the
communication between the S/C manufacturer and
the SCC staff, and that, as a model-based system,
DIAMS provided the SCC staff with a better
knowledge of the S/C functions and behavior. The
experimentation phase also indicated how additional
functionalities could be implemented in future
versions of the system.

The DIAMS-1 experimentation phase
demonstrated that the approach chosen was ripe for
being applied in large scale applications. It convinced
the French Space Agency to start the development of
a full scale diagnostic support system for TELECOM
2 satellites.

Two of the technical lessons leamned during the
experimentation phase are worth being recalled here:
» Animportant part of the S/C knowledge is available

under graphical form (functional diagrams for
instance). The experimentation emphasized the
importance of the graphical model edition and
animation services. Graphical model editors are
needed for instance for building the functional
model and checking the graphical consistency of its
hierarchical decomposition. Model animators are
needed to display and to animate the appropriate
diagrams during reasoning. Models editors and
animators require a development tool which offers
an object-oriented language for modelling the
domain semantics (semantic objects) and integrated
graphical utilities to manage the interactions
between the semantic objects and their graphical
representations.

» It was also remarked that some basic mechanisms
could be reused in the framework of the S/C project
to support a number of design activities. The
hypothesis elaboration mechanism could be for
instance adapted to perform impact analyses - e.g.,
to figure out the impact of a given fault or a given
telecommand on the system observables. Impact
analysis is one of the main techniques used for
instance to elaborate the TM/TC plan or to analyze
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failure modes effects and criticality (the FMECA)
during the S/C design phase. TM/TC Plans and
FMECA also are major sources of information for
the construction of the KB and the optimization of
the diagnostic strategy.

IV. DIAMS-2: Maturing the knowledge
modelling and the development process

Through DIAMS-2, MMS addressed the
development of a fault isolation tool covering a whole
spacecraft: french telecommunication satellite
TELECOM 2. This project was the consequence of
the very positive results of the development and
evaluation of the DIAMS-1 prototype [9][2][31[4].

DIAMS-2 was developed over a period of 4 years
from 1989. The selected implementation platform
was the KEE/CommonLISP object oriented
environment which was considered the reference
environment for KBS development when the
DIAMS-2 project was started. It also complied with
the semantic-graphic integration requirement that
resulted from the DIAMS-1 experimentation.

Refining Knowledge Modelling

DIAMS-2 is a hybrid system combining decision
tree based symptoms - hypotheses associational
reasoning to initiate diagnosis and to focus the
reasoning on particular functions and components and
the DIAMS-1 model-based techniques to complete
diagnostic reasoning on particular functions and to
provide the final isolation of the fault.

Investigation Procedures

The decision-tree based knowledge, called
Investigation Procedures (IP) in the latest generation
of the tool, adds a strategic layer on top of the
functional model. It is used to select among pending
hypotheses and to focus the attention on definite parts
of the functional model (figure 3).

IP modelling starts at the system level,
implementing a top-down approach. The used
knowledge is elaborated by S/C operation engineers
during the mission preparation phase. It corresponds
to the Contingency Operations section of the
Operations Preparation Handbook. IPs can be
enriched on the basis of anomalies experienced
during the S/C in-orbit lifetime.The knowledge is
represented as decision trees whose nodes are either
binary tests (e.g., testing whether a given parameter is
abnormal) or actions on the satellite (e.g., sending a



telecommand that will allow to discriminate between
candidate hypotheses).
Figure 3. Examples of IP components
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A diagnostic session starts when the user inputs a set
of anomalies. The initial tests implement a
discrimination strategy at system level. These tests are
mainly membership tests which aim at localizing the
satellite subsystem where the primary anomalies have
occurred. This kind of procedures can ofien be
automated.

At subsystem level, the diagnostic strategy consists
in using as far as possible higher level observations
and characterizations of the satellite bchavior or
evolution, in order to simplify or even avoid in-depth
analyses involving the functional model. Connections
with the functional model are reached when tests
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Maturing the Development Process

Moving to a full scale industrial application raises
stringent requirements in terms of Knowledge
Management and KBS Development Methodology.
With support from CNES, MMS elaborated a first set
of Software Engineering principles and Quality
Assurance rules applicable to KBS projects that
benefited from the experience acquired in DIAMS-1.

The construction of the Knowledge Base was
conducted by a dedicated team independent from the
KBS shell development team. The KB development
team performed the capture of knowledge and the
construction of the KB using well-suited methods and
tools in compliance with the representational
constraints of the operational environment. It also
maintained close relationships with the target system
project organization - essentially through cooperation
with the TELECOM 2 operation engineering team; the
System, Subsystem and Integration specialists of the
S/C project did not directly participated in the
construction of the KB.

The development of a KBS shell is rather similar to
a conventional SW development, and requires the
same kind of methods and tools for design, coding and
testing. The design of the DIAMS-2 KBS shell
inherited most of the basic knowledge representation
and reasoning mechanisms already implemented in
the DIAMS-1 prototype and validated during the
experimentation phase. A dedicated team assumed the
design, coding and testing of the tool basic
functionalities. A third team, independent from the
development teams, was in charge of the quality
control and of the integration and final validation of
the KBS.

A pre-operational consolidation phase was
scheduled in the continuation of the KBS development
phase. Its goals were
to familiarize the SCC staff with the KBS
to experiment and eventually to enact the KBS
utilization and maintenance procedures
to consolidate and validate the external interfaces
with the SCC information system, including the S/C
and Simulator data access procedures.

to calibrate tests and explanations on-site with the
end-users.
to refine some knowledge islands to account for the
in-orbit experience (e.g., the S/C in-orbit thermal
behavior).



Figure 5. DIAMS-2 Development Plan Overview
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Integrating the end-user in the development
process

Cooperation between the KB development team
and the SCC staff is needed, during the construction
of the KB, to ensure consistency between the
knowledge representation formalisms used in the
SCC and those used in the KB. A close cooperation is
also needed when the system is transferred from the
development site to the operation site.

In DIAMS-2, the integration of the end-user in the
development cycle was founded on the following
principles.
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» The S/C User's Manual (UM) remained the
reference document for the transfer of information
between the S/C manufacturer and the SCC. The
level of decomposition of the models was the UM's
one, and the same graphical representation modes,
and variable identifiers were used.

» Operation Engineers from the S/C project were
involved in the development process to
continuously maintain consistency between the
DIAMS-2 KB and the S/C User's Manual.

* A TELECOM 2 SCC representative was included
in the KB development team. His mission was to
check that the knowledge representation used
(symbology, nomenclature) was consistent with the
one used in the SCC, that the functional model was
compatible with the hierarchical view of the S/C
and the monitoring sets defined in the SCC, and that
the observables used were actually accessible
through the SCC. Conversely the KB was
developed in such a way that the SCC engineer
could draw benefit from the KB design and
development activity.

Remark: The TELECOM 2A/2B launch campaigns
took place during the DIAMS-2 KB Detailed Design
phase. This resulted in a lack of availability from both
the S/C operation engineering team and the SCC
personnel. A first consequence was that an important
effort had to be devoted to the refinement of the KB
during the pre-operational consolidation phase. This
again confirmed the crucial importance of a right
phasing with the S/C and SCC development activities,
and more generally of a tighter integration between
the KBS, SCC and S/C development processes.

V. DIAMS-3: the Integration Age

In DIAMS-2, comprehensiveness and efficiency
was privileged against fineness of representation and
reasoning. Simplified representations of knowledge,
generally well-suited to the practical problems faced
in spacecraft operations were introduced as a first
approximation. However, in some specific
knowledge islands, refined representation and
reasoning techniques are required to appropriately
handle time, incompleteness and uncertainty. This
last refinement step is now being considered through
the development of a new generation of diagnostic
tools called DIAMS-3 that started in 1992 [5].



Other important objectives of DIAMS-3 concem
the reduction of the knowledge acquisition efforts,
tighter integration with other knowledge-based tools
like data analysis or procedure management tools, and
more generally the complete integration of the
diagnostic system in the operational loop [10].

C++ is the implementation language retained for
DIAMS-3. Beyond porting the DIAMS-2 machinery
into C++, DIAMS-3 provides generic model edition
services and a set of libraries of operational standard
for handling time, incompleteness and uncertainty
and for cooperation with other knowledge-based tools
(knowledge interchange format and protocol,
mapping engine, exchange monitor, etc.). These
libraries and basic services, all developed in C++, will
be reused in other KBS development projects.

Integration Issues

The different integration issues raised by the
operational integration of the diagnostic tool in SCC’s
or AIT environments have been addressed through a
European project called UNITE, co-sponsored by the
Commission of the European Communities. They are
illustrated hereafter (figure 6).

Figure 6. Main Integration Issues explored in UNITE

Operational
environment
lifecycle

Target system

lifecycle

Integration of

Knowledge acquisition Funct%or:ﬁl Irsnct:a(g:ration
in the S/C lifecycle ;‘)

Knowledge-
based system
lifecycle

KB
development

KBS shell
Development

Integration of Knowledge Schemes;
Cooperation between KBS’s

1) A first issue concems the integration of differént
knowledge schemes within a given KBS. Diagnostic
systems in Space indeed require the implementation
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and integration of different knowledge representation

and reasoning paradigms:

e they need to handle different domain models
representing different views of the satellite system
(e.g., thermal view, mechanical view, electrical
view, etc.).

* the input information, be it provided by human
users or by SCC monitoring facilities, is sometimes
numeric but more often symbolic, intrinsically
uncertain and imprecise, with a validity time frame.

« the basic inference mechanisms are themselves,
€.g., exploiting uncertain and imprecise symbolic
transfer functions (such as qualitative fault
propagation functions) which may need to handle
time to reflect the variation of dynamics between
different views of the system.

 diagnostic reasoning deals with qualitative
temporal propositions with a start, an end and a
persistence.

* dependency tracking and maintenance of
consistency between different reasoning contexts,
or the management of the assumptions and
time-constraints under which statements are valid,
may require the parallel handling of several
uncertain  and  time-dependent  alternative
hypotheses.

One of the goals is to give the knowledge engineer
the flexibility to choose the most appropriate
knowledge representation for some aspects of the
problem (e.g., various representations of time and
uncertainty), and yet process them in an integrated
manner.

2) A second kind of nced is concemed with the
sharing and exchange of knowledge between KBS’s
that need to cooperate to achieve some global
problem solving task. For instance monitoring,
diagnostic and data analysis tools need to cooperate to
detect and then locate the origin of anomalies. They
may need to exchange knowledge or complex
information. As the formalisms used to represent this
information may vary from KBS to KBS, it is
necessary to set up translation mechanisms, from the
formalisms of each KBS to a common Knowledge
Interchange Format and vice-versa. The approach
followed by MMS in that domain is experimental.
The goal being to assess the level of maturity and the
applicability of existing solutions like those
elaborated within the Knowledge Sharing Effort [12].



3) Functional Integration regards cooperation
between the KBS and conventional software modules
or database management systems for the construction
of fully integrated operational applications. The
methodology issues raised by the operational
integration of the diagnostic tool in the SCC are
investigated in [1]. Functional integration requires a
hybrid methodology framework for co-existing
conventional / knowledge-based developments.

4) Finally the DIAMS experience feedback has
emphasized the importance of a better integration of
the knowledge capture tasks in the S/C lifecycle.

Integration of knowledge models

The following figure provides a synthetic view of

the different types of knowledge models explored |

through DIAMS-1 and DIAMS-2 and further refined
and integrated in DIAMS-3 (figure 7).

Figure 7. Overview of DIAMS-3 Knowledge Models
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In the latest version of the tool, behavioral
knowledge (also called causal knowledge) is
composed of a reduced set of FMECA related to a
family of symptoms, that allows to explore and refine
some higher level hypothesis. This is a natural
extension of the notion of behavior model explored in
DIAMS-1.

Incompleteness is inherent to FMECA. A more
flexible representation of the effects of fault modes
has been proposed that eases expression of
knowledge, down to the relevant level of detail (i.e.,
events chronologies), and that does not make any
assumption about what is not said explicitly [6].

Handling of time, incompleteness and uncertainty

Some improvements brought by DIAMS-3 should
allow to better handle time, incompleteness and
uncertainty. Different techniques have been proposed
for handling incompleteness, uncertainty or
time-dependency. The investigation of the current
practice shows that many difficulties in terms of
performance or complexity have been experienced in
deploying these techniques in industrial contexts and
that ad hoc adaptations or simplifications are
generally done by the development teams to match
the industrial constraints. Beyond adequation to the
specific knowledge representation and reasoning
needs of the diagnostic tool, performance and
complexity thus shall be the main criteria for the
assessment of candidate solutions in that domain.

For instance, the information available about the
symptoms is incomplete: many observables are not
fully monitored in real time. Allowing the users to
express their uncertainty about the interpretation of
the observable was also recognized as a need. Indeed,
some observations involve complex combination and
abstraction of elementary pieces of data, followed by
a high level interpretation of the result. Adequate
formalisms are needed to handle incompleteness and
allow expression of uncertainty about the
presence/absence of a manifestation.

From a discrimination point of view, graduality in
the uncertainty of the fault effects and in the
characterization of the observables has been
introduced. It allows a ranking of the solutions given
by the system. As the diagnostic process is iterative, it
was also found useful to have advice with respect to
the selection of the next observables to be tested. This
is achieved through a utility function that assesses the
impact of the test of a manifestation on the possibility
of fault mode.

Application developers will be provided with
libraries of basic knowledge representation and
reasoning mechanisms that can be easily included
into application programs without imposing the use of



any particular development tool for the
implementation phase. Considering the current trends
in Information Technology, libraries of C++ objects
seemed to be the best possible choice for DIAMS-3.

A first set of libraries of reasoning schemes have
been selected, developed or re-developed in C++, and
appropriately encapsulated to answer DIAMS needs:
» A new reasoning scheme which allows to represent

and process incomplete and uncertain relations

between faults and manifestations (such as

FMECA) in a diagnostic context. The core model,

based on the possibility theory, includes

consistency-based and abductive diagnostic
algorithms eploiting uncertain observations, as well
as additional tools to measure the utility of tests and

the discriminability of a set of fault modes [6].

Extensions of this model to the processing of

functional knowledge are being developed.

* A Valuation Based System (VBS) which allows
uncertain reasoning in a causal graph with various
formalisms, e.g. bayesian, possibilistic, Dempster-
Shafer’s Theory of Belief, etc.

A Time Constraint Propagator (TCP) which enables
the comparison of an actually observed chronology
of events with an a priori knowledge about the
causal relationships between events. An hypothesis
is confirmed by the TCP when all observed events
occur at scheduled dates. If any of the observed
events occurs outside the expected time window
then the hypothesis is inconsistent and therefore is
discarded. When the hypothesis-related events have
not yet occurred - the hypothesis can be neither
confirmed nor discarded - the hypothesis is said
incomplete and TCP provides the validity interval
for that hypothesis.

Integration of reasoning schemes

The joint utilization of the TCP and VBS in a
diagnostic context is illustrated by figure 8.

Sometimes such a (weak) integration approach may
not be sufficient. Reasoning threads may be too
intertwined to be processed efficiently in a separate
way. A prototype has been developed to tackle this
kind of problem and to evaluate the candidate
technology. It addresses the so-called “strong
integration” of temporal and uncertain reasoning in a
model based diagnostic context. The computational
approach consists in generating an ATMS network -
Assumption-based Truth Maintenance System - to

compute explanations for symptoms. A possibilistic,
temporal, cost-bounded ATMS machinery is used.
The cost-bounded feature allows to focus of the
reasoning process and to limit computational costs.

The main risk identified for strong integration is
performance. The strong integration approach is
currently considered as experimental and is not
included in the DIAMS technical baseline.

Figure 8. Weak Integration of Reasoning Schemes
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Integration of knowledge acquisition in the S/C
lifecycle

The reduction of the knowledge acquisition costs
was a permanent concemn in each phase of the DIAMS
program. A first conclusion was that, in order to
improve the interactions with S/C specialists, the
knowledge modelling activity should benefit to the
S/C project tasks. The goal in DIAMS-3 is now to
reach a level of expressiveness and genericity such
that the DIAMS knowledge bases could be built and
reused throughout the satellite lifecycle. This should
contribute to significantly reduce the knowledge
acquisition costs.
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V1. Concluding Remarks

The DIAMS program followed a spiral approach,
each cycle partially or fully implementing a reference
development cycle. The DIAMS spiral lifecycle model
is summarized in table 1. Matra Marconi Space is now
involved in a tool improvement cycle (DIAMS-3) that
would enable a tighter integration of the diagnostic
system in ground infrastructures. A more general
objective is to set up the techniques, methods and tools
that will allow to consider the KBS technology as a
baseline technology for the development of future S/C
Control Centers or AIT Environments.

The knowledge acquisition issue remains pivotal. It

comes down to the following two questions

+ How to maximize the reuse of already formalized
and managed knowledge?

» How to adapt the S/C project tasks and deliverables
so that knowledge could be acquired ‘on the fly’
during S/C developments ?

A number of solutions have been proposed to
proceed in this direction. The on-going experiments
should prove that these solutions are ripe for
introduction in S/C projects.
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Table 1. The DIAMS Spiral Lifecycle Model

Phase DIAMS-0 DIAMS-1 DIAMS-2 DIAMS-3
Characterization in the large X X) X)
Characterization in the small X (X) X)
Analysis Test-Bed X X) X)

3 Implementation
Architectural Design (Smalltalk) X X) (X)
Detailed Design and Coding Prototype
) Implementation
Verification & Validation Experimentation
Operation & Maintenance Phase X
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ABSTRACT

At NASA's Goddard Space Flight Center, fault-
isolation expert systems have been developed to
support data monitoring and fault detection
tasks in satellite control centers. Based on the
lessons learned during these efforts in expert
system automation, a new domain-specific
expert system development tool named the
Generic Spacecraft Analyst Assistant (GenSAA),
was developed to facilitate the rapid
development and reuse of real-time expert
systems to serve as fault-isolation assistants for
spacecraft analysts.  This paper describes
GenSAA's capabilities and how it is supporting
monitoring functions of current and future
NASA missions for a variety of satellite
monitoring applications ranging from subsystem
health and safety to spacecraft attitude. Finally,
this paper addresses efforts to generalize
GenSAA's data interface for more widespread
usage throughout the space and commercial
industry.

INTRODUCTION

A group of spacecraft analysts are responsible
for the proper command, control, health and
safety of each spacecraft managed by NASA's
Goddard Space Flight Center (GSFC). During
numerous contacts with the satellite each day,
these analysts closely monitor real time data
searching for combinations of telemetry
parameter values, limit violations, and other
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indications that may signify problems or
failures. This is a demanding, tedious task that
requires well-trained individuals who are quick-
thinking and composed under pressure.
However, as our satellites become more
complex, this task is becoming increasingly
more difficult for humans to conduct at
acceptable levels of performance [Ref. 2].

At GSFC, fault-isolation expert systems have
been developed to support data monitoring and
fault detection tasks in satellite control centers.
Based on the lessons learned during these efforts
in expert system automation, a new domain-
specific expert system development tool named
the Generic Spacecraft Analyst Assistant
(GenSAA), was developed to facilitate the rapid
development and reuse of real-time expert
systems to serve as fault-isolation assistants for
spacecraft analysts.  Although initially
developed to support GSFC's satellite
operations, this powerful tool can support the
development of highly graphical expert systems
for data monitoring purposes throughout the
space and commercial industry.

This paper describes GenSAA's capabilities and
how it is supporting monitoring functions of
current and future NASA missions for a variety
of satellite monitoring applications ranging from
subsystem health and safety to spacecraft
attitude. Finally, this paper will address efforts
to generalize GenSAA's data interface for more
widespread usage throughout the space and
commercial industry.



GenSAA OVERVIEW

GenSAA is an advanced software tool that
allows the rapid development of intelligent
graphical monitoring systems. Through the use
of a highly graphical user interface and point-
and-click operation, GenSAA facilitates the
rapid, "programming-free" construction of
graphical expert systems to serve as real-time
fault-isolation assistants for spacecraft analysts.

GenSAA expert systems are easily built and
maintained using an integrated set of utilities
called the GenSAA Workbench which are used
to define the expert system’s telemetry data
interface, rule base, and X/Motif-based user
interface. GenSAA insulates the expert system
developer from the complicated programming
details of the systems with which the expert
system will interface. This tool promotes the
use of previously developed rule bases and
graphic objects, thus facilitating software and
knowledge reuse and a further reduction in
development time and effort.

The development of GenSAA was motivated by
the lessons learned from a research effort to
evaluate the value and effectiveness of using
graphical rule-based expert systems for fault
detection purposes. The project, which was
named the Communications Link Expert
Assistance Resource (CLEAR), was quite
successful. Although CLEAR was initially
conceived to serve as a proof-of-concept
prototype, it was ultimately used to support real-
time operations for NASA's Cosmic Background
Explorer (COBE) satellite where it was
instrumental in demonstrating the advantages
that expert systems offer mission operations.
More importantly, CLEAR provided insights
into how expert systems could be developed
more quickly and with less effort. GenSAA
addresses this issue by insulating the expert
system developer from the programming details
by employing a "drag and drop” method of
developing these systems.

In addition to meeting the previous objective,
GenSAA was created as an alternative to high-
end, complex and expensive commercially
available expert system development
environments. In an attempt to meet a wide
variety of application needs, these general-
purpose programming tools are often too
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complex to be effectively used by domain
experts (spacecraft analysts in this case) to
create graphical expert systems. They typically
require weeks of training and specialized
programmers to implement the data interface,
graphical user interface, or rule base for each
expert system. GenSAA empowers the
spacecraft analysts to easily select the data to be
monitored, layout and define the behavior of the
expert system's user interface and build rules for
fault detection purposes without the intervention
or delay of programmers.

GenSAA consists of two major components: a
Workbench and a Runtime Framework. [see
figure 1]. The Workbench is used to specify
expert systems in an offline mode (i.e., not
connected to a live data source). The
Workbench creates several resource data files
that are read into the Runtime Framework which
uses these resource files and connects to the data
source.

| WorkBench

GenSAA
Runtime
Framework

o
Figure-1: GenSAA Architecture

The GenSAA Workbench consists of a Data
Manager, a Rule Builder, and a User Interface
Builder. The Data Manager is used to select the
telemetry data that is desired for use by the
expert system; the Rule Builder is used to create
expert systems rules based on the telemetry
data; and the User Interface Builder allows the
user to create graphical user interfaces to display
the telemetry data and the data inferred from the
expert system rules. The GenSAA Workbench
is tightly integrated and easy to use, employing
direct manipulation techniques such as “drag
and drop.” The Workbench also provides



mechanisms to automatically generate expert
system rule statement syntax.

The GenSAA Runtime Framework is the
executive for a GenSAA Expert System. It
controls the user interface, distributes the real-
time data received from the data server, and
manages rule execution. The core element of
the Runtime Framework is the 'C' Language
Integrated Production System (CLIPS). CLIPS
is an inference engine and rule-based
programming language that was developed at
the NASA Johnson Space Center. It is widely
used throughout NASA, other government
agencies, academe, and the commercial sector.

Expert systems that are created using GenSAA
require no source code development, and
therefore facilitate very rapid development life
cycles. Changes and enhancements to existing
expert systems can also be made rapidly at very
low cost.

GenSAA runs on Sun and Hewlett-Packard

UNIX workstations using X-windows with
Motif. Earlier this year GenSAA was delivered
to operations for acceptance testing. At the time
of publication, it is expected that GenSAA will
be in operations in a number of divisions at
GSFC and at a few external sites.

The next sections describe several specific
applications of GenSAA at GSFC. The first
group of applications is associated with
spacecraft attitude monitoring. The second
group is associated with the monitoring of
spacecraft and their payloads. The applications
are currently under development and should
become operational soon.

GenSAA APPLICATIONS SUPPORTING
FLIGHT DYNAMICS

GSFC's Flight Dynamics Division (FDD) is
responsible for maintaining the orbit and
attitude of many Goddard spacecraft. The FDD
has used Heads Up Displays (HUDs) for
previous missions to graphically portray attitude

XTE Attitude ~ Heads Up Display
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Figure-2: XTE HUD Created Using GenSAA
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and orbit parameters in a manner that is similar
to the gauges and dials that appear in an airplane
cockpit. These HUDs enable flight analysts to
quickly view the basic orbit, attitude, and sensor
status of a given spacecraft.

The FDD is using GenSAA to create the HUDs
for the X-ray Timing Explorer (XTE)
spacecraft, the Submillimeter Wave Astronomy
Satellite (SWAS) spacecraft, and the Solar and
Heliospheric Observatory (SOHO) spacecraft.
These missions are among the first FDD
missions to be supported on UNIX workstations
using X-windows. By using GenSAA, the FDD
expects to reduce the effort needed to create the
HUD while increasing the ability to respond to
change requests.

The XTE and SWAS HUDs are using
GenSAA’s inference engine to infer engineering
unit values based on raw telemetry values. The
inferred engineering unit values are displayed
on the HUD via graphical and textual user
interface objects. Values that are displayed
include: magnetometer, gyroscope, and torquer
bar biases and rates, guide star and sun sensor
positions, and predicted versus actual attitude.
Figure-2 is an example of a prototype HUD
generated with GenSAA for the XTE mission.

The FDD is also using GenSAA to support the
SOHO mission. The HUD for SOHO is similar
to the XTE and SWAS HUDs, however, SOHO
is enhancing the GenSAA Runtime Framework
by embedding a number of 'C' functions to
compute the spacecraft real-time attitude based
on the current telemetry data received from the
data server. Although the SOHO HUD
development team had the option to link these
functions with the inference engine for
invocation via expert system rules, this group
chose to embed the functions to optimize
performance of these computationally intensive
attitude algorithms. This situation demonstrates
one advantage of having direct access to the
source code of GenSAA.

GenSAA APPLICATIONS SUPPORTING
MISSION OPERATIONS

In GSFC's Mission Operations Division (MOD),
GenSAA is being used to support real time
satellite monitoring in the control centers.
GenSAA will be used to build simple advisory
expert systems that monitor spacecraft telemetry
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and ground system parameters. Monitoring
these parameters during spacecraft contacts has
traditionally been the responsibility of satellite
operators.

Two of the primary objectives of this
organization's applications are to expedite the
fault detection and resolution process and to
reduce the amount of data (telemetry points) that
human operators must monitor in order to assess
the current health and status of the spacecraft
and the scientific instruments onboard. With
GenSAA, spacecraft engineers will develop
simple expert systems that will assist console
analysts by reducing the number of data points
they must monitor from hundreds of sensor
values to dozens of derived system level status
points.

GenSAA does not constrain the user in how to
represent the system being monitored. Some
groups are planning to model the functional
operations of the system (i.e., functions across
subsystems) while others are planning to
develop physical models of the system being
monitored. For example, the Solar Anomalous
and Magnetospheric Particle Explorer
(SAMPEX) project plans to develop a series of
GenSAA expert systems to monitor the
scientific instruments (LEICA [See Figure 3],
MAST/PET and HILT) and some of the
spacecraft's subsystems including the Small
Explorer Data System (SEDS), the attitude
control system (ACS), and thermal system.

In contrast, members of the Gamma Ray
Observatory (GRO) Flight Operations Team
plan to develop discrete expert systems for both
functional and physical perspectives. This team
plans to develop expert systems to monitor the
power subsystem, communications function and
a high level health and safety monitoring
system. In addition to the above mentioned
missions, GenSAA will support satellite
operators for Transportable Payload Operations
Control Center (TPOCC) based missions
including, but not limited to, Wind/Polar,
SWAS, XTE, SOHO, Tropical Rainfall
Measuring Mission (TRMM) and the Advanced
Composition Explorer (ACE) missions.

GenSAA is expected to provide numerous
benefits to the mission operations arena at
GSFC. In addition to assisting the satellite
operators with the data monitoring task,



GenSAA will reduce the development time and
effort of the these systems; serve as a training
tool for student controllers; and protect against
the loss of satellite operations expertise,
especially during periods of personnel turnover.
This last benefit even spans beyond a single
mission; control center expert systems that
capture fault-isolation knowledge preserve
expertise from mission to mission which may
prove to be beneficial as we embark on multi-
mission flight operations teams (i.e., a single set
of operators responsible for operating multiple
satellites) as a means to reduce satellite
operations costs.

GENERALIZING GenSAA FOR BROADER
USE

A variety of groups outside of GSFC's Flight
Dynamics and Mission Operations Divisions
have expressed an interest in using GenSAA to
monitor their real time data. However,
application to other domains has been limited
because GenSAA is currently designed to
interface to GSFC-specific ground system

formats. To broaden GenSAA's potential
application, work was begun earlier this year to
generalize its data interface to enable it to
receive data in other formats.

The approach adopted is to create bridge
processes that interface GenSAA to external
data sources. A bridge receives data from an
external source and converts it to a format that
GenSAA understands. A bridge template is
being developed that will be used to simplify the
construction of bridges for specific interfaces.
To facilitate reuse and to accelerate the
application of GenSAA to new domains, the
GenSAA Project will maintain a library of
bridges to databases and other data sources.

To build a new bridge, the installer creates a file
containing a description of the variable names
and data types to be received from the external
interface. This file is used to automatically
generate a large portion of the bridge software.
The installer must also write a small amount of
program code that will request and receive the
data. Finally, these software components are

LOSTE MCR
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Figure-3: Leica Status Monitor Created Using GenSAA
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linked together to form a bridge which provides
data conversion capabilities enabling the use of
GenSAA in new domains.

AUTOMATING SATELLITE
OPERATIONS WITH GenSAA

During the past year, a new research project was
started to develop a proof-of-concept prototype
that demonstrates how expert system technology
can be used to automate routine, nominal-
situation control center operations that involve
both monitoring and commanding actions. [Ref.
6]

The project is enhancing GenSAA to enable the
automation of nominal pass operations for the
SAMPEX spacecraft. The enhanced software,
called the Generic Inferential Executor (Genie),
will perform monitoring and commanding
operations in the SAMPEX Payload Operations
Control Center (POCC) as specified in a pass
script that is defined by members of the Flight
Operations Team (FOT). The pass script
defines precondition tests, actions, results
checks, decision branches, and background
monitoring activities. In nominal situations,
Genie will execute the pass script without the
intervention of FOT members; if an unexpected
situation arises, an FOT member will be alerted.
Automated operations include verifying the pre-
pass readiness test data flow, examining
spacecraft event log messages, starting
configuration monitors, evaluating system
events, initiating the uplink of the daily
command load, and initiating dumps from the
spacecraft.

The automation prototype will be demonstrated
during a live SAMPEX pass. It is anticipated
that the results gathered on this project will
influence the development of enhanced ground
system software that will automate operations in
future GSFC missions, including the Earth
Observing System (EOS) project.

CONCLUSION

GenSAA is being used to develop several expert
systems that will support current and upcoming
spacecraft missions. GenSAA is making it
easier for spacecraft analysts to build expert
systems, and to thereby preserve and apply their
spacecraft knowledge in automated monitoring
systems.
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Reduction of spacecraft mission cost is a high
priority at GSFC. GenSAA is providing a
means of reducing the cost of developing
mission support software while increasing
operations automation using expert system
technology. GenSAA is well suited to support
monitoring, fault detection, and fault isolation
for spacecraft missions. GenSAA is now being
generalized to support other application
domains, and is being enhanced to support both
monitoring and commanding operations.
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Abstract

A MS-Windows based electronic procedure system, called OPIS (Operation Procedure
Information System), was developed. The system consists of two parts, the editor, for
"writting" the produre, and the notepad application, for the usage of the procedures by the
crew during training and flight. The system is based on standardised, structured procedure
format and language. It allows the embedding of sketches, photos, animated graphics and
videosequences and the access to offnominal procedures by linkage to an appropriate
database. The system facilitates the work with procedures of different degrees of detail,
depending on the training status of the crew. The development of an "language modul" for the
automatic translation of the procedures, for example into Russian, is planned.

Introduction

The scientific output of a manned space mission is highly dependent on the correct execution
of an experiment according to instructions called "procedures" the astronaut has to follow. The
procedures of today (at least for spacelab missions) are very explicit paper versions and require
hours of crew time just to read. For the future, especially for long-duration missions, the
possibilities of modern computers and text processing should be used to improve the procedure
standard allowing for the transition to the use of electronic procedures on board. OPIS, a
development of DLR in cooperation with WIB, is a step in this direction.

For the European mission Euromir 94, it is planned to use OPIS, installed on the portable
Crew Support Computer (which is an 'IBM Thinkpad'), as the prime tool for the performance
of one material science experiment. The post-flight evaluation of its practicallity will be a
milestone for it’s further development (e.g. prime tool for procedures on Euromir ‘95).
Approach

The source that safeguards the experiment success in current SpaceLab missions is called the
Payload Flight Data File, a complement of books containing the crew work schedule,
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procedures and reference documents. A similar set of documents exists for the use on Russian
MIR missions. Some shortcommings are associated with this type of flight documentation:

- large volume and high weight of files

- time consuming implementation of paper uplinks into the documents

- long procedures in checklist format tend to tire out crewmembers
finally leading to mistakes

- embedding of graphics, sketches etc. is difficult

- usage of animated graphic sequences or videoclips within the procedure,
or the linkage to a database is impossible

Our idea was to firstly develop a procedure format better suited for the work on a computer
than the checklist format in use by NASA!, thereby reducing the training effort (as necessary
for long term missions and space station operation) and minimizing mistakes in the experiment
performance. Secondly the crewmember should get a tool that facilitates access to support and
reference information (e.g. malfunction procedures, photos, videos, etc.).

On the basis of the evaluation of the Payload Flight Data File of the German Spacelab missions
D1 and parts of the D-2 mission, crew activites were analized. The categories of the typical
crew activites are displayed in figure 1 below.

Crew Activities I
| | |
Information Information Hardware Information
Acquisition Processing Manipulation Dissemination
1
| compute | | Interpret | [ Decide | | Record § | Comm [

[Activate I | Move I ‘ Clean I

| Read I [ Monitor I Llnspect I

Figure 1: Classification of Crew Activites

These investigations were used to develop a new format for procedure instructions that is
better suited for the use on a PC than the checklist format which is used at present. The format
is build on procedure elements which describe the single task. A procedure element consists of
seven defined positions as shown in figure 2. The last position leads to additional information

concerning the performed step using a short code form. The OPIS standard was published in
1993 and presented to the German Space Agency (DARA) in the final presentation of the
TOREX?2 study.
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Step Location Object Activity Status Info
Code

1 CSK-1 display v CHECK | address "66’ CO1

Figure 2: Example of a Procedure Element

The development of the OPIS software started in 1993. DLR provides the software
requirements and WIB develops the software under contract by DLR. OPIS uses the
WINDOWS environment and consists of two modules the one being the Editor for procedure
generation, the other the so called Notepad-version is designed for the use by an astronaut.

The OPIS Editor

The OPIS Editor allows you to generate procedures in a standardised format by use of a
structured language. This language has been constructed to describe tasks in a simple and
unique manner. The editor would perform all tasks for the procedure layout automatically and
offer all information for procedure generation on call, that has been by another experiment
before. All procedure elements (locations, activties, objects, etc.) are stored in a database. All
activity keywords are linked to appropriate icons. Complex procedure structures (for exeample
"REPEAT.. UNTIL" or "IF. THEN") can be generated in a simple way via implemented
editor commands. A procedure syntax check via an syntax checker within the editor is
foreseen for the future. Any sequence within a procedure can be defined as a standard module
and can then be handled like a single activity (or command). You can have various standard
modules in one procedure. In that way procedures that contain activities, that have to be
repeated some times, can be simplified. The embedding of graphics, videosequences,
offnominal procedures can be realised via linkage to an appropriate database. For the future the
development of an language modul for the automatic translation into Russian is foreseen.

The OPIS Notepad

The layout as shown in figure 3 is designed to give the astronaut a clear picture of the steps he
has to perform and the ones he already has performed. In the left icon bar the main file
functions can be quickly accessed (the numbers 1 to 8 can be used to quickly open specified
files). In the procedure window a highlighted bar shows the current step the astronaut is
working on. When work on the procedure element is finished it can be tagged with the "Enter’-
key. In this way the system time and the line number will be entered into the "Report File” wich
is an ASCII-File containing all the information of the timely execution of the experiment. There
is also a possibility for the crew to write notes and enter data into the procedure, which will
also be transfered into the Report File. In that sense the original procedure can be used for
different runs and the Report File will include all experiment specific infos for evaluation on
ground.

Additional useful information is displayed in the status line at the bottom. The actual page and
line number can be seen as well as the current time, the elapsed time since the procedure was
called up, and a countdown that can be started if waiting periods are included in the procedure.
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NOTEPAD - [TES-01C}] FIN-D  Probe Mode Preparation 02-05-1994
File Edit Experiment Tools Help

CSK-1 Activation

CSK Control Unit W/ CHECK |fumace comected
CRYSTAL power supply PbC—ZU @® ACT-ON |
CSK-1 farmace circuitbreakez | @ ACT-ON

cassette compartment | AW\ OPEN
CSK Control Unit @® ACT-ON see figure below

["HSMEHERVE *] +[BKITIOUEHAE"] +[T]

Hold keys for three 1o four seconds

10 [CSK DISPLAY |address "66" | CHECK |time

NOTE

Time canbe comrected via addresses "70" (hours), 71" (mimtes)
and "72" (seconds)

Figure 3: The OPIS Notepad environment

There are off-nominal situations and very complex procedures requiring additional information
to safely perform the task. OPIS approaches this problem by establishing an interface to a data
base containing photos, video clips and instructions to solve the problem. The data base
currently in use for the TES-Experiment (material science) on Euromir ‘94 was developed by
BSO under contract from ESA/ESTEC. The data base information can be accessed via a
mouse doubleclick into the info-code box of OPIS.

As a paper backup or for selfstudying etc. the procedure can be printed from the editor or the
notepad with an layout identically to the layout on screen. But the computer related topics (and
that means most of the advantages of OPIS) will be lost.

Outlook and Conclusion
Main topics under consideration at present are:

- Needs of individual crewmembers for information vary by a wide margin
(e.g. for medical experiments) -> ‘personalized’ procedure desirable
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- Long-term missions require procedure systems that are capable of frequently providing
updates of information without producing huge piles of paper
-> file uplink (and downlink) ~

- Cooperation with Russia requires translation of procedures
-> language module

With the development of an operational procedure information system we try to take into
account the advantages of modern PCs. Our hope is that the ideas behind our system can
help to improve the operations on board a manned space station even if OPIS is not the tool
to be used then. We appreciate every comment to our paper and would be glad to
demonstrate the software to interested parties.
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Abstract - In 1974 ESOC decided to develop a reusable Mission
Control System infrastructure for ESA's missions operated under
its responsibility. This triggered a long and successful product
development line, which started with the Multi Mission Support
System (MSSS) which entered in service in 1977 and is still being
used today by the MARECS and ECS missions; it was followed
in 1989 by a second generation of systems known as SCOS-I,
which was/is used by the Hipparcos, ERS-1 and EURECA
missions and will continue to support all future ESOC controlied
missions until approximately 1995. In the meantime the increasing
complexity of future missions together with the emergence of new
hardware and software technologies have led ESOC to go for the
development of a third generation of control systems, SCOSII,
which will support their future missions up to at least the middle
of the next decade. The objective of the paper is to present the
characteristics of the SCOSII system from the perspective of the
mission control team; i.e. it will concentrate on the improvements
and advances in the performance, functionality and work efficiency
of the system.

1. INTRODUCTION

The concepts and functionality of the Mission Control Systems
(MCS) which are currently in use in ESOC, i.e. MSSS and SCOS-
I, are mainly originating from the mission control requirements of
the 1970's which were based on the hardwired spacecraft
technology which was the standard at this time. The arrival of a
new generation of more complex spacecraft with significant
amount of on-board software and increased on-board autonomy,
such as EURECA or ERSI, placed much more demanding
requirements in terms of functionality and performance on the
MCS which, although they could be accommodated (sometimes
requiring development of mission specific adds-on), revealed the
limits of these systems. Therefore the decision for the development
of a new generation

of MCS, SCOSII, was taken, with the following main objectives:

- reduce mission adaptation/maintenance costs,

- improve efficiency of mission preparation, execution and
evaluation tasks,

- increase operational quality and reliability,

- have a life time of at least 10 years,

- cope with a wide
type/size/complexity.

range of different mission

which led to the following major design requirements:

- SCOSII must be a full scope generic system.

- It must be a modular and open system, being adaptable and
expandable in size, performance and functionality.

- It must operate in a basic hardware and software environment
that is vendor independent.

- It must be based on state-of-the-art software technology.
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- It must be compatible with the new standards in the space
domain such as in particular the CCSDS and related ESA
standards for telemetry and telecommand packets, and the
standards and guidelines of the ESA Committee for Operations
and EGSE Standards (COES).

2. SYSTEM CHARACTERISTICS
AND CONCEPTS

The SCOSH system has been conceived as a generic infrastructure
platform, providing an exhaustive set of standard functionality
constituting the basis for the development of mission dedicated
MCSs. As such, a particular instance of a SCOSH based MCS will
not offer multi-mission support, but will be able to cope with
multi-satellite missions, thus supporting simultaneous control of
several satellites of the same family.

2.1  Architecture

The high flexibility and performance requirements placed on
SCOSII led to the choice of a decentralized architecture, consisting
of a network of Unix workstations in a ‘Client-Server
configuration. Each operational user will interface to the system
through a dedicated workstation providing local processing power
to cope with the user-interface processing load, and local storage
for e.g. hosting of the most recent historical data, while a set of
system level services (e.g. interfacing to the ground stations)
ensuring overall coordination will be provided by central server
processors. The use of such a distributed system will allow the
computing power to be tuned to the demand of a particular
mission and will also offer advantages in terms of system
availability and failure tolerance. A more detailed description of
the architecture of SCOSII can be found in References [2] and [5].

2.2 Qverview of Functionality & Utilisation
SCOSII is intended to cover the following functions and services:

- Mission Planning, including -acceptance, checking and pre-
processing of various types of planning requests, generation of a
conflict-free Plan’, and derivation of an executable ‘Schedule’.

- Monitoring & Commanding (M&C), of the spacecraft, the
mission support services provided by the ground network (e.g.
telemetry and telecommand services of the TT&C stations) and
SCOSII itself (i.e. control of user configurable functions). This
means that e.g. the same generic M&C functions (e.g. status
monitoring, commanding, procedures execution) can be used to
handle the spacecraft, ground station services and on-line SCOSII
configuration.

- Historical Data & Performance Evaluation, consisting of the
storage of all mission data in an on-line manner, the ability to
access these data for direct visualisation and/or subsequent
processing using powerful data analysis and presentation tools, and
the production of corresponding reports.

- Mission Database Handling, consisting of the generation and
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maintenance of all the static mission data used, to configure the
system for a given mission (e.g. user privileges, display lay-out),
and to define the characteristics of the mission (e.g. TMTC
processing data, operations procedures, efc...).

~On-board Software Maintenance, consisting of the tools to
monitor, and modify the content of the on-board memories (i.e.
memory images).

- System Level Tools & Services, such as state-of-the-art Human
Computer Interface (HCI) techniques, user access control
mechanism, advanced help facility, etc...

The wide range of functionality provided by the system, and its
flexibility and adaptability, will allow SCOSII to be tailored to
cover, for a given mission, different ‘Roles’, each being carried out
by a specific instance of a SCOSII system. This will of course
inclide its main role of ‘Prime’ MCS which will incorporate the
full set of functionality required to support the mission, but
SCOSIl may also be used as ‘Mini-backup' spacecraft M&C
system to be located at e.g. a TT&C ground station. Furthermore,
the fact that SCOSII is being designed in accordance with the
standards and guidelines of COES, will ensure not only its full
compatibility with checkout systems, but would allow SCOSII to
be used, with minor adaptations, as a checkout system as such.

Having outlined the functionality and roles of the system, we will
now address the various user scenarios which SCOSH will have to
support. Here again, SCOSII constitutes a major step forward with
respect to its predecessors which were only providing very
restrictive and. rigid centralised user access, in that it will also
support various types of remote access scenarios as described
below and illustrated in figure 1.

- Office based users, for mission preparation and/or evaluation
activities.

- Home-based users, for on-call contingency support.

- Engineering support users, such as spacecraft manufacturer, for
anomaly investigation, mission evaluation.

- User Operations Control Centres (USOC), for the control of
given payload(s) on a spacecraft.

2.3 Configurability
Since SCOSII will constitute the basic MCS kemel for a wide

range of missions of different type and complexity, the system
will have to be highly configurable. One important aspect in this
context, is the capability of SCOSII to be descoped, adapting its
functionality and hardware to the needs of the mission. For a
simple mission, a mini-system running on a single SUN
workstation, could be used. Moreover, its portability will allow
such a mini-system to run on a PC.

Another issue related to configurability is that the system must be,
as much as possible, data-base driven, maximizing the tailoring
capabilities and minimizing the need for software modifications.
For predecessor systems, this approach was limited. to the
spacecraft TM/TC processing characteristics, which were fully
defined in the spacecraft characteristics database. For SCOSI] this
concept has been expanded to all functional subsystems, including
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Figure 1: SCOSII User Scenario

data driving the system configuration, thereby providing the user
with the capability of defining through the Mission Database the
haracteristics of major elements of the system such as:

- HCI layout (e.g. layout of input forms or of displays templates),
- defaults for most of the functions (e.g. which packets are to
undergo which types of checks),

- definition of standard named sets of user privileges.

The SCOSII system will therefore consist of a set of generic
functions plus a generic default configuration, which can be
modified by the user to suit the needs of his mission.

24  Performance

As SCOSI! is intended to be the basis for MCSs for at least the
next ten years, very ambitious performance goals have been
adopted. These include concurrent real-time telemetry and
telecommand rates of 2Mbps and 4Kbps respectively, display
update rates exceeding 10 per second, very short response times to
user requests - e.g. from $ sec for retrieval of data not older than
a few weeks to 30 sec for data being several years old -, the above
requirements being applicable to utilisation scenario involving up
to 50 workstations used simultaneously.

2.8 System Level Tools

In support of its main functions as described above, SCOSII will
provide a set of very powerful system: level services and tools, the
most significant of which are presented below.

2.5.1 Modelling Tool

Previous control systems were based on a low-level view of the
spacecraft in that they only considered its telemetry and
telecommand components, and thus did not include any
information about their link to the higher level components of the
spacecraft such as the devices/units, subsystems, etc..., and their
interrelationships. This.approach was sufficient to handle relatively



simple missions, but was not adequate for introducing more
advanced functionality and user interfaces which require a more
structured and intuitive view of the mission/spacecraft.

A fondamentally different approach was followed for SCOSIL. In
the SCOSII database the mission will be described as a
hierarchical structure of components of operational significance.
This is achieved by defining a decomposition following the object-
oriented ‘whole-part’ relationship, starting with the mission as the
highest level component, down to the devices/units hosting the
individual measurements and command items at the lowest level.

In addition to this decomposition into what are called ‘System
Elements’ in the SCOSII jargon, it will be possible to associate
with them synthetic information, called ‘Operational Modes' and
‘Roles’. The former represents particular states of operational
significance as derived from the state of their constituted parts,
while the latter corresponds to their function(s) within their
respective mission domain. This will provide a first step towards
an advanced modelling capability; initially modelling will be
restricted to data routing, power control and redundancy but this
will be further extended in future releases of the system to include
the full set of standard functions and behaviours of the typical
mission components.

Moreover, SCOSII will also provide a library of ‘System Elements’
which could be used as building blocks. In order to define e.g. the
battery 1 component of mission X, the user would chose the
standard battery building block in the SCOSII library; he would,
if required, modify it to correspond to the characteristics of the
batteries of mission X by specifying its difference to the standard
SCOSII battery, and instantiate it to become battery 1 by
specifying the links to its constituent telemetry and telecommand
items. These modelling capabilities which are illustrated in
Figure 2 below and further expanded in Reference [5], will provide
significant improvements in the following domains:

- Mission Database Definition: increased efficiency and
quality/consistency, by reducing the information to be specified by
the user to a strict minimum and by providing him with a more
intuitive view of its mission.

- System Configurability and Controllability: by allowing the
user/system to exercise this at mission component level (for
navigation through mimic display, to disable functional checks for
only a particular mission component, to atlocate/restrict functional
privileges to e.g. a particular spacecraft subsystem, efc...).

- Mission Execution: by making use of the modelling data (in
particular the ‘Roles’) to- predict the status of the mission, thereby
supporting the mission planning and commanding functions in
assessing the effect of future commands (e.g. 1o ascertain their
safety/feasibility), and the monitoring function by generating the
expected mission status as reference for comparison against the
status obtained from telemetry. This ‘Prediction’ function is a new
feature, making use of the Mission Model' to obtain the best
estimate of the mission status at any time in the future, based on
an initial state and on the knowledge of any planned activities and
any foreseen on-board events and actions.
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Figure 2: SCOSII Modelling

2.5.2 Operations Language

To allow an efficient definition and maintenance of the mission
specific knowledge in the Mission Database, a dedicated SCOSII
Operations Language (OL) is required. The OL has been designed
to provide users without software design expertise, with a set of
mini languages offering the necessary expressive capability to
define the knowledge for the more advanced SCOSII functions,
such as:

- Procedural knowledge, for the presentation of, navigation
through and automatic/semi-automatic execution of procedures to
e.g. control the spacecraft, ground station services and SCOSII
configuration,

- Events & Actions, to identify from the incoming data, user
defined events to be logged and the corresponding actions to be
initiated by the system (e.g. an event could be a particular
spacecraft anomaly which would initiate a specific set of recovery
and diagnosis actions),

- Selection Strategies, to provide the various data selection
capabilities that will be required by the user and/or system in
support of the different activities/applications (e.g. selection
strategies could be applied to restrict a particular function to a
subset of the data it would normally be applied to).

Further details about the SCOSII OL can be found in Reference

[4].

2.5.3 Mission Database Test Function

This is another new functionality, which will provide an on-line
mission. database checking capability, using as data sources either
real-time or historical telemetry, or data generated by the ‘Mission
Model’ being driven by a predefined sequence of commands. This
local test function will allow to significantly reduce the tum
around time for database changes, and to alleviate the need for the
fengthy and resource-intensive validation using an extemal
software simulator.



2.6 Human Computer Interface (HCI)

The SCOS 11 HCI will provide users of all levels of experience,
with an infuitive, but reliable and robust interface. The SCOSII
HCI will be based on WIMP (Windows, Icon, Mouse and Pull-
down menus) technology. SCOS II will support all the traditional
display types (e.g. alphanumeric, graphic and mimics displays),
however, the users will be given tools which will allow them to
combine these different data display techniques to display data in
a more flexible and efficient manner. Due to the increase in the
diversity and versatility of the HCI with respect to previous
systems, particular attention has been paid to the specification of
general guidelines conceming display and data representation
techniques in order to provide the user with a consistent HCI
across all applications.

3. MISSION DATABASE
The scope of the SCOS II Mission Database is much wider than
that of the earlier systems, which generally concentrated upon the
data required by the Monitoring and Control functions. In addition
to the latter, a SCOS II database will contain, e.g. the mission
model data, the mission planning/scheduling data, the on-board
software memory images, the operations procedures and the
Spacecraft Users Manual (SUM), and will also include the system
set-up and configuration data (e.g. definition of user privileges).

3.1 Mission Database Structure

The Mission Database will consist of a hierarchical collection of
database parts, each with a unique identifier and version number,
arranged in a user defined structure (Figure 3). The higher level
parts are used purely for organisational purposes, the lowest level
parts contain the data and constitute the lowest level entities
submitted to version control. For a given mission, the user will
have some flexibility of configuring the structure to its particular
needs.

3.2 Database Management
There will be three types of Mission Database.

- The Operational Database: A database which is, or has been
judged so in the past, capable of supporting real-time operations.
SCOS 1I will support a number of Operational Database versions.
- The Active Database: The Operational Database which currently
supports real-time operations; any of the Operational Databases
may be selected as the Active Database.

- The Draft Database: A database used as an intermediate step to
constructing a new Operational Database. There will be only one
Draft Database.

It can be imagined that all the databases are kept within a
'Database Area’ and accessed via the users from a '‘Working Area’.
The '"Working Area’ contains a number of user accounts, i.e. 'User
orking Areas’, which will allow  multiple user database
maintenance. Special mechanisms will be provided in order to
ensure this multiple user maintenance is done in 'an orderly
manner; e.g. each user working area will be completely isolated
and the system will prevent several users from being able to work
on the same database part simultaneously. The database manager
will be able to select modified database parts and to integrate them
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Figure 3: Mission Database Structure

back into an Operational Database, either directly (for on-line
changes) or via the draft database (for changes of a higher
magnitude). Subsequently, this database can be selected as the
Active Database.

Version Control functionality will automatically maintain the
version of the Operational or Draft Databases and their constituent
parts. In addition Change Control functionality will permit
exhaustive recording of all database changes at item level and at
the higher levels of the database hierarchy. The SCOSII database
management concept, as described above, is illustrated in Figure
4, below.

3.3 Database Maintenance

Mission Databases are mainly constructed from input data that are
provided from spacecraft/payload(s) manufacturer(s) or from
checkout, Since the data volume may be extremely high (typically
several thousands of parameters, just for telemetry) these data are
to be provided in an electronic form. SCOSII will be able to
import these source databases in various electronic formats (e.g.
ORACLE, ASCII), to integrate the contained data items into the
SCOSII internal database, and to subsequently handle new versions
of the source database (e.g. functions to compare a new source
version with previous ones or SCOSII versions).

In addition to the acquisition of the source database, SCOSII will
provide the editing capabilities required to handle the data that
have been acquired from the source database (for this dedicated
functions will be provided to facilitate large scale editing) and to
subsequently maintain the data. The data maintenance functions
will of .course include exhaustive but flexible data consistency
checking functionality. Consistency checking will be performed at
all levels (e.g. data item, database part and database), however, the
user will be able to switch the checking off, an essential feature
for the preparation phase, when inconsistencies cannot be avoided.



Database Area

Figure 4; Database Management Environment

4. MONITORING
The following monitoring tools will be provided.

4.1  Monitoring Parameters
Unlike previous systems, there will be several potential sources of

monitoring parameters in addition to those that come from the
spacecraft, e.g. SCOS Il parameters and Ground Segment
parameters. Regardless of source, all parameters will be processed
by SCOS II in the same manner.

SCOSIH will be far more flexible and versatile than previous
systems. The users will be given the facilities to view the
monitoring parameters in a number of different ways called
‘Representations’. The user will be able to select, in real-time,
which ‘Representation’ is to be displayed. In particular, SCOS 11
will support:

- The Raw representation: the uncalibrated view of the parameter
value.

- The Engineering representation: the calibrated view of the
parameter value.

- The Functional representation: obtained by applying a function
to the parameter eg. derivative, integral, mean, max.

- The Status representation: retuming the state of the currently

applicable ‘Checking', eg. nominal (see section 4.3 below).

In addition, SCOS II will support the display of values in different
formats (e.g. raw representation in hex, decimal or binary) and the
on-line conversion between engineering units.

4.2  Parameter Validity
SCOS will support the concept of monitoring parameter validity,

since for a number of possible reasons, the latest parameter value
could be meaningless or unreliable. The following factors
influencing the validity have been identified.

- Power: the status of the power supply the parameter is dependent
upon.
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- Data Unit: the quality of the data unit within which the
parameter was transported.

- Data Routing: the status of the transmission route taken by the
data.

- Age: the age of the parameter value.

- Stability: the parameter value may be in a transient state due to
commanding activity.

- Status: any other explicit criteria the user wishes to specify.

SCOS 11 will check all these factors when assessing a parameter's
validity. The resultant validity state of a parametér will be
automatically propagated throughout the system affecting other
processing where relevant (e.g. synthetic parameters will also be
flagged as invalid if they use an invalid parameter) and affecting
how the data is displayed to the user.

The user will be able to gain real-time access to the results of each
validity component check. Hence, the SCOSII user will be
provided with significantly improved validity checking facilities
and, when a parameter is flagged as invalid, considerably more
information about the reason why.

4.3 Parameter Checking

The objective of checking is twofold. On one hand the system
must be able to check whether the operator has not or is not going
to place the mission elements under its responsibility (e.g. the
spacecraft) in a non-nominal or unsafe state, on the other hand, the
system must be able to detect whether these elements are behaving
as expected. This led to the following categories of parameter
checking being provided by SCOSIL.

- Operational Status Checks: Monitor the on-board status which
is required regardless of any commanding activities, to ensure that
the spacecraft is left in the correct state after a series of operations.
- Operational Constraints Checks: Are of the same nature as
Operational Status Checks, but stronger. They are rules which
should never be violated operationally and as such, should never
be disabled. They will contribute to ‘Activity’ 'Pre-Execution
Validation' (see section 5.3 below).

- Behaviour Checks: Are based upon the prediction of the on-
board status, taking into account the effects of commanding and of
predicted events. The checking performed is to ensure that any
behaviour exhibited (e.g. change of state after a command) is as
expected.

5. COMMANDING
An overview of the envisaged full SCOSII
functionality is given in Figure 5.

Commanding

8.1  Activities

In order to control the mission, a SCOSII user will be able to
initiate the execution of 'dctivities’, where an ‘Activity’ is either a
Procedure (highest level), a Command Sequence (simplified
procedure syntax), or a Command (lowest level). SCOSII treats
each of these in exactly the same manner. Each can have
execution pre-requisites, each can be monitored through its
execution phase and each can be verified. Activities will be
initiated manually, or automatically by the system. The long term
aim of SCOSII is to have a fully automated Procedure execution
capability.
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Figure 5: Commanding Overview

5.2  Preparation
This consists in the production of the schedule of activities

corresponding to a given time increment, for later submission to
the activity execution function. While this will be initially done
manually, it will be carried-out, in later releases of the system, by
a generic Mission Planning functionality, which will include:

- Processing of Planning Requests: This covers the acceptance,
checking and pre-processing of planning requests received from
external entities e.g. experimenters, external control centres, flight
dynamics.

- Planning/Scheduling Function: This covers all activities
required to generate a conflict-free 'Plan’ and its corresponding
‘Schedule’ of activities from the pre-processed planning requests.

83  Activity Execution
It will be possible for the user to execute operational ‘Activities’ by
means of three facilities:

- The Scheduler: Pre-prepared ‘Schedules’ will be imported from
the preparation environment into the ‘Scheduler’. 1f necessary, the
user will also be able to split this imported ‘Schedule’ into a
number of logical partitions called ‘Sub-Schedules’. Each ‘Sub-
Schedules’ of executable activities could then be assigned to a
different user and/or to a different type of operations (e.g. one sub-
schedule could be dedicated to Payload-X), thus delegating
execution control. Nominally the ‘Scheduler’ will manage the
execution of activities automatically, taking into account execution
pre-requisites and links between activities, prompting for manual
input when required. However the user will always retain the
capability of regaining, if required, control over the Scheduler'.
- The Manual Stack: The traditional commanding facility,
allowing the user to directly control the release of Activities will,
of course, also be supported by SCOSII in order to provide the
user with fully manual execution capability in the eventuality of
critical and/or unplanned operations.

- The Event Driven Commander: This is a new SCOSII concept
that will give the users the capability of setting up event-action
relationships as Event Driven Commanding Routines (EDCRs).
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EDCRs can periodically monitor for the occurrence of an event
that will trigger the execution of a specified set of activities, e.g.
can be used for automatic closed loop reaction to on-board
anomalies.

All executable activities will have pre-requisites which must be
satisfied before they can be released from the SCOSII system. In
SCOSI, these are called ‘Pre-Execution Validation' (PEV) checks.
These will have three components:

- Feasibility Checks: Checking that all necessary resources are
available, e.g a transmission route. '

- Safety Checks: eg. Checking that Unit A if OFF before
switching Unit B ON.

- Dynamic Checks: Checks which are not related to the activity in
isolation, but to the extemal context of the execution of a specific
instance of an activity, e.g. time window and interlock checks.

Activities will then be released by SCOSII when authorised by
their respective PEV, based on a ‘Release Strategy’ specified at
preparation. SCOSII will support both manual and automated
release strategy such as "initiate execution X minutes after event
Y".

5.4  Activity Execution Monitoring
To enable the user to be aware of the transmission and execution

status of any activity that has been released from SCOSII,
dedicated verification checks will be performed. For command
execution verification, the users will explicitly define verification
criteria, using the Operations Language, in the Mission Database.
Though, there will be the capability of doing the same for
command sequences and procedures, the majority of their checks
will be implicitly defined by the checks defined for each command
they contain. SCOSII will support the explicit definition of
simple or complex multi-staged verification criteria, the latter for
those commands which are executed in a number of stages (eg.
reception on-board, reception by application, execution stage 1,
execution stage 2). For each identified verification stage, SCOSII
will automatically compute a verification window based on
expected execution times and/or user defined margins/delays.

6. CONTROL OF SCOSII SYSTEM
The M&C functionality will be controllable flexibly. This is
particularly important in the case of contingency situation where
the normal conditions of applicability of a function may not be
valid any more; past systems have been rather rigid in this respect.
During operations, the user will have the capability to control the
way the functions are applied and to which data they are applied;
e.g. one will be able to completely or partly disable parameter
validity checks. Standard parameter checking, as described in 4.3
above, will be applicable to the status of the controlled functions,
to ensure that they are not left in a non-nominal/undesirable state.

7. MISSION EVALUATION
Sophisticated tools will enable the users to access historical data
and then view, analyze them and to produce reports. This
functionality will be an integral part of SCOSII, and unlike on
previous systems, will be available on-line. The following
functions will be provided.



7.1  Historical Data Access

The user will be able to access data and if required to save them
for later re-use, either for direct presentation using the standard
displays used for real-time monitoring, or for submission to further
processing (e.g. detailed analysis). Data access will be supported
by a powerful syntax, allowing the user to define expressions,
called 'Data Access Strategies’, which he could save for later re-
use, and capable of specifying:

- A time window or multiple time windows.
References to events eg. ‘entry into eclipse’
- Expressions eg.'when A123 > 35 degrees C'
- Data access criteria e.g. all AOCS telemetry

7.2 Viewing Historical Data

SCOSII will provide the user with two viewing modes, ‘Replay as
Live' and Video Replay'. 'Replay as Live’ will be dedicated to the
technical analysis of the mission data, i.e. it will allow the user to
replay historical data and to interact with them as if they were
being generated in live, while 'Video Replay’ will be dedicated to
operational investigation, i.e. it will allow a user to be confronted
with the same data and workstation lay-out as at the time of
reception of the data.

In both cases, the user will have complete control over the replay,
controlling its start time, the number of workstations it appears on
and its speed and direction (eg. fast forward, forward, pause,
rewind, fast rewind efc...).

7.3  Historical Data Analysis
The users will be provided with a data analysis package which will
have the following functionality at a minimum:

- Data Manipulation, allowing the user to select a subset of the
retrieved data for analysis.

- Mathematical functions, e.g sin, cos, tan, log, differentiation,
integration.

- Statistical Analysis functions, e.g. mean, standard deviation.

- Graphical tools, allowing the user to produce 2- and 3-D graphs,
straight line fits, polynomial fits, bar charts, pie charts etc...

7.4 Report Generation
A great amount of effort is expended by Operational Teams

producing reports, many of which are of a routine nature.
Therefore SCOSII will, unlike on previous systems, include a
report generation function allowing production of text documents
in which mission history data can be incorporated. This function
will also support an automatic report generation facilities; a user
will be able to define report templates, e.g. definition of the
contents and structure of a report, and use these to automatically
produce reports of data for a user defined time period.

8. CONCLUSION
SCOSII is a major step forward with respect to its predecessor
systems, which will put ESA at the forefront of the technology and
meet its main goals of minimising mission costs and improving
mission preparation efficiency and operational performance.

This is the first time that a systematic and thorough effort has been
invested in defining user requirements for a generic infrastructure
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(as opposed to individual mission systems). This has involved a
close cooperation between the users and the developers of the
system, and has included exploratory prototyping (as well as
technology prototyping).

Release 1 of SCOSII is at an advanced stage of implementation,
a preliminary delivery being expected in November 1994. Broadly
speaking Release 1 is covering the same range of functionality
as the previous infrastructure, with inclusion of the Commanding
function (not available in SCOS-I) and with enhanced functionality
and more moderm human computer interfaces. More advanced
functionality will be added in Release 2 (1995-6) and Release 3
(1996-7), including Modelling, Mission Planning, Data Distribution
and certain of the more advanced database features. Consolidation
of Release 1 functionality will also take place in the later releases.
Such an incremental implementation hds been chosen in order to
minimise technical and schedule risks to the first client missions
of the system, HUYGENS, ARTEMIS,and ENVISAT to be
launched in 1997-1998.
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ABSTRACT

The Operations Engineering Lab (OEL) at
JPL has developed a software architecture
based on an integrated toolkit approach for
simplifying and automating mission
operations tasks. The toolkit approach is
based on building adaptable, reusable
graphical tools that are integrated through a
combination of libraries, scripts, and system-
level user interface shells. The graphical
interface shells are designed to integrate and
visually guide a user through the complex
steps in an operations process. They provide
a user with an integrated system-level picture
of an overall process, defining the required
inputs and possible outputs through
interactive on-screen graphics.

The OEL has developed the software for
building these process-oriented graphical user
interface (GUI) shells. The OEL Shell
development system (OEL Shell) is an
extension of JPL's Widget Creation Library
(WCL). The OEL Shell system can be used
to easily build user interfaces for running
complex processes, applications with
extensive command-line interfaces, and tool-
integration tasks. The interface shells display
a logical process flow using arrows and box
graphics. They also allow a user to select
which output products are desired and which
input sources are needed, eliminating the
need to know which program and its
associated command-line parameters must be
executed in each case. The shells have also
proved valuable for use as operations training
tools because of the OEL Shell hypertext help
environment.

The OEL toolkit approach is guided by
several principles, including the use of ASCII
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text file interfaces with a multimission
format, Perl scripts for mission-specific
adaptation code, and programs that include a
simple command-line interface for batch
mode processing. Projects can adapt the
interface shells by simple changes to the
resource configuration file. This approach
has allowed the development of
sophisticated, automated software systems
that are easy, cheap, and fast to build.

This paper will discuss our toolkit approach
and the OEL Shell interface builder in the
context of a real operations process example.
The paper will discuss the design and
implementation of a Ulysses toolkit for
generating the mission sequence of events.
The Sequence of Events Generation (SEG)
system provides an adaptable multimission
toolkit for producing a time-ordered listing
and timeline display of spacecraft commands,
state changes, and required ground activities.
The multimission SEG software is easily
adapted and OEL Shell templates are built to
meet different mission requirements. The
SEG system was adapted in a unique way for
the Ulysses mission since the spacecraft does
all commanding in real time. The Ulysses
SEG toolkit allows a user to interactively
build commands on a timeline display in
spacecraft event time and then the system
automatically derives required ground events,
builds a mission sequence of events listing,
and outputs a space flight operations
schedule.

INTRODUCTION

The Operations Engineering Lab (OEL) at
JPL has developed a generic set of tools for
Sequence of Events Generation (SEG) that
have been adapted to many of the current
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flight projects. The toolkit includes what-
you-see-is-what-you-get (WYSIWYG)
editors for the Sequence of Events (SOE),
Space Flight Operations Schedule (SFOS),
and Deep Space Net Schedule (DSNS), a set

ISSUE DATE: 06/27/34 - 12:44
POT: 1 2 3

of servers to enhance the Perl language which
is used to generate the SEG products, and a
user-configurable graphical user interface
(GUI) to control the SEG process. All of the
SEG interfaces are text files.
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Figure 1. Voyager SFOS

The editors are generic object-oriented
programs that display, edit, filter, and
reformat the SEG products, but do not
interpret the data. The editors are X
Windows / UNIX programs written in C.
The same editors are used by all projects.
Rather than writing MSDOS or Macintosh
versions of the editors, we export files that
may be read with most MSDOS or Macintosh
tools.

The SEG process for most missions is to take
the spacecraft sequence file, the Deep Space
Network (DSN) allocations and view periods
files, and the light time file, and generate the
SOE, SFOS, and DSN keyword files.
Simply, SEG integrates the spacecraft and

ground schedules in to a unit. The spacecraft
sequence file is generated far in advance,
does not include real time commands, and is
often based on out-of-date DSN allocations.
The SOE, SFOS, and DSN keywords files
will contain more accurate ground
information, and are used by the Mission
Control Team and the Spacecraft Teams to
schedule ground activities. In addition all
SEG products use ground times for both
ground and spacecraft events.

We chose to write our generating software in
Perl since it is a very powerful interpreted
language designed for processing text files.
We also did not want to write a new
language. Since the delivered executable is
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also the source code, it is reasonably easy for
the Mission Control Team to maintain the
SEG adaptation. Perl has only two
elementary data types: strings and floating
point numbers, so additional servers were
written in C to manipulate triggers, time-
dependent state variables, time conversions,
and spacecraft command string processing.
The parent Perl script includes a Perl library
that automatically starts up the server process
and sets up a communications channel
between the parent Perl script and the server
similar to the Remote Procedure Call (RPC)
mechanism. The server functions are then
invoked with simple Perl function calls. It is
possible to compile new functions directly
into the Perl language, but the server model
was chosen since it simplifies configuration
management on the operations workstations,
a new version of Perl may be installed
without having to link in any SEG code, and
in fact, the servers are not even tied to Perl.

The final component of the SEG toolkit is the
OEL Shell. This is a user configurable GUI
that lets the user gather input files, specify
output files, and selectively run portions of
the generating process and the SEG editors.
OEL Shells have been built for several
projects' SEG processes

THE OEL SHELL

The OEL Shell is a compiled program based
on the X11 release 5 windowing system, the
X toolkit (Xt), the Motif Widget set, and
David Smyth's Widget Creation Library
(Wcl) [1]. The intent was to provide a shell
that would allow the user to enter UNIX
commands with parameters from a simple
Motif interface. The interface is configurable
by the user by modifying the resource file.
Several copies (which should in fact be links)
of the compiled program may be available on
the system. The appearance of these shells is
determined by the program's name and its
corresponding resource file. Since the user is
encouraged to modify the resource file, and
create one's own shells or enhancements to
existing shells, some knowledge of Motif
widgets and the resource database is
prerequisite. :
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From a user's perspective, the OEL Shell
consists of a series of push buttons, text
entry areas, and toggle buttons arranged on a
work area or control panel (one or more
Motif drawing areas). Pressing one of the
push buttons causes a UNIX program to
execute. This program may be another Motif
application or a script without a graphical
user interface. The work area provides text
entry areas for the user to enter command line
arguments for the program. Toggle buttons
correspond to UNIX command line options.

Below the panel is a scrolling message area
which displays any output messages from the
executing program or script. In addition, the
actual UNIX command created from the push
button, text, and toggle buttons may
optionally be displayed here. If a text widget
is used for file input, it will generally have a
Select and an Edit push-button located
nearby. The OEL Shell does not need to
open any user files, however the user may
wish to browse through the file hierarchy
with the Motif File Selection Dialog.

To use the File Selection Dialog, choose the
Select button near the file text that you want,
and the File Selection Dialog will appear.
The OK button will cause the selected file
name to be copied to the text entry area in the
control panel that last had focus. You can
focus on a text widget (move the mouse
cursor over the text widget, and press the left
mouse button) and then hit the OK button.
Unlike other Motif programs written in the
OEL, this File Selection Dialog is non-modal.
You may leave it up while you work with the
main window. The OK button does not
unmanage the dialog, so you can use it to fill
filenames into several text widgets. The
Cancel button will remove the dialog. The
Help button will display help text for this
dialog.

The Edit buttons will bring up an editor,
which the user may choose in the resource
file, to view the file specified by the contents
of the currently selected text widget. The
Exit button will cause the shell to terminate.

The shell also includes a Help button which
is user configurable. This will pop up a
single pane of help text. It is intended that



the designer of an OEL Shell also attach help
to each widget in the work area. You may
obtain help on any button or text field in the
work area by selecting that object and then
pressing the Help key. The default Help key
for Motif application is the F1 key. To obtain

help on a push button without activating the
button, move the mouse cursor off the button
until the button no longer appears to be
pressed. You may then release the mouse
button without any activation.

=) ] Galileo SEG Flow Control
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Input STALF state file: /home/horse/kevin/E3.0/dermo/ej5-9a,stat-al
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SOE Initialization File = /home/horse/kevin/E3,0/tbl/soe_defaults

SOE Ground Expansion Table = /home/horse/kevin/E3,0/tbl/soe_ground_table

Merging and reading state files,..

Merging and reading trigger files..,

Generating DSN tracking and uplink states,
Tracking stations: DSS12 DSS14 DSS42 DSS43 DSS63
Generating triggers for S/C state changes,

Figure 2. Galileo STALF Shell

WCL allows you to define the widget tree for
an application in the resource file using new
resource names such as wcCreate and
wcChildren. In addition, callbacks are
provided that set resources, manage and
unmanage widgets, run an external program
and exit.

The OEL Shell is a very simple application
built on WCL [2]. It is basically about ten
callback procedures which may be used in the

resource file. The most important of these is
CmdCB (the command callback). This
callback executes its text string argument.
For example, you could create a push button
to execute the UNIX Is command as follows:

demo*1sPb.wcCreate: XmPushButton
demo*1sPb.labelString: Show Files
demo*IsPb.activateCallback: CmdCB(ls)
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A simple command like this could be
executed with WCL alone. The OEL Shell
permits one to access text widgets, toggle
widgets, and option menus, and pass these in
CmdCB. For example, if demoTog is a
toggle button, then $demoTog[-r] has the
value in the brackets if the toggle button is
true, and is the empty string if false.
Likewise, the value of a text widget is just the
text that the user entered.

Another very useful callback is the FocusCB
which is used to specify the directory filter
string used with the File Selection Box. A
FocusCB is used with each text widget that is
used to contain input file names.

Besides the resource file, two other files are
used by the OEL Shell. These are a drawing
file, that places simple X11 primitives (not
widgets) in the drawing area. This has been
used to give the OEL Shell the appearance of
a flow chart. The other file is the help file.

Output from the child processes is sent to the
scrolling message area below the work area.
In addition, there are some special text
messages that the child can send back which
set resources in the OEL Shell.

In addition to SEG, we have used the OEL
Shell for many other functions in operations.
These include training, generating database
queries, and running a command compiler.

Some advantages of using the OEL Shell are:

* It is easily configurable by operations
personnel.

* It separates the computing engine from
the GUI, thus simplifying testing of the
computing engine.

+ All functions may be run with or without
a GUL

=] Ulysses SEG Flow Control
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Figure 3. Ulysses SEG Shell
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ULYSSES SEG

We have recently adapted the SEG software
for Ulysses. The Ulysses mission is
considerable different from the other
missions in that the primary command mode
is real time. Thus we do not have a
spacecraft sequence file as an input to SEG.
We introduced a new graphical document
called the Timeline which contains the DSN
allocation, view periods, and command
windows translated into spacecraft time.
This is generated from the DSN allocations
and view periods files, and the light time file.
The SEG operator then uses these times to
schedule the spacecraft. Typical activities
scheduled include: records and playbacks,
telemetry mode changes and maneuvers.
Since the SFOS editor is a general purpose
timeline editor, it is also used to edit the
Timeline document. The spacecraft
information is then extracted and put into a
file that roughly corresponds to the spacecraft
sequence file for other missions.

From this point on, Ulysses SEG resembles
SEG for the other JPL projects. The
telemetry state of the spacecraft is extracted
from the sequence file. The ground events
are generated for the beginning and end of
each track, the DSN configuration, spacecraft
telemetry state changes, and other significant
activities. This information is then used to
create the SOE, SFOS, and DSN keyword
files.

Ulysses SEG was the first project where the
SFOS editor was used to input data that
would then be passed on to other processes.
The SFOS editor has functioned well, and it
was easy to extract data from the SFOS
records.
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INTRODUCTION

We are in the midst of a revolution in the spacecraft command and control industry. This revolution
is driven by several factors. Traditional customers of spacecraft command and control systems (like
the government) are now trying to do more with less money. Where in the past the government
would be inclined to design and build a system from scratch, today they are looking for an off-the-
shelf solution. Another factor contributing to the changes in spacecraft command and control is the
advancing technology of spacecraft. Several commercial ventures are underway to exploit large
constellations of relatively cheap satellites. These new commercial space opportunities create a need
for more economical command and control systems to satisfy these bottom-line oriented endeavors.

Some of the changing requirements in the market include:

« The skill level required to operate the system on a day-to-day basis is lower than required by
traditional systems.

+ The number of human operators required per satellite is smaller.

- The user interfaces are becoming graphical, as opposed to the text-based interfaces of traditional
systems.

- The amount of time to prepare for a spacecraft mission is decreasing, making it harder for satellite
users to develop their own system from scratch.

This paper describes a product called the Intelligent Mission Toolkit (IMT), which was created to
meet the changing demands of the market. IMT is a command and control system built upon an
expert system. Its primary functions are to send commands to the spacecraft and process telemetry
data received from the spacecraft. It also controls the ground equipment used to support the system,
such as encryption and decryption gear, and telemetry front-end equipment. Add-on modules allow
IMT to control antennas and antenna interface equipment.

The design philosophy for IMT is to utilize available commercial products wherever possible. IMT
utilizes Gensym's G2 Real-time Expert System as the core of the system. G2 is responsible for
overall system control, spacecraft commanding control, and spacecraft telemetry analysis and display.
Other commercial products incorporated into IMT include the SYBASE relational database
management system and Loral Test and Integration Systems' System 500 for telemetry front-end
processing.
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Use of Expert Systems in IMT

Spacecraft command and control consists of a repetitive sequence of planning, contact and
evaluation activities. During these phases, events occur and information is gathered that determine
subsequent actions required to control the spacecraft. Traditional control systems require system
operations personnel and spacecraft engineers to manually determine the appropriate responses to
these events. In addition, to respond to recurring anomalous conditions that can be overcome via
procedural solutions, operators often document detailed system conditions in a log book or
operations manual. These references are examined by operations staff to determine how to resolve
specific system conditions. If these conditions are not properly documented and accessible, the
operations staff must consult with the operations "expert" to determine the appropriate course or
action.

Using IMT's satellite support plan functions in combination with the embedded expert system,
complex system conditions and responses are captured within a system knowledge base. IMT
identifies specific events and conditions and invokes rules, procedures or specific satellite support
plans to generate appropriate system responses. In this capacity, IMT stores, recalls and implements
the knowledge of the system operations staff. The system can automatically respond to specific
events or present suggested actions based on system conditions. The following are particular
examples of how IMT implements these principles.

Telemetry Analysis and Display

The G2 expert system can be used to analyze telemetry data emitted by a spacecraft and determine
the state of the spacecraft. G2's inherent ability to model real-world objects supports sophisticated
analysis of complex data. The data can also be displayed to the user through G2 objects, presenting
the data in a format that is easier to understand than traditional text-based displays.

EMO-PASS-PLAN

Figure 1 - IMT Graphical Pass Plan
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Graphical Pass Plan

In IMT, a "pass plan" is a sequence of spacecraft commands and system configuration actions called
"steps." IMT uses G2 to represent each step as a G2 object, and the flow of execution through the
steps is indicated using the G2 connection facility. A graphical pass plan resembles a flow chart,
which is more intuitive than the proprietary commanding languages used by other command and
control systems. As the pass plan is executed, the current step is highlighted; status information
about each step is presented along with the G2 icon for the object.

There are two ways to create pass plans. The first is to select commands from command palettes
and connect them into graphical sequences to form pass plans. The second way to create a pass plan
is to build an ASCII file using an off-line process (e.g. using an editor or the output from another tool). IMT's
Pass Plan Import function is then used to convert the ASCII file into a graphical pass plan where it
can be executed like any other pass plan.

IMT supports two modes for pass plan execution: manual and automatic. Automatic execution
provides the first step toward the complete automation of system operation. During automatic
execution, command sequences are executed without operator intervention. Automatic execution
continues until the sequence is completed successfully or until an anomaly is detected. Anomaly
detection could be based on the inability to properly transmit the command from the ground system,
a command rejection from the spacecraft, or the result of a complex set of rules developed to verify
the command operation.

Logic in Pass Plans

Logic is provided through an "if step," which is analogous to an "if" statement in a high level
computer programming language. When an "if step” is executed, G2 executes rules provided by the
pass plan builder to determine which step should be executed next.

Interactive Telemetry Displays

IMT can be used to build "smart" interactive telemetry displays. These displays allow the operator
to control the spacecraft by directly manipulating graphical representations of the system. For
example, circuit diagrams representing portions of the electrical power subsystem can be created that
contain graphical representations of subsystem components. The user could then click on the
graphical representation of a switch to change the switch's position to allow (or prevent) current flow
to the subsystem. This frees the operator from having to know the details of specific commands
required to manipulate a system component (spacecraft or ground system) and creates a more
"results oriented" user interface.
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Command Verification

Traditional spacecraft command and control systems require manual examination of telemetry to
determine the status of a spacecraft component or subsystem. Manual actions are initiated based on
the examination of this data. For example, after transmission of a command, operators may continue
to view telemetry data to determine if the spacecraft received the command and is responding as
expected.

IMT uses expert system rules to automate the analysis of telemetry data, determine the status of the
spacecraft, and identify necessary control actions. Specific control actions are captured in rules
which are invoked after command transmission. Rules can be designed to examine specific data
points and determine whether the desired reaction was achieved. Actions, as directed by the
operations experts, can be initiated based on the results of the execution of these rules.

Commanding Constraints

Before a command is transmitted, IMT consults the knowledge base to determine whether it is
acceptable to send the command. IMT allows the operator or engineer to specify command
transmission constraints. To specify a constraint, a rule is written to which G2 backward chains
during command transmission. These rules can refer to any available data to reach this conclusion.
This includes telemetry data, system state, and even the person making the request to send the
command. Using G2, it is easy to define constraints that can be turned on and off.

By defining a rich set of constraints, the end-users can customize their system to minimize the risk of
using lower-skilled spacecraft operators.

738



Automatic Analysis of Pass Plans

During mission planning, spacecraft operators determine the future activities of the spacecraft. The
objectives of these activities are determined by vehicle maintenance requirements, overall mission
objectives, and operations required to ensure the health of the spacecraft. Using IMT and the
embedded expert system, mission objectives can be captured and applied during the planning
process. For example, to ensure the health of a spacecraft, mission objectives might indicate that
battery reconditioning must be performed at precise time intervals. These objectives can be stored as
rules within the planning knowledge base.

As mission planners develop future contact support plans, this knowledge can be used to validate the
proposed pass plans and command sequences. As system intelligence increases, this analysis can
incorporate knowledge from previous spacecraft contacts. For example, suppose the last time the
vehicle was contacted, a specific anomaly was detected. Using knowledge of this condition, along
with the expert spacecraft knowledge captured by the system, the system could identify a proposed
command sequence as ineffective or dangerous to the spacecraft.

THE TOOLKIT MODEL

IMT was designed specifically to support a dynamic system environment. The "Toolkit" model
allows the product to be configured to satisfy a variety of mission unique requirements and ensures
the system can evolve to meet changing system requirements.

The "Toolkit" Model emphasizes the use of COTS products as the foundation for final solutions.
Rather than developing a complex system from scratch, the target system is developed by integrating
commercial products - best suited for the target application - into a final solution. Mission unique
requirements are implemented primarily through modifications to expert system knowledge bases and
standard relational databases. In addition, many commercial products provide graphics rich tools
that allow the system to be tailored to meet user specifications without extensive software
development. This environment supports rapid system customization and reduces development,
operations and maintenance costs. When development is required, the level of effort is significantly
lower than that required by traditional system development approaches.
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CONCLUSION

The Intelligent Mission Toolkit provides significant advantages to the implementation of a complex
command and control system. The embedded expert system offers the ability to store and apply
expert mission operations and planning knowledge using system knowledge bases. This information
can be used to automate spacecraft command validation, control ground system equipment and apply
intelligence to the entire mission planning process.

IMT's modular architecture and fully Object Oriented implementation addresses the complex
requirements of modern command and control systems. The "Toolkit" model emphasis allows end-
users to customize the product to satisfy unique mission objectives resulting in the most powerful
and flexible commercial command and control system available. '
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SEQ_GEN: A Comprehensive Multimission Sequencing System

D
Jose Salcedo, Thomas Starbird P
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
Abstract straight forward to do. There is,
however, no limit to the complexity of
SEQ_GEN is a user-interactive activity definitions or of spacecraft

computer program used to plan and
generate a sequence of commands for
the spacecraft. Desired activities are
specified by the user of SEQ_GEN;
SEQ_GEN in turn expands these
activities, deriving the spacecraft
commands necessary to accomplish the
desired activities. SEQ_GEN models the
effects on the spacecraft of the
commands, predicting the state as a
function of time, flagging any conflicts
and rule violations. These states,
conflicts, and violations are viewable
both graphically and textually at the
user's request. SEQ_GEN also displays
the entire sequence graphically, showing
each requested activity as a bar on its
graphical timeline. SEQ_GEN includes
a full-screen editor, allowing the user to
make changes to the requested activities.
After a change has been made to the
sequence, SEQ_GEN immediately
revalidates the sequence, updating its
models and calculations along with its
displays based on these changes.
Because SEQ_GEN is user-interactive
and because it has the ability to
recalculate spacecraft states
immediately, the user is able to perform
"what-if" sessions easily.

SEQ_GEN, a multimission tool, is
adaptable to any flight project. A flight
project writes its adaptation files
containing project unique information
including in its simplest form, only
spacecraft commands. For more
involved projects the adaptation files
may also contain flight and mission
rules, description of the spacecraft and
ground models, and the definition of
activities. SEQ_GEN operates at
whatever level of detail the adaptation
files imply. Simple adaptations are
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models; both may involve unlimited
logical decision points. Commands and
activities may involve any number of
parameters of a wide variety of data
types, including integer, float, time,
boolean, and character strings.

SEQ_GEN will be used by the Mars
Pathfinder, Cassini, and VIM (Voyager
Interstellar Mission) projects in an effort
to speed up adaptation time and to keep
sequence generation costs down.

SEQ_GEN is hosted on UNIX
workstations. It uses MOTIF and X for
windowing, and was designed and coded
in an object-oriented style in the
language C++.

Introduction

SEQ_GEN is a flexible software tool
that can be used in several roles in the
uplink planning and sequence generation
process. In this paper, we address
various tasks that are done during uplink
planning and sequence generation, and
show how SEQ_GEN supports each of
them. We begin with comments that
apply to all uses of SEQ_GEN.

Typically, SEQ_GEN is wused
interactively. The user sees results of
SEQ_GEN computations on a graphical
timeline (see Figure 1). If there are
conflicts or rule violations, the user
changes the sequence by using
SEQ_GEN's editor to alter, add, or
delete requests. SEQ_GEN then
recomputes the state of state of the
spacecraft, and reevaluates the rules.
This process is repeated until the user is
satisfied with the sequence, at which
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time SEQ_GEN writes results into
computer files.

A key feature of SEQ_GEN is that it is a
multimission program. Adaptation of
SEQ_GEN for use by a specific flight
project in a specific role is done by
supplying SEQ_GEN with files of data
about the project. Only the information
pertinent to the intended use of
SEQ_GEN is required. In this paper we
use the term "adapter" to denote the
person or persons that supply the
information about the flight project. The
term "user” denotes a person who is
using an adapted SEQ_GEN.

Now we discuss how SEQ_GEN
supports various uplink planning and
sequence generation tasks, showing
SEQ_GEN's flexibility.

Generating Command-Level
Sequences

Command-Level Editing

One simple use of SEQ_GEN is as an
editor, enabling a person to write a
sequence of spacecraft commands. The
adapter provides the list of all spacecraft
commands for the flight project. If the
commands have parameters, those are
named by the adapter. The adapter can
specify what the allowable values are for
each parameter of each command, and
what type of value is appropriate
(decimal integer, hexadecimal, octal,
binary , floating point, duration, time,
character string, boolean, or a one-
dimensional array of any of the previous
types). The adapter can also specify the
default value of each parameter. In this
way, SEQ_GEN "knows" a project's
spacecraft commands.

When the user wants to add a command
to the sequence, SEQ_GEN lists all the
commands, letting the user choose one.
SEQ_GEN displays the name and
description of each parameter (as
supplied by the adapter), to guide the
user in specifying the requested
command. SEQ_GEN will use whatever
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information the adapter has supplied
concerning the parameters of the
command. For example, if the adapter
has supplied the allowable range,
SEQ_GEN will warn the user when a
value given by the user is not in range.
SEQ_GEN's editor enables a person to
form a request, consisting of one or more
commands (and also "activities"; see
below) and to add that request to the
sequence.

| Command-level Sequence

One output of SEQ_GEN in the simple
adaptation described above is a file of all
the commands (in mnemonic form), in
time order, ready to be translated to bits
and sent to the spacecraft.

In addition, SEQ_GEN produces a
timeline (see Figure 1), both
interactively on the screen, and on paper.
The timeline shows visually the position
in time of each request in the sequence.

Such an adapted SEQ_GEN is useful for
building sequences for use before launch
in the testing of the spacecraft. It is also
useful for simple projects where
command-level sequence planning is
adequate, and where any constraints on

interactions of commands can be
checked by hand.

Spacecraft Clock

If precise timing of commands with
respect to the spacecraft's clock is vital,
the adapter can define the units of the
clock and their nominal durations. The
definition is then used in some of
SEQ_GEN's calculations. For example,
there is an option in SEQ_GEN to align
all commands' times to the nearest whole
unit in the spacecraft's clock. The
relation between Universal Time and the
values of the spacecraft's clock is given
to SEQ_GEN at run-time, to account for
differences in the clock's rate from its
nominal rate.



Merging Sequences

Another feature of SEQ_GEN is the
ability to merge sequence files. For
example, SEQ_GEN could be used
individually by different flight team
members making their individual request
files. Those files can then be merged to
produce a single time-ordered file with
all of the requests. Each request retains
its requestor's name (or other identifying
string), so that the individuals can check

that their requests were properly
handled.

Different requestors could include
members of the engineering team (for
example, an attitude control analyst
requesting a calibration), or of the
navigation
maneuver), or of science teams
(requesting scientific observations).

Predicting Events

team <(requesting a .

It is often useful to predict the effects of -

the commands in a sequence. The
adapter can supply models to SEQ_GEN
that enable predictions of the state of the

spacecraft based on the commands in the

sequence.
Flexibility of Models

A nice feature of SEQ_GEN is the
variability possible in the models. One
possibility, of course, is to have no
models at all. In this case, as discussed
above, SEQ_GEN's output is the time-
ordered list of commands in the
sequence.

Models of varying complexity can be
added. For example, if the amount of
power being used at any time during the
sequence is of interest, a power model
could be added. The adapter defines a
model element by specifying its
attributes (i.e., state variables). An
attribute can be of any type (same
choices as for parameters of a command;
see above), and the adapter can define
the allowable range of each (in which
case SEQ_GEN will give a warning to

the user if the attribute's value ever
becomes out of range). For each
spacecraft command that affects an
attribute, the adapter describes the effect,
using a simple language provided by
SEQ_GEN. The language includes the
basic programming language constructs,
such as IF statements and loops. In
addition, the language C can be used by
the adapter to specify calculations. No
compiling or linking of SEQ_GEN is
needed to incorporate the adapter's
compiled C code; the linking of the
adapter's code is dynamic, done at run-
time.

The effect of a command can depend on
the state of the model before the
command. The most common effect of a
command is to change the value of an
attribute.

Simple models, such as ones that keep
track of whether a switch is "on" or
"off", are simple for the adapter to
specify. Each project can model the
details appropriate for its sequencing
needs.

' The modeling done in SEQ_GEN is a

discrete event simulation, where the
commands in the sequence are the

-triggering events. SEQ_GEN processes

each command by interpreting the
simple language in which the adapter has
written the effect of the command, and
by calling any C functions the -adapter

~may have used. The adapter can use

| - SEQ_GEN's "stimulus" concept to

promote the effect of a command to
future time or to several model elements.

SEQ_GEN has built-in the ability to read
files of Deep Space Network view

-periods and allocations, a file that
- contains predictions of downlink data

744

rate capability, and a file that contains

- trajectory events, such as occultations.
“The adapter can write effects of such

events in the same way as writing effects
of commands. For interplanetary:
missions, where the light time is non-
negligible, SEQ_GEN has the capability
of adjusting times between ground time



and spacecraft time using a file giving
the light time.

Predicted Events File

SEQ_GEN produces a comprehensive
file that contains the results of the
modeling (see Figure 2). The file is a
time-ordered list that contains an entry
whenever an attribute of a model is set to
a value. The entry consists of the time,
the values of the attributes of the model
element, and an indication of the causal
command. The file also lists all
commands in the sequence. (Activities
and rule violations are also in the file;
see below.) The file can be used to
review a sequence.

Interactive Display of Models

The user of SEQ_GEN can turn the
modeling on or off at will. The user can
also have SEQ_GEN display a graph of
the value of any one or more attributes
above the timeline of requests (see
Figure 1). The user can change what to
display any time during the SEQ_GEN
session. When the user changes the
sequence, SEQ_GEN models the part of
the sequence being viewed and updates
all the displays.

Thus the adapter has great flexibility in
what models to build and how detailed to
make them, and the user has complete
flexibility in choosing what model
attributes to display on the screen during
the session.

Different Users, Different Models

Even on a single flight project, different
adaptations of SEQ_GEN could be used.
For example, an attitude control expert
may include more detailed models of
attitude, but omit models of interest only
to a scientist, and vice versa.

Checking Rules
The adapter can add "rules", which are

stated in terms of the model attributes.
SEQ_GEN has eight types of rules. A
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rule contains a boolean-valued
expression of model attributes. During
modeling of a sequence, if the
expression becomes true (or remains true
for too long, or for not long enough, or
becomes true too many times, or not
enough times, or becomes true before
some other state has occurred for long
enough), the rule is considered violated.
An indication of the violation occurs
above the timeline of requests (see
Figure 1). The user can click on the
indication to get details of the violation.
Rule violations are also included in the
Predicted Events File.

By defining rules, the adapter enables
SEQ_GEN to perform some of the
validation of a sequence.

For situations where none of the eight
built-in types of rule adequately reflects
the constraint desired to be checked, the
adapter can use logic in the models
themselves to declare a conflict. An
indication of conflict appears above the
timeline (see Figure 1), and appears in
the Predicted Events File.

Thus SEQ_GEN is flexible in the rules it
can check. Just as different users could
use different models, so they could use
rules tailored to their interest.

Making High-Level Requests;
Activity Types

SEQ_GEN offers flexibility in the level
at which a user requests commands for
the sequence. The adapter can define
"activity types" (also called "blocks"),
which can then be used in users’
requests.

A simple activity type is a list of
spacecraft commands, with their relative
timing specified. The activity type has a
name. By requesting an activity -of that
name, the user is effectively adding all
the commands in the activity type's
definition to the sequence, timed relative
to the time specified for the request.
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SEQ_GEN is flexible in how
complicated the definition of an activity
type can be. An activity type can have
parameters. The user, when requesting
an activity of that type, is prompted by
SEQ_GEN's editor for values of the
parameters. The values can be used for
parameters in commands that appear in
the definition of the activity type. The
values can also be used in logical
constructs (such as IF statements) that
govern what commands will be used in
the activity. For example, in an activity
type that represents a maneuver of the
spacecraft, a parameter could be an
option determining whether or not to
turn on the gyroscopes.

The definition of an activity type can
refer to other activity types (i.e.,
activities can be nested).

Activity types are "expanded" by
SEQ_GEN to produce commands. The
commands are modeled along with any
commands requested explicitly by the
user.

Using activities allows the user to think
at a higher level than individual
commands. Also, the definition of an
activity type can be written or checked
by experts, and tested before use. A
person who is not an expert can then
safely use the activity.

Some activity types represent on-board
programs that can be invoked in a
sequence to yield several commands.
Such an activity type, called an on-board
block, is expanded by SEQ_GEN f{or
modeling, but is not expanded on the
Spacecraft Sequence File (see below).

Writing the Spacecraft Sequence File

Another output of SEQ_GEN is a
computer file called the Spacecraft
Sequence File. This file contains (a
mnemonic representation of) the
information that must actually go to the
spacecraft, i.e., spacecraft commands
and calls to on-board blocks.
Conversion of this file to binary in a
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form packaged for transmission to the
spacecraft is not a function of
SEQ_GEN.

Planning without Commands;
d_commands

Activity types can actually be defined
even if spacecraft commands have not
been defined. SEQ_GEN has the concept -

of d_commands (dummy commands),

which are requested by the user and
modeled by SEQ_GEN as commands
are, but which are not placed in the
Spacecraft Sequence File. In this way,
an adaptation of SEQ_GEN can be made
wherein activity types are defined in
terms of d_commands, which can trigger
abstract or approximate models. An
example of an abstract model is one
telling whether a maneuver is in
progress. Such an adaptation is useful
for planning sequences early in the
planning stage, or early in the life of the
project.

Both actual commands and d_commands
can be used in the same activity type and
in a single sequence. Thus modeling and
rule checking involving actual
commands can be supplemented by
modeling and rule checking of
abstractions.

Changing Adaptation

The adaptation information is given in
ASCII files (plus optional C code in the
model or activity definitions). The
adaptation can be changed as the mission
progresses. Another program, called
SEQ_ADAPT, is being developed to aid
the adapter in producing syntactically
correct and consistent adaptation files.

History and Use of SEQ_GEN

SEQ_GEN (under different names) has
its historical roots in the Mariner Mars
1971 project, a Mars orbiter. Most
major later projects at the Jet Propulsion
Laboratory, including Voyager and
Galileo, wrote new versions specific to
the project. In the last few years, the



current version, which is a multimission
version, was developed.

Its activity features were used on Mars
Observer. It will be used on Mars
Pathfinder, VIM (Voyager Interstellar
Mission), and Cassini. SEQ_GEN is
hosted on Sun SPARC and Hewlitt-
Packard workstations.

Development of SEQ_GEN

SEQ_GEN has about 55,000 lines of
code, written in C++ in an object-
oriented style (Wirfs-Brock et al., 1990).
SEQ_GEN is Category A; it was
developed with full rigor and testing.

Summary

SEQ_GEN is a comprehensive and
flexible tool for use in uplink planning
and sequence generation. SEQ_GEN is
flexible in that

it can be adapted for use in any
flight project, or for different classes
of user in a single project

*it can be adapted in several versions,

with or without spacecraft
commands, models, rules, and
activity types

*models can be simple or detailed

*models can be of actual spacecraft
parts and/or of abstract quantities

emodels can be triggered by

spacecraft commands or by
d_commands
eadaptation does not require

compiling or linking of SEQ_GEN
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Abstract

The Packet Processor II (Pacor II) Data
Capture Facility (DCF) acquires, captures,
and performs level-zero processing of packet
telemetry for spaceflight missions that adhere
to communication services recommendations
established by the Consultative Committee for
Space Data Systems (CCSDS). A major goal
of this project is to reduce life-cycle costs.
One way to achieve this goal is to increase

automation. Through automation, using
expert systems and other technologies,
staffing requirements will remain static,

which will enable the same number of ana-
lysts to support more missions.

Analysts provide packet telemetry data
evaluation and analysis services for all data
received. Data that passes this evaluation is
forwarded to the Data Distribution Facility
(DDF) and released to scientists. Through
troubleshooting, data that fails this evaluation
is dumped and analyzed to determine if its
quality can be improved before it is released.
This paper describes a proof-of-concept
prototype that troubleshoots data quality
problems.

The Pacor II expert system prototype uses the
case-based reasoning (CBR) approach to
development, an alternative to a rule-based
approach. Because Pacor II is not operational,
the prototype has been developed using cases
that describe existing troubleshooting experi-
ence from currently operating missions.
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Through CBR, this experience will be avail-
able to analysts when Pacor II becomes
operational.

As Pacor Il unique experience is gained,
analysts will update the case base. In essence,
analysts are training the system as they learn.
Once the system has learned the cases most
likely to recur, it can serve as an aide to
inexperienced analysts, a refresher to experi-
enced analysts for infrequently occurring
problems, or a training tool for new analysts.

The Expert System Development Methodol-
ogy (ESDM) is being used to guide develop-
ment.

Pacor II Overview

The Pacor II DCF acquires, captures, and
performs level-zero processing of packet
telemetry for spaceflight missions that adhere
to communications services recommendations
established by CCSDS. Pacor II provides
three forms of service for packet processing:
real time, routine production, and quicklook.
It strips packets from telemetry frames,
reassembles packets, sorts packets by selected
fields, merges packets from different sessions,
and delivers scientific data sets and other
related products to the user.

Analysts provide packet telemetry data
evaluation. and analysis services for all data
received. Data passing this evaluation is
forwarded to the DDF and released to scien-
tists. Through troubleshooting, data failing

X



this evaluation is dumped and analyzed to
determine if its quality can be improved
before it is released.

A major goal of the Pacor II project is to
reduce life-cycle costs. One way to achieve
this goal is to increase automation. Through
automation, using expert systems and other
technologies, staffing requirements will
remain static, which will enable the same
number of analysts to support more missions.

Problem Identification

Through discussions with Network and
Mission Operations Support analysts, addi-
tional candidate areas for automation were
identified. We focused on areas where the
human reasoning processes of experts could
be automated. Analysts provided a study that
showed where they spent their time in the
Hubble Space Telescope (HST) DCF for a 1-
week period. Fifteen tasks were identified.
The study described the percentage of staff-
hours expended in each task for current
operations and for projected future operations
as workloads are expected to increase. The
troubleshooting/dump analysis task had the
highest potential benefit and was also suitable
for implementation as an expert system.

Benefits

Through additional discussions with analysts,
the troubleshooting problem was further
evaluated for implementation as an expert
system. Several potential benefits appeared to
be possible.

Capture and store experience: Analysts felt
that it would be useful to have a system that
would enable them to more readily access
prior troubleshooting problems and solutions.
Currently, when problems recur, ahalysts
must remember how they were fixed. If it is a
problem that another analyst handled, analysts
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have to discuss it with each other or look up
the problem and solution in a log book. Log
books are available for analysts to record how
they fix problems; however, specific require-
ments for the information stored there does
not exist. The information may be sketchy,
inconsistent, and difficult to find.

Analysts felt that a record of their prior
troubleshooting knowledge, with an easy way
to access the information, would help them in
solving new or recurring problems. They also
felt that troubleshooting experience from
prior missions, including Pacor I, would be
beneficial for Pacor II analysts at the start of
the Pacor II mission, even though some
problems may be new.

Expertise available during off hours: Shift
analysts are the first analysts who fix prob-
lems that occur. If these analysts cannot fix a
problem, troubleshooting analysts fix the
problem. However, troubleshooting analysts
only work during the day shift. An expert
system could be an assistant to shift analysts
on other shifts who do not have access to
troubleshooting analysts and who are not as
proficient in fixing problems.

Retain expertise with high turnover rate: Due
to the nature of operations, analysts are
required to work rotating shifts. Because this
is demanding on the individuals involved,
analyst turnover is high, which results in a
high demand for training of new analysts.
Analysts felt that it would be useful to have a
system that would help in training and
assisting inexperiencéd or new analysts
perform their jobs. Also, because the Pacor II
lifetime is expected to be long, expertise can
be retained during personnel turnover through
the use of expert systems.

Increased workload for same number of staff:
Facility personnel currently handle complex
decision-making processes. Through the use



of expert systems, some of these processes
can be automated, which frees the analyst to
concentrate on exceptional situations and
relieves the analyst from performing the more
routine decision-making tasks. This automa-
tion would enable the same number of
analysts to handle an increased workload.

Case-Based Reasoning Overview

CBR is a kind of expert system or another
way besides rules to build an expert system.
CBR uses past experience in solving new
problems by storing previous experience or
cases in a case base or database of cases.
Cases are indexed so that they can be easily
retrieved from the case base, and retrieved
cases can be adapted to solve new problems.

Figure 1 illustrates the CBR process. Appli-
cation domain knowledge is stored as a set of
cases that describes past experience. Each
case is composed of a set of features with
values associated with these features. Typical
information that might be included as features
of a case are a description of a problem, a
solution for the problem, how the solution
was reached, and the expected result follow-
ing implementation of the solution. Most
often, the case base is developed incremen-
tally over time as users find and solve new
problems.

When a new problem is encountered, an
analyst enters the characteristics or symptoms
of the new problem as a new case. The CBR
system searches the existing case base for
cases that match and then displays a set of
closely matching cases. Cases are ranked to
indicate the degree of match between an old
case previously stored in the case base and the
new case.

If there are no exact matches, adaptation is
often performed where a closely matching
case is adapted to fit the new situation. There
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are two types of adaptation: manual and
automatic. In manual adaptation, a user
modifies a closely matching case manually.
The modified case is then stored so that it can
be reused when the problem occurs again. In
automatic adaptation, the system automati-
cally adapts an existing case. This adaptation
is typically performed using a set of rules that
describe how an existing case should be
adapted.

Case Problem

Userentersa Faature {3\- 3‘5‘& {3\‘ < Solution
re
description of FeatureC ValueC Description
anew problem : \wmm Steps
Targe! FeatureN ~ Value N | posuit
Cases areranked
(darkershade indicates
X closer match)

lication Domal
Am'l(nc\rlleds;e an

CBRsystem searches Manual adaptation:
formatches System *leamns’ new
sttuation as user manually
Automatic adaptation: modifies an existing case
System will "learn® by
automatically adapting

exlsting cases to solve
new problems using rules

Figure 1. CBR Approach to Problem
Solving

Advantages to CBR Approach

The CBR approach to problem solving has
many advantages. Solutions to problems can
be quickly derived because past experience is
applied to the current problem. Previously
obtained solutions can be reused rather than
repeating the entire reasoning process each
time the same problem recurs. Novices can
use a CBR system to quickly obtain solutions
to problems without a deep understanding of
the process involved in deriving the solution.
Also, with CBR, novices are prompted for the
important features and do not have to remem-




ber what is important, which makes CBR
systems useful training tools. Finally, past
correct solutions and solution paths, as well as
past mistakes that may have been forgotten,
can be reapplied to new problems, eliminating
“reinventing the wheel.” The system becomes
more robust as more cases are added or
existing cases are modified.

Rule-based expert systems have been widely
used to handle problems dealing with auto-
mating the human reasoning processes of
experts. The CBR approach to problem
solving has many advantages over the rule-
based approach. It is often easier to add new
cases to a case base as compared to adding
new rules to a rule base. For example, it is not
always clear what the effect of adding one
rule to a rule base will have on other rules in
the rule base. In CBR, each case is an inde-
pendent entity and does not -interact with
other cases as a rule does when it fires other
rules.

CBR solves problems more similarly to the
way humans solve problems. Humans most
often use what they already know in solving a
new problem, reapplying a previous solution
path and solution, rather than generating a
new solution every time. They adapt what
they already know to solve a current problem.
Because cases are more understandable to the
end user or expert, CBR systems are easier
for a human to understand, build, use, and
maintain, which also makes knowledge
acquisition easier. However, as with any
intelligent system, users must be cautioned
not to blindly apply the recommended solu-
tion without thoroughly evaluating it to
ensure that it is indeed the correct one.

Two types of problems are most suited to the
CBR approach: (1) those where a significant
number of past experiences or cases are
available that are applicable to new problems
and (2) problems where all solutions or
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expertise are not known in advance or where
the domain is not well understood.

Rationale for Choosing CBR

Based on the characteristics of the trouble-
shooting problem, we felt that the CBR
approach was a suitable approach for trouble-
shooting for several reasons. Pacor II con-
ventional software is under development.
Therefore, the necessary troubleshooting
expertise for Pacor II does not currently exist.
However, a troubleshooting assistant could be
developed for Pacor II analysts from existing
mission experience and, subsequently, for
logging Pacor II troubleshooting sessions
after Pacor II becomes operational. A Pacor II
troubleshooting system could be developed
incrementally as knowledge is gained. Also,
analysts could take a major part in populating
an initial case base during development, after
case base design is stable, and they can
perform their own maintenance during
operations.

Methodology

ESDM describes a standard methodology to
follow when developing an expert system.
Because requirements are unknown at the
beginning of an expert system project, by
developing a series of progressively more
complex prototypes, requirements will be
identified and validated. ESDM is based on
an iterative life-cycle model or spiral model.
Each iteration adds knowledge about what the
human expert does and what the requirements
should be for the system. Each iteration also
reduces the risks and uncertainties about the
feasibility and practicality of using expert
system technology for a given system.

ESDM is composed of five stages. The
product of each stage is an executable proto-
type. We are using ESDM for this project and



have developed the first-stage prototype or a
Feasibility Stage prototype.

The prototype produced during the Feasibility
Stage automates one or a few key functions of
the human expert and concentrates on feasi-
bility issues.

Prototype Implementation

We have developed a proof-of-concept
prototype that assists analysts in troubleshoot-
ing data quality problems. If the quality of the
data received in the DCF is below a certain
level, the analyst must determine the cause of
the problem and decide if the quality of the
data can be improved before it is forwarded to
the DDF and to scientists.

The initial prototype is composed of a set of
12 cases. We expect the final system to
contain about 100 cases. The cases range in
level of detail from very broad, network-type
anomalies to very specific, spacecraft-related
anomalies. Categories of cases were classified
into four general types:

e Spacecraft problem or spacecraft to
ground station link problem
Ground station to NASA Communica-
tions (Nascom) (GSFC) link problem
Nascom to GSFC Building 23 inter-
building data distribution re-
source/interbuilding data transmission
system (IBDDR/IBDTS) link problem
BDDR/IBDTS to Pacor II link/Pacor I
internal problem

The initial case base contains cases from the
first three categories. Six of the cases are
from Pacor I and six are from the HST DCF.

Each case is composed of a title to identify a
case, a set of symptoms or a description of the
problem, a description of the cause of the
anomaly (solution description), and an

explanation of what an analyst should do to
handle the anomaly (action). Figure 2 pro-
vides a sample case.

Title: Nascom to Sensor Data Processing

Facility (SDPF) Link Problem

Problem Description:

Frame-level errors—Cyclical
code (CRC)

Block-level errors—>Polynomial errors

System  results match—Generic
Recording System

Packet errors—Missing packets or gaps

Percent recovery—Greater than 100%

Data Type—Playback Recorder

Data Inversion Performed—No

Gap characteristics—No gap in block time

100% recovery—7Yes

Inversion flag changes and frame synch
pattern is valid but inverted—No

Duration of gap—Less than 4 minutes

Number of missing packets—Greater than 1

Frame CRC corresponds to each packet gap
location—Yes

Location of frame errors corresponds to
location of block errors—Yes

Solution Description: Link problem between

Nascom and SDPF

Action: Notify the Payload Operations

Control Center and request a retransmission

from the ground station. Request Nascom

support for line checkout.

redundancy

Block
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Figure 2. Sample Case

To match a new case with a case stored in the
case base, a similarity assessment technique
must be defined. In the prototype, the simi-
larity between two cases is calculated by
generating a score that indicates the normal-
ized sum of the number of features that match
between a new case and a case stored in the
case base. Features that describe the symp-




toms leading to a problem are used in
generating this score.

Figure 3 illustrates a sample prototype screen.
At the top of the figure, an analyst has entered
the characteristics of a current acquisition
session. All of the closely matching cases
retrieved from the case base are displayed at
the bottom. Each line contains a score that
indicates the degree of match between the
current case and a stored case, the name of the
matching case, and a brief description of the
problem causing the anomaly. An analyst
may retrieve a stored case from the case base
and compare it to the case describing the
current situation.

We currently use manual adaptation. If no

Help

ESTEEM Application Interface

exact matches are found, an analyst reviews
the cases provided to see what other analysts
have done in the past and decides if any of the
proposed solutions are applicable to the
current situation. If this is a new problem, an
analyst may build a new case by entering the
characteristics of the new problem, including
the proposed solution. Later the solution may
be verified or changed to a better solution,
other incorrect solutions that were tried and
discarded may be added, or alternate suitable
solutions may be added.

Tool Chosen

The prototype was developed using the
ESTEEM CBR tool, developed by Esteem
Software Incorporated. ESTEEM is

a

Enter Target Case

,ﬁ} ._ o
b‘i
3&:\} ,,,» g/(;

FramelLevelErors CRC

BlockLevelEmors PED

SystemResultsM atch GBRS

PacketEmors MissingPacketsGaps
PercentRecovery GreaterThan100Percent
DataType PlaybackRecorder

Score Case Name

100 NascoaSDPFLinkPEDLink problem betveen Ha
94 GSHascomlLinkPED Link problem betveen gr
71 DataGaps Frame CRCs detected in

71 PacketFill Bad spacecraft time cau
53 NascoaSDPFLinkPSNLink problem between Na
47 GSHascomLinkPSH ILink problea betwveen gr
41 YarmRestart Varm restart on board =
29  LossTDRSSSupport Loss. of data in downlin
29 DoubleDunp Double dump from spacec

AR AR R AR R AR AR AR A AR AN KA AAN AR SR ANAAN SIAAN A8 XA MANS AR AR SN SR IR ARS SRR 7 50

Retrieved Case List

ProblemDescription

Figure 3. Sample Screen
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standalone tool that runs on an 80486 IBM-
compatible PC with 16 megabytes (optimal,
4-megabyte minimum) of memory, 5 mega-
bytes of hard disk space, and a VGA monitor.

Future Issues

A major result of prototyping was to uncover
issues that must be addressed in subsequent
work. During maintenance in the operational
environment, many analysts will have access
to the case base. It needs to be determined if
all analysts or if only the most experienced
analysts will be permitted to add new cases to
the case base. Also, it is very likely that
analysts will have differences of opinion
concerning the correct problem resolution. It
needs to be determined whether all possible
solutions or the most popular solutions will be
added. Having alternatives could prove to be
useful for situations where a close match is
not found and an alternative solution is more
suitable.

It is expected that in the operational environ-
ment, cases will evolve over time. A solution
that an analyst initially thinks to be good
could turn out to be in error, or an alternative
solution may be better. The CBR system must
be capable of evolving through this process.

For the prototype, we defined a set of features
that describe the characteristics of the prob-
lem, the recommended solution, and the
actions for handling the problem. For subse-
quent prototyping efforts, we need to deter-
mine if this set of features is suitable for all
types of problems that analysts typically
handle and for new, not-yet-encountered
Pacor II problems. We need to determine if
other information might be useful, such as
other solutions tried that proved inadequate,
additional background information or defini-
tions for the inexperienced analyst, diagrams
on how to fix a problem, and steps to follow
to uncover the problem. A small analyst team
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has provided the expertise to build our initial
prototype. The prototype must be evaluated
by other analysts.

Because the Pacor II environment is UNIX
based, we plan to port the prototype to the
UNIX environment. The operational system
will run as a tool for analysts who will extract
feature values directly from the Pacor II
database to minimize operator input. The final
system will generate trouble reports antomati-
cally following an evaluation. Subsequent
efforts will also include extending the case
base and upgrading the computer-human
interface.

Conclusion

This prototyping effort represents a novel
approach to solving the troubleshooting
problem using CBR. With advanced tech-
nologies such as expert systems, more auto-
mation can be introduced into operations, thus
reducing life-cycle costs. Expert systems have
been developed to handle troubleshooting
using the rule-based approach. However, due
to some of the unique characteristics of the
Pacor II environment, the requirements of
operations analysts, and the shortcomings of
rule-based systems, an alternative approach
was tried. This paper describes an initial
proof of concept for the troubleshooting
problem using CBR. A significant result of
prototyping has been to confirm our hy-
pothesis—we feel that this approach is a
viable one for the troubleshooting problem.
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A. William Stoffel
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NASA, Goddard Space Flight Center,
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ABSTRACT

The Intelligent Command and Control (ICC)
System research project is intended to provide
the technology base necessary for producing an
intelligent automated command and control
(C&C) system capable of performing all the
ground control C&C functions currently
performed by Mission Operations Center
(MOC) project Flight Operations Team (FOT).
The ICC research accomplishments to date,
details of the ICC and the planned outcome of
the ICC research, mentioned above, are
discussed in detail.

INTRODUCTION

Beginning this year and extending into the
foreseeable future mission operations personnel
are being required to operate more complex
ground systems with less flight operations team
(FOT) personnel and lower budgets than in the
past. The Intelligent Command and Control
(ICC) system research is intended to provide
the technology base necessary to solve these
problems through automation and intelligent
machine Case-Based reasoning and decision
making. The need for the ICC is due in some
cases to the fact that FOTs will be asked to
command and control (C&C) more complex
missions such as those of the Earth Observing
System (EOS) and in others to the fact that
FOTs will be required to operate several
spacecraft concurrently from the same Mission
Operations Center (MOC), such as in the case
of the Small Explorer (SMEX) and the
International Solar and Terrestrial Physics
(ISTP) missions. These facts require that we
develop an intelligent C&C system which is
capable of acting as a cooperative assistant to
the FOT, reduce the workload of existing
FOTs, and reduce the cost burden of creating
ever larger FOTs.
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DEFINITION

The Intelligent Command and Control (ICC)
System is designed to ultimately produce the
technology necessary for development of a
highly intelligent automated machine based
C&C for Spacecraft mission operations which
is capable of performing all the C&C functions
currently performed by FOTs. While that is the
ultimate goal, it should be noted that many
very valuable interim products are being
produced and will be produced which are and
¢an be used to improve, automate, and reduce
the cost of MOC operations.

This project was originally planned as a five
year research project but, while interest in the
ICC research is very high in the Space Ops and
process control communities, funding has been
halved and therefore the end-point of the ICC
project is now 8-9 years out from the original
start point of April, 1993.

A detailed description of the technology
involved is provided later in this paper.

Program Objectives

The following are the objectives of the ICC
research and development program:

1. To demonstrate that we can improve and
simplify spacecraft MOC command and control
by building and operating a real time Intelligent
Command and Control (ICC) system utilizing
Al, object oriented techniques, & animated
graphical user interfaces.

2. To create a command and control
system that can act as a cooperative member of
an FOT.



3. To demonstrate that Mission Operations
Center (MOC) Command and Control
functions can be fully automated and that such
a system can perform intelligent machine based
decision making.

4. To demonstrate that such a system
would show tremendous savings in both
development and operating costs by:

* Limiting or reducing the number
of FOT personnel.
* Intelligently automating

spacecraft MOC functions to the point where
management by exception can become a reality.

* Reducing operator error through
more intuitive user interfaces, automation, the
use of true machine decision making, and the
application of standardized commands.

Technical Approach

The technical approach we have chosen to
accomplish these objectives is as follows:

1. Establish a collaborative activity among
the Mission Operations Division’s (MOD)
technology and operations groups, academia,
and private industry.

2. Survey and evaluate existing advanced
technology products available for possible use
in the ICC.

3. Select and use an existing command
and control system as a baseline with which to
-compare the ICC.

4. Prototype & evaluate the ICC using
reiterative validation and development
techniques.

5. Perform a side by side evaluation of the
ICC and the baseline C&C.

Completion of ICC Research

Successful completion of the ICC research
project is defined as completing a successful
side by side test of a working ICC prototype
and the baseline C&C. The comparison of the
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baseline C&C with the ICC will involve five
steps:

1. Collecting data on the current or
baseline C&C. -

2. Turning off the baseline C&C
and taking over all C&C functions with the
ICC prototype for at least one pass.

3. Collecting data on the ICC
prototype. ‘

4. Turning off the ICC prototype
and returning command and control to the
baseline C&C.

5. Steps 1 through 4 above will be
repeated until sufficient data on the
performance and reliability of the ICC
prototype has been collected to establish the
results and conclusions of the ICC research.

Significance and Benefits

The following benefits potentially apply to all
future NASA missions. Specific and strong
interest in the ICC research, its results and
products have been received from the following
projects and organizations: ISTP, SMEX,
Hubble Space Telescope (HST), EOS, and the
Network Management and Operations Support
(NMOS) Flight Projects Support Division, and
the European Space Agency (ESA).

Expected benefits of the ICC research are:

1. Reducing operator error through
more intuitive user interfaces, automation, and
selection of standardized commands.

2. Lowering system supervisory
costs through the use of management by
exception.

3. Limiting or reducing the number
of FOT personnel.
4. Faster, more cost effective and

robust spacecraft system status, and operations
simulators and models.



5. Simplified and reduced cost of
training through the use of a command and
control system which is both more generic, or
standardized, for all missions, and internally
more flexible (i.e. easier to modify for
specific missions).

Accomplishments

Accomplishments to date are as follows:

1. Completed technology survey.

2. Completed 1st Transportable Payload
Operations Control Center (TPOCC) Task
Analysis (SMEX).

3. Completed ICC Prototyping Plan .

4. Completed Operator Function Model.

5. Completed initial ICC MOC Simulator
which accepts actual TPOCC data as input .

6. Completed Task Analysis of Anomaly
Detection and Correction Processes.

Deliverables and Future
Accomplishments

The deliverables and accomplishments
expected for the remainder of the ICC research
project are as follows:

FY ‘94

7. Develop Case-Based+ Reasoning Tools
for ICC.

8. Develop Advanced Tutor-Aid Paradigm
for use in ICC (described below).

9. Complete Automation Analysis for
implementation of control center management
by exception.

10. Complete Second Task Analysis
(ISTP).

11.  Complete initial, basic research - ICC
Prototype.
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FY '95

12.  Conduct reiterative redesign and
reevaluation of basic ICC prototype.

13  Complete detailed architecture (both

structural and functional) of the ICC Inference
Engine.

FY '96
14. Construct robust ICC MOC Simulator.

15. Begin construction of ICC inference
engine.

FY '97

16. Complete Construction of ICC
inference engine.

17.  Conduct reiterative Integration and
Testing (I1&T) of ICC components.

18.  Assemble ICC components into robust
ICC prototype.

FY ‘98

19. Conduct reiterative I&T, evaluation,
and redesign of complete robust ICC
prototype.

20.  Conduct sided-by-side test of ICC and
baseline C&C.

Item Twenty (20.) marks the end of the
research phase of the ICC project.

Technology Description

Functional Description:

Downlink Telemetry
Handling:

The completed operational ICC when fully
integrated into MOD operations will reside in
the TPOCC workstation accepting data from
the Front End Processor (FEP) Data Server
Task (DST) and consist of the following: An



intelligent object oriented command and control
system capable of accepting downlink telemetry
in real time, and passing the telemetry (or
database) updates to the ICC Reasoning
Machine (RM). The RM, or inference engine
using case based, and most probably a
combination of AI machine reasoning
techniques, will match the input with robust
spacecraft and ground control system
models/simulators and then decide what actions
should be taken based on that information. The
ICC will decide whether these actions are to be
taken by the ICC directly, sent to the human
operators (FOT) for further action, sent to other
ground control systems (e.g., small Generic
Systems Analyst Aid [GenSAA] built expert
systems), or other users (e.g., Primary
Investigators, or subsystem engineers) . What
actions the ICC takes can be preset by the FOT,
have default settings or be based on previous
cases or extrapolations from such cases.

Uplink Commanding:

The Command side of the ICC will be capable
of acting cooperatively as another member of
the FOT. It will be capable of accepting and
sending commands in real time, from a number
of sources: default routine commands set by the
FOT prior to the mission, commands set by the
FOT for a given pass, Reasoning Machine
ordered commands sent in response to
electronic input. Whatever the source of the
commands, it is currently envisioned that they
will be converted from either operator
graphically generated commands or RM
generated commands into the Systems Test and
Operations Language (STOL) commands that
will be processed by the existing STOL
Processor. That is our current plan, although
we may find that the ICC can bypass STOL
and go directly from machine generated
commands or human graphically generated
commands to a lower level language.

User Interface Description:

The user interfaces (UI) will be, mostly,
graphical animated user interfaces. The
guiding principle behind any UI design and the
first question which will be asked in designing
each user interface will be "What type of user
interface most enhances task (and thereby
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mission) performance?" Therefore some user
interfaces will be two dimensional graphical
animated interfaces (such as those currently
used in the operational Visually Inspectable
Tutor and Assistant [VITA] training system
[Chu, 1991]). Others will be real time
interactive 3D graphical animated interfaces
(such as those being developed for the 1997
Hubble Space Telescope (HST) Servicing
Mission), some will use voice interactive
interfaces, and still others will be alpha-
numeric command line interfaces. The idea is
to apply the most effective type of interface for
the task to be accomplished and this will be
determined by a reiterative process of
prototyping and prototype evaluation using
FOT personnel to conduct the evaluations.

Detailed Description of
Conceptual Deliverables:

The following descriptions and discussions are
derived primarily from work conducted under a
NASA grant by Dr. Christine M. Mitchell of
the Georgia Institute of Technology (Mitchell,

1994).
SAMPEX Operator
Function Model:

The Operator Function Model (OFM) is a
hierarchical-heterarchical decomposition of the
FOT functions required to carry out real-time
operations involved in satellite ground control.
The OFM provides a detailed normative model
specifying how operations are intended to be
carried out. The OFM is hierarchical. At the
highest level it specifies the components that
comprise the overall real-time operations: pre-
pass, on-pass, and post-past. It decomposes
each function into its component activities that
may be mapped to lower levels including sub
functions, and tasks. At the lowest level, the
OFM specifies operator actions, both, manual
(e.g., issue this command) and cognitive (e.g.,
check the current state of the power subsystem)
needed to carryout individual tasks. The OFM
is both heterarchic and dynamic. Its
components depict the concurrent activities
typical of satellite ground control (e.g., execute
and monitor-a command to ensure that it is
properly carried out at the same time as running
procedures to up-load another command). The
dynamic component provides the context:



triggers represent how new operator activities
manifest themselves as a result of system
events and previously executed operator
actions.

SAMPEX Task Analysis
of Anomaly Detection and
Correction Processes:

This analysis is intended to understand how
often and what happens when unanticipated
events and anomalies occur. The study
addresses events that occur post launch and
early orbit (L&EQ), i.e., examination of those
events that are considered to have occurred
during the SAMPEX nominal operations
phase. In particular, the study documents for
each anomaly (other than those identified by
one of the SAMPEX experts as a peculiarity of
the L&EQO) the process of 1) failure detection
(i.e., when, how, by whom was the anomaly
first noticed?); 2) failure management (i.e.,
how long, and what happened, between the
time when the anomaly is first detected, and
when corrective action is initiated); 3) fault
compensation (i.e., what was done, who did it
(with emphasis on the decision maker's
qualifications, e.g., spacecraft analyst,
command controller). The study will include
identification of time required to resolve the
anomaly and distribute information to the FOT.
This study will be coordinated with the
SAMPEX OFM, particularly with respect to the
issue of non-preplanned activities. Recall, the
OFM will include comments on what actions
are pre-planned (always, usually, sometimes),
opportunistic (i.e., planned and executed on the
fly without inclusion in the pass plan). In the
latter case we will attempt to document the
types of opportunistic activities undertaken and
the personnel who formulate and execute them
(e.g., lead analyst, spacecraft engineer).
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Case-Based Reasoning for
Real-Time Ground
Control Operation:

" Building a
Knowledge Base of

Experience of
Real-Time Decision

Making:

This component of the ICC project will
investigate the use of case-based reasoning
technology to accumulate a knowledge base of
actual operations experiences and,
subsequently, to use that experience as aid or
advice in an intelligent decision support
system. Initially such a system monitors real-
time operations forming a knowledge base that
reflects the range of nominal operations. As
unplanned and/or anomalous events occur the
case base grows, in fact it automatically learns,
broadening its knowledge base to include
operations experience accrued in managing
these unanticipated events. Such a system uses
case-based reasoning technology to build an
extensive repository of operations experience--
i.e., cases, that over time, can function as the
knowledge base for an autonomous system.
This project represents one of the first
applications of case-based reasoning to real-
time decision making and system control. It
provides an alternative, and potentially richer,
knowledge base than such applications as rule-
based systems. Given the extent of operational
experience that comprises the foundation of
FOT expertise, a case-based system that can
learn from skilled operators is a promising way
to encapsulate and capitalize on human
experience and subsequently make it available
to both other operators and intelligent systems.

The Tutor-Aid
Paradigm

This project builds on the highly successful
VITA intelligent tutoring system as the first
component of an integrated tutor-aid
architecture. The tutor-aid paradigm proposes
that an effective approach to operator aiding
and training is the integration of aiding and
training into one comprehensive system that



differentially responds depending on the skill
level of the operator.. An integrated tutor-aid
provides a great deal of assistance and guidance
to unskilled operators, i.e., operators-in-
training; as the operator skills increase the tutor
becomes less active and transitions into a well-
understood assistant. The tutor-aid paradigm
promises to be very effective. An integrated
tutor-aid system is cheaper to build and
maintain. Functionally, a versatile and
intelligent tutor is likely to evolve into a well-
understood and trusted aid. The knowledge
bases that support an intelligent tutor-aid
system (e.g., system and task models of what
to do, how, and when) are exactly those
needed for more autonomous system operation
and control.

ICC-TPOCC (A Real-

Time Simulator of the
Operator Interface to
TPOCC-Based Ground

Control Systems):

Another component of the ICC project is the
development of a research/experimental
testbed, the ICC-TPOCC testbed. In addition
to research concepts exploring intelligent
systems for operator aiding and training, the
ICC project is concerned with proof-of-concept
demonstrations and evaluations of these
technologies. Long term, the intent is to
provide a side-by-side demonstration
comparing conventional operations with
operations incorporating the proposed aiding
systems. In the interim, the individual research
efforts can be demonstrated and empirically
evaluated in the context of the ICC-TPOCC
testbed. The ICC-TPOCC testbed is a real-time
simulation of the operator interface to the
satellite ground control system. It is modeled
after the SAMPEX TPOCC mission operations
center operations. The testbed provides the
ICC project with the ability to implement the
proposed system, and using NASA operations
personnel as subjects, conduct experiments that
compare current and proposed systems.

Automation Analyses:

Two studies comprise the final component of
the ICC: an in-depth analysis of the feasibility
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of a completely autonomous control center and
a statement of working assumptions that
underpin the belief that an autonomous control
center is possible. The feasibility study will
examine the existing facilities and procedures
integral to satellite ground control, specifically
focusing on impediments to a completely
autonomous control center (why are operator's
needed and what do they do). As impediments
to intelligent automation are identified, the
study will attempt to suggest technological
alternatives to the impediments. The sets of
impediments and technological alternatives
define the basis of the second study. This
study will articulate a set of working
assumptions that define the operating practices
(current or needed in the future) essential to
moving to fully autonomous ground control
operations.

State of the Technology

Current technology in operational use employs
windows and some point and click interfaces
but is still highly tied to alpha-numeric
command line and telemetry display
technology. Very little artificial intelligence
(AI) and animated real time graphics is built
into any of the current operational command
and control systems.

The technical challenges to developing the ICC
lie, first, in the area of developing the most
intelligent inference engine possible, second, in
determining the most intuitive and cost effective
graphical animated user interfaces. The third
area is that of developing robust spacecraft
simulators/models. The fourth technical
challenge is that of integrating the ICC with the
TPOCC systems.
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ABSTRACT

Reliable radio astronomy support of
Space Very-Long-Baseline-
Interferometry missions by ground
radio telescopes is mandatory in
order to achieve a high scientific
return from the missions. The 70m
DSN antennas along with other
ground radio telescopes will perform
as the ground segment of the Earth-
Space interferometer.

Improvements of radio astronomy
VLBI operations at the DSN to
achieve higher reliability, efficiency,
flexibility and lower operations costs
is a major goal in preparing for radio
astronomy support of SVLBI. To
help realize this goal, a remote
control and monitoring mode for
radio astronomy operations at the
DSN is been developed.

1. INTRODUCTION

Two Space Very-Long-Baseline
Interferometry (SVLBI) missions are
to be operational during the second
half of the 1990's. The spacecrafts
and Space Radio Telescopes (SRT)
will be designed, manufactured and
launched by the Japanese (VSOP)
and Russians (Radioastron).

In addition to the flight elements, the
network of ground radio telescopes

NE PAGE BLANK MOT FLMED

767

which will be performing co-
observations with the SRTs are
essential to the mission.
Observatories in 39 locations
around the world are expected to
participate in the missions [1,2].
They should provide co-observing
support with detection of signals
from celestial sources in L,C, K-
bands for VSOP and Radioastron,
and additionally P-band for
Radioastron, two circular
polarizations at each channel and
recording of signals in VLBA/MKIV
compatible formats.

The 70m DSN antennas along with
other ground radio telescopes will
perform as the ground segment of
the Earth-Space interferometer.
DSN radio astronomy co-
observations for future Space VLBI
missions will play a special role due
to the performance of the faciiities
(longest baselines, co-location with
spacecraft data acquisition and
phase link stations, 70m class of
antennas with 22 GHz antenna
efficiency up to 40-50%), and the
inherent reliable operability of the
DSN which is oriented to supporting
routine operations (daily for 3-5
years).

The importance of DSN co-
observing support for SVLBI
missions is recognized by DSN
management as evidenced by their
preliminary allocation of DSN 70m
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time in their long-range resource
allocation plan. The value of the
DSN 70m network to SVLBI

- missions' efficiency is illustrated by
Fig1. (Courtesy of D.Meier, JPL).
This figure shows an estimation of
SVLBI mission efficiency (percent of
time per orbit actually used for
observations by a SRT) vs average
DSN 70m usage for co-observing
with a SRT. The change of
efficiency for a SVLBI mission can
be significant due to a change in the
level of the DSN co-observing
support [3].
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Preliminary consideration of the
DSN 70m co-observing
requirements and cost estimates for
corresponding upgrades of the DSN
systems did show that upgrading
the existing DSN capabilities is the
only way to keep the cost upgrades
at a reasonable level and satisfy
minimal requirements for SVLBI
mission co-observing support.
Another condition is to accept a
lower than is usually used for s/c
operations reliability of DSN
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operations to maintain radio
astronomy support for SVLBI.

Three main areas of activities are
under development to upgrade
DSN VLBI radio astronomy
performance and to provide
adequate and reliable co-observing
support: -
- improvements of the current VLB
Radio Astronomy operations;

- renovation of radio astronomy
receiving systems and upgrade of
the MKIll to MKIV VLBI recording
system;

- testing equipment and training
operations personnel.

Some of these upgrades are part of
an ongoing improvement of DSN
radio astronomy capabilities. Others
are specific to the SVLBI missions.

The purpose of this paper is to
describe ongoing improvements of
the current VLBI Radio Astronomy
operations at the DSN in order to
meet SVLBI co-observing
requirements.

2. DSN OPERATIONS
CONCEPT TO SUPPORT
SVLBI RADIO ASTRONOMY
CO-OBSERVATIONS

improvements in VLBI Radio
Astronomy operations at the DSN to
achieve higher reliability, efficiency,
flexibility and lower operations cost
is one of the major goals in
preparing for DSN co-observing
support of SVLBI. These
improvements will also resuly in
major advancements in the DSN's
support of other radio astronomy
activities.

Radio astronomy co-observing
support for SVLBI is very similar in
structure and content of the



observing sessions to Radio
Astronomy and Special Activities
(RASA), but the volume of SVLBI co-
observing activities is expected to
be a few times more (yearly
average) than the regular volume of
RASA activities at the DSN.

Because of this, it is logical to
improve the operations performance
of existing DSN VLBI radio
astronomy activities to meet
requirements for SVLBI co-
observing.

2.1. SVLBI co-observing
concept

The required operations reliability
for the DSN 70m antennas serving
as radio telescopes in support of
SVLBI is 90-95%. The SVLBI
projects (VSOP and Radioastron)
will provide the schedule for
observations (DRUDG file) one
month in advance, but in cases of
"Targets of Opportunity,” the
telescope has to be able to change
its configuration and support a new
program for observations in three
days.

Essential improvements in hardware
to be used for co-observing are
needed: use more reliable
equipment, (e.g., instead of masers
use HEMT LNA), provide spares,
backup receivers and recorder,
improve status of monitoring and
calibration. Flexibility in operations
can be provided through fast and
simple ways to change operations
configurations and modes, and
through the standardization of
operations procedures.

The goal of significantly improving -
operations performance without
increasing the cost of operations
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can be achieved by reducing the
amount of hands-on activity and
automating routine activities as
much as possible. Since the largest
component of operations costs is the
staff, by introducing automated and
remote operations the costs can be
lowered [4].

2.2. VLBI Radio astronomy
operations functions and
operations scenario

Existing VLBI Radio astronomy
operations functions performed at
the DSN, excluding the time
allocation on the DSN, are listed in
Table1.

The proposed improvements
include:

(a) automatically processing
DRUDG files (VLBI radio astronomy
schedule files) received from the
SVLBI project via Internet to DSN
Predicts;

(b) remote monitoring and control of
receivers (K, L, C-bands) by using
dedicated Radio Astronomy
computers connected with a
computer at JPL via Internet at each
DSN site;

(c) capability for remote monitoring
of the antenna position and recorder
status;

(d) station personnel will perform the
initialization, calibrations (Antenna
Gain Curve, Tsys) and tape logistics.

Radio Astronomy operations at the
DSN are working toward an
automated and remotely-controlied
configuration such as is shown in
Figure 1. As this capability develops,
it may be an attractive resource for
future SVLBI co-observing support
possibilities.



VLBI radio astronomy operations functions at the DSN

Staff

Functions
DRUDG to Antenna predicts NOA VLBI
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DRUDG to Briefing Message Network Operations Project Engineer for RASA
Antenna configuration® Deep Space Complex operations staff
Controi Antenna pointing Deep Space Complex operations staff
VLBI Recorder Deep Space Complex operations staff
Receivers Radio Astronomy engineer
Boresighting Deep Space Complex operations staff
Calibration Tsys Deep Space Complex operations staff

Gain curve/nonlinearity

Radio Astronomy engineer

System coherence test

Radio Astronomy engineer

Antenna status

Deep Space Complex operations staff

Monitoring VLBI Recorder

Deep Space Complex operations staff

Receivers

Radio Astronomy engineer

Tapes change

Deep Space Complex operations staff

Tape logistics  [Log file

Deep Space Complex operations staff
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Deep Space Complex operations staff
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Figure 1. DSN VLBI RA operations configuration for 70m subnet
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The majority of the radio astronomy
community, including the SVLBI
projects, in order to schedule VLBI
co-observing, produce a generic
scheduling file referred to as a
DRUDG file. Because the DSN is
used for a wider range of
measurements than only VLBI radio
astronomy (e.g. navigation, TM), the
DSN uses its own scheduling
format. DSN stations are incapable
of reading DRUDG files. For this
reason, someone must perform the
conversion of DRUDG files to DSN
nredicts. SVLBI co-observing will
require performing this activity much
more intensively, basically every
day. As result, this operation
becomes very labor intensive.
Automatically processing of the
VLBI radio astronomy schedule files
(DRUDG files), should eliminate or
significantly decrease the workload
to execute this function.

The Radio Astronomy Server
(workstation) located at each station
or in JPL, will automatically convert
DRUDG files coming from the Space
VLBI project to DSN predicts.

To provide security for DSN
operations, it is required to have an
"air gap" when information comes
from outside the network it is
transferred to inner network
computers on diskette. The radio
astronomy controller will serve as an
additional filter to allow only
commands which are permitted by
the DSN complex. Finally, the
observing program loaded on the
Radio Astronomy Controller can be
initiated only from the Complex
Monitor and Control computer. In the
future, the "air gap" may be
eliminated with operations being -
remotely executed from the JPL
control /monitor computer.

771

For planned SVLBI co-observations,
a number of different DSN RA
configurations are considered. The
number of configurations is
estimated to be 3 receivers x 2
polarization's x 4 recording modes =
24. An observing program may be -
different from day to day. An
extensive automation of the control
of the antenna, receivers and VLBI
recorder configurations are
necessary to provide reliable
support without increasing of the
workload of the stations personnel.

To monitor the VLBI DSN status
during the observations, the
necessary information wili be taken
from the regular flow of the DSN
status information available in the
Network Operation Control Center
and displayed on the Radio
Astronomy Monitor at JPL.

For Space VLBI co-observing, the
Radio Astronomy Server and
Controller may be considered as a
Project resource for generating the
required input files for the DSN
Network Sypport System (NSS).

The station personnel will monitor
activities on site during the
observations for security reasons,
but the automation and remote
monitoring of many VLBl RA
operations functions can
significantly decrease the demands
on the workforce thus enabling them
to be shared by other projects.

Since by following the above
recommendations the role of the
DSN operations staff for co-
observations will be minimized,
more responsibility for successful
observations must be assumed by
the SVLBI Project. The Project



should be prepared to accept the
higher probability of failures.

2.3 implementation status

A new software for conversion of
radio astronomy schedule files into
DSN predicts is now under
development (N.Vandenberg,
Goddard SFC). The software will
allow conversion of files which will
arrive by the Internet to the Radio
Astronomy Server atomatically and
prepare the DSN predict files to use
for DSN SVLBI co-observing
operations.

The remote monitor control system
development has been completed
and its software has been
successfully tested in Goldstone for
34m antenna operations (J.Leflang,
JPL). The system is under
development for the 70m antenna
in Goldstone, and then will be
implemented on other 70m DSN
antennas

Dedicated RA computers (HP9000)
exist at each complex. The
automation of receiver control was
demonstrated in Canberra DSCC.
This needs to be implemented at the
other complexes. It may be
necessary to upgrade the computers
at the other compiexes to achieve
full compatibility.

The monitor of data flow from DSCC
via MOSO will be available on the
RA computer at JPL in the near
future. Software needs to be
developed for the RA computer.

Antenna monitor data captured
locally at each complex is available
via the Radio Astronomy workstation
at each complex. Software is being
actively developed.
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3.CONCLUSIONS
3. CONCLUSIONS

The new Radio Astronomy VLBI
observations concept is under
development at the DSN to provide
co-observing support for future
space VLBI missions. The concept is
focused on a high degree of
automated operations with
elements of remote monitoring and
control of the VLBI radio astronomy
equipment.

The upgrades will benefit not only
the SVLBI project but also VLBI
radio astronomy and other related
VLBI activities (s/c navigation,
geodesy, astrometry) at the DSN.
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Abstract

Traditional satellite and launch control systems have consisted of custom solutions requiring significant
development and maintenance costs. These systems have typically been designed to support specific
program requirements and are expensive to modify and augment after delivery. The expanding role of
space in today’s marketplace combined with the increased sophistication and capabilities of modern
satellites has created a need for more efficient, lower cost solutions to complete command and control
systems.

Recent technical advances have resulted in Commercial-Off-The-Shelf products which greatly reduce
the complete life-cycle costs associated with satellite launch and control system procurements. System
integrators and spacecraft operators have, however, been slow to integrate these commercial based
solutions into a comprehensive command and control system. This is due, in part, to a resistance to
change and the fact that many available products are unable to effectively communicate with other
commercial products.

The United States Air Force, responsible for the health and safety of over 84 satellites via its Air Force
Satellite Control Network (AFSCN), has embarked on an initiate to prove that commercial products can
be used effectively to form a comprehensive command and control system. The initial version of this
system is being installed at the Air Force’s CEnter for Research Support (CERES) located at the
National Test Facility in Colorado Springs, Colorado. The first stage of this initiative involved the
identification of commercial products capable of satisfying each functional element of a command and
control system. A significant requirement in this product selection criteria was flexibility and ability to
integrate with other available commercial products.

This paper discusses the functions and capabilities of the product selected to provide orbit determination
functions for this comprehensive command and control system.
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Precision Orbit Determination System™ (PODS™)

Introduction

The Precision Orbit Determination System (PODS), developed by Storm Integration, Inc., is a
workstation-based orbit determination system. PODS is layered on top of the commercially-available
Satellite Tool Kit (STK)® produced by Analytical Graphics, Inc. PODS also incorporates the
Workstation/Precision Orbit Determination (WS/POD)™ product offered by Van Martin Systems, Inc.
The STK graphical user interface is used to access and invoke the PODS capabilities and to display the
results. WS/POD is used to compute a best-fit orbit solution to user-supplied tracking data.

The Precision Orbit Determination System (PODS)™ grew out of a need to process antenna tracking
data to determine a spacecraft orbit. The determined orbit can then be used to generate antenna
pointing commands to control a ground antenna. Such a system is necessary for full "closed-loop"
satellite command and control (i.e., from processing of telemetry and tracking data to the transmission’
of commands) and augments commercial command and control systems such as Storm's Intelligent
Mission Toolkit (IMT)".

PODS provides the capability to simultaneously estimate the orbits of up to 99 satellites based on a
wide variety of measurement types including angles, range, range rate, and Global Positioning System
(GPS) data. PODS can also estimate ground facility locations, Earth geopotential model coefficients,
solar pressure and atmospheric drag parameters, and measurement data biases. All determined data is
automatically incorporated into the STK data base, which allows storage, manipulation and export of
the data to other applications.

PODS supports three levels of processing: Standard, Basic GPS and Extended GPS. Standard allows
processing of non-GPS measurement types for any number of vehicles and facilities. Basic GPS adds
processing of GPS pseudo-ranging data to the Standard capabilities. Extended GPS adds the ability to
process GPS carrier phase data.

Requirements

A workstation-based capability is desired for compatibility with other workstation-based products (such
as Storm Integration’s IMT). The system should function stand-alone, but offer interfaces for
integration with other products. A Commercial Off-the-Shelf (COTS) product approach is desirable for
potential resale either alone or integrated with other command and control products. Finally, the
development and certification costs must be kept low, which suggests incorporation of existing, proven
COTS products in the implementation as much as possible.
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Solution Approach

Storm chose two commercial products for incorporation into PODS: Satellite Tool Kit (STK)® by
Analytical Graphics, Inc. (AGI), and Workstation/Precision Orbit Determination (WS/POD)™ by Van
Martin Systems, Inc. (VMSI). PODS consists of these products as well as the additional code and data
required to integrate the products, accept user inputs and provide output data in operationally useful
formats.

Commercial Products

Satellite Tool Kit

STK is a workstation-based, interactive system for analyzing the relationships among satellites, Earth-
bound vehicles, ground stations and targets. STK incorporates both text-based tables and graphics to
display satellite orbits, periods of visibility, access times, and sensor coverage patterns for multiple
satellites, ground stations and targets. The graphics allow animation of satellite constellations to see
how sensor coverage and visibilities change over time and with orbital position.

STK allows the input of initial orbit conditions for satellites, facility and target coordinates, and Earth-
and satellite-based sensor parameters via ASCII text file or Motif-based user interface panels. Output is
displayed via graphical ground traces on a variety of map projections, and tables of access angles and
ranges over windows of visibility. Both text and graphics output can be sent to files for printing and/or
incorporation into other systems.

The STK user interface uses an object-oriented approach for defining and manipulating data. For
example, a Scenario object consists of multiple Vehicle, Facility and/or Target objects. Each of these in
turn may have one or more Sensor objects. Objects are created, saved, and restored separately. Data
for objects are stored in individual ASCII files with pre-defined extensions (e.g., ".v" for vehicle files,
etc.).

STK Programmer's Library

The Satellite Tool Kit/Programmer's Library (STK/PL)™ offers C application programmers access to
the underlying functionality of the STK runtime version. The STK/PL includes header files and selected
source code modules to allow programmers to develop add-on applications that are seamlessly
integrated with the STK user interface, or stand-alone applications that use STK/PL as a library of
functions. The STK/PL includes access to the object manager, user interface, and graphics, as well as
astrodynamics libraries, time and coordinate conversion functions, and the orbit propagators. The
STK/PL is written in an object-oriented manner which allows rapid modification and addition of new
functionality. The PODS User Interface is being developed using the STK/PL.

Workstation/Precision Orbit Determination

WS/POD is a state-of-the-art precision orbit and geodetic parameter determination software system
derived from the GEODYN II Version 8609 software used by NASA's Goddard Space Flight Center
(GSFC). Van Martin Systems, Inc. has ported the GEODYN II software to numerous workstation
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platforms, enhanced it in the area of GPS data processing, and packaged it as a commercially available
and supported product.

WS/POD processes satellite tracking data using a Bayesian weighted least-squares data reduction
algorithm and detailed environmental modeling using a Cowell-type numerical integration scheme to
determine precisely various quantities related to the satellite orbit and tracking stations. Specific
capabilities include the following:

Physical Models Measurement Types
e Atmospheric drag using the Jacchia 1971 * Laser and radar range
atmospheric density model + Radar range rates and dopplers (including
* Solar radiation pressure single and double differences)
¢ Earth gravitation (up to 180 x 180 * Radar altimeter range
geopotential matrix) » Topocentric right ascension and declination
* Polar motion e East and north direction cosines
* Earth rotation ¢ X/Y angles relative to the tracking station
* Solid Earth tides e Azimuth/elevation angles relative to the
* Third body gravitation tracking station
* Earth precession and nutation * GPS pseudo-range and carrier phase,
- & Tropospheric refraction including single, double and triple differences
Parameters Estimated Algorithms and Capabilities
e Orbit state vectors + Cowell-type numerical integration
» Parameters of atmospheric drag and solar + Bayesian weighted least-squares estimation
radiation pressure algorithm
« Measurement and time tag biases + Batch data processing
+ Tropospheric refraction scale parameters + Automatic data editing with criteria specified
+ Satellite and station clock polynomials by the user
+ Earth gravitational coefficients + Simultaneous estimation of up to 99 satellite
» Tracking station coordinates orbits in a single run

WS/POD receives inputs and produces outputs exclusively through files. There is no user interface
provided. Program control is provided by input files of 80-column card images with data in rigidly-
defined column format. Data is provided and produced in ASCII text and binary files, with the file
formats defined in the WS/POD documentation.

Summary

STK offers a state-of-the-art graphical user interface that has been perfected through many years of
development, upgrades and customer feedback. WS/POD offers more algorithmic and data processing
capabilities that any other commercially-available orbit estimation system. WS/POD also benefits from
its NASA heritage, which assures that the algorithms have been tested using a wide range of operational
scenarios over a span of decades
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PODS Solution Approach and Features

PODS is separated into two components: PODS User Interface and PODS External Procedure
(PODS/XP). PODS User Interface is implemented using STK/PL. PODS/XP is a stand-alone program
independent from STK and provides a C-language interface to WS/POD. The PODS functional
breakdown is shown in Figure 1: PODS Functional Breakdown and is described below.

STKPL PODS/XP Input PODS/XP
User Inputs Interface
e Standard P
STK '
PODS/XP Ouput
PODS
Interface

<4l <4
WS/POD
Files

Figure 1: PODS Functional Breakdown

PODS User Interface

STK provides an object-oriented user interface in which the data applies to a selected object (either
Vehicle, Facility or Scenario). PODS data is treated as an extension to the data for the existing STK
object class. This allows STK to store the PODS user inputs in the STK object files and use previously-
entered values as defaults for subsequent runs. This approach also allows PODS input data to be
specified in the ASCII object files instead of through the user interface.

PODS operations are implemented as extensions to the existing STK operations and are invoked via the
standard STK user interface. The PODS input panels are similar to existing STK panels, providing
Motif pull-down menus, on-line help, and standardized range and data format checking.

Numerical outputs from PODS are displayed in standard STK output data windows, which allow
scrolling through the output data, exporting to files, queuing to a system printer, and real-time units and
time format conversions. Selected PODS data (e.g., ephemeris and facility locations) are entered into
the existing STK data structures, allowing STK to display the data graphically and use it as the basis for
accesses and other computations.
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PODS External Procedure

The PODS External Procedure (PODS/XP) provides a C-language interface to the WS/POD product.
It is designed to be independent from the specifics of the user interface, which allows the use of other
user interfaces or calls from external applications. The interface data are consolidated in a series of
structures in header files that are incorporated by the application providing the data (initially STK/PL).
PODS/XP is designed such that calls to it can be made from any C program that makes use of the
PODS structures.

Processing Levels

PODS provide three levels of support for users with a variety of mission requirements: Standard, Basic

GPS, and Extended GPS All levels provide the STK-based graphical user interface and input/output

capabilities. The different levels are licensed externally, allowing users to upgrade without re-

installation of the PODS software. Each level is described in more detail below:

» Standard - Provides the capability to determine the parameters and process the measurement types
listed in the section titled Workstation/Precision Orbit Determination, including processed GPS
position/velocity data. Depending on the quality of the data and models used, sub-meter orbit
positional aecuracies are achievable.

e Basic GPS - Includes the Standard capabilities plus the ability to process GPS pseudo-range data
from any number of GPS satellites and receivers. To achieve a more accurate solution using GPS
data, PODS estimates the orbits of the GPS satellites based on tracking data from ground receivers
rather than using the downlinked GPS navigation data.

* Extended GPS - Includes Basic GPS capabilities and the ability to process carrier phase data. Orbit
position accuracies within 10 cm and ground station coordinate accuracies within 1 cm are
achievable.

Inputs

This section summarizes the available inputs.

Inputs from User

PODS user inputs are provided per STK object (Scenario, Vehicle, or Facility). Scenario inputs apply
to all vehicles and facilities in the Scenario. Inputs per object type are listed below.

Scenario Inputs Vehicle Inputs

e Input tracking data file names and formats * Transponder delay

* Selection criteria for tracking data by time span, * Geopotential model degree and order to be
measurement type, vehicle or facility, etc. used in the force model for this vehicle

¢ Earth flattening coefficient * Vehicle area and mass

¢ Earth gravitational constant and sigma » Initial orbit state vector in a variety of

* Maximum geopotential model degree and order coordinate systems and element forms
for all vehicles (Cartesian, Keplerian, non-elliptical forms,

etc.)

* Span for orbit estimation and/or propagation
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Earth gravitational model coefficients and sigma * Optional unmodeled acceleration and sigma

values values

Solar flux data and times * Solar pressure coefficient and sigma
Magnetic flux data and times * Atmospheric drag coefficient and sigma
Coordinate system reference date value

Data pass definitions * Biases and sigma values for all measurement
Minimum and maximum number of iterations types

Convergence criteria * Covariance matrix for initial orbit elements
Sigma editing criterion * Selection of optional output files

Initial RMS values

Orbit integrator step size
Selection of optional output reports as listed in the
section titled Outputs to User

Facility Inputs Additional GPS Inputs (GPS options only)

* Minimum elevation angle before data is rejected * Names of RINEX files containing GPS

* Facility coordinates (in a variety of coordinate tracking data
systems) and sigma values * Names of navigation files containing GPS

e Coordinate system for station adjustments navigation data

 Facilities which are constrained in position relative ¢ Time span and/or measurement type criteria
to one another for selection/deletion of GPS data

 Earth semi-major axis and flattening overrides for ~ * Radiation pressure model name for GPS
geodetic conversion per station orbit perturbations

* Antenna mounting type and displacement * Identification of hub receivers used in

» Nominal received wavelength construction of single differences

* Turn-around factor (ratio of wavelength » Allowed tolerances between receiver times
transmitted to wavelength received) when forming differences

Biases and sigma values for all measurement types *  Selection of optional output data
Override sigma values for normal equations and

data editing

Temperature, pressure and humidity at facility and

time spans over which the data applies

Inputs from Files

Tracking Data Files - Files containing tracking data (formats described in PODS documentation.
Environmental Files - Files containing Earth geopotential matrix; time system, polar motion and flux
data; and planetary ephemeris.

STK Object Files - ASCII files containing the STK and PODS data (user inputs, estimated
parameters, orbit ephemeris, etc.) stored between runs.
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Outputs

Outputs to User

All user outputs are displayed through the STK user interface. STK provides the ability to change
display units and time systems, export data into a format suitable for use by a spreadsheet program, and
send data directly to a system printer. The Mandatory Outputs are displayed during or after every
PODS run, and the Optional Outputs can be displayed in addition to the Mandatory Outputs at the
user's choice. The items in each output type are listed below.

Mandatory Outputs

* Tracking data summary, including:

Vehicles, facilities and measurements types
for which tracking data exists in the
selected files

Start and stop time of selected tracking data
by vehicle, facility and measurement type
Number of passes

Time span for each pass

Vehicle, facility and measurement types per
pass

* Convergence status (converged/diverged) for
solutions

* Convergence criterion for solution

*  Number of iterations performed

¢ List of parameters estimated

* For each estimated parameter:

A priori value

Estimated value before last iteration

Final estimated value

Difference between final and a priori values
Difference between final and last iteration
values

Final sigma value

Final sigma value multiplied by the RMS
value

Epoch times (for estimated orbits)

e List of STK objects updated

* Ephemeris data (including ground traces) for each
estimated orbit

* New locations for each estimated facility
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Optional Outputs

Correlation and covariance matrices for
solved-for parameters
Last iteration residuals
Number of measurements per type used
in each iteration
Summary per measurement type,
including:

- Name

- Units

- Total number of measurements in

tracking data
- Number used
- RMS and mean value of both the
residual and weighted residual

RMS history per iteration
GPS vehicle orbit elements (GPS options
only)
WS/POD TDF Run File
WS/POD TDF Block Summary File
WS/POD GDF Run File (for GPS
options only)
WS/POD FixClock Run File (for GPS
options only)
WS/POD CNTL Run File
WS/POD EXEC Run File (132-column)
WS/POD EXEC Terminal Output File
(80-column)



Outputs to Files

* Solution Files - WS/POD output files saved after the PODS run. File formats are outlined in the
PODS documentation.

* Environmental Files - Updates to the Environmental Files used by WS/POD.

* STK Object Files - Updates to the ASCII object files with the latest object data.

Applications

Single Satellite Maintenance

One potential application for PODS is the Air Force Satellite Control Network (AFSCN), which
determines the orbit of individual satellites using azimuth, elevation and S-band range and range-rate
from a world-wide network of Remote Tracking Stations (RTSs). Tracking data is generated by the
stations and sent to a Mission Control Complex where an orbit estimation is performed. The new orbit
is used to generate antenna pointing angles, which are in turn sent to the RTSs to drive the antenna for
subsequent contacts with the vehicle.

A typical sequence of events using PODS is as follows:

* The analyst creates the vehicle in the STK database including the initial orbit estimate. This can
either be the result of a previous PODS run propagated to the present time, or generated by STK
using NORAD 2-Line Mean Element Set (2LMES) inputs.

s The tracking data from the RTSs are reformatted into a PODS data format. This can be
accomplished using a database management system, custom program, or text formatting tool such
as UNIX awk.

* The analyst produces a tracking data summary as necessary to display the types and spans of
tracking data available.

¢ After approval of the tracking data contents, the analyst sets the estimation parameters and performs
a PODS estimation run, resulting in a display of solution data and a ground trace for the new vehicle
orbit.

+ After examination of the output, the analyst can elect to accept the results by saving the vehicle
object in STK, or can overwrite the results by reloading the original vehicle object from the data
base.

* The analyst invokes the standard STK Access operation against the saved orbit ephemeris data to
generate antenna pointing angles for the RTSs.

* After viewing the pointing angles, the analyst can export the data to a file for use in controlling an
antenna in real-time.

The saved PODS results supply the input field defaults for the next PODS run for the same vehicle. The
PODS-generated ephemeris data is used by other STK utilities and/or optional add-on STK products.
The analyst can also at any time extend the ephemeris span of a PODS orbit by invoking the PODS orbit
propagator from the STK Vehicle/Orbiting menu.
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Automated Constellation Management

One of the powerful features of the PODS implementation is the ability to process the data for many
satellites simultaneously. This allows management of entire constellations from a single workstation.
The nature of the STK interface and object file storage capability allows inputs to be specified by an
automatic process, eliminating the need for a user to manually enter data for each run.

As an example of such a process, consider a constellation of several dozen low-flying satellites at high
inclination (as is proposed for several commercial global cellular communications networks). Tracking
data for the satellites is collected by multiple ground stations around the world. A process utilizing
PODS is as follows:

* Collect the tracking data for the different stations.

» Using a network management system (such as Storm Integration's IMT) perform the following:

- Reformat into PODS tracking data types. Data from multiple stations and/or vehicles-can be
included in a single PODS tracking data file.

- Automatically generate the PODS inputs and build the STK ASCII object files containing the
PODS inputs per object.

- Invoke PODS for the entire constellation. Graphical results for the entire constellation appear in
STK.

- Automatically save the estimated results for the entire constellation.

- Use the Inter-process Communication (IPC) features of STK to automatically generate
scheduling information, ground station access times and antenna pointing angles for the
constellation.

» The analyst can perform periodic updates of the solar and magnetic flux information, Earth polar
motion and UT1 coefficients using the PODS database management utilities, or these can also be
automated.

e Manual overrides can be used at any time, entered either through the user interface or the object
files.

Initial orbit estimations may require multiple passes of data in order to accurately estimate the effects of
solar pressure, atmospheric drag, and the Earth gravitational field per vehicle. Longer data spans using
multiple stations can also be used to precisely determine the location of the tracking stations as well as
any biases associated with the measurements from the individual tracking stations. The best estimates
of these parameters can be used in the automated scenario described above and can be updated at any
time.

GPS Data Processing

PODS provides a variety of options for GPS data processing. The simplest option is supported by the
Standard level and involves incorporation of GPS receiver point position vectors into an orbit solution.
Vehicles with on-board GPS receivers generally telemeter the position vectors computed by the
receiver. These position vectors can be combined with ground-based measurement types (e.g., range,
range-rate, etc.) to form a single set of data for which PODS will compute the orbit that best fits the
available data. The GPS receiver data can supplement ground-based measurement types, which can
reduce the number and/or required coverage areas of ground stations while still achieving high
accuracy. The GPS data can also be used as a reference to calibrate the ground-based receivers.
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A more sophisticated approach can be supported when the on-board GPS receiver passes along the raw
pseudo-range and carrier phase data. The GPS options of PODS can process these data types directly
to obtain user satellite position solutions with 10 cm accuracy. Processing of pseudo-range and carrier
phase data from ground-based receivers allows determination of ground receiver locations as well as
orbit solutions for the entire GPS constellation with uncertainties below 1 m.

Summary

PODS combines two powerful COTS products, STK and WS/POD, into a single integrated system
combining ease-of-use with high-fidelity algorithms. STK provides a modern graphical user interface
and seamless integration of the estimated parameters with a wide range of existing mission planning and
analysis tools. The integration with STK makes PODS a natural extension of existing STK capabilities.
WS/POD provides powerful computational capabilities with demonstrated reliability due to the heritage
from NASA programs. The system is designed so that it can be entirely configured by the end user with
minimal assistance from the vendor.

Applications of PODS range from single satellite control to constellation management. The three
different processing levels based on inclusion of different types of GPS data allow the user to choose the
level of support appropriate for mission requirements. The open nature of the PODS/STK interfaces
allow easy integration with existing command and control systems.
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Abstract

Operational deep space navigation has in the past, and is currently, performed using
systems whose architecture was originally designed to accommodate tape data transfers and
computing environments with a tiny fraction of the current capability. Additionally, this
architecture requires constant human supervision and intervention. A prototype for a
system which allows relatively automated processing of radio metric data received in near
real-time from NASA'’s Deep Space Network (DSN) without any redesign of the existing
operational data flow has been developed. This system can allow for more rapid response
as well as much reduced staffing to support mission navigation operations.

Introduction

In the past and current practice, deep space navigation operations have been relying
on a system architecture that was designed for tape data transfers. The entire navigational
procedure consists of processing batches of observations to correct spacecraft initial
conditions and then using the corrected initial conditions to regenerate spacecraft trajectory.
This practice not only requires constant human intervention but also makes it impossible to
process data in an automated fashion.

In certain operational scenarios, it is desirable to recursively process data as they
become available and to obtain the most current improvement on spacecraft trajectory (vice
the correction on the initial conditions). Since the current software system can not serve this
purpose, the development of the prototype system, which is dubbed the Real-Time
Automated Filter (RTAF), is intended to fill this vacuum. The fundamental building block
of RTAF is the Extended Kalman Filter [Ref. 1], which allows processing of data one at a
time. The data driven feature of the system takes advantage of the architecture of the X-
Windows Real-Time Display (XRTD) software [Ref. 2]. This system works recursively
and each recursive step consists of the followings. A data point is first obtained and
validated; then the spacecraft trajectory is propagated to the time corresponding to the data;
and then the data point is used to correct the propagated spacecraft trajectory, which will be
used for propagating the spacecraft trajectory when the next data point becomes available.

Interestingly, the Kalman Filter algorithm has been widely used and proven

powerful in many data reduction applications including geo-satellite orbit determination.
However, no utilization of any forms of the Kalman Filter has been documented in the

T Member Technical Staff, Navigation Systems Section, Jet Propulsion Laboratory
1 Technical Manager, Navigation Systems Section, Jet Propulsion Laboratory
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literature of deep space navigation operations. This prototype, once developed fully, may
be the first such application using the Kalman Filter.

Approach

In the RTAF, the models for the spacecraft dynamics and measurements are a
subset of that in the operational orbit determination software in JPL. The spacecraft
dynamics include the n-body point mass gravitational accelerations, solar radiation pressure
with an assumed cylindrical spacecraft geometry, a limited oblateness perturbation, and
accelerations due to maneuver motor burns of finite time length. The measurement models
are restricted to the coherent two-way Doppler with precision light time corrections for
transmission and receiving times, as well as tropospheric delay of the radio signal. Filter
parameters include the spacecraft state (position and velocity) and system parameters.
Currently, the hydrostatic and wet zenith delays of the troposphere are treated as system
parameters. Other examples of system parameters are solar radiation pressure and finite
motor burn direction and duration.

Using the Extended Kalman Filter modeling definition, the spacecraft dynamics are
modeled by first order nonlinear stochastic differential equations, the system parameters by
first order Gauss-Markov process, and measurements by discrete nonlinear equations.

x = f{x(0) (1), 1) + Tl )
q(t) = Aq(t) + u{) @
¥() = BY(0) + B(Y) 3
Atk) = (), (), &, ) ), k=12, 0]

In above equations, X is the spacecraft state vector; q is the dynamic system parameters,

such as solar pressure and maneuver parameters; y is the ground system parameters, for
example, the tropospheric zenith delays. For the measurement model, three times are

involved, the station transmission time t{, the station receiving time t{f, and the spacecraft

transmission time t}, all corresponding to the k-th data point. These times are related via

precision time transformations between station time and ephemeris time as well as precision
light time corrections. Statistical assumptions are the usual ones, such as the noise terms

w, 1, B, and v are uncorrelated and are of mean zero. Data validation is a simple minded
approach currently, which is to check that each raw data point lies within a specified
deviation limit. Data outside of this limit is discarded.

The data flow from NASA’s DSN to the navigation workstation is accomplished
via the same interface as is used with the XRTD software system (Ref. 2). This system
taps into the already existing radio metric information stream. Data flows from each DSN
antenna to the Ground Communications Facility (GCF) located at JPL. From this facility,
the data flows to VAX computers which serve the Radio Metric Data Conditioning team, a
part of the DSN's Multi Mission Navigation Team at JPL. At this point, an auxiliary data
stream is created which allows the tracking data to flow from this DSN computer through a
gateway machine also controlled by the DSN to the navigation operations workstation.
This gateway is connected via DECNET to the DSN VAX and via TCP/IP to the
navigation workstation. The direction of the data flow is exclusively controlled from the
secure DSN machines and is restricted to a limited set of operations machines. Additionally
no direct contact between the DSN operations computer and project computers occurs.
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However, the result is that the navigation workstations receive the same Multi Mission
Spacecraft Record (MMSPR) file that exists on the DSN computers with a time lag of no
more than one minute. Figure 1 illustrates this data flow as well as highlights the software
processes and file manipulations that occur on each machine. Initially a process named
DSNLISTEN receives incoming data and generates individual files-of data blocks (DBF's).
The SPRCREATE process creates individual spacecraft record files (SPR's) and mult
mission spacecraft record files (MMSPR's) at a predetermined schedule which is defined
via the human controlled process SPRCREATE. The maximum frequency at which the
MMSPR's are created is limited by the speed of the DSN Vax computer and is currently
limited to once per two minutes. A process called SPRNET which runs on a DSN
microVax monitors the MMSPR file on the primary machine and when it has been updated
then transfers it to the navigation workstation via TCP/IP where a waiting process named
SPRD receives the file and creates a copy of it on the navigation machine. The RTAF, then
access the latest data from this file. '
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Figure 1: Network Data flow
As data flows in to the navi gatibn workstation, the RTAF then recursively validates

each data, extrapolates the spacecraft state and system parameters, computes predicted data
using extrapolated state and system parameters, forms residual using the raw data and the
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predicted data, and corrects the extrapolated state and system parameters. The following
structure chart of the RTAF depicts this recursive process.
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Data Rocor o || system | |LghtTime || ST<>ET Prdicted | |Transition | | Kaiman | Extrapolated
Parametors | | Correction |[Transformation | |Measurement Matrix Gain Covariance

Figure 2: Filter Processing Algorithm

Conclusions and Future Plans

The RTAF represents a radically different way to perform deep space navigation
operations. It has been shown to be well suited for real-time automated data processing,
which would be impossible to accomplish using the traditional batch or batch sequential
filter and it has high potential in autonomous navigation applications. In addition, it
provides significant advantages over the traditional epoch state or pseudo epoch state
formulations in its simplicity and extensibility as well as its natural way of modeling the
temporal process.

Though this prototype has great promises, to be truly an operational tool, more
work needs to be done. The future development will expand the spacecraft dynamic
models and observable models. More sophisticated statistical methods will be incorporated
in data and solution validation. Currently the system outputs a time history of changes in
the estimated parameters. It is desired to have this system interface directly with one or
more commercial numerical data analysis packages to allow greater data analysis
capabilities. This prototype was developed in less than one year using parts of already
existing systems. It is planned to develop a completely new operational tool based on this
system design during the next eighteen months.

This new system will be similar in overall design to the one described here, but
should provide much greater capabilities for autonomous operation as well as possible
future application in on-board systems which do not use radio metric data types.
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ABSTRACT

Attitude determination algorithms that require only
the Earth’s magnetic field will be useful for contin-
gency conditions. One way to determine attitude is
to use the time derivative of the magnetic field as
the second vector in the attitude determination
process. When no gyros are available, however,
attitude determination becomes difficult because
the rates must be propagated via integration of
Euler’s equation, which in turn requires knowledge
of the initial rates. The spacecraft state to be de-
termined must then include not only the attitude but
also the rates.

This paper describes a magnetometer-only attitude
determination scheme with no a priori knowledge
of the spacecraft state, which uses a deterministic
algorithm to initialize an extended Kalman filter.
The deterministic algorithm uses Euler’s equation
to relate the time derivatives of the magnetic field
in the reference and body frames and solves the re-
sultant transcendental equations for the coarse atti-
tude and rates. An important feature of the filter is
that its state vector also includes corrections to the
propagated rates, thus enabling it to generate highly
accurate solutions.

The method was tested using in-flight data from the
Solar, Anomalous, and Magnetospheric Particles
Explorer (SAMPEX), a Small Explorer spacecraft.
SAMPEX data during several eclipse periods were
used to simulate conditions that may exist during
the failure of the on-board digital Sun sensor. The
combined algorithm has been found effective,

yielding accuracies of 1.5 deg in attitude (within
even nominal mission requirements) and 0.01 de-
gree per second (deg/sec) in the rates.

INTRODUCTION
The coarseness of the attitude information derived

from the Earth’s magnetic field, B , limits the use-
fulness of magnetometers in accurate attitude de-
termination systems. On the other hand, magnetic
field measurements offer several advantages: (1)
the sensors are inexpensive, (2) measurements can
be made any time regardless of the spacecraft’s ori-
entation in space, and (3) B usually changes direc-
tion rapidly enough to make computation of its
time derivative possible and these changes during
the orbit are sufficiently large to enable determina-
tion of all three Euler angles using only a three-axis
magnetometer (TAM).

The first and second advantages make a TAM at-
tractive for Small Explorer missions that have
modest attitude requirements. The third advantage
prompts a closer look at contingency attitude al-
gorithms that use only TAM measurements and are
the subject of this paper. In fact, the third advan-
tage allows the spacecraft rates to be computed, in
principle, by examining time derivatives of B.

Therefore, we address here the following nontrivial
problem: Can we reliably estimate both attitude and
rates of the spacecraft using only TAM measure-
ments and no a priori information? If so, we can
provide for sensor contingencies of a gyro-less

* This work was supported by the National Aeronautics and Space Administration (NASA)/Goddard Space Flight Center

(GSFEC), Greenbelt, Maryland, under Contract NAS 5-31500.
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spacecraft such as SAMPEX, as well as of a gyro-
based spacecraft when the gyros are not functional.

Note that the second situation is not hypothetical.
For example, the Earth Radiation Budget Satellite
(ERBS) experienced a control anomaly
(Kronenwetter and Phenneger, 1988, and
Kronenwetter et al., 1988) during a hydrazine
thruster-controlled yaw inversion maneuver that
resulted in the spacecraft tumbling with rates of
over 2 deg/sec. As a result, both Sun and Earth
sensor readings became unreliable, and the gyro
output was saturated. Similarly, control of the Re-
lay Mirror Experiment (RME) satellite was lost af-
ter the failure of the Earth sensors (Natanson,
1992). In both cases, a TAM became the only
functional attitude instrument.

We present here a combined scheme invoking two
different algorithms—deterministic attitude deter-
mination from magnetometer-only data
(DADMOD) and the Real-Time Sequential Filter
(RTSF)—both of which have been tested success-
fully for SAMPEX in giving the positive answer to
the above question. The DADMOD (Natanson et
al., 1990; Natanson et al., 1991; and Natanson,
1992) is an algorithm that relates the time deriva-

tives of B in inertial and spacecraft body coordi-
nates to determine the attitude and the body rates.
DADMOD has been successfully tested for ERBS
under normal conditions as well as for RME after
the aforementioned horizon sensor failure
(Natanson, 1992).

The RTSF (Challa, 1993, and Challa et al., 1994) is
a novel extended Kalman filter that estimates, in
addition to the attitude, errors in rates propagated
via Euler’s equations. The RTSF is sensitive to rate
errors as small as 0.0003 deg/sec (Natanson et al.,
1993), and this feature makes it a very robust and
accurate real-time algorithm. In particular, it has
been shown (Challa, 1993, Challa et al., 1994) that
the RTSF converges successfully in TAM-only
situations using inertial initial conditions; i.e., the
spacecraft is assumed at rest in the geocentric iner-
tial coordinates (GCI) with its axes coinciding with
the GCI axes. Note that the RTSF does not ex-

plicitly compute the time derivatives of B, which

are the main source of errors in the deterministic
scheme.

The combined method suggested here uses the de-
terministic solution for initializing the RTSF to
guarantee and speed up its convergence. In this
scheme, the initial conditions for the RTSF are de-
termined by the DADMOD using a 100-second
batch of magnetometer measurements. The method
is applied here to flight data for SAMPEX during
eclipse periods. During these periods, the magnetic
torquer is turned off, so that the spacecraft attitude
is controlled only by the momentum wheel (Forden
et al., 1990, and Frakes et al., 1992); this situation
is similar to the aformentioned contingency condi-
tions for RME. Remarkably, the accuracy of our
attitude estimates is less than 2 degrees, which is
within the SAMPEX requirements under normal
conditions (Keating et al., 1990).

MAGNETOMETER-ONLY
DETERMINISTIC ATTITUDE/RATE
DETERMINATION

The deterministic scheme starts by constructing the
second vector measurement from the first time de-

rivatives of B resolved in the reference and body
frames. This gives the usual transformation equa-
tions

ABR = B*, (la)

and

.
-

ABR = BA +&* x B (1b)
where A is the attitude matrix, ® is the angular
velocity vector, and superscripts R and A imply that

that the corresponding vectors are resolved in the
reference and body frames, respectively. If the ini-

tial value of & is known, then & can be ob-
tained by integrating Euler’s equation, and - the
TRIAD algorithm (Wertz, 1984) can be -used to
compute the attitude matrix A from the vector pairs

(B®, B*)
and

(B, B*+@* x B*)
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as has been done by Natanson et al. (1993). The
nontrivial nature of the problem considered here
arises from the unknown initial conditions for
Euler’s equation.

As shown by Natanson et al. (1990), the problem
can be cast in the form of transcendental equations
as follows. Taking into account that the vector
lengths must be the same, regardless of the frame in

which it is resolved, the projection ®, of ®* onto

the plane perpendicular to B* can be expressed as
a function of an unknown angle @ between the

vectors A[ER x B* ] and [E 4 x EA] The problem

thus reduces to two unknown variables: the angle
® and the projection ®, of @ in the direction of

B, with the attitude matrix A dependent only on
the angle ®. To find ® and w,, Equations (la)

and (1b) must be supplemented by Euler’s equa-
tions, which can be written in the following sche-
matic form:

B4 =Q,(@)+Q, (D)0, +Q, 0> ()

where the vectors ﬁo(d)), f)l((D), and ﬁz are
given by Equations (25a) through (25¢) of Natan-
son (1992).* The kinematic equation relating the

second derivatives B4 and BF is then formally
represented as

Ay @) +A,(@o,+A,02=0 (3)

where the vectors ]\0 (D), f&l(d)), and Kz are de-
fined by Equations (23a) through (23c) of Natan-
son (1992).

Two nontrivial equations (transcendental in @) are
obtained by projecting the vector equation (3) on
two directions perpendicular to B. One of the re-
sultant equations is then analytically solved with
respect to ®, at different values of @, and one of

* Note that the cited equations erroneously used
NP xZ]=1'YxI'Z

instead of the correct expression
I'YxZ1=1Yx1Z/det I

where [ is the inertia tensor of the spacecraft.
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two roots, ®,(®) is substituted into the second
equation. [The selected root ®,(®) must turn into
the solution of the linear equation in ,, which

arises in the limit ®* — O (Natanson et al., 1990).]
Finally, the resultant transcendental equation is
numerically solved with respect to @ .

REAL-TIME SEQUENTIAL FILTER

The RTSF’s state vector X comprises the four
components of the attitude quaternion, g, and the

three componernts of the rate correction, b ,to ®*:
— 9T
X=[q" &7] “@
The RTSF uses sensor data to estimate g as well

as b, with b being estimated kinematically in the
same manner as gyro biases for a gyro-based
spacecraft, i.e., by attributing differences between
the measured and propagated attitudes to errors in

®”.The b estimates are then used to correct ®*,
and these corrected rates are used as initial condi-
tions to propagate Euler’s equation to the next

measurement time. The propagation of b is mod-
eled via a first-order Markov model:

dg a1 —
£ - 1% + 4, 5
o My &)

where 1), is a white noise vector, and 7 is a finite
time constant. The novel feature of the RTSF is

that, since & represents rate errors accumulated
between measurements, the optimum value for T is
the data period: 5 seconds for the SAMPEX data
used here. (In contrast, the same model, when used
for gyro bias estimation, requires 1 of several
hours.)

BRIEF DESCRIPTION OF SAMPEX

SAMPEX is the first of the Small Explorer satel-
lites and is designed to study elemental and isotopic
composition of energetic particles of solar and
cosmic origin. It has a 550 X 675-km orbit with an
82-deg inclination. SAMPEX nominally is Sun-
pointing and has a rate of one rotation per orbit
(RPO) about the spacecraft-to-Sun vector. The



attitude accuracy requirement of 2 deg is achieved
using a fine Sun sensor (FSS), and a TAM. The
control hardware consists of a momentum wheel
and a magnetic torquer assembly (MTA). During
eclipse periods, the MTA is turned off, and attitude
control is performed by only the momentum wheel
under the assumption that the spin axis remains di-
rected along the Sun vector.

The wheel momentum, %, is directed along the
body y axis, which is also the FSS boresight. The
SAMPEX mass distribution is approximately sym-
metric about this axis. The body z axis is directed
along the boresights of the science instruments.

ATTITUDE CONVENTIONS

In following Crouse (1991), the Sun-pointing or-
bital coordinate system (OCS) used here has its
z axis directed along the target vector as it was ini-
tially defined by Flatley et al. (1990). Later
McCullough et al. (1992) modified the control law,
and as a result, the nominal direction of the body
z axis in space differs slightly from the direction of
the OCS z axis. The roll, pitch, and yaw angles are
defined as the 1-2-3 decomposition of the matrix
transformation from the OCS to the body frame.
During the nominal 1-RPO mode, the roll and yaw
angles are both close to 0, and &* ~ (0, 0.06, 0)"
deg/sec, while the pitch angle may deviate from
zero by a few degrees for the reason mentioned
above.

The present work also uses the 2-3-2 Euler de-
composition of the matrix transformation from GCI
to the body frame. The advantage of this attitude
parametrization during eclipse is that the third
Euler angle directly reflects the 1-RPO rate of the
spacecraft, while the other two angles are very
nearly constant because no external control torque
exists, and environmental torques acting on the
SAMPEX are negligibly small.

The tests discussed below were performed using
SAMPEX telemetry data for an eclipse on July 12,
1992. The truth model here is the attitude solutions
from the single-frame TRIAD algorithm (Wertz,
1984), which are computed using the onboard al-

gorithm; i.e., assuming that the Sun vector remains
unchanged during eclipse.

RESULTS

Figures 1(a) and 1(b) present the first and third
Euler angles for the 2-3-2 decomposition of the
GClI-to-body attitude matrix, respectively. Except
for the region between 400 and 700 seconds
(discussed below), only two solutions are obtained,
which significantly differ from each other. If atti-
tude control is performed solely with the momen-
tum wheel and enviromental torques are negligibly
small, one can use conservation of the angular mo-
mentum to select the physical solution (Natanson,
1992). In the absense of spacecraft nutation, this
implies that the first two Euler angles must remain
unchanged. In fact, the first Euler angle depicted in
Figure 1(a) remains unchanged for one of the two
deterministic solutions and significantly varies for
another. Except for the region of multiple solu-
tions, the physical solution closely follows the
straight lines of the TRIAD solution.

A similar conclusion can be drawn from an analysis
of Figures 2(a) and 2(b) presenting the x and y
body components of the angular velocity vector.
Note that the DADMOD solutions presented here
were obtained assuming constant wheel speed
equal to the nominal value. Taking into account
actual values from telemetry did not result in any
noticeable gain in the accuracy.

More than two solutions appear when B becomes
perpendicular to the pitch axis about 400 seconds
after the beginning of the eclipse. Before this oc-
cured, the vector functions KO((D) and Kl(CD) in

Equation (3) could be roughly approximated as:
Ao(@) = A% (@) = Q) (@) x B
16 (@) (- 1B*)- 1k (3, (@)- 1B*) | (62)
det 1

A (D)= A =Q° xB*

_[IB*(h-1B*-Ik(B*-1B%)] (6b)
det I
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where
Q@) =1"[hxa, ()],
Q° =1"[h x B*].

The approximation can be understood easily by
taking into account that the magnitude of the vec-
tor 1®* is generally much smaller than wheel mo-
mentum. For the same reason, one can neglect the
quadratic term in Equation (2). By projecting the
resultant equation onto the vector B* x AS, one
then obtains the following quadratic equation:

a, +a, tan%+a2tan2-§=0 0

which is analogous to that derived by Natanson
et al. (1990) for the constant-angular-velocity limit.
Obviously, this equation may not have more than
two solutions. (Another advantage of this approxi-
mation is that one needs only the first derivatives of

B with respect to time, which can be evaluated
relatively accurately from a 30-second batch of
magnetometer measurements.) However, the ap-
proximation made to derive Equation (7) fails if

h-IB* goes to zero, so that the vectors 7\% (®)

and K‘i become parallel regardless of the particular
value of ®. Because SAMPEX is very nearly
symmetric about the pitch axis, the relation
h-1B* =0
is satisfied in the region where B becomes per-
pendicular to the pitch axis. In addition, in this re-
gion
®, (@) -IB* =0

regardless of the particular value of ®. Conse-
quently, [\% (®) vanishes at any @, which implies
that the coefficients of quadratic Equation (7) are
all equal to zero. Therefore, when B is perpen-
dicular to the pitch axis, one cannot disregard the
contribution from the vector I&* to A, (®). The
coefficients of quadratic Equation (7) remain small

for some time, making its solution completely un-
reliable.

Figure 3 compares the RTSF roll and pitch angle
results obtained after initializing the filter with two
different schemes: the inertial initial conditions
mentioned in the introduction to this paper, and the
correct DADMOD solution from Figures 1 and 2.
For both starting conditions, the roll angle results
of Figure 3a reflect oscillations with the space-
craft’s nutational period of 120 sec. The amplitude
of the oscillations is a measure of the magnitude of
the transverse component of ®* at # = 0. The true
nutational amplitudes, however, are negligible for
this data span (Natanson et al., 1993). Thus, the
amplitude of the oscillations is RTSF errors and is a
direct consequence of the initial rate errors.

Although the filter’s rate-corrections feature en-
ables it to converge (not shown here) after 2500
sec to within 0.01 deg/sec of the true rates even
with the inertial initial conditions, it is clear that the
DADMOD reduces the initial errors, as well as the
convergence time, by an order of magnitude. More
important, the correct DADMOD solution, by
providing starting attitude and rates close to the
true values, nearly eliminates the possibility of filter
divergence.

CONCLUSIONS

We find that, using only magnetic field data and no
a priori information, the RTSF determines the atti-
tude to within SAMPEX mission requirements of
2 deg and rates to within 0.01 deg/sec, respec-
tively. Using the DADMOD to initialize the RTSF
reduces the a priori errors and the RTSF’s conver-
gence time by an order of magnitude (to within a
few hundred seconds) and also reduces the possi-
bility of divergences.

The DADMOD allows one to find the TAM-only
attitude solution with an accuracy of 10-15 deg,
unless the spacecraft passes through a region where

B is perpendicular to the wheel momentum. The
DADMOD results are consistent with those re-
ported for the RME satellite (Natanson, 1992),
where the onboard conditions after the failure of
the Earth sensor are similar to those used here.
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The current presentation has been deliberately lim-
ited to the case with no external torques so that the
choice between physical and spurious deterministic
solutions can be made by analyzing changes in the
direction of the total angular momentum in space.
1t should, therefore, be noted that the inertial initial
conditions enable the RTSF to converge in more
severe conditions such as SAMPEX’s Sun-
acquisition mode, where the magnetic torquers are
used to vary @, and ®, rapidly, with amplitudes
up to 0.6 deg/sec. This is shown in Figure 4 where
the telemetered data span the transition (at about
2000 sec) from SAMPEX’s Sun acquisition mode
to the 1-RPO mode. Here, the TRIAD attitude so-
lutions are obtained using both Sun and magnetic
field data, and these are differenced to produce the
TRIAD rate solutions. These TRIAD results serve
as the truth model for evaluating the RTSF, which
used only the magnetic field data. Despite a priori
errors of up to 90 deg in attitude and 10 RPO in
rates, the RTSF attitude and rate estimates con-
verge to within 2 deg and 0.01 deg/sec, respec-
tively, in about 1200 sec.

Therefore, the RTSF can also be used for TAM-
only attitude determination in the magnetic despin
mode using the magnetic field solely for the atti-
tude control. This mode has been successfully used,
for example, to despin ERBS during the control
anomaly mentioned previously in this paper.
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ABSTRACT

In support of a NASA study on the application of radio interferometry to satellite orbit
determination, MITRE developed a simulation tool for assessing interferometric tracking
accuracy. The Orbit Determination Accuracy Estimator (ODAE) models the general batch
maximum likelihood orbit determination algorithms of the Goddard Trajectory Determination
System (GTDS) with the group and phase delay measurements from radio interferometry. ODAE
models the statistical properties of tracking error sources, including inherent observable
imprecision, atmospheric delays, clock offsets, station location uncertainty, and measurement
biases, and through Monte Carlo simulation, ODAE calculates the statistical properties of errors in
the predicted satellite state vector. This paper presents results from ODAE application to orbit
determination of the Tracking and Data Relay Satellite (TDRS) by radio interferometry.
Conclusions about optimal ground station locations for interferometric tracking of TDRS are
presented, along with a discussion of operational advantages of radio interferometry.

the extremely high precision of the group
INTRODUCTION delay and phase delay observables, makes

radio interferometry an attractive option for

As part of its effort to assess cost and satellite tracking.

performance benefits of various emerging ) . .

technologies, NASA sponsored a series of Operational considerations are also a benefit
studies on the application of radio of rad{o 1pterferometry in satellite orbit
interferometry to satellite tracking. Though determination, because the group and phase
astronomers had applied radio interferometry delay measurements are made completely
to astromctry for decades pﬁor’ it was not paSSIYely. Whereas the eX1St1ng Bllater?,l
until the late 1960s that interferometry was Ranging Transponder System (BRTS) is
proposed for use in satellite orbit taxing on TDRS communications resources,
determination. In an experiment devised by radio interferometry can derive its
Irwin Shapiro, Alan Whitney, and others, measurements from any signal, including the
very long baseline interferometric (VLBI) signal intended for the TDRS user
measurements were made on the TACSAT I community. Therefore, an interferometric
communications satellite in geosynchronous orbit determination system for TDRS would
orbit (GEO), and the semi-major axis of the eliminate traffic for tracking on the TDRS
orbit was measured with accuracy on the transponder. Because an interferometric
order of several hundred meters [1]. tracking system would be passive, it would
Subsequent experiments performed in the place no design constraints on the space
1980s by Jim Ray, Curt Knight, and others segment, and it would therefore provide
to determine the position of the Tracking and backward compatibility with all generations
Data Relay Satellite (TDRS) yielded accuracy of TDRS. These potential operational and
on the order of 75 meters [2]. Such orbit accuracy benefits led NASA to investigate
determination accuracy, which derives from radio interferometry for future TDRS

tracking applications.
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NASA sponsored a series of studies to
investigate whether an operational radio
interferometry system could provide TDRS
orbit determination services (1) at lower
cost, (2) at greater accuracy, and (3) across
considerably smaller baselines than BRTS.
Contributors to these studies included
Interferometrics, Inc., where a Small
Business Innovative Research (SBIR)
contract was executed to demonstrate
hardware and software that would provide
group delay measurements on TDRS with
VLBI. CSC performed an assessment for
the Goddard Space Flight Center (GSFC) on
a variety of TDRS tracking alternatives,
including VLBI and Connected Element
Interferometry (CEI) systems. The Jet
Propulsion Laboratory (JPL) sponsored a
series of experiments to determine CEI
accuracy from its Goldstone facility. For its
part of the effort, MITRE assessed optimal
site locations and programmatic
considerations of an operational
interferometric TDRS orbit determination
system.

For accuracy assessment purposes, MITRE
developed a Monte Carlo simulation tool, the
Orbit Determination Accuracy Estimator
(ODAE), that models error sources in orbit
determination with VLBI and CEI systems.
In ODAE, the user can specify a satellite
orbit, any set of ground stations between
which group or phase delay measurements
are to be made, and the statistical properties
of the errors in those measurements. Upon
each iteration of the Monte Carlo simulation,
the orbit of the satellite is determined based
on measurements with errors added, and the
errors in the resulting satellite ephemerides
are recorded. Thus, the user may study the
statistical properties of the error in the batch
orbit determination process resulting from
the use of group or phase delay
measurements.

We applied ODAE to study the effects of
varying satellite and measuring station
geometries on orbit determination accuracy.
This paper presents an assessment of optimal
siting for TDRS tracking by radio
interferometry. A discussion of the
operational and programmatic considerations
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of an interferometric tracking system are also
presented.

THE ODAE MODEL

ODAE, which was implemented in
Mathematica to allow maximum flexibility,
models the batch maximum likelihood orbit
determination process applied in the
Goddard Trajectory Determination System
(GTDS) [3]. The user specifies a reference
true satellite orbit, a set of observing stations
(earth-based or space-based), the
observation types, and the times at which
measurements are to be made. Given a set
of observations on the satellite (e.g., radar
measurements, group or phase delay
measurements, or pseudorange
measurements), ODAE determines the set of
parameters (e.g., state vector, clock offsets,
or atmospheric parameters) that best fit the
observations. Upon each iteration of its
Monte Carlo simulation, ODAE injects
errors of user-specified statistical properties
into various parts of the orbit determination
process. ODAE computes the error of the
measured parameters at each iteration, and at
the end of the simulation, ODAE computes
the statistical characteristics of the error.

Error sources that can be modeled by ODAE
include inherent measurement imprecision,
station location uncertainty, atmospheric
delays, and clock offsets. The user must
specify the statistical properties of the error
sources. Trajectory propagation schemes
available in ODAE for dynamic orbit
determination range from the two-body
approximation to numerical integration of the
fully disturbed equations of motion. A
detailed mathematical specification of the
coordinate frame, force models, and
numerical integration techniques used in
ODAE are given in Reference 4. The only
significant deviation from the GTDS
approach to orbit determination is the use of
Bulirsch-Stoer rational function extrapolation
for numerical integration [5, 6]. For the
numerical integration of the equations of
satellite motion, the Bulirsch-Stoer technique
has been shown to provide the same



precision as more traditional techniques,
such as predictor-corrector integration or
Runge-Kutta integration, but at reduced
computational cost [4, 7].

For short-term dynamic orbit determination
accuracy studies, it is often sufficient to
apply simplified trajectory propagation
schemes for the sake of reducing
computation time. Absolute trajectory
propagation accuracy is not of concern for
the assessment of the relative effects of
changes in geometry or measurement errors.
For the study on TDRS tracking by radio
interferometry, we were concerned only with
the effect of ground station geometry on
initial orbit determination accuracy, and so
dynamics came to play only over the time of
signal propagation from the satellite to the
tracking stations. Therefore, we applied the
two-body approximation for trajectory
propagation and state transition matrix
computation.

Since its initial application to the problem of
optimal ground station siting for
interferometric tracking of TDRS, MITRE
has applied ODAE to a variety of problems,
including an assessment of Space
Surveillance Network Improvement Program
(SSNIP) tracking accuracy on various
classes of orbits, and an assessment of the
accuracy of GPS for satellite telemetry,
tracking, and command (TT&C).

INTERFEROMETRY OVERVIEW

Consider an interferometric orbit
determination scenario in which O is the
origin of an earth-centered inertial (ECI)
coordinate system, r is the position vector of
a satellite with respect to O, b; and b, are
the position vectors of two ground stations
from which measurements are to be made,
and d; and d, are the position vectors of the
satellite with respect to those ground
stations, as pictured in Figure 1. The
position vectors r, by, by, d;, and d, are all
functions of time. The sum of a station
position vector, b, , and the satellite position
vector measured from that station, d,, is
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simply the satellite position vector r;
therefore, d; =r — b, . If the propagation
rate, ¢, of the signal through the atmosphere
is known, then the transit time, T}, of the
signal from the satellite at point P to ground
station number & at point B; will be given by

T =1ld|=1y(r-by)-(r-b;) (1)

Note that in equation (1), the vectors r and
b, are measured at slightly different times.
Now, the true group delay, 7, between
stations i and j is the differential transit time
of the signal between these two sites:

T=Tj—Ti (2)

Figure 1. Illustration of the Interferometric
Measurement Scenario

During the Monte Carlo simulation, ODAE
computes measured group delay by adding
measurement or atmospheric fluctuation
errors to the true group delay as computed
from equations (1) and (2). The solution of
the orbit determination problem on each



iteration of the simulation, as described in
Reference 7, follows the GTDS maximum
likelihood estimation approach, one step of
which is the computation of the Jacobian, or
matrix of partial derivatives of equation (2)
with respect to the state vector parameters at
epoch.

For phase delay measurements, ODAE
converts phase delay into equivalent group
delay, as described in Reference 7. This
computation can be accomplished so long as
the cycle ambiguity can be determined from a
priori information about the satellite’s
position vector. ODAE can model both the
case where cycle ambiguity is unknown and
the case where it is known. We assumed the
latter in this study.

ODAE APPLICATION TO TDRS

In this section, we assess the level of orbit
determination accuracy that can be attained
for a geosynchronous satellite with radio
interferometry, and we draw conclusions
about optimal station-satellite geometry. The
results are applied to recommend optimal
ground station siting for orbit determination
of TDRS by radio interferometry.

Radio interferometry with baselines the size
of BRTS’s, which are intercontinental,
would translate the high level of observable
group delay accuracy into greatly improved
TDRS tracking accuracy. However, it was
NASA’s desire instead to accept only a
modest improvement in accuracy while
reducing system cost and ameliorating other
operational considerations by greatly
shortening the baselines. This led naturally
to the study of a CEI-based system, where
baselines are very short. Because of the
requirement for a CEI system to have
interferometer sites connected by fiberoptic
cable in a temperature-controlled
environment, the cost of lengthening
baselines is very high. We constrained our
baselines to 20 km maximum length for the
purposes of this study.
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We used ODAE to assess position
determination accuracy on a GEO satellite for
a sample interferometer siting scenario, and
we determined the effects of varying the
relative satellite to ground station geometry.
Because the effect only of relative geometry
was to be studied initially, it was not
necessary to select true TDRS ephemerides
or true potential ground station locations.
The reference orbit chosen was
geosynchronous with a 4° inclination and a
subsatellite longitude of 18°W. To provide
three independent baselines across which
phase delay could be measured, we
constrained four CEI sites to lie on the
vertices of a square with a 20 km baseline,
as shown in Figure 2. The site latitudes,
longitudes, and altitudes for this reference
scenario are given in Table 1. ODAE
modeled simultaneous phase delay
measurements across the baselines from
station 2 to station 1, station 3 to station 1,
and station 4 to station 1 (denoted 2-1, 3-1,
and 4-1, respectively). These baselines are
illustrated in bold in Figure 2.

I
|
0°W
14
9

28 km

— —45°N- = — @=———20 km
2

Figure 2. CEI Station Locations

An extension of Alan Whitney’s work [8]
shows that the theoretically achievable
precision of the phase delay observable, oy,
is given by

1
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where v is the center frequency, in Hz,
sampled by the interferometer, and SNR is
the signal-to-noise ratio. Since the TDRS
downlink to White Sands is centered at
14 GHz and SNR = 50, the theoretically
achievable precision of the phase delay
observable is 0.23 picosec. While no TDRS
tracking experiments were performed with
JPL’s CEI equipment at Goldstone,
observations were made on natural radio
sources at 8.4 GHz to assess the precision of
the phase delay observable [9, 10]. JPL
demonstrated the standard deviation in the
phase delay observable to be approximately
1 picosec, which is 70% larger than the
theoretically achievable value given by
equation (3). Extrapolating this result to the
theoretically achievable phase delay precision
for TDRS, we estimated the practically
achievable precision to be 0.23x1.7 = 0.4
picosec. We took this measurement error to
be independently normally distributed across
each baseline.

Table 1. CEI Station Locations for
Reference Scenario

Station Geodetic Longitude Altitude
Number Lat. (°N) (°E) (km)
1 45.00000  0.0000 0.1
2 45.00000 -0.2545 0.1
3 45.17997  0.0000 0.1
4 45.17997 -0.2545 0.1

For the initial study, it was assumed that
there were no equipment biases, that there
were no atmospheric delay errors, that all
station were connected by fiberoptic cable to
one clock and frequency standard, that there
were no local oscillator offsets between the
four stations, and that station positions were
known with perfect accuracy. Thus, the
pure effect of measurement geometry and
observable precision on orbit determination
could be assessed.

ODAE Monte Carlo simulation of the orbit
determination scenario described above with
200 iterations showed a 10 root-mean-
squared (RMS) position vector accuracy of
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3.2 km. We also assessed the accuracy that
can be attained with the use of other
combinations of baselines. It is practical to
have one site in common for all three
measurements so that the common site can
act as the correlation center at which the
phase delay observables are generated. For
the particular satellite and ground station
locations in this scenario, selection of three
measurements where one station is common
to each pair (i.e., 2-1, 3-1, 4-1; or 1-2, 3-2,
4-2; or 1-3, 2-3, 4-3; or 1-4, 2-4, 3-4)
results in a 10 RMS position vector
accuracy of 3.2 km. Thus, there is no
geometrically-preferred common site for the
measurements.

The orbit determination scenario described
above was the starting point for the
assessment of the effects of varying
interferometric measurement geometry on
orbit determination accuracy. Since only
relative geometry matters, and since it would
have been more cumbersome to vary the
positions of four ground stations, we instead
varied the satellite’s initial position vector.

First, we studied the effect of relative
interferometer baseline size on orbit
determination accuracy. Sateliite range from
station 1 was varied while keeping the
elevation angle and azimuth angle from that
station constant. Because the baseline sizes
are small relative to the range to GEO, the
range, elevation angle, and azimuth angle
from each of the other three stations are close
to those of the first. For the sample orbit
determination scenario described above,
range from each site to the satellite is
approximately 37,850 km, the elevation
angle is approximately 39°, and the azimuth
angle is approximately 155°. As shown in
Figure 3, the smaller the range to the satellite
for a constant baseline length (or,
equivalently, the longer the baselines across
which phase delay is measured relative to the
range to the satellite), the greater the position
vector accuracy.

Next, we assessed the effect of satellite
azimuth angle on orbit determination

“accuracy. The azimuth angle of the satellite

at station 1 in the original scenario was
varied while keeping the range and elevation



angle from that station constant. The results
indicate that for a configuration of four
interferometric ground stations at the vertices
of a square, position error is maximized
when the satellite’s azimuth angle is an
integer multiple of 90°, and position error is
minimized when the satellite’s azimuth angle
is an odd integer multiple of 45°.

] /
| /

Position Error (km)
IS

0 } 1 1
0 20,000 40,000 60,000

Range to Satellite (km)

Figure 3. Position Error vs. Range to
Satellite

Finally, we assessed the effect of satellite
elevation angle on orbit determination
accuracy in this scenario. The elevation
angle of the satellite at station 1 was varied
while keeping the range and azimuth angle
from that station constant. As.can be seen in
Figure 4, for this particular orbit
determination scenario, position error
increases monotonically with elevation
angle. Thus, based on the criterion of
minimizing ephemeris error due only to error
in the phase delay measurement, optimal
viewing geometry is at the lowest possible
elevation angle, and the scenario becomes
degenerate when the satellite is at zenith.

A tradeoff is suggested by the geometrical
result that greater orbit determination
accuracy is attained at lower elevation
angles. The tradeoff arises because
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statistical models of the variation in signal
propagation rate through the troposphere
show that, because a signal must pass
through more of the troposphere as the
elevation angle of the satellite decreases,
errors in predicting signal propagation rate
increase as elevation angle decreases [11].
Moreover, errors in predicting propagation
rate due to tropospheric fluctuations tend to
be the dominant error source in overall
accuracy for CEI systems [12]. Thus, we
sought to determine the optimal elevation
angle for CEI measurements with
consideration of both measurement error and

tropospheric delay error.
25 ¢
LR [
- f
£ s f
R
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z
& 54
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0 20 40 60 80
Satellite Elevation Angle (°)

Figure 4. Position Error vs. Satellite
Elevation Angle

We modeled tropospheric fluctuations
between each interferometer site and the
satellite as being independent and normally
distributed. The assumption of indepen-
dence is based on the fact that water vapor
cells can be of several kilometers in
diameter, and so tropospheric delay errors
from each site can in fact be independent.
From: Reference 11, we computed the
elevation angle dependence of the standard
deviation in tropospheric delay error for 100
second measurement arcs of phase delay.
The results are shown in Table 2.



Table 2. Tropospheric delay error as
a function of elevation angle

Elevation Tropospheric Delay
Angle (°) Error (picosec)

10 7.5

20 5.7

30 4.6

40 3.9

50 33

60 3.0

For varying satellite elevation angles, we
used ODAE to model error due to
tropospheric fluctuations as well as inherent
phase delay imprecision. The resulting 10
position errors are shown in Figure 5. As
can be seen, the optimal satellite elevation
angle is approximately 30°. In the
conclusions section of this paper, we show
how these results can be applied to optimally
siting a CEI system for TDRS orbit
determination.

60
50
40
30
20
10

Position Error (km)

Ollllll
0 10 20 30 40 50 60

Elevation Angle (degrees)

Figure 5. Position Error vs. Elevation Angle
with Tropospheric Effects Included
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CONCLUSIONS

We have derived conclusions about optimal
geometry for orbit determination of a GEO
satellite by radio interferometry. These
results can be applied to the problem of
optimally siting a CEI system to track
TDRS. For a particular TDRS satellite, and
for a configuration of four interferometer
sites located at the vertices of a square, a
geographical position should be chosen so
that the satellite’s elevation angle is as close
to 30° as possible, and the square should be
oriented so that the satellite’s azimuth angle
is an odd integer multiple of 45°. For
TDRS-W at 171°W, the maximum elevation
angle visible within the -20 dB contour of
the White Sands downlink is in southern
California at approximately 20° elevation.
For TDRS-E at 41°W, an elevation angle
near 30° can be attained within the -20 dB
contour of the White Sands downlink by
siting a CEI system in eastern Louisiana or
western Mississippi.

DISCUSSION

Having determined optimal siting for a CEI
TDRS tracking system, we return to a brief
discussion of operational considerations. As
stated previously, benefits include freedom
from requirements placed on the space
segment, the potential for excellent orbit
determination accuracy, and the ability to
locate the system entirely within the United
States. It is expected that these benefits
would ameliorate cost and operational
constraints. Estimates have placed required
staffing levels for an interferometric TDRS
tracking system in the range from 10 to 20
full-time equivalent staff [13]. With respect
to initial costs, Interferometrics demonstrated
prototype hardware and correlation software
for less than one million dollars [14].
Expected development and production costs
for an operational system are expected to be
an order of magnitude larger [13]. Finally,
we note that interferometry offers low
technological risk because it has been
successfully applied in a number of related
fields for several decades.
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COST EFFICIENT OPERATIONS FOR DISCOVERY CLASS MISSIONS

G. E. Cameron*, J. A. Landshof* and G. W. Whitworth*
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Laurel, Maryland 20723-6099

ABSTRACT

The Near Earth Asteroid Rendezvous
(NEAR) program at The Johns Hopkins
University Applied Physics Laboratory is
scheduled to launch the first spacecraft in
NASA's Discovery program. The Discovery
program is to promote low cost spacecraft
design, development, and mission operations
for planetary space missions. In this paper,
the authors describe the NEAR mission and
discuss the design and development of the
NEAR Mission Operations System and the
NEAR Ground System with an emphasis on
those aspects of the design that are con-
ducive to low-cost operations.
INTRODUCTION

NEAR will launch in February 1996 and
rendezvous with the asteroid Eros in January
1999. The spacecraft is to orbit Eros for up
to a year, mapping the asteroid and collect-
ing data on its gravitational and magnetic
fields as well as its elemental compaosition.
Significant challenges are anticipated in
NEAR mission operations. NEAR will be
the first spacecraft to conduct orbital opera-
tions around a small, irregularly shaped
planetary body. Stringent orbital plane
restrictions are required to simultaneously
maintain instrument fields of view of the
asteroid, communications antenna coverage
of the Earth, and illumination on the solar
panels. During certain portions of the year
of asteroid operations, orbital maneuvers
may be required every three days to
maintain the orbital plane. Given the
irregular shape and size of the asteroid,
simple nadir pointing mapping strategies
will not be sufficient for conducting opera-
tions at Eros; a flexible planning strategy
must be implemented to coordinate scientific
priorities given limited observation
opportunities. These scientific observations
must be combined with routine subsystem
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maintenance, orbital maintenance, and
navigation requirements. A sophisticated
sequence planning system with quick
reaction capability is required (priorities and
orbital dynamics can be expected to change
on a continuous basis, requiring constant
adaptation of operations to mission science
needs).

These considerations generally increase
the cost of mission operations in an era
when Mission Operations and Data Analysis
(MO & DA) costs are being scrutinized as
never before. If NEAR and future Discov-
ery class missions are to succeed, they must
set new standards for cost efficiency. The
goal of this paper is to show how mission
operations costs can be controlled by the
application of advanced technologies and
operations concepts.

Following the Abstract and Introduction,
this paper begins with a discussion of low
cost mission operations. This is followed by
a description of the NEAR Mission
Operations System (MOS) which highlights
those elements of the system design that
contribute to low cost mission operations.
Following the MOS description is a section
detailing the design of the NEAR Ground
System (NGS), again, with an emphasis on
the low cost operations aspects of the
design. Finally, we provide a summary of
our recommendations for implementing low
cost mission operations on Discovery class
missions.

LOW COST MISSION OPERATIONS

The MOS is often the last element of the
program to be developed; as such, the MOS
frequently must make up for gaps and
problems that have developed in the mis-
sion, spacecraft, and instrument designs.
The MOS is generally custom developed for
each mission, which is decidedly non-
optimal from a cost-effectiveness viewpoint.
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Mission Operations costs can be divided
into two major categories: development
costs (mostly pre-launch) and operations
costs (mostly post-launch). In the following
discussion, potential cost saving measures
are introduced in each category.

m Devel

System development costs are primarily
pre-launch and are generally incurred late in
the pre-launch program. If a program gets
into budget problems late in the spacecraft
development phase (this is not uncommon),
mission operations development costs fre-
quently attract the attention of the budgetary
ax-wielder. Saving money in development
costs at the expense of repetitive costs in the
post-launch mission operations phase is not
cost efficient over the mission life cycle, yet
this trade is frequently made. In the follow-
ing, several approaches to saving costs in
MOS development are discussed which do
not compromise either mission capability or
total life cycle cost.

men

Existing Infrastructure

Always take advantage of existing
infrastructure where cost efficient. If an
existing voice communications system or
ground station network will work for your
mission, why re-invent the wheel? It should
be noted that existing infrastructure is not
always cost efficient. Maintenance or
personnel costs associated with outdated
systems can negate their advantage. Each
element must be individually evaluated on
the basis of cost-efficiency.

Commercial-Off-The-Shelf Systems

Examine Commercial Off-The-Shelf
(COTS) hardware and software systems for
applicability to your program, again, on a
cost efficiency basis. COTS systems have
shown a tremendous growth in capability in
recent years; low-cost programs can get a lot
of bang for the buck compared to the devel-
opment costs of custom systems. There are
two major shortcomings of COTS systems.
First, "COTS" elements for space mission
applications are not the shrink-wrapped
products we have come to expect in the truly
commercial (i.e., PC) marketplace; they lack
the smooth polish of a mass market product
(e.g., documentation, on-line technical sup-
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port) and must frequently be customized for
each application. Make certain that the costs
of these modifications are considered in the
total cost of a COTS system. Second, many
functions that are necessary to operate a
complex space mission are not found in the
COTS offerings. Straight-forward Teleme-
try, Tracking, and Control (TT&C) opera-
tions for a commercial satellite (such as a
communications satellite) are significantly
different from operations for a planetary
exploration mission with complex planning
tasks and command sequence development.
COTS products tend to be stronger in meet-
ing the needs of commercial users than sci-
entific mission planners.

Concurrent Engineering

Use modern concurrent engineering de-
velopment techniques. Traditional ap-
proaches to system development (re-
quirement definition, specification devel-
opment, preliminary and detailed design,
fabrication, and test) are slow, cumbersome,
and costly. Modern methods of system
development such as concurrent engineering
and rapid prototyping can be faster and
cheaper. There are risks in this approach,
however, the benefits generally outweigh
these risks. For Discovery programs, higher
risks must be tolerated to achieve the
avowed goals of faster, better, and cheaper.

Design for Operability

Design the spacecraft and Mission
Operations System for operability. Too
often, flexibility and operability are rele-
gated to the ground system and mission
operations team to save development costs
in the spacecraft. While this is an under-
standable approach (complexity vs. reliabil-
ity tradeoffs in the spacecraft favor simplic-
ity), this may not be the optimal approach.
In some cases, relatively minor changes in
spacecraft or instrument design can signifi-
cantly save in operations costs (sometimes,
over and over again). For example, thermal
and power robustness may eliminate the
need for complex analysis of every
maneuver sequence, saving time and money
in the development of sequence uploads. A
mission level system engineer should have
the authority and responsibility to perform
such tradeoffs at a high level.

Gk



System Commonality

Build systems that achieve simplicity
through the use of common architectures.
Cost savings due to system commonality
may not be apparent at the mission opera-
tions level, but are observable at the pro-
gram level. Many Integration and Test
(I&T) functions are duplicated in the Mis-
sion Operations System and vice versa.
Why should these capabilities be developed
twice? Using a common system design for
Mission Operations (MO) and I&T saves
money not only in design and development
of the ground system, but in sparing, training
of personnel, and staffing during test,
launch, and mission ops.

Operations

The division of operations costs between
pre- and post-launch is mission dependent.
Pre-launch development of operations teams
and processes, personnel training, and sys-
tem testing can be significant cost items. If
the mission is short, or if it can be staffed at
a very low level, pre-launch costs can be a
significant portion of overall operations
costs to the program. If the mission is long,
complex, or both, post-launch costs tend to
be the driver of overall costs. In the sections
that follow, we shall show how intelligent
application of pre-launch funding can signif-
icantly reduce post-launch costs.

Low Staffing Levels

Minimize the number of personnel
needed to operate the spacecraft during
post-launch operations. The major post-
launch cost item for most missions is per-
sonnel. In most programs, the key to lower-
ing operations costs is to reduce the number
of people required to operate the spacecraft.

Personnel reductions can be achieved
merely by paying attention to the type and
capabilities of personnel hired and the
changes in skills needed during different
phases of the mission. As teams become
smaller, the competence and breadth of
individual members becomes more impor-
tant. Small teams can not afford to have
members with specialized or limited skills;
every team member must contribute signifi-
cantly to the overall productivity of the team
for operations to be cost efficient.
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It is important to note that the skills
required during design and development of
the MOS are not the same as those required
during post-launch operations. Personnel
should be added as their skills are required
and removed when their skills are no longer
applicable to the needs of the program. This
may conflict with the policies of some
organizations, but is essential to controlling
operations costs. Large institutions fre-
quently utilize matrix management tech-
niques that allow the program to draw from
a broad mix of skilled personnel, paying
only for the time charged to the program.
Matrix techniques can be advantageous in
the implementation of these practices.

Spacecraft Autonomy

Build spacecraft systems that require
minimal operations support. Perhaps the
most obvious way to reduce operations cost
is to build a spacecraft that does not require
operations! The more autonomy built into a
spacecraft, the less the MOS needs to do.
The prevailing view is frequently the inverse
-- the more the ground does, the less the
spacecraft needs to do. Mission system
engineering of the spacecraft and MOS
offers the capability to partition require-
ments between the ground and flight sys-
tems. If the optimization goal is to minimize
overall program costs, operations costs will
generally be lower. Even if cost is not an
optimization parameter, the consideration of
mission operations issues in the design of
the spacecraft will generally result in cost
savings (due to operability enhancements).
Frequently, the spacecraft design team has
options that have little impact on the space-
craft but significant advantage to mission
operations.

Spacecraft autonomy features which
simplify operations include: telemetry moni-
toring and alarming; processor memory
management; anomaly detection, correction,
and/or reporting; automated data handling;
and multi-level autonomous safe modes.
Each of these features are discussed below.

Autonomous telemetry monitoring and
alarming reduces the work load on ground
personnel, especially if the MOS is designed
to communicate spacecraft generated alarms
to operations personnel immediately. This



reduction in the need for ground system
monitoring reduces the number of personnel
and the frequency of contacts required. Dur-
ing missions with long cruise phases and
infrequent contacts, onboard alarming, cou-
pled with storing alarm status in memory,
can enable operations personnel to instanta-
neously assess the state of spacecraft health
since the last contact. This reduces the con-
tact time required, the operations load, and
thus, the total cost to the program.

Automation of memory management
allows the MOS to use lower fidelity models
of onboard processors, thereby reducing
development costs. Additionally, fewer
commands are required for processor mem-
ory management, reducing the costs of test-
ing those commands as well as simplifying
operations.

Autonomous anomaly detection, correc-
tion, and reporting is similar to onboard
telemetry monitoring and alarming with
respect to operations. The potential reduc-
tion in operations workload and the increase
in intervals between contacts results in a
reduction in operations personnel.

Autonomous data handling, in which the
spacecraft processes, stores, and retrieves
data by instrument or subsystem without
detailed operator intervention, allows the
operations team to use contact time more
efficiently and send fewer commands,
reducing the workload and cost of oper-
ations.

Multi-level safe modes allow the space-
craft to assume intermediate modes of
operation between fully operational and
"cocoon"” mode (minimal activity, awaiting
ground command). For example, a failure in
the data handling system may cause the
spacecraft to shut down the data handling
system, point the antenna at Earth (assuming
guidance, navigation and control functions
are unaffected), and await instructions.
Allowing the good subsystems to remain
operational means that the anomaly will be
addressed more quickly than would other-
wise be the case. This allows for longer
intervals between contacts, which reduces
operations loads and costs. This also
reduces the time spent and the assets utilized
in recovering from a failure.
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Ground System Automation

Build ground systems that minimize per-
sonnel requirements. The use of automation
in the ground system can significantly
reduce requirements on operations person-
nel. Most apparent is the application of
automated telemetry display and command
generation capabilities. The use of high
level command languages reduces opera-
tions personnel requirements, as do inte-
grated databases, graphical user interfaces,
and automatic report generation and trans-
mission capabilities.

The next logical step in ground system
automation is ground systems that
autonomously receive, process, interpret,
and respond to spacecraft telemetry. While
totally automated operations are not yet fea-
sible for scientific missions, many functions
can be automated. Automated monitoring of
telemetry can not only alert an operator to an
out-of-bounds condition, it can spawn a pro-
cess to advise the operator what to do (i.e.,
retrieve a contingency plan from a database),
or even take action itself (depending on the
nature and severity of the anomaly). Space-
craft data trending and analysis can be
highly automated, generating formatted
reports and delivering them electronically to
the correct parties at the appropriate times
(e.g., at shift changes or on Monday morn-
ings). Clearly, all of these capabilities can
be used to reduce the personnel otherwise
needed to perform these tasks.

Advanced Technology

Utilize advanced technologies, where
applicable, to enhance productivity in
operations. The application of advanced
technology throughout Discovery class mis-
sions has been mandated by NASA (the
NEAR mission design predates this man-
date, and NEAR is specifically exempted
from this requirement). Advanced technol- -
ogy can reduce operations costs by enhanc-
ing productivity, i.e., allowing fewer people
to accomplish more work with fewer
resources expended. Two ways in which
advanced technology can be used to enhance
productivity are: 1) advanced technology
can enable the use of higher level interfaces
to gain insight into data and processes, and;
2) advanced technology can be used to assist



in making decisions. The application of
advanced graphical techniques to gain
insight into complex data sets is called
visualization; and the use of software to
assist in decision making processes falls in
the category of expert systems.
isualizati

Everyone has seen global maps with
projected spacecraft ground traces, coverage
circles of ground receiving sites, and per-
haps time ticks indicating when a spacecraft
will or did pass over a particular spot --
these types of displays were a staple of the
highly publicized manned space missions of
the 1960's. This type of display is a prime
example of the use of visualization to
provide insight into a complex data set -- in
this case, the orbital ephemeris of the
spacecraft, the locations and views of each
of the ground network's tracking stations,
and the time the spacecraft will be available
for contact at each of the ground stations.

Humans excel at the assimilation of
visual information. The recent trend in
returning to traditional watches and clocks
from the digital variety is evidence of this
phenomenon. People easily interpret the
time of day from the angles of clock hands,
whereas a digital clock requires assimilation
and interpretation to understand. Computer
graphics are a powerful tool for taking
advantage of this characteristic of the human
brain to reduce operations costs. The trend
in operations systems is away from
alphanumeric screens with numbers and
cryptic mnemonics towards graphical dis-
plays, including analog dials, graphs, and
trees of color coded boxes representing
spacecraft systems and subsystems, etc.
Aircraft cockpits with modern CRT and flat-
panel displays utilize representations of
analog dials and "tape" gauges for the same
reasons operations systems do; these dis-
plays rapidly and intuitively present more
information to the user more quickly than
alphanumeric displays, thus allowing fewer
people to monitor a complex system more
efficiently and completely -- and with fewer
errors. Fewer people mean lower costs, and
fewer errors mean greater spacecraft safety.
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More advanced than visualization
(already in use in operations centers, albeit
sparingly) is the use of expert systems to
assist in decision making processes. Rule-
based expert systems are currently in use in
some operations systems to assist in teleme-
try monitoring and display functions. Rule-
based systems may also be used in the near
future to help diagnose spacecraft anoma-
lies, again, based on interpreting spacecraft
telemetry. In artificial intelligence circles,
however, rule-based systems have fallen out
of favor because of their inherent lack of
robustness; these systems can only apply
pre-programmed rules to a known data set,
and can be very difficult to adapt rapidly to
changing conditions. For complex systems,
the rule sets can get very large and difficult
to manage. Finally, rule-based systems
require all rules to be programmed before
the system is very useful.

m

Model-based systems are being investi-
gated for spacecraft operations because they
address these problems. Model-based rea-
soning (MBR) methods use models of sys-
tems and subsystems to make estimates of
systems states. MBR allows incremental
growth in capability as models are added,
refined, or updated, and can provide answers
that are both qualitative and quantitative.
MBR can be used to diagnose problems
based on spacecraft telemetry, but the mod-
els can also be used to support analysis in
the sequence generation process.

Model-Based Reasoning appears likely
to reduce MOS costs in two ways. First, it
may allow the development of a single set of
spacecraft models to perform planning, anal-
ysis, and assessment functions, thereby
reducing system development costs over
traditional MOS designs. Second, it may
allow fewer analysts to generate very com-
plex spacecraft sequences with greater con-
fidence, thereby reducing personnel require-
ments while enhancing mission capability.
MBR may be a suitable alternative to the
building of costly hardware-based spacecraft
simulators traditionally used for command
sequence vetting.
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Figure 1 is a high level diagram of the
NEAR Ground System (NGS). There are
six major ground facilities: the Mission
Operations Center (MOC); the Ground Sup-
port System (GSS); the Mission Design
Center (MDC); the Science Data Center
(SDC); the Mission Navigation Center; and
the Deep Space Network (DSN), which is
linked via NASA Communications
(NASCOM) circuits at Goddard Space
Flight Center (GSFC).

Mission operations will be conducted
from APL. Therefore, the MOC and MDC
are located at APL. The principal equip-
ment in the MOC is a suite of interface
equipment and high-end workstations,
including software, known as the Mission
Operations Ground Segment (MOGS).

The GSS includes a parallel construction
called the Integration and Test Operations
Ground Segment (ITOGS) as well as the
Ground Support Equipment (GSE). The
GSS is used to perform integration and test
of the spacecraft at APL, environmental
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identical; by virtue of the interconnecting
data network called NEARnet, each has con-
trolled access to the spacecraft.

Science data received by the MOC is
processed and passed on to the SDC, which
further processes the data for dissemination
to the science community. The Mission
Navigation Center, located at the Jet Propul-
sion Laboratory (JPL), provides navigation
data and products to the MOC, the SDC,
and the MDC.

Existing Infrastructure

The NEAR Ground System maximizes
the use of existing infrastructure, including
the DSN and NASCOM. The DSN is used
for all TT&C for NEAR. Operated by JPL,
the DSN is a ground network primarily used
for interplanetary missions, with ground sta-
tion complexes in Barstow, California,
Madrid, Spain, and Canberra, Australia.

Access to the DSN is provided via
NASCOM. NASCOM will be used for vir-
tually all NEAR communications. This
includes extensions of the NEARnet to the



ITOGS as it moves with the spacecraft to
GSFC and to the Kennedy Space Center
(KSC) and Cape Canaveral Air Force Sta-
tion (CCAFS). The cost effectiveness of
using NASCOM for NEAR is multiplied
because the arrangements for its use are
provided by the DSN as a service.

A third major use of existing infrastruc-
ture is internal to APL. As discussed, the
workstations, GSE, and peripherals of the
MOGS and ITOGS are tied together as one
large system via the NEARnet. Within
APL, NEARnet uses an existing ethernet
communications system called the APL
Network Information System (APLNIS).
APLNIS is ubiquitous throughout APL and
supports multiple interface configurations.
APLNIS supports TCP/IP protocols and has
an existing connection to Internet, which
provides off-campus access to the SDC.
Connections of the ITOGS and MOGS to
the APLNIS will utilize a router to provide
protection against unauthorized access to
spacecraft control and telemetry.

It should be noted that the NEAR space-
craft conforms to the standards of the Con-
sultative Committee on Space Data Systems
(CCSDS), and will be the first spacecraft to
use CCSDS for uplinking. In using this
system, NEAR is effectively making use of
another set of existing infrastructure that
results in reduced costs within the NGS.

Commercial-Off-The-Shelf Systems

An important aspect of the NGS imple-
mentation approach is the use of COTS mis-
sion operations systems. Although this
industry is still young, a number of available
systems offer capabilities in one or more
aspects of spacecraft telemetry processing,
performance assessment, and command and
control. The core of the NGS is COTS.
This core provides telemetry monitoring,
alarming, and archiving, as well as
spacecraft command and GSE control. Two
systems are being procured for the MOGS
and ITOGS; when augmented with
additional workstations and custom software
developed by APL, they will constitute the
ITOGS and MOGS. ‘

The core system includes a VME-based
front-end, a workstation, and peripherals.
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The front-end provides the telemetry and
command interfaces to the spacecraft (or
more correctly, the spacecraft GSEs and/or
the DSN via NASCOM) as well as realtime
decoding, error correction, and data handling
required to provide data for display on
operator workstations. Workstation process-
ing includes calibration, engineering unit
conversions, display, alarming, and com-
mand script generation. Workstations may
analyze realtime or archived data, or a
combination. A large number of worksta-
tions can be supported on the NEARnet, and
as described previously, these can be located
anywhere.

Like many other current COTS systems,
the NEAR MOC and GSS use networking
and distributed processing. In each area, the
workstations, peripherals, and command and
telemetry interfaces are merely logical
groupings of equipment on the NEARnet,
with equal access to all data whether it
enters the system via the MOC or the GSS.
Each workstation has equal access to the
"front end" of either area. The look and feel
of the system remains the same in all
locations; the parallel nature of the
networked system provides a mutual backup
capability.

This networked architecture permits the
system to take advantage of distributed pro-
cessing. The NEAR MOS has no large cen-
tral computer with the resultant interference
and speed problems as different worksta-
tions access and run processes on the central
facility. These workstations simultaneously
and independently run different processes on
the same or different realtime or archived
data. This permits a single database (e.g.,
telemetry and command dictionaries) to be
accessed from any workstation, preventing
the problems of maintaining multiple dictio-
naries. Incremental growth in the ground
system can be easily accommodated without
disrupting existing (operating) components.

The NEARnet extends beyond the
MOGS and ITOGS, providing controlled
(authorized) access to selected data on the
NEARnet by other workstations or PCs.
One recipient of data is the Science Data
Center (which also has workstations and
peripherals connected to the NEARnet).



The SDC is given essentially raw science
data at the CCSDS Transfer Frame and
Packet level and provides various levels of
processing to generate products for the sci-
ence community, which accesses these
products via the NEARnet. Off-campus sci-
ence teams may obtain access via the Inter-
net. Two other Centers have access to the
NEARnet Science Data Center. These are
the Mission Design Center and the Mission
Navigation Center.

One additional aspect of the ITOGS and
MOGS worth noting is the use of an open
operating system. All of the commonly rec-
ognized advantages of this. approach are
realized for NEAR. For example, access to
commercial software is maximized; in-house
software can be developed on non-NEARnet
workstations or PCs with minimum prob-
lems in transporting these to MOS worksta-
tions. Further, the NEARnet configuration
is much more supportable and expandable
over the life of the mission.

Common architecture for I&T and MO

It is important to note that the MOGS
and ITOGS are identical in configuration,
software, hardware, and command and
telemetry capability. This is significant in at
least two aspects. First is the reduced devel-
opment and maintenance costs resulting
from identical workstations, front-end
equipment, and peripherals.  Because a
single system design and architecture is
used, overall complexity and design effort is
reduced, as is the number and cost of pro-
cured components. Additionally, spares and
maintenance costs are minimized.

The second significant aspect of using
identical systems for I&T and MO is that the
spacecraft will be flown as it was tested.
The look and feel of the two segments is the
same to the user. Since both sets of front-
end equipment are also identical, (each sup-
porting the three modes of interface with the
spacecraft: RF GSE, umbilical GSE, and via
NASCOM and the DSN), and since either
can be accessed from a workstation in either
the MOGS or ITOGS, the only distinction
between the two is established by access
authorization. While I&T activities will be
principally controlled from the ITOGS due
to its proximity to the spacecraft and GSE,
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considerable capability exists, and will be
utilized, to exercise the spacecraft from the
MOC during the I&T phase. When this
commonality of hardware and software is
considered in light of the current plan to
have a number of mission operations per-
sonnel involved in integration and test, the
transition from I&T to MO should be as
seamless as is achievable. This blending of
traditionally separate and distinct functions
significantly reduces the total cost and
development time for the ground support
elements of the NEAR mission while
improving the quality and reliability of the
overall product.

SUMMARY

This paper began with a discussion of
low cost mission operations, including a
number of specific recommendations for
controlling costs. These are summarized
below: 1) Always take advantage of existing
infrastructure where cost efficient; 2) Use
Commercial Off-The-Shelf hardware and
software systems where applicable and cost
effective; 3) Use modern concurrent engi-
neering techniques; 4) Design the spacecraft
and Mission Operations System for oper-
ability; 5) Build systems that achieve sim-
plicity through the use of common architec-
tures; 6) Minimize the number of personnel
needed to operate the spacecraft during post-
launch operations by building spacecraft and
ground systems that minimize personnel
requirements, and; 7) Utilize advanced tech-
nologies, where applicable, to enhance pro-
ductivity in operations. While these simple
statements may seem obvious, they are fre-
quently forgotten or overlooked as heritage
often dictates the design and implementation
of the MOS.

The second part of the paper included a
description of the NEAR MOS and ground
system with an emphasis on those elements
of the system design that contribute to low
cost operations. In the case of NEAR, we
were able to apply almost all of the practices
discussed in this paper. It is our hope that
NEAR Mission Operations will introduce a
new way of doing business for Discovery,
and that this will lead others to identify even
better approaches to controlling costs in
today's cost-constrained environment.
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ABSTRACT

In order to keep the cost of a complete small scientific satellite programme low, it is necessary to minimise the
cost of the Ground Station Operations and Support. This is required not only for the operations and support
per se, but also in the development of Ground Station hardware and the mission associated software. Recent
experiences at the Rutherford Appleton Laboratory (RAL) on two international projects, IRAS and AMPTE,
have shown that the low cost objectives of operations using smaller national facilities can be achieved. This
paper describes the facilities at RAL, and the methods by which low cost support are provided by considering
the differing implications of hardware/software system modularity, reliability and small numbers of dedicated
and highly skilled operations staff.

INTRODUCTION

Rutherford Appleton Laboratory (RAL) is part of the UK Engineering and Physical Sciences Research Council
(EPSRC) - formally the Science and Engineering Research Council (SERC). RAL has a long history of Space
Science and Technology going back to the early 1960's, and in more recent times RAL has had TT&C
responsibilities for a number of space missions. In 1983, RAL operated the Infra-Red Astronomical Satellite
(IRAS) on behalf of NASA, SERC and the Dutch Aerospace Agency NIVR. Operations with IRAS covered all
aspects of ground System work, including Mission Planning, Command Generation, Satellite Control, Data
Reception, Satellite Health Monitoring, and Detailed Science Analysis. The mission lasted for 10 months, and
operations went flawlessly, with no passes being missed. In 1984, the Ground System was re-configured for
operations on the Active Magnetospheric Particle Tracer Explorer (AMPTE) mission. AMPTE was a UK
sub-satellite operating as part of a NASA, UK, West German mission. Unlike IRAS (which was in a
sun-synchronous orbit), AMPTE was in a highly eccentric orbit, taking apogee out to 200,000 km, giving
real-time operations of up to 14 continuous hours per day. In both those missions, hardware, software and
operations were developed and run by a closely-knit group of experienced space engineers, all contributing to a
cost-efficient operational programme, even though in the case of IRAS it was not classified as a 'small' mission.

The RAL Ground Station is currently being re-configured again for operations with Small Satellites. Data
reception monitoring will begin shortly on the Space Technology Research Vehicle (STRV) program. STRV is
a UK Ministry of Defence mini-satellite, operating at S-band frequency. Once the downlink end-to-end system
has been checked out, RAL will finalise plans for complete end-to-end, low cost operations on another
mini-satellite programme, called BADR-B. BADR-B (Urdu for full-moon) is a Pakistan mini-satellite
programme managed by the Space and Upper Atmosphere Research’ Commission (SUPARCO) in Karachi.
Due for launch in 1995, BADR-B will be placed in a near-polar orbit at an altitude of about 800 km. Prime
operations will be run from Karachi and Lahore in Pakistan, and UK operations will be run from RAL, using
an ultra-low cost approach as defined in the remainder of the paper.

817



THEMES FOR LOW COST OPERATIONS

The starting point in defining the requirements on the Ground Station is to consider what the User actually
needs (as well as what he wants, which may not necessarily be the same!). -Overall, a rough guide to the main
requirements may be considered as:

Lowest possible cost, but reliable operations (not missing passes or losing data), fast return of critical
data, regular return of bulk data, rapid response for critical commanding and ease of access to data

In order to achieve the low cost goal, it is not, however, unreasonable to expect some compromises to be made.
These may include:

Acceptance of occasional (1 in 20?) lost passes, acceptance of some (5%?) lost data, and/or non-rapid
return of non-urgent data

With these ground rules understood, we can look at some of the potential areas of cost reduction.

COST REDUCING SCENARIOS

The cost of mission operations represents a significant portion of the total programme costs, often 20 to 30%.
Thus the ground segment configuration (ie. hardware, software) and the operational modes (ie. complexity)

have a significant influence on total costs and must be given serious consideration in overall system design.

The ground segment fulfils several functions:

mission planning, including command preparation and validation,

- tracking, telemetry and command (TT&C) interface with the satellite,
- status and health monitoring of the satellite,

- reception of mission data via satellite telemetry,

- initial pre-processing of the data prior to distribution from the operations part of the ground segment to
the user for final processing and analysis,

- use of EGSE before and after launch.
The following are some general considerations concerning the ground segment configuration and operation.

System modularity

In exactly the same way that satellite costs can be significantly reduced by greater use of common modularised
subsystems, ground system configurations can also be modularised. Instead of developing individual EGSE
(Electrical Ground Support Equipment) and Ground Segment equipment for every instrument and/or satellite,
there are now being developed standardised off-the-shelf equipment that can subsequently be customised to the
individual needs, at much lower cost. Within the ground system itself, computing power is sufficient these days
to combine the tasks of TT&C into a single low-cost workstation. Of even more potential benefit is the reuse of
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previous mission software for many of the data analysis functions. As an example of this, the data analysis
software for the JET-X instrument, which will fly in 1995 as part of the Spectrum-X mission, is almost entirely
based on software developed for the ROSAT mission launched in 1990. This scenario alone has cut the
software development cost for this mission by a factor of three.

National facilities

Probably the greatest potential for cost reduction of the ground system is by making greater use of national
facilities. Agency facilities are clearly required for large (manned and unmanned) missions, but are often too
cumbersome and inflexible for small missions. It has usually proven far more cost-effective to employ national
facilities - ideally utilising just a single ground station. For instance, the two European AMPTE spacecraft
were controlled from single stations in Germany and England, respectively. The UK station was developed at
very low cost by updating the original IRAS control centre to the requirements of the AMPTE mission.
Although new software and operational procedures were necessary, very little new hardware was required. As
an example, the 12 m S-band tracking station and control centre at the Rutherford Appleton Laboratory can be
used for TT&C on an “as required basis", the operations staff being redeployed to other tasks during non-active
satellite periods, thus significantly cutting down the running operations costs even for satellites producing many
hundreds of Mbits/day. Similarly, for low-cost satellites producing kbits rather than Mbits of data, it is now
possible to receive data using rooftop antennae and to command/receive using desktop PCs.

Reliability versus cost

For larger missions, it has always been normal practice to maximise the reliability of the ground system despite
the associated increase in cost. This is not unreasonable for man-rated missions, but is often an unnecessary
expense for most other missions. There is a very sizeable potential reduction in cost to be obtained by
accepting just a small reduction in system reliability. It is proposed here to agree "up-front" that a small
percentage (perhaps 5%) of satellite passes can be lost through ground system outage. This may (though not
necessarily) lead to some data loss, but even so a data loss of a few percent is not usually significant. By
agreeing to this reduction in reliability, the level of hardware redundancy (and perhaps software complexity)
required in the ground system can be significantly reduced, and hence the cost is lower. Likewise, if the number
of passes required per day to support the mission operation can be reduced through a slightly less than optimal
coverage programme, the cost of operations can also be reduced.

Data availability

There is no doubt that for all missions it is essential to be able to process some subsets of the data in Real-Time
and/or Near Real-Time. However, the less data that has to be processed in this manner the simpler the
immediate ground system complexity becomes. For the majority of small satellite missions, it should only be
necessary to process instrument/bus health data as a matter of urgency, thus decoupling the task of satellite
"operations" from that of off-line data processing,.

Data transfer

There are basically two different methods of transferring data from the operations part of the ground system to
the user or data processing centres. The first (and most expensive) is via one of the many space or terrestrial
data links. This is the common route for most satellite data and gets the data to the end user very quickly.
However, it is more often the case that although the end user likes to have this data "as quickly as possible" it is
not often an absolute necessity. In this case an alternative route via mailed magnetic tapes/optical disks can be
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just as satisfactory; possibly some (small) percentage of the data can still be transmitted via a low bandwidth
(and lower cost) data link; it is important to try to avoid the exclusive dedicated use of these links as this too
adds to the cost.

Data access

There are as many different philosophies regarding methods of data access as there are concerning designs of
satellite. Generally however, the most cost efficient and practical method is the concept of a Centralised Data
Handling Facility which is accessible by users over local data networks. This concentrates the pipeline data
processing in one place, whilst allowing the individual users both to develop their own specialised software and
to make full use of centrally developed software.

With these principles addressed, we now look at the Ground Station and Operations facility at RAL.
RAL GROUND STATION HARDWARE

The Science and Engineering Research Council's Rutherford Appleton Laboratory (RAL) operates a Ground
Station and Control Centre on its site at Chilton, Oxfordshire, UK. (51.57°N, 1.31°W).

Fig. 1 RAL 12 m Antenna
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The main antenna is a transportable 12 metre S-band cassegrain instrument (Fig. 1). Built in 1965 by the
North American Aviation Company for the ATS project, it was re-commissioned in 1980 on the Chilton site as
the prime antenna for the joint UK/US/Dutch mission IRAS (low-Earth polar orbit).

Antenna System

The main reflector of the antenna is a hyperboloid section, made with 20 petals constructed from 2 in thick
aluminium honeycomb and faced with aluminium sheet. The reflector, the radio frequency feed, cassegrain
sub-reflector and equipment cabinets are supported on elevation over azimuth bearings at the top of a
cylindrical steel pedestal. Three tubular steel legs provide support for the pedestal and, with screw jacks, allow
accurate levelling of the antenna structure. The whole antenna weighs approximately 32 tons. Attached to the
edge of the main reflector is a 1.2 metre diameter paraboloid antenna which, because it has a wider beamwidth
(ie. field of view) is used to locate satellites whose position is uncertain.

The radio frequency feed mounted at the vertex of the main reflector is a complicated waveguide structure. It is
able to transmit and receive simultaneously at S-band frequency, in either right-hand or left-hand circular
polarisation. In the receive mode, three output ports are available: one is the channel containing the received
signal, the other two provide error signals (one each for azimuth and elevation axes) so that, with a servo loop,
the antenna can lock on to an incoming transmission, allowing very accurate tracking of selected satellites. In
addition to this autotrack mode, the antenna can be driven along a predicted path by computer.

The pointing error of the antenna is approximately 1 arc minute. The success of the antenna, as a machine for
tracking moving sources, depends ultimately on the quality of the servo mechanism. The electric drive system
incorporates two motors per axis and a redesigned set of servo amplifiers, aimed at maintaining the peak
tracking error within 6 arc minutes, at mean wind speeds of up to 30 knots. Tests have shown that this figure is

easily met and a typical peak tracking error is 2 arc minutes in a mean wind speed of 20 knots with gusts above
30 knots.

A summary of the technical details of the antenna are as follows:

Mechanical
Cassegrain configuration
12 m diameter paraboloid primary reflector, f/d ratio 0.325
1 m diameter hyperboloid secondary reflector
Eccentricity 1.413
Main reflector surface accuracy 0.89 mm rms
Mount: elevation over azimuth, Azimuth rotation + 270 deg , Elevation rotation -5 deg to +95 deg

Drive
Electronically servo-controlled electric motors
Two motors in tandem in each axis
Static pointing accuracy + 3.5 sec arc rms, Tracking accuracy + 2 min arc rms
Velocity, azimuth and elevation 7 deg/sec max
Acceleration, azimuth and elevation, 4 deg/sec” max
Modes of operation: Standby, Manual or Program-Track

Data output: Position encoder 20 bits, Accuracy £ 1.23 sec arc
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RF Transmit Receive

Antenna gain 45.8 dB 46.5 dB

Beamwidth (3 dB) 0.9 deg 0.8 deg

Nominal frequency 2075 MHz 2253 MHz (IRAS)

Transmitter power into antenna 10 watts

Max side lobe - 18 dB from main lobe

System noise temp 115 K at zenith

Feed: Four horn monopulse
Left or Right hand circular polarisation receive and transmit
Output: 3 channels - sum and two orthogonal error channels

Acquisition Aid

1.25 m diameter paraboloid reflector (fixed to rim of main antenna)
Receive only

Antenna gain 26 dB

Beamwidth 6 deg

Nominal frequency 2253 MHz

RH circular polarisation

Output: 3 channels - sum and two orthogonal error channels

Receive/Transmit System

The receivers and exciters were previously sited at the NASA STDN ground station at Madrid and were used
on the Apollo programme. They are based on the NASA unified S-band system.

The system comprises:

(1)  Two identical receivers with a common phase reference generator,

(2)  Two identical transmitters with a common phase modulation drive,

(3)  An RF path-switching sub-system,

(4)  The Control and Monitor sub-system,

(5)  The Calibration and Test sub-system.

These sub-systems are physically distributed between an inner cabin on the antenna pedestal (S-band
components, adjacent to the antenna feed), outer equipment cabinets, also moving with the antenna, and the
remainder within the Operations Control Centre about 250 m from the antenna pedestal base. Almost all of the
OCC sub-systems operate at 50 MHz and below (Receive) and 65 MHz and below (Transmit). However

low-loss coaxial feeder is used between OCC and antenna.

Each receiver comprises three channels. The Reference/Telemetry Channel establishes carrier phase-lock,
supports wide-band (Dump) telemetry and outputs video TLM. Two Angle-Error Channels detect the angular
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deviation from antenna boresight in the X and Y planes relative to the antenna feed, and output error signals for
feedback to the antenna servo drive to establish autotrack.

Each transmitter comprises a multiplier chain to raise the phase-modulated RF drive to the Uplink frequency
and a stage of power amplification to produce the final RF level of 10 W into the diplexer.

An associated Translator unit samples the outgoing Uplink and converts this to the Downlink frequency, as a
Test Input to the down-conversion stages of the receiver. The common phase-modulation drive is derived from
a VCO, tripled and modulated with the Command Sub-Carrier which is itself modulated with command
messages generated in the computer.

Control Centre Equipment

Equipment located in the Control Centre comprises a Unified S-Band (USB) TT&C set, PCM bit conditioners,
a time standard, two wide-band instrumentation tape recorders and test gear. Control of the antenna and
handling of the telemetry is accomplished with two desktop computers, which monitor the status and health of
the Ground Station and satellite as well as generating the satellite commands for uplinking during each pass. At
the modest data rates generated by small satellites, modern desktop PC's are quite capable of acquiring
telemetry and processing it in real time, using hard disk as the primary storage medium.

Ground Station Performance

During the IRAS Mission, the antenna system successfully tracked over 1500 consecutive passes. Following
the IRAS mission, the system was reconfigured for operations with the UK sub-satellite of the AMPTE mission
(apogee 125,000 km), where passes over several hours duration were taken every day of the mission.
Additionally, the ground station has been used to track several other spacecraft including LANDSAT-1V, IUE
and EXOSAT. In all cases, command and control down to 8° elevation is possible, and for the majority of
cases clevation down to 2%° is possible.

GROUND STATION SOFTWARE

It is a traditionally held view that ground software has to cope with all of the problems which have been left by
the hardware engineers. This may always be true to a certain extent, but the trade-offs for low cost need to be
made in a detailed way early in the planning of a mission. A number of early decisions may, on the one hand,
allow the in-flight component to be simplified, but at the expense of more complex operations and software.
Alternatively, decisions on whether to adopt for instance, a standard telemetry format (CCSDS) would permit
standardisation of ground software and minimal changes for successive missions. Thus the ground segments
should always be considered to be an essential, integrated part of the mission right from the start.

Advantage can be taken of the increasing power and modularity of computers, both on the ground and in space.
Thus, there is an opportunity to provide flexibility on-board the satellite to reduce data telemetry volumes,
without the fear, which has existed up to the present, that irrevocable techniques could lead to at least partial
mission failure if the instrumentation subsequently performs unpredictably. On the ground, sufficient checks
can be built in to permit the use of automated passes, eliminating the need for expensive shift working.
However, for this to be viable, the hardware design has to build in this requirement from the start and the
control station hardware and software also.
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The experience of RAL on many scientific missions has been that high efficiency and low costs can be achieved
by using highly qualified and experienced staff throughout the design, development and operation of the ground
systems. Despite the additional costs per staff year, there are significant gains in productivity from adopting
this philosophy. Team members are selected to ensure a mixture of backgrounds in operations, formal
computing training and research in the subject area of the spacecraft. Benefits are seen to be greater
motivation, a strong understanding of mission objectives, which in turn makes the teams very adaptable and
capable of proposing and implementing solutions to problems. Producing systems which the team themselves
will have to run is a strong concentrator of the mind and the considerable costs of training and detailed
documentation as the project progresses are significantly reduced.

It is not only in formatting that the adoption of standards can be of benefit. The existence of co-ordinated
national facilities in the UK such as Starlink in the Astronomy area and the British Atmospheric Data Facility
(formerly GDF) has also led to standardisation of data handling tools and data bases, allowing the reuse of
software for analysis despite the widely differing instrumentation being flown. More could be done to exploit
these universal tools, but a start has been made, although each project may have to accept compromises and
possible lower performance if the goal of minimal new software is to be achieved.

CONCLUSIONS

It has been shown that mission costs for the Ground System can be significantly reduced by making just small
compromises in data return, together with standardisation of hardware and particularly software subsystems,
and in greater use of National facilities.
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ABSTRACT

New concepts must be implemented when
designing a Ground Segment (GS) for small
satellites to conform to their specific mission
characteristics : low cost, one main instrument,
spacecraft autonomy, optimised mission return,
etc... This paper presents the key cost drivers
of such ground segments, the main design
features and the comparison of various design
options that can meet the user requirements.

Key words : Small satellites, Ground
Segment, Mission Control, Data Acquisition.

1- Introduction

The Ground Segment for control of the
spacecraft and for exploitation of their data
represent a growing part in the space mission
budgets. Therefore it has been considered
important by Industry and by such Agencies as
ESOC (1) and CNES (2) to review the state of
the art for the Ground Segments that support
the Small Missions, to understand the possible

degree of optimisations and the cost

implications.

Small satellite missions usually consist of one
or two instruments aboard a small spacecraft
thanks to technology progress. The
development time frame and the programme
costs are major drivers that will have to be
fully considered for the definition of Ground
Segment development and operations. The
main driver to optimise the design while
considering the cost constraints is thus to
consider the space system (Figure 1) as a
whole and to think integrated system.

OPERATIONS )¢———————>{ SATELLITE

GROUND SEGMENT
DESIGN

COSTS & RISKS
ANALYSIS

Figure 1 : Concurrent Engineering
for Ground Segment design
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The paper presents the cost drivers to be
examined when designing a Ground Segment,
the typical overall Ground Segment design
characteristics and the main latitudes for
optimisation. Finally the emphasis is placed on
the definition of major Ground Segment
elements, the Mission Control System and the
Ground Stations to highlight where an
optimum design can stand.

2- Mission related cost drivers

Since the cost constraints must be considered
from the beginning, it is necessary to analyse
where lay the cost drivers for ground segments.
The cost drivers may vary from one mission to
the other, may depend a lot on the category of
service proposed by the mission : data for
scientists, commercial service for
telecommunications. However some general
trends have been highlighted from examination
of a number of conventional missions and of
small missions.

For a typical observation small mission (Table
1), the GS design must consider with specific
attention all requirements that may impact the
number and definition of the Ground Stations
and the Flight Dynamics functions on-ground.
In this example, the Ground Station and Flight
Dynamics elements have a sizing costs within
the Ground Segment costs.

The accuracy of orbit restitution needed for
payload data processing is a characteristic of
this mission that directly impacts the flight
dynamics processing on-ground. The ground
station is a unique S-band station that supports
both the Payload and the TM/TC housekeeping
data. The other elements have a lower
importance since either based on reuse of
existing components or based on a limited
development for a simple mission for
example, the mission planning function is
limited due to only one payload instrument
with no direct interaction with the users who
require a systematic observation.

SMALL SATELLITE MISSION
GS DEVELOPMENT COST
(Most sizing cost driver graded 5)

Ground
Stations

Comms
Infrastruct.

Mission Control

TTC
processing

Other
functions

Mission
Planning

Flight

Dynamics

USERS REQUIREMENTS
Mission purpose 4
Permitted mission outage 1
Availability of payload data 1
MISSION REQUIREMENTS
Mission Lifetime

Satellite Pointing requirement 2
RF Payload constraints
SATELLITE DESIGN
Orbit control

Attitude control

TM/TC interfaces

RF design

Data rates/response times
Number/complex Ops modes

f—

LoV B

3 1

[am—ry

o

1 1 1

1 1

Table 1 : Typical Cost Drivers for a small satellite mission (Observation)
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The methodology followed was to identify
what are the requirements that can impact the
Ground Segment Design. In relation with the
Users, the following requirements are identified
as having a significant impact : the Mission
Purpose that defines mainly coverage (image
size, trajectory), resolution and duration of
observation, the permitted mission outage
expressed in possible interruptions of on-board
service or observations, the availability of
payload data criterion corresponding to the
delay between the observation on-board and
the time of reception of data at user site. The
Mission Analysis then considers
requirements and the characteristics of a space
system to derive such characteristics as the
mission lifetime, the satellite pointing
requirements or the RF payload constraints
(e.g. number of ground stations, RF band
selection). From the Mission Analysis a
Spacecraft design will also impact the Ground
Segment design with such requirements related
to orbit control, attitude control, TM/TC

these

interfaces definition, data rates and response
times, RF links characteristics and link budget,
number and complexity of operations modes
that will have to be handled from the ground.

For comparison an observation conventional
mission is considered : the GS costs are equally
shared between the Ground Stations and
Comms development, the Mission Planning
and the Satellite Control Centre. For such a
conventional mission, the main cost drivers
were impacting most elements in a more
distributed fashion as shown per Table 2.

The above elements must be given full
consideration, when performing the necessary
iterations between the Ground Segment design,
the costs, the operations and satellite definition.
The main Ground Segment design
characteristics for a small mission are now

highlighted.

Conventional SATELLITE MISSION
GS DEVELOPMENT COST
(Most sizing cost driver graded 5)

Ground
Stations

Comms
Infrastruct.

Mission Control

TTC
processing

Other
functions

Mission
Planning

Flight

Dynamics

USERS REQUIREMENTS
Mission purpose 3
Permitted mission outage
Availability of payload data 1
MISSION REQUIREMENTS
Mission Lifetime

Satellite Pointing requirement
RF Payload constraints
SATELLITE DESIGN

Orbit control

Attitude control

TM/TC interfaces

RF design

Data rates/response times
Number/complex Ops modes

0B =

W W N

2 2 3 1

W N
f—
—

3 1 1

1 1

Table 2 : Typical Cost Drivers for a conventional satellite mission (Observation)
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3- Ground Segment design

The Ground Segment design for a small
mission must be such as to support the overall
mission, but with much emphasis placed on
costs aspects both for development and for the
typical 3 years mission duration (2 to 5 years
depending on the mission).

A first major trend of the design will be to
maximise the use of existing components in the
ground infrastructure : this trend limits the
development costs and the maintenance effort
since the hardware is based on off-the-shelf
items and the software is flight proven in other
programmes. This is why an important design
effort will be dedicated to the overall
architecture definition to identify the building
blocks, to define their interfaces and the
missing elements, and last but not least to react
on requirements whenever it is felt to simplify
the design while meeting the overall mission
objectives.

To design a Ground Segment with building
blocks will be more easily achieved if the
system is built as a distributed system. And
since cost efficiency for operations is an other
major criteria, the collocation of the Ground
Segment facilities must be enforced. Therefore
a typical Ground Segment design for a small
mission will be based with its components
collocated around a Local Area Network
(Figure 2) : Ground Station, Satellite Control
System, Flight Dynamics, Mission Planning,
Payload Preprocessing with the capabilities to
communicate payload data to users either by
mail or by communication links.

For small nmissions, the availability
requirements can be less stringent than in
conventional missions. No hot redundancy will
be implemented as a rule : as experienced in
conventional missions, it is costly since it
requires more hardware, automatisms, specific
procedures adding to the complexity of
operations, documentation, training and
maintenance.

asm 16
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GROUND SEQMENT BULDING
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SYSTEM SYSTEM P ssie ProcessNG
OPERATIONS ROOM

Figure 2 : Typical design for a Small Satellite Ground Segment



The other main features of the GS design for
small missions are : collocation of facilities,
reduced staffing, use of proven off-the-shelf
hardware and software, automation of routine
operations, compliance to standards (e.g.
CCSDS and ESA COES) to enforce further
commonalties for reuse. Table 3 hereafter
compares the main features for a Low Cost
ground segment option, for a Lower risk
ground segment option and for the design

attached to a conventional mission. The Lower
Risk option will mainly differ from the Low
Cost option in the operations concept that will
provide a higher security level for operations
and a higher mission availability.

How the Lower Risk option can best meet the
overall mission requirements and what are the
possible risks attached to a Low Cost option
are given a preliminary answer in the following
section. ' '

OPTION OPTION CONVENTIONAL
Low Cost Lower Risk MISSION
MISSION 80-90% : normal >90% : 7 days/week + | >99.9% : 7 days/week +
AVAILABILITY working hours on-call at night 24 Hours/day
(+ on-call for w.e.)
STAFFING 2 or 3 for all tasks 3 for ops + 6 shift x 2 for ops +
part support important part support
FACILITIES Collocated 1 or 2 sites Several sites
DISTRIBUTION
STATION Design Standard products, Idem + reuse New development
small antennae of a station network
MCS Design Reuse existing packages | Reuse existing packages New development
Minimum adaptations More tailored to ops Many ops requirements

Table 3 : Main features for the overall GS Design

4- Ground segment optimisation

The allocation of costs for a Ground Segment must
be carefully considered to select design options that
will maximise a mission return criteria, i.e.. the
amount & quality of data versus the investment.

Typical costs allocations are shown for a
Telecomms conventional mission (Figure 3) and
for a Small Mission (Figure 4). The total GS cost
includes the following costs : Ground Stations &
Comms, Mission Control System, Prelaunch
operations (Flight procedures preparation, MCS
database definition and validation, ground and
flight operations validation and rehearsals) and a
normalised period of 3 years operations.
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In the conventional mission example, the Ground
Stations costs were important due to the number of
antennae considered and to a 11 meter antenna
supporting accurate angular measurements. The
ground station cost for the small mission was
limited since VHF/UHF data links were considered
both for payload messages (less than 20 Kbps) and
for housekeeping TM/TC with no ranging
requirements imposed on ground other than
processing the on-board GPS transmitted data.

With these characteristics a significant cost of the
small mission Ground Segment corresponds to the
operations costs. Therefore it is important to
analyse how these costs can be reduced and how
this reduction can impact the GS availability and
the risks for operations.



GS & Operations costs

Oos Byears)
23% Goud
stfiors &
Corrrrs
Prelainchops 3%
11%
Msslon
Corra

23%

Figure 3 : Cost break-down for a Telecomms Conventional mission

Telecomms : Low cost option

Ops (Byears) Ground S tofiors
49% & Comrs
%

M sion Control

Prelaunchops 20%

13%

Figure 4 : Cost break-down for a Telecomms Small mission
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Figure 5 below presents a typical example of a
GS availability as a function of the GS total
cost for typical GS options with different
design, maintenance and staffing orientations.
The availability was computed using
equipment failure rates and mean time to repair
as checked during several years of operations
and the time for intervention considered for
exploitation. The main difference between
options availability characteristics proceeds
from this time for intervention, i.e. time spent
between the occurrence of a failure and the
staff performing failure detection, investigation
and replacement of the faulty equipment. With
today's GS equipment high reliability figures, it
is the exploitation characteristics that mainly
drive the GS availability.

In the Low Cost option, staff is only available
during working hours. In the other option (Low
cost/24 Hours, ESOC reuse, Low risk) only

the design is different when the staff is
available day and night, including week-ends to
react to any ground failure detected with spare
equipment available for ground equipment.

The Low Cost option is interesting since it
presents a substantial cost advantage of about
3 MAU with respect to the other options and a
higher mission return per cost unit (defined as
the amount of data a user can expect over the
mission duration, and therefore proportional to
the GS availability figure). From the user
perspective the mission return is 2% lower but
the sensibility of theses availability figures and
their statistical meaning show that this will
have little effect on the user satisfaction wrt the
amount of data acquired over the 3 years.
Therefore the 24 Hour Manning Low cost
option does not bring a significant advantage to
be considered.

Sea Altimeter Ground Segment
100 1 lowoost/24Hmaming = ESOCRewse
X5+ ] "
§ 1 Low sk
985 +
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8 97.5 +
: ot
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Figure S : Staffing & Maintenance impact on GS availability and cost



An alternative could be to change some
characteristics so that the mission return be
much lower at a significant saving. From the
cost drivers analysis this orientation would
bring a minor cost saving with a substantial
degradation of mission return and a higher risk:
for example operators only working upon
automatic anomaly detection could be felt more
risky without a significant advantage.

This is why it is of the utmost importance to
appreciate the risks induced by the Low cost
approach in comparison with the more
conventional approaches. The following
elements contribute to the risk specific to the
Low Cost option and not supported by the
other options :

- The whole expertise (spacecraft and ground)
is supported by a 3 engineers staff coming
from the spacecraft development team. In the

other options an operations support
infrastructure is identified that support
spacecraft contingency analysis or such

expertise domains as flight dynamics, or
ground equipment maintenance. The difficulty
consists in the level of skills required from this
3 engineers team and whether they can
efficiently support contingency cases. The
typical spacecraft autonomy of 1 week, the on-
board securities and the expertise gained by the
staff during spacecraft development should
compensate most of the risk.

- The simulator is not foreseen in the low cost
option and limited testing will be performed
with the spacecraft (or its engineering model)
on ground. A number of operations will not
have been tested prior to launch : this could be
accepted if the spacecraft is safe, robust to
ground errors and that a number of spacecraft
specialists are available at the beginning of life
so that operations imperfections be detected
quickly and correct procedures be validated.
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The beginning of spacecraft lifetime would
lead to less data availability, what could be
accepted since a first period is often considered
for calibration and with full support of the
spacecraft engineering team. However it is
strongly recommended to keep the simulator
even in a low cost option, since the foreseen
benefit for operations security is important
with regards to the cost of such a recurring
product which represents less than 3% of the
total mission cost.

Each of the GS components are further
examined with emphasis on the major design
options.

5- Mission Control System

The Mission Control System (MCS) is
composed of the following functions : TM/TC
function with real time control and satellite
performance analysis, flight dynamics and
mission planning. The main outcome for small
missions will be the reuse of existing software
packages. Most packages are running now on
Unix workstations and the integration can be
limited when only exchanging few data files.

An important trend to reach additional cost
saving for small missions, will be to consider
all Ground Systems needed in a programme :
with reuse of existing EGSE and MCS
building blocks, it is now envisaged to build a
"Universal Test Bench" that can be used in all
stages of the satellite development and
operations.

Figures hereafter (Figures 6 to 8) examine the
relative development costs for observation
missions : a Conventional mission, a Sea
Altimeter small satellite mission and a
Cartographic small satellite mission.



Ground Segment Development costs

Flight Management

Mission Dynamics & infegration
planning 3% 12%
259, Ground
statlons (2) &
Comms
24%
MCS:TM/TC
36%

Figure 6 : MCS costs for a conventional mission (Observation)

G S Development for S mall S ea Altimeter sateliite

Marogh& inbgdlon
FlightDynarmics 1%
29% i :

MsslonPiaming
3%, Stalon &Corrrrs
MCS . TMAC 45%

Figure 7 : MCS costs for a Sea Altimeter small mission

GS Development for S mail E arth
Observation satellite

Flight
Dynamics Managt &
11% Infegrafion
Mission . 28%
Planning ,
15% )
MCS :TM/TC
10%
S tafion &
Comms
36%

Figure 8 : MCS costs for a cartographic small mission

833




The above examples show that with this
strategy of reuse with minimum adaptations,
the amount of the Mission Control System in
the overall development costs is lower than for
conventional missions. Depending on the
ground station characteristics, the MCS can
weight 36% to 44% of the Ground Segment
development cost.

6- Ground stations and Communications

The Ground Stations and the ground
Communications part of a Ground Segment is
usually a sizing ratio of the total development
cost. Therefore special attention must be
granted to the characteristics that contribute to
the costs (Table 4).

The Antenna itself in the ground station can be
when high
performances are required from the specified
bandwidth and data rates. This is why a
ground and board optimisation must take place
to review the data rates with respect to user
requirements, to review then the budget link
requirements, to retain only one system of
communications both for payload and

the sizing cost element

housekeeping operations. The choice of the
frequency bandwidth (X band, S band or lower
band such as UHF) and the mission orbit
characteristics will then make the price of the
antenna. A common characteristic of many
small missions is that only one antenna system
is used for communications of both payload
and housekeeping data of the satellite platform.

The RF equipment and Baseband equipment
are then to be considered in the cost but they
are usually off-the-shelf equipment with high
reliability figures : the Monitoring & Control
equipment can limit itself to the set-up of
equipment configuration and to support
investigation and no longer as a procedure
driven system to act on the redundancies and
switches. In addition, for a low cost solution, a
new range of VSAT equipment is available at
a lower cost with possibly lower reliability
performances that can be adequate for small
missions. As for other elements of the Ground
Segment, a major contributor to costs, as
experienced in  passed  conventional
programmes, is the development of specific
equipment or of new technology when off-the-
shelf equipment exists.

COST DRIVERS SMALL MISSION CONVENTIONAL
OFF-THE-SHELF Systematic cost of technology changes
EQUIPMENT
ANTENNA & RF Only 1 station Network of stations
for payload and data Sizing costs

RANGING Use of GPS Can be costly on ground
Interface with existing network

LEOP Transportable TTC station Specific requirements
S/C autonomy wrt LEOP '

COMMUNICATIONS | Collocation on LAN as baseline Usually low relative costs
Files transfer at low data rates

Table 4 : Cost drivers for Ground Stations and Communications



An other important cost item can be related to
the requirements imposed on ground to
perform the ranging. In conventional missions
these requirements imposed range equipment in
the station, or large antenna with complex
mechanics for accurate angular measurements.
For small missions these requirements are
alleviated either by performance
requirements on orbit determination or by the
availability on-board of GPS or other
equipment that provide orbit measurements.

lower

Finally communications can be achieved more
simply than in conventional missions with
relaxed requirements for data timeliness that
defines the time spent to provide the user with
data. Depending on missions, simple mail
procedures can be accepted or an electronic file
transmission system using standard networks
(e.g. INTERNET or other national or
international networks) can be used. To
decrease the communications costs, one
solution if feasible may consist of having users
collocated at Ground Segment site and
receiving their data on the LAN. The
communications analysis can impact the place
where the data demultiplexing can be
performed : either at Station or at Control
Ground System level.
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7- Conclusion

Small missions constraints enforce a new
approach for development of both the satellite
and its associated ground systems. With due
consideration to existing technology and
products, the project team must review in an
iterative way the requirements, design and
costs implications on both the satellite and the
ground systems for satellite testing and for
operations. This new approach can be
summarised the Integrated System
Approach relying on a new ground system
means, the "Universal Test Bench" which
building blocks will be used according to
satellite development and operations stages.
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ABSTRACT

This paper presents the capabilities implemented in the
SAX system for an efficient operations management
during its in-flight mission.

SAX is an Italian scientific satellite for X-ray Astronomy
whose major mission objectives impose quite tight
constraints on the implementation of both the space and
ground segment. The most relevant mission
characteristics require an operative lifetime of two years,
performing scientific observations both in contact and in
non-contact periods, with a low equatorial orbit
supported by one ground station, so that only a few
minutes of communication are available each orbit.

This operational scenario determines the need to have a
satellite capable of performing the scheduled mission
automatically and reacting autonomously to contingency
situations.

The implementation approach of the on-board operations
management, through which the necessary automation
and autonomy -are achieved, follows a hierarchical
structure.

This has been achieved adopting a distributed avionic
architecture. Nine different on-board computers, in fact,
constitute the on-board data management system. Each
of them performs the local control and monitors its own
functions whilst the system level control is performed at
a higher level by the Data Handling Application
software.

The SAX on-board architecture provides the ground
operators with different options of intervention by three
classes of telecommands. The management of the scientific
operations will be scheduled by the Operation Control Centre
via dedicated operating plans.

The SAX satellite flight model is presently being
integrated at Alenia Spazio premises in Turin for a
launch scheduled for end "95. _
Once in orbit, the SAX satellite will be subject to
intensive check-out activities in order to verifiy the
required mission performances. An overview of the
envisaged procedure and of the necessary on-ground
activities is therefore depicted as well in this paper.
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INTRODUCTION

The SAX satellite is part of a scientific program whose
objective is to observe celestial X-ray sources in the
broad energy band from 0.1 KeV to 300 KeV. The SAX
mission has been planned to achieve a systematic,
integrated and comprehensive exploration of galactic and
extra-galactic sources,  providing significative
improvements for more complete and extensive studies
in X-ray astrophysics.

SAX is a joint program managed by the Italian Space
Agency (ASID) and by the Netherlands Agency for
Aerospace Programs (NIVR) coordinating the scientific
interest of the Italian and Dutch scientific community
and funding an international industrial team whose
overall organization structure includes:

¢ Alenia Spazio as main contractor for the Space Segment
¢ Telespazio as main contractor for the Ground Segment

e Martin Marietta - Commercial Launch Services - as
main contractor for the Launch Vehicle

e Italian and Dutch Scientific Institutes as Scientific
Consultancy.

The SAX Payload hosted on-board consists of the following
six scientific Instruments (Ref. 1);

¢ Low Energy Concentrator Spectrometer (LECS) whose
task is to perform X-ray spectrometry/imaging in the
0.1-10 KeV energy range

o Medium Energy Concentrator Spectrometer (MECS)
whose task is to perform X-ray spectromefry/imaging in
the 1-10 KeV energy range

e High Pressure Gas Scintillation Proportional Counter
(HP-GSPC) whose- task is to perform X-ray

. spectrometry in the 3-120 KeV energy range

e Phoswich Detector System (PDS) whose task is to
perform X-ray spectrometry in the 15-300 KeV energy
range and gamma-ray burst monitoring in the 60-600
Kev energy range

¢ Two Wide Field Cameras (WFCs) whose task is to
perform X-ray spectrometry/ imaging in the 2-30 KeV
energy range.
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Fig. 1 - Satellite Overall Configuration

The WFCs are mounted along the +Y and -Y satellite
axes, allowing an observation of a wide sky portion,
whereas all the other Narrow Field Instruments are
aligned along with the +Z axis. Fig. 1 illustrates the
satellite overall configuration.

The SAX pointing capability ensures a target
measurement accuracy of 1 arcmin and a pointing of 3
arcmin for a maximum of 10° seconds, i.e., one day.

All the project design has been developed to cope with a
mission of at least two years preceeded by a
commissioning phase period, estimated to extend for
about eight weeks.

The satellite is currently in a very advanced C/D phase.
The Flight Model is under integration as the last step of
a system integration and test campaign involving the
developing of a Structure Model, an Engineering Model,
and a Software Verification Facility. The launch will
take place by end "95 with an Atlas Centaur vehicle. The
SAX Ground Station will be located in Singapore and
will be connected via Intelsat to the SAX Operation
Control Center and the Scientific Data Center, both
located in Rome,

MISSION CHARACTERISTICS

The major constraint entailed by the scientific objectives
requires a satellite orbit such that the background particle
radiation for X-ray detection be very low and the effects
of radiation from the South Atlantic Anomaly region be
reduced. This leads to the choice of a circular low Earth
orbit at a 600 Km altitude - Begin of Life (450 End of
Life) - and an inclination of about 4°. The orbit period is
thus of 97 minutes with an alternance of 60 minutes of
sunlight and 37 minutes of eclipse.

838

One single ground station, located near the equator, will
support the mission offering satellite visibility each orbit. The
coverage period is anyway no longer than 11 minutes so that
about 90% of orbital life is out of visibility.

The pointing domain is limited by the allowed sun
incident angle range on the satellite solar array surface.
A maximum of 30° (with occasional excursions to 45°)
inclination is allowed with respect to the sun direction to
ensure a proper battery charge. This implies a pointing
domain for the Narrow Field Instruments limited within
a band in the sky 60° wide available for observation each
orbit (except some possible occultations by celestial
bodies). In a one year period, the whole sky will be
observable for a scientific activity that can be estimated
as performing between 2000 and 3000 independent
observations (Ref. 2).

THE SYSTEM ARCHITECTURE

The above introduced operational scenario determines
the need to have implemented on-board the capability of
supporting, in an autonomous way, the execution of
on-ground pre-defined mission plans. That also requires
the on-board architecture to manage the nominal
activities as well as the pre-conceived anomalies, in all
the mission phases, taking into particular account that
most of the mission is out of the ground coverage.

The implementation approach of the required operation
management is based on an avionic architecture which
makes extensive use of a distributed on-board
intelligence (Ref. 3). Nine on-board inteiligent terminals
constitute the SAX system architecture as shown in Fig.
2 (see following page).

Each of them performs the autonomous control of the
relevant subsystem (S/S) local functions including the
surveillance of its health status. The control of the system
overall activity is assigned to a higher hierarchical level and
is implemented in a Central Terminal Unit (CTU). The CTU
is devoted to coordinating and controlling the Data
Management and Communication System as well as to
managing the system nominal operations and to undertaking
the system level recovery actions. A set of non-intelligent
subsystems, including the Telemetry Tracking & Command
S/S, the Reaction Control S/S and the Electrical Power S/S
are placed under the direct control of the CTU via serial lines
through a Remote Terminal Unit.

The interprocess communication is based on the ESA
standard serial digital bus arbitrated by the CTU and
composed of:

e Interrogation Bus for CTU to
interrogations

¢ Response bus for local terminals to CTU transmission of
Housekeeping Data (HKD)

¢ Block Transfer Bus for Scientific Instruments to CTU
transmission of Scientific Data.

local terminals
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Fig. 2 - System Architecture

The data communication protocol is designed to ensure a
collection of about 16 kbit/sec of HKD from the satellite
subsystems and science instruments and up to 100
kbit/sec of scientific data. Two different formats of HKD
can also be selected: one essential format including a
basic set of SAX HKD, one intensive format including
some extra information on hot redundant units and Data
Handling traced operations. All the data gathered in
non-visibility are temporarily stored on a dedicated tape
recorder, with a capacity of 510 Mbits, until requested to
be dumped to ground during the coverage periods. Two
channels are implemented to dump to ground the satellite
telemetry in High Bit Rate mode:

* channel "I" for dumping the real-time collected
telemetry at 131 kbps

* -channel "Q" for dumping the tape recorded data at 917
Kbps.

A 16 Kbps link is also available to implement a Low Bit
Rate transmission mode.

The telecommand bit rate allows an uploading of 2
Kbps, that is about 20 frame instructions/sec.
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ON-BOARD REDUNDANCY CONCEPT

The SAX mission characteristics have led to a system
design with a high degree of reliability to cope with so
long an autonomous lifetime.

All the spacecraft S/Ss are designed to be single failure
tolerant whereas the Scientific Instruments implement
redundancy only at interface level. Critical on-board
items (e.g. receivers, decoders, gyroscopes, power units,
protected memory) all operate in hot redundancy. In this
context single spacecraft unit malfunction does not affect
the nominal mission performance.

The intelligent subsystems - ie., On-Board Data
Handling (OBDH), Attitude and Orbit Control S/S
(AOCS), Thermal Control S/S (TCS) - are based on a
fully redundant architecture. Each of their unit classes
includes one redundant item so that one fatal failure can
be recovered by properly activating this redundancy.

The Scientific Instruments, not having implemented any
internal redundancy, perform only a reduced Failure
Detection and Isolation function for specific problems.



All the on-board computers maintain at least the software
(SW) basic functions stored in Programmable Read Only
Memories so that any reset/switch-over cannot cause the
loss of the code, as it is downloaded from PROM to
RAM any time a (re)-initialization takes place.
Embedded circuitry for error detection and correction of
corrupted memory cells by single event upset as well as
a watch-dog circuitry for autonomous reconfigurations
are provided in all the intelligent subsystems.

All the data considered critical for the proper on-board
autonomous maintenance of the mission, in any nominal
or contingency situation, are dynamically maintained in
dedicated Protected Memory Areas. According to the
relevant OBDH and AOCS performed control, this data
set is so classified and grouped:

e OBDH Application SW (A/SW) vital data, including the
Solar Array deployment status, the launcher separation
status, the system and some critical S/S items active
configuration (e.g. transmitters, battery discharge
regulators, reaction control S/S branches, etc.)

¢ OBDH Basic SW (B/SW) vital data, including the
Iauncher scparation status, the OBDH active unit
configuration, the redundancy management data

e Time Tagged commands to be scheduled at their own
pre-set time

e Real Time commands to be executed at CTU
switch-over

e AOCS S§/S active configuration and launcher separation
status, maintained in dedicated AOCS solid state latches.

The failure management of non-intelligent S/Ss is

performed at centralized level by the OBDH A/SW.

Some exceptions deviate from this general approach:

* Power S/S performs the failure management for its own
units;

* the hydrazine flow control valves are under control of
the AOCS when it makes use of thrusters;

and these are driven by time intervention constraints.
MISSION PHASES

The SAX mission can be divided into four overall
mission phases.

e Launch Phase

LP begins at spacecraft power-on just before vehicle
lift-off and extends to the physical separation between
the launcher and SAX. In this phase the S/Ss are
initialized and perform a continuous control.of the
powered units. No attitude manoeuvre is of course
executed as the AOCS is in its initialization mode
until the separation. The on-board produced data are
stored on the tape recorder, just after the launch
vibrations terminate, for later fransmission to ground.
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o Commissioning Phase

This begins at the SAX-launcher separation and
extends to the completion of ali initial in-orbit tests
and calibrations. As a first step, it consists of an Early
Orbit Phase which comprises a short post separation
coast period, a reduction of any residual S/L body
rates and a subsequent Sun/Earth acquisition period.
Upon successful completion of these activities the
deployment of the Solar Arrays is autonomously
operated.

The commissioning of the satellite shall proceed with
an initial health check-out continuing with systematic
functional checks of all the subsystem nominal
functionalities.

The Scientific Instrument activation and functional
verification shall be operated as a last step. Some
overlaps between the two shall be necessary for a
complementary check-out of both the spacecraft and
the Scientific Instruments. All these operations shall
be initiated by ground and supported by the on-board
SW tasks.

o Operational Orbit Phase
This phase covers the period of the satellite’s useful
scientific lifetime. It shall be nominally two years and
shall be characterized by routine scientific operations.
The satellite design shall, anyway, allow an extention
of the mission beyond the nominal period up to a total
four years lifetime,

o End of Life Phase
This phase covers the period when SAX is no longer
capable of producing useful scientific information due
to either component degradation or altitude decay.

SATELLITE MODES

The system mode design has been structured to cope
with all the SAX mission phases (Ref. 4). The satellite
modes - implemented with a direct correspondence with
the AOCS modes - drive all the on-board autonomous
operations. Their transitions can be initiated either upon
ground commands or at the occurrence of automatic
fallbacks caused by system autonomous emergency
re-configurations. The SAX mode transitions diagram is
reported in Fig. 3 (see following page).

The mission/science support modes are the principle
configuration to support the scientific activity. The
default/safety modes correspond to the main operative
configurations to be assumed in case of interim science
activity or on-board emergency. Two further modes
support special operations during the launch phase and
during the orbit raising manoeuvre - if ever needed.

¢ Satellite Launch Mode (SL.M)
Routine operations are performed to ensure an health
satellite status ready to operate just after the
SAX-launcher separation.

C- 3.
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The produced telemetry is recorded only after the
vibration level is reduced - the activation of the
on-board tape recorder is made by a time tagged
command.

Satellite Sun Earth Pointing Mode (SSEPM)

This mode is automatically entered either at
SAX-launcher separation or as fall-back from the other
Nominal Satellite modes. Purpose of this mode is to
maintain the satellite in a 3-axis stabilized attitude
optimizing the sun incidence on the Solar Arrays. As
this mode is entered from the separation, it has to
accomplish a very critical sequence of operations most
of them to be performed autonomously since they are
out of the ground coverage. The major operations are
initiated by the OBDH and AOCS software that have to
coordinate the safe attitude acquisition with the Solar
Arrays deployment. Trigger of these operations is the
SAX-launcher separation, detected by a dedicated fully
redundant hardware circuitry and sent to both the S/Ss.

AOP Bnable

Sciernce AOP Enable ,.*~

e

MISSION/SCIENCE MODES

Transition Diagram

o Satellite Interim Science Mode (SISM)
This mode configures the SAX satellite in a accurate
three-axes stabilized attitude making use of one star
tracker, besides all the other used sensors. This fine
pointing helps in keeping a default attitude (e.g.
Polaris pointing) and in fastening attitude transitions
to scientific modes.

Satellite Nominal Science Mode (SNSM)

The satellite remains in this mode while operating the
planned scientific observations. A very fine pointing
is made by use of the AOCS star trackers. All the
scientific data produced by the Scientific Instruments
are collected by the OBDH according to a dedicated
polling algorithm.

Satellite Slow Scan Mode (SSSM)

This mode will mainly be used to perform calibrations
of Non-Imaging Scientific Instruments by performing
sequential slews across a known target.
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o Satellite Delta-V Mode (SDVM)
This mode is designed to cope with the altitude decay,
raising the satellite orbit in the case the SAX altitude
decreases below the 450 Km.

o Satellite Safe Mode (SSM)
This mode is entered upon detection of specific
system-level failures. A safe attitude is then maintained
by the AOCS pointing the Solar Array surfaces toward
the sun and aligning the satellite with the earth magnetic
field.

OPERATION MANAGEMENT STRUCTURE

The management of the SAX system operating modes is
implemented by a multi-level hierarchical structure (Ref.
5) involving, in increasing priority:

¢ the S/L Subsystems and Scientific Instruments
o the OBDH Application Software
e the Ground Operation Control Centre.

To the upper levels is assigned the task of initiating the
scheduling of system level functions as well as the
capability of controlling and overriding the lower level
decisions. On the other hand, the main nominal
operations autonomously performed at local level allow
the proper control and setting of the relevant S/S. In
particular, the intelligent terminals and Scientific
Instruments are designed to be fully autonomous in
performing their relevant tasks so that they can in
principle continue operating consistently without any
external intervention. Few inputs are, in fact, needed
only for tuning their performances and their
configurations with respect to either the system
configuration or the current mission characteristics.

Each of the intelligent subsystems also performs a
Failure Detection, Isolation and Recovery (FDIR)
management on its own, keeping under control the
configuration, functioning and health status of all its
relevant units. In the case a malfunction is detected, the
fault unit can be substituted by the redundant one. If the
main S/S computer is affected an automatic switch-over
takes place. The redundant intelligent unit will then be
initialized assuming a safe mode of functioning.

The Scientific Instruments, not having a redundant
architecture, adopt a self disabling policy, in particular,
against a too high level of particle radiation able to
damage the instrument itself.

Purpose of the OBDH A/SW is to keep under control all
the subsystem level operations; that implies a system
supervision to ensure the proper nominal/safety satellite
consistency. What has been assigned to the A/SW is the
role of the on-board coordinator of all the major flight
operations between themselves and with respect to the
ground scheduled plans.
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It is in particular devoted to:

* perform Solar Array deployment following the launcher
separation and sun/earth acquisition

* inform the AOCS of the new inertia matrix to be used
after the Solar Array deployment

* support the distribution and enabling of operating plans
to the AOCS and Scientific Instruments

* support the Ground-to-Satellite link acquisition and
downlink telemetry operations

* enable/disable power resources. to the non-essential
satellite loads, ie., Scientific Instruments, Reaction
Control S/S, thermal control heaters

* perform the deployment of the Scientific Instrument
baffles

* manage satellite mode transitions as a consequence of

¢ Intelligent S/S switch-over

®  AOCS mode falibacks

° Power S/S protection triggering

Scientific Instrument particle over-radiation detection. -

All the A/SW operations are coordinated and
synchronized by the proper activation of dedicated
pre-defined command sequences and command loops.
These can be activated either by ground or autonomously
to accomplish the above introduced operation set. The
OBDH A/SW core is based on three principal modules
acting as the kernel of the A/SW architecture, as
illustrated in Fig. 4 (following page).

o The Mission Manager: it monitors the mode transitions
of all the subsystems and instruments which require
corrective operations. It is based on a mode transition
table indicating all the actions to be undertaken at the
occurrence of S/S mode transitions. It in particular
specifies the safe configurations to be adopted in case of
some critical mode fall-backs. It also drives the
enabling/disabling statuses to be applied to the A/SW
controls, as a function of the satellite mode
configuration.

o The Fault Manager: it cyclically checks a pre-defined

sub-set of the on-board produced monitors to undertake
subsequent actions to isolate and/or recover the related
problems. The data set includes all the mission critical
on-board items, provided on a periodic basis and kept
under control by means of a table driven FDIR manager.
The control is performed by periodic tasks scheduled
every second.
A cross-check is then made between the measured
values and their relevant expected ranges. Any
discrepancy activates a direct recovery action on the
non-inteltigent S/S with possible extension to a system
reconfiguration in the case the malfunction can severely
affect the system performance.
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Fig. 4 - OBDH Application Software Architecture

¢ The Telecommand Server: it manages the ground
initiated operations distributing and verifying the
command execution.
It furthermore applies a consistency checks on the
ground up-loaded requests against the current system
configuration. In the case a conflict is detected a report
is provided in the A/SW ftelemetry but no action is
undertaken until an explicit ground override is operated.

The top level of the SAX operations is, of course, a
ground task. It is responsible for acting on the satellite
configuration in order to set it up properly to accomplish
the planned scientific observations. It has therefore to
operate on both the spacecraft and the Scientific
Instruments. Besides, routine maintenance operations
have to be scheduled to cope with the orbit and mission
events/constraints.

Some of the more frequent operations are anyway related
to the orbit contact management whose ground
intervention extends to:

* linking acquisition via the proper activation of the
transmitter linked to the ground facing antenna. This is
done by a time tagged telecommand acting on a
dedicated A/SW command sequence which is devoted to
verifying the correct functioning of the on-board link
chain

* enabling the telemetry transmission to ground once the
down-link camrier is obtained. This concems the
real-time telemetry and, on request, the on-tape data
stored in the non-coverage period

* restoring the on-board data recording and termination of
the link before the end of the contact period

* command the issuing of the on-board time samples for
on-ground data comrelation

* managing the antennae switch-over as the coverage
concerning the facing antenna is going to end. Note that
two hemispherical antennae are implemented on SAX in
order to cover the whole space around the satellite.

Less frequent operations are related to scientific
observation management. That involves:

* changes of the satellite attitude via dedicated AOCS
Operating Plans

* changes of allowed pointing domains

* changes of Scientific Instrument operating modes

* Scientific Instrument configuration management, in
particular at any entry/exit of the South Atlantic
Anomaly.

Other infrequent operations are related to performance or
maintenance aspects. In this context, the ground control
centre shall periodically monitor the satellite dumped
telemetry to keep under control the actual on-board
configuration. It can therefore intervene for recovering
any on-board assumed safe mode or, simply, for tuning
some control parameters such as, for example, battery
End Of Charge and/or End Of Discharge levels, thermal
loop thresholds and/or enabling/disabling flags, sun
vector and attitude quaternion values, efc..

GROUND COMMANDING CAPABILITY

The ground commanding capability is driven by three
major parameters:

o the visibility period
o the up-link characteristics

e the on-board command management design &
operations.
The major constraint on the commanding capability
comes from the very limited visibility window. This
requires the Operation Control Centre to prepare a
well-defined timeline for a long period, e.g. one week -
corresponding to about one hundred passages, operating
in the interin of two passages just to analyze the dumped
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telemetry and to react to any anomaly detected. All the
commands necessary for operating the satellite both in
and out of visibility must be up-loaded during the
contact period.

The up-link characteristics are based on the ESA PCM
Telecommand Standard. It allows the transmission of
2000 bps, that is - as the ESA standard telecommand
frame is 96 bits long - a bit more than 20 frames/second.
The minimum instruction can be based on a single frame
structure. In the case a complex command is needed, a
mutiframe message - constituting a block command - can
be up-loaded. The block command structure used on
SAX is shown in Fig. 5.

Based on the above mentioned standard, the on-board
design provides ground with three different options of
intervention. Three classes of commands are, in fact,
made available and properly managed on board.

» Single frame commands that can be used to up-load high
priority command whose purpose is to operate on a
critical subset of the satellite hardware devices. This type
of commands by-passes any on-board SW control and,
via the decoder, directly acts on the end items. This class
is thus useful as a back-up in case of an emergency.
Typical applications are switching operations involving,
for example, unit selection and separation event override
command to AOCS.

¢ Single frame commands that can be used to directly
issue single instructions on the OBDH Bus to any
terminal. This class might be used only in the case of
OBDH B/SW bus management malfunction since they
by-pass the OBDH B/SW control. Care might therefore
be taken because such asynchronous instructions can
affect the proper OBDH Bus protocol functioning.
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s Block commands that represent the nominal way of
commanding. Their structure can be flexibly filled in so
that they can contain either one multi-parameter
command or a set of single instructions or one operating
plan. Their routing is performed by the OBDH B/SW
according to the destination field content. Other
syntactic/semantic information is contained in the block
header for on-board verification and execution, i.e.,
begin pattern, destination, name and length.

What is particularly important to emphasize is the
on-board capability of managing the block commands as
delayed commands. By means of a dedicated flag,
ground can, in fact, impose their execution at the time
specified in the relevant tag field. A queue of one
hundred time tagged commands is dedicated in the
OBDH protected memory area, - an estimation of about
60 block commands, as a maximum, has been evaluated
as necessary each orbit for nominal spacecraft and
Scientific Instrument operations. It is worthwhile noting
that a dedicated flag is also present in the block structure
indicating whether the command has to be deleted in
case of CTU switch-over. Since a system reconfiguration
takes place at the CTU switch-over, this option is quite
useful to avoid any unwanted override unless not
explicitly authorized by ground. The mission critical
commands, e.g. Transmitter ON command, should,
anyway, always remain in the queue until their
scheduling time elapses.

Within these commanding possibilities ground can
address specific requests to any on-board subsystem
coordinating the mission operations both in and out of
visibility.

One of the major aspects offered by the OBDH A/SW
design is the capability of modifying the OBDH A/SW
control, devoted to the system operations, by means of
simple enabling/disabling commands. As the most
important A/SW functions are implemented by a table
driven mechanism, a flag has been associated to each of
the table entries.

The relevant control can be made active or inhibited by
setting the proper value of these flags. An easy updating
of the table elements, used as comparison for activating
autonomous recovery actions, can be, as well, easily
done by mean of dedicated commands.

One of the more powerful features that are made
available for emergency ground intervention is specific
command to the OBDH operating system. The OBDH
SW - in particular the A/SW - is based on a very
modular architecture so that each command loop and
sequence has been implemented as a stand alone task.
Therefore, proper acting on the operating system
primitives can modify the task scheduling mechanism.



In particular, the following main interventions can be
run-time commanded:

* change the task priority
* init/start/stop tasks
* gsend/receive messages on mailboxes.

This mainly allows the introduction of a new task
implementing new functionalities or replacing the current
ones.

The lowest level of possible intervention by ground is
the patching of the Intelligent Terminal software, It can
be accomplished through the OBDH support which
either autonomously executes the patch command on
itself, if so addressed, or routes the new data/instructions
towards the relevant Intelligent Terminal via the OBDH
Bus protocol. The same can be done by directly sending
paiching commands to the AOCS and the LECS which
implement the capabilities of executing the patching by
themselves. This avoids putting the microprocessors in
wait state until the patch is terminated.

Both the interventions on the operating system and the
code have anyway to be planned very carefully with the
support of a Software Maintenance Facility whose team
shall have a very thorough expertise.

As far as the telemetry commanding capability is
concerned, two major features are provided on SAX.

The first one concerns the housekeeping data
transmission to ground whose format can be selected
between two:

* one essential format corresponding to the produced data
set from all the subsystems

* one intensive format that, besides the previous set,
includes extra data packets from the hot redundant
battery control unit and the B/SW tracing process.

The second is devoted to driving the scientific data
collection algorithm. The algorithm, once the scientific
activity is enabled, is executed every second, polling the
six scientific instruments to get the number of ready
scientific packets. The share of the successive scheduled
acquisitions between the instruments is based on two
ground configurable allocation tables, each of their
entries indicating one, out of six, instrument address.
Adjustment of the content of the two tables can be done
by ground according to each Scientific Instrument data
production forecast. Two dedicated commands are
available for this purpose.

Last but not least, extra data can be required by ground,
dumping both the code and the data segments of each
Intelligent Terminal for diagnostic purposes. That in
particular allows to obtain some memory areas of the
Intelligent Terminals devoted to storing history or trace
records not included in the periodic provided telemetry.
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OPERATING PLANS

Setting the AOCS and Scientific Instrument
configurations and modes usually requires many
commands. This can overload both the time tagged
command queue and the related scanning process. A
solution to this potential problem has been found in
grouping a consistent set of commands into only one
Operating Plan. 4

Two types of plans are, in particular, implemented on
SAX:

o AOP - Atitude Operating Plans - devoted to
commanding the mode transitions of the AOCS and to
controlling the attitude manoeuvres within the fine
pointing modes

s POP - Payload Operating Plans - devoted to setting-up
the instrument configuration and the data output formats
for the required scientific performance.

These plans can be up-loaded encapsulated into one
command block and then stored in a dedicated Parcking
Memory Area. Their activation is requested by ground
via the associated Transfer and Enable Commands,
either in real-time or delayed with proper time tags. The
actual execution, by the destination terminal, shall follow
the correct reception and validation of the incoming
Operating Plan only once the Enable command is
received. Supervision of the whole consistency of this
transfer/enabling  process is  centralized and
autonomously made by the OBDH A/SW. It is, in fact,
in charge, if enabled, of filtering the Transfer and Enable
commands if not consistent with the satellite
mode/configuration, e.g. in the case of Safe Mode
fall-back.

As far as the safe AOCS modes are concerned no AOP
are, anyway, needed since the related attitudes are
autonomously acquired and indefinitely kept.

COMMISSIONING CHECK-OUT

The in-flight verification of SAX will be performed in a
designated eigth week Commissioning Phase following
its launch and separation from the launch vehicle.

The purpose of the Commissioning Phase is to validate
the functionality and operability of the satellite and give
the go-ahead to the scientific mission. The relevant
check-out activity is comprised of two principal
sub-phases.

Phase I involves the basic functional/ performance
verification of each of the spacecraft subsystems.

Phase II complements Phase I by extending the verification
to all the Scientific Instruments and completing the
verification of the fully active system configuration.



A summary of the planned activities includes:

Mode Functionality Verification

All nominal modes shall be verified for functionality,
valid telemetry parameters and expected ranges with
respect to the inherent functions of each mode.

Commanded Mode Transitions

All nominal mode transitions requiring an uplinked
procedure from Ground will be performed and
verified. Certain ftransitions will be omitted for
specific reasons, e.g. Delta-V mode transitions.

Autonomous Mode Transitions

Verifications of autonomous fall-backs will not be
performed as they require fault conditions forced by
ground.

Cyclic and Selectable Telemetry Verification

All the cyclically generated telemetry will be verified
for correct protocol handling, telemetry block
structures, parameter location and consistent time and
block counter fields. Variable telemetry activated by
ground will be verified as well, e.g. dumped data and
scientific packets.

On-board Memory Patch and Dump

Dump operations will be required to evaluate control
parameters not visible in regular telemetry, e.g. AOCS
database, history areas, etc. Patches of program or
data memories are not a nominal activity but could
sometimes be necessary for table item updating, e.g.
LECS Instrument. A dump should always be required
after a patch operation.

Control Function Calibrations

Calibrations or maintenance are required to optimize
the overall performance of both the Scientific
Instruments and the Subsystems, e.g. thermal control
loops thresholds, Instrument digital and analogue
discriminator levels, etc..

Redundant Unit Check-out

Under nominal operations all operative redundant
units will be verified for correct functionalities, e.g.
gyros, decoders, receivers, etc.. Cold redundant units
will not be activated or verified unless necessary
because of failures. It is considered more prudent to
maintain a good nominal configuration rather than
risk possible failure in activating the redundant one.
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CONCLUSIONS

The SAX satellite is the result of a quite challenging mission
requirement implementation.

Once in orbit it will support the extensive activity of six
complex Scientific Instruments performing parallel X-ray
observations.

The system design is based on a distributed intelligent
architecture allocating to each of the on-board computers
its own specific function. This has been designed to
provide the maximum flexibility and reliability in
autonomously executing the ground mission plans. The
SAX implementation of the operating modes, in fact,
allows the on-board configuration to be maintained by
itself, supporting, at the same time, the ground required
operations.

To conclude, the SAX mission will not only provide the
most up-to-date resulis in the field of X-ray astrophysics,
but it will also make operative a very powerful system
that is the product of Italian scientific satellite
engineering.
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ABSTRACT

CTA Space Systems (formerly DSI) has played a
premier role in the development of the "lightsat"
programs of the 80's and 90's. The high costs and
development times associated with conventional
LEO satellite design, fabrication, launch, and
operations continue to motivate the development of
new methodologies, techniques, and generally low
cost and less stringently regulated satellites. These
spacecraft employ low power "lightsat"
communications (v.s. TDRSS for NASA's LEOs),
typically fly missions with payload/experiment
suites that can succeed, for example, without
heavily redundant backup systems and large
infrastructures of personnel and ground support
systems. Such small yet adaptable satellites are
also typified by their very short contract-to-launch
times (often one to two years). This paper reflects
several of the methodologies and perspectives of
our successful involvement in these innovative
programs and suggests how they might relieve
NASA's mounting pressures to reduce the cost of
both the spacecraft and their companion mission
operations. It focuses on the use of adaptable,
sufficiently powerful yet inexpensive PC-based
ground systems for wide ranging user terminal
(UT) applications and master control facilities for
mission operations. These systems proved
themselves in successfully controlling more than
two dozen USAF, USN, and ARPA satellites at
CTA/SS. UT versions have linked with both GEO
and LEO satellites and functioned autonomously in
relay roles often in remote parts of the world. LEO
applications particularly illustrate the efficacy of

these concepts since a user can easily mount a
lightweight antenna, usually an omni or helix with
light duty rotors and PC-based drivers. A few feet
of coax connected to a small transceiver module
(the size of a small PC) and a serial line to an
associated PC establishes a communications link
and together with the PC constitute a viable ground

station. Applications included geo-magnetic
mapping; space borne solid state recorder
validation;  global  store-and-forward  data

communications for both scientific and military
purposes such as Desert Storm; UHF transponder
services for both digital data and voice using a
constellation; remote sensor monitoring of weather
and oceanographic conditions; classified payloads;
UHF spectrum surveillance, and more. Ground
processing has been accomplished by automatic
unattended or manual operation. Management of
multiple assets highlights the relative ease with
which 2 constellations totaling 9 satellites were
controlled from one system including constellation
station keeping. Our experience in small end-to-
end systems including concurrent design,
development, and testing of the flight and
operational ground systems offers low cost
approaches to NASA scientific satellite operations
of the 1990's.

BACKGROUND

As Congressional budgets tighten and conventional
military threats appear to dissipate, private
industrial R&D, universities and other potential
participants in primarily LEO missions are
increasingly drawn to consider new options. While
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STS flight availability and piggyback experiments
flown on larger missions are still possibilities, the
resurgence of small satellites as viable experiment
platforms is a distinct part of the general solution.
This is especially so for new commercial
applications and the exercise of new technologies
in the space environment where time from design
to launch is of the utmost importance. Five years is
not the answer while two years, or less, can meet
competitive and marketing needs. On the other
hand, science and technology innovations are
difficult to fund on their own, but can often fit
nicely into multi-mission oriented lightsats.

Costs of experiments borne by "lightsats" can dip
considerably below many other options, though the
lightsats may not offer the same degree of
reliability as their larger and costlier counterparts.
Lightsats are often deployed in clusters to diminish
the relative launch costs. Complementing the
reductions in space segment cost, the ground
segment can usually support most missions at a
fraction of the expense imposed by current
standards. In the past ten years CTA/SS has
produced a large number of "lightsat" system
designs utilizing compressed schedules for
development and test and very low key mission
operations. The evolution towards more automated
bus, experiment and ground operations and less
cumbersome spacecraft command and control is
leading towards provision of stable mission
operations without the customary large levels of
ground support. Additionally, inexpensive space-
to-end user terminals have been developed. Such
services can provide direct experiment to
laboratory connectivity which is of great interest in
university science and engineering applications as
well as commercial or government circles.

SIMPLIFICATIONS

Small satellites with small budgets for operations
must still satisfy broad requirements:

e Provision for bus control via ground
commanding

¢ Provision for experiment/payload control

¢ Provision for onboard telemetry collection of
both bus and experiment/payload systems

» Provision for on-board autonomous health and

. stability protection

e Provision for TT&C data flows and -

experiment/payload data flows

In the most eommon instance, mission operations
are performed from a central location where the
state of health (SOH) of the entire spacecraft is
continuously assessed. It is generally here also that
flight commands are issued to the spacecraft. In
CTA Space Systems' history, we have built and
operated the first GLOMR satellite in 1985 from a
PC but without any automation of communications.
Telemetries (TTMs) were received and commands
sent aloft from an inexpensive adjunct transceiver
module under micro-control and employing a
simple roof-mounted UHF omni-directional
antenna. Command streams were short and TTMs
limited in this spacecraft, but for those that
followed, there were many improvements and
adaptations stemming from a growing assortment
of mission requirements. It is important to embody
certain "simplifications" into the fabric of the
overall system design in order to facilitate low cost,
yet reliable, small satellite operations.

We seek to accomplish certain key objectives:

1. Operate experiments from pre-established
command sequence files

2. Provide pre-uplink command verification

3. Employ macro style bus and experiment
commands

4. Provide spacecraft scheduled (i.e., for future) as
well as immediate command execution options

5. Provide reliable (error free) and autonomous

communications

Provide "intelligent" SOH displays/reports

Provide key mission operations software

elements as part of the EGSE (avoiding full

N
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probably separate efforts) and use throughout
I&T (Integration and Test), the IST (Integrated
Systems Test) and Environmental Testing

8. Offer autonomy in routine communications
scheduling

9. Wherever possible encourage provision of
experiment autonomy with independence of
other experiments and bus

10. Wherever possible use autonomous bus sub-
systems (notably ADACS) requiring minimal
ground attention

Item (1) is tried and true through such programs as
STACKSAT (three satellites: TEX, POGS &
SCE); SCSC (two satellites known as
"MACSATS" and seven "MICROSATS); REX;
and RADCAL. The savings and reliability
associated with the construction and pre-validation
of operational sequences which make up mission
operations segments are very significant. For
example, a series of commands required to operate
a diffusion pump and to trigger a particular set of
experiment actions is accomplished by writing a
series of commands under software control. Each
individual command is range-checked and
otherwise evaluated to be a valid command (as
noted in item 2) and is encapsulated in a 16-bit
check sum (CRC) to assure future integrity. The
set of commands is saved as a file and can be
evoked during all phases of ground-based testing as
a block with individual command execution times
shifted by a definable increment avoiding having to
make up sets with specific pre-set execution times.
The same segment can be conveniently recalled
and sent to the spacecraft when on-orbit. The very
significant work force necessary to conduct around
the clock environmental and integrated systems
tests is greatly reduced by avoiding the effective
hand entry of large numbers of detailed commands.
Errors are nearly eliminated in the process. Item
(3) is a significant objective in that it suggests that
wherever feasible, the ground to space interface is
held to as simple a structure as possible. That is,
the spacecraft bus or experiment/payload
commands should be process-oriented if possible.

For example, in the case of the preparation of an
instrument application, there may be a 25 step
timed sequence of "micro style" commands
required. If the controller for that experiment or
the bus processor can maintain that sequence as
part of its operational flight code, then all the
ground team needs to do is to evoke that process by
a simple command such as "Experiment 2, Process
5, ON=2/23/95 13:00:00." Similarly the shutdown
might be commanded "Experiment 2, Process 6,
ON=2/23/95 13:45:00." These two commands are
easy to deal with and will achieve the highest level
of reliability. If this is not possible, then the
command sequence file approach can be used
instead with the operator simply evoking the two
procedures adjusting the process execution times
according to the plan. The disadvantage here is
that there are now many commands to uplink and it
is essential that they are all accounted for on the
spacecraft prior to beginning the execution of the
procedure. Verification of the presence of the
entire command chain for a process in the past has
usually been accomplished by a satellite schedule
dump and on the ground review. The operator then
had the option to re transmit missing commands or
to delete commands. A better method involves the
addition of a special command type that will inhibit
execution of incomplete command streams. This
command spawns a notification message to the
ground that its powers have been evoked and that
the sequence is either incomplete or OK. With
present and emerging powerful and robust flight
digital electronics including wide usage of EDAC
RAM or other (nearly) non-volatile mass memory,
storage of command chains onboard that can be
evoked by an immediate or future-acting ground
uplink command are more prevalent.

Normally commands are sent to the spacecraft in
advance of planned execution and are executed at
future times under the action of the spacecraft's
software scheduler. Immediate commands (with
zero tokens for execution date/time) are, however,
allowed to execute immediately. Given that the
uplink commands and downlink TTMs/data are
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reliably communicated, there is little in the area of
routine flight operations that necessitates constant
operator attention much less "crisis-like"
circumstances on the ground. Indeed, with easily
interpretable and "to the point" SOH displays
available on the ground, the missions are virtually
made to "fly themselves" for considerable periods
of time.

Item (7) represents an important ingredient to
planning and executing a successful low cost small
satellite mission. It is a standard practice at
CTA/SS to develop the TTM and command
formats and specifications early in the systems
design stage and to build around them the
essentials of ground station processing and
communications software. These elements are
assembled into the PC-based EGSE suit that
accompanies the satellite from the I&T test bed,
throughout I&T and environmental testing and
beyond. @ These same elements which have
accumulated much equivalent "flight time" and
have been perfected in a natural manner are then
incorporated into master or remote ground station
packages. There is no separate team associated
with the ground station operational software; it is
basically an inherited evolute of the spacecraft
development process.

Point (8) suggests an innovation that is currently
underway in three CTA/SS programs. Unlike older
systems that require scheduling and pre-
programming of satellite communications events,
some new programs are now operating via
intelligent space and ground systems to totally
avoid routine contact scheduling which is a tedious
process. The UTs, for example, maintain their own
ephemerides and simply come on the air when the
satellite is known to be visible at some preset
minimum elevation angle and/or in an allowed
azimuth band. In some programs the satellite itself
autonomously contacts ground units without
cumbersome deterministic scheduling uplinked
previously by the master controller. Not only is

this much more efficient, it also allows dynamic
response disallowed by too much pre-planning.

The final two points refer to spacecraft subsystem
and experiment levels of autonomy and non-mutual
interference. A very great deal of labor and
engineering efforts are expended throughout testing
and later mission operations; labor that escalates
sharply when systems conflict in any way or when
excessive and too-frequent monitoring and control
is required. ~ This placing the operators "in-the-
loop" in the manner of a very stiff control law.
Building inexpensive space systems for small
satellites that do not impose these penalties may be
a challenge, but should always be entertained in
both the bus and experiment arenas.

SMALL SYSTEMS, SMALL OPERA-
TIONS APPROACH

A Case Studv: POG

The typical lightsat ground configuration consists
of a frequency agile UHF transceiver with
mod/demod capabilities in various forms of BPSK
and FSK modulations operating under a simple
micro controller. This unit can be rack mounted
inside, or configured in an environmental housing
for exterior deployment. Coax connects the RF to
a RHC or LHC circular polarized omni-directional
radome-covered antenna or complementary pair.
From the transceiver unit there is a standard serial
(RS-232) line interfacing an ordinary PC. This
comprises the minimal standard configuration. A
variant is the replacement of the omni-directional
antenna is a light weight directional antenna which
may be either linearly or circularly polarized, but in
either case can be driven by inexpensive light duty
commercial rotors. Such directive antennas are
driven by open-loop controllers connected via PC
cards implants or via an additional PC RS-232
serial ports. A component of the ground station
software generates antenna tracking data for each
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pass and provides it to the antenna controller.
While there is nominally only a few dB's of gain
advantage, it is often useful in noisy metropolitan
areas and the same system can also lead a high gain
X-band antenna, for example, to acquire the
satellite and allow it to switch to closed-loop
tracking for more precise alignment.

A typical mission illustrates the major points in
CTA/SSs small systems approach. The USAF
STACKSAT mission deployed three small
satellites into nominal 300 nm polar orbits. POGS
(Polar Orbiting Geomagnetic Satellite) was
dedicated to the primary NORDA mission of
magnetic mapping of the Earth's field and was
equipped with a 6 foot boom-mounted NASA
magnetometer instrument and a 4 Mbit CMOS dual
channel SSR (solid state recorder). To prepare the
operational staff of a one or two individuals from
Bay St. Louis, a two week long training program
was conducted in McLean. Shortly thereafter, and
while the future operators looked on, CTA/SS
conducted the initial on-orbit testing procedures
which commenced with the deployment of the
spacecraft's gravity-gradient boom equipped with
hysteresis rods to quench spin and libration. With
the boom and antennas deployed, the satellite was
ready for checkout and the entire procedure was
handled from a PC system with omni antenna from
the rooftop of our building just outside the
Washington Beltway at Tyson's Corner Virginia.
Despite high local noise levels various sources
including one nearby arc-welder, everything went
smoothly and the spacecraft was soon ready for
hand-off. Operations had consisted first of a
mission plan previously approved by the USAF
and Aerospace. The plan permitted sufficient
latitude thus avoiding serious delays while
necessary variations would have been proposed and
officially accepted. This is important to the low
profile operation that we designed and budgeted.
Finally the station at the user site at Bay St. Louis
took over the operation that included two key
unmanned high latitude receiving sites. Data down
linked from POGS was automatically diverted to a

WORM optical disk drive occasionally removed
and mailed to the Bay. St. Louis facility although
data was frequently recovered remotely via a dial-
up link. Software updates and parameterization
changes were facilitated via the remote dial-up link
which also allowed operators at either Bay St.
Louis or CTA/SS to "man" the remote station.
This also allowed one to see all the displays and to
operate the keyboard remotely as though present
on-site. POGS provided its requisite magnetic data
in a few months and is still operating after about
four and a half years. POGS also has a number of
communications capabilities and other sensors all
of which have performed flawlessly and have been
operated with the most minimal of ground support.

Communications scheduling for all ground
elements and the spacecraft is handled over
intervals of generally ten days time by the Bay St.
Louis PC from which the appropriate files are
simply "modemed" into the remote Arctic sites.
The uplink to the satellite of command files can be
accomplished from any of the three stations.
Multiple sites provide excellent redundancy
although the avoidance of non-standard computers,
other equipment and software always provides
inexpensive and obtainable components which
need not be duplicated as spares. This approach
permits a natural flow of technology improvements
to the ground systems. It hinges on the use
wherever possible of commercial software and
hardware products and the use where possible of
standard interfaces. This is not generally true of
government systems.

Highlights of Cost Reducing Factors

e Relaxed Official Coordination/Documentation
Requirements

e Technical Backup Availability Including On-
Line Operational Support

e Spacecraft Supports Long Term Scheduling to
Allow Autonomous Operation of Both Bus and
Experiments for Days or Weeks on End
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e Semi- or Fully-Automated Ground and
Spacecraft Communications Scheduling
Software

e Compact and Powerful Spacecraft Commands

¢ Telemetries and Telemetry Displays Keyed to
Early Warnings via Color Coding at the Top
Level

e Use of COTS (Consumer Off The Shelf)
Products:

o  Generic IBM-like PCs and Peripherals

o Land-Based Communications

o Standard File Transfer (e.g., KERMIT)

o Operating Systems (space and ground)

o Use of Standard Protocols (HDLC[space-
ground], TCP/IP[Internet], etc.)

o Planned Software Reusability

o Training and Simple SOPs (Standard Operating
Procedures)

FUTURE IMPROVEMENTS

As small satellites (nominally of Class C
construction) improve and advance with continuing
miniaturization/weight  reduction and other
technical innovations, inclusion of new
technologies and science applications are bound to
create enhanced demands. Obtaining high cost-to-
effectiveness for many future missions will depend
on successes in modifying conventional approaches
to today's large scale expensive launches and flight
operations. These changes may be perceived as
somewhat radical today, and yet to a large extent,
they represent a rebirth of older principles of
pioneering space developments that, over the years,
have become somewhat anachronistic. The
procurement process for DoD and NASA and
associated regulatory demands are simply not
structured to foster the rapid development of small
satellite missions (including inexpensive LVs). To
an extent they may also appear to conflict with STS
mission elements since many tasks have and
continue to be executed by manned crews- tasks
that for a fraction could be carried out nof for days
but for years by small satellites linked to
inexpensive ground systems and targeted to the

needs of the  experimenters/laboratories.
Conventional approaches to flight operations are
grand by comparison to the probable minimal
needs of many potential candidate packages. To
regain the spacecraft "pioneering" spirit of the '60s
using today's small powerful computers both
onboard and on the ground together with spectrum
of technology improvements in both materials,
components, structures, and manufacturing
processes we can achieve magnitudes more results
for the same relative costs. -

A major and bold new NASA initiative is fully
targeted towards achieving the goals and objectives
typified by the small satellite mission under
discussion in this article. The Small Spacecraft
Technology Initiative (SSTI), dubbed
"pathfinder”" by the program sponsor, will produce
two spacecraft "LEWIS" and "CLARK" with the
latter being built by CTA/SS with Martin Marietta
utilizing a set of IPDTs (Integrated Product
Development Teams) including commercial
entities, universities, NASA research centers and
others involved with technology and science
infusion/assessment and in fostering US
commercialization efforts. CLARK is a fast track
24 month-to-launch program lofting a 3-meter
optical imaging payload, a variant of the successful
MAPS instrument ("uMAPS"), an X-Ray
Spectrometer, an Atmospheric Tomography Retro-
reflector while also incorporating 36 explicit
advanced technologies for space testing. Major bus
elements including the 32-bit RHC3000 processor
and SOA ADACS components offer unique
opportunities to combine otherwise independent
activities to provide enhancements in both science
results and in operational efficiencies. The use of
the uMAPS to detect clouds and prevent down link
of useless images is but one example. NASA has
adopted the entire tenant of the small satellite
mission- form initial design and development,
through launch and initial orbit, and throughout the
flight. All of the concepts advanced in this paper
are included in the CLARK plan which will allow
the enhancement previously tested equipment,
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software and operational methodologies in an
expanded context enveloping the disbursement of
larger volumes of experiment data and in the
promulgation of other mission information utilizing
more open Internet accessways to facilitate wide
community participation in this interesting
endeavor. The low cost of the entire mission
makes necessary the reforms cited and includes the
active participation of the NASA sponsor as an
IPDT member and not as an outside force passing
judgment based on periodic reviews. SSTI
significantly is an Initiative and will add impetus to
future small satellite programs. In this sense the
moniker "Pathfinder" seems most appropriate.
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ABSTRACT

The use of networked terminals which utilize embedded processing techniques resulls in totally integrated,
Slexible, high speed, reliable, and scalable systems suitable for telemetry and data processing applications
such as Mission Operations Centers (MOC). Synergies of these terminals, coupled with the capability of
terminal lo receive incoming data, allow the viewing of any defined display by any terminal from the start of
data acquisition. There is no single point of failure (other than with network input) such as exists with
configurations where all input data goes through a single front end processor and then to a serial string of
workstations.

Missions dedicated to NASA's Ozone measurement program utilize the methodologies which are discussed, and
result in a multi-mission configuration of low cost, scalable hardware and software which can be run by one
flight operations team with low risk.

KEYWORDS

Embedded parallel processing, Ground systems, Transputers, and Total mission concept.

1. INTRODUCTION 1992 we were tasked to develop a totally

At the SPACEOPS '92 conference [5], it was
shown that PC's could be used to control
spacecraft and were capable of high throughput
and performance if embedded processor
methods were used [1]. Control centers using
embedded serial processors were implemented
for Nimbus 7 (N7) and the Meteor3/ TOMS
(M3/T) missions, and have operated flawlessly
since their inception in 1987 and
respectively.

In 1991, development of embedded
systems using parallel processing components

based on transputer technology was begun. In -
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integrated control center using one Flight
Operations Team (FOT) to operate N7, M3/T,
and the Total Ozone Mapping Spectrometer -
Earth Probe (TOMS-EP) missions. This facility
is the TOMS Mission Operations Center
(TMOC), and is leading the trend of combining
similar missions with similar systems into
multi-mission, single FOT facilities.

The trend in modern space mission
control  systems - is moving towards
standardizing telemetry systems design [9] as is
evidenced by the move towards the adoption of
CCSDS standards. These systems make use of
the rapid advances in workstation or PC
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technology and contribute towards making the
multi-mission Mission Operations Center
(MOC) a reality. This paper will discuss the
TMOC configuration utilizing embedded
processing systems suitable for TOMS and
other missions as shown in figure 1.

2. EMBEDDED PARALLEL
PROCESSING : SCOPE AND BENEFITS

For the most part, telemetry processing is a bit
oriented, repetitive, series of operations which

TOMS

are usually implemented in a serial process.
Throughput gains are attained either through
hardware implementation of repetitive software
processes or the use of higher speed processors
such as the DEC Alpha chip. Most telemetry
processing for today's spacecraft can be
handled in a serial manner, especially if we
confine our functions to engineering or
command matters.

The rapid advance of very large scale
integration

(VLSI) technology, and the
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Figure 1: TOMS Mission Operations Center (TMOC) Configuration
Three missions are shown to interface to the NASCOM interface which provides inputs
to the TMOC. All mission terminals and redundant ones (shaded) are connected through an
internal LAN. All servers are switchable from the internal LAN to the NASA ethernet for
security purposes.
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availability of low cost processors have made it
feasible to develop high performance, cost
effective, and efficient parallel computer
systems utilizing more than one processor,
while maintaining a software design for
implementation. These parallel methods lend
themselves to bit and computationally intensive
operations such as telemetry analysis, orbit and
attitude analysis, and science processing and
result in systems which are scalable, low cost,
high performance, flexible, and reusable.

These systems [4,5,6,7] are based on
the use of transputers as the parallel processing
device. Transputers feature a built-in hardware
scheduler which permits more than one
concurrent process to share the processors
time, and four DMA links to provide highly
efficient inter-processor communication and
data transfer. Hence, if the computation to
communication ratio of component processes is
considerably high, and the task allocation is
uniform, multiple processes can be executed
efficiently in parallel fashion. This strategy can
be extended in dealing with future requirements
by adding extra processing modules. In other
words, embedded parallel processing offers
scalability and flexibility to the system.

For our telemetry and command
applications, a large body of software has been
developed which executes on the embedded
processor, requiring no significant resources
from the host operating system, with a shared
memory capability. This sets the basis for doing
bit operations on the embedded processor
while the host serves as the man/ machine
graphical interface. More details on the scope
of uniting of PC's and transputers as embedded
processors can be obtained from references
[2-7]. The benefits of utilizing the embedded
parallel processing technology are:

a) Flexibility - Systems can capture
all downlinked data, and immediately begin
initial processing or data distribution. Systems

are small, truly transportable, and require only
normal office surroundings with clock and
signal as inputs. Standard and non standard
telemetry inputs can be  processed
simultaneously while commands are being
output in required formats and rates.

b) Data Throughput - Base
throughput rates depend on the number and
architecture of the components as well as the
parallel programming design. Rates in excess of
10 Mbits are achievable on our TOMS-EP
system with NASCOM deblock only. Other
levels of decommutation utilizing software
algorithms slow the effective real time rate
down to about 50 Kbits sustained for full
health and safety while simultaneously
archiving input data at the 10 Mbit receive rate.

) Efficiency - System modularity,
reusability, and ease of implementation lead to
low costs, rapid implementation, and high
performance.

d) Scalability - Systems can be
built or expanded according to the demand of
jobs or tasks to be performed and the systems
can be reused in whole, in part, or with
additional processing modules.

In addition, the use of embedded
parallel processing and transputer technology
contributes directly toward enhancing the
unique features of the total mission concept.
Based upon the granularity of parallelism
exploited in the design, the system can be
expanded to achieve the flexibility, reliability,
and performance desired in the total mission
system. The Total mission concept will be
discussed in section 4.

3. CURRENT CAPABILITIES OF
THE SYSTEM

The system architecture utilized in the TOMS
Mission Operations Center (TMOC) is based
on commercial off the shelf (COTS) products.
Low cost, reliable, upgradable, user friendly,
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multifunction, standardized hardware and
software are just a few of the goals in the
system design. The TMOC is entirely driven
by Personal Computers (PC's) utilizing the
Intel Processor family. Embedded parallel
processing is added to critical systems where
real-time  processing and/ or  high
computational requirements may be needed,
and hence eliminating the need for high cost
workstations and related software, as well as
separate, costly front end processors (FEP).
The ability to selectively add special purpose
parallel processing modules gives the total

system great flexibility. At a relatively low
cost, the system can be reconfigured to support
many of the current and proposed NASA
missions.

The major functional areas are shown in
figure 2, which include Real-time Command
and Control, Health and Safety, and Mission
Planning, The individual control center
systems are connected via a standard ethernet
Local Area Network (LAN). This makes it
possible to transfer data between major system
functional areas, as well as between individual

TOMS-EARTH PROBE
OPERATIONS CENTER

1

N | .., o CONTROL
COMMANDS ; { ‘ RooM
|-l <

LAUNCH
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RT/PB ]
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SCIENCE
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MISSION
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CHEDULING

Figure 2: An overview of the TOMS-EP mission system. The operations center exhibits its major eperations

-command,health and safety, and mission planning. The

center interacts with the DSN or Wallops station via NASA

communication network (NASCOM), and also with the launch control room, Flight dynamics facility (FDF),
Jet propulsion laboratory (JPL) and Science processing facility during its telemetry operations.
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systems. The TMOC interfaces with external
components by several communication paths
such as:

1. The Deep Space Networks (DSN)
and the Wallops flight facility are utilized for
support of command, telemetry, and tracking
for the TOMS satellites. The NASA
communications (NASCOM) network provides
‘the interface between the DSN sites and the
TMOC at the GSFC facility. The embedded
parallel processor incorporates the FEP
internally, making the single PC based
workstation fully portable; the internal FEP is
fully programmable for many packet formats
received from TDRSS, DSN, MDM, IOS, or
raw data from a bit synchronizer.

2. The Flight Dynamics Facility (FDF)
provides the attitude determination and
verification, as well as orbit determination
support. The FDF products are transferred
directly to the mission planning systems for
incorporation into on-line databases. A
standard ethernet network utilizing TCP/IP
provides the interface to the mission planning
systems.

3. The Jet Propulsion Laboratory
(JPL) and mission planning coordinate and
schedule all support for different components
of the mission. Dialup/ dialback modems are
utilized within the mission planning systems for
the JPL interface. With the FDF data, JPL
schedules, and instrumenter's command
requests, command loads are prepared from the
databases and transferred directly to the on-line
Command systems.

4. The Science processing facility
receives Level-0 processed TOMS data and
further processes the data to create various
products. The science facility receives data on
a daily basis via standard ethernet using
TCP/IP. Long term trending data is archived
in the control center on CD-ROM media and

furnished to the Science facility on an as
required basis.

The on-line systems that are connected
to the NASCOM network are all identically
configured systems as shown in figure 1. For
the TOMS-EP there are four systems on-line:
a Primary Command system, a Primary Health
and Safety system, a backup Command system,
and a backup Health and safety system. Each
on-line system has a UNIX Operating System
(0OS) with an X-windows based Graphical
Users Interface (GUI) supporting the Motif
X11RS standard. All of the Command, Health
and Safety, Level-0 processes, and analysis
applications are written in C language using the
Motif library. This standardized approach
enhances the portability of the application
source code to other platforms, as it may be
necessary in future. Using UNIX and Motif
also allows the system to incorporate NASA
products such as Satellite Telemetry Operating

"Language (STOL) into the Command system.

Since all of the on-line systems are identical,
any one may execute the Command software
or the Health and Safety software.

Currently, the TOMS-EP command
system utilizes a command database specifically
tailored for the EP satellte and TOMS
instrument. The command system not only has
Real-time command capability, but also full
storage and forward capability. These features
allow for frequent use of stored sequences of
commands, and preprogrammed matrices that
will be executed onboard the spacecraft at
predetermined  times. All  commands
transmitted are verified by echo blocks from
the DSN site and further verified by the
telemetry downlink. The telemetry downlink
is in a CCSDS format and is fully
decommutated in real-time in the internal FEP.

The TOMS-EP Health and Safety
system provides a full analysis of both the
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spacecraft and the instrument in real-time. The
screen format is set up as four quadrants, each
quadrant may be customized by a satellite
subsystem. In addition to the four quadrants, a
general status panel is always visible at the top
of the screen for a running summary of pass
statistics. From a pull down menu bar and also
hot keys, multiple panels are available for
display by pressing of a button or clicking a
mouse. Every telemetry point is in a database
driven lookup table that is being updated in
real-time through a shared memory interface.
The embedded FEP does all the
decommutation of the telemetry which places
the processed data into the shared memory
interface. Within the database, several things
are occurring on each entry point such as
calibration, floating point conversion, mode,
event and alarm determination. The entry is
then displayed based on a user defined display
format. A row of subsystem buttons
continually show the current status of each
subsystem by changing the color.  Green
implies a normal operation, Yellow and Red
indicate potential problems. By moving the
mouse cursor on the subsystem button and
clicking the mouse button, the event and
telemetry panels associated with that subsystem
are immediately displayed for analysis. In
addition, there are X-Y plots that may also be
configured in the display panels.

Along with the primary Health and
Safety UNIX based systems, there are several
standard PC's without FEP's. These PC's are
configured as standard office systems running
MS-DOS OS and Windows and are connected
to the LAN. With an X-windows package,
they are capable of running remote Health and
Safety sessions in a client/ server configuration.
The UNIX system becomes the server and
executes the prime Health and Safety program.
The DOS PC logs into the server as a client
and executes a slave version of the same
program. This configuration allows multiple

screens of several subsystems to be viewed
simultaneously. The DOS PC is used to
transfer telemetry data points from the UNIX
system and run trend analysis tools such as
Quattro-Pro, Lotus, Excel or other packages
that a user is familiar with. A note needs to be
made at this point, with this type of PC
environment, a relatively low cost control
center can be put into full operation.

A localized LAN is being utilized for
the control center communications. The
bandwidth of the LAN can support the slave
DOS client systems, mission planning, and an
Astromed stripchart subsystem. The Astromed
stripchart subsystem consists of four Astromed
MT95000, 16 channel digital strip chart
recorders. The four recorders are controlled
by a front-end PC connected to the same LAN.
The prime Health and Safety system sends raw
telemetry directly to the 64 channel subsystem.
The telemetry points, recorder speed and all
controls are setup through a pop-up X-window
during the pass. Any page on any terminal can
be "popped" up on any other terminal on the
network.

4. THE TOTAL MISSION CONCEPT

The TMOC control center architecture is
designed for its missions and is self contained
but can be expanded to include flight dynamics
and science processing within the control
center. The system is very modular allowing
dynamic reconfiguration 'on the fly'. Figure 3
represents a Total Mission Concept that may
be implemented within the TMOC requiring
very little external support by adding the
following functions:

1. Flight Dynamics

a. ~ Integration of some of the Flight
Dynamics functions directly into the control
center. Several off the shelf products are now
available from commercial companies such as
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STORM Technologies and Integral Systems
Corporation that make this feature doable now
for attitude computation and mission planning
products. It is assumed that precision 2-3 line
elements are available.

2. Science Processing

a. The Level-0 product is already
processed within the control center. The
system can easily be enhanced by scaling up the
system compute power by adding parallel
processing nodes to provide Levels 1, 2, and 3
processing. These products could then be
distributed to users and archived.

b. The addition of image quick look
capability to verify data quality during
real-time and playback data recorder dumps.

The Total Mission Concept for a
control center can be implemented today in a
very cost effective scenario.  The same
operations personnel could perform all the
functions listed above from mission planning,
through acquisition, analysis, data archiving,
and the creation and distribution of science
products. Multiple missions may be controlled
by the same equipment and operations
personnel by just selecting the mission type on
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screen. The nonreal-time DOS/ Windows
systems are utilized in a multi-purpose mode
from daily office operations to a client/ server
based evaluation tool. All of this leads to
efficient utilization of facilities, equipment,
personnel and bottom line mission cost.

5. SUMMARY

The basis of using Transputers and Alpha chips
in an embedded processing environment was to
support the expansion of the Ground System
from a simple command and telemetry analysis
system to a system that supports spacecraft
I&T, command & telemetry, and science
processing and distribution. The cost
effectiveness of this Total Mission concept and
the ability to support multiple satellites
simultaneously provides for a smaller
operations staff’ resulting in an overall lower
life cycle cost. In today's environment, this is a
definite benefit when planning new missions.

Acknowledgments

The work described in this paper involves
several engineers of the Martin Marietta
Services team headed by Richard A.
Stephenson. The project is sponsored by
NASA under the contract no. NAS 5-31739 at
Goddard Space Flight Center, Greenbelt, MD.
The Authors gratefully acknowledge the
support of NASA Goddard Space Flight
Center, and the highly efficient design efforts
exerted by the motivated team of B.J.Gonciarz,
Dr.S.S.Chen, B.Singh, S.A Burns,
A M Larson, J.T Fate Jr. and others in system
development and operations team.

Bibliography

1] Austerlitz, H., (1991), Data Acquisition
Using Personal Computers, Academic Press.
(2] Cook, R., (1991,June), Embedded
Systems in Control, BYTE, (pp.153-158).

[3]  Elts,

GK., (1989,0ct.), Data
Acquisition and Control Using Transputers,
Proceedings of The Second Conference of The
North American Transputer Users Group,
(pp.61-76).

[4] Forman, M.L.., Hazra, T K., Troendly,
GM,, Nickum, W.G., (1993,0ct.), Applying
PC-based Embedded Processing for Real Time
Satellite Data Acquisition and Control,
Proceedings of The Twenty Ninth Annual
International = Telemetering Conference, Las
Vegas, NV, (pp.165-173).

[5] Forman, M.L., Troendly, GM,
Nickum, W.G, (1992, Nov.), High
Performance Low Cost, Self-contained,

Multipurpose PC-based Ground Systems,
Proceedings of The Second International
Symposium on Ground Data Systems for
Space Mission Operations, (pp.733-737).

(6] Hazra, TXK., Troendly, GM,
(1994 May), Designing the Earth Probe
Control Center for Telemetry Processing
Utilizing Embedded  Parallel  Systems,
Proceedings of The European Telemetry
Conference, (pp.287-297).

[7] Hazra, TXK.  Stephenson, R.A,
Troendly, G.M, (1994,0ct.), The Evolution of
the cost effective, high performance ground
systems: A Quantitative Approach, To Appear
in The Proceedings of The Thirtieth
International Telemetering Conference.

[81  Muratore, J.F., et al, (1990,Dec.), Real
Time Data Acquisition at Mission Control,
Communications of The ACM, Vol.33, No.12,
(pp.18-31).

9] Sielski, HM.,, et al, (1991), Modern
Space Telemetry Systems, ITEA Journal, Vol.
XII, No. 4, (pp.27-33).

[10] Sloggett, D.R., (1989), Satellite Data:
Processing, Archiving, and Dissemination, Vol.
I & 1I, Ellis Horwood.

864



11139 ~ N95- 17554

s,
35Y209
Open Solutions to Distributed Control

in Ground Tracking Stations F- (3
by
Wm. Randy Heuser
Member of the Technical Staff

Jet Propulsion Laboratory
California Institute of Technology
Mail Stop 301-235
4800 Oak Grove Drive
Pasadena, California 91109
Office phone (818) 354-0956, Fax (818) 354-9068
email: rtheuser@binky .jpl.nasa.gov

Abstract

The advent of high speed local area networks has made it possible to interconnect small,
powerful computers to function together as a single large computer. Today, distributed
computer systems are the new paradigm for large scale computing systems. However,
the communications provided by the local area network is only one part of the solution.
The services and protocols used by the application programs to communicate across the
network are as indispensable as the local area network. And the selection of services and
protocols that do not match the system requirements will limit the capabilities,
performance and expansion of the system. Proprietary solutions are available but are
usually limited to a select set of equipment. However, there are two solutions based on
"open” standards. The question that must be answered is "which one is the best one for
my job?"

This paper examines a model for tracking stations and their requirements for inter-
processor communications in the next century. The model and requirements are matched
with the model and services provided by the five different software architectures and
supporting protocol solutions. Several key services are examined in detail to determine
which services and protocols most closely match the requirements for the tracking
station environment. The study reveals that the protocols are tailored to the problem
domains for which they were originally designed. Further, the study reveals that the
process control model is the closest match to the tracking station model.

Introduction

Tracking stations are a collection of different pieces of equipment, integrated into a single

system to support communications between the ground and a spacecraft. The antenna equipment,
the receiver equipment, the transmitting equipment and associated signal processing equipment are
built by experts in their field. Over the past decade, computers have been incorporated into this
equipment to operate and automate their increasingly complex functions. Today, this computerized
equipment (called subsystems) can be linked together with communication protocols into an
operating tracking station. However, the degree of difficulty to integrate these subsystems into a
single tracking station, and the level of automation that can be achieved, will be a direct function of
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the protocol selected. This paper examines a number of non-proprietary protocols that have been
used or suggested as possible candidates for the tracking station application.

Today, commercial vendors market computer controlled components for tracking stations.
As government budgets shrink and commercial exploitation of space grows, these products offer
cost effective solutions to one-of-a-kind development efforts. However, vendors are looking to
protect their share of the market and their proprietary products. To this end, some vendors offer
complete, fully automated tracking stations. However, these turn-key solutions usually provide
limited services. And in general, single vendor solutions are not attractive to government or
industry. An “open solution” provides a multi-vendor environment where the best products for the
job can be integrated into a single system. Commercial inter-processor communications protocols
that provide an “open solution” while affording protection to proprietary products are needed to
support the integration of different vendor components into a single automated tracking station.

Operational Scenario

An examination of the various candidate protocols is facilitated with a simple model of a
tracking station. Consider the construction of a new tracking station to be built using commercial-
off-the-shelf components. Four different companies will provide computer controlled equipment
that will be integrated into a fully automated tracking station. The elements include: the antenna
subsystem, the receiver subsystem, the telemetry subsystem and the command subsystem (see
Figure 1). Each subsystem is operated by a computer integrated with the subsystem hardware.
The subsystem computer performs specific functions directly related to the subsystem hardware.
A workstation will be used to automate the operation of the tracking station and will provide a
central facility to monitor the operation of the tracking station. The workstation and the subsystem
controllers will be linked together through a Local Network Area (LAN). All of the software for
these systems will be delivered as executable products. All of the systems will be installed and
configured without software development, compilation and linking of code. The installation
process will be automated to the greatest degree possible.

The operational scenario for this new station implements procedure control through the
workstation. The workstation allocates the station resources required to support any given activity
at the station. All high level control functions are initiated from the workstation. In turn, the
workstation monitors the operation and performance of all the station subsystems and takes action
to correct anomalies. Individual subsystems must initiate subordinate subsystem operations as
required. And in turn, individual subsystems monitor the operation and performance of
subordinate subsystems as necessary. In other words, all operation of the station is coordinated by
the workstation, but individual subsystems will control and monitor other subsystems directly.
Support files are managed by the workstation and transferred as required to the appropriate
subsystem. The scenario outlined above encompasses the six basic functional requirements for
monitor and control in the Deep Space Network tracking stations (see Table 1).

X-Windows

Several commercial companies are currently building tracking station components that
provide an X-Window based Graphical User Interface (GUI) for operation of their equipment.
Several NASA organizations have also provided an X-Windows based Graphical User Interface
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(GUI) for operation of NASA developed equipment. Since X-Windows is a common solution to
support remote operation of computers and in current use, we should examine its application as a
standard for tracking station automation.

A tracking station built to be operated using the X-Windows protocol would require each
subsystem to be designed as an x-client. In the example tracking station, each subsystem controller
would come equipped with a GUI to support its operation. The Station Operations Workstation
would be used as an x-server to operate each subsystem (see Figure 2). This approach permits the
development of subsystems in isolation and safeguards the proprietary software of the commercial
vendors. However, the X-Windows protocol was developed to support terminal operations on
remote computers independent of the manufacturer. It was not designed to support automated
operation of the remote computer. Consequently, an operator is required at the Station Operations
Workstation to run the remote subsystems. In addition, X-Windows makes no provisions for the
direct exchange of data between subsystems without operator involvement. The operational
scenario requires subsystems to operate other subsystems and exchange data directly.
Consequently, X-Windows alone will not fulfill the automation requirements.

Distributed Computing Environment

The emergence of the Open Software Foundation’s (OSF) Distributed Computing
Environment (DCE) has prompted speculation that DCE could be applied to the problems of
tracking station automation. DCE was designed and developed to provide the services required by
systems with multiple computers interconnected by a local area network (LAN) or a wide area
network (WAN). As the name suggests, DCE services are designed to perform distributed
computing. An underlying assumption for the development of DCE is that the work performed can
be independent of location (that is, an application that requests a service is not concerned with
where the service is performed). An overview of the DCE basic services with respect to the Open
Systems Interconnect (OSI) Basic Reference Model is shown in Figure 3. There are five basic
components to DCE:

1) The Distributed File Services (DFS) in DCE provide extensive tools to manage and
manipulate files in a distributed computing system.

2) The DCE Time services provide for the synchronization of computer clocks in a
distributed computing system.

3) The DCE Naming and Directory Services contains the names of users, machines and
resources available in the distributed system

4) The DCE Management Services provide the tools to operate the distribute system.
5) The DCE Security Services control access to the distributed system.
All of these services use the DCE Remote Procedure Call (RPC) to-access the network.
The application of DCE in a tracking station would likely rely heavily on the Remote

Procedure Call (RPC) for most inter-processor communications. The DCE RPC provides an
Interface Definition Language (IDL) which is used to create both client and server elements of an

867



RPC. The IDL also provides for the common representation of data in different computer systems.
Once the IDL specification for an RPC is created, the IDL client and server elements are compiled
and linked on the appropriate systems (see Figure 4). Applied to the example tracking station, each
subsystem integrated into the station would include a set of client and server IDL definitions. The
IDL definitions would be compiled and linked on the Station Operations Workstation. In addition,
client and server IDL definitions would be compiled and linked on each subsystem that directly
inter-operates with another subsystem. In the example tracking station, the application of the DCE
RPC approach would produce the following scenario:

A receiver subsystem is purchased and delivered along with a set of IDL specifications
to support the operation of the receiver. The client IDL specifications are copied to the
Station Operations Workstation, compiled and linked. Software is then developed to
automate the receiver operation using the RPCs. In addition, the receiver operates as a
client to access the antenna positions’ values as a part of normal operations. The
receiver also operates as a server to the antenna subsystem providing signal power
measurements as required. The client and server IDL specifications for inter-operation
of the receiver must be copied to the antenna subsystem, compiled and linked to support
antenna-to-receiver communications. In turn, the antenna subsystem IDL specifications
must be copied to the receiver subsystem, compiled and linked to support receiver-to-
antenna communications.

A complex, highly automated tracking station would require hundreds (if not thousands) of RPCs
to operate. Consequently, the management of RPCs will become a critical part of any DCE based
tracking station. Though the DCE approach may offer a solution to the problems of inter-
operability, compiling and linking RPCs from different vendors does not guarantee problem free
integration. In addition, the DCE does not address the burden of software development for the
Station Operations Workstation to automate the RPC functions.

The application of DCE Management Services (called Distributed Management
Environment - DME) offers an alternative solution to compiling and linking IDL specifications into
RPCs. The DME services provide high level data object management tools and are based on the
Common Management Information Service Element (CMISE) standard. A DME based approach
would be very similar to CMISE approach discussed in more detail in a later section.

Simple Network Management Protocol

Simple Network Management Protocol (SNMP) was developed in the Internet community
to address the monitor and control of devices that support LANs and WANs. Network bridges and
routers are typical devices where SNMP has be applied. To my knowledge, SNMP is not currently
used or under consideration for use in tracking station operations. However, SNMP is similar to
two protocols currently in use at tracking stations and is very similar to those protocols in its basic
design. Therefore, a review of SNMP serves to identify common elements and functions in three
similar protocols. In addition, deficiencies in the SNMP approach with respect to tracking station
applications are identified. '

SNMP provides a set of services designed to access the Management Information Base

(MIB) established in a device. The MIB is a collection of objects that represent real resources in
the device. For example, a network router used to bridge a local area network to an exterior
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communications line will have a network address and sub-network address. Each address can be
an object in the network router MIB. The SNMP Get service provides for the retrieval of objects
contained in a remote MIB. The SNMP Set service supports the modification of an object in a
remote MIB. Also, SNMP has a Trap service that provides for a remote node to report a changed
condition to a management node. In addition, software to access SNMP services through a GUI is
available for workstations.

The application of SNMP in the example tracking station would find a Management
Information Base installed on each subsystem (or device). The Station Operations Workstation
would access each subsystem MIB using the SNMP Get and Set services (see Figure 5). The
configuration and operation of subsystems would be accomplished using the Set service to change
objects in the MIB. The status and performance of the subsystems would be determined by
accessing objects in the MIB through the Get service. Anomalous conditions in the subsystems
could be reported to the Station Operations Workstation using the Trap service. SNMP provides
for the common representation of data through the Basic Encoding Rules (BER) to formulate
messages in Abstract Syntax Notation 1 (ASN.1). SNMP services could also be used to support
subsystem-to-subsystem communications. Using the antenna-to-receiver example discussed
carlier, the receiver would use the Get service to access the antenna positions directly from the
antenna subsystem. In turn, the antenna could use the Set service to initiate signal power
measurements on the receiver and access the results using the Get service. Finally, commercial
software to access SNMP services would be used to automate the Station Operations Workstation

There are however, a number of problems with the application of SNMP in a tracking
station. First, SNMP Set and Get services are designed to operate on simple data types: scalars
and two-dimensional arrays of scalars. Using SNMP Version 1, access to large sets of MIB data
objects require multiple Sets or Gets. The SNMP GetNextRequest can simplify the process but
this limitation still imposes performance constraints where large amounts of data must be accessed.
SNMP Version 2 will expand the supported data types and add the GetBulkRequest service to
address current limitations. Also, SNMP does not provide a service to access a directory to the
contents of the MIB. The contents of the MIB can be determined through interrogation with a
series of SNMP GetNextRequests, however: it is a time consuming process. A directory to the
contents of the MIB is necessary to access specific data objects with Get and Set services. In
addition, SNMP provides no mechanism to establish an alias data object. In the antenna-to-
receiver example, the object names on both subsystems must match for the antenna or receiver to
access each others MIB. For example:

Company A builds the receiver with the name of the data object representing the
operating radio frequency as “RF_Frequency”.. Company B builds its telemetry
processor with the same parameter represented with the name of
“Operational_Frequency”. Under this condition, an SNMP Get made by the telemetry
processor to access the receiver value of “RF_Frequency” would fail and generate an
error.

A service to create an alias data object that could be associated with an existing data object would
minimize the problems of inter-operation of subsystems. Finally, most implementations of SNMP
operate over the User Datagram Protocol which is not a guaranteed delivery service. The
successful operation of the tracking station will depend on the inter-subsystem communications.
Consequently, a reliable protocol will be required to support the automation of the station.
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The SNMP services were designed and developed to manage systems performing dedicated
tasks in local and wide area networks. The functions performed by these systems are limited in
scope and the services of SNMP reflect that limited scope. The subsystems in the tracking station
also perform dedicated tasks; however, the scope of these tasks varies over a wide range of
functions. The contents of each subsystem MIB will be completely different and a directory
service would simplify the installation and management operations. This deficiency in SNMP
could be addressed with implementation requirements imposed on the manufacturers. For example,
a file with a directory to the MIB could be delivered with the product, copied to the Station 4
Operations Workstation and made available to an application or user. Similarly, provisions could
address the creation of alias named objects in remote MIBs. And, reliable transport services could
be furnished by TCP. However, these implementation requirements amount to amendments to the
SNMP specification which are unique requirements to the tracking station implementation.

Common Management Information Service Element

The successful implementation by the European Space Operations Center of a tracking
station based on Common Management Information Service Element (CMISE) is a compelling
rationale for further examination of this protocol. The Consultative Committee for International
Telegraph and Telephone (CCITT) and the International Standards Organization (ISO) jointly
developed CMISE as the management standard for equipment in the communications industry.
The basic approach to the design of CMISE is similar to SNMP, however the eleven services
provided by CMISE are more extensive and robust. Like SNMP, the services of CMISE are
designed to manage data objects in a MIB. The CMISE Set and Get services are designed to
operate on virtually any data type. Consequently, CMISE is not as limited as SNMP. In addition,
the CMISE Event service is more robust and sophisticated than the SNMP Trap service. Like
SNMP, CMISE provides for the common representation of data through the BER to formulate
messages specified in ASN.1. And also like SNMP, CMISE provides no service to access a
directory to the contents of the MIB. However, CMISE does provide Create and Delete services
that could be used to establish alias data objects on remotes. For example:

Company A builds the receiver with the name of the data object representing the
operating radio frequency as “RF_Frequency”. Company B builds its telemetry
processor with the same parameter represented with the name of

“Operational Frequency”. The telemetry processor would use the CMISE Create
service to establish a data object called “Operational Frequency” on the receiver and
associated with the data object “RF_Frequency”. The receiver would then respond to
a CMISE Get “Operational_Frequency”. The association of the two data objects
would be part of the subsystem installation procedure. At the end of the activity, the
telemetry processor would use the CMISE Delete service to remove
“Operational_Frequency” from the MIB of the receiver.

The application of CMISE in the example tracking station, like SNMP, would find a
Management Information Base installed on each subsystem (or device). The Station Operations
Workstation would access each subsystem MIB using the CMISE Get and Set services (see Figure
5). The configuration and operation of subsystems would be accomplished using the Set service to
change objects in the MIB. The status and performance of the subsystems would be determined by
accessing objects in the MIB through the Get service. Anomalous conditions in the subsystems
could be reported to the Station Operations Workstation using the CMISE Event service. CMISE
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services would also be used to support subsystem-to-subsystem communications. Finally,
commercial software to access CMISE services would be used to automate the Station Operations
Workstation. However, CMISE makes no provisions for file management. Consequently, an
additional protocol will be required to move and manage the support files required to operate the
subsystems and the station. ‘

Manufacturing Message Specification

The process control protocol Manufacturing Message Specification (MMS) has also been
successfully implemented in a tracking station. Originally sponsored by General Motors, MMS
provides 86 services designed to support automation of factories. Like SNMP and CMISE, MMS
is designed to manage the data objects in a MIB and provides for the common representation of
data through the BER to formulate messages in ASN.1. And also like SNMP and CMISE, the
systems managed through MMS perform dedicated tasks in the factory. However unlike SNMP or
CMISE, MMS was designed to support systems that would span a wide range of manufacturing
operations. Consequently, MMS provides 86 services to manage the resources in an automated
facility.

The application of MMS in the example tracking station would find a Management
Information Base installed on each subsystem (or device). The Station Operations Workstation
would access each subsystem MIB using the MMS Read and Write services (see Figure 5). The
configuration and operation of subsystems would be accomplished using the Write service to
change objects in the MIB. The status and performance of the subsystems would be determined by
accessing objects in the MIB through the Read service. Anomalous conditions in the subsystems
could be reported to the Station Operations Workstation using the MMS Information Report
service and the MMS Event Management services. MMS services would also be used to support
subsystem-to-subsystem communications. Unlike CMISE, MMS provides an Identify service,
GetCapabilityList service and a GetNamedVariableList service which describe the subsystem on
request. The GetNamedVariableList service provides a directory to the contents of the MIB in the
form of a list of the named objects contained in the MIB. The integration of different
manufacturer’s subsystems would be facilitated using the DefineNamedVariable and
DeleteVariableAccess services to establish alias data objects on the station subsystems. Returning
to the previous example:

Company A builds the receiver with the name of the data object representing the
operating radio frequency as “RF_Frequency”. Company B builds its telemetry
processor with the same parameter represented with the name of
“Operational_Frequency”. The telemetry processor would use the MMS
DefineNamedVariable service to establish a data object called
“Operational_Frequency™ on the receiver and associated with the data object
“RF_Frequency”. The receiver would then respond to a MMS Read
“Operational_Frequency”. The association of the two data objects would be part of
the subsystem installation procedure. At the end of the activity, the telemetry
processor would use the DeleteVariableAccess service to remove
“Operational_Frequency” from the MIB of the receiver.

Finally, the MMS file management services like FileOpen, FileRead, FileClose, FileDirectory,
FileDelete and FileRename would be used to manage the support files required by the subsystems.

871



Beyond the basics, MMS provides services to support the kinds of subsystems commonly
installed in tracking stations. The MMS Program Invocation Management services are designed to
support subsystems with multi-tasking operating systems. Using MMS, a standard set of services
can be used to start, stop, resume or kill programs running on remote subsystems without regard
for the specifics of the target operating system. The Domain Management services support block
memory transfers between subsystems. Using the MMS Domain services, subsystem configuration
tables could be efficiently transferred between the Station Operations Workstation and the ,
subsystems. The Journal Management services provide for the logging of activities and events ina
process control environment. The Semaphore Management services provide support for systems
with shared resources. In tracking stations with multiple antennas and limited equipment
redundancy, contention for limited resources can be supported through MMS semaphore services.

An additional advantage to the employment of MMS, is the availability of “Application
Enabler” products for use on the Station Operations Workstation to automate station operations.
These products are commonly found in the manufacturing sector and often referred to as
“Supervisory Control and Data Acquisition (SCADA)” packages. Used to automate factories,
Application Enabler products are software packages that can be customized for a specific
installation without software development. The companies that build Application Enablers provide
communication drivers to access proprietary devices, like Programmable Logic Controllers
(PLCs). Today, a number of these companies provide MMS communication drivers. Using these
products in conjunction with MMS, the software for the Station Operations Workstation can be
purchased and configured to operate the tracking station without software development.

Discussion

All five protocols surveyed could be used to build a spacecraft tracking station. However,
each of these protocols were designed and developed for a specific environment. The question is
“Which environment most closely matches to environment of a spacecraft tracking station?” A
second question is “Which protocol will provide commercial vendors with the tools to develop and
deliver products that can be installed and integrated without software development?”

Spacecraft tracking stations are composed of devices with dedicated resources performing
dedicated operations. The antenna subsystem is dedicated to operating the antenna hardware while
the receiver subsystem is dedicated to operating the receiver hardware. The operations performed
by these subsystems vary significantly. X-Windows provides an environment for the remote
operation of these devices but does not provide for automation. DCE provides an integration
environment but does not relieve the burden of software development. The management of a device
through its MIB with SNMP, CMISE or MMS can provide automation and relieve the burden of
software development. However, the limited services of SNMP make it the least likely candidate
for operation of a tracking station. Given the similarities between CMISE and MMS, what is the
basis for a final selection? A detailed examination of these two protocols reveals some differences
to direct a final selection.

At first glance, the CMISE Get and Set services appear nearly identical in function to the

MMS Read and Write services. However, there are subtle differences between the two protocols
that are derived from their intended applications. Consider the factory environment:
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A factory is a confined environment where control must be decisive. Arbitrary control of a
server might create catastrophic problems on the factory floor. Therefore, an MMS client
must establish an association with a server before a dialog of MMS services can begin. If
an association can not be established, control can not be initiated. Server systems are
designed to fail in a safe mode, protecting the plant and personnel. When problems
develop on the factory floor, MMS-based automation alerts operations personnel to
investigate the problem and take corrective action. To provide decisive control, the
exchange of MMS control messages employs confirmed services that require the client
application receive an acknowledgment from the server application. The MMS Write
service is a confirmed service that requires acknowledgment for completion.

Now consider a wide area communications network environment:

A wide area network is not a confined environment, frequently distributed over tens, or
hundreds or thousands of miles. Communication device servers are also designed to fail in
safe mode while redundancy provides for alternative means of communications. Rarely
does a failure present a threat to life or property. Therefore, CMISE is designed to operate
with or without an established association. The CMISE Set service can operate in both
confirmed and unconfirmed modes.

The difference in these services in important for their respective applications. Corrective action in
a factory frequently requires human intervention to safe guard life and property. Corrective action
in a communications network can frequently be accomplished remotely. For example:

A recurring fault can cause a network router to fail. The router can be designed to reboot
on failure to safe mode, reboot on failure to diagnostic mode or reboot on failure to
operational mode. The recurring failure results in the router continuously rebooting. The
time interval between faults is too short to support the normal establishment of an
association and leading to a Set service to force the router into the diagnostic mode. The
unconfirmed Set service provides a mechanism to reset the router to diagnostic mode
before the fault occurs again.

Another subtle difference between CMISE and MMS can be seen in the Event services.

Both CMISE and MMS provide Event services. Though similar in principle, the services
perform differently reflecting the environments for which they were designed. A detailed
examination of the event data structures reveal that both CMISE and MMS provide an attribute for
event-priority. However, only MMS provides an attribute for event-severity. From my experience,
I believe this distinction is derived from the difference between the communications environment
and the factory environment. Rarely do events in communications networks produce property or
life threatening situations. However, events on the factory floor can produce these conditions.
Therefore, the MMS Event service provides for severity of a failure.

Consequently, it is my opinion that MMS offers the best fit to the spacecraft tracking
station environment. Based on experience, MMS provides the commercial vendors with a standard
for automation. Using MMS, a commercial product can be installed and configured into an
automate tracking station without site specific software development. And the availability of
commercial products for factory automation based on MMS, supports this conclusion. In addition,
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MMS based Application Enabler products provide the tools to automate spacecraft tracking
stations without traditional software development efforts.
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Table 1. This table provides a comparison of the functional requirements (down the left side)
for monitor and control in Deep Space Network tracking stations and the protocols
examined in this article (across the top).

Protocol | X-Windows | DCE SNMP | CMISE | MMS
Functional Requirements
Allocation of station Yes Yes Yes Yes Yes
resources
Configuration and Control Yes Yes Yes Yes Yes
of subsystems
Monitor status and ’ Yes Yes Yes Yes Yes
performance
Inter-subsystem data No Yes Yes Yes Yes
exchange
Event and Alarm handling No No Yes Yes Yes
Logging No No No Yes Yes
File distribution and No Yes No No Yes
management
*No software development, Yes No Yes Yes Yes
compilation and linking
*Data Object Alias No No No Yes Yes

* Derived requirement to support commercial products derived as executable products.
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Figure 1.  An example tracking station with four computer controlled subsystems inter-connected
with a workstation through a Local Area Network.

LAN Antenna
Control
Subsystem

i

X-Client

Receiver
Control
Subsystem

Not / Hardware

Station o :
Opertions supported -Clien connections
Workstation /

Telemetry

X Server Processing

\ Subsystem

X-Client

i

Command
Processing
Subsystem

X-Client

Figure 2.  The application of X-Windows to support tracking station integration and automation
would require each subsystem to operate as an x-client. The subsystems could be
operated from the Station Operations Workstation operating as an x-client server.
However, direct subsystem-to-subsystem data exchange is not supported by X-
Windows.
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Figure 5.
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SNMP, CMIS/CMIP and MMS all provide services to access and manage a
Management Information Base (MIB) on remote systems. In this example, the
operator workstation provides monitor and control the of subsystems in a simple
receiver only tracking station through services that access the MIB.
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Abstract

As we plan for the next generation of Mission Operations Control Center (MOCC) systems, there
are many opportunities for the increased utilization of innovative knowledge-based technologies.

The innovative technology, discussed in this paper, is an advanced use of agent-oriented
approaches to the automation of mission operations. The paper presents an overview of this
technology and discusses applied operational scenarios currently being investigated and
prototyped. A major focus of the current work is the development of a simple user mechanism that
would empower operations staff members to create, in real time, software agents to assist them in
common, labor intensive operations tasks. These operational tasks would include: handling
routine data and information management functions; amplifying the capabilities of a spacecraft
analyst/operator to rapidly identify, analyze, and correct spacecraft anomalies by correlating
complex data/information sets and filtering error messages; improving routine monitoring and trend
analysis by detecting common failure signatures; and serving as a sentinel for spacecraft changes
during critical maneuvers enhancing the system's capabilities to support non-routine operational
conditions with minimum additional staff.

An agent-based testbed is under development. This testbed will allow us to: (1) more clearly
understand the intricacies of applying agent-based technology in support of the advanced
automation of mission operations, and (2) to access the full set of benefits that can be realized by
the proper application of agent-oriented technology in a mission operations environment. The

- testbed under development addresses some of the data management and report generation functions
for the Explorer Platform (EP)/Extreme UltraViolet Explorer (EUVE) Flight Operations Team
(FOT). We present an overview of agent-oriented technology and a detailed report on the
operation's concept for the testbed.

1.0 Intrdduction

Major advances have been made in the process of automating mission operations over the last
several years. However, in keeping with changing operational requirements and the need to more
effectively realize cost and manpower savings in the area of mission operations, the necessity for
more advanced automation technologies is clear. As examples of areas for continued improvement
consider the following:

«  Mission Operations Control Center (MOCC) software systems are currently developed using
classical software engineering paradigms. To bring about added degrees of flexibility in how
these systems could handle unexpected problems, the engineering of these systems along
agent-oriented technology lines looks promising.
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- Even with the increasing use of expert systems in support of telemetry monitoring and
command constraint checking much reliance is placed on the manual intervention of operators.
The use of agent-oriented techniques can effectively provide additional levels of automated
support in handling these important types of operational activities and further reduce the need
for manual interventions.

. With increasing automation of mission operations, there is a growing need for more advanced
approaches to information handling. The use of agent-technology in support of the full
range of information management functions will significantly reduce the growing .~
possibilities of information overload on the part of operators.

It is becoming apparent that for future automated mission operations, more consideration will have
to be given to the roles that distributed problem solving and computer-supported cooperative work
will play. These increasingly important issues can be addressed by employing intelligent,
distributed processes [6] found in a multi-agent based approach, described in this paper.

The rest of this paper presents an ontology [12], i.e., a conceptual framework for describing the
mission operations domain, and an implementation framework for automating the operations in that
domain. Our approach for dealing with the task of developing an agent-based mission operations
environment is to first specialize by applying our agent methodology to automate the report
generation function. Once this is accomplished we will then generalize and apply the agent-based
approach to other functions in the MOCC as shown in Figure 1 below. Our approach for
generating the agent-based report-generation solution is to employ an information agent model and
define agent roles in a multi-agent environment required for this selected subdomain function.
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Telemetry Telemetry and | Responses from the | + Consequences of Proposed Commanding
and M Command and Real-Time System Actions Flight
Command Date Handling | || : o] Operations
Computer ‘ ° Analyst
Spacecraft Subsystems Data Analysis Displays
Data

 Trending
¢ Performance Statistics

« Resource Profiles
« Report Generation

History Data/Statistis Statistical Analysis
is a s B
» Data Search Non-Real- oy austics Soafltld Gralg’hlgg
o Data Filtering Time Data ware Packages
« Statistical Management
Computations System -
Projec ¢+ Telemetry Achive
Database [+ Stored Commands

Figure 1: An Overview of a Spacecraft Mission Operations Control Center
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We present related work on the use of agent-based approaches for automating information location
and retrieval systems and the contribution of our investigation in proving the utility of agent-based
technology in mission operations.

2.0 The EP/EUVE Report Generation Process

The EP/EUVE’s operational environment is a heterogeneous network consisting of two
MicroVAXs (VMS), a Sun workstation (UNIX), an HP-9000 workstation (UNIX), and 1386
personal computers, using the X.25 and TCP/IP protocol.

Subsystem engineers for EP/EUVE are responsible for daily monitoring of the satellite's
subsystem performance, detection of anomalous subsystem behavior, weekly reporting of
subsystem performance, generation of commanding products for subsystem operations, and
continuing preparation for subsystem anomaly Detection, Isolation, and Resolution (DIR). These
products reside on heterogeneous distributed computing nodes. Off-line analysis (Trend system)
provides daily plots of over 600 mnemonics for visual checks of subsystem performance and
trends. Subsystem engineers' performance is evaluated based on how well they handle a spacecraft
anomaly, not on their daily activities. For example, based on an analysis of operator activities over
a period of time, it was concluded that 90 percent of their time is spent performing daily routines.
Each week, three of the Explorer Platform’s engineers spend a total of 40 hours generating a
weekly Teport on the performance of the system. The routine activities that consume most of the
operators’ time can be automated to allow them to spend time on more critical tasks.

Three categories of reports are generated by the Flight Operations Team (FOT) of the EP/EUVE
system. The three subreports which correspond to the three subsystems of the EP/EUVE are the
Modular Power Subsystem (MPS) subreport, the Command and Data Handling Subsystem
subreport, and the Modular Attitude Control Subsystem subreport. Other subreports included in
the MPS subreports include reports on the Battery Health and Safety, the Solar Array
Performance, the MPS Heater Duty Cycle, the Critical MPS Events' Summary, and the Thermal
System. The critical MPS Events’' Summary is generated from the computer workstation which
generates the Real-time and Trend data.

Adequate preparation for a spacecraft anomaly's DIR is the key to successful spacecraft flight
operations. The level of preparedness depends on the amount of "spare time" a spacecraft
subsystem engineer has to study the subsystem, and the time between anomaly detection and
resolution. Automating the report generation process will allow the spacecraft subsystem engineer
to devote their time to more productive mission operations such as early detection of anomalies,
data analysis, and development of scenarios for anomaly prevention.

The subreports for the Command and Data Handling Subsystem result from collecting six other
subreports. The subreports are orbit decay (EP/EUVE 's decrease in orbit periods), tape recorder
performance, clock delta trends, transponder performance, Ultra State Oscillator frequency trends,
and Modular Antenna Pointing Control.

3.0 An Agent-Oriented Solution to Support the Report Generation Process

An Agent-based FLight Operations AssociaTe (AFLOAT) is currently being prototyped to support
the FOT in generating weekly reports. Each agent is an entity that can function semi-autonomously
in an environment where other agents exist, accept instructions from a user, and communicate with
other agents. In addition, it can be persistent, and can mi grate from one node to another to process
and retrieve information as requested. The agent can operate independently in the background
without interfering with user's actions. An overview of agent-oriented technology and our
approach for applying this technology to automate the EP/EUVE operations report generation
process are described in the following paragraphs.
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3.1 An Overview of Agent-oriented Technology

What is an agent? In the most general form, a software agent as opposed to a hardware agent (e.g.,
a robot) can be defined as an entity that enables a user to specify what the user wants leaving the
process of how and when to accomplish it to the agent [3]. Huhns and Singh [5] present a more
comprehensive definition for a software agent as an active knowledge-based computational entity
that has knowledge, intentions, and mechanisms for perceiving, reasoning, acting, and
communicating. An agent, in our initial prototype, is characterized by a subset of the capabilities of
the agent in this comprehensive definition, as explained in paragraph 3.5. '

3.2 Distinction between Agent-based Systems and other Computer System
Services

There is general confusion on what agent-based systems are and how they differ from other
computer system services such as Directory Assistance Programs and Information Brokers [5].
Directory Assistance Programs support interoperation between conventional software programs by
accepting requests and routing them to appropriate programs for execution. Information Brokers or
Distributed Object Managers such as the Common Object Request Brokering Architecture (CORBA)
the Distributed Information Manager (DIM) for EOSDIS, and the Dynamic Data Exchange (DDE)
programs, either statically or dynamically provide access to information making the source of the
information transparent to the user. In addition to serving as directory assistants, they can also
execute requests and return results. All these system services use procedures to communicate with
other objects. True software agents use declarative directives that are more expressive to reason and
communicate complex concepts with other agents instead of relying on procedural directives which
are efficient but they are less expressive.

3.3 Agent Types

An agent's behavior may vary along a spectrum of factors ranging from a controlled learning
process to self-learning, controlled behavior to full independence, and simple to complex
interactions. An agent's capability may be simple or complex; its interaction with its environment
may be reactive or planned (i.e., deliberative). Reactive agents [2] are robot-like with very limited
internal reasoning mechanisms while deliberative agents [4] have substantial reasoning capabilities.
The agents in a multi-agent system may or may not coordinate their activities. All the agents may be
identical or each may be unique, and they may communicate either by directed message passing or
broadcast. The number of agents may range from a single agent to thousands. As you will see in
paragraph 3.5, the agents in our prototype will be able to learn; each has some degree of
independence. The agents can interact with their environment with deliberative reasoning, and
communicate with one another through direct message passing and multicast via shared memory.

3.4 Essential Architectural Issues of Multi-agent Systems

To be successful in developing a multi-agent based system, the following four architectural issues
must be addressed and the fifth issue is optional: (1) an approach must be established for
describing, decomposing and distributing tasks among the agents; (2) a format must be defined for
interaction and communication between agents; (3) a strategy must be formulated for distributing
controls among agents in which a local control strategy demands that agents communicate only
their results, or centralized control where one agent assigns all the tasks, or a predefined mixed
results/tasks share control; (4) a policy must be made for coordinating the activities of agents,
either by competition through negotiation as in ContractNet Protocol or cooperation through
centralized or distributed planning; and (5) a rationale should be established for maintaining truths,
i.e., consistent beliefs and conflict resolutions among agents [6] or mental states or trusts [10]. Our
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current architecture, described below, can address the five architectural problems. Our initial goal
is to resolve the first four issues making the resolution of the fifth issue a long-term goal.

3.5 A System Overview of an Agent-based Solution to Automate Mission
Operations

Our objective is to develop AFLOAT as a multi-agent based system where a user interface agent
interacts with the user to accept user requests, collaborates with other agents at a local host or over
the Internet in locating, retrieving, and presenting the information to the user in appropriate form,
with the correct amount and level of detail, and at the right time. An implementation framework for
AFLOAT consists of an architecture for a software agent, a methodology for implementing the
interactions between the user and a user interface agent, collaboration between multiple agents, and
an approach for making background software agents specialize in data retrieval from distributed
information sources. User-to-agent and agent-to-agent interaction issues are resolved by
developing a communication protocol, a language format, and an agent migration process across
networked computer systems. Our strategy for information location and retrieval is based on the
premise that domain-dependent keywords used by the user will form an index to the information in
the domain and to the specialized agent. If the key word does not exist, then retrieval is not
possible, and the user interface agent will issue appropriate advice. Knowledge in AFLOAT can
be stored as rules, objects, cases (examples), models, and programs. Each agent has access to a
set of support services such as: creating, destroying, managing, or monitoring the activities of
spawned agents; mechanisms for message transport; directory of other agents; information
processing and presentation; and system performance monitoring.

In addition to supporting on-line and off-line flight operations of the EP/EUVE report generation
process, agents in AFLOAT can also support the spacecraft platform and instrument Fault
Detection, Isolation, and Recovery (FDIR) services.

Our architecture for automating mission operations has been designed to address the top four basic
architectural issues and to be extensible enough to accommodate the fifth. The implementation
framework is based on a deliberative agent architecture, depicted in Figure 2. The architecture has
structural elements for data storage, coordination, and monitoring of activities between agents,
execution of internal and external functions, inter-agent communication, and interface with other
domains in the MOCC.

Architecture of AFLOAT's Deliberative Software Agent. Each of AFLOAT's software
agents is deliberative, which means that it will reason before it acts. An architecture of such a
software agent in AFLOAT is displayed in Figure 2. It addresses the issues that must be resolved
in a deliberative multi-agent based system. The coordinator determines the type of coordination
(task sharing or result sharing), and coordination policy (negotiation, shared memory, or an
explicit domain-driven task delegation policy) that will be employed. In AFLOAT, agents
coordinate their activities by sharing results, and an explicit domain-driven task delegation policy is
employed since each agent is considered a specialist in a specific domain. The agent's coordinator
module is also responsible for planning and scheduling the tasks of each agent. Each agent's
monitor is responsible for monitoring interactions between agents, incoming and outgoing
messages, the state of the agent, and maintaining a history of the agent's actions. Saving an
agent's past actions aids it in learning by drawing from experience when presented with new tasks.
The external models module of each agent maintains global functions that are accessible for use
by other agents. Each agent must maintain its access rights to external information so as to aid the
domain agents in the information retrieval process. The internal models module maintains
functions (such as managing access to the skills of each agent or maintaining its message buffer)
that are private to each agent and are not accessible to external agents except the AFLOAT executive
agent. Each agent also has an inter-agent communication module which is responsible for
validating inter-agent, semi-structured language format, sending outgoing messages, receiving
incoming messages, and broadcasting messages to shared memory. The brain of each agent is its
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information base where all the modules store their data and other information such as the name
of the local system management agent (AFLOAT executive), buffers for incoming and outgoing
messages, each agent's name, type, and state, and messages in shared memory. Communication
with each agent is done by adding a message to its information base. Each agent can store
knowledge as rules, objects, cases (examples), models, and programs. The structure of each
agent, coupled with its behavior (i.e., capabilities) provides it with enough intelligence to respond
effectively to information retrieval tasks delegated to it.

EXTERNAL ' l A
, INFORMATION , ,

AND INTERNAL COORDINATOR

" MODELS |ﬁ BASE lH I

3

MONITOR/GUARD I

INTER-AGENT COMMUNICATION MODULE

e

OTHER
AGENTS AND/
OR USERS

Figure 2. Architecture of AFLOAT's Deliberative Software Agent

An Information Agent Model for Supporting Information Retrieval: Agents in
AFLOAT are characterized by five "action-oriented” [9] capabilities: First, migration, is the ability
of an agent to move to other nodes to process or retrieve information. This ability can support load
balancing, improve efficiencies of communication, and provide unique services which may not be
available at a local node. Second, semi-autonomy, is the ability to respond to a dynamic
environment without human intervention, thus improving the productivity of the user. Third,
spawning, is the ability to create other agents to support the parent agent, thereby promoting
dynamic parallelism and thus fault-tolerance. Fourth, persistence, is the ability to recover from
environmental crashes and support time-extended activities, thus reducing the need for constant
poling of the agent's welfare and better use of the system's communication bandwidth. The fifth
and final capability is interaction mechanisms for supporting agent-to-agent and user-to-agent
interactions.
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Operations Concept for AFLOAT Prototype: An operations concept for the AFLOAT
testbed prototype is illustrated in Figure 3. It describes the procedures for using agents to locate,
access, retrieve and present EP/EUVE reports or information located at remote information
sources. To do this, the user generates a user agent. The user agent requests the system to display
a set of reporting options. The user then selects one or more items from the list displayed by the
system. Upon completing the selection process, the user agent generates a report agent and assigns
it the responsibility of generating the reports. The report agent identifies specific subreports and
requests the agents' directory manager (or name/skill server) for the names, locations, and services
provided by agents that can support the generation of requested reports.
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reports, or transﬁwms itself into a dormant icon on the screen to be reactivated when selected gy the user.

Figure 3: Operations Concept for Agent-based FLight Operations AssociaTe
(AFLOAT)

In addition to knowing the names, locations and services provided by the specialist agent, the
report agent must also determine if there are restrictions to services provided at certain locations. If
an access is restricted to information sources or there is an absence of unique services required by
specialist agents, the report agent may request the reports remotely via message passing. If there
are no such restrictions, the report agent generates and sends a clone with enough information
necessary to generate the report to migrate to remote information sources, interact with agents with
special skills, and retrieve the reports. Allowing the report agent to send its clone to retrieve reports
while it stays at the user's environment adds some fault tolerance to the system. Therefore, if the
cloned report agent fails, the primary agent has all the information needed to create another clone.
Periodically, the cloned report agent informs the primary report agent resident at the user's
environment on the progress of the report generation process. Steps 1, 2, 3, 4, and 5 in Figure 3
explain the interactions between the agents and the report generation process.

Development Environment and - Status and Plans for AFLOAT Project: The
development environment for implementing AFLOAT is the NASA/Johnson Space Center
developed C-Language Integrated Production System (CLIPS) version 6.0 with CLIPsTOOL
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software from KNOWARE Inc. (for building the user interface) running on a Sun SPARCstation
with UNIX operating system, X-windows, and OSF/Motif Style Guide. The application of the
defmodule construct (in CLIPS) which promotes the partitioning of knowledge bases will enable
us to achieve agent independence. We have just completed Build 1 of the AFLOAT testbed. This
build provides location transparency to information sources for generating reports on Battery
Charge/Discharge ratios of the three batteries on the spacecraft. This build is also being used by
two George Washington University researchers to investigate the issue of trust of automated
systems. In their experiment, an operator is assigned a task that he/she must perform plus an
additional task of monitoring the quality and number of faults correctly detected by the agents. The
operator's trust level of the agent is based on the frequency and types of incorrect faults. Build 2 of
AFLOAT will provide the users with the ability to generate reports on the operations of the three
subsystems, i.e., the MPS, the CDHS, and the MACS from distributed information sources.

4.0 Related Agent-based Information Retrieval Systems

Several agent-based information retrieval systems are being prototyped at several research
laboratories. Most of the research work attempts to resolve the fundamental architectural issues
described earlier in paragraph 3.4. The research work of Amy Lansky at NASA/Ames [8], and
Bond and Gasser [1] focuses on multi-agent planning and addresses the issues of coordination,
synchronization, and control of multiple autonomous agents. Shoham's work [10] investigates the
issue of an agent's mental states as they relate to beliefs, intentions, and capabilities. Other research
on agent-based information retrieval similar to ours include the work by Kahn and Cerf [6] in
which agents, called Knowbots, each hard coded to perform a specific task, are used to retrieve
information from digital libraries. Etzioni's work [3] on Softbots employs software agents to
perform different UNIX tasks to support a UNIX programmer. A very important contribution of
his work is the ability of the Softbots to retrieve information with an incomplete request.
Papazoglou and Laufmann [9] employ coarse-grained agents with a semi-structured language and
message passing to support information retrieval from distributed information sources. The semi-
structured language format is quite expressive and it can help the agents in communicating their
goals, results, and states, thus facilitating coordination among the agents. Gio Wiederhold [12]
employs very coarse-grained agents called mediators which can be used to filter data by resolving
any mismatches in the data. A major contribution of the mediator approach is the merit of this
architecture over integrated or federated agent-based system architectures. While it is more difficult
to implement, the mediator architecture is easier to scale up and add new interfaces than the other
two.

While each of the research efforts described above address various aspects of the architectural
issues of multi-agent systems, AFLOAT's architecture has been built as an extensible testbed and it
can address all the basic architectural problems of a multi-agent-based system. In addition to its
capability to automate distributed information retrieval, it can also support automation of other
operations such as fault detection, isolation and recovery of satellite subsystems, and other
domains. Whereas in a large majority of other multi-agent systems, the base prototyping language
is either LISP or PROLOG which very often is not well received by the operations staff due to a
lack of experienced programmers; AFLOAT is based on an expressive Al shell written in C with
the UNIX operating system, making it readily portable to other platforms and acceptable to
operations staff.

5.0 Conclusion

The distributed nature of the operations in a satellite MOCC calls for solution approaches to
problems in the domain to consider the use of intelligent distributed modules instead of isolated
intelligent systems. Such intelligent distributed modules have been modeled as a multi-agent
system and prototyped as the AFLOAT testbed to support the automated report generation process,
and described in this paper. An overview of agent-based technology has been presented with
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essential architectural issues that must be addressed to successfully implement a multi-agent based
system to support automated mission operations. We have shown how the architecture of each
agent coupled with its behaviors (i.e., its capabilities represented as an information agent model),
can be used to resolve basic architectural problems of multi-agent systems.

The use of multi-agent based designs is not limited to the mission operations domain. They can be
employed in any environment where the user needs to delegate an associate to perform information
management activities such as in telecommunications network management, software reuse
management, and automated traffic incident management systems.
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ADVANCED GROUND STATION ARCHITECTURE

David Zillig (NASA GSFC/Code 531.2)
Ted Benjamin (Stanford Telecomm, Reston, VA)

ABSTRACT

This paper describes a new station architecture
for NASA’s Ground Network (GN). The
architecture makes efficient use of emerging
technologies to provide dramatic reductions in
size, operational complexity, and operational and
maintenance costs. The architecture, which is
based on recent receiver work sponsored by the
Office of Space Communications Advanced
Systems Program, allows integration of both GN
and Space Network (SN) modes of operation in
the same electronics system. It is highly
configurable through software and the use of
Charged Coupled Device (CCD) technology to
providle a wide range of operating modes.
Moreover, it affords modularity of features
which are optional depending on the application.
The resulting system incorporates advanced RF,
digital, and remote control technology capable
of introducing significant operational,
performance, and cost benefits to a variety of
NASA communications and tracking
applications.

INTRODUCTION

The NASA Ground Network (GN) station
architecture has been used very successfully
over the last 25 years to support a multitude of
low earth orbiters (LEO’s), expendable launch
vehicles (ELV’s), geosynchronous (GEO’s) and
lunar missions in the Spaceflight Tracking and
Data Network (STDN). The GN RF subsystem,
based on the Multifunction, polarization
diversity Receiver (MFR) and the STDN tone
ranging equipment, still provides extensive
support to NASA programs. This support
includes: (1) Shuttle launch and landing at GN
stations; (2) LEQ’s, including Small Explorer
spacecraft at the DSN 26-meter subnet stations;
(3) TDRS GEO spacecraft at the GN, DSN 26-
meter subnet, and GRO Remote Terminal
System (GRTS) stations. Its hardware has been
upgraded and replaced over the years to
maintain its ability to provide reliable support to
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NASA’s critical missions, but its basic architecture
remains the same as when the STDN was formed in
the early 70’s from the Space Tracking and Data
Acquisition Network (STADAN) and the Apollo
Manned Space Flight Network (MSFN).

While individual functional blocks have been and
could continue to be replaced by modern electronics,
it is expected that the biggest gains will result from
developing a new system architecture that makes the
most efficient use of emerging technologies for the
most dramatic reductions in size, operational
complexity, and operational and maintenance costs. -

During the past year, GSFC/Code 531 has been
studying new ground station architectures capable of
high levels of hardware integration. The
architecture incorporates flexible software
configurability for implementation of a wide range
of modes, and is designed specifically for effective
automation of most operational and maintenance
functions. The hardware systems are designed to
mate with the overall station control philosophy of
the Automated Ground Network System (AGNS).
AGNS is based on an open architecture comprised
of loosely coupled station subsystems (such as the
RF subsystem of concern here) that maximize the
use of commercial standards and interfaces.

A highly integrated, automated ground station with
the capability of meeting stringent Shuttle S-Band
communications and tracking requirements can also
serve as the next generation near-earth-to-lunar,
multipurpose ground terminal. It also lends itself to
applications requiring compact, transportable
systems and remotely controlled stations that supply
direct downlinks to small satellite experimenters.

This paper briefly reviews current GN station
architectures and hardware configurations. It then
presents functional and signal processing
requirements for the upgrade RF subsystem. The
advanced station architecture is then described,
followed by sections detailing the flexible advanced
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equipment that support this new station
architecture.

CURRENT STATION ARCHITECTURE

The current GN station RF equipment is
primarily comprised of what is referred to as the
RER -- Receiver, Exciter, Range equipment. As
configured today, these three basic functions are
distinct equipments, each associated with a
dedicated rack of electronics. For example, the
MEFR receiver consists of a 7° rack containing 7
equipment drawers or modules. The exact
hardware configuration varies from station to
station depending on specific requirements. A
typical RER equipment group is comprised of
about 6-7 equipment racks to support a user
satellite link.

The GN station antenna system provides a sum
signal (X) and two error signals (X and Y) in
each of two orthogonal polarizations ----
resulting in six receiver input channels. The
MFR performs optimal ratio combining of these
orthogonal polarized signals and, thus, is
referred to as a polarization diversity receiver.
Experience has shown that this is a critical GN
function that allows continuous operations even
through significant fades of the polarized signal
that is dominant through most of a pass. To
accomplish this processing, and provide
redundancy to meet stringent reliability
requirements, 4-5 MFRs are typically used (each
MEFR requiring a rack of equipment) to support
user services.

As noted above, substantial equipments are
currently required to meet GN mission
requirements. This, coupled with the fact that
the underlying processing architecture is more
than 20 years old, places a substantial burden on
GN operations and maintenance. This situation
is exasperated as the GN stations are called
upon to support new and expanded requirements
as user mission needs evolve.

DESIGN GOALS/REQUIREMENTS

General requirements and design goals are first
presented. Key receiver, ranging, and transmit
requirements are then discussed, in turn.

890

General Requirements. Except for some few

obsolete requirements (e.g., FM Uplink), the RER
Upgrade must support all current RER capabilities,
and meet or exceed associated performance
requirements. To accommodate Space Station, and
the Shuttle Launch Support System (SLSS), the
RER Upgrade must also support SN signal modes.
This capability can serve as a ground-based SN
backup capability. Support of both SN and GN
modes by a GN ground terminal affords the option
to user missions to reduce transponder power and
weight by having only a SN mode capability.

SN modes use suppressed carrier modulation, as
well as PN spread spectrum signalling. Spread
spectrum operation also provides benefits by
allowing NASA to mitigate RF interference into, as
well as from NASA satcom links --- a key concern
as the RF spectrum becomes increasingly crowded.

Receiver. The receiver must perform the following

basic functions: Telemetry Data Demodulation,
Polarization Combining, Baseband Telemetry Data
Processing, Autotrack, Range Tracking, and Doppler
Tracking.

Telemetry data demodulation is required for both
SN and GN signals, involving both residual and
suppressed carrier formats. Moreover, in the GN
mode, up to 3 subcarriers may need to be supported
(e.g., engine data from Shuttle’s three main
engines). The following signal modulations are
possible, involving symbol rates from 100 bps to 5-
10 Msps.

 Carrier PM Modulated by Data, Range Tones and
PSK Subcarriers (0-3)

Carrier PM Modulated by Data, CW Range
Subcarrier (Shuttle)

Carrier FM Modulated by PSK-Modulated
Subcarrier (Shuttle Engine Data)

Carrier FM Modulated by TV/Analog Data
Carrier FM Modulated by Digital Data (FSK)

* BPSK, QPSK, PN/BPSK, SQPN.

Polarization combining of orthogonal polarized
signals has been an important and necessary feature
of the current GN MFRs. The extent that
polarization is needed varies from spacecraft to
spacecraft and even pass to pass. Polarization
combining seems to be particularly critical for high
elevation passes.



The antenna system provides X-axis (8x) and Y-
axis (8y) error signals, each in two orthogonal
polarizations, to the receiver as part of the
autotrack function. Analogous to the processing
of the two orthogonal sum channels (Z, and ),
the receiver must: (1) optimally combine the
orthogonal error signals for each axis, (2)
amplitude detect the combined signal, and (3)
provide the recovered X and Y error signals to
the antenna tracking system.

Ranging. The existing GN ranging function is
implemented in separate equipment from that of
the exciter and receiver. For the RER Upgrade,
an important goal is to integrate the ranging
function into the receiver and exciter. This
approach reduces and simplifies equipment, and
thereby, reduces operations and maintenance
costs. GN ranging is a tone ranging system, in
which transit time is determined by comparing
the phases of transit and receive tones. Tones
from 500 KHz to 10 Hz are used, in conjunction
with an ambiguity resolving PN code for range
ambiguities of 644,000 Km. An accuracy of 1
meter (1 o) is required at a C/N, of 50 dB-Hz.

Transmitter. The transmitter must perform the
following basic functions: Command Data,
Modulation, Range Tone Generation, Test Signal
Generation, Frequency Ubpconversion (to S-
" band), Range Zero Set, and Command Echo
Verification.

For the uplink command signal, the modulation
is required to provide for (1) GN Mode: a PM
signal with either data/range tones directly on
the carrier or on a subcarrier, and (2) SN Mode:
PSK signal with/without PN spreading. To
enhance overall operability and maintainability,
the transmitter must also be capable to operate
as a test signal generator for the receiver, which
requires the generation of all the input signal
modes and formats noted earlier for the receiver.

In summary the RER Upgrade must not only
meet current GN and SN requirements, but also
provide this capability in a fashion that reduces
costs and enhances operations. Also critical is
that the Upgrade be compliant with AGNS, by
facilitating high-levels of automation and
standard interfaces.
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UPGRADE RER ARCHITECTURE

In response to the above needs, an upgrade
architecture has been developed and is shown in
Exhibit 1. Both uplink command and downlink
telemetry signal processing are implemented in
equipment chains or strings. Key features to note
are:

* A processing "chain" consists of dedicated
equipments that handle all processing between
baseband and RF, thereby effectively eliminating
all switching in operational signal paths

Levels of reliability are achieved through
redundant processing chains, which can operate in
various "stand-by" modes, depending on
outage/contingency requirements

Additional receive chain reliability is achieved by
configuring two or more receivers within each
receive chain at the multicoupler output.

The upgrade architecture is modular, flexible, and
expandable --- critical characteristics to meet current
and future growth requirements. Accordingly, each
station can tailor the specific number of chains and
redundant units within chains to suit their individual
needs and service support requirements. For
example, Shuttle support, which requires high
reliability, may be achieved with additional
processing chains and/or additional receiver units
within a receive telemetry chain.

This so-called "string" architecture has also been
adopted by NASA’s STGT (Second TDRSS Ground
Terminal) in response to lessons learned from
WSGT, which uses a pooled equipment approach to
architecture. The GN Upgrade architectural
approach is greatly facilitated by advanced flexible
receiver/transmitter units (described below) which
are compact and relatively low cost. Today’s rack
of equipment for a single receiver or transmitter can
be reduced to a single chassis or drawer within a
rack.

In another related effort, all telemetry baseband
processing is being performed within a single PC,
further enhancing the "string" architecture approach.
Based on these efforts and advances in signal
processing, Exhibit 2 depicts the corresponding
hardware configuration that supports the advanced
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Station Architecture. In effect, one command
chain and one telemetry chain (with two
receiver units) can be reduced to a single rack --
a reduction of more than 4 to 1.

RECEIVER ARCHITECTURE

A receiver design has been developed to meet
the requirements and design goals noted earlier.
The receiver, referred to as the Flexible
Advanced Receiver (FAR), is an evolution of
the advanced CCD/Software receiver technology
developed under sponsorship of NASA
HQ/Code O (Advanced Systems) and
GSFC/Code 531. The FAR is a state-of-the-art
(SOA) system employing novel architecture and
advanced technology to provide extensive
capability in a compact package. Moreover, as
the name indicates, much of the receiver
processing is performed in software which
promotes the desired flexibility and
maintainability.

The receiver is comprised of two fundamental
processing blocks that maximize the use of SOA
analog processing, employing programmable
CCD’s (Charged Coupled Devices) followed by
firmware processing, using multiple Motorola
DSP96002 DSP chips. The CCD is essentially
an analog tapped delay line with programmable
tap weights. The FAR CCD is the 2-ATC chip
which is the latest of Lincoln Lab’s
programmable CCD chips. The 2-ATC chip is
specifically tailored for NASA/SN applications,
and was developed under sponsorship of NASA
HQ/Code O (Advanced Systems) and
GSFC/Code 531. The resulting architecture is
extremely powerful, yet flexible to support a
wide range of signal formats and conditions
through software changes only.

Exhibit 3 presents the FAR receiver architecture,
showing support to all six input channels
required to handle polarization combining and
autotrack processing. As shown, there are four
basic modules whose functionality is highlighted
below:

e Common IF Module
- Tunes 1st IF to a Common Fixed IF (e g,
140 MHz)

- Performs AGC

Noncoherent on

893

Wideband Input Signal
° Advanced Diversity Demod (ADD)
- Optimally Combines GN  Orthogonal
Polarized Sum Channels (Z, and )
Optimally Processes SN PSK Quadrature
Components (I and Q)
Demodulates Carrier/Subcarriers to Provide
Telemetry Data & Range Tones
Autotrack IF Processor (AIP)
- Provides Digital Difference Channel Samples
to ASP
¢ Autotrack Signal Processor (ASP)
- Combines Dual Polarized Channels
- Provides  Amplitudes to Antenna Subsystem
for Antenna Pointing.

Preliminary design analysis indicates that the FAR
receiver, in its full capability, will consist of 15
printed circuit boards or cards. Noteworthy is that
specific functionality is assigned to distinct cards, so
that a station needing less capability can simply -
remove corresponding cards and save costs. For
example, a user not requiring autotrack can reduce
the card set by five. The card set is comprised of a
combination of COTS (Commercial-off-the-shelf)
and custom cards.

The heart of the FAR is the Advanced Diversity
Demod (ADD) which provides the powerful signal
processing capability. The ADD high-level
architecture is shown in Exhibit 4, which depicts the
analog front-end followed by DSP firmware
processing.

The CCD card receives the IF sum channels (X, and
2p) from the Common IF module. The input IF is
140 MHz, and is downconverted to a third IF
through a novel scheme using a Track and Hold
Amplifier (THA). The THA, whose sample rate is
controlled using a NCO provides an aliased signal
component at a lower IF which is extracted by the
anti-aliasing low-pass filter.

The lower IF is then IF-sampled by the CCD to
provide an analog sampled baseband output signal.
The signal consists of alternate quadrature I and Q
samples. Relative to conventional mixing to
baseband, IF sampling eliminates the "sin/cos”
mixers, and provides all the information in a single
path, with substantially reduced complexity.
Moreover, by appropriately adjusting the CCD
programmable tap weights, the CCD performs as a
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matched filter in three ways: (1) matching to the
alternating {1.-1} of the "peaks" of the IF CW,
(2) data matched filtering by accumulating
samples from the same symbol within a CCD
length, and (3) PN code despreading with a
local PN code (for spread spectrum signalling).

The CCD weighted-sample accumulation is a
critical aspect of this unique architecture in that
it greatly reduces the processing requirements
imposed on the subsequent digital/firmware
processing.  This, coupled with the wide
dynamic range inherent in analog processing,
provide significant benefits over pure digital
receivers. Furthermore, the 2-ATC chip
provides two distinct CCDs on a single chip
(ideally suited for two orthogonal polarized
signals or quadrature QPSK components)
offering the potential for compact, low power
applications.

The analog CCD output is A/D converted and
provided to the digital cards for signal
processing-- all in pP firmware. There are four
DSP cards to handle carrier, subcarrier, and
range processing. All DSP cards are identical,
having the same hardware architecture. Key
features are listed below:

* Four 32-Bit DSP96002 Floating Point DSPs
- Arranged in a Fully Interconnected
Modified Hypercube Architecture
- Operating at 20 MIPS each with Full
Resource Redundancy
* Design Repetition at Each Processor
Standardizes Programmer’s Interface
* Serial Communications
- 4 LAN and up to 8 Serial Ports
- FEurobus Digital Interface Facilitates
System Expansion through Memory-
Mapped Add-On Cards.

Receiver signal processing uses the receiver
architecture discussed above to perform the
following basic functions: (1) Signal Tracking
(carrier, symbol, PN code), (2) Polarization
Combining, (3) Subcarrier Processing, and (4)
Range Processing.  All signal processing
performed to support signal tracking is
performed in DSP firmware that, in turn, adjusts
appropriate NCOs to effect tracking. An
"integrated” receiver tracking approach is used

895

in which, for example, the symbol synchronizer is
used for data-directed carrier tracking operations.
This improves overall SNR performance relative to
conventional Costas Loop operation for PSK
signalling. For the FAR, it is also applied in a
novel way to optimally demodulate PM modulated
signals.

TRANSMITTER ARCHITECTURE

To complement the receiver performance upgrades,
and support the overall RER Upgrade architecture,
a new, flexible transmitter design has been
developed. @ The new transmitter architecture,
described in Exhibit 5, is referred to as the Flexible
Advanced Modulator/Exciter (FAME). It makes use
of emerging technologies such as Direct Digital
Synthesis (DDS) and embedded micro-controllers
that allow for effective automation.

The FAME architecture is divided into five.
functional blocks: (1) Baseband Modulator, (2)

Upconverter, (3) Verification Receiver, (4)
Synthesizer, and (5) FAME Controller.
The Baseband Modulator stands to benefit

significantly from DDS technology. Exhibit 6 is the
high-level Baseband Modulator architecture, and
shows the extensive use of highly integrated ASICs
now available for DDS, Forward Error Correction
(FEC), and PN Coding. Use of ASICs promises
dramatic size reductions as well as enhanced
automatic control capability. To make the
transmitter as flexible as possible and make efficient
use of the emerging technology, eight MUXs allow
for the routing of digitally represented waveforms in
a variety of paths such that it can assemble a
diverse set of signal structures. The DDS ASICs
themselves offer excellent phase and frequency
resolution with minimal or no calibration.

SUMMARY

An advanced station architecture has been designed
that promises to substantially reduce equipment and
operational complexity. The architecture is based
on new, flexible receiver and transmitter units that
uniquely leverage the state-of-the-art in both analog
(e.g., CCDs) and digital signal processing (DSPs)
technologies. Noteworthy is that the capabilities of
this equipment can simply evolve and expand
through software changes.
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Abstract

A method for providing uniform transparent
access to disparate distributed information
systems was demonstrated. A prototype testing
interface was developed to access documentation
and information using publicly available
hypermedia tools. The prototype gives testers a
uniform, platform-independent user interface to
on-line documentation, user manuals, and
mission-specific test and operations data. Mosaic
was the common user interface, and HTML
(Hypertext Markup Language) provided
hypertext capability.

Introduction

The Jet Propulsion Laboratory's  Test
Engineering Laboratory (TEL) evaluates new
technologies for possible use duririg spacecraft
system testing.

Formal test environments are highly structured
and information intensive. Information that may
be useful for later analysis of failure reports or
change requests is not always obvious during
system test. Clearly, it is better to err on the side
of collecting data that may never be used.
Testers also consult numerous reference
documents, including test plans, handbooks,
acronym lists, and glossaries.

For these reasons, spacecraft system testing is a
paper-intensive operation. The project described
in this paper addresses this problem using freely-
available, multi-platform hypertext interfaces. .
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Several NASA centers support related work. An
inter-center working group, ICED! (InterCenter
Electronic Documentation workgroup) is
informally organized to share information among
groups exploring the use of hyper- and multi-
media interfaces to testing, operations, and
ground data systems.

This paper is organized as follows: the context of
the prototype, the JPL system test environment,
is described; next, the development of the
prototype is outlined; the transition from
prototype to product is documented; finally,
future work is described.

The JPL System Test Environment

JPL's Advanced Multi-Mission Operations
System (AMMOS) is a.networked computer
system consisting of 28 software and hardware
subsystems. Its principle purposes are to
sequence and uplink commands to spacecraft and
to process downlinked telemetry. Both testers
and users provide feedback to AMMOS
developers about needed repairs and
improvements in the form of Failure Reports
(FRs) and Change Requests (CRs) which are
stored in the Anomaly Tracking System (ATS)
database. Developers and testers refer to this
database to prioritize their work.

1[CED has regularly scheduled teleconferences and
maintains an on-line repository of findings. The contact
person for ICED is Anthony Griffith,

agriffith@ jscprofs.nasa.gov.
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Preparation for system test occurs in parallel with
system development. Test preparations include:
writing test plans; organizing test cases, data, and
scenarios into test procedures; defining
acceptance criteria; and negotiating the test
schedule.

System verification and validation includes
functional, performance, security, and reliability
testing. Test logs are maintained, reports are
generated, and FRs are written detailing
software, hardware, or configuration failures.
Engineers generate CRs in response to FRs. A
change board approves or disapproves each CR
after impact analysis.

As proof of concept, a variety of physical
documents used by testers were converted to
hypertext. These documents include:

» References: Test Engineering Handbook,
Acronym List, and Glossary

s«  AMMOS User manuals and guides

« Flight project specific documents: test
plans, procedures, and reports

» Articles posted to the Internet about
software testing.

More than 4MB of testbed specific documents
were converted to hypertext. All of these
documents are accessible through a WAIS (Wide
Area Information Server) full-text search and
retrieval [WAIS]. Figure 1 is the result of a
WAIS search of software testing articles.

HTML (HyperText Markup Language) was used
to decorate text with hypertext tags (links and
anchors), and to make explicit the logical
structure of documents [HTML]. A client-server
relationship is a fundamental assumption behind
the use of markup languages and related
presentation clients (viewers). That is, authors
embed tags in their documents to make the logical
document structure discernible by client viewer
programs. For example, an author may wish to
organize information as a bulleted list. Figure 2
shows the document as authored, and the
document as presented by two client viewers
(Mosaic and Lynx [Mosaic, Lynx]).
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Figure 2 (Cont’d). HTML, Mosaic and
Lynx example

It is important to note that the format of the
presentation is determined by the client interface.
The advantage of this separation of logical
structure and format is that HTML clients exist
for several platforms. A disadvantage, however,
is that authors cannot be sure of exact placement
of objects on users' screens. This is unacceptable
for certain engineering and operations tasks.

The TEL prototype demonstrates the use of
graphical data to resolve this problem. Graphical
data can be traditional images or documents
requiring a specific display format. Mosaic
invokes data-specific viewing applications during
the interpretation of an HTML document. For
example, mission Sequence of Events (SOE)
schedules and Space Flight Operations Schedule
(SFOS) timelines are difficult to represent ‘in
HTML. The SFOS is a graphical timeline
representation of critical information contained in
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the SOE. The prototype maintained a uniform
user interface by launching special viewers for
these documents from Mosaic. Figure 3 is the
result of a query for an SOE segment.
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Figure 3 An SOE segment.

Finally, the prototype's most innovative aspect
is the access provided to the existing Anomaly
Tracking System (ATS) database of failure
reports (FRs). The ATS is essential to the daily
work of JPL testers. The prototype allows ATS
information to be queried in a straightforward
way by any combination of spacecraft,
subsystem, criticality, date, and other criteria.

Previously, access to an FR database required the
use of a commercial relational database interface,
or telephone calls to support personnel requesting
that a query be submitted. Using the capabilities
provided by Mosaic it is possible to significantly
simplify query formation and submission. This
makes the FR database accessible to users
unfamiliar or uncomfortable with relational
databases. No modification to the existing ATS
system was necessary.

Figure 4 is the search form as it appears using a
Mosaic interface. Users compose a query by
clicking buttons to choose menu items. The form
in Figure 4 has been set up to choose a "listing"
format of all open failure reports. The query is
submitted by clicking the "generate” button. This
new interface provides simple and consistent



access to users from any workstation. Users
have reported a reduction in time required to
access the ATS and an increase in utility of the
ATS system. The result of the query is shown in
Figure 5.
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Figure 4. FR database query form

The Mosiac interface to ATS was implemented
using a Common Gateway Interface (CGI)
extension to a World-Wide-Web (WWW) server?
[WWW, CGI]. CGI extensions are used to
create interactive documents. Figure 6 illustrates
how CGI defines the interaction between a
WWW server and programs run by the server to
carry out special client requests. User inputs are
encoded by Mosaic as special Uniform Resource
Locators (URL) and passed to the WWW server
[URL]. The server invokes the CGI application
and passes the user's inputs to it. The CGI

2NCSA's hitpd v1.3 was used for both the prototype and
delivered system

application then carries out the user's request
(e.g., extracts data from a database) and sends
the result back to the WWW server in HTML
format. Finally, the WWW server forwards the
result back to the client viewer for presentation to
the user.

Document Title: [ATS-4aiz Search Results ) i
D URL: §https/ronsews ormatel iatingtoroject=al tphass=0PEMat |
ATS Search Results
This report contalns alisting of all FRs which are . tly under progr CPB
subsystem.

Found 3 FRs matching your criteria, Click on an FR number te get more information,

84429 ~ GLL - CDB - V198 ~- Crit2 : Pril — OPEN(Mar 11, 1994)
Description: CDB "Besting’ doesn’t wrk corr. for frames will fill data. { tested this using
unchan. eng {quat.chd0=41) and chan. LRS data {quat.chdo=27). Background: Filis
represented diff. in these 2 cases and in both cases, fill was ignored. Att. shows the~results of
besting for unchannelized eng,

51940 - MM - CDB - VIBA19A17 -~ Crit 2 : Pril -- OPEN(Sep 2, 1993)
Dascription: cdb ancillary data base tag’s incorrect on files that are Joaded — the server runs
onutc time — cdb looks at that time and treats it as military time and tags the file 8 hrsin
advance of when it was loaded — 1800 utc = 11:00am — 1800 military = £:00pm-~the 6:03pm
is the time thet cdb would tag » file loaded at 1800 utc

74571 - MM - CDB - V180 -~ Crit3 : Prl3 -~ OPEN({Feb2,1993)
Deseription: IF AN ATTEMPT IS MAKE TO REPLACE A FILE WHEN THAT FILE
DOES NOT EXIST, THE ERROR MSG “USER "SALEX’ NOT AUTHORIZED TO
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Figure 5. Result of FR database query
using Mosaic interface
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Development of the prototype

The prototype system was developed over 12
weeks by three people. It consisted of
approximately 2000 pages of hypertexted hard
copy documents, and 1500 lines of Perl scripts to
interface with the existing ATS database front
end [Wall and Schwartz].

One of the advantages of using HTML and
Mosaic viewers was that potential users were
able to see working prototypes quickly as
development continued.

The prototype has provided a foundation for
future work by demonstrating user-level
integration of separate information systems and
providing a uniform view of these systems
across workstations.

HTML and Mosaic were chosen over other

systems for several reasons. Adobe Acrobat3
offers excellent cross-platform document
browsing capabilities, but provides only
rudimentary support for hyperlinks and does not
support client-server interaction, making it
difficult for one server to support multiple
platforms over a wide area. Hyperman [Crues],
developed at the Johnson Space Center and based
on Adobe's PDS (Page Description Language),
allows personal annotations and stronger
hypertext capabilities, and will support the client-
server model in the future. However, neither of
these tools support "on-the-fly" document
generation required for access to ATS, nor do
they allow integration of user-defined viewers for
unanticipated data types.

Current status

The TEL's prototype system has become a
product supported by the Multimission
Operations Systems Office (MOSO). The
production version includes a hypertext form for
submission of change request (CR) queries, as
well as forms for submission and update of FRs
and CRs. A larger effort is under way to convert
AMMOS user documentation to HTML format,
and the Cassini project is making much of its
project documentation available through HTML
clients.

3 Acrobat is a trademark of Adobe Systems Incorporated.
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Future work

One problem with using client user interfaces to
interpret tagged hypertext documents is that
clients may interpret logical organization tags in
documents as suggestions rather than
commands. Clients are free to display documents
in idiosyncratic ways. In practice, the behavior of
clients is not as anarchical as it sounds.

Because of the necessity of absolute format
control in some engineering and operations
documents, the TEL is continuing to evaluate
extensions to HTML. In particular, HTML+
[HTML+] promises to provide increased support
for mathematical symbols, tables, change bars,
and floating panels (sidebars).

Second, future prototypes will allow testers to
attach "personal annotations" as well as MIME
(Multimedia Internet Mail Extensions) [MIME]
format objects (i.e., screen dumps, core files,
support documents, etc.) to FRs.

Third, the Deep Space Network (DSN) maintains
a similar problem report tracking database
accessed by sites worldwide. A system based on
the TEL prototype and MOSO ATS product is
being developed.

Summary

The TEL prototype demonstrates an integrated,
consistent view of existing distributed
information systems using low cost tools. In
some cases, greater integration is achievable
using hypertext (i.e. linking references to FRs in
documents to the FRs themselves). Making
information available in this way reduces delays
due to information not being readily accessible
when needed.
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TOWARDS AN INTEGRAL COMPUTER ENVIRONMENT SUPPORTING SYSTEM
OPERATIONS ANALYSIS AND CONCEPTUAL DESIGN

E. Barro, A. Del Bufalo, F. Rossi
VITROCISET S.p.A.
Via Salaria 1027
00138 Roma - Italia

ABSTRACT

VITROCISET has in house developed a
prototype tool named System Dynamic Analysis
Environment (SDAE), which aim is to support
system engineering activities in the initial
definition phase of a complex space system.

The SDAE goal is to provide powerful means for
the definition, analysis and _trade-off of

operations and design concepts for the space and
ground elements involved in a mission.

For this purpose SDAE implements a dedicated

modelling methodology based on the integration

of different modern (static and dynamic) analysis
and simulation techniques.

The resulting "system model" is capable of

representing all the operational, functional and

behavioural aspects of the system elements
which are part of a mission.

The execution of customised model simulations

enables:

o the validation of selected concepts w.r.t.
mission requirements;

o the in-depth investigation of mission specific
operational and / or architectural aspects;

e the early assessment of performances
required by the system elements to cope with
mission constraints and objectives.

Due to its characteristics, SDAE is particularly

tailored for non conventional or highly complex

systems, which require a great analysis effort in
their early definition stages.

SDAE runs under PC-Windows and is currently

used by VITROCISET system engineering

group.. .

This paper describes the SDAE main features,

showing some tool output examples.
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1. INTRODUCTION

Modern space systems are evolving towards
higher levels of complexity in both the
functional and behavioural domain. This is a
natural consequence of the increasing reliability
of technologies based on intelligence and
automation.

Spacecraft on board autonomy levels are

progressively enhanced, and more "intelligent"

and sophisticated operation control and support
systems are conceived and developed.

Such a context demands for a complex

engineering effort in the first phases of the

system life cycle, when

o the suitable identification and / or selection
of mission elements,

e the definition of system functions and
functional sharing between elements,

e the establishment of a mission operations
concept,

o the identification of system design and
performance drivers, -

o the wvalidation of system
definition = w.r.t.  mission
requirements and constraints,

imply in depth analysis and trade-off among a

wide scope of interdependent technology and

implementation solutions.

The selection of an optimum mission

configuration and operational strategy also

affects heavily elements procurement or
development and utilisation risks and costs.

In parallel with the evolution of space operations

conduct and support technologies, it is therefore

necessary to adequately improve engineering
support aids to the conceptual design of the

conceptual
objectives,

0.9



mission and its constituting space and ground

elements.

This can be achieved through extensive use of

modern computer aided modelling and

simulation methods and technologies.

VITROCISET is working since some years in

this field, through:

e a methodological effort based on the

definition of an integral modelling
methodology for a complex system, capable
to suitably support different kinds of
representations  (operational, functional,
architectural) for conceptually different
systems.
Such a methodology has been derived by
exploiting - commonly adopted description,
analysis and simulation synthaxes (e.g. OOA,
SADT, Petri Nets).

e a development effort for the integration
within a unique computer environment of
system description and analysis capabilities,
providing in this way the user with a single
point of access to the whole system
information, and means for information
derivation, handling, consistency check and
executable simulations preparation,
execution and evaluation.

« an application effort, aimed at exploiting the
computer environment capabilities in the
frame of concrete projects and at deriving
from the application experience requirements
for environment upgrades.

System definition and analysis methodology has

been already presented and discussed in

precedent papers of the same Authors (Ref. 3, 5).

In parallel with the methodology development

and refinement, VITROCISET has developed a

PC based tool named System Dynamic Analysis

Environment (SDAE), which has been

progressively enriched in the last years up to

covering with automated support a large part of
the methodology characteristics.

The System Dynamic Analysis Environment

finds its natural application in the fields of

system operations analysis and systems

engineering, in the frame of both high level (A

and pre-B phases) studies related to satellite

906

operations and in the system definition and

design phase.

Currently, SDAE supports mainly the following

activities:

e mission and system requirements definition

and management;

operations modelling;

functional static and dynamic modelling;

behavioural modelling;

models parametrisation with operational and

performance attributes derived from mission

and / or system requirements;

e executable simulation and
evaluation of simulation results.

statistical

2. SDAE MAIN PRINCIPLES

SDAE tool is based on a layered modelling
approach, depicted in figure 1.

Level 1 Model

Environment

Ground
Segment

Mapping l

Level 2 Model

Figure 1: The layered Modelling Approach.

Each hierarchical layer is constituted by a set of
models which structure and organise system
information within well defined entities.

The scope and the purpose of the modelling
activities vary according with the level of details
of the system description.



On top layer, the entities managed by the tool are
the main mission elements (physical or logical),
such as the flight element(s) and its supporting
ground facilities, or the spacecraft environment
as well.

Entities can be functionally described as objects,
in all those static and dynamic aspects which are
of particular interest for the engineer in order to
analyse a specific problem for the mission.

At this stage modelling supports initial mission
analysis and operations concept definition
activities, such as selection of mission support
infrastructure, assessment of  operational
strategies and derivation of related design
requirements and constraints.

A core modelling functionality enables the
definition of dynamic relationships between
objects (in terms of e.g. data exchange, events or
dynamic modification of model parameters
which affect objects behaviour).

Lower level models can be progressively defined
for more specific analyses (e.g. command and
control concept definition, budget analyses,
element conceptual design and trade-off's).

The utilisation of a wunique descriptive
methodology at all the levels of details enables a
straightforward traceability among the different
modelling layers.

At bottom level, the tool can support the
definition and description of end-to-end
functional architecture models for the mission
elements and their sub-components.

Any object at any level can be customised with
characteristic parameters and reused in different
contexts, even though at high level it constitutes
only a partial view of the described element.

The execution of interactive simulations is
therefore supported by a set of configurable
library modules, including environmental models
such as e.g. drag models and orbital propagators.

Simulation input parameters can be derived

directly from associated requirements, as well as
output parameters can be source for lower level

requirements through dedicated derivation rules.
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3. SDAE DESCRIPTION

SDAE tool provides the capability to build and
execute dynamic operational, functional and
behavioural models of a system, associating
model parameters to mission or system
requirements.

A high level architecture of the SDAE is
provided in figure 2. Dotted lines in the figure
show functionalities which are presently under
development or test.

| MMI ]

' Objects - Model Req's

' Mgmt._ | Editor Mgmt & ||| Simulation | | gyajuation
f Link Run

Model Preparation

T 1|
Object Req's External Log & Result
Libraries Models DB Simulators Files

Figure 2: High Level SDAE Architecture.

The SDAE is constituted by three separate
environments:

¢ Model Preparation;

¢ Simulation Run;

¢ Evaluation.

3.1 MODEL PREPARATION .I

Models are generated by means of:

o an object management facility (under
development) for the static definition of
basic model entities and their
characterisation by means of a set of
variables;

e a model editor facility for the end-to-end
description of objects dynamic behaviour and
relationships or interfaces;

e a requirements management and link facility
for the models parametrisation with numeric
parameters derived from mission or system
requirements.

The model objects descriptions can be stored

within object libraries and reused.

Models can also be interfaced at design time

with external application specific simulation



libraries, with which they exchange data and
status at run-time, providing in this way a
realistic scenario for the simulation.

The Model Editor realises the core modelling
functionality.

Such an editor is based on a Petri Nets-like
synthax, and exploits a dedicated extension of

Petri Nets methodology.
The editor enables the model dynamic
specification through:

e a core state-transition network with
deterministic and /or  stochastic
transitions;

e a predicates editor, which supports the
definition = of network  predicates
(conditions and actions) by means of a
dedicated simulation language, and

Other Monitor

A Specs

Once the model has been generated, a simulation
can be executed by means of the Simulation
engine of the tool.

Exit Return
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enables the model link with external
simulation libraries.
The Requirements Management and Link
facility enables the mission / system
requirements handling, through:

e arequirements database editor;

e a linker between model variables and
numeric requirements parameters, with
possibility to specify input and output
links, together with derivation rules for
derived parameters;

The model preparation environment also enables
the generation of ad-hoc panels for simulation
monitor and control.

An example of SDAE preparation environment
display output is provided in Figure 3.

The simulation execution environment allows:
e initialisation of simulation parameters (e.g.
duration, step) and variables;
e three different modes of simulation:
¢ Dbatch (the model works stand-alone with
user interface);



e step by step (the model stops in case of
firing conflicts in order to highlight
decision branches in system behaviour);

o debugging (the user decides which
transition shall fire, among those enabled,
in order to experiment predefined
behavioural paths);

« capability to stop, continue or restart a
simulation with the same or different initial
conditions;

s user interaction in batch mode, by means of
monitoring and controlling the model
through customised control panels defined at
design time;

o simulation history log;

o on-line display of simulation statistics.

During the simulation, the run module executes

the model syntax, interfacing with external

simulation software.

P
Nect  Configuration Simulation Propertics Disp

WRR 91 0 Follers ue...
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'314 +:300 Neo. vimer...
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The capability of defining firing conditions for
the  network  transitions  enables  the
implementation of priorities, in case the
modelled process is fully deterministic, i.e. no
resource conflict between concurrent functions is
allowed.

The definition of transitions associated actions
enables the parametrisation of network tokens,
modelling in this way the availability of different
kind of resources within the system.

Examples of simulation execution environment
display outputs are shown in Figures 4 and 5.
The shown examples reflect different simulation
and design objectives, as pertaining to different
stages of system life cycle.

The application shown in Figure 4 has been
developed within ESA/Dornier ARISTOTELES
Phase A and Pre-B studies.

ARISTOTELES Orbit Decay Monitor

Figure 4: Simulation output example: ARISTOTELES ORM Analysis.

It constitutes the modelling of a spacecraft
operational process, the Orbit Raise Manoeuvres
(ORM) execution process, which involves
ground, spacecraft and environmental functions.
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The overall objective of the study was the
definition of an optimum strategy for satellite
tracking and ORM execution, identifying the
impacts of the selected strategy onto the flight
element and ground segment architecture.



In particular the following topics were addressed

by the study:

e define the on board autonomy level, working
on the flexibility of the mission;

o identify a safe orbit maintenance manoeuvre
sequence;

o ensure required scientific return from the
system operations viewpoint;

o identify the interrelationship of chosen
coverage, link budget and memory budget
with the selected operational strategy;

o validate the sequence of events in the
operational scenario;

e analyse consequences of failure on the
chosen design (e.g. redundancy philosophy).

Figure 4 shows:

o the model of ORM process within the
Simulation Run Environment display screen;

o the ORM monitor panel, including an orbital
propagator (external module) outputs and
significant simulation variables monitoring;

o the Altitude display panel with an
atmospheric drag model (external module)
output;

o the log display of satellite contacts with
Kiruna Ground Station, as computed by the
orbital propagator.

The execution of the ORM process model for

different initial conditions and environmental

conditions (contact failures scenario) has enabled
the selection and validation of an operations

strategy, which satisfied all the system
requirements in the defined worst case
conditions.

The model has also been exploited as a
breadboard of the process under study, deriving
and  verifying quantitative  parameters
determining the sensitivity of the strategy (and
therefore strategy failure conditions) to the
variation of any of the parameters of the model,
like e.g. the spacecraft decay rate or the altitude
determination errors, with respect to the
reference values.

A wide number of statistical results about the
process under study has been derived, as the time
distribution of manoeuvres intervals and of
manoeuvres size, the deadband utilisation figure,
the scientific return distribution.
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Finally, concrete impacts on the space and
ground architecture have been identified on the
basis of simulation results, especially with
respect to On Board Data Handling System (in
terms e.g. of definition of autonomous functions,
sizing of mass memory required for manoeuvres
parameters storage) and Ground Station
architecture (e.g. need for a dedicated ground
station, which has been derived as an "a
posteriori” constraint for successful exploitation
of ORM strategy).
The application shown in Figure 5 has been
developed in the frame of ESA/SAT CONTROL
Hermes Board Observability Breadboard (BOB)
software project.
The BOB is a spacecraft simulator which models
the generation and downlink of Hermes
telemetry, with the scope limited to Guidance,
Navigation and Piloting (GNP) functions. ‘
The objective of the BOB is to provide a mean
(breadboard) for the definition of an optimum
telemetry strategy, and the verification of how
this strategy copes with spacecraft observability
requirements.
In this context, VITROCISET has been
responsible for the definition and development
of the on board Telemetry Generation Assembly
simulator, which reproduces the generation of
CCSDS telemetry packets on the basis of on
board events and operator directives, and their
delivery to Communications subsystem for
downlink.
The Telemetry Generator Assembly (TGA) was
designed with the SDAE simulation support.
A behavioural model of the assembly was
generated and executed, in order to validate
system behaviour w.r.t. specifications, to
experiment different implementation solutions
and to derive performance objectives for the
software modules in order to cope with system
requirements.
The model was able of fully reproducing the
system behaviour, including partial modelling of
hardware equipment (disk driver, buffers).
As an example, the model reproduced the
following characteristics:
e packet generation directives acceptance and
rejection policy (including input data format



and parameters check and consistency check
with current packet generation status) and
related timing;

directives processing operations;

directives scheduling policy (e.g.
insertion/deletion/update of schedule items,
schedule execution tasks "jumping" in case
of critical delays) and related timing;

internal synchronisation and priorities (e.g.
enabling / disabling of packet playback on
the basis of schedule status, blocking and
non blocking operations, internal overrides);

packet generation policy (e.g. handling of
measurement variations occurred during the

et Configuration Simulation Properties Display
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generation of a packet, generation policy of
supercommutated packets).
The model accepted as an input a timeline of
telemetry generation directives, and enabled the
operator interaction by means of issuing at any
time new directives for the model. The output of
the model was a list of generated packets, with:
e packet generation and delivery times;
o list of included measurements and related
values.
The time resolution of the simulation was chosen
of 1 millisecond.

TOT/s

Figure 5: Simulation output example: BOB TGA Architectural Design.

Figure 5 shows:

the process model within the Simulation Run

Environment display screen;

the test operator monitor and control panel,

including:

o directives panel for the generation of
telemetry generation directives by the
operator;

e packet generation status monitoring panel;

o current system schedule;
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« status of the main system functions.

The execution of the TGA behavioural model
provided the designer with a lot of information
on the system. In particular different scheduling
policies and packet generation policies have been
tested before selecting the one which optimised
system functioning under nominal and peak load
conditions.

Even though the model was at behavioural level,
inferences on system performances have been



derived by setting and changing maximum
allowed times for software tasks execution, and
deriving in this way objectives to be pursued in
single functions implementation in order to meet
the overall system performances.

In depth analysis of deadlock conditions has
been performed, by means of identifying and
quantifying the relationship between the input
data rate and the system response, which under
critical conditions is characterised by a
degradation in performances due to the skipping
of packet generation tasks in order to avoid
propagation of delay with respect to the
schedule.

In addition, the system response under different
modes of functioning (e.g. recorder, playback,
filler activated / deactivated with a predefined
rate) allowed the determination of packet
generation rate achievable in the different modes,
deriving in this way differentiated constraints for
packet generation function.

Finally, the partial modelling of some significant
time consuming hardware functions (access to
disk, input/output operations) enabled the

Viewflle Printflle Process File View Statistics

assessment of limits imposed by the hardware
onto system performances.

3.3 EVALUATION.

After the simulation run, the log file is processed
by an Evaluation environment, which computes
and displays the main network statistics, i.e. for
each transition: '
o overall number of firings;
e minimum, average and maximum time
between two successive firings.
The environment also supports the generation of
customised graphical reports by means of
interface with standard Windows facilities and
the processing of the log file, providing
statistical figures of predefined network
parameters and variables (e.g. distribution of
parameters values across the simulation).
An example of Evaluation Environment screen
layout is provided in Figure 6, representing the
ARISTOTELES ORM process model simulation
statistics.

SDAE - Log Files Analysis

Exlt

Figure 6: Evaluation Environment output example: ARISTOTELES ORM Analysis.

912



4. CONCLUSIONS

SDAE prototype implementation has been

originated with the purpose of investigating the

system engineering process of a modern space
system in the first phases of its life cycle.

In particular, the ultimate objectives of the tool

were:

1. to provide an efficient breadboard for
testing "on the job", within limited
implementation costs and effort,
methodologies aimed at:

e ensuring a harmonic and consistent
growth of system information in this
phase;

e empowering system analysis and
‘validation capabilities, especially for
highly automated or non procedural
systems.

2. to derive requirements for methodologies
assessment and refinement, on the basis of
concrete engineering needs outcoming from
the tool application experience.

SDAE application has resulted to effectively
support both system analysis and conceptual
design, lowering the engineering effort for the
execution of operations analyses and
architectural trade-off's and providing, by means
of simulation, significant support to operations
and system concepts validation capabilities.

In particular the following characteristics of the

prototype have been found of particular interest,

especially in comparison with engineering tools
available on the market:

e« the flexibility of modelling methodology,
which enables the easy generation and
maintenance of "on purpose” models,
without constraining the engineer to
rigorous top-down approaches, but at the
same time providing capabilities for system
information consistency keeping;

e the adequacy of modelling and simulation
tools to non procedural, event drive
systems; "

o the reusability of model objects
simulation modules;

and
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o the "live dialog" capability of system
models with mission and system
requirements parameters through numeric
data exchange and derivation rules, which
highly enhance ability to manage, control
and validate system information.

Those positive outcomes suggested the

prosecution of the internally funded SDAE

prototyping activity, which currently is being
performed in the direction of both:

+  improvement of tool
powerfulness and engineering
scope;

o increase of tool application experience,
through the investigation of new
application areas, such as communications
and ground data control and distribution
systems.

modelling
support
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ABSTRACT

Since Mariner, NASA-JPL planetary missions have been supported by ground software to plan
and design remote sensing science observations. The software used by the science and sequence
designers to plan and design observations has evolved with mission and technological advances.-
The original program, PEGASIS (Mariners 4, 6, and 7), was re-engineered as POGASIS (Mariner
9, Viking, and Mariner 10), and again later as POINTER“ (Voyager and Galileo). Each of these
programs were developed under technological, political, and fiscal constraints which limited their
adaptability to other missions and spacecraft designs.

Implementation of a multi-mission tool, SEQ_POINTER, under the auspices of the JPL Multi-
mission Operations Systems Office (MOSO) is in progress. This version has been designed to
address the limitations experienced on previous versions as they were being adapted to a new mis-
sion and spacecraft. The tool has been modularly designed with subroutine interface structures to
support interchangeable celestial body and spacecraft definition models. The computational and
graphics modules have also been designed to interface with data collected from previous space-
craft, or on-going observations, which describe the surface of each target body. These enhance-
ments make SEQ_POINTER a candidate for low-cost mission usage, when a remote sensing
science observation design capability is required.

The current and planned capabilities of the tool will be discussed. The presentation will also
include a 5-10 minute video presentation demonstrating the capabilities of a proto-Cassini Project
version that was adapted to test the tool.

- The work described in this abstract was performed by the Jet Propulsion Laboratory, California
Institute of Technology, under contract to the National Aeronautics and Space Administration.

Keywords: remote sensing science observation, adaptable tool, interchangeable models, digital
terrain map-defined celestial body

INTRODUCTION

POINTER provides functionality analogous to a professional photographer’s process of preparing

for and taking photographs. POINTER supports this process for a remote robotic photographer

that has no control over the environment where it has been sent to gather images and other data of

the surrounding phenomenon. The functions which are similar to the photographer’s process

define the foundation of POINTER. These foundation functions are listed and illustrated in Figure

1. In SEQ_POINTER, the functions have been designed and implemented for multiple missions.
The mission specific capabilities are incorporated via a process called adaptation.

1. Cognizant Development Engineer (CDE)
2. Planetary Observation INstrument Targeting and Encounter Reconnaissance
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PRRGSDNNG PAGE BLANK NOT FILMED |



Model Celestial Body

Sun Size, Shape & Orientation

Model/Read Celestial Bodies Positions

Earth
Model/Read Model
Spacecraft Instrument
Position (footprint)
Translate Observation
Into Spacecraft
Instructions
.......... 4 Model Spacecraft/Scan
Platform Pointing
Earth % (observation)
Model Spacecraft % Read/Model Star Positions

Attitude

Figure 1. POINTER Foundation Functions

CURRENT CAPABILITIES

The foun%ation functions are augmented by capabilities which allow SEQ_POINTER to fit within
AMMOS?, the multi-mission operations support system being developed by MOSO. The tool
capabilities with respect to AMMOS are illustrated in Figure 2. The primary capability is the
interface with the Sequence file. The Sequence file contains spacecraft instructions and ground
software directions in the form of requests. Requests perform remote sensing as well as fields and
particles science observations and engineering activities during mission operations. The remain-
ing capabilities are the interfaces with the Spacecraft & Celestial Body Ephemerides file and the
Spacecraft Clock file. The Spacecraft & Celestial Body Ephemerides file(s) lump together space-
craft, planetary, and satellite ephemerides (currently NAIF*) and star catalog(s). The Spacecraft
Clock file provides spacecraft clock adjustment data referenced by the tool.

The upper portion of Figure 2 illustrates the primary SEQ_POINTER operator displays, the oper-
ator interface and observation design depiction. The operator interface (left) is an X Window Sys-
tem/Motif application. It provides the operator with capabilities to manipulate observation design
instructions and to perform a simulation of spacecraft execution instructions which are graphi-
cally depicted (on the right by the Project module). Figure 3 contains images illustrating sample
menus (top) and a sequence component (bottom) from the operator interface. The observation

3. Advanced Multi-Mission Operations System
4. Navigation Ancillary Information Facility
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QEQ_POIN’I‘ER

Spacecraft
Spacecraft & Celestial Sequence Clock
Body Ephemerides

Figure 2. SEQ_POINTER in the MOSO AMMOS

graphically depicted is a perspective projection of Saturn with events (footprints) from a Cassini
Project instrument. Figure 4 contains a sample image of the same observation from a different
vantage point than depicted in Figure 25 The implemented module in the Project module family is
an X-Window System/Motif/PHIGS+> application. The depiction of the target body is data
driven, based-on a PHIGS data structure that models the surface of the body. The data structure
can be derived from a variety of sources: an oblate-spheroid body shape algorithm or the same
algorithm with an electronic version of a USGS® Albedo Image file. The Saturnian rings are mod-
eled in the same fashion. However, the data structure for the rings is created at run-time from ring

system constants read by the tool.

ARCHITECTURE

To facilitate a mission adaptable tool, SEQ_POINTER has been organized around the concepts of
modular executable programs (module families) and interchangeable models. The tool comprises
three module family groups: infrastructure programs, observation design utility programs, and
observation activity programs. The groups and some of the constituent module families are illus-
trated in Figure 5. The infrastructure group consists of module families which contribute the
underlying data flow architecture for the tool: Operator Interface, Activity Design, Modeler, Posi-
tion, Project, Present, and Targeting Update. A description of each module appears in Table 1.

The design utility and observation activity program groups consist of activity and command mod-
ules, the sequence components of an observation. The design utility program group currently con-
sists of two module families, Solar System Body/Surface Point Trajectory and Stellar Position.
These modules are used to produce geometric and photometric data the operator analyzes for

5. Programmer’s Hierarchical Interactive Graphics System (ANSI-Computer Graphics)
6. United States Geological Survey
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- SEQ_POINTER

Infrastructure
# Design Utility
g Observation Activity

Figure 5. SEQ_POINTER Module Family Architecture

Module Family Functional Description

Operator Interface | interactive operator and sequence file-request interface

Activity Design processes observation activities through module families
“expanding” activities to the resulting commands

Modeler calculates spacecraft/scan platform and instrument(s) events
from the commands resulting from expansion of the mission
dependent activity modules and formats the event data for output

Position | calculates celestial body and spacecraft position data from inter-
nal and operator-supplied data or external ephemeris file(s)

Project graphically depicts the observation events (footprints)

Present reads the output event data file loading a Lotus 1-2-3 spreadsheet

where charts illustrating event data can be output

Targeting Update batch sequence file processor for updating all observations in the
sequence for the latest ephemeris data

Table 1. SEQ_POINTER Infrastructure Module Family Descriptions

designing desired observations. The observation activity program group consists of the module
families for all levels of sequence components. The sequence components are expanded to com-
mands and later modeled as the events of an observation.
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The tool can be adapted to a new spacecraft because the architecture segregates the mission and
spacecraft dependencies. Adaptation is designed into the tool through function modularization
and the concept of interchangeable models. The segregation of mission and spacecraft dependen-
cies into independent and dependent module families is illustrated in Figure 6. The independent

Legend: Spacecraft Independent
# Spacecraft Dependent

Note: CDSF is the script language file

SEQ_POINTER

Spacecraft & Celestial
Body Ephemerides

Figure 6. SEQ_POINTER Module-Data Flow

module families read dependent data file(s) to incorporate mission and spacecraft information.

Iustrating interchangeable models, the dependent module families in the design utility and
observation activity groups contain both independent and dependent sections. These modules are
designed around generic drivers which call plug-in models written in C language functions. The
calling and return interfaces are defined for each model family. The model family instance con-
tains or retrieves any model-unique data necessary to calculate the return data.

For example, the interfaces for the celestial body position model family are: as input, the refer-
ence (i.e., Sun) and subject (i.e., Saturn) body identifications and the time of the position and, as
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output, the position and velocity vectors of the subject body relative to the reference body. The
interfaces are the same whether the ephemeris data is interpreted from a conic element set, NAIF
ephemeris data, or Navigation Team data. Each model instance gathers the data necessary to
define the vector set at the input time. For the conic element model, it calculates the vector set
from the conic element set and the necessary celestial body constants. For the NAIF or Navigation
models, it interpolates the vector set using the ephemeris file readers.

ADAPTATION

Adaptation of SEQ_POINTER for a mission and spacecraft is performed manually. An adaptation
utility program provided by another AMMOS tool is planned to be updated, enhanced, and deliv-
ered in the future. The following adaptation steps are performed after capability definition to cre-
ate the mission and spacecraft module suite for the mission specific version of the tool:

1) identification of thé necessary models and modules for the mission to be adapted,

2) identification of which existing mission independent models in the model families library sat-
isfactorily provide the necessary capabilities,

3) modification of existing mission independent models in the model families library which must
be altered to provide the necessary capabilities,

4) design and creation of new models which must be added to complete provision of the neces-
sary capabilities,

5) design and creation of the sequence components which define spacecraft instructions and
- translation of the components into a SEQ_POINTER specific file format (Lockfile), and

6) compilation of the mission version models and modules to create the executable module suite.

FUTURE CAPABILITIES

Enhancements to SEQ_POINTER consist of items which were not incorporated during previous
development cycles due to technological or resource inadequacies, and items which result from
evolution of the mission operations concept. The changes are taking the operations concept from a
centralized system using experienced MOS operators to a distributed system where the primary
users are scientists and their representatives.

Additions to address the changing environment include enhancements to make the tool more
usable by a broader user population and closer association with the spacecraft flight software
operation algorithms. Development of a user interface which provides direct graphical manipula-
tion of observation events which are reverse-translated into spacecraft instructions has been pro-
posed. One delayed capability would allow observation design with an irregularly shaped celestial
body (e.g., asteroid). A new body surface family model would be developed to access a celestial
body digital terrain map for instrument footprint calculations. Also, a new PHIGS data structure
translation utility would be included which reads the digital terrain map and produces the data that
is used to graphically depict the celestial body with the observation instrument footprint events.
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ABSTRACT

CHIMES is a critiquing tool that automates the
process of checking graphical user interface (GUI)
designs for compliance with human factors design
guidelines and toolkit style guides. The current
prototype identifies instances of non-compliance
and presents problem statements, advice, and tips
to the GUI designer. Changes requested by the
designer are made automatically, and the revised
GUI is re-evaluated. A case study conducted at
NASA-Goddard showed that CHIMES has the po-
tential for dramatically reducing the time formerly
' spent in hands-on consistency checking. Capabili-
ties recently added to CHIMES include exception
handling and rule building. CHIMES is intended
for use prior to usability testing as a means, for
example, of catching and correcting syntactic in-
consistencies in a large user interface.

1. INTRODUCTION

With continuing support from the National Aero-
nautics and Space Administration (NASA, Code
0), the evolution of the CHIMES methodology
and toolset has taken place in a series of research
and prototyping cycles. The goal has always been
to improve the usability of user interfaces devel-
oped at the NASA-Goddard Space Flight Center
(GSFC) by providing user-interface designers with

an automated design-evaluation capability. Re-

cent prototypes have focused on implementing the
CHIMES concept of knowledge-based compliance
checking.

*For further information contact: Walter
F. Truszkowski, Code 522.3, NASA-Goddard Space Flight
Center, Greenbelt, MD 20771 U.S.A. (301)286-8821, FAX:
(301)286-1768, Email: truszkow@kong.gsfc.nasa.gov.
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Available user-interface design software provides
designers with many useful capabilities, with the
notable exception of any capability to evaluate
the “look and feel” of a graphical user interface.
Such interfaces are often evaluated for compliance
with human factors guidelines or corporate style-
guide requirements. Evaluation is typically done
by time-consuming, manual review and usability
testing. Taking steps to speed up the evaluation
process, the present CHIMES prototype is capa-
ble of evaluating the look of single and multiple
display screens that include alphanumerics, color,
and graphics. The full CHIMES concept encom-
passes rule-based evaluation of user-interface be-
havior.

CHIMES is intended for use by GUI designers
prior to formal usability testing, as a means of
cleaning up a GUI and improving consistency from
screen to screen. Rules in the knowledge base cri-
tique the design, and an advice generator offers
advice, warnings, and tips to the designer. Ex-
plication of the CHIMES knowledge base and cri-
tiquing process is the primary purpose of this pa-
per.

2. OVERVIEW OF CHIMES DATA FLOW

Figure 1 provides a conceptual overview of the
flow of data during a CHIMES evaluation. Mov-
ing from left to right on the figure, the resource

- file representing a GUI design is acquired by

CHIMES and transformed into an intermediate
representation, which is transferred to the knowl-
edge base. The acquired GUI design is then sub-
mitted to analysis and evaluation by the user- se-
lected rule set. Products of the analysis include
problem statements ( “critiques”), advice, and sug-
gested modifications. User-selected modifications
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are made automatically by CHIMES and sent to
the knowledge base for re-evaluation. The re-
source file representing the GUI design is also au-
tomatically updated.

The remainder of the paper focuses on the con-
tents of the knowledge base, describes the cri-
tiquing process, presents a case study, and dis-
cusses plans for enhancing CHIMES.

3. KNOWLEDGE BASE

The knowledge base stores a representation of the
design to be evaluated as well as the rules that
encode the heuristics for design evaluation. Each
rule in the CHIMES knowledge base can be con-
sidered a critic[1]. Key components of the knowl-
edge base include the qualitative and quantitative
heuristics for evaluating the graphical design and
use of color in a single display screen and, for mul-
tiple panels, heuristics on design consistency. The
knowledge base is implemented in CLIPS[2].

Graphical Display Heuristics. CHIMES
uses guidelines from the OSF/Motif' Level One
Certification Checklist[8] and from the human fac-
tors literature to evaluate the “look” of single and
multiple display panels. The CHIMES approach
allows compliance checking of requirements and
guidelines not included in the OSF/Motif defaults.
For example, the number of type sizes and number
of fonts per screen, as well as text justification and
use of highlighting, can be checked for compliance
with human factors recommendations.

Color Heuristics. The key human factors recom-
mendation on color is that it should be used
for functional purposes, not simply to decorate
the screen. Functional purposes include attract-
ing attention to critical data objects, commu-
nicating organization, indicating status, and es-
tablishing relationships between distant items[6].
To assist GUI designers in the effective use of
color, CHIMES not only suggests appropriate
colors but also incorporates its suggestions with
the designer’s functional purposes for using color
and provides remedies for misuse of color.

Color heuristics implemented in the most recent
prototype permit CHIMES to evaluate the consis-
tency of color usage across multiple panels. The
tool checks the consistency of both foreground and

1 Motif is a trademark of the Open Software Foundation,
Inc.

925

background colors; offers alternatives to the origi-
nal color combination; allows the designer to pre-
view different color combinations; and permits au-
tomatic modification of colors when the user fin-
ishes making changes.

The following are a few of the color heuristics ap-
plied in a CHIMES evaluation[5):

o Pale foreground colors should not be’
used on a very bright saturated green
background because of the resulting very
low contrast.

e The same background color should be
used for both a panel and its items un-
less there is a functional, user-task re-
lated reason for using different colors.

e Some background colors are not recom-
mended for use with certain foreground
colors because of the resulting color in-
terference.

These heuristics are implemented in dozens of
highly specific rules. Once the detected colors have
been evaluated, CHIMES gives specific advice to
improve color contrast and legibility.

Consistency-Checking Heuristics. Consistency is

one of the primary human factors principles of
screen design. Consistency of object location and
screen behavior supports the end user’s develop-
ment of expectations about where to find common
controls and of how the GUI will respond to user
input. In general, an interface that reliably meets
end-user expectations supports more efficient hu-
man performance as compared to an interface that
violates end-user expectations.

As a basis for checking the internal design consis-
tency of multiple panels or screens, the CHIMES
knowledge base contains a set of rules on which
there is general agreement in the human factors
literature. 'When departures from consistency
are warranted in the context of user’s tasks[3],
CHIMES is capable of handling exceptions.

The following are a few of the consistency-checking
heuristics implemented in the CHIMES knowledge
base[5]:

o The typographic elements of data items
which serve the same type of function in
a design are consistent within and across
panels, unless there is a functional or



user-task related reason for using differ-
ent typographic elements.

e The background color of panels in a de-
sign is consistent across panels, unless
there is a functional or user-task related
reason for using different colors.

e The shadowing of pushbuttons is con-
sistent within and across panels unless
there is a functional or user-task re-
lated reason for using different shadow-
ing thicknesses.

Although checking the consistency of location of
displayed objects presents difficult technical prob-
lems, CHIMES is capable of checking the place-
ment of the menubar. The current criterion for
menubar placement is that recommended by the
OSF /Motif guidelines[8]: “at the top edge of the
application, just below the title area of the window
frame.” In the full CHIMES concept, other GUI
style guides can be encoded as sets of rules in the
knowledge base and applied upon user selection.

4. CRITIQUING PROCESS

The CHIMES heuristics are represented as CLIPS
rules. A CLIPS rule has two parts: a conditional
part and an action part. The conditional part de-
scribes the CLIPS data-memory configuration for
which the rule is appropriate. (The GUI design to
be evaluated is represented as facts in the CLIPS
data memory.) The action part of a rule specifies
the instructions to be executed when the condi-
tional part of the rule is satisfied.

The CLIPS inference engine is the executor that
determines which heuristics should be used by se-
lecting and then executing the appropriate rule.
Three steps are involved in selecting and executing
rules: 1) match rules; 2) select-rules; and 3) exe-
cute rules. In the first step, match-rules, the infer-
ence engine finds all of the rules that are satisfied
by the current contents of data memory according
to the inference engine’s comparison algorithms.
The matched rules are potential candidates for
execution. The second step, select-rules, applies
some selection strategy to determine which rules
will actually be executed. The last step, execute-
rules, fires the rules previously selected.

Using the CLIPS inference engine and represent-
ing the GUI design as CLIPS facts allows the rep-
resentation of heuristics as rules to match specific
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design patterns. For example, the rule “check-
background-color-accord-pnl” represents a way to
check item background inconsistency. Once the
heuristics are modeled as rules, the CLIPS infer-
ence engine uses the rules to critique the GUI de-
sign that has been acquired by CHIMES.

4. CASE STUDY

As a preliminary test of CHIMES’ ability to de-
tect human factors problems in a user-interface
design, we applied CHIMES to a real- world soft-
ware application known as the Request Oriented
Scheduling Engine (ROSE). Developed by NASA-
Goddard, ROSE was designed to meet the needs
of mission planners and spacecraft operators in a
satellite ground-control environment[10].

The evaluation of the ROSE user interface was
designed to meet two goals: 1) to identify human
factors issues in need of resolution by the ROSE
developers; and 2) to study how CHIMES can as-
sist a GUI designer in catching and correcting hu-
man factors problems. For comparative purposes.
we conducted both a CHIMES evaluation and a
heuristic (manual) evaluation[4].

CHIMES Evaluation of the ROSE User Interface.
The CHIMES evaluation took less than 10 minutes
and detected three problems related to the use of
fonts and typographic elements. ROSE used more
than the three fonts permitted by a conservative
rule in the CHIMES knowledge base. Contrary
to the convention of using normal style fonts for
menu options, ROSE used an italic font for op-
tions in pull-down menus. This use of italics made
ROSE inconsistent with other OSF/Motif applica-
tions. CHIMES also detected typographic incon-
sistencies across widgets in ROSE. Several labels
for the same kind of button had been implemented
in mixed case, while others were in all upper case.

Heuristic Evaluation of the ROSE User Interface
Three evaluators conducted the heuristic evalu-
ation. (Two were human factors professionals
who specialize in user-interface design; the third
was an experienced designer of GUls.) They
spent a total of 12 person hours reviewing the
ROSE documentation and on-line demonstrations.
The heuristic evaluation found additional prob-
lems that CHIMES was not able to detect because
of current limitations in its knowledge base.

To detect some of the problems found by the eval-
uators, CHIMES would need knowledge of user-



interface behavior. For example, any attempt to
access the ROSE help facility caused the system
to crash because this facility had not yet been
implemented, although a help icon was displayed
on some screens. CHIMES did not detect this
problem because its current knowledge base en-
compasses only the look, but not the behavior of
buttons. The full CHIMES concept includes eval-
uation of user-interface behavior.

The human evaluators found problems in screen
layout that CHIMES was not able to detect.
In some instances, interface elements were not
grouped to aid the user’s understanding of their
interrelationships. Further, the heuristic evalua-
tion found that certain panel overlays obscured
useful information. To detect problems of this
kind, CHIMES would need semantic capabilities
beyond its current scope. For example, CHIMES
would need knowledge of user goals and informa-
tion requirements in order to suggest alternative
layouts.

A particularly difficult issue for an automated
evaluation is the absence of information that
should be, but is not, displayed. For example,
the human evaluators noted a general lack of user
guidance (i.e., instructions displayed on the screen
to aid the user in navigating through the ROSE
user interface). Fairly sophisticated capabilities
would be needed for CHIMES to detect the ab-
sence of user guidance or other missing informa-
tion.

Similarly, advanced semantic capabilities would
be needed to detect redundant information. The
heuristic evaluation found, for example, a redun-
dancy in panel titles, and the evaluator recom-
mended simplifying the user interface by removing
the redundancy.

Problems of appropriate widget selection, iden-
tified by a human evaluator, pose a significant
challenge to CHIMES or any automated user-
interface evaluation tool. For example, five pull-
down menus were lined up horizontally to perform
a task that should be performed by a menubar.
Although CHIMES can detect the misplacement
of a menubar, it cannot currently assess the ap-
propriateness of the widgets selected by the user-
interface designer.

As highlighted in the case study, the capabilities
and limitations of CHIMES make it a useful tool
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to aid the user-interface designer, but not one
that will replace usability testing. In the realm
of user-interface syntax, CHIMES can reliably de-
tect both inconsistent design elements and non-
compliance with style guidelines. With syntactic
issues cleared up prior to usability testing, such
testing can then concentrate on semantic issues
that affect end-user performance and satisfaction.

5. CURRENT AND FUTURE DIRECTIONS

The existing CHIMES prototype reads and evalu-
ates GUIs created in TAE Plus[9]. Although TAE
Plus supports CHIMES development, it limits the
designs that CHIMES can evaluate. To make
CHIMES a useful tool to GUI designers who do
not use TAE Plus, we are developing an interface
to OSF/Motif’s user interface language (UIL)[7],
which will allow CHIMES to evaluate any Motif-
based design.

We are also currently developing a capability to
allow CHIMES users to customize the knowledge
base. We have demonstrated that CHIMES can
work with a knowledge base containing several sets
of rules. Switching from one set of rules to another
does not require recompiling. Further, we have
demonstrated that a rule can be modified through
the CHIMES user interface and that the modified
rule can be sent back to the knowledge base for
execution. Now we are developing a capability to
allow CHIMES users to set up new guidelines by
customizing existing guidelines. A new guideline
can later be loaded into the CHIMES knowledge
base for evaluating GUI designs.

Other plans for the future call for research into
possible uses for CHIMES as an intelligent agent
and for experimental evaluation of the effects of
CHIMES capabilities on the performance of user-
interface designers.
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ABSTRACT

A key component of JPL’s strategy to make
space missions faster, better and cheaper is
the Advanced Multi-Mission Operations Sys-
tem (AMMOS), a ground software intensive
system currently in use and in further develop-
ment. AMMOS intends to eliminate the cost of
re-engineering a ground system for each new
JPL mission. This paper discusses SEQ_RE-
VIEW, a component of AMMOS that was
designed to facilitate and automate the task of
reviewing and checking spacecratt
sequences.

SEQ_REVIEW is a smart browser for inspect-
ing files created by other sequence generation
tools in the AMMOS system. It can parse
sequence-related files according to a com-
puter-readable version of a “Software Inter-
face Specification” (SIS), which is a standard
document for defining file formats. It lets users
display one or several linked files and check
simple constraints using a Basic-like “Little
Language”.

SEQ_REVIEW represents the first application
of the Quality Function Deployment (QFD)
method to sequence software development at
JPL. The paper will show how the require-
ments for SEQ_REVIEW were defined and
converted into a design based on object-ori-
ented principles. The process starts with inter-
views of potential users, a small but diverse
group that spans multiple disciplines and “cul-
tures”. It continues with the development of
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QFD matrices that relate product functions
and characteristics to user-demanded quali-
ties. These matrices are then turned into a for-
mal Software Requirements Document (SRD).
The process concludes with the design phase,
in which the CRC (Class, Responsibility, Col-
laboration) approach was used to convert
requirements into a blueprint for the final prod-
uct.

THE UPLINK PROCESS

The multi-mission environment in which
SEQ_REVIEW is intended to operate is fairly
complex. This Section introduces the basic
elements of the uplink process and explains
where SEQ_REVIEW fits in that process.

Sequence Generation

The ultimate goal of the uplink process is to
allow ground operations personnel to control
the spacecraft by sending it radio signals that
the spacecraft can receive, decode and store
in its memory. The decoded information usu-
ally consists of commands that are to be exe-
cuted in a precise sequence at specified
times. We will refer to these commands as
“spacecraft commands®, and to a set of such
commands sent to the spacecratft as a whole
as an “on-board sequence”.

Much of the uplink process is concerned with
the planning, generation and verification of on-
board sequences. This process can involve
many people: mission scientists interested in
planetary data request new observations;



engineers concerned about the capability,
health and safety of the spacecraft issue
maintenance requests; mission planners try to
accommodate requests into a realistic sched-
ule; sequence engineers translate high-level
requests into detailed instructions that will
cause the spacecraft to perform the required
tasks; and finally, the flight team must check
the detailed sequence against all flight rules,
possibly including rules that were added at the

last minute to compensate for equipment not

operating at specification or software bugs
aboard the spacecratt.

Analogy with Programming

The process just described resembles that of
generating executable code for an ordinary
computer, an analogy that will be used exten-
sively in this paper. The spacecraft and its
sequence are analogous to a microprocessor
and its machine instructions. The process of
planning and generating a sequence is similar
to the task of designing and implementing
software. Just as software engineers would
find it impossible to do their job using machine
code, sequence engineers find it useful to
work not with the on-board sequence itself,
but with a human-readable version of it that is
similar to an assembly language program.

Of course our analogy between a spacecraft
and a microprocessor is not perfect. Modern
spacecraft have considerable processing
power at their disposal, so that spacecraft
commands are usually much more complex
than typical microprocessor instructions. This
complexity is reflected in the large number of
arguments required by many commands. In
spite of this, the analogy between spacecraft
commands and assembly code remains valid
in the sense that spacecraft commands are
expressed in a special-purpose language that
is hard to understand unless one is familiar
with the architecture of the spacecratt.

Translating Requests into Commands:
SEQ_GEN

Programming efficiency can be increased dra-
matically when using a high-level language
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instead of assembly code. The tool that makes
this possible is the compiler, which translates
high-level code into assembly code.
Sequence engineers also find that program-
ming sequences directly is prohibitively diffi-
cult, and that time can be saved by expressing
commands as high-level “Requests” instead of
low-level “Commands”. Something similar to a
compiler is now needed to translate the former
into the latter. In the AMMOS system, this role
is assumed by SEQ_GEN, a program that
expands requests into sequences of com-
mands. The figure on the following page
shows the similarities between the conven-
tional code development process and the
uplink process.

Since SEQ_GEN is a multi-mission tool, it
must obtain mission-specific information from
external files. This is unlike most compilers,
which are hard-coded around the syntax of a
specific language. A second difference with
compilers is that SEQ_GEN defines and main-
tains an internal model of the spacecraft. The
mission-specific files required by SEQ_GEN
therefore need to describe the spacecratft
model as well as the basic commands and
their effect on the model. Other mission-spe-
cific files used by SEQ_GEN define high-level
“activity types”, which are analogous to sub-
routines, and flight rules, which are formulated
in terms of the spacecraft model (see Ref. 1
for more details on the operation of SEQ_-
GEN).

SEQ_GEN generates two basic output files.
The first file is the Spacecraft Sequence File,
which is an ASCII representation of the actual
on-board sequence. This file is an input to
another program, SEQ_TRAN, which converts
ASCII mnemonics into binary code, links the
program, and performs necessary memory
management and packetization tasks. The
second file is the Predicted Event File (PEF),
which shows in time-ordered fashion the com-
plete sequence of commands, ground events,
and optionally the status of the internal space-
craft model that is predicted to result from the
Request File. In the following, we focus on the
PEF.
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