

////It4
3 5 3 933

NASA Conference Publication 3281

Third Internationa
Symposium on Space
ssion Operations and
Ground Data Systems

-

Part 2

Edited by
James L. Rash

NASA Goddard Space Flight Center
Greenbelt, Maryland

Proceedings of a conference held at
Greenbelt Marriott Hotel

Greenbelt, Maryland, USA
November 15- 18, 1994

National Aeronautics
and Space Administration

Goddard Space Flight Center
Greenbelt, Maryland 20771

This publication is available from the NASA Center for Aerospace Information,
800 Elkridge Landing Road, Linthicum Heights, MD 21090-2934, (301) 621-0390.

EXECUTIVE SUMMARY

The Third International Symposium on Space Mission Operations and
Ground Data Systems (SpaceOps 94) is being held November 14-18,1994, in
Greenbelt Maryland, USA, and is hosted by the NASA Goddard Space Flight
Center. More than 400 people from nine countries are attending. This
symposium follows the Second International Symposium that was hosted by the
Jet Propulsion Laboratory in Pasadena, California, during November 1992. The
First International Symposium on Ground Data Systems for Spacecraft Control,
conducted in June 1990, was sponsored by the European Space Agency and the
European Space Operations Centre.

The theme of this Third International Symposium is "Opportunities in
ground data systems for high efficiency operations of space missions".
Accordingly, the Symposium features more than 150 oral presentations in five
technical tracks:

Mission Management

@ Operations

Data Management

Systems Engineering

Systems Development

These five tracks are subdivided into over 50 sessions, each containing three
presentations. The presentations focus on improvements in the efficiency,
effectiveness, productivity, and quality of data acquisition, ground systems, and
mission operations. New technology, techniques, methods, and human systems are
discussed. Accomplishments are also reported in the application of information
systems to improve data retrieval, reporting, and archiving; the management of
human factors; the use of telescience and teleoperations; and the design and
implementation of logistics support for mission operations.

We welcome you to SpaceOps 94! The Goddard Space Flight Center is pleased
to host and sponsor our biennial symposium this year. We intend to maintain the
same high standards set by our predecessors--the Jet Propulsion Laboratory in 1992,
and the European Space Agency with the European Space Operations Centre in 1990.

Like other participating organizations, we benefit from the shared knowledge
and combined experiences that are topics of discussion at the SpaceOps 94
symposium. Best of all, we benefit from seeing each other face-to-face and having
the opportunity to discuss in person technical issues of mutual, often compelling
interest. ,

The large number of papers submitted to the SpaceOps 94 committee for
acceptance and the projected attendance of over 400 of our colleagues should mean
we are in for another splendid symposium this year. We believe these numbers
mean that biennial meetings of our international space mission operations
community are needed and are viewed as productive.

During the four days of our Symposium, more than 400 people from nine
countries will hear more than 150 papers presented, as well as keynote, plenary, and
panel talks by individuals from throughout the world. The papers in this
proceedings document describe a wide range of ideas and experiences in our field
that are developed from the perspectives of international space programs and their
supporting industries.

Our review of the papers indicates that future space mission operations will be
strongly influenced by the following kinds of challenges and objectives:

* Empowering operators to perform at higher intellectual levels by the
increased use of artificial intelligence

* Standardizing protocols, formats, databases, and operations to enable
simultaneous and economical support of multiple missions
Dealing with the science data avalanche
Converting yesterday's and today's mission experiences into the "corporate
knowledge" databases of tomorrow
Sharing national resources in cooperative space ventures.

We wish you a rewarding week. We also wish for, and look forward to, greater
interaction between our people and our countries--not just a t our symposia, but in
our everyday working world as we learn to achieve increasingly successfid and
~roductive space mission programs.

' Dale L. Fahnestock
bid&uA Donald D. Wilson

General Chair Executive Committee Chair

PREFACE
I would like to acknowledge the fine support of Laura Capella, Todd Del

Priore, and April Johnson in the preparation of the manuscript for this document,
which included entering data and creating FileMaker Pro scripts on the Macintosh
computer to produce the the table of contents and author index.

If you have Internet access, I invite you to navigate to the NASA "Hot Topics"
page using URL address http:l/hypatia.gsfc.nasa.gov/NASAAhomepage.html.
Possibly, using this path, you already may have accessed the World Wide Web
information pages on SpaceOps 94, and we solicit your comments on what you find
there. It is reasonable to assume that the call for papers and other information on
the next SpaceOps (in 1996) will be similarly accessible a few months in advance.
Please inform potentially interested colleagues regarding this information resource.

CJjimes L. Rash/NASA/GSFC
Editor
Publications Committee Chair

Dale L. Fahnestock
General Chair

J. Michael Moore
Paper Selection

Roberta A. Valonis
Publicity and Technical
Tours

Sajjad H. Durrani
Technical Program
Support

Donald D. Wilson Peter M. Hughes
Executive Committee Chair Technical Program

James L. Rash Jessica N. Katz
Publications Logistics and Registration

Michael R. Bracken Lori M. Keehan
Exhi bitions and Demonstrations and
Industry Liaison Industry Liaison

Richard V. Nguyen Roger E. Wye
Technical Program Technical Program
Support Support

Charles F. Fuechsel Herwig Laue
Co-Chair Co-Chair

NASA /HQ ESNESOC

TABLE OF CONTENTS

1. Communications Page 1

DM.1.a Telecommunications End-to-End Systems Monitoring on
TOPEX/Poseidon: Tools and Techniques

Bruno J. Calanche

DM.1.b Communication Network for Decentralized Remote Tele-Science 11-20
During the Spacelab Mission IML-2

Uwe Christ, Klaus-Jiirgen Schulz, Marco Incollingo

DM.1.c Earth Observing System (EOS) Communication (Ecom)
Modeling, Analysis, and Testbed (EMAT) Activity

Vishal Desai

DM.1.d * S-Band and Ku-Band Return. Service Interference Between 29-40
TDRSS Users

Linda Harrell

DM.1.e * Attempt of Automated Space Network Operations a t ETS-VI 41-47
Experimental Data Relay System

Kiyoomi Ishihara, Masayuki Sugawara

DM.1.f * Table-Driven Configuration and Formatting of Telemetry Data 49-56
in the Deep Space Network

Evan Manning

DM.1.g End-To-End Communication Test on Variable Length Packet 57-64
Structures Utilizing AOS Testbed

W. H. Miller, V. Sank, W. Fong, J. Miko, M. Powers, J. Folk,
B. Conaway, K. Michael, P.-S. Yeh

DM.1.h Demand Access Communications for TDRSS Users
David J. Zillig, Aaron Weinberg, Robert McOmber

DM.1.i The GRO Remote Terminal System
David J. Zillig, Joe Valvano

2. Data Handling Pace 83

DM.2.a Overview on METEOSAT Geometrical Image Data Processing 85-93
Frank J. Diekmann

DM.2.b * UARS CDHF Conversion to DEC AXP Platform
Stuart Frye

DM.2.c Use of a Multimission System for Cost Effective 'Support of 97-103
Planetary Science Data Processing

William B. Green

* Presented i n Poster Session

PACE R A M M T mMm

DM.2.d A Second Generation 50 Mbps VLSI Level Zero Processing 105-115
System Prototype

Jonathan C. Harris, Jeff Shi, Nick Speciale, Toby Bennett

DM.2.e A Corporate Memory for the GSFC Mission Operations Division 117
Beryl Hosack

DM.2.f * Fast Computational Scheme of Image Compression for 32-bit 119-123
Microprocessors

Leonid Kasperovich

DM.2.g The Development and Operation of the International 125-132
Solar-Terrestrial Physics Central Data Handling Facility

Kenneth Lehtonen

DM.2.h Economical Ground Data Delivery 133-138
Richard W. Markley, Russell H. Byrne, Daniel E. Bromberg

DM.2.i NASA Johnson Space Center Life Sciences Data System 139-147
Hasan Rahman, Jeffery Cardenas

DM.2.j A Processing Centre for the CNES CE-GPS Experimentation 149-154
Norbert Suard, Jean-Claude Durand

DM.2.k Single Stage Rocket Technology's Real Time Data System 155-161
Steven D. Voglewede .

DM.2.1 International Data Transfer for Space Very Long Baseline 169-175
Interferometry

Alexandria B. Wiercigroch

DM.2.m ARACHNID: A Prototype Object-Oriented Database Tool for 177-183
Distributed Systems

Herbert Younger, John O'Reilly, Bjorn Frogner

3.Telemetry Processing Page 185

DM.3.a A Low-Cost Transportable Ground Station for Capture and 187-195
Processing of Direct Broadcast EOS Satellite Data

Don Davis, Toby Bennett, Nicholas M. Short, Jr.

DM.3.b Applications of Massively Parallel Computers in Telemetry 197-204
Processing

Tarek A. El-Ghazawi, J im Pritchard, Gordon Knoble

DM.3.c Test Telemetry and Command System (TTACS) 205-215
Alvin J. Fogel

DM.3.d Ground Equipment for the Support of Packet Telemetry and 213-224
Telecommand

Wolfgang Hell

* Presented in Poster Session

xii

DM.3.e Process and Methodology of Developing Cassini G&C Telemetry 225-232
Dictionary

Edwin P. Kan

DM.3.f Multimission Telemetry Visualization (MTV) System:
A Mission Applications Project From JPL's Multimedia
Communications Laboratory

Ernest Koeberlein, III, Shaw Exum Pender

DM.3.g VLSI Technology for Smaller, Cheaper, Faster Return Link 241-248
Systems

Kathy Nanzetta, Parminder Ghuman, Toby Bennett, Jeff
Solomon, Jason Dowling, John Welling

DM.3.h Telemetry Distribution and Processing for the Second German 249-256
Spacelab Mission D-2

E. Rabenau, W. Kruse

DM.3.i Lessons Learned Supporting Onboard Solid-state Recorders 257-264
Jeff Shi, Tony Mao, T im Clotworthy, Gerald Grebowsky

DM.3.j Experience With the EURECA Packet Telemetry and Packet 265-272
Telecommand System

Erik Mose S~rensen, Paolo Ferri

DM.3.k A Modular, Software Reprogrammable, Telemetry Preprocessor 273
for Open Systems Backplane Architectures

Steve Talabac

1. Mission Planning Page 275

MM.1.a JPL Operations Cost Model for Flight Projects
John Carraway

MM.1.b Galileo Mission Planning for Low Gain Antenna Based 279-286
Operations

R. Gershman, K. L. Buxbaum, J. M. Ludwinski, B. G.
Paczkowski

MM.1.c A Distributed Planning Concept for Space Station Payload 287-294
Operations

Jeff Hagopian, Theresa Maxwell, Tracey Reed

MM.1.d Mission Planning for Space-Based Satellite Surveillance 295-303
Experiments With the MSX

R. Sridharan, T. Fishman, E. Robinson, H. Viggh, A.
W' zseman

MM. 1.e Engineering Ulysses Extended Mission
Shaun Standley

MM.1.f Accuracy Analysis of TDRSS Demand Forecasts
Daniel C. Stern, Allen J. Levine, Karl J. Pitt

* Presented in Poster Session

xiii

MM.1.g Joint Operations Planning for Space Surveillance Missions on 319-326
the MSX Satellite

Grant Stokes, Andrew Good

MM.1.h Multi-Mission Operations From the Headquarters Perspective 32'
Guenter Strobe1

MM.1.i International Mission Planning for Space Very Long Baseline 329-334
Interferometry

James S . Ulvestad

2. Operations Planning Page 337

Geostationary Satellite Positioning by DLWGSOC Operations
and Management Methods

Peter Brittinger

Magellan Project: Evolving Enhanced Operations Efficiency to
Maximize Science Value

Allan R. Cheuvront, James C. Neuman, J. Franklin
McKinney

Grand Mission Versus Small Ops Team: Can We Have Both?
Raril Garcia-Pe'rez

The Role of Mission Operations in Spacecraft Integration and
Test

Raymond J. Harvey

Payload Operations Management of a Planned European
SL-Mission Employing Establishments of ESA and National
Agencies

Rolf Joensson, Karl L. Mueller

Evaluating Space Network (SN) Scheduling Operations
Concepts Through Statistical Analysis

Carl Kwadrat, Nadine Happell

SPOT4 Management Centre
Yves Labrune, X. Labbe, A. Roussel, P. Vielcanet

Costs Optimization for Operations Concepts of Small Satellite
Missions

Jean-Michel Oberto

Nickel Cadmium Battery Operations and Performance
Gopalakrishna Rao, Jill Prettyman-Lukoschek, Richard
Calvin, Thomas Berry, Robert Bote, Mark Toft

Mission Operations Management
David A. Rocco

* Presented in Poster Session

xiv

MM.2.k GRTS Operations MonitorIControl System
Richard A. Rohrer

MM.2.1 International Space Station Alpha User Payload Operations 425-433
Concept

Ronald A. Schlagheck, Elaine F. Duncan, William B. Crysel,
James W. Rider

MM.2.m Shared Mission Operations Concept 435-442
Gary L. Spradlin, Richard P. Rudd, Susan H. Linick

MM.2.n Mars Pathfinder Mission Operations Concepts 443-450
Francis M. Sturms, Jr., William C. Dias, Albert Y. Nakata,
Wallace S. Tai

3. Planning Tools Page 451

MM.3.a Towards a New Generation of Mission Planning Systems: 453-460
Flexibility & Performance

A. Gasquet, Y. Parrod, A. De Saint Vincent

MM.3.b Generic Mission Planning and Scheduling: The AXAF Solution 461-466
0. T. Guffin, M. Newhouse

MM.3.c * A PC Based Tool for Mission Plan Production 467-47 1
Jean-Pierre Joli, C. Yven

MM.3.d Towards a Class Library for Mission Planning 473-480
Olivier Pujo, Simon T. Smith, Paul Starkey, Thilo Wol f

MM.3.e Autonomous Mission Planning and Scheduling - Innovative, 481-488
Integrated, Responsive

Charisse Sary, Simon Liu, Larry Hull, Randy Davis

MM.3.f * A Mission Planning Concept and Mission Planning System for 489-497
Future Manned Space Missions

Martin Wickler

1. Automation Page 499

OP. 1.a Operations Automation 501-505
Charles Thomas Boreham

0P.l .b X-Analyst, A Generic Tool for Automatic Flight Data Analysis 507
and Spacecraft Performance Assessment

Jean-Marc Brenot

0P.l .c Production and Quality Assurance Automation in the Goddard 509-516
Space Flight Center Flight Dynamics Facility

K. B. Chapman, C. M. Cox, C. W. Thomas, 0. 0. Cuevas, R.
M. Beckman

* Presented in Poster Session

0P.l .d Graphic Server: A Real Time System for Displaying and 517-52:
Monitoring Telemetry Data of Several Satellites

Stgphane Douard

0P.l.e * Advanced Technologies in the AS1 MLRO Towards a New 525-53(
Generation Laser Ranging System

Thomas Varghese, ~ i i s e p p e Bianco

0P.l.f * The Sequence of Events Generator: A Powerful Tool for Mission 531-537
Operations

Hubertus Wobbe, Armin Braun

2. Command and Control Page 539

0P.2.a Designing an Autonomous Environment for Mission Critical 541-546
Operation of the EUVE Satellite

Annadiana Abedini, Roger F. Malina

0P.2.b Increases in Efficiency and Enhancements to the Mars
Observer Non-stored Commanding Process

Robert N. Brooks Jr., J. Leigh Torgerson

OP.2.c SCL: An Off-The-Shelf System for Spacecraft Control
Brian Buckley, James Van Gaasbeck

0P.2.d Mission Operations Data Analysis Tools for Mars Observer 569-57(
Guidance and Control

Edwin P. Kan

0P.2.e Generic Trending and Analysis System
Lori Keehan, Jay Reese

0P.2.f * A Graphic System for Telemetry Monitoring and Procedure 583-59i
Performing a t the TELECOM S.C.C.

Jean Philippe Loubeyre

0P.2.g Small Scale Sequence Automation Pays Big Dividends 591-59'
Bill Nelson

0P.2.h Safety Aspects of Spacecraft Commanding
N. Peccia

OP.2.i The Development and Validation of Command Schedules for 607-61~
SeaWiFS

Robert H. Woodward, Watson W. Gregg, Frederick S. Patt

* Presented in Poster Session

3. Control Centers Page 615

Towards Cheaper Control Centers
Lionel Baize

The SILEX Experiment System Operations
B. Demelenne

EURECA Mission Control Experience and Messages for the
Future

H. Hiibner, P. Ferri, W. Wimmer

SCOS 11: ESA's New Generation of Mission Control System
M. Jones, N. C. Head, K. Keyte, P. Howard, S . Lynenskjold

CCS-MIP: Low Cost Customizable Control Centre
Christian Labezin, Pierre Vielcanet

The IUE Science Operations Ground System
Ronald E. Pitts, Richard Arquilla

Efficient Mission Control for the 48-Satellite Globalstar
Constellation

Dan Smi th

Mini All-Purpose Satellite Control Center (MASCC)
Ge'rard Zaouche

4. Expert Systems Page 679

0P.4.a Delivering Spacecraft Control Centers With Embedded 681-688
Knowledge-Based Systems: The Methodology Issue

S. Ayache, M. Haziza, D. Cayrac

0P.4.b SCOSII OL: A Dedicated Language for Mission Operations 689-696
Andrea Baldi, Dennis Elgaard, Steen Lynenskjold, Mauro
Pecchioli

OP.4.c D W S Revisited: Taming the Variety of Knowledge in Fault 697-706
Diagnosis Expert Systems

M. Haziza, S . Ayache, J.-M. Brenot, D. Cayrac, D.-P. Vo

0P.4.d Using Graphics and Expert System Technologies to Support 707-712
Satellite Monitoring a t the NASA Goddard Space Flight Center

Peter M. Hughes, Gregory W. Shirah, Edward C. Luczak

0P.4.e Development and Use of an Operational Procedure Information 713-717
System (OPIS) for Future Space Missions

N. Illmer, L. Mies, A. Schon, A. Jain

* Presented in Poster Session

0P.4.f SCOSII: ESA's New Generation of Mission Control Systems: 7 19-725
The User's Perspective

P. Kaufeler, M. Pecchioli, I. Shurmer

0P.4.g * An Object Model for Multi-Mission Command Management 727
System

Jon Kuntz

0P.4.h A Software Architecture for Automating Operations Processes 729-734
Kevin J. Miller

OP.4.i Spacecraft Command and Control Using Expert Systems 735-740
Scott Norcross, William H. Grieser

OP.4.j SEQ-GEN: A Comprehensive Multimission Sequencing System 741-748
Jose Salcedo, Thomas Starbird

0P.4.k * The PACOR I1 Expert System: A Case-Based Reasoning 749-756
Approach to Troubleshooting

Charisse Sary

OP.4.1 An Intelligent Automated Command and Control System for 757-763
Spacecraft Mission Operations

A. William Stoffel

5. Orbit Determination Page 765

0P.5.a DSN Co-Observing Operations to Support Space VLBI Missions 767-772
Valery I. Altunin, Thomas B. Kuiper, Pamela R. Wolken

0P.5.b Implementation of a Low-Cost, Commercial Orbit 773-783
Determination System

J im Corrigan

OP.5.c * Development of a Prototype Real-Time Automated Filter for 785-789
Operational Deep Space Navigation

W. C. Masters, V. M. Pollmeier

0P.5.d * Magnetometer-Only Attitude and Rate Determination for a 791-798
Gyro-less Spacecraft

G. A. Natanson, M.S. Challa, J. Deutschmann, D.F. Baker

0P.5.e * TDRS Orbit Determination by Radio Interferometry 799-806
Michael S. Pavloff

* Presented in Poster Session

6. Small Explorers Page 807

0P.6.a Cost Efficient Operations for Discovery Class Missions 809-816
G. E. Cameron, J. A. Landshof, G. W. Whitworth

0P.6.b Ground Station Support for Small Scientific Satellites 817-824
R. Holdaway, E. Dunford, P. H. McPherson

OP.6.c Design of Ground Segments for Small Satellites
Guy Mace'

0P.6.d The SAX Italian Scientific Satellite. The On-Board 837-846
Implemented Automation as a Support to the Ground Control
Capability

Andrea Martelli

0P.6.e Small Satellite Space Operations
Keith Reiss

1. Architectural Approaches Page 855
- - - - ---

SD.1.a Embedded Parallel Processing Based Ground Control Systems 857-864
for Small Satellite Telemetry

Michael L. Forman, Tushar K. Hazra, Gregory M. Troendly,
William G. Nickum

SD.1.b Open Solutions to Distributed Control in Ground Tracking 865-877
Stations

Wm. Randy Heuser

SD.1.c An Agent-Oriented Approach to Automated Mission Operations 879-887
Walt Truszkowski, Jide' Odubiyi

SD.l.d Advanced Ground Station Architecture
David Zillig, Ted Benjamin

2. Development Tools Page 897

SD.2.a Automating Testbed Documentation and Database Access 899-904
Using World Wide Web (WWW) Tools

Charles Ames, Brent Auernheimer, Young H. Lee

SD.2.b * Towards an Integral Computer Environment Supporting 905-913
System Operations Analysis and Conceptual Design

E. Barro, A. Del Bufalo, F. Rossi

SD.2.c SEQ-POINTER: Next Generation, Planetary Spacecraft Remote 915-922
Sensing Science Observation Design Tool

Jeffrey S. Boyer

* Presented in Poster Session

SD.2.d * Knowledge-Based Critiquing of Graphical User Interfaces With 923-928
CHIMES

Jianping Jiang, Elizabeth D. Murphy, Leslie E. Carter,
Walter F. Truszkowski

SD.2.e SEQ-REVIEW: A Tool for Reviewing and Checking Spacecraft 929-936
Sequences

Pierre F. Maldague, Mekki El-Boushi, Thomas J. Starbird,
Steven J. Zawacki

SD.2.f Simplifying Operations With an UplinWDownlink Integration 937-943
Toolkit

Susan Murphy, Kevin Miller, Ana Maria Guerrero, Chester
Joe, John Louie, Christine Aguilera

SD.2.g ELISA, A Demonstrator Environment for Information Systems 945-952
Architecture Design

Chantal Panem

SD.2.h Software Interface Verifier 953-96C
Tomas J. Soderstrom, Laura A. Krall, Sharon A. Hope,
Brian S. Zupke

SD.3.a OODIOOP Experience in the Science Operations Center Part of 963-97(
the Ground System for X-Ray Timing Explorer Mission

Abdur Rahim Choudhary

SD.3.b Mission Operations Development: A Structured Approach 971
Michael Fatig

SD.3.c * The Cooperative Satellite Learning Project: Space Missions
Supporting Education

Michael Fatig

SD.3.d A Proven Approach for More Effective Software Development 975-98:
and Maintenance

Rose Pajerski, Dana Hall, Craig Sinclair

SD.3.e XMM Instrument On-Board Software Maintenance Concept 985-99:
N. Peccia, F. Giannini

SD.3.f Integration of a Satellite Ground Support System Based on 993-loo(
Analysis of the Satellite Ground Support Domain

R. D. Pendley, E. J. Scheidker, D. S. Levitt, C. R. Myers, R. D.
Werking

SD.3.g * Software Process Assessment (SPA) 1001-1001
Linda H. Rosenberg, Sylvia B. Sheppard, Scott A. Butler

* Presented in Poster Session

SD.3.h * Taking Advantage of Ground Data Systems Attributes to 1009-1014
Achieve Quality Results in Testing Software

Clayton B. Sigrnan, John T. Koslosky, Barbara H. Hageman

SD.3.i SCOS I1 - An Object Oriented Software Development Approach 1015-1022
Martin Symonds, Steen Lynenskjold, Christian Miiller

4. Modeling Page 1023

Evaluating Modeling Tools for the EDOS
Gordon Knoble, Frederick McCaleb, Tanweer Aslam, Paul
Nester

Solar and Heliospheric Observatory (SOHO) Experimenters'
Operations Facility (EOF)

Eliane Larduinat, William Potter

Galileo Spacecraft Modeling for Orbital Operations
Bruce A. McLaughlin, Erik N. Nilsen

The Advanced Orbiting Systems Testbed Program: Results to
Date

John F. Otranto, Penny A. Newsome

NCCDS Performance Model
Eric Richmond, Antonio Vallone

Evaluation of NASA's End-to-End Data Systems Using DSDS+
Christopher Roufjc, William Davenport, Philip Message

Analysis of Space Network Loading
Mark Simons, Gus Larrson

Modeling ESA's TT&C Systems
Enrico Vassallo

5. Simulation Page 1091

SD.5.a A General Mission Independent Simulator (GMIS) and 1093-1100
Simulator Control Program (SCP)

Paul L. Baker, J. Michael Moore, John Rosenberger

SD.5.b A Reusable Real-Time Object Oriented Spacecraft Simulator 1101
Eric Beser

SD.5.c * Test/Score/Report: Simulation Techniques for Automating the 1103-1109
Test Process

Barbara H. Hageman, Clayton B. Sigman, John T. Koslosky

" Presented in Poster Session

SD.5.d Spacecraft Data Simulator for the Test of Level Zero Processing 1111-1120
Systems

Jeff Shi, Julie Gordon, Chandru Mirchandani, Diem
Nguyen

1. Re-engineering Page 1121

SE. 1.a Re-engineering the Multimission Command System at the Jet 1123-1 13 1
Propulsion Laboratory

Scott Alexander, Jeff Biesiadecki, Nagin Cox, Susan
Murphy, T i m Reeve

SE.1.b Re-Engineering Nascom's Network Management Architecture 1133-1141
Brian C. Drake, David Messent

SE.1.c Reengineering NASA's Space Communications to Remain 1143-1150
Viable in a Constrained Fiscal Environment

Rhoda Shaller Hornstein, Donald J. Hei, Jr., Angelita C.
Kelly, Patricia C. Lightfoot, Holland T. Bell, Izeller E.
Cureton-Snead, Wlliam J. Hurd, Charles H. Scales

SE.1.d * A System Study for Satellite Operation and Control in Next 1151-1157
Generation

K. Nakayama, T. Shigeta, T. Gotanda, K. Yamamoto, Y.
Yokokawa

2. Reusable Systems Page 1159

SE.2.a Transportable Payload Operations Control Center Reusable 1161-1169
Software: Building Blocks for Quality Ground Data Systems

Ron Mahmot, John T. Koslosky, Edward Beach, Barbara
Schwarz

SE.2.b Customizing the JPL Multimission Ground Data System: 1171-1175
Lessons Learned

Susan C. Murphy, John J. Louie, Ana Maria Guerrero,
Daniel Hurley, Dana Flora-Adams

SE.2.c Configurable Technology Development for Reusable Control 1177-1184
and Monitor Ground Systems

David R. Uhrlaub

* Presented in Poster Session

3. Standards Page 1185

A New Communication Protocol Family for a Distributed
Spacecraft Control System

Andrea Baldi, Marco Pace

Standardizing the Information Architecture for Spacecraft
Operations

C. R. Easton

A Standard Satellite Control Reference Model
Constance Golden

Standard Protocol Stack for Mission Control
Adrian J. Hooke

The Space Communications Protocol Standards Program
Alan Jeffries, Adrian J. Hooke

The ESA Standard for Telemetry & Telecommand Packet
Utilisation P.U.S.

J.-F. Kaufeler

Packet Utilisation Definitions for the ESA XMM Mission
H. R. Nye

Use of Data Description Languages in the Interchange of Data
M. Pign2de, B. Real-Planells, S. R. Smith

Cross Support Overview and Operations Concept for Future
Space Missions

William Stallings, Jean-Francois Kaufeler

The CCSDS Return All Frames Space Link Extension Service
Hans Uhrig, John Pietras, Michael Stoloff

Proposal for Implementation of CCSDS Standards for Use With
Spacecraft Engineering/Housekeeping Data

Dave Welch

4. Systems Architectures Pane 1277

SE.4.a Ground Segment Strategies and Technologies in Support of 1279
Cost Reductions

K. Debatin

SE.4.b Mission Operations Centers (MOCs): Integrating Key 1281-1288
Spacecraft Ground Data System Components

Randy Harbaugh, Donna Szakal

* Presented in Poster Session

SE.4.c ATOS: Integration of Advanced Technology Software Within 1289-1296
Distributed Spacecraft Mission Operations Systems

M. Jones, J. Wheadon, W. O'Mullane, D. Whitgift, K.
Poulter, M. Nie'zette, R. Timmermans, Ivan Rodriguez, R.
Romero

SE.4.d The NASA Mission Operations and Control Architecture 1297-1303
Program

Paul J. Ondrus, Richard D. Carper, Alan J. Jeffries

SE.4.e Renaissance Architecture for Ground Data Systems
Dorothy C. Perkins, Lawrence B. Zeigenfuss

SE.4.f Architecture of a Distributed Multimission Operations System 1317-1324
Takahiro Yamada

5. Systems Engineering Tools Page 1325

SE.5.a Re-engineering the Mission Life Cycle With ABC & IDEF 1327-1334
Daniel Mandl, Michael Rackley, Jay Karlin

SE.5.b MO&DSD Online Information Server and Global Information 1335- 1342
Repository Access

Diem Nguyen, Kam Ghaffarian, Keith Hogie, William Mackey

SE.5.c Orbital Mechanics Processing in a Distributed Computing 1343
Environment

Randolph Nicklas

SE.5.d The Requirements Generation System: A Tool for Managing 1345-1351
Mission Requirements

Sylvia B. Sheppard

SE.5.e An Opportunity Analysis System for Space Surveillance 1353-1360
Experiments With the MSX

Ramaswamy Sridharan, Gary Duff, Tony Hayes, Andy
Wiseman

SE.5.f Matrix Evaluation of Science Objectives
Randii R. Wessen

6. Systems Operations Page 1369

SE.6.a A New Systems Engineering Approach to Streamlined Science 137 1- 1376
and Mission Operations for the Far Ultraviolet Spectroscopic
Explorer (FUSE)

Madeline J. Butler, George Sonneborn, Dorothy C. Perkins

SE.6.b * Risk Reduction Methodologies and Technologies for the Earth 137 7- 138 1
Observing System (EOS) Operations Center (EOC)

Richard K. Hudson, Nelson V. Pingitore

* Presented in Poster Session

SE.6.c EDOS Operations Concept and Development Approach 1383-1390
Gordon Knoble, C. Garman, G. Alcott, C. Ramchandani, J.
Silvers

SE.6.d Concurrent Engineering: Spacecraft and Mission Operations 1391-1397
System Design

J. A. Landshofj R. J. Harvey, M. H. Marshall

" Presented in Poster Session

4. Expert Systems

0P.4.a Delivering Spacecraft Control Centers With Embedded
Knowledge-Based Systems: The Methodology Issue

S . Ayache, M. Haziza, D. Cayrac
0P.4.b SCOSII OL: A Dedicated Language for Mission Operations

Andrea Baldi, Dennis Elgaard, Steen Lynenskjold,
Mauro Pecchioli

OP.4.c DIAMS Revisited: Taming the Variety of Knowledge in Fault
Diagnosis Expert Systems

M. Haziza, S . Ayache, J.-M. Brenot, D. Cayrac, D.-P. Vo
OP.4.d Using Graphics and Expert System Technologies to Support

Satellite Monitoring a t the NASA Goddard Space Flight Center
Peter M. Hughes, Gregory W. Shirah, Edward C. Luczak

OP.4.e Development and Use of a n Operational Procedure
Information System (OPIS) for Future Space Missions

N. Illmer, L. Mies, A. Schon, A. Jain
OP.4.f SCOSII: ESA's New Generation of Mission Control Systems:

The User's Perspective
P. Kaufeler, M. Pecchioli, I. Shurmer

OP.4.g ": An Object Model for Multi-Mission Command Management
System

Jon Kuntz
0P.4.h A Software Architecture for Automating Operations Processes

Kevin J . Miller
OP.4.i Spacecraft Command and Control Using Expert Systems

Scott Norcross, William H. Grieser
OP.4.j SEQ-GEN: A Comprehensive Multimission Sequencing System

Jose Salcedo, Thomas Starbird
OP.4.k " The PACOR I1 Expert System: A Case-Based Reasoning

Approach to Troubleshooting
Charisse Sary

OP.4.1 An Intelligent Automated Command and Control System for
Spacecraft Mission Operations

A. William Stoffel

Page 679

',' Presented i n Poster Session

P I

353 4 6 1
Delivering Spacecraft Control Centers with embedded ,+ 8

Knowledge-Based Systems: the Methodology issue

S. Ayache , M. Haziza , D.Cayrac
Matra Marconi Space, 31, rue des Cosmonautes, 3 1077 Toulouse Cedex -FRANCE.

Tel: (33) 62 24 77 60, Fax: (33) 62 24 77 80
e-mail : ayache@soleil.matra-espace.fr

Abstract
Matra Marconi Space (MMS) occupies a leading

place in Europe in the domain of satellite and space
data processing systems. The maturity of the
Knowledge-Based Systems (KBS) technology, the
theoretical and practical experience acquired in the
development of prototype, pre-operatiorzal and
operational applications, make it possible today to
consider the wide operational deployment of KBS's in
space applications. In this perspective, MMS has to
prepare the introduction of the new methods and
support tools that will form the basis of the
development of such systems. This paper introduces
elements of the MMS methodology initiatives in the
domain and the main rationale that motivated the
approach. These irtitiatives develop along two ntain
axes: knowledge engineering methods & tools, nizd a
hybrid method approach for coexistirtg knowledge-
based and conventional developments.

I. Introduction
Matra Marconi Space (MMS) occupies a leading

place in Europe in the domain of satellite and space
data processing systems. It has a long experience, as
architect of both types of systems. in the integration of
hardware and software components, man-machine
interfaces, knowledge and data management systems,
etc.

The development of methods and supporting
environments is a part of MMS missions. MMS has a
confirmed expertise in the domain of system
engineering methods and tools. For instance, MMS
has co-authored the HOOD design method (dedicated
to the architectural and detailed design of large real-
time and embedded Software applications) and is
involved in the working group in charge of proposing
evolutions of the method.

MMS has also acquired a theoretical and practical
experience in the development of Knowledge-Based
Systems (KBS) through numerous R&D, pre-
operational and operational projects generally
sponsored by CNES (the French space agency). ESA

or other customen such as ARIANESPACE. The
development activities conducted at MMS in the
eighties have allowed to demonstrate the benefits of
KBS to assist users in operation environments. That
experience has also led to a robust in-house KBS
development methodology.

It is now possible to consider the wide operational
deployment of KBS's in space applications. In this
perspective. MMS has to prepare the introduction of
new methods and support tools that will form the basis
of such systems development as well as their
cooperation with more conventional methods [lo].
After a brief description of the MMS approach in the
field of space diagnostic support systems
development, this paper develops the methodology
issue that MMS is currently tackling and presents an
experimentation of a hybrid method approach in the
diagnostic systems field.

11. Space diagnostic support systems: the DIAMS
programme

MMS has been investigating and experimenting
spacecraft diagnostic support systems for eight years.
The DIAMS concept, initiated in 1985, led to the
development of a prototype expert system dedicated to
the Telecom 1 Attitude and Orbit Control System [7]
DIAMS-1, and to the present Telecom 2 Expert
System [8], DIAMS-2, covering a whole satellite
(platform and interfaces with the payload), which was
installed in the Satellite Control Center at the
beginning of 1993 [3].

One of the main advances realized through DIAMS-
1 was the decomposition of the Knowledge base (KB)
into different types of Ynowledge Islands (KI)
representing different domains of expertise.
DIAMS-lwas implemented in Emicat (an object
dialect on top of Prolog).

The next generation called DIAMS-2 was a near
operational system developed on top of a KEE/
CommonLISP platfornl. It is a hybrid system

combining decision-tree based symptom-hypothesis
associational reasoning to initiate and to focus the
diagnosis, and the DIAMS-1 model-based techniques
to complete the diagnostic reasoning on particular
functions and to provide the final isolation of the
fault.

In DIAMS-2,comprehensiveness and efficiency
was priviledged against fineness of representation and
reasoning. Simplified representations well suited to
the practical problems faced in space industry were
introduced as a first approximation. A progressive
refinement of the models and of the reasoning
paradigms selected (for instance to include the
handling of incompleteness, uncertainty and time) is
now being considered in the definition of a new
generation of knowledge based systems, DIAMS-3
[41,[51.

DIAMS-3 is being implemented in C++ and uses
the ONTOS Object Oriented Database Management
System for knowledge storage and retrieval. Beyond
the porting into C++ of the DIAMS-2 machinery,
DIAMS-3 will provide generic model edition services
and C++ libraries of operational standard for handling
time, incompleteness and uncertainty. These libraries
could also be reused in other KBS development
projects.

Other important objectives of DIAMS-3 concern
tigher integration with other knowledge-based
systems like data analysis or procedure management
tools and more generally the complete integration of
that kind of tools in the operational loop [l 11.

111. Methodology issues
Spacecraft Control Centers (SCC's) have to process

large amounts of data from which the relevant
information is generally difficult to extract and may
require the use of KBS for instance for data analysis
and diagnosis (such as those belonging to the DIAMS
family). Knowledge-based planning and scheduling
or procedures management tools can also be useful to
master the management and execution of complex
operational tasks. These different categories of KBS's
generally need to communicate with the operational
environment, i.e to exchange information with
conventional software or databases. In addition, the
embedding of the various kind of software
components (including KBS's) into hardware and at a
higher level into a system with its organizational logic
has to be taken into consideration.

An example of typical Satellite Control Center
functional architecture is provided in table1

Table I . Typical SCC functional architecture

Various methods, tools, languages, models, or
architectures are used to develop these different
kindsof components. To give an example, in many
SCC's development projects currently conducted at
MMS, SADT and HOOD are used for the analysis
and design of conventional software, and the
MERISE Information System Design methodology
(including Entity-Relationship diagrams) is used for
the database components. The operational integration
of KBS's in SCC's thus raises two kinds of
methodology requirements:

Core system
and
Common
services

Procedural
applications

Knowledge-
based
applications

n o w l e d a e o d s & to&
Well-suited methods and tools are required for
expertise analysis and knowledge modelling,
knowledge verification & validation, or KB
Administration and Maintenance.

Databases, data storage and retrieval
Time synchronization and distribution
Local Area Network(s), wmmunications
Distributed environment monitoring and
control
Operation documentation management.

Data reconstruction and distribution
Flight dynamics monitoring and control
Operation procedures construction and
execution ...

Data analysis
Diagnosis
PlanningIScheduling ...

w f l ' n t l 'on ~) i f h c011~e-1 SW d e v e l o ~ m m
nporonch
The elaboration of a methodology framework for
the cooperation between knowledge engineering
and SW engineering methods and tools is an
essential requirement to guarantee the safe and
efficient cooperation between KBS's and
conventional applications within a same
operational environment.

Rather than expecting the advent of the ultimate
methodology that would allow to develop all types of
system components Within the same integrated
methodology, a pragmatic solution, experimented by
MMS, consists in adopting a hybrid method
approach. In such an approach, the task of building
the integrated application is carried out by developing
all the system components within a methodology
framework that allows the use of the most suitable
existing methods in the successive phases of the
development.

This approach of course requires to define
correspondences between models for cross validation

purposes but it cames a number of very interesting
properties. For instance, it allows to benefit from the
experience gained with the existing methods, allows
to use existing tools supporting the methods, avoid
problems such as compatibility with existing models
(SCC's HOOD models for instance) or the costly
training of a large number of people to a new method.

A hybrid method approach for KBS development
grounded on KADS, HOOD and OMT has been
successfully experimented by MMS through the
development of the new generation of diagnostic
support systems (DIAMS-3). This approach is
detailed in the next section.

IV. The hybrid method approach experimented
in DIAMS-3

1. Selected methods

The CommonKads method [14] which is now a
knowledge engineering method rather popular in
Europe supported by off-the-shelves tools has been
selected as the DIAMS-3 Knowledge Engineering
method. Its founding principle is Knowledge Level
Modelling. The purpose of the knowledge-level
model is to make the organization of knowledge in the
system explicit independently of any representational
issue (symbolic representation in terms of rules,
frames, etc.) and, a fortiori, of any implementation
level issue. The CommonKads model set is briefly
presented in table 2:

Table 2, The ComrnonKads model set

HOOD and OMT were selected:

Organizational
model

Task model

Agent model

Communication
model

Expertisemodel

* HOOD [12] is a design and development method
for large technical and real time software systems.
It resulted from the merging of Booch's Object
oriented design approach and Abstract Machines
methods. The definition of the method was
sponsored by ESA and started in 86. Since its birth
in 1986, HOOD has become the most commonly
used design method in the european space
industry. It is now the reference design method for
the SW projects sponsored by the European Space
Agency. HOOD is a hierarchical design method
offering two kinds of interesting relations between
objects: the "use" relation to express that one
object requires the services of other objects and
the "include" relation to express that one object,
the parent, is fully implemented by the child
objects it contains (cf Figure 1 .)

provides an analysis of the
organizational environment in which the
KBS will run

Descibes the real-life tasks executed in the
organizational environment

Describes the properties of agents that
perform tasks specified in the task model

Describes all transactions between agents

Organizes problem-solving knowledge in
four layers: domain, inference, task and
strategic knowledge

Figure 1. HOOD object: grapltical representation

Objectpame

Trigger Active Object I

I I Passive object /Ch'ld2\,, 1

(Uncle A I
OMT (Object Modelling Technique) is an object-
oriented software development method which
extends from ~roblem formulation and
requirements analysis, to design and
implementation. It has been defined by James
Rumbaugh & al. [13] from the General Electric
Research center (USA). This method proposes
three kinds of models to describe the different
views of a system (cf Table3)

Table 3. The OMT model set

Having assessed that the association of KADS with
object-oriented analysis and design approaches could The evaluation work has been focused on the object
provide a suitable basis for developments of systems modelling technique from which the methods draws
such as DIAMS-3, two complementary methods its name.

Object model

Dynamic model

Functional
model

Static, structural view of the system
showing objects structure and relationships
between them

Temporal, behavioral view of the system

Transformational, functional view of the
system

2. DIAMS-3 Specification
Two main kinds of output have been provided at the

end of this phase:
* Software requirements (following a template close

to the Software Requirements Document template
recommended in the ESA PSS-05 standard [6])
including both functional and non functional
requirements for the overall diagnostic tool.
A CommonKADS Expertise model for the
cognitive parts built with the support of the
KadsTool tool. This model is briefly described in
the next paragraphs:

c knowledge
The KB is partitioned into knowledge islands

(KI's). A KI contains all the knowledge items needed
to investigate (i.e. confirm or infirm) some global
hypotheses. A strategic-level Investigation Procedure
is used to select a path among pending hypotheses and
to navigate from KI to KI.

kno~t le&g

Domain knowledge is generally represented by
hierarchies of concepts and relations between
concepts. A domain ontology describes the terms that
will be used to formulate statements about the
application domain. Domain knowledge may further
be specified with the help of some meta-descriptions
- model ontology - that specify the type and structure
of the domain models.

The diagnostic tool model ontology has been
mainly represented by two "consist-of' hierarchies
structuring:

* the satellite F'DIR (Fault Detection and Isolation
Recovery) static knowledge and
the diagnostic session dynamic knowledge
introduced as an example in Figure 2.

A complete description of domain knowledge may
be found in [I].

The inference knowledge specifies the basic
inferences that can be made with the domain
knowledge.

The task knowledge describes the problem-solving
tasks. Tasks are specified through a task definition
and a task body. The task body decomposes the task
recursively in terms of activities (other tasks) needed
to achieve the task goal. A task description is
generally associated to an inference structure and
expresses a control flow on the inference structure.

The top-most inference structure and task
description of the diagnostic tool Expertise Model are
represented in Figure 3. and Figure 4.

3. DIAMS-3 Preliminary Design

HOOD and OMT have been used in a
complementary way for preliminary design in the
sense that:

HOOD has mainly been used for the top down
decomposition of the application into abstract
machines and for an easy representation of
interactions of the diagnostic system with external
resources such as reasoning schemes. It supported
the preliminary design of the diagnostic system
shell.

Figure 2. Diagnostic session knowledge "consist-of ' lzierarclty

I Current-Satellite-Configurntion I
h current-syndro

investigated-hypotheses~
currenthypotheses

Temporal-ConstraintNetwork-Entities
Reasoning-Schemes-Entities

Figure 3. Diagnose Inference structure

Figure 4. Diagnose Task descriptwn
Rdes
Input
hi : Initial-hypothesis
Si : Initial Syndrom
Conf: Current-Satellite-Configuration
Obs : Satellite-observability-knowledge
output
C : diagnostic conclusions
Sf : final syndmm
Control roles
KI : Knowledge-Island -in current investigation
H : Current Hypotheses
S : Current Syndmm
KI-hyp : output-KI-hypotheses -deduced from K1 Investigation
KLsym : KI-Symptoms -observed during KI-investigation
h : next-hypothesis to be investigated
MY
DIAGNOSE(hi,Si,Conf,Obs -> (C.Sf))=
S=Si ,h=hi , H= 1)
WHILE "select-next-hyp" returns an hypothesis
get-Kl(h -> KI) -returns the KI associated to hypothesis h
INvE!XlGATE(Kl ,S.Conf,Obs -> (Kl-hyp.Kl-sym))
Update-current-hypotheses(H,Kl-hyp -> H) - add KI-hyp in H and
update hypheses plausibilities
Add_symptoms(S,Kl-sym -> S)
Select-next-hyp (HS -> h) - seled next pending hypothesis h

according to diagnostic focusing rules and set h status to "not
pending";
END WHILE
C=H, S f = S
Realization INVESTIGATE
Activates inference diagnose

* The OMT design process is not hierarchical but
OMT offers a very powerful object modelling
technique including of course modelling of
inheritance. 0MT has mainly been used to design
the domain objects classes and relationships
between these classes.

An example of HOOD object graphical description
extracted from the documentation generated by the
HOODNice tool is provided in Figure 5.

This description shows the decomposition of the
object "Diagnoser" which is itself included (with
other objects such as "KB-administrator" or
"KB-interface") in the decomposition of the top level
object called "Diagn~stic~System". This figure
shows "use" relations between Diagnoser internal
objects and external objects (e.g., KB-interface) or
objects belonging to the Diagnostic System Software
environment (e.g., Temporal Constraint Propagator -
TCP- and Valuation Based System -VBS- handling
temporal and uncertain reasoning)

An example of OMT sheet extracted from the
documentation generated by the OMTool tool is
provided in Figure 6. This example shows a
preliminary design model for KI-hypothesis and
Knowledge-Island domain objects.

4. DIAMS-3 detailed design

Only OMT has been used to support the detailed
design activity. This allowed a direct mapping to C++
object classes. OMT has also been used to maintain an
up-to-date view of the detailed design model during
the coding activity.

Classes identified in OMT preliminary design
appear as ONTOS persistent classes in the detailed
design model and methods corresponding either to
administration methods or to basic inference
mechanisms have been attached to these classes. An
example of such a persistent class is provided in
Figure 7.

Objects identified in the Diagnostic system shell
HOOD preliminary design model appear as non-
persistent classes in the detailed design model . An
example of such a class is provided in Figure 8. In this
case, services provided by the "Hypotheses manager"
in preliminary design are dispatched in two classes: a
semantic class used in the diagnostic process and a
graphical class used to manage the Man-System
dialog (its content has been masked to simplify the
figure).

Figure 5. Diagnoser Hood Object graphical description
A DIAGNOSER

I l o u t ~ u t hvwtheses I
possible output of

Figure 6. OMT sheet including KZ-hypothesis srtbclasses and KZ-Izypotlzesk-KZ relatwnslzips
investigated by

input-hypothesis

Functional-Klhypothesi
I

Kl-hypothesis

FKl-internal-hypothesis

IP-output-hypothesis FKI-output-hy pothesi

Knowledge-lslan

Figure 7. The KZ-hypothesis class

I I

Kl-hypothesis

-plausibility:Uncertainty
-investigated:CA-Boolean

+Investigated():const CA-Boolean
+Investigated(new-status: CA-Boolean):void
+Plausibility(): const Uncertainty&
+Plausibility(newglausibility:Uncertainty&):void
+Is-rnoreglausible(const Kl-hypothesis&)

Figure 8. The Hypotheses-manager sernantic and
graphical classes

5. Experience Feedback Among the methods investigated, OMT is probably

Each of the selected methods carries advantages
and drawbacks. Taken as a whole, the set of selected
methods exhibits complementary features allowing to
progress in the elaboration of guidelines for selecting
a lifecycle model and a combination of methods well-
suited to a particular application project. This is
further detailed hereafter.

CommonKADS

The CommonKADS modelling approach is mainly
focused on the analysis phase and cannot be
considered as a comprehensive methodology that
provides guidance and support in all phases of
operational KBS development projects.The
application development experience showed that
people with a practical experience in SW engineering
got acquainted rather rapidly with the KADS
approach.

The use of KADS allowed to establish a common
universe of discourse over the project. KADS models
were found very useful by the newcomers and eased
their integration in the project team.

HOOD

The use of the HOOD method allowed the top-
down decomposition of the application into modules.
This provided a convenient basis for the specification
of the man-system interfaces and the modelling of
interactions with external resources (other KBS's,
database systems or procedural applications). The
HOOD modelling approach has been designed to
facilitate the structuration of large projects. In the
early phase of the application development, its use
indeed simplified the task sharing between team
members

However the main drawback of the method resides
in its lack of support for the modelling of inheritance,
which is a critical requirement when developing KBS,
and, correlatively, the absence of C++ code generator
in the tools that support the method. This feature
prevented the selection of HOOD as the application
detailed design method.

OMT

OMT offers a powerful object modelling technique
which turned out to be well adapted for the
preliminary design of classes corresponding' to
domain objects and for the detailed design of the
whole application. In addition the support tool used
allowed to generate C++ code skeletons based on the
OMT object model components.

the one which is the closest to the ideal
comprehensive methodology that could be applied to
all kind of system components - KBS's, conventional
applications, database applications, etc. - in all phases
of integrated systems lifecycle. Notice for example
that MMS is using OMT for two KBS projects:
"Architectural concept for Spacecraft Operations
Automation" (sponsored by ESA/ESOC) which aims
at integrationg iarious ~ ~ ~ (~ r o c e d u r e s management,
data analysis, planning/scheduling) within the current
ESOC control center (SCOS) and "Ogre", a KBS for
ARIANES tests data analysis and reprts generation
(sponsored by CNES). However the method is still
rather young - support tools of industrial standard are
only emerging - and not widely used for operational
system developments in space. Notice also that in
Europe, ADA remains the reference language for
real-time systems developments and that HOOD will
probably remain the reference method for such
developments for a few years still.

V. A hybrid methodology framework for
co-existing conventionallknowledge-based
developments

The method cooperation approach straightforward-
ly derives from the operational continuity principle.
This requirement states that as organizations are hard
to change, and as old applications and organizations
have to be maintained while introducing new system
capabilities, it is important that applications be devel-
oped on a modular basis to enable an incremental de-
velopment and maintenance strategy.

This principle at the application level translates into
a dual principle at the methodological level that could
express as follows: when people have a good working
knowledge of a given method that has proved to be
well-suited to a given class of system components it is
preferable to let them use the known methods and to
limit the enforcement of new methods to system
components and development phases which are not
well covered with the existing methods.

Rather than developing a comprehensive
methodology, the proposed approach is thus to define
a framework that supports the cooperation between
methods.

Table 4 introduces a first instance of such an hybrid
approach that synthesizes the main results of the
method evaluation work as well as other results
coming from a comparison of KADS, MERISE,
SADT and OMT methods [9]. This table associates a
set of methods or languages to each lifecycle phase.
Such sets of methods can be interpreted either as

alternatives methods (e.g., KADSI OMT for domain
objects modelling) or complementary methods (e.g . ,
HOODIOMT for preliminary design) or as possible
mappings between models for cross-validation
purposes (e.g., KADSFlERISE where KADS is used
for Knowledge-based components and MERISE for
SCC operational databases).

The method cooperation approach also requires to
manage the correspondence between different
representations of the same objects at each step of the
development process. This is particularly needed for
objects encapsulating knowledge & data exchange
services between different subsystems and to perform
the cross-validation of models. This question has also
been investigated in [9]
Table 4. Method components for operational integration

of KBS's in space environments

Conclusion

In this paper, we have presented a hybrid
methodology framework that could contribute to the
operational integration of KBS's in SCC's as this has
been demonstrated on the example of diagnostic
support systems.

Experience feedback coming from MMS current
KBS projects using OMT for the whole lifecycle will
also provide valuable inputs for assessing this hybrid
methodology framework.

Further goals for MMS in this area are to refine the
proposed hybrid approach through elaboration of
rules for the maintenance and updating of hybrid
models in the coding phase (including the
management of traceability links). The situation of
prototyping and V&V activities wrt. the proposed
hybrid approach are also being investigated.

Acknowledgments

Work related to some of the topics developed in this
paper was partially funded by CEC through UNITE
project (ESPRIT project 6083). Other partners
involved are: Cap Gemini Innovation(France), Queen
Mary Westfield College(UK), Sintef Delab(Norway),
Eritel (Spain), ITMI (France).

References
[I] S.Ayache, P.Caloud, D.Cayrac, M.Haziza "MMS

Component Application Specification and Designw-
UNITE deliverable, November 1993

[2] S.Ayache, P. €aloud, D.Cayrac, M. Haziza "MMS
Integrated Application Specification and Design"-
UNITE deliverable, November 1993

[3] J.M.Brenot, P.Caloud., L.Valluy, A.Gasquet: "On the
design and development choices to bring to operation a
diagnostic expert system for the Telecom 2 satellite",
Proc. Tooldiag Int. Conf. on Fault Diagnosis, Toulouse,
France, 1993.

[4] D. Cayrac, M. Haziza: "Management of Uncertainty
and Temporal Dependencies in Real World Diagnostic
Systems, Application to the Space Domain", Proc.
Tooldiag Int. Conf. on Fault Diagnosis, Toulouse,
France, 1993.

[5] D. Cayrac, D.Dubois, M.Haziza, H. Prade.: "Relational
Diagnosis Based on a Functional Model", Proc.
AIENG conf., Toulouse, France, 1993.

[6] ESA PSS-05-0 standard Issue 2 (February 1991)
[7] M.Haziza "An Expert System Shell for Satellite Fault

Isolation based on Structure and Behavior", in Proc.
ESTEC Workshop on Artificial Intelligence and
Knowledge Based Systems for Space, Noodwijk,
Netherlands, 1988.

[8] M.Haziza "Towards an Operational Fault Isolation
Expert System for French Telecommunication Satellite
Telecom 2": Proc. ESA Symposium "Ground data
systems for spacecraft control", Darmstadt. FRG, 1990.

[9] M.Haziza, S.Ayache, D.Cayrac, P.Y.Lambolez: "MMS
first report on the use of selected methods for analysis
and design" - UNITE deliverable, November 1993

[lo] M.Haziza: "Delivering operational space applications
with embedded Knowledge-based systems", World
congress on Eicpert Systems, Lisbon, Portugal, 1994.

[l l] M.Haziza. S.Ayache, J.M. Brenot, D.Cayrac, D.-P
Vo: "Diruns Revisited: Taming the Variety of
Knowledge in Fault Diagnosis Expert Systems", to
appear in proceedings of SPACEOPS'94 (International
Symposium on Space Mission Operations and Ground
Data Systems), USA, November 1994.

[12] B. Labreuille. JF. Muller, HOOD: a design method for
the space industry, AIAmASA Symposium on Space
Information Systems, 1990

[13] J. Rumbaugh et al: "Object Oriented Modelling and
Desigrt", Prentice Hall International, 199 1.

[14] G. Schreiber et al: "KADS: a principled approach to
Knowledge Based Systen~ Developn~ent", Academic
Press, 1993

SCOSII OL: A Dedicated Language for Mission Operations I - "

Andrea Baldi, ESA/ESOC/F'CSD
Dennis Elgaard, CRI

Steen Lynenskjold, CRI
Mauro Pecchioli, ESA/ESOC/MOD

Abstract Introduction
The Spacecraft Control and Operations System The need for the SCOSII OL has matured

I1 (SCOSII) is the new generation of Mission Con- through the long experiences ESOC have had
trol System (MCS) to be used at ESOC. The system with the use of configurable generic MCS7s. As
is generic because it offers a collection of standard any other previous ESOC MCS, SCOSII will
functions configured a database 'pan be configured through databases containing the
which a dedicated MCS is established for a given mission specific knowledge.
mission.

An integral component of SCOSII is the support This knowledge will not only need to be

of a dedicated Operations Language (OL). The efficiently defined, but also validated and then
spacecraft operation engineers edit - test - validate maintained, due to the pre-launch test results
and install OL scripts as part of the configuration of and/or the frequent changes which do occur
the system with e.g. expressions for computing during the lifecycle of a mission.
derived parameters and procedures for performing
flight operations, all without involvement of soft-
ware support engineers.

A layered approach has been adopted for the
implementation centred around the explicit repre-
sentation of a data model. The data model is object-
oriented defining the structure of the objects in
terms of attributes (data) and services (functions)
which can be accessed by the OL.

SCOSII supports the creation of a mission
model. System elements as e.g. a gyro are explicit,
as are the attributes which describe them and the
services they provide. The data model driven
approach makes it possible to take immediate
advantage of this higher-level of abstraction, with-
out requiring expansion of the language.

This article describes the background and con-
text leading to the OL, concepts, language facili-
ties, implementation, status and conclusions found
so far.

The SCOSII OL concept is designed to aug-
ment the traditional ways an operation engi-
neer specifies mission specific configuration
data to cover as well knowledge which is algo-
rithmic or procedural in nature. Thus it is
essential to support the operations engineer in:

specifying and maintaining the mission
knowledge in a natural, concise and
intelligible manner - without requiring a
detailed software understanding or sup-
port of software engineers;

defining the mission knowledge in con-
text-specific dedicated environments,
whereby both the HCI and the allocated
constructs are specifically designed for
each particular information type;

validating the specified knowledge by
means of 'on-line' checks and testing
capabilities.

Andrea Baldi (abaldi@esoc.bitnet) works within the Flight Control Systems Department at the European Space Operations Centre
(ESOC), Robert Bosch Strasse 5, D-64293 Darmstadt, Germany. Dennis Elgaard (delgaard@esoc.bitnet) and Steen Lynenskjold
(steen@acm.org) both work for Computer Resources International, Bregnererdvej 144, DK-3460 Birkererd, Denmark. Mauro Pecchioli
(mpecchio@esoc.bitnet) works within the Mission Operations Department at ESOC.

The work described in this article was carried out at ESOC under a contract with the European Space Agency.

Background and Context
For any mission has been the demand to

derive information from the format which is
provided through the spacecraft telemetry
parameters. The most frequently used deriva-
tion is that of applying a (linear) calibration to
convert raw values into engineering units. The
calibration is defined by providing value pairs
as part of the database configuration.

Although calibrations satisfy a large per-
centage of the derivation needs, they do not
provide a sufficient mechanism as there is as
well a need to compute derived values by com-
bining other values using an algorithmic trans-
formation.

In the Multi-Spacecraft Support System
(MSSS) these algorithms were specified on
paper by an operations engineer and subse-
quently coded by a software engineer. In
SCOSI the operations engineer writes the algo-
rithm directly in FORTRAN expanded with a
few syntactical constructs to e.g. reference a
previous value of a parameter. In both cases the
resulting FORTRAN code is compiled and
linked with the operational control system soft-
ware. An error in the algorithm will not be
detected before a run-time crash occurs. The
turnaround time for changes has from an oper-
ational perspective a significant and unwanted
delay. Neither systems support version and
configuration control functions.

The Spacecraft Performance and Evaluation
System (SPES) offers a significant improve-
ment as it allows the users through a dedicated
language to define expressions, compute aver-
ages, etc. SPES is however limited to work in
an off-line context on historical values and has
no integration with the control system as such.

The possible largest driver for the require-
ments is the wish to formalise and incorporate
executable operation procedures written in the
OL within SCOSII. Whereas algorithms for
derived values do not necessary have to be
explicit in the run-time context, procedures do

have to: one property of a procedure is its inter-
active nature involving a close dialogue with a
human operator through a procedure execution
display.

Within ESA, check-out systems have for
some time provided capabilities of defining test
procedures through special languages; the most
significant ones being ETOL (ESA Test Opera-
tions Language), ref. [lo], and ELISA
(Extended Language for Instrument and Space-
craft AIV), ref. 191. These check-out languages
focus on regression testing capabilities.

Two ESOC studies have demonstrated the
feasibility of executable procedures within
control systems, namely the Expert Operator's
Associate (EOA) study, ref. [12], and the Mete-
osat Workstation (MWS) study, ref. [13] - the
latter now being used operationally. Both
projects focused on the internal representation
of procedures and the interactive nature of their
execution with close coupling to the human
spacecraft operator.

The User Terminal Study at ESTEC, ref.
[S], has shown the advantages of an object-ori-
ented language in combination with a mission
model. The User Language Study at ESOC,
ref. [7], was initiated with the purpose of pro-
viding inputs to the SCOSII OL and has proven
a number of concepts; in particular the advan-
tages of a layered implementation centred
around the explicit representation of a data
model. Both studies focused on the configura-
bility aspects of the system and associated lan-
guage capabilities.

From a technological view the existence of
powerful UNIX utilities such as lex and yacc,
the ideas behind database languages as SQL,
advances in workstation performance, and the
maturity of object-oriented concepts have fur-
ther made it possible to implement the OL.

SCOSII, ref. [I] [2] [3] [4] [S] [6] [14], is the
new generation of generic control systems to
be taken into use at ESOC; the first client mis-
sions being Huygens (97), Artemis (97) and

Envisat (98). SCOSII is a distributed control definition environment would suffice, both
system running on powerful UNIX worksta- need to be accessible in a homogeneous man-
tions connected through a local area network. ner from within the same HCI.
SCOSII has been engineered for high perform-
ance throughput; in particular to optimise the
parallel access to real-time and historical data.
Further emphasis is put on the configurability
of the system to incorporate a mission model,
hereby offering a higher level of abstraction
than that traditionally provided by telemetry
parameters and telecornrnands. A new Human-
Computer Interaction (HCI) concept has been

An operations language needs to interact
with the control system to be able to access
data held by the control system which is of
operational importance to get e.g. the validity
status of a telemetry parameter; request sew-
ices to e.g. send a telecommand; and change
data to e.g. store the results on an evaluation of
a derived parameter.

adopted based on closer data integration and
--

referential capabilities.

Concepts
SCOSII is a generic system which is config-

ured by adding missing specijc knowledge,
which may be categorised into:

declarative knowledge, e.g. calibration
curves, parameter structures, etc.; speci-
fied through dedicated form based HCIs;

expressive knowledge, e.g. derived
parameters, command validation condi- Model
tions, etc.; specified through the OL;

* procedural knowledge, e.g. operation A layered approach has been adopted for

procedures, report procedures, etc.; spec- the SCOSII OL as shown in Figure-1. The

ified through the OL; three layers are:

* special knowledge, i.e. non-generic mis-
sion information typically requiring a
software expansion to SCOSII.

It is difficult to define the borderline of
when to use declarative or expressive knowl-
edge, i.e. when to use the OL. The definition of
specific items within the database have typi-
cally both a declarative and an expressive part.

* Interaction layer, i.e. the user interface of
the system which may interact with the
physical layer directly or with the logical
layer;

* Logical layer, centred around the OL
containing the data entities which are
manipulated via constructs in the lan-
guage;

The identifier, description, etc. of a parameter * Physical layer, providing the generic
is defined by declarative knowledge, whereas services of the control system.
its validity criteria is defined by expressive
knowledge. Due to this 'mixture' of declarative The access from the logical to the physical

and expressive knowledge inherent to most layer is dictated by an explicit data model. The

database parts, the way the user interacts with data model is object-oriented as it represents

the system needs to reflect this fact. Neither a physical layer objects with attributes and serv-

pure (traditional) forms interface nor a pure OL ices accessible to the OL.

It supports the explicit representation of each parameter is calculated on the basis of
inheritance, aggregation and association rela- current values of any contributing parameters.
tions. This enables the OL to facilitate naviga-
tion through related objects, e.g. from a
command to the parameter used within its post-
execution verification checks.

The data model serves as a 'contract'
between the logical and physical layers, it can
not be changed through the OL itself. This does
not imply that the data model is static, changes
are just controlled through a mechanism within
the physical layer. Any change to the data
model is propagated to the logical layer.

The physical layer within SCOSII is itself
based on an object-oriented implementation,
i.e. the differences in representation between
the logical and physical layers are less than
would otherwise have been the case. The direct
implication of this is that the logical layer is
'slim': it mainly serves to present physical
layer objects to the operations engineer while
hiding implementation details and offering pro-
tection against illegal access. The intelligent
behaviour always rests within objects of the
physical layer, i.e. if the physical layer does not
support a certain function it will neither be
available within the OL.

SCOSII supports the representation of a
mission model, allowing to organise the mis-
sion knowledge according to a structural repre-
sentation of system elements, e.g. a gyro or a
heater. The OL can access these higher level
objects in the same way as any other object
within the physical layer, i.e. it does not require
a language expansion to take advantage of
these.

It is transparent to the OL whether it
accesses static (database configuration data,
e.g. parameter characteristics) or dynamic
(processing data, e.g. latest parameter value)
data. Although the OL does offer facilities to
explicitly request historical data; the concept
of time is nominally managed through the
application using the OL. A parameter display
may be put into retrieval mode, the validity of

It is further transparent to the OL that
SCOSII is a distributed system. All aspects
dealing with data distribution and synchronisa-
tion are handled fully by the physical layer.

The OL is an interpreted language. The rea-
sons for this choice have mainly been that at
least operation procedures are interactive of
nature involving communication with a human
operator - for which an interpretation was
believed most adequate.

All OL definitions form part of the database
configuration of a SCOSII system. They are
therefore underlying strict version and configu-
ration control.

Language Facilities
The OL is a strongly typed language, which

enables the detection of a range of errors at
preparation time during database configuration
rather than causing an error at execution time.
The data model forms part of the type system
within the OL; accessing the physical layer
objects in a wrong way will be detected prior to
its execution.

The executable unit within the OL environ-
ment is an OL Script. A script may be as simple
as a single boolean expression or as complex as
the full directives of a large flight operations
procedure. A script is composed of two parts: a
declaration part (local variables and function
definitions) and an executable part (statement
list).

The access to the physical layer objects is
governed through the explicit existence of an
object-oriented data model. Figure-2 illustrates
a segment of a script to calculate the value of
the derived Parameter P117. If the status of the
limit of Parameter P112 is above limits, then
the engineering Value of P117 is set to the
upper limit definition of P112; otherwise it is
set to be the engineering Value of P112.

if (P112.limit == ABOVE-LIMITS) then
P117 : = P112.limit.upper;

P117 : = P112;

Heater
switch-status
power-status

swltch[state)

if (. . . .) then
heaterl3.switch(ON);

. . . .

Figure-4 System Element Logical Layer
Data Model and OL Example

Figure-2 Operations Language Example The OL is, besides from its integration with
the data model, a straight-forward imperative

Figure-3 shows the data model correspond- language. Table-1 provides an overview of the
ing to this example. A Parameter is character- major language constructs. - -
ised by its name, description, limit, raw and
engineering Values. Each Class may have a Table-1 Operations Language Constructs

default attribute (marked with a '*'): for the
Parameter the default is its engineering Value.
A Parameter offers a service delta which
allows to access historical samples. A Value is
characterised by its value (default) and validity.
A Limit is characterised by its status (default),
lower and upper limit definitions. Notice that
due to the concept of default attributes, the
expression 'P112' evaluates as
'PI 12.eng.valueY.

Figure-3 Logical Layer Data Model

Figure-4 shows the representation of a
Heater system element within the logical layer.
A Heater is characterised by its switch-status
(on-off) and power-status (on-off) attributes,
and offered service to switch it either on or off.
The OL can operate on heaters in the same
manner as on parameters shown earlier.

Functions

mathematical
statistical
bit manipulation
time
object creation
object copy

Statements

assignment
wait
function invocation
goto-label
if-then-else
select-case
while-do
repeat-until
for-in-list -do
for-to-step-next

The generalised approach of interfacing
physical layer objects governed by the data
model is not in all cases adequate. A trade-off
has to be made whether to provide a more tar-
geted syntax for particular kinds of knowledge.
It is expected that specialised 'mini languages'
extending the OL syntax will evolve - typically
also offering dedicated HCI support. However,
the baseline is that these shall be mapped onto
the kernel OL at the syntactical level, i.e. in
terms of macro expansion. This ensures that
the intelligent behaviour stays within the phys-
ical layer of the MCS.

Expressions

value
reference
function invocation
boolean expression
numeric expression
string expression
time expression
list expression
set expression
matrix expression
vector expression
map expression

The OL facility is implemented as any other
SCOSII software: it is specified and designed
using an object-oriented method (OMT, ref.
[l I]), and programmed in C++. The UNIX util-
ities lex (scanner generator) and yacc (parser
generator) are used to construct the parse tree.

Due to the fact that the OL scripts form part A typical example of a non-valid Value is
of the database configuration and hence are the state of a switched-off (or redundant) unit
defined in the preparation phase, the parse tree which still is being sampled and echoed
is built already at this stage to improve the per- through telemetry.
formance in the execution phase. The parse
tree structure is used directly by the interpreter.

A LL Object is a special kind of Value. It is
structured as a record, containing a Value for
each of its attributes.

Figure-5 Physical Layer Interface Glass Bia-
gram

root

The physical layer interface is illustrated in
Figure-5. A Parse Node is a component of the
parse tree and is characterised by an identijier.
It references its root Parse Node and all of its
sub Parse Nodes. A Parse Node is evaluated
within a particular Context. A Context maps
identifiers onto Values and offers a lookup
service. The Global Context is a special kind of
Context which interfaces a Global Name Table
provided by the Physical Layer (PL). The Glo-
bal Name Table offers a lookup service taking
as input a character string (e.g. "P112") and
returning a reference to the corresponding PL
Object.

Parse Node
id leaves

A Value is characterised by its value and
validity status, which is used to propagate the
effects of non-valid values throughout the eval-
uation of expressions: if a Value is computed
on behalf of non-valid Values, it is itself to be
considered non-valid.

Value
value
validity

Any object within the PL which needs
access from the LL inherits the properties of
the PL Object, hereby ensuring the proper
interface to the LL. A PL Object is character-
ised by its type and contains a service mapping
relating requests from the LL onto C++ func-
tions of the PL. All LL Objects are attached to
one PL Object. At run-time only the PL
Objects actually used are related to LL Objects.

An initiative is currently being undertaken
to further generalise the physical layer inter-
face by adopting the Model-View-Controller
(MVC) architecture, ref. [15], with the purpose
of using identical interfaces from both the
interaction and the logical layers to the physi-
cal layer, see Figure-1. The first prototypes
with this architecture have demonstrated prom-
ising results.

8
attr name

Figure-6 Script Class Model

Context

The Handler, illustrated in Figure-6, con-
trols the execution of any Script. It offers two
services: schedule, which determines the order
in which scripts are executed, and execute,
which invokes the script execution.

LL Object

lookup 0

Global Context

Global Name Table

lookup

PL Object
sewice mapping
type

A Script is characterised by its dejnition,
i.e. a textual representation of the script, and its
status - e.g. whether it has been parsed. It
offers two services: parse, which builds the
parse tree of the script, and execute, which
requests the execution of the script. Any appli-
cation using scripts have to inherit from the
Script User class, which provides the mecha-
nism to interface the OL environment and
request the execution of scripts.

The initiative to execute scripts nominally
comes from an application using the OL. The
Handler has to deal with the incoming execu-
tion requests. Currently a very simple schedul-
ing mechanism is implemented; it is foreseen
to expand this into a finer-grained mechanism
taking aspects, like priorities and pre-emptive
scheduling, into account.

Nominally a script will be version control-
led as part of its using entity: e.g. the validity
criteria of a parameter specified as an OL
boolean expression is seen as part of the corre-
sponding parameter version. If the validity cri-
teria is changed, then a new version is
associated with the whole of the parameter it
belongs to. The granularity in terms of at which
level of detail to manage versions is decided on
a mission specific basis.

Status
SCOSII is under development. A Basic Sys-

tem has recently been delivered comprising
functions equivalent to those offered in the
existing generic MCS's used at ESOC. A
reduced OL facility covers only expressive
knowledge and simple tools. Further evolution-
ary releases are planned:

* release 1 (1 Q95), adds e.g. mission mod-
elling capabilities and executable opera-
tion procedures. The OL facility covers
procedural knowledge and simple tools.

* release 2 (1Q96), adds e.g. advanced
mission modelling and semi-automatic
operation procedure execution. The OL
facility is complete with tools.

release 3 (1Q97), adds e.g. integration
with knowledge based applications for
automatic operation procedures execu-
tion.

FOPGEN, a WYSIWYG tool to support
editing, display and printout of operational
documentation, will be fully integrated with
SCOSII. It provides advanced editing features
and readwrite access to the SCOSII mission
database. FOPGEN will generate operation
procedures in the SCOSII OL.

No language constructs to deal with paral-
lelism or script execution synchronisation are In parallel with the SCOSII development,

provided. It is believed that such aspects are two major studies have been initiated: ATOS-4

better managed by the physical layer. Within exploits the use of knowledge based technol-

the OL conditions can be defined as e.g. an ogy in e.g. the context of procedure execution

interlock (execute upon successful verification) based on SCOSII and the OL; Productline for

between two operation procedure execution Compact Ground Facilities investigates the

requests. The physical layer knows about the integration of check-out and operation control

conditions and observes these while servicing systems, with particular emphasis on the lan-

the related execution requests. guage aspects.

At this stage only basic OL editors and exe- The Committee for Operations and EGSE

cution displays are provided. It is expected to Standardisation (COES) is currently active to

expand the tools with a debugger and test tool, standardise the ground segment infrastructure

enabling the operations engineer to test and systems within ESA. A particular subject cov-

validate Scripts locally on a workstation. ers the standardisation of the human-computer
interaction of which a dedicated language is
seen as an integral part.

The SCOSII OL will be a significant con-
tributor to this standardisation work; the OL
itself will be made compliant to the forthcom-
ing standard.

Conclusions
The SCOSII OL provides support to the

operations engineer for the configuration of a
MCS with mission specific data to include
expressive and procedural knowledge, hereby
clarifying the borderline between the mission
specific and generic elements of a MCS. The
turn-around time for a change is drastically
reduced as it does not involve any software
modifications.

It does not cover the declarative knowledge
for which the existing forms based HCI have
proven to be efficient. A mixed approach has
hence been adopted where only a subset of the
configuration data is specified through the OL.

The existence of an explicit object-oriented
data model ensures a clear framework for the
interface to the physical layer of SCOSII.

The language is on purpose 'kept simple
and stupid', expecting the intelligent behaviour
to be provided by the physical layer objects.
This facilitates improved performance within
the OL environment.

The language is bound to SCOSII. As there
is no intelligent behaviour within the logical
layer, it depends upon the level of services
offered by the physical layer. The direct impli-
cation of this is that although the architecture
concepts could be adopted, it makes little sense
to port the language environment to a different
platform than SCOSII.

The data model approach, although flexible,
has the possible disadvantage that porting OL
scripts between missions can be difficult as
each mission could have their own different
data model. This is however a property of any
generic system, not just the SCOSII OL envi-
ronment.

With the planned expansions of SCOSII to
-

cover extensive mission modelling capabilities,
the added level of abstraction within the physi-
cal layer will allow the OL to take immediate
advantages of this due to the generalised data
model approach, without requiring syntactic
nor semantic changes to the language. It is
expected that the full advantages of the SCOSII
OL will be demonstrated at that stage.

References
[I] SCOSII: ESA's New Generation of Mission Con-

trol Systems - The User's Perspective, P Kaufeler,
M Pecchioli, I Shurmer, ESOC - these proceedings.

[2] A New Communication Protocol Family for a Dis-
tributed Spacecraft Control System, A Baldi, M
Pace, ESOC - these proceedings.

[3] SCOSII: ESA's New Generation of Control Sys-
tems, M Jones, N Head, K Keyte, P Howard, S
Lynenskjold - these proceedings.

[4] SCOSII - An Object Oriented Software Develop-
ment Approach, M Symonds, S Lynenskjold, C
Miiller - these proceedings.

[5] SCOSII User Requirements Document, ESOC
DOPS-SYS-URD-001-AMD, Issue 3, February
1994.

[6] SCOSII Software Requirements Document, ESOC
SCOSII-SYS-SRD, Issue 0.6, June 1994.

[7] User Language Study, VEGA ULS.RST.REP.005
(ESOC), Issue 1.0, October 1992.

[8] Object-Oriented User Language for Satellite
Check-out, Spacebel Infonnatique (ESTEC), 1992.

[9] Control File Language for Cluster AIT, CRI CL-
CRI-ID-0006 (ESTEC), Issue 3, Februsuy 1993.

[lo] User Reference Guide for ERS-1 Check-out Activ-
ities, CRI ER-MA-CRI-AV-065, Volume 1, Issue 1,
April 1987.

[l 11 Object-Oriented Modelling and Design, Rumbaugh
et.al., Prentice-Hall 1991.

[12] Expert Systems for Automated Spacecraft Opera-
tions, CRUMatra EOA-CRI-FINAL-0001-1991
(ESOC), March 1993.

[13] Definition Study for a Meteosat Workstation,
VEGA MWS.RST.REP.002 (ESOC), March 1989.

[I41 SCOSII - A Distributed Architecture for Ground
System Control, Vitrociset Keyte, International
Symposium on Spacecraft Ground Control and
Flight Dynamics, Brazil, February 1994.

[15] A Description of the Model-View-Controller User
Interface Paradigm in the Smalltalk-80 System,
ParcPlace Systems, August 1988.

DIAMS Revisited: Taming the Variety of 3 5 3 9,133
Knowledge in Fault Diagnosis Expert Systems p - (0

M. Haziza , S. Ayache, J.-M. Brenot, D. Cayrac, D.-P. Vo
Matm Marconi Space, 3 1, rue des Cosmonautes, 3 1077 Toulouse Cedex - FRANCE.

e-mail : haziza-marc@mms.matra-espace.fr

Abstract Spacecraft Assembly, Integration and Test (AIT) is

Matra Marconi Space (MMS) has been developing
spacecrafr diagnostic support systems for eight years. The
DIAMS program, initiated in 1986, led to the development
of a prototype expert system, DIAMS-1, dedicated to the
Telecom 1 Attitude and Orbit Control System, and to a
near-operational system, DIAMS-2, covering a whole
satellite (the Telecom 2 platform and its interfaces with the
payload), which was installed in the Satellite Control
Center in 1993. The refinement of the knowledge
representation and reasoning is now being studied,
focusing on the introduction of appropriate handling of
incompleleness, uncertainty and time, and keeping in mind
operational constraints. For the latest generation of the
tool, DIAMS-3, a new architecture has been proposed, that
enables the cooperative exploitation of various models and
knowledge representations. On the same baseline, new
solutions enabling tighter integration of diagnostic systems
in the operational environment and cooperation with other
knowledge intensive systems such as data analysis,
planning or procedure management tools have been
introduced.

I. Introduction

Spacecraft (SIC) operations have pioneered the
introduction of the Knowledge-Based Systems (KBS)
technology in Space. The prototyping activities
conducted in the eighties have allowed to demonstrate
the potential of KBS to assist in controlling space
systems. Knowledge-Based Systems in SIC Control
Centers (SCC) have proven to have a high potential
for

assisting spacecraft engineers in monitoring and
analyzing SIC data, and in diagnosing on-board
failures from the knowledge of the SIC state
obtained through the telemetry.
assisting SIC engineers in complicated operations
where the exact sequence of operations is
determined by external constraints and by the actual
SIC state at each step.

also becoming a knowledge intensive activity that
requires appropriate knowledge-based assistance. Due
to the increasing complexity of space systems, an
increasing number of parameters have to be tested
before launch through more and more elaborated test
procedures. At the same time, the duration of the AIT
phases is continuously decreasing. This makes the
AIT phase a critical phase in almost all present space
projects and increases the pressure on the
development teams.

The use of knowledge based systems for emergency
management, fault diagnosis, resource management,
replanninglrescheduling, etc. and the operational
integration of such facilities in future ground
infrastructures (SCC's, AIT environments) should
help lowering the risks in problem diagnosis and
selection of recovery actions, avoiding mis-diagnosis
that might endanger the system in-orbit or under test,
and eventually reducing the overall cost of the AIT &
operation phases.

These general considerations motivated the launch
of the DIAMS program by the mid-eighties. DIAMS
is a step-wise fault diagnosis expert systems
development programma initiated by Matra Marconi
Space with support from CNES in 1986.The analysis
of the DIAMS programma illustrates the progressive
approach adopted by MMS to master the inherent
complexity of the knowledge required while
delivering successive generations of knowledge-based
tools that can actually provide support in spacecraft
operations.

11. DIAMS-0: the first steps

First experiments in the domain of diagnosis were
conducted in 86. An early mock-up was developed in
Smalltalk. It allowed to confirm some basic
knowledge representation and reasoning principles

and particularly the importance of model-based
approaches and object-oriented knowledge
representations.

The Object-Oriented (00) paradigm was found
well-suited to the implementation of knowledge
-based systems. In the 00 paradigm, each elementary
problem-solving competence may be attached as a
method to one or several domain object classes.

The Model-Based approach clearly distinguishes on
the one hand the application domain which is
modelled in terms of functional or behavioral
components and on the other hand generic reasoning
mechanisms that can interpret such models and work
on them. KBS implementing the model-based
approach may be decomposed into
domain-independent modules - the KBS shell - on the
one hand and domain-specific Knowledge Bases (KB)
on the other hand. The KBS shell implements the core
of the inference process (basic knowledge
representation and reasoning mechanisms, general
problem-solving strategy) and the external
communication services (user interface, interface
with the operational environment). It is generally
reusable for other target systems of the same nature,
possibly through customizing of the external
communication services. The Knowledge Bases are
generally specific to the target system (a specific SIC
system or subsystem for instance).

111. DIAMS-1: Establishing the founding
principles

The development of a first generation of diagnostic
tools, DIAMS-1, started in 1986. The project was
co-sponsored by the French Space Agency. It led to
the delivery of a prototype Expert System dedicated to
the TELECOM 1 Attitude and Orbit Control System
(AOCS) [7]. The selected implementation platform
was the SUNIUNIX environment and an
object-oriented dialect on top of Prolog called Emicat.
Graphical interfaces were developed on top of
Sunview. The prototype was installed in the
TELECOM 1 SCC and evaluated by the operation
staff in 1989 [8].

Setting up the basic knowledge representation and
reasoning mechanisms

Knowledge Islands

One of the main advances realized through
DIAMSl was the decomposition of the knowledge
base into different categories of so-called Knowledge

Islands (KI) representing the different domains of
expertise required for diagnosis

hierarchical decomposition of the system into
functions with identification of basic commands
and observables
qualitative models of behavior
shallow knowledge required for solving the most
common problems or to deal with situations where
the expert understanding is not deep enough to
include a functional or a behavior model

The notion of knowledge island turned out to be
particularly well-suited to the management of the
different natures of knowledge. It greatly facilitated
the KB maintenance and incremental refinement. It
also made easier the local implementation of new
types of knowledge, including new or refined
knowledge representation paradigms designed to
achieve a finer representation.

Functional knowledge

The functional model consists of a set of functional
diagrams, grouped into knowledge islands, and
describing at the component level:

the functional elements of the system,
the functional links, representing possible
influences between functional elements,
the observable parameters (telemetry) associated to
some of the functional links, and the available
telecommands.

The functional model is hierarchical and its deeper
level corresponds to the limits of the satellite
commandability and observability. It depicts
telecommands and telemetries connections and
corresponds to the switching diagrams used in SIC
operation engineering activities (figure 1).

Figure I . Example of functional diagram

For each functional element, a propagation function
defines how abnormal influences received are
propagated to other elements, under the assumption
that it is nominal (not faulty). It describes how this
component responds to abnormal input influences, or
how its inputs can be abductively suspected when its
outputs are in abnormal states.

The main justification of this hybrid model based
approach is that, because the systems modelled are
very complex, the functional elements do not have a
general description of their behavior. In other words,
the model is not built to provide predictions of all the
possible behaviors of the modelled system. It is rather
a qualitative representation of the possible fault
propagation between the components of the system.
The fault modes of the suspected unit(s) are defined
only by their signatures in terms of abnormal
output@). Fault modes do not need to be
systematically identified a priori. Interactions
between components can stand for all kinds of
physical signals (e.g. electrical, command signals,
thermal influences). A very restricted set of states has
been shown sufficient in most cases to represent the
propagation of faults over the functional layouts.

Diagnostic reasoning in a functional KI may be
decomposed into three fundamental tasks which are:

hypotheses generation: given suspect links pointed
out by a behavior analysis or by previous analyses
in other functional KI's, find out which functional
elements might account for the symptoms. This
result is achieved by backward propagation of the
anomalies through the links between the functional
elements, using the propagation functions
abductively.

* hypotheses elaboration: given the set of suspected
functional elements given by the reasoning in the
previous step, determine what the impact of their
fault would be on the observables of the K1 -
currently investigated. This is achieved through
forward propagation through the links, using the
propagation functions deductively.

* hypotheses discrimination, that is discriminate
among the hypotheses coming from the first step by
adding more information about other observable
parameters generated at the second step. The
principle of the diagnosis is then to enter a
discrimination loop between the possible causes.
The system selects an observable according to
various criteria, like the reliability of the measure or
the discrimination power of the observable, and

then asks for its qualification. Depending on the
nature of the response, some possible causes are
discarded (the ones which are incompatible with the
qualification of the observable given by the user). If
there are still discriminating observable parameters,
another step of the loop is entered, otherwise the
result of the diagnosis is either a single cause or a
set of non discriminated possible causes.

Behavior knowledge

The behavior Knowledge meets the requirement for
system level knowledge that allows to rapidly get a
partial conclusion about the origin of the problem
(reconfiguration criterion, global fault corresponding
to some system state variables) and then to focus the
attention on some subfunctions of the functional
model and so to limit the exploration of the functional
model to these subfunctions.

Standard forms were defined to capture the AOCS
behavior knowledge. These forms were used to
specify in a systematic way all the observables (e.g.,
the roll angle), system variables (like the nozzle firing
command or the nozzle state variable) and the
observable manifestations (e.g., the displacement of
the SIC nutation center along the roll axis after an
actuation sequence) necessary to represent the
behavior of the system together with the relationships
existing between these different elements. The
behavior model also contained a number of causal
relationships representing the AOCS automatic
reconfiguration logic. Once this information was
entered in the KB, the KBS shell could build the
causal graphs relating system variables, fault modes,
and observable manifestations, and discriminate
between them using the same generic inference
mechanisms as in the functional model (figure 2).

Figure 2. Examples of behavioral relalionships
1

Lessons learned from the experimentation phase

The main results of the experimentation phase were
gathered in a document jointly elaborated with the
Telecom 1 operations [8]. The experimentation of the
prototype was very useN in clarifying the situation
and mission of the expert system in the SCC and in
refining the operational requirements. It confirmed
DIAMS-1 basic knowledge representation and
reasoning mechanisms. The general conclusion was
that the DIAMS approach improved the
communication between the SIC manufacturer and
the SCC staff, and that, as a model-based system,
DIAMS provided the SCC staff with a better
knowledge of the SIC functions and behavior. The
experimentation phase also indicated how additional
functionalities could be implemented in future
versions of the system.

The DIAMS-1 experimentation phase
demonstrated that the approach chosen was ripe for
being applied in large scale applications. It convinced
the French Space Agency to start the development of
a full scale diagnostic support system for TELECOM
2 satellites.

Two of the technical lessons learned during the
experimentation phase are worth being recalled here:

An important part of the SIC knowledge is available
under graphical form (functional diagrams for
instance). The experimentation emphasized the
importance of the graphical model edition and
animation services. Graphical model editors are
needed for instance for building the functional
model and checking the graphical consistency of its
hierarchical deco&siGo;. Model animators are
needed to display and to animate the appropriate
diagrams during reasoning. Models editors and
animators require a development tool which offers
an object-oriented language for modelling the
domain semantics (semantic objects) and integrated
graphical utilities to manage the interactions
between the semantic objects and their graphical
representations.
It was also remarked that some basic mechanisms
could be reused in the framework of the SIC project
to support a number of design activities. The
hypothesis elaboration mechanism could be for
instance adapted to perform impact analyses - e.g.,
to figure out the impact of a given fault or a given
telecommand on the system observables. Impact
analysis is one of the main techniques used for
instance to elaborate the TM/TC plan or to analyze

failure modes effects and criticality (the FMECA)
during the SIC design phase. TMITC Plans and
FMECA also are major sources of information for
the construction of the KB and the optimization of
the diagnostic strategy.

W . DIAMS-2: Maturing the knowledge
modelling and the development prwess

Through DIAMS-2, MMS addressed the
development of a fault isolation tool covering a whole
spacecraft: french telecommunication satellite
TELECOM 2. This project was the consequence of
the very positive results of the development and
evaluation of the DIAMS-1 prototype [9][2][3] [4].

DIAMS-2 was developed over a period of 4 years
from 1989. The selected implementation platform
was the KEE/CommonLISP object oriented
environment which was considered the reference
environment for KBS development when the
DIAMS-2 project was started. It also complied with
the semantic-graphic integration requirement that
resulted from the DIAMS-1 experimentation.

Refining Knowledge Modelling

DIAMS-2 is a hybrid system combining decision
tree based symptoms - hypotheses associational
reasoning to initiate diagnosis and to focus the
reasoning on particular functions and components and
the DI AMS- 1 model-based techniques to complete
diagnostic reasoning on particular functions and to
provide the final isolation of the fault.

Investiaation Procedures "

The decision-tree based knowledge, called
Investigation Procedures (IP) in the latest generation
of the tool, adds a strategic layer on top of the
functional model. It is used to select among pending
hypotheses and to focus the attention on definite parts
of the functional model (figure 3).

IP modelling starts at the system level,
implementing a top-down approach. The used
knowledge is elaborated by SIC operation engineers
during the mission preparation phase. It corresponds
to the Contingency Operations section of the
Operations Preparation Handbook. IPS can be
enriched on the basis of anomalies experienced
during the SIC in-orbit 1ifetime.The knowledge is
represented as decision trees whose nodes are either
binary tests (e.g., testing whether a given parameter is
abnormal) or actions on the satellite (e.g., sending a

telecommand that will allow to discriminate between
candidate hypotheses).

A diagnostic session starts when the user inputs a set
of anomalies. The initial tests implement a
discrimination strategy at system level. These tests are
mainly membership tests which aim at localizing the

Maturing the Development Process

Moving to a full scale industrial application raises
stringent requirements in terms of Knowledge
Management and KBS Development Methodology.
With support from CNES, MMS elaborated a first set
of Software Engineering principles and Quality
Assurance rules applicable to KBS projects that
benefited from the experience acquired in DIAMS-1.

The construction of the Knowledge Base was
conducted by a dedicated team independent from the
KBS shell development team. The KB development
team performed the capture of knowledge and the
construction of the KB using well-suited methods and
tools in compliance with the representational
constraints of the operational environment. It also
maintained close relationships with the target system
project organization - essentially through cooperation
with the TELECOM 2 operation engineering team; the
System, Subsystem and Integration specialists of the
SIC project did not directly participated in the
construction of the KB.

satellite subsystem where the primary anomalies have The development of a KBS shell is rather similar to
occurred. This kind of procedures can often be a conventional SW development, and requires the
automated. same kind of methods and tools for design, coding and

At subsystem level, the diagnostic strategy consists
in using as far as possible higher level observations
and characterizations of the satellite behavior or
evolution, in order to simplify or even avoid in-depth
analyses involving the functional model. Connections
with the functional model are reached when tests
involve large numbers of telemetries and need
reference states to compare the current situation with.

testing. The design of the DIAMS-2 KBS shell
inherited most of the basic knowledge representation
and reasoning mechanisms already implemented in
the DIAMS-1 prototype and validated during the
experimentation phase. A dedicated team assumed the
design, coding and testing of the tool basic
functionalities. A third team, independent from the
development teams, was in charge of the quality
control and of the integration and final validation of

Figure 4. Investigation of a fwtcrional KI with DIAMS-2 the KBS.

A pre-operational consolidation phase was
scheduled in the continuation of the KBS development
phase. Its goals were

to familiarize the SCC staff with the KBS
to experiment and eventually to enact the KBS
utilization and maintenance procedures
to consolidate and validate the external interfaces
with the SCC information system, including the SIC
and Simulator data access procedures.
to calibrate tests and explanations on-site with the

end-users.
* to refine some knowledge islands to account for the

in-orbit experience (e.g., the SIC in-orbit thermal
behavior).

Figure 5. DZAMS-2 Development Plan Overview
I 1

Requirements
Generic Kernel Specification

Requirements r$ 7 Review

KBS Shell I IDetailed Design I I KBziged I I

Readiness
Review

Validation
On-Site Acceptance

Review (Preliminary)

Consolidation
On-Site Acceptance

Review (Final)

Operation ?-I
Integrating the end-user in the develop men^
process

Cooperation between the KB development team
and the SCC staff is needed, during the construction
of the KB, to ensure consistency between the
knowledge representation formalisms used in the
SCC and those used in the KB. A close cooperation is
also needed when the system is transferred from the
development site to the operation site.

In DIAMS-2, the integration of the end-user in the
development cycle was founded on the following
principles.

The SIC User's Manual (UM) remained the
reference document for the transfer of information
between the SIC manufacturer and the SCC. The
level of decomposition of the models was the UM's
one, and the same graphical representation modes,
and variable identifiers were used.

Operation Engineers from the SIC project were
involved in the development process to
continuously maintain consistency between the
DIAMS-2 KB and the SIC User's Manual.

A TELECOM 2 SCC representative was included
in the KB development team. His mission was to
check that the knowledge representation used
(symbology, nomenclature) was consistent with the
one used in the SCC, that the functional model was
compatible with the hierarchical view of the SIC
and the monitoring sets defined in the SCC, and that
the observables used were actually accessible
through the SCC. Conversely the KB was
developed in such a way that the SCC engineer
could draw benefit from the KB design and
development activity.

Remark: The TELECOM 2AJ2B launch campaigns
took place during the DIAMS-2 KB Detailed Design
phase. This resulted in a lack of availability from both
the SIC operation engineering team and the SCC
personnel. A first consequence was that an important
effort had to be devoted to the refinement of the KB
during the pre-operational consolidation phase. This
again confirmed the crucial importance of a right
phasing with the SIC and SCC development activities,
and more generally of a tighter integration between
the KBS, SCC and SIC development processes.

V. DIAMS-3: the Integration Age

In DIAMS-2, comprehensiveness and efficiency
was privileged against fineness of representation and
reasoning. Simplified representations of knowledge,
generally well-suited to the practical problems faced
in spacecraft operations were introduced as a first
approximation. However, in some specific
knowledge islands, refined representation and
reasoning techniques are required to appropriately
handle time, incompleteness and uncertainty. This
last refinement step is now being considered through
the development of a new generation of diagnostic
tools called DIAMS-3 that started in 1992 [5] .

Other important objectives of DIAMS-3 concern
the reduction of the knowledge acquisition efforts,
tighter integration with other knowledge-based tools
like data analysis or procedure management tools, and
more generally the complete integration of the
diagnostic system in the operational loop [101.

C++ is the implementation language retained for
DIAMS-3. Beyond porting the DIAMS-2 machinery
into C++, DIAMS-3 provides generic model edition
services and a set of libraries of operational standard
for handling time, incompleteness and uncertainty
and for cooperation with other knowledge-based tools
(knowledge interchange format and protocol,
mapping engine, exchange monitor, etc.). These
libraries and basic services, all developed in C++, will
be reused in other KBS development projects.

Integration Issues

The different integration issues raised by the
operational integration of the diagnostic tool in SCC's
or AIT environments have been addressed through a
European project called UNITE, co-sponsored by the
Commission of the European Communities. They are
illustrated hereafter (figure 6).

I
Integration of

Knowledge acquisition
I

Functional Integration

in the SIC lifecycle in the SCC

based system KBS shell
development lifecycle Development

\ 1
Integration of Knowledge Schemes;

Cooperation between KBS 's

1) A first issue concerns the integration of different
knowledge schemes within a given KBS. Diagnostic
systems in Space indeed require the implementation

and integration of different knowledge representation
and reasoning paradigms:

they need to handle different domain models
representing different views of the satellite system
(e.g., thermal view, mechanical view, electrical
view, etc.).
the input information, be it provided by human
users or by SCC monitoring facilities, is sometimes
numeric but more often symbolic, intrinsically
uncertain and imprecise, with a validity time frame.
the basic inference mechanisms are themselves,
e.g., exploiting uncertain and imprecise symbolic
transfer functions (such as qualitative fault
propagation functions) which may need to handle
time to reflect the variation of dynamics between
different views of the system.
diagnostic reasoning deals with qualitative
temporal propositions with a Start, an end and a
persistence.
dependency tracking and maintenance of
consistency between different reasoning contexts,
or the management of the assumptions and
time-constraints under which statements are valid,
may require the parallel handling of several
uncertain and time-dependent alternative
hypotheses.

One of the goals is to give the knowledge engineer
the flexibility to choose the most appropriate
knowledge representation for some aspects of the
problem (e.g., various representations of time and
uncertainty), and yet process them in an integrated
manner.

2) A second kind of need is concerned with the
sharing and exchange of knowledge between KBS's
that need to cooperate to achieve some global
problem solving task. For instance monitoring,
diagnostic and data analysis tools need to cooperate to
detect and then locate the origin of anomalies. They
may need to exchange knowledge or complex
information. As the formalisms used to represent this
information may vary from KBS to KBS, it is
necessary to set up translation mechanisms, from the
formalisms of each KBS to a common Knowledge
Interchange Format and vice-versa. The approach
followed by MMS in that domain is experimental.
The goal being to assess the level of maturity and the
applicability of existing solutions like those
elaborated within the Knowledge Sharing Effort [12].

3) Functional Integration regards cooperation
between the KBS and conventional software modules
or database management systems for the construction
of fully integrated operational applications. The
methodology issues raised by the operational
integration of the diagnostic tool in the SCC are
investigated in [I]. Functional integration requires a
hybrid methodology framework for co-existing
conventional / knowledge-based developments.

4) Finally the DIAMS experience feedback has
emphasized the importance of a better integration of
the knowledge capture tasks in the SIC lifecycle.

Integration of knowledge models

The following figure provides a synthetic view of
the different types of knowledge models explored
through DIAMS-1 and DIAMS-2 and further refined
and integrated in DIAMS-3 (figure 7).

Figure 7. Overview of DZAMS-3 Knowledge Models

strategic level investigation procedure LocalIP

root-hypothesis I
Functional KI I I
Causal KI I

possibly other
classes of KI

Causal KI

In the latest version of the tool, behavioral
knowledge (also called causal knowledge) is
composed of a reduced set of FMECA related to a
family of symptoms, that allows to explore and refine
some higher level hypothesis. This is a natural
extension of the notion of behavior model explored in
DIAMS-1.

Incompleteness is inherent to FMECA. A more
flexible representation of the effects of fault modes
has been proposed that eases expression of
knowledge, down to the relevant level of detail (i.e.,
events chronologies), and that does not make any
assumption about what is not said explicitly [6].

Handling of time, incompleteness and uncertainty

Some improvements brought by DIAMS-3 should
allow to better handle time, incompleteness and
uncertainty. Different techniques have been proposed
for handling incompleteness, uncertainty or
time-dependency. The investigation of the current
practice shows that many difficulties in terms of
performance or complexity have been experienced in
deploying these techniques in industrial contexts and
that ad hoc adaptations or simplifications are
generally done by the development teams to match
the industrial constraints. Beyond adequation to the
specific knowledge representation and reasoning
needs of the diagnostic tool, performance and
complexity thus shall be the main criteria for the
assessment of candidate solutions in that domain.

For instance, the information available about the
symptoms is incomplete: many observables are not
fully monitored in real time. Allowing the users to
express their uncertainty about the interpretation of
the observable was also recognized as a need. Indeed,
some observations involve complex combination and
abstraction of elementary pieces of data, followed by
a high level interpretation of the result. Adequate
formalisms are needed to handle incompleteness and
allow expression of uncertainty about the
presencelabsence of a manifestation.

From a discrimination point of view, graduality in
the uncertainty of the fault effects and in the
characterization of the observables has been
introduced. It allows a ranking of the solutions given
by the system. As the diagnostic process is iterative, it
was also found useful to have advice with respect to
the selection of the next observables to be tested. This
is achieved through a utility function that assesses the
impact of the test of a manifestation on the possibility
of fault mode.

Application developers will be provided with
libraries of basic knowledge representation and
reasoning mechanisms that can be easily included
into application programs without imposing the use of

any particular development tool for the compute explanations for symptoms. A possibilistic,
implementation phase. Considering the current trends temporal, cost-bounded ATMS machinery is used.
in Information Technology, libraries of C++ objects The cost-bounded feature allows to focus of the
seemed to be the best possible choice for DIAMS-3. reasoning process and to limit computational costs.

A first set of libraries of reasoning schemes have The main risk identified for strong integration is
been selected, developed or re-developed in C++, and performance. The strong integration approach is
appropriately encapsulated to answer DIAMS needs: currently considered as experimental and is not

A new reasoning scheme which allows to represent included in the DIAMS technical baseline.
and process incomplete and uncertain relations
between faults and manifestations (such as
FMECA) in a diagnostic context. The core model,
based on the possibility theory, includes
consistency-based and abductive diagnostic
algorithms eploiting uncertain observations, as well
as additional tools to measure the utility of tests and
the discriminability of a set of fault modes [6].
Extensions of this model to the processing of
functional knowledge are being developed.
A Valuation Based System (VBS) which allows
uncertain reasoning in a causal graph with various
formalisms, e.g. bayesian, possibilistic, Dempster-
Shafer's Theory of Belief, etc.
A Time Constraint Propagator (TCP) which enables
the comparison of an actually observed chronology
of events with an a priori knowledge about the
causal relationships between events. An hypothesis
is confirmed by the TCP when all observed events
occur at scheduled dates. If any of the observed
events occurs outside the expected time window
then the hypothesis is inconsistent and therefore is
discarded. When the hypothesis-related events have
not yet occurred - the hypothesis can be neither
confirmed nor discarded - the hypothesis is said
incomplete and TCP provides the validity interval
for that hypothesis.

Integration of reasoning schemes

The joint utilization of the TCP and VBS in a
diagnostic context is illustrated by figure 8.

Figure 8. Weak Integration of Reasoning Schemes
t

Causal KI Q
I Extraction

I

I I Merging I

pdated Hypotheses Plausibilities *
Integration of knowledge acquisition in the SIC
lifecycle

The reduction of the knowledge acquisition costs
was a permanent concern in each phase of the DIAMS
program. A first conclusion was that, in order to
improve the interactions with SIC specialists, the
knowledge modelling activity should benefit to the
S/C project tasks. The goal in DIAMS-3 is now to
reach a level of expressiveness and genericity such
that the DIAMS knowledge bases could be built and
reused throughout the satellite lifecycle. This should
contribute to significantly reduce the knowledge
acquisition costs.

Sometimes such a (weak) integration approach may Current Projects
not be sufficient. Reasoning threads may be too
intertwined to be processed efficiently in a separate
way. A prototype has been developed to tackle this
kind of problem and to evaluate the candidate
technology. It addresses the so-called "strong
integration" of temporal and uncertain reasoning in a
model based diagnostic context. The computational
approach consists in generating an ATMS network -
Assumption-based Truth Maintenance System - to

Future Projects

information bases
- Formalization of

VI. Concluding Remarks

The DIAMS program followed a spiral approach,
each cycle partially or fully implementing a reference
development cycle. The DIAMS spiral lifecycle model
is summarized in table 1. Matra Marconi Space is now
involved in a tool improvement cycle (DIAMS-3) that
would enable a tighter integration of the diagnostic
system in ground infrastructures. A more general
objective is to set up the techniques, methods and tools
that will allow to consider the KBS technology as a

Systems: the Methodology Issue", Intl. Symposium on Space
Mission Operations and Ground Data Systems, Greenbelt
(USA), 1994

[2] BASTIEN-THIRY C., MAURIZE J.C.: "SE-TC2 : The first
expert system in a CNES Satellite Control Center", ESA
Workshop on Artificial Intelligence and KBS for Space,
Noordwijk (NL), 1993.

[3] BRENOT J.M., CALOUD P., VALLUY L.: 'The
development of an operational expert system for the
Telecom2 satellite control centre", ESA Workshop on
Artificial Intelligence and KBS for Space, Noordwijk(NL),
1991.

for the of future ' IC 141 BRENOT J.M,, CALOUD P., VALLUY L., GASQUET A. :
Control Centers or AIT Environments. "On the design and development choices to bring to operation

The knowledge acquisition issue remains pivotal. It
comes down to the following two questions

How to maximize the reuse of already formalized
and managed knowledge?
How to adapt the SIC project tasks and deliverables
so that knowledge could be acquired 'on the fly'
during SIC developments ?

A number of solutions have been proposed to
proceed in this direction. The on-going experiments
should prove that these solutions are ripe for
introduction in SIC projects.

Acknowledgments

Work related to DIMS- I and DIMS-2 has been
supported by CNES since 1986. Work related to D M - 3
has been partially funded by CEC through UNITE project
(ESPRIT project 6083) since 1992. Of her partners involved
are: Cap Gemini Innovation (France), Queen Mary
Weslfield College (UK), Sintef Delab (Norway), Eritel
(Spain), 17'MI (France).

References

I I] AYACHE S., HAZILA M., CAYKAC D.: "Delivering
Spacecraft Control Centers with Embedded Knowledge-Based

a diagnostic expert system for the Telecom 2 satellite", Intl.
Conf. on Fault Diagnosis, Toulouse (F),1993.

[5] CAYRAC D., HAZIZA H. : "Management of Uncertainty and
Temporal Dependencies in Real World Diagnostic Systems,
Application to the Space Domain", Intl. Conf. on Fault
Diagnosis, Toulouse (F), 1993.

[6] CAYRAC D., DUBOIS D., HAZIZA M., PRADE H.:
"Possibility Theory in Fault Mode Effects Analyses", IEEE
World Congress on Computational Intelligence, Orlando
(USA), 1994

[7] HAZIZA M.: "An Expert-System shell for satellite fault
isolation based on structure and behaviour", Workshop on A1
Applications to Space Projects, Noordwijk (NL), 1988.

[8] HAZIZA M., GIBET L., DEBAY P.: "DIAMS: An
Expert-System shell for satellite fault isolation - The User
Feedback", 3rd Intl. Conf. on Human-Machine Interactions
and A1 in Aeronautics and Space, Toulouse (F), 1990

[9] HAZIZA M.: "Towards an operational fault isolation expert
system for french telecommunication satellite TELECOM 2".
Intl. Symposium on Ground Data Systems for Spacecraft
Control, Darmstadt (G), 1990

[lo] HAZIZA M.: "Delivering Operational Space Applications
with Embedded Knowledge-Based Systems", World
Congress on Expert Systems, Lisbon (P), 1994

[l l] NECHES R., FIKES R., FININ T. GRUBER T., PATIL R.,
SENATOR T., SWARTOUT W.: "Enabling Technology for
Knowledge Sharing", A1 Magazine, Fall 1991

Table I . The DIAMS Spiral Lifecycle Model

Phase

Characterization in the large

Characterization in the small

Analysis

Architectural Design

Detailed Design and Coding

Verification & Validation

Operation & Maintenance

I I I

Test-Bed X (x) (x)
Implementation I

I

(Smalltalk\ X (XI (XI

I prototype I x I x

Phase

USING GRAPHICS AND EXPERT SYSTEM TECHNOLOGIES
TO SUPPORT SATELLITE MONITORING

AT THE NASA GODDARD SPACE FLIGHT CENTER

Peter M. Hughes & Gregory W. Shirah
Automation Technology Section (Code 522.3)

Mission Operations and Data Systems Directorate
NASAJGoddard Space Flight Center

Greenbelt, Maryland 2077 1

Edward C. Luczak
Computer Sciences Corporation

7700 Hubble Drive
Lanham, MD, 20706

ABSTRACT

At NASA's Goddard Space Flight Center, fault-
isolation expert systems have been developed to
support data monitoring and fault detection
tasks in satellite control centers. Based on the
lessons learned during these efSorts in expert
system automation, a new domain-specific
expert system development tool named the
Generic Spacecraft Analyst Assistant (GenSAA),
was developed to facilitate the rapid
development and reuse of real-time expert
systems to serve as fault-isolation assistants for
spacecraft analysts. This paper describes
GenSAA's capabilities and how it is supporting
monitoring functions of current and future
NASA missions for a variety of satellite
monitoring applications ranging from subsystem
health and safety to spacecraft attitude. Finally,
this paper addresses efforts to generalize
GenSAA's data interface for more widespread
usage throughout the space and commercial
industry.

INTRODUCTION

A group of spacecraft analysts are responsible
for the proper command, control, health and
safety of each spacecraft managed by NASA's
Goddard Space Flight Center (GSFC). During
numerous contacts with the satellite each day,
these analysts closely monitor real time data
searching for combinations of telemetry
parameter values, limit violations, and other

indications that may signify problems or
failures. This is a demanding, tedious task that
requires well-trained individuals who are quick-
thinking and composed under pressure.
However, as our satellites become more
complex, this task is becoming increasingly
more difficult for humans to conduct at
acceptable levels of performance [Ref. 21.

At GSFC, fault-isolation expert systems have
been developed to support data monitoring and
fault detection tasks in satellite control centers.
Based on the lessons learned during these efforts
in expert system automation, a new domain-
specific expert system development tool named
the Generic Spacecraft Analyst Assistant
(GenSAA), was developed to facilitate the rapid
development and reuse of real-time expert
systems to serve as fault-isolation assistants for
spacecraft analysts. Although initially
developed to support GSFC's satellite
operations, this powerful tool can support the
development of highly graphical expert systems
for data monitoring purposes throughout the
space and commercial industry.

This paper describes GenSAA's capabilities and
how it is supporting monitoring functions of
current and future NASA missions for a variety
of satellite monitoring applications ranging from
subsystem health and safety to spacecraft
attitude. Finally, this paper will address efforts
to generalize GenSAA's data interface for more
widespread usage throughout the space and
commercial industry.

GenSAA OVERVIEW

GenSAA is an advanced software tool that
allows the rapid development of intelligent
graphical monitoring systems. Through the use
of a highly graphical user interface and point-
and-click operation, GenSAA facilitates the
rapid, "programming-free" construction of
graphical expert systems to serve as real-time
fault-isolation assistants for spacecraft analysts.

GenSAA expert systems are easily built and
maintained using an integrated set of utilities
called the GenSAA Workbench which are used
to define the expert system's telemetry data
interface, rule base, and X/Motif-based user
interface. GenSAA insulates the expert system
developer from the complicated programming
details of the systems with which the expert
system will interface. This tool promotes the
use of previously developed rule bases and
graphic objects, thus facilitating software and
knowledge reuse and a further reduction in
development time and effort.

The development of GenSAA was motivated by
the lessons learned from a research effort to
evaluate the value and effectiveness of using
graphical rule-based expert systems for fault
detection purposes. The project, which was
named the Communications Link Expert
Assistance Resource (CLEAR), was quite
successful. Although CLEAR was initially
conceived to serve as a proof-of-concept
prototype, it was ultimately used to support real-
time operations for NASA's Cosmic Background
Explorer (COBE) satellite where it was
instrumental in demonstrating the advantages
that expert systems offer mission operations.
More importantly, CLEAR provided insights
into how expert systems could be developed
more quickly and with less effort. GenSAA
addresses this issue by insulating the expert
system developer from the programming details
by employing a "drag and drop" method of
developing these systems.

In addition to meeting the previous objective,
GenSAA was created as an alternative to high-
end, complex and expensive commercially
available expert system development
environments. In an attempt to meet a wide
variety of application needs, these general-
purpose programming tools are often too

complex to be effectively used by domain
experts (spacecraft analysts in this case) to
create graphical expert systems. They typically
require weeks of training and specialized
programmers to implement the data interface,
graphical user interface, or rule base for each
expert system. GenSAA empowers the
spacecraft analysts to easily select the data to be
monitored, layout and define the behavior of the
expert system's user interface and build rules for
fault detection purposes without the intervention
or delay of programmers.

GenSAA consists of two major components: a
Workbench and a Runtime Framework. [see
figure 11. The Workbench is used to specify
expert systems in an offline mode (i.e., not
connected to a live data source). The
Workbench creates several resource data files
that are read into the Runtime Framework which
uses these resource files and connects to the data
source.

GenSAA
WorkBench

3 GenSAA
Runtime
Framework

Figure-1: Architecture

The GenSAA Workbench consists of a Data
Manager, a Rule Builder, and a User Interface
Builder. The Data Manager is used to select the
telemetry data that is desired for use by the
expert system; the Rule Builder is used to create
expert systems rules based on the telemetry
data; and the User Interface Builder allows the
user to create graphical user interfaces to display
the telemetry data and the data inferred from the
expert system rules. The GenSAA Workbench
is tightly integrated and easy to use, employing
direct manipulation techniques such as "drag
and drop." The Workbench also provides

mechanisms to automatically generate expert
system rule statement syntax.

The GenSAA Runtime Framework is the
executive for a GenSAA Expert System. It
controls the user interface, distributes the real-
time data received from the data server, and
manages rule execution. The core element of
the Runtime Framework is the 'C' Language
Integrated Production System (CLIPS). CLIPS
is an inference engine and rule-based
programming language that was developed at
the NASA Johnson Space Center. It is widely
used throughout NASA, other government
agencies, academe, and the commercial sector.

Expert systems that are created using GenSAA
require no source code development, and
therefore facilitate very rapid development life
cycles. Changes and enhancements to existing
expert systems can also be made rapidly at very
low cost.

GenSAA runs on Sun and Hewlett-Packard

UNIX workstations using X-windows with
Motif. Earlier this year GenSAA was delivered
to operations for acceptance testing. At the time
of publication, it is expected that GenSAA will
be in operations in a number of divisions at
GSFC and at a few external sites.

The next sections describe several specific
applications of GenSAA at GSFC. The first
group of applications is associated with
spacecraft attitude monitoring. The second
group is associated with the monitoring of
spacecraft and their payloads. The applications
are currently under development and should
become operational soon.

GenSAA APPLICATIONS SUPPORTING
FLIGHT DYNAMICS

GSFC's Flight Dynamics Division (FDD) is
responsible for maintaining the orbit and
attitude of many Goddard spacecraft. The FDD
has used Heads Up Displays (HUDs) for
previous missions to graphically portray attitude

Figure-2: XTE HUD Created Using GenSAA

709

and orbit parameters in a manner that is similar
to the gauges and dials that appear in an airplane
cockpit. These HUDs enable flight analysts to
quickly view the basic orbit, attitude, and sensor
status of a given spacecraft.

The FDD is using GenSAA to create the HUDs
for the X-ray Timing Explorer (XTE)
spacecraft, the Submillimeter Wave Astronomy
Satellite (SWAS) spacecraft, and the Solar and
Heliospheric Observatory (SOHO) spacecraft.
These missions are among the first FDD
missions to be supported on UNIX workstations
using X-windows. By using GenSAA, the FDD
expects to reduce the effort needed to create the
HUD while increasing the ability to respond to
change requests.

The XTE and SWAS HUDs are using
GenSAA' s inference engine to infer engineering
unit values based on raw telemetry values. The
inferred engineering unit values are displayed
on the HUD via graphical and textual user
interface objects. Values that are displayed
include: magnetometer, gyroscope, and torquer
bar biases and rates, guide star and sun sensor
positions, and predicted versus actual attitude.
Figure-:! is an example of a prototype HUD
generated with GenSAA for the XTE mission.

The FDD is also using GenSAA to support the
SOHO mission. The HUD for SOHO is similar
to the XTE and SWAS HUDs, however, SOHO
is enhancing the GenSAA Runtime Framework
by embedding a number of 'C' functions to
compute the spacecraft real-time attitude based
on the current telemetry data received from the
data server. Although the SOHO HUD
development team had the option to link these
functions with the inference engine for
invocation via expert system rules, this group
chose to embed the functions to optimize
performance of these computationally intensive
attitude algorithms. This situation demonstrates
one advantage of having direct access to the
source code of GenSAA.

GenSAA APPLICATIONS SUPPORTING
MISSION OPERATIONS

In GSFC's Mission Operations Division' (MOD),
GenSAA is being used to support real time
satellite monitoring in the control centers.
GenSAA will be used to build simple advisory
expert systems that monitor spacecraft telemetry

and ground system parameters. Monitoring
these parameters during spacecraft contacts has
traditionally been the responsibility of satellite
operators.

Two of the primary objectives of this
organization's applications are to expedite the
fault detection and resolution process and to
reduce the amount of data (telemetry points) that
human operators must monitor in order to assess
the current health and status of the spacecraft
and the scientific instruments onboard. With
GenSAA, spacecraft engineers will develop
simple expert systems that will assist console
analysts by reducing the number of data points
they must monitor from hundreds of sensor
values to dozens of derived system level status
points.

GenSAA does not constrain the user in how to
represent the system being monitored. Some
groups are planning to model the functional
operations of the system (i.e., functions across
subsystems) while others are planning to
develop physical models of the system being
monitored. For example, the Solar Anomalous
and Magnetospheric Particle Explorer
(SAMPEX) project plans to develop a series of
GenSAA expert systems to monitor the
scientific instruments (LEICA [See Figure 31,
MASTIPET and HILT) and some of the
spacecraft's subsystems including the Small
Explorer Data System (SEDS), the attitude
control system (ACS), and thermal system.

In contrast, members of the Gamma Ray
Observatory (GRO) Flight Operations Team
plan to develop discrete expert systems for both
functional and physical perspectives. This team
plans to develop expert systems to monitor the
power subsystem, communications function and
a high level health and safety monitoring
system. In addition to the above mentioned
missions, GenSAA will support satellite
operators for Transportable Payload Operations
Control Center (TPOCC) based missions
including, but not limited to, WindIPolar,
SWAS, XTE, SOHO, Tropical Rainfall
Measuring Mission (TRMM) and the Advanced
Composition Explorer (ACE) missions.

GenSAA is expected to provide numerous
benefits to the mission operations arena at
GSFC. In addition to assisting the satellite
operators with the data monitoring task,

GenSAA will reduce the development time and
effort of the these systems; serve as a training
tool for student controllers; and protect against
the loss of satellite operations expertise,
especially during periods of personnel turnover.
This last benefit even spans beyond a single
mission; control center expert systems that
capture fault-isolation knowledge preserve
expertise from mission to mission which may
prove to be beneficial as we embark on multi-
mission flight operations teams (i.e., a single set
of operators responsible for operating multiple
satellites) as a means to reduce satellite
operations costs.

GENERALIZING GenSAA FOR BROADER
USE

A variety of groups outside of GSFC's Flight
Dynamics and Mission Operations Divisions
have expressed an interest in using GenSAA to
monitor their real time data. However,
application to other domains has been limited
because GenSAA is currently designed to
interface to GSFC-specific ground system

formats. To broaden GenSAA's potential
application, work was begun earlier this year to
generalize its data interface to enable it to
receive data in other formats.

The approach adopted is to create bridge
processes that interface GenSAA to external
data sources. A bridge receives data from an
external source and converts it to a format that
GenSAA understands. A bridge template is
being developed that will be used to simplify the
construction of bridges for specific interfaces.
To facilitate reuse and to accelerate the
application of GenSAA to new domains, the
GenSAA Project will maintain a library of
bridges to databases and other data sources.

To build a new bridge, the installer creates a file
containing a description of the variable names
and data types to be received from the external
interface. This file is used to automatically
generate a large portion of the bridge software.
The installer must also write a small amount of
program code that will request and receive the
data. Finally, these software components are

Figure-3: Leica Status Monitor Created Using GenSAA

71 1

linked together to form a bridge which provides
data conversion capabilities enabling the use of
GenSAA in new domains.

AUTOMATING SATELLITE
OPERATIONS WITH GenSAA

During the past year, a new research project was
started to develop a proof-of-concept prototype
that demonstrates how expert system technology
can be used to automate routine, nominal-
situation control center operations that involve
both monitoring and commanding actions. [Ref.
61

The project is enhancing GenSAA to enable the
automation of nominal pass operations for the
SAMPEX spacecraft. The enhanced software,
called the Generic Inferential Executor (Genie),
will perform monitoring and commanding
operations in the SAMPEX Payload Operations
Control Center (POCC) as specified in a pass
script that is defined by members of the Flight
Operations Team (FOT). The pass script
defines precondition tests, actions, results
checks, decision branches, and background
monitoring activities. In nominal situations,
Genie will execute the pass script without the
intervention of FOT members; if an unexpected
situation arises, an FOT member will be alerted.
Automated operations include verifying the pre-
pass readiness test data flow, examining
spacecraft event log messages, starting
configuration monitors, evaluating system
events, initiating the uplink of the daily
command load, and initiating dumps from the
spacecraft.

The automation prototype will be demonstrated
during a live $AMPEX pass. It is anticipated
that the results gathered on this project will
influence the development of enhanced ground
system software that will automate operations in
future GSFC missions, including the Earth
Observing System (EOS) project.

CONCLUSION

GenSAA is being used to develop several expert
systems that will support current and upcoming
spacecraft missions. GenSAA is making it
easier for spacecraft analysts to build expert
systems, and to thereby preserve and apply their
spacecraft knowledge in automated monitoring
systems.

Reduction of spacecraft mission cost is a high
priority at GSFC. GenSAA is providing a
means of reducing the cost of developing
mission support software while increasing
operations automation using expert system
technology. GenSAA is well suited to support
monitoring, fault detection, and fault isolation
for spacecraft missions. GenSAA is now being
generalized to support other application
domains, and is being enhanced to support both
monitoring and commanding operations.

REFERENCES

1. Hughes, P.M. (1989, October). Integrating
Expert Systems into an Operational
Environment. The American Institute of
Aeronautics and Astronautics Computing in
Aerospace VII Conference, Monterey,
California.

2. Hughes, P.M., & Luczak, E. (1991, October),
GenSAA: Advancing Spacecraft Monitoring
with Expert Systems. The American Institute of
Aeronautics and Astronautics Computing in
Aerospace VIII Conference, Baltimore,
Maryland.

3. Hughes, P.M., & Luczak, E. (1991, May).
The Generic Spacecraft Analyst Assistant
(GenSAA): A Tool for Automating Spacecraft
Monitoring with Expert Systems. 199 1
Goddard Conference on Space Applications of
Artificial Intelligence, Greenbelt, Maryland.

4. Hughes, P.M., Shirah, G. & Luczak, E.
(1993, October). Advancing Satellite
Operations with Intelligent Graphical
Monitoring Systems. The American Institute of
Aeronautics and Astronautics in Aerospace IX
Conference, San Diego, CA.

5. Luczak, E.C., et. al. (1994, February). User's
Guide for the Generic Spacecraft Analyst
Assistant (GenSAA) for TPOCC,Release 2.0.
NASAfGSFC Code 520 DSTL publication 93-
0 14. Greenbelt, Maryland.

6. Luczak, E.C., et. al. (1994, March).
Operations Concept for the SAMPEX Pass
Automation Demonstration. NASAIGSFC
Code 520 DSTL publication 94-003.
Greenbelt, Maryland.

Development and Use of an Operational Procedure Information 5J
System (OPIS) for Future Space Missions f d

N.Illmerl , L.Miesl , A.Sch8n1 , A.JainZ
1.Deutsche Forschungsanstalt fiir Luft- und Raumfahrt e.V. (DLR)

D-5 1 140 K6ln, Germany,

2. WIB GmbH, Lassenstrde 11-15, D-14193 Berlin, Germany

Abstract

A MS-Windows based electronic procedure system, called OPIS (Qperation Procedure
Information &stem), was developed. The system consists of two parts, the editor, for -
"writting" the produre, and the notepad application, for the usage of the procedures by the
crew during training and flight. The system is based on standardised, structured procedure
format and language. It allows the embedding of sketches, photos, animated graphics and
videosequences and the access to offnominal procedures by linkage to an appropriate
database. The system facilitates the work with procedures of different degrees of detail,
depending on the training status of the crew. The development of an "language modul" for the
automatic translation of the procedures, for example into Russian, is planned.

Introduction

The scientific output of a manned space mission is highly dependent on the correct execution
of an experiment according to instructions called "procedures" the astronaut has to follow. The
procedures of today (at least for spacelab missions) are very explicit paper versions and require
hours of crew time just to read. For the future, especially for long-duration missions, the
possibilities of modern computers and text processing should be used to improve the procedure
standard allowing for the transition to the use of electronic procedures on board. OPIS, a
development of DLR in cooperation with WIB, is a step in this direction.

For the European mission Euromir 94, it is planned to use OPIS, installed on the portable
Crew Support Computer (which is an 'IBM Thinkpad'), as the prime tool for the performance
of one material science experiment. The post-flight evaluation of its practicallity will be a
milestone for it's fbrther development (e.g. prime tool for procedures on Euromir '95).

Approach

The source that safeguards the experiment success in current SpaceLab missions is called the
Payload Flight Data File, a complement of books containing the crew work schedule,

procedures and reference documents. A similar set of documents exists for the use on Russian
MIR missions. Some shortcommings are associated with this type of flight documentation:

-

- large volume and high weight offiles
- time consuming implementation of paper uplinks into the documents
- long procedures in checklist format tend to tire out crewmembers
finally leading to mistakes
- embedding of graphics, sketches etc. is difficult
- usage of animated graphic sequences or videoclips within the procedure,

or the linkage to a database is impossible

Our idea was to firstly develop a procedure format better suited for the work on a computer
than the checklist format in use by NASA~, thereby reducing the training effort (as necessary
for long term missions and space station operation) and minimizing mistakes in the experiment
performance. Secondly the crewmember should get a tool that facilitates access to support and
reference information (e.g. malfunction procedures, photos, videos, etc.).
On the basis of the evaluation of the Payload Flight Data File of the German Spacelab missions
Dl and parts of the D-2 mission, crew activites were analized. The categories of the typical
crew activites are displayed in figure 1 below.

Crew Activities

Figure 1 : Classification of Crew Activites

These investigations were used to develop a new format for procedure instructions that is
better suited for the use on a PC than the checklist format which is used at present. The format
is build on procedure elements which describe the single task. A procedure element consists of
seven defined positions as shown in figure 2. The last position leads to additional information
concerning the performed step using a short code form. The OPIS standard was published in
1993 and presented to the German Space Agency PARA) in the final presentation of the
TOR EX^ study.

Step Location Object Activity Status Info
Code

1

Figure 2: Example of a Procedure Element

The development of the OPIS software started in 1993. DLR provides the software
requirements and WIB develops the software under contract by DLR. OPIS uses the
WINDOWS environment and consists of two modules the one being the Editor for procedure
generation, the other the so called Notepad-version is designed for the use by an astronaut.

The OPIS Editor

The OPIS Editor allows you to generate procedures in a standardised format by use of a
structured language. This language has been constructed to describe tasks in a simple and
unique manner. The editor would perform all tasks for the procedure layout automatically and
offer all information for procedure generation on call, that has been by another experiment
before. All procedure elements (locations, activties, objects, etc.) are stored in a database. All
activity keywords are linked to appropriate icons. Complex procedure structures (for exeample
"REPEAT ... UNTIL" or "IF ... THEN") can be generated in a simple way via implemented
editor commands. A procedure syntax check via an syntax checker within the editor is
foreseen for the future. Any sequence within a procedure can be defined as a standard module
and can then be handled like a single activity (or command). You can have various standard
modules in one procedure. In that way procedures that contain activities, that have to be
repeated some times, can be simplified. The embedding of graphics, videosequences,
offnominal procedures can be realised via linkage to an appropriate database. For the future the
development of an language modul for the automatic translation into Russian is foreseen.

The OPIS Notepad

The layout as shown in figure 3 is designed to give the astronaut a clear picture of the steps he
has to perform and the ones he already has performed. In the left icon bar the main file
functions can be quickly accessed (the numbers 1 to 8 can be used to quickly open specified
files). In the procedure window a highlighted bar shows the current step the astronaut is
working on. When work on the procedure element is finished it can be tagged with the 'Enter'-
key. In this way the system time and the line number will be entered into the 'Report File' wich
is an ASCII-File containing all the information of the timely execution of the experiment. There
is also a possibility for the crew to write notes and enter data into the procedure, which will
also be transfered into the Report File. In that sense the original procedure can be used for
different runs and the Report File will include all experiment specific infos for evaluation on
ground.
Additional useful information is displayed in the status line at the bottom. The actual page and
line number can be seen as well as the current time, the elapsed time since the procedure was
called up, and a countdown that can be started if waiting periods are included in the procedure.

cassette compartment OPEN

CSK Control Unit @ ACT-ON see figure below

Hold keys for three to four semnds

Figure 3: The OPIS Notepad environment

There are off-nominal situations and very complex procedures requiring additional information
to safely perform the task. OPIS approaches this problem by establishing an interface $0 a rdata
base containing photos, video clips and instructions to solve the problem. The data base
currently in use for the TES-Experiment (material science) on Euromir '94 was developed by
BSO under contract from ESAESTEC. The data base information can be accessed via a
mouse doubleclick into the info-code box of OPIIS.
As a paper backup or for selfstudying etc. the procedure can be printed from the editor or the
notepad with an layout identically to the layout on screen. But the computer related topics (and
that means most of the advantages of OPPS) will be lost.

Oratlook and Conclusion

Main topics under consideration at present are:

- Needs of individual crewmembers for information vary by a wide margin
(e.g. for medical experiments) -> 'personalized'procedure desirable

- Long-term missions require procedure systems that are capable of frequently providing
updates of information without producing huge piles of paper
->file uplink (and downlink)

- Cooperation with Russia requires translation of procedures
-> language module

With the development of an operational procedure information system we try to take into
account the advantages of modern PCs. Our hope is that the ideas behind our system can
help to improve the operations on board a manned space station even if OPIS is not the tool
to be used then. We appreciate every comment to our paper and would be glad to
demonstrate the software to interested parties.

References

Crew Procedure Management Plan (JSC-08969), NASA Flight Activity Branch, Operations Division, 1991

~bschlul3priisentation Technische und Operationelle Standard-Rahmenbedingungen fiir Experimente unter
Schwerelosigkeit (TOREX) WIB GmbH, 23.September 1993. (Technical and Operational Standard-boundary
conditions for Experiments under Microgravity)

JSY&Q
SCOSII: ESA'S NEW GENERATION O F MISSION CONTROL SYSTEhlS

THE USER'S PERSPECTIVE I-7
P.Kaufeler and hl.Pecchioli, Mission Operations Department (MOD), European Space Operations Centre (ESOC),
Darmstadt. Germany
I.Shurmer,VEGA Group PLC, Harpenden, UK, (MOD, ESOC, Darmstadt, Germany)

Abstract - In 1974 ESOC decided to develop a musable Mission
Control System infrastructure for ESA's missions operated under
its responsibility. This triggered a long and successful product
development line, which started with the Multi Mission Support
System (MSSS) which entered in service in 1977 and is still being
used today by the MARECS and ECS missions; it was followed
in 1989 by a second generation of systems known as SCOS-I,
which wadis used by the Hipparcos. ERS-1 and EURECA
missions and will continue to support all future ESOC controlled
missions until approximately 1995. In the meantime the increasing
complexity of future missions together with the emergence of new
hardware and software technologies have led ESOC to go for the
development of a third generation of control systems, SCOSII,
which will support their future missions up to at leo:;t the middle
of the next decade. The objective of the paper is to present the
characteristics of the SCOSII system from the perspective of the
mission control team; i.e. it will concentrate on the improvements
and advances in the performance, functionality and work efficiency
of the system.

1. INTRODlJCTION
The concepts and functionality of the Mission Control Systems
(MCS) which are currently in use in ESOC, i.e. MSSS and SCOS-
I, are mainly originating from the mission control requirements of
the 1970's which were based on the hardwired spacecraft
technology which was the standard at this time. The arrival of a
new generation of more complex spacecraft with significant
amount of on-board sofhvare and increased on-board autonomy,
such as EURECA or ERSl, placed much more demanding
requirements in terms of functionality and performance on the
MCS which, although they could be accommodated (sometimes
requiring development of mission specific adds-on), revealed the
limits of these systems. Therefore the decision for the developn~ent
of a new generation
of MCS, SCOSII, was taken, with the follo\ving main objectives:

- reduce mission adaphtionlmaiatenance costs.
- improve eficiency of mission preparation. esecution and

evaluation tasks,
- increase operational quality and reliability,
- have a life time of at least 10 years,
- cope with a wide range of different mission

type/size/complexity.

which led to the following major design requirements:

- SCOSII must be a full scope generic system.
- It must be a modular and open system, being adaptable and

expandable in size, performance and functionality.
- It must operate in a basic hardware and sofhvare environment

that is vendor independent.
- It must be based on state-of-the-art sofhvare technology.

- It must be compatible with the new standards in the space
domain such as in particular the CCSDS and related ESA
standards for telemetry and telecommand packets, and the
standards and guidelines of the ESA Committee for Operations
and EGSE Standards (COES).

2. SYSTEhI CHARACTERISTICS
AND CONCEPTS

The SCOSII system has been conceived as a generic infrastructure
platform, providing an exhaustive set of standard functionality
constituting the basis for the development of mission dedicated
MCSs. As such, a particular instance of a SCOSII based MCS will
not offer multi-mission support, but will be able to cope with
multi-satellite missions, thus supporting simultaneous control of
several satellites of the same family.

2.1 Architecture -
The high flexibility and performance requirements placed on
SCOSII led to the choice of a decentralized architecture, consisting
of a nehvork of Unix workstations in a 'ClientServeS
configuration. Each operational user will interface to the system
through a dedicated \vorkstation providing local processing power
to cope with the user-interface processing load, and local storage
for e.g. hosting of the most recent historical data, while a set of
system level services (e.g. interfacing to the ground stations)
ensuring overall coordination will be provided by central server
processors. The use of such a distributed system will allow the
computing power to be tuned to the demand of a particular
mission and will also offer advantages in terms of system
availability and failure tolerance. A more detailed description of
the architecture of SCOSII can be found in References [2] and [5].

2.2 Overview of Functionality & Utilisrtion -
SCOSII is intended to cover the following functions and services:

- Mi.~.rion Planning, including .acceptance, checking and pre-
processing of various types of planning requests, generation of a
conflict-free 'Plnn', and derivation of an executable Schedi~le'.
- nfonitoring & Conrsranding (Jf&C), of the spacecraft, the
mission support services provided by the ground network (e.g.
telemetry and telecommand services of the TT&C stations) and
SCOSII itself (i.e. control of user configurable functions). This
means that e.g. the same generic M&C functions (e.g. status
monitoring, commanding, procedures execution) can be used to
handle the spacecraft, ground station services and on-line SCOSII
configuration.
- Historical Data & Perforttrance Evaluation, consisting of the
storage of all mission data in an on-line manner, the ability to
access these data for direct visualisation and/or subsequent
processing using powerful data analysis and presentation tools, and
the production of corresponding reports.
- nfission Database Handling, consisting of the generation and

maintenance of all the static mission data used, to configure the
system for a given mission (e.g. user privileges, display lay-out),
and to define the characteristics of the mission (e.g. TMTC
processing data, operations procedures, etc ...).
-On-board Software nfaintenancr, consisting of the tools to
monitor, and modifL the content of the on-board memories (i.e.
memory images).
- System Level Took & Services, such as state-of-the-art Human
Computer Interface (HCI) techniques, user access control
mechanism, advanced help facility, etc ...

The wide range of functionality provided by the system, and its
flexibility and adaptability, will allow SCOSII to be tailored to
cover, for a given mission, different 'Roles', each being carried out
by a specific instance of a SCOSII system. This will of course
include its main role of 'Prime' MCS which will incorporate the
full set of functionality required to support the mission, but
SCOSII may also be used as 'nfini-backrrp' spacecraft M&C
system to be located at e.g. a TT&C ground station. Furthermore,
the fact that SCOSII is being designed in accordance with the
standards and guidelines of COES, will ensure not only its full
compatibility with checkout systems, but would allow SCQSII to
be used, with minor adaptations, as a checkout system as such.

Having outlined the functionality and roles of the system, we will
now address the various user scenarios which SCOSII \vill have to
support. Here again, SCOSII constihttes a major step fonvard with
respect to its predecessors which were only providing very
restrictive and rigid centralised user access, in that it will also
support various types of remote access scenarios as described
below and illustrated in figure 1.

- Office based users, for mission preparation and/or evaluation
activities.
- Home-based users, for on-call contingency support.
- Engineering support users, such as spacecraft manufacturer, for
anomaly investigation, mission evaluation.
- User Operations Corrtrol Centres (USOC), for the control of
given payload@) on a spacecraft.

2.3 Confieurability
Since SCOSII will constitute the basic MCS kernel for a wide
range of missions of different type and complexity, the system
will have to be highly configurable. One important aspect in this
context, is the capability of SCOSII to be descoped, adapting its
functionality and hardware to the needs of the mission. For a
simple mission, a mini-system running on a single SUN
workstation, could be used. Moreover, its portability will allow
such a mini-system to run on a PC.

Another issue related to configurability is that the system must be,
as much as possible, data-base driven, maximizing the tailoring
capabilities and minimizing the need for software modifications.
For predecessor systems, this approach was limited to tht:
spacecraft TMITC processing characteristics, which were fully
defined in the spacecraft characteristics database. For SCOSIl this
concept has been expanded to all functional subsystems, including

Figure 1: SCOSII User Scenario

data driving the system configuration, thereby providing the user
with the capability of defining through the Mission Database the
haracteristics of major elements of the system such as:

- HCI layout (e.g. layout of input forms or of displays templates),
- defaults for most of the functions (e.g. which packets are to
undergo which types of checks),
- definition of standard named sets of user privileges.

The SCOSII system will therefore consist of a set of generic
functions plus a generic default configuration, which can be
modified by the user to suit the needs of his mission.

2.4 Performance
As SCOSII is intended to be the basis for MCSs for at least the
next ten years, very ambitious performance goals have been
adopted. These include concurrent real-time telemetry and
telecommand rates of 2Mbps and 4Kbps respectively, display
update rates exceeding I0 per second, very short response times to
user requests - e.g. from 5 sec for retrieval of data not older than
a few weeks to 30 sec for data being several years old -, the above
requirements being applicable to utilisation scenario involving up
to 50 workstations used simultaneously.

2.5 System Level Tools
In support of its main functions as described above, SCOSII will
provide a set of very powerful system level services and tools, the
most significant of which are presented below.

2.5.1 Alodelling Tool
Previous control systems were based on a low-level view of the
spacecraft in that they only considered its telemetry and
telecommand components, and thus did not include any
information about their link to the higher level components of the
spacecraft such as the devices/units, subsystems, etc ..., and their
interrelationships. This approach was sufficient to handle relatively

simple missions, but was not adequate for introducing more
advanced functionality and user interfaces which require a more
structured and intuitive view of the missionlspacecraft.

A fundamentally different approach was followed for SCOSII. In
the SCOSII database the mission will be described as a
hierarchical structure of components of operational significance.
This is achieved by defining a decomposition following the object-
oriented 'whole-part' relationship, starting with the mission as the
highest level component, down to the deviceslunits hosting the
individual measurements and command items at the lowest level.

In addition to this decomposition into what are called 'System
Elements' in the SCOSII jargon, it will be possible to associate
with them synthetic information, called 'Operntional Modes' and
'Roles'. The former represents particular states of operational
significance as derived from the state of their constituted parts,
while the latter corresponds to their function(s) within their
respective mission domain. This \\.ill provide a first step towards
an advanced modelling capability; initially modelling will be
restricted to data routing, power control and redundancy but this
will be further extended in future releases of the system to include
the full set of standard functions and behaviours of the typical
mission components.

Moreover, SCOSII will also provide a library of 'Systent E1cntent.s'
which could be used as building blocks. In order to define e.g. the
battery 1 component of mission X, the user \vould chose the
standard battery building block in the SCOSII library; he would,
if required, modify it to correspond to the characteristics of the
batteries of mission X by specifying its difference to the standard
SCOSII battery, and instantiate it to become battery 1 by
specifying the links to its constituent telemetry and telecommand
items. These modelling capabilities which are illustrated in
Figure 2 below and further expanded in Reference [S] , will provide
significant improvements in the following domains:

-Mission Database Definition: increased efficiency and
qualitylconsistency, by reducing the information to be specified by
the user to a strict minimum and by providing him with a more
intuitive view of its mission.
- Systenc Confgurability and Controllability: by allowing the
userlsystem to exercise this at mission component level (for
navigation through mimic display, to disable functional checks for
only a particular n~ission component, to allocate/restrict functional
privileges to e.g. a particular spacecraft subsystem, etq ...).
- Mission Execution: by making use of the n~odelling data (in
particular the 'Roles') to predict the status of the mission, thereby
supporting the mission planning and commanding functions in
assessing the effect of future commands (e.g. to ascertain their
safetylfeasibility), and the monitoring function by generating the
expected mission status as reference for comparison against the
status obtained from telemetry. This 'Prediction' function is a new
feature, making use of the Mission Model' to obtain the best
estimate of the mission status at any time in the future, based on
an initial state and on the knowledge of any planned activities and
any foreseen on-board events and actions.

F i m r e 2: SCOSII hlodelling

2.5.2 Operations Language
To allow an efficient definition and maintenance of the mission
specific knowledge in the Mission Database, a dedicated SCOSII
Operations Language (OL) is required. The OL has been designed
to provide users without sofhvare design expertise, with a set of
mini languages offering the necessary expressive capability to
define the knowledge for the more advanced SCOSII functions,
such as:

- Procedural knowledge. for the presentation of, navigation
through and automaticlsemi-automatic execution of procedures to
e.g. control the spacecraft, ground station services and SCOSII
configuration,
- Events & Actions, to identify from the incoming data, user
defined events to be logged and the corresponding actions to be
initiated by the system (e.g. an event could be a particular
spacecraft anomaly which would initiate a specific set of recovery
and diagnosis actions),
- Selection Strategies, to provide the various data selection
capabilities that will be required by the user andlor system in
support of the different activitieslapplications (e.g. selection
strategies could be applied to restrict a particular function to a
subset of the data it would normally be applied to).

Further details about the SCOSII OL can be found in Reference
141.

2.5.3 hlission Database Test Function
This is another new functionality, which will provide an on-line
mission database checking capability, using as data sources either
real-time or historical telemetry, or data generated by the 'Mission
Model'being driven by a predefined sequence of commands. This
local test function will atlo\' to significantly reduce the turn
around time for database changes, and to alleviate the need for the
lengthy and resource-intensive validation using an external
sofhvare simulator.

2.6 Human Computer Interface (HCI)
The SCOS I1 HCI will provide users of all levels of experience,
with an intuitive, but reliable and robust interface. The SCOSII
HCI will be based on WIMP (Windows, Icon, Mouse and Pull-
down menus) technology. SCOS I1 will support all the traditional
display types (e.g. alphanumeric, graphic and mimics displays),
however, the users will be given tools which will allow them to
combine these different data display techniques to display data in
a more flexible and efficient manner. Due to the increase in the
diversity and versatility of the HCI with respect to previous
systems, particular attention has been paid to the specification of
general guidelines concerning display and data representation
techniques in order to provide the user with a consistent HCI
across all applications.

3. MISSION DATABASE
The scope of the SCOS I1 Mission Database is much wider than
that of the earlier systems, which generally concentrated upon the
data required by the Monitoring and Control functions. In addition
to the latter, a SCOS I1 database will contain, e.g. the mission
model data, the mission planning/scheduling data, the on-board
software memory images, the operations procedures and the
Spacecraft Users Manual (SUM), and will also include the system
set-up and configuration data (e.g. definition of user privileges).

3.1 klission Database Structure
The Mission Database will consist of a hierarchical collection of
database parts, each with a unique identifier and version number,
arranged in a user defined structure (Figure 3). The higher level
parts are used purely for organisational purposes, the lowest level
parts contain the data and constitute the lowest level entities
submitted to version control. For a given mission, the user will
have some flexibility of configuring the structure to its particular
needs.

3.2 Database hlanagcmcnt
There will be three types of Mission Database.

- The Operafiortal Database: A database which is, or has been
judged so in the past, capable of supporting real-time operations.
SCOS I1 will support a number of Operational Database versions.
- The Active Database: The Operational Database which currently
supports real-time operations; any of the Operational Databases
may be selected as the Active Database.
- The Draft Dafnbase: A database used as an intermediate step to
constructing a new Operational Database. There will be only one
Draft Database.

It can be imagined that all the databases are kept within a
'Database Area' and accessed via the users from a 'IPorking Area'.
The 'Working Area' contains a number of user accounts, i.e. 'User
orking Areas', which will allo\v multiple user database
maintenance. Special mechanisms will be provided in order to
ensure this multiple user maintenance is done in an orderly
manner; e.g. each user working area will be completely isolated
and the system will prevent several users from being able to work
on the same database part simultaneously. The database manager
will be able to select modified database parts and to integrate them

Finure 3: Mission Database Structure

back into an Operational Database, either directly (for on-line
changes) or via the draft database (for changes of a higher
magnitude). Subsequently, this database can be selected as the
Active Database.

Version Control functionality will automatically maintain the
version of the Operational or Draft Databases and their constituent
parts. In addition Change Control functionality will permit
exhaustive recording of all database changes at item level and at
the higher levels of the database hierarchy. The SCOSII database
management concept, as described above, is illustrated in Figure
4, below.

3.3 Database hlaintenance
Mission Databases are mainly constructed from input data that are
provided from spacecraft/payload(s) manufactureds) or from
checkout. Since the data volume may be extremely high (typically
several thousands of parameters, just for telemetry) these data are
to be provided in an electronic form. SCOSII will be able to
import these source databases in various electronic formats (e.g.
ORACLE, ASCII), to integrate the contained data items into the
SCOSII internal database, and to subsequently handlenew versions
of the source database (e.g. functions to compare a new source
version with previous ones or SCOSII versions).

In addition to the acquisition of the source database, SCOSII will
provide the editing capabilities required to handle the data that
have been acquired from the source database (for this dedicated
functions will be provided to facilitate large scale editing) and to
subsequently maintain the data. The data maintenance functions
will of course include exhaustive but flexible data consistency
checking functionality. Consistency checking will be performed at
all levels (e.g. data item, database part and database), however, the
user will be able to switch the checking off, an essential feature
for the preparation phase, when inconsistencies cannot be avoided.

Database Area Working Area --
uw 1

D.lbrr
U w 2

Rr*

Drlloldw

F i ~ u r e 4: Database Management Environment

4. h1ONITORING
The following monitoring tools will be provided.

4.1 klonitorinp Parameters -
Unlike previous systems, there will be several potential sources of
monitoring parameters in addition to those that come from the
spacecrat?, e.g. SCOS I1 parameters and Ground Segment
parameters. Regardless of source, all parameters will be processed
by SCOS 11 in the same manner.

SCOSII will be far more flexible and versatile than previous
systems. The users will be given the facilities to view the
monitoring parameters in a number of different ways called
'Representatio~ts'. The user will be able to select, in real-time,
which 'Representation' is to be displayed. In particular, SCOS I1
will support:

- The Raw representation: the uncalibrated view of the parameter
value.
- The Engineering reprrsmtation: the calibrated view of the
parameter value.
- The Functional rrpre.sentation: obtained by applying a function
to the parameter eg. derivative, integral, mean, mas.
- The Status represrntation: returning the state of the currently
applicable 'Checki,rg', eg. nominal (see section 4.3 below).

In addition, SCOS I1 will support the display of values in different
formats (e.g. raw representation in hex, decimal or binary) and the
on-line conversion behveen engineering units.

4.2 Parameter Validity -
SCOS will support the concept of monitoring parameter validity,
since for a nun~ber of possible reasons. the latest parameter 'alue
could be meaningless or unreliable. The follo~ving factors
influencing the validity have been identified.

- Power: the status of the power supply the parameter is dependent
upon.

- Data Unit: the quality of the data unit within which the
parameter was transported.
- Data Routing: the status of the transmission route taken by the
data.
- Age: the age of the parameter value.
- Stability: the parameter value may be in a transient state due to
commanding activity.
- Status: any other explicit criteria the user wishes to specify.

SCOS I1 will check all these factors when assessing a parameter's
validity. The resultant validity state of a parameter will be
automatically propagated throughout the system affecting other
processing where relevant (e.g. synthetic parameters will also be
flagged as invalid if they use an invalid parameter) and affecting
how the data is displayed to the user.

The user will be able to gain real-time access to the results of each
validity component check. Hence, the SCOSII user will be
provided with significantly improved validity checking facilities
and, when a parameter is flagged as invalid, considerably more
information about the reason why.

4.3 Parameter check in^ -
The objective of checking is hvofold. On one hand the system
must be able to check whether the operator has not or is not going
to place the mission elements under its responsibility (e.g. the
spacecraft) in a non-nominal or unsafe state, on the other hand, the
system must be able to detect whether these elements are behaving
as expected. This led to the following categories of parameter
checking being provided by SCOSII.

- Operational Statris Checks: Monitor the on-board status which
is required regardless of any commanding activities, to ensure that
the spacecraft is left in the correct state after a series of operations.
- Operational Constraints Checks: Are of the same nature as
Operational Status Checks, but stronger. They are rules which
should never be violated operationally and as such, should never
be disabled. They will contribute to ilctivity' 'Pre-Execrrtion
I'oliJnfiot~' (see section 5.3 below).
- Brhaviorcr Checks: Are based upon the prediction of the on-
board stahts, taking into account the effects of commanding and of
predicted events. The checking performed is to ensure that any
behaviour exhibited (e.g. change of state after a command) is as
espected.

5. COhlhIANDING
An overview of the envisaged full SCOSII Commanding
functionality is given in Figure 5.

5.1 Activities -
In order to control the mission, a SCOSII user will be able to
initiate the execution of :.fctivities', where an ilctivity'is either a
Procedure (highest level), a Command Sequence (simplified
procedure syntax), or a Command (lo\vest level). SCOSII treats
each of these in exactly the same manner. Each can have
execution pre-requisites. each can be monitored through its
execution phase and each can be verified. Activities will be
initiated manually, or automatically by the system. The long term
aim of SCOSII is to have a fully automated Procedure execution
capability.

Figure 5: Commanding Overview

5.2 Prenaration -
This consists in the production of the schedule of activities
corresponding to a given time increment, for later subn~ission to
the activity execution function. While this will be initially done
manually, it will be carried-out, in later releases of the system, by
a generic Mission Planning function.ality, which will include:

- Processing of Planning Rcqrce.~ts: This covers the acceptance,
checking and pre-processing of planning requests received from
external entities e.g. experimenters, external control centres, flight
dynamics.
- Planning/Sclteduling Function: This covers all activities
required to generate a conflict-free 'Plan' and its corresponding
Schedrtk' of activities from the pre-processed planning requests.

5.3 Activity Execution -
It will be possible for the user to execute operational 'Activilies'by
means of three facilities:

- The Scheduler: Pre-prepared Scltedzrles' will be imported from
the preparation environment into the Schedtrler'. If necessary, the
user will also be able to split this imported 'S'clreditle' into a
number of logical partitions called 'S'uh-Schedrcle.~'. Each 'Strh-
SchsdrrIes' of executable acti\.ities could then be assigned to a
different user and/or to a different type of operations (e.g. one sub-
schedule could be dedicated to Payload-X), thus delegating
execution control. Nominally the 'Scked~tler' will manage the
execution of activities automatically, taking into account execution
pre-requisites and links between activities, prompting for manual
input when required. However the user will always retain the
capability of regaining, if required, control over the Schediiler'.
- The Afanual Stack: The traditional commanding facility,
allowing the user to directly control the release of Activities will,
of course, also be supported by SCOSII in order to provide the
user with fully manual execution capability in the eventuality of
critical and/or unplanned operations.
- The Event Driven Commander: This is a ne\v SCOSII concept
that will give the users the capability of setting up event-action
relationships as Event Driven Commanding Routines (EDCRs).

EDCRs can periodically monitor for the occurrence of an event
that will trigger the execution of a specified set of activities, e.g.
can be used for automatic closed loop reaction to on-board
anomalies.

All executable activities will have pre-requisites which must be
satisfied before they can be released from the SCOSII system. In
SCOSII, these are called 'Pre-Execration Validationl(PEV) checks.
These will have three components:

- Feasibility Checks: Checking that all necessary resources are
available, e.g a transmission route.
- Safety Checks: eg. Checking that Unit A if OFF before
switching Unit B ON.
- Dynaniic Checks: Checks which are not related to the activity in
isolation, but to the external context of the execution of a specific
instance of an activity, e.g. time window and interlock checks.

Activities will then be released by SCOSII when authorised by
their respective PEV, based on a Release Strategy' specified at
preparation. SCOSII will support both manual and automated
release strategy such as "initiate execution X minutes after event
Y".

5.4 Activity Execution nfonitoring -
To enable the user to be aware of the transmission and execution
status of any activity that has been released from SCOSII,
dedicated verification checks will be performed. For command
execution verification, the users will explicitly define verification
criteria, using the Operations Language, in the Mission Database.
Though, there will be the capability of doing the same for
command sequences and procedures, the majority of their checks
will be implicitly defined by the checks defined for each command
they contain. SCOSII will support the explicit definition of
simple or complex multi-staged verification criteria, the latter for
those commands which are executed in a number of stages (eg.
reception on-board, reception by application, execution stage 1,
execution stage 2). For each identified verification stage, SCOSII
will automatically compute a verification window based on
expected execution times and/or user defined marginsldelays.

6. CONTROL O F SCOSII SYSTEM
The M&C functionality will be controllable flexibly. This is
particularly important in the case of contingency situation where
the norn~al conditions of applicability of a function may not be
valid any more; past systems have been rather rigid in this respect.
During operations, the user will have the capability to control the
way the functions are applied and to which data they are applied;
e.g. one will be able to completely or partly disable parameter
validity checks. Standard parameter checking, as described in 4.3
above, will be applicable to the status of the controlled functions,
to ensure that they are not left in a non-nominal/undesirable state.

7. k1ISSION EVALUATION
Sophisticated tools will enable the users to access historical data
and then view, analyze them and to produce reports. This
functionality nrill be an integral part of SCOSII, and unlike on
previous systems, will be available on-line. The following
functions will be provided.

7.1 Historical Data Access -
The user will be able to access data and if required to save them
for later re-use, either for direct presentation using the standard
displays used for real-time monitoring, or for submission to further
processing (e.g. detailed analysis). Data access will be supported
by a powerful syntax, allowing the user to define expressions,
called 'Data Access Strategies', which he could save for later re-
use, and capable of specifying:

- A time window or multiple time windows.
- References to events eg. 'entry into eclipse'
- Expressions eg!when A123 > 35 degrees C'
- Data access criteria e.g. all AOCS telemetry

7.2 Viewine Historical Data -
SCOSII will provide the user with hvo viewing modes, 'Replay as
Live'and 'Video Replay'. 'Replay a s Live' will be dedicated to the
technical analysis of the mission data, i.e. it will allow the user to
replay historical data and to interact with them as if they were
being generated in live, while 'Video Replay' will be dedicated to
operational investigation, i.e. it will allow a user to be confronted
with the same data and workstation lay-out as at the time of
reception of the data.

In both cases, the user will have complete control over the replay,
controlling its start time, the number of workstations it appears on
and its speed and direction (e g fast fonvard, fonvard, pause,
rewind, fast rewind etc ...).

7.3 Historical Data Analvsis -
The users will be provided with a data analysis package which will
have the following functionality at a minimum:

- Data Rfanipiclation, allowing the user to select a subset of the
retrieved data for analysis.
- Rfatlreratical functions, e.g sin, cos, tan, log, differentiation,
integration.
- Statistical Analj.sis frrnctions, e.g. mean, standard deviation.
- Grapltical took, allowing the user to produce 2- and 3-D graphs,
straight line fits, polynomial fits, bar charts, pie charts etc ...

7.5 R e ~ o r t Generation
A great amount of effort is expended by Operational Teams
producing reports, many of which are of a routine nature.
Therefore SCOSII will. unlike on previous systems, include a
report generation function allowing production of test documents
in which mission history data can be incorporated. This function
will also support an automatic report generation facilities; a user
will be able to define report templates, e.g. definition of the
contents and structure of a report, and use these to automatically
produce reports of data for a user defined time period.

8. C0NC:LUSION
SCOSII is a major step fonvard with respect to its predecessor
systems, which will put ESA at the forefront of the technology and
meet its main goals of minimising mission costs and improving
mission preparation eficiency and operational performance.

(as opposed to individual mission systems). This has involved a
close cooperation behveen the users and the developers of the
system, and has included exploratory prototyping (as well as
technology prototyping).

Release 1 of SCOSII is at an advanced stage of implementation.
a preliminary delivery being expected in November 1994. Broadly
speaking Release 1 is covering the same range of functionality
as the previous infrastructure, with inclusion of the Commanding
function (not available in SCOS-I) and with enhanced functionality
and more modem human computer interfaces. More advanced
functionality will be added in Release 2 (1995-6) and Release 3
(1996-7). including Modelling, Mission Planning, Data Distribution
and certain of the more advanced database features. Consolidation
of Release 1 functionality will also take place in the later releases.
Such an incremental implementation has been chosen in order to
minimise technical and schedule risks to the first client missions
of the system, HUYGENS, ARTEMIS-and ENVlSAT to be
launched in 1997-1998.

References
1 Packet Utilisation Standard, ref. ESA PSS-07-101, issue 1. May

1994, to be published.
2 N.Head & J.F.Kaufeler, Evolution of the Agency's Software

Infrastructure for Spacecraft and Mission Control. ESA Bulletin
no.67, August 1991.

3 M.Jones et al., SCOSII: ESA's New Generation of Mission
Control System, ESA Bulletin no.75, August 1993.

4 A.Baldi et al., SCOSll OL: A Dedicated Language for Mission
Operations, SpaceOps 94.

5 M.Jones, N.Head et al., SCOSII: ESA's New Generation
Control System. SpaceOps 94.

This is the first time that a systematic and thorough effort has been
invested in defining user requirements for a generic infrastructure

AN OBJECT MODEL FOR MULTI-MISSION COMMAND
MANAGEMENT SYSTEM

Jon Kuntz
b r a 1

Paper Not Available

A SOFTWARE ARCHITECTURE
FOR AUTOMATING OPERATIONS PROCESSES

KEVIN J. MILLER

Operation Engineering Lab
Jet Propulsion Laboratory, MS 30 1-345

California Institute of Technology
4800 Oak Grove Drive

Pasadena, California 9 1 109-8099

ABSTRACT

The Operations Engineering Lab (OEL) at
JPL has developed a software architecture
based on an integrated toolkit approach for
simplifying and automating mission
operations tasks. The toolkit approach is
based on building adaptable, reusable
graphical tools that are integrated through a
combination of libraries, scripts, and system-
level user interface shells. The graphical
interface shells are designed to integrate and
visually guide a user through the complex
steps in an operations process. They provide
a user with an integrated system-level picture
of an overall process, defining the required
inputs and possible outputs through
interactive on-screen graphics.

The OEL has developed the software for
building these process-oriented graphical user
interface (GUI) shells. The OEL Shell
development system (OEL Shell) is an
extension of JPL's Widget Creation Library
(WCL). The OEL Shell system can be used
to easily build user interfaces for running
complex processes, applications with
extensive command-line interfaces, and tool-
integration tasks. The interface shells display
a logical process flow using arrows and box
graphics. They also allow a user to select
which output products are desired and which
input sources are needed, eliminating the
need to know which program and its
associated command-line parameters must be
executed in each case. The shells have also
proved valuable for use as operations training
tools because of the OEL Shell hypertext help
environment.

The OEL toolkit approach is guided by
several principles, including the use of ASCII

text file interfaces with a multimission
format, Per1 scripts for mission-specific
adaptation code, and programs that include a
simple command-line interface for batch
mode processing. Prajects can adapt the
interface shells by simple changes to the
resource configuration file. This approach
has allowed the development of
sophisticated, automated software systems
that are easy, cheap, and fast to build.

This paper will discuss our toolkit approach
and the OEL Shell interface builder in the
context of a real operations process example.
The paper will discuss the design and
implementation of a Ulysses toolkit for
generating the mission sequence of events.
The Sequence of Events Generation (SEG)
system provides an adaptable multimission
toolkit for producing a time-ordered listing
and timeline display of spacecraft commands,
state changes, and required ground activities.
The multimission SEG software is easily
adapted and OEL Shell templates are built to
meet different mission requirements. The
SEG system was adapted in a unique way for
the Ulysses mission since the spacecraft does
all commanding in real time. The Ulysses
SEG toolkit allows a user to interactively
build commands on a timeline display in
spacecraft event time and then the system
automatically derives required ground events,
builds a mission sequence of events listing,
and outputs a space flight operations
schedule.

INTRODUCTION

The Operations Engineering Lab (OEL) at
JPL has developed a generic set of tools for
Sequence of Events Generation (SEG) that
have been adapted to many of the current

flight projects. The toolkit includes what- of servers to enhance the Perl language which
you-see-is-what-you-get (WYSIWYG) is used to generate the SEG products, and a
editors for the Sequence of Events (SOE), user-configurable graphical user interface
Space Flight Operations Schedule (SFOS), (GUI) to control the SEG process. All of the
and Deep Space Net Schedule (DSNS), a set SEG interfaces are text files.

ISSUE OATE: 0 6 R 7 M - I 2 44
POT: 0 1 2 3 4 5 6 7 8 9 10 11 I 2 I 3 14 15 16 17 18 19 M 21 22 23 0

TUESDAY 1 1 1 1 1 1 1 1 1 1 1 ~ 1 ~ ~ 1 1 ~ ~ 1 ~ 1

JUNE 28, IS94 0 SFOSIA106

179-180

VOVAGER I

FOSL: I l A F

J. I in PLS MOO OFF
tl5911MO PWSlRH

& 1201 PLS MOO ON

FOS MOOE
XB DATA RATE (MI)

31

H P T i
OSN COVERAGE

32

1611
FOS MODE W-5A IUV-SAI CR-ST I UV-SA

XB DATA RATE (MI) 6Wf36) 6ar(36N 1MKP) M)0(36)

HPTXR

RTLT: l l h 4 j m 2 8 s

VOVAGER 2

FOSL : 11AF

CCSL: 8021
W N C : ON
SB :OFF XB :LOW
PVR : .051.10135

I I200 RTLT.1 l h 4Vn 32s I WOORnT.llh4Vn34r

J.07S7 SLEW-,HELIO-I

J. 1957 SLEW-,HELIO-5

Figure 1. Voyager SFOS

VOVAGER COVER4GE

NOTES

The editors are generic object-oriented
programs that display, edit, filter, and
reformat the SEG products, but do not
interpret the data. The editors are X
Windows / UNIX programs written in C.
The same editors are used by all projects.
Rather than writing MSDOS or Macintosh
versions of the editors, we export files that
may be read with most MSDOS or Macintosh
tools.

~---------------VGR----------------~

[I S/C 32-GS-40 1137 XB-2 8K 41 NOT RECOVERABLE
Bj SIC 31-GS-40 g 1159 XB=2.8Kl4l; NOTRECOVERABLE

The SEG process for most missions is to take
the spacecraft sequence file, the Deep Space
Network @SN) allocations and view periods
files, and the light time file, and generate the
SOE, SFOS, and DSN keyword files.
Simply, SEG integrates the spacecraft and

ground schedules in to a unit. The spacecraft
sequence file is generated far in advance,
does not include real time commands, and is
often based on out-of-date DSN allocations.
The SOE, SFOS, and DSN keywords files
will contain more accurate ground
information, and are used by the Mission
Control Team and the Spacecraft Teams to
schedule ground activities. In addition all
SEG products use ground times for both
ground and spacecraft events.

We chose to write our generating software in
Perl since it is a very powerful interpreted
language designed for processing text files.
We also did not want to write a new
language. Since the delivered executable is

also the source code, it is reasonably easy for
the Mission Control Team to maintain the
SEG adaptation. Perl has only two
elementary data types: strings and floating
point numbers, so additional servers were
written in C to manipulate triggers, time-
dependent state variables, time conversions,
and spacecraft command smng processing.
The parent Perl script includes a Perl library
that automatically starts up the server process
and sets up a communications channel
between the parent Perl script and the server
similar to the Remote Procedure Call (RPC)
mechanism. The server functions are then
invoked with simple Perl function calls. It is
possible to compile new functions directly
into the Perl language, but the server model
was chosen since it simplifies configuration
management on the operations workstations,
a new version of Perl may be installed
without having to link in any SEG code, and
in fact, the servers are not even tied to Perl.

The final component of the SEG toolkit is the
OEL Shell. This is a user configurable GUI
that lets the user gather input files, specify
output files, and selectively run portions of
the generating process and the SEG editors.
OEL Shells have been built for several
projects' SEG processes

THE OEL SHELL

The OEL Shell is a compiled program based
on the XI1 release 5 windowing system, the
X toolkit (Xt), the Motif Widget set, and
David Smyth's Widget Creation Library
(Wcl) [I]. The intent was to provide a shell
that would allow the user to enter UNIX
commands with parameters from a simple
Motif interface. The interface is configurable
by the user by modifying the resource file.
Several copies (which should in fact be links)
of the compiled program may be available on
the system. The appearance of these shells is
determined by the program's name and its
corresponding resource file. Since the user is
encouraged to modify the resource file, and
create one's own shells or enhancements to
existing shells, some knowledge of Motif
widgets and the resource database is
prerequisite.

From a user's perspective, the OEL Shell
consists of a series of push buttons, text
entry areas, and toggle buttons arranged on a
work area or control panel (one or more
Motif drawing areas). Pressing one of the
push buttons causes a UNIX program to
execute. This program may be another Motif
application or a script without a graphical
user interface. The work area provides text
entry areas for the user to enter command line
arguments for the program. Toggle buttons
correspond to UNIX command line options.

Below the panel is a scrolling message area
which displays any output messages from the
executing program or script. In addition, the
actual UNIX command created from the push
button, text, and toggle buttons may
optionally be displayed here. If a text widget
is used for file input, it will generally have a
Select and an Edit push-button located
nearby. The OEL Shell does not need to
open any user files, however the user may
wish to browse through the file hierarchy
with the Motif File Selection Dialog.

To use the File Selection Dialog, choose the
Select button near the file text that you want,
and the File Selection Dialog will appear.
The OK button will cause the selected file
name to be copied to the text entry area in the
control panel that last had focus. You can
focus on a text widget (move the mouse
cursor over the text widget, and press the left
mouse button) and then hit the OK button.
Unlike other Motif programs written in the
OEL, this File Selection Dialog is non-modal.
You may leave it up while you work with the
main window. The OK button does not
unmanage the dialog, so you can use it to fill
filenames into several text widgets. The
Cancel button will remove the dialog. The
Help button will display help text for this
dialog.

The Edit buttons will bring up an editor,
which the user may choose in the resource
file, to view the file specified by the contents
of the currently selected text widget. The
Exit button will cause .the shell to terminate.

The shell also includes a Help button which
is user configurable. This will pop up a
single pane of help text. It is intended that

the designer of an OEL Shell also attach help help on a push button without activating the
to each widget in the work area. You may button, move the mouse cursor off the button
obtain help on any button or text field in the until the button no longer appears to be
work area by selecting that object and then pressed. You may then release the mouse
pressing the Help key. The default Help key button without any activation.
for Motif application is the F1 key. To obtain

Cannand Toble:

Initid SIC State f W

SEQ Sequence of Events File:

I ~ ~ ~ I n ~ x p a d s ~ c s a - -1-
Grouml Triggers Files:

(Selectl pq rn I Expamim

treated: Mar. 23, 1994 - 2158 PST
Input S/C state file: ejO%!d.stat-sc
Input S I C trigger file: ej0fidd.trig-sc
lnput ST#F state file: /hoMhse/kevin/E3.O/deno/ej5-9a.stat-a1
Input S T W trigger file: /hone/horse/kevin/E3.0/de~1/ej5-9a.tr1s-a1
Input light tim f lle: ~/horse/kevln/E3.0/de~/data/ltf/litim.g11
Input S/C ME file: ej05dd.s~-sc
Output full SLX file: eJW.soe
ME Initiallzatlon File = /hom/horse/kwln/E3.0/tbl/soeoedefau1ts

kwml Expanslm Table = / h o m / h w s e / k e v l ~ . O / t b l / s o e o e ~ - t a b l e

Figure 2. Galileo STALF Shell

WCL allows you to define the widget tree for
an application in the resource file using new
resource names such as wcCreate and
wcchildren. In addition, callbacks are
provided that set resources, manage and
unmanage widgets, run an external program
and exit.

The OEL Shell is a very simple application
built on WCL [2]. It is basically about ten
callback procedures which may be used in the

resource file. The most important of these is
CmdCB (the command call back). This
callback executes its text string argument.
For example, you could create a push button
to execute the UNIX 1s command as follows:

demo*lsPb.wcCreate: XrnPushButton
demo*lsPb.labelS tring: Show Files
demo*lsPb.activateCallback: CmdCB(1s)

A simple command like this could be
executed with WCL alone. The OEL Shell
permits one to access text widgets, toggle
widgets, and option menus, and pass these in
CmdCB. For example, if demoTog is a
toggle button, then $demoTog[-r] has the
value in the brackets if the toggle button is
true, and is the empty string if false.
Likewise, the value of a text widget is just the
text that the user entered.

Another very useful callback is the FocusCB
which is used to specify the directory filter
string used with the File Selection Box. A
FocusCB is used with each text widget that is
used to contain input file names.

Besides the resource file, two other files are
used by the OEL Shell. These are a drawing
file, that places simple XI 1 primitives (not
widgets) in the drawing area. This has been
used to give the OEL Shell the appearance of
a flow chart. The other file is the help file.

Output from the child processes is sent to the
scrolling message area below the work area.
In addition, there are some special text
messages that the child can send back which
set resources in the OEL Shell.

In addition to SEG, we have used the OEL
Shell for many other functions in operations.
These include training, generating database
queries, and running a command compiler.

Some advantages of using the OEL Shell are:

* It is easily configurable by operations
personnel.

It separates the computing engine from
the GUI, thus simplifying testing of the
computing engine.

All functions may be run with or without
a GUI.

SEG Year-We&

DSN View i'etbd F i k

mpq/ata/vp/9505Bks.vuai DExpandViav.

DSN Allccation File: TmelineFileMme:

lq lEdftl I Triple S OSEF
Generate Timeline mtlf~]

Uplink MMfificatiM File:

I Expand Allocs SIC SEF FileMma:

~ i a r SEG status ~ile: [Gmatc] + 7 1 -+--+JEI
1,,,1 -1 SOE F ~ ~ % w w

~ ~ - . + ~ I - . + I R ~ , I
/GiqEGl- 1.andSEF

SFOS FileMma:

l~enerate SFOS ~ilel + rfor 1-f
NAV Ljght T m File:

DSN Keywad File:

14 -4 - K- F*I.] -, 7 1 -

Figure 3. Ulysses SEG Shell

ULYSSES SEG
Teams, and the Ulysses Spacecraft Team for
their enthusiasm and support.

We have recently adapted the SEG software REFERENCES
for Ulysses. The Ulysses mission is
considerable different from the other 1. The Widget Creation Library, David E.
missions in that the primary command mode Smyth, September, 1991.
is real time. Thus we do not have a
spacecraft sequence file as an input to SEG. 2. OEL Shell Programmers' and Users'
We introduced a new graphical document Guide, Kevin J. Miller, October, 1993.
called the Timeline which contains the DSN
allocation, view periods, and command
windows translated into spacecraft time.
This is generated from the DSN allocations
and view periods files, and the light time file.
The SEG operator then uses these times to
schedule the spacecraft. Typical activities
scheduled include: records and playbacks,
telemetry mode changes and maneuvers.
Since the SFOS editor is a general purpose
timeline editor, it is also used to edit the
Timeline document. The spacecraft
information is then extracted and put into a
file that roughly corresponds to the spacecraft
sequence file for other missions.

From this point on, Ulysses SEG resembles
SEG for the other JPL projects. The
telemetry state of the spacecraft is extracted
from the sequence file. The ground events
are generated for the beginning and end of
each track, the DSN configuration, spacecraft
telemetry state changes, and other significant
activities. This information is then used to
create the SOE, SFOS, and DSN keyword
files.

Ulysses SEG was the first project where the
SFOS editor was used to input data that
would then be passed on to other processes.
The SFOS editor has functioned well, and it
was easy to extract data from the SFOS
records.

ACKNOWLEDGMENTS

This work was done at the Jet Propulsion
Laboratory, California Institute of
Technology, under a contract from the
National Aeronautics and Space
Administration. We would like to
acknowledge the work of the technical staff
in the OEL, the JPL Mission Operations

gsb'o/b
SPACECRAFT COMMAND AND CONTROL USING EXPERT SYSTEMS

July 22,1994

Scott Norcross and William H. Grieser
Storm Integration, Inc.
CIT Tower - Suite 502
2214 Rock Hill Road
Herndon, VA 22070

(703) 478-6200 FAX (703) 478-6670

INTRODUCTION

We are in the midst of a revolution in the spacecraft command and control industry. This revolution
is driven by several factors. Traditional customers of spacecraft command and control systems (like
the government) are now trying to do more with less money. Where in the past the government
would be inclined to design and build a system from scratch, today they are looking for an off-the-
shelf solution. Another factor contributing to the changes in spacecraft command and control is the
advancing technology of spacecraft. Several commercial ventures are underway to exploit large
constellations of relatively cheap satellites. These new commercial space opportunities create a need
for more economical command and control systems to satisfy these bottom-line oriented endeavors.

Some of the changing requirements in the market include:
The skill level required to operate the system on a day-to-day basis is lower than required by
traditional systems.
The number of human operators required per satellite is smaller.
The user interfaces are becoming graphical, as opposed to the text-based interfaces of traditional
systems.
The amount of time to prepare for a spacecraft mission is decreasing, making it harder for satellite
users to develop their own system from scratch.

This paper describes a product called the Intelligent Mission Toolkit (IMT), which was created to
meet the changing demands of the market. IMT is a command and control system built upon an
expert system. Its primary functions are to send commands to the spacecraft and process telemetry
data received from the spacecraft. It also controls the ground equipment used to support the system,
such as encryption and decryption gear, and telemetry front-end equipment. Add-on modules allow
IMT to control antennas and antenna interface equipment.

The design philosophy for IMT is to utilize available commercial products wherever possible. IMT
utilizes Gensym's G2 Real-time Expert System as the core of the system. G2 is responsible for
overall system control, spacecraft commanding control, and spacecraft telemetry analysis and display.
Other commercial products incorporated into IMT include the SYBASE relational database
management system and Loral Test and Integration Systems' System 500 for telemetry front-end
processing.

Use of Expert Systems in IMT

Spacecraft command and control consists of a repetitive sequence of planning, contact and
evaluation activities. During these phases, events occur and information is gathered that determine
subsequent actions required to control the spacecraft. Traditional control systems require system
operations personnel and spacecraft engineers to manually determine the appropriate responses to
these events. In addition, to respond to recurring anomalous conditions that can be overcome via
procedural solutions, operators often document detailed system conditions in a log book or
operations manual. These references are examined by operations staff to determine how to resolve
specific system conditions. If these conditions are not properly documented and accessible, the
operations staff must consult with the operations "expert" to determine the appropriate course or
action.

Using IMT's satellite support plan functions in combination with the embedded expert system,
complex system conditions and responses are captured within a system knowledge base. IMT
identifies specific events and conditions and invokes rules, procedures or specific satellite support
plans to generate appropriate system responses. In this capacity, IMT stores, recalls and implements
the knowledge of the system operations staff. The system can automatically respond to specific
events or present suggested actions based on system conditions. The following are particular
examples of how IMT implements these principles.

Telemetry Analysis and Display

The G2 expert system can be used to analyze telemetry data emitted by a spacecraft and determine
the state of the spacecraft. G2's inherent ability to model real-world objects supports sophisticated
analysis of complex data. The data can also be displayed to the user through G2 objects, presenting
the data in a format that is easier to understand than traditional text-based displays.

Figure 1 - IMT Graphical Pass Plan

736

Graphical Pass Plan

In IMT, a "pass plan" is a sequence of spacecraft commands and system configuration actions called
"steps." IMT uses G2 to represent each step as a G2 object, and the flow of execution through the
steps is indicated using the G2 connection facility. A graphical pass plan resembles a flow chart,
which is more intuitive than the proprietary commanding languages used by other command and
control systems. As the pass plan is executed, the current step is highlighted; status information
about each step is presented along with the G2 icon for the object.

There are two ways to create pass plans. The first is to select commands from command palettes
and connect them into graphical sequences to form pass plans. The second way to create a pass plan
is to build an ASCII file using an off-line process (e.g. using an editor or the output from another tool). IMTs
Pass Plan Import function is then used to convert the ASCII file into a graphical pass plan where it
can be executed like any other pass plan.

IMT supports two modes for pass plan execution: manual and automatic. Automatic execution
provides the first step toward the complete automation of system operation. During automatic
execution, command sequences are executed without operator intervention. Automatic execution
continues until the sequence is completed successfully or until an anomaly is detected. Anomaly
detection could be based on the inability to properly transmit the command from the ground system,
a command rejection from the spacecraft, or the result of a complex set of rules developed to verify
the command operation.

h g i c in Pass Plans

Logic is provided through an "if step," which is analogous to an "if' statement in a high level
computer programming language. When an "if step" is executed, G2 executes rules provided by the
pass plan builder to determine which step should be executed next.

Interactive Telemetry Displays

IMT can be used to build "smart" interactive telemetry displays. These displays allow the operator
to control the spacecraft by directly manipulating graphical representations of the system. For
example, circuit diagrams representing portions of the electrical power subsystem can be created that
contain graphical representations of subsystem components. The user could then click on the
graphical representation of a switch to change the switch's position to allow (or prevent) current flow
to the subsystem. This frees the operator from having to know the details of specific commands
required to manipulate a system component (spacecraft or ground system) and creates a more
"results oriented" user interface.

Command Verification

Traditional spacecraft command and controI systems require manual examination of telemetry to
determine the status of a spacecraft component or subsystem. Manual actions are initiated based on
the examination of this data. For example, after transmission of a command, operators may continue
to view telemetry data to determine if the spacecraft received the command and is responding as
expected.

IMT uses expert system rules to automate the analysis of telemetry data, determine the status of the
spacecraft, and identify necessary control actions. Specific control actions are captured in rules
which are invoked after command transmission. Rules can be designed to examine specific data
points and determine whether the desired reaction was achieved. Actions, as directed by the
operations experts, can be initiated based on the results of the execution of these rules.

Commanding Constraints

Before a command is transmitted, IMT consults the knowledge base to determine whether it is
acceptable to send the command. IMT allows the operator or engineer to specify command
transmission constraints. To specify a constraint, a rule is written to which G2 backward chains
during command transmission. These rules can refer to any available data to reach this conclusion.
This includes telemetry data, system state, and even the person making the request to send the
command. Using G2, it is easy to define constraints that can be turned on and off.

By defining a rich set of constraints, the end-users can customize their system to minimize the risk of
using lower-skilled spacecraft operators.

Automatic Analysis of Pass Plans

During mission planning, spacecraft operators determine the future activities of the spacecraft. The
objectives of these activities are determined by vehicle maintenance requirements, overall mission
objectives, and operations required to ensure the health of the spacecraft. Using IMT and the
embedded expert system, mission objectives can be captured and applied during the planning
process. For example, to ensure the health of a spacecraft, mission objectives might indicate that
battery reconditioning must be performed at precise time intervals. These objectives can be stored as
rules within the planning knowledge base.

As mission planners develop future contact support plans, this knowledge can be used to validate the
proposed pass plans and command sequences. As system intelligence increases, this analysis can
incorporate knowledge from previous spacecraft contacts. For example, suppose the last time the
vehicle was contacted, a specific anomaly was detected. Using knowledge of this condition, along
with the expert spacecraft knowledge captured by the system, the system could identify a proposed
command sequence as ineffective or dangerous to the spacecraft.

THE TOOLKIT MODEL

IMT was designed specifically to support a dynamic system environment. The "Toolkit" model
allows the product to be configured to satisfy a variety of mission unique requirements and ensures
the system can evolve to meet changing system requirements.

The "Toolkit" Model emphasizes the use of COTS products as the foundation for final solutions.
Rather than developing a complex system from scratch, the target system is developed by integrating
commercial products - best suited for the target application - into a final solution. Mission unique
requirements are implemented primarily through modifications to expert system knowledge bases and
standard relational databases. In addition, many commercial products provide graphics rich tools
that allow the system to be tailored to meet user specifications without extensive software
development. This environment supports rapid system customization and reduces development,
operations and maintenance costs. When development is required, the level of effort is significantly
lower than that required by traditional system development approaches.

Procured from Performed by Performed by Integrated and
commercial developers customer staff or Contractor delivered by
censelmaintenance fees) Contractor Contractor

CONCLUSION

The Intelligent Mission Toolkit provides significant advantages to the implementation of a complex
command and control system. The embedded expert system offers the ability to store and apply
expert mission operations and planning knowledge using system knowledge bases. This information
can be used to automate spacecraft command validation, control ground system equipment and apply
intelligence to the entire mission planning process.

IMT's modular architecture and fully Object Oriented implementation addresses the complex
requirements of modem command and control systems. The "Toolkit" model emphasis allows end-
users to customize the product to satisfy unique mission objectives resulting in the most powerful
and flexible commercial command and control system available.

SEQ-GEN: A Comprehensive Multimission Sequencing System
f l

Jose Salcedo, Thomas Starbird

Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Abstract

SEQ-GEN is a user-interactive
computer program used to plan and
generate a sequence of commands for
the spacecraft. Desired activities are
specified by the user of SEQ-GEN;
SEQ-GEN in turn expands these
activities, deriving the spacecraft
commands necessary to accomplish the
desired activities. SEQ-GEN models the
effects on the spacecraft of the
commands, predicting the state as a
function of time, flagging any conflicts
and rule violations. These states,
conflicts, and violations are viewable
both graphically and textually at the
user's request. SEQ-GEN also displays
the entire sequence graphically, showing
each requested activity as a bar on its
graphical timeline. SEQ-GEN includes
a full-screen editor, allowing the user to
make changes to the requested activities.
After a change has been made to the
sequence, SEQ-GEN immediately
revalidates the sequence, updating its
models and calculations along with its
displays based on these changes.
Because SEQ-GEN is user-interactive
and because it has the ability to
recalculate spacecraft states
immediately, the user is able to perform
"what-if" sessions easily.

SEQ-GEN, a multimission tool, is
adaptable to any flight project. A flight
project writes its adaptation files
containing project unique information
including in its simplest form, only
spacecraft commands. For more
involved projects the adaptation files
may also contain flight and mission
rules, description of the spacecraft and
ground models, and the definition of
activities. SEQ-GEN operates at
whatever level of detail the adaptation
files imply. Simple adaptations are

straight forward to do. There is,
however, no limit to the complexity of
activity definitions or of spacecraft
models; both may involve unlimited
logical decision points. Commands and
activities may involve any number of
parameters of a wide variety of data
types, including integer, float, time,
boolean, and character strings.

SEQ-GEN will be used by the Mars
Pathfinder, Cassini, and VIM (Voyager
Interstellar Mission) projects in an effort
to speed up adaptation time and to keep
sequence generation costs down.

SEQ-GEN is hosted on UNIX
workstations. It uses MOTIF and X for
windowing, and was designed and coded
in an object-oriented style in the
language C++.

Introduction

SEQ-GEN is a flexible software tool
that can be used in several roles in the
uplink planning and sequence generation
process. In this paper, we address
various tasks that are done during uplink
planning and sequence generation, and
show how SEQ-GEN supports each of
them. We begin with comments that
apply to all uses of SEQ-GEN.

Typically, SEQ-GEN is used
interactively. The user sees results of
SEQ-GEN computations on a graphical
timeline (see Figure 1). If there are
conflicts or rule violations, the user
changes the sequence by using
SEQ-GEN's editor to alter, add, or
delete requests. SEQ-GEN then
recomputes the state of state of the
spacecraft, and reevaluates the rules.
This process is repeated until the user is
satisfied with the sequence, at which

pouer - power-usage (1)

OP HODE TRANSITIONS

CDS ALLOCATIONS

SSR FiLLMXlTIONS

C ight <C) 1993, California Institute of Techno1
~ y ~ o u e r n n e n t Spomorship under NASA Contract ~ A S 7 q 6
is scknwledged.

Figure 1. SEQ-GEN TIMELINE

time SEQ-GEN writes results into
computer files.

A key feature of SEQ-GEN is that it is a
multimission program. Adaptation of
SEQ-GEN for use by a specific flight
project in a specific role is done by
supplying SEQ-GEN with files of data
about the project. Only the information
pertinent to the intended use of
SEQ-GEN is required. In this paper we
use the term "adapter" to denote the
person or persons that supply the
information about the flight project. The
term "user" denotes a person who is
using an adapted SEQ-GEN.

Now we discuss how SEQ-GEN
supports various uplink planning and
sequence generation tasks, showing
SEQ-GEN's flexibility.

Generating Command-Level
Sequences

Command-Level Editing

One simple use of SEQ-GEN is as an
editor, enabling a person to write a
sequence of spacecraft commands. The
adapter provides the list of all spacecraft
commands for the flight project. If the
commands have parameters, those are
named by the adapter. The adapter can
specify what the allowable values are for
each parameter of each command, and
what type of value is appropriate
(decimal integer, hexadecimal, octal,
binary , floating point, duration, time,
character string, boolean, or a one-
dimensional array of any of the previous
types). The adapter can also specify the
default value of each parameter. In this
way, SEQ-GEN "knows" a project's
spacecraft commands.

When the user wants to add a command
to the sequence, SEQ-GEN lists all the
commands, letting the user choose one.
SEQ-GEN displays the name and
description of each parameter (as
supplied by the adapter), to guide the
user in specifying the requested
command. SEQ-GEN will use whatever

information the adapter has supplied
concerning the parameters of the
command. For example, if the adapter
has supplied the allowable range,
SEQ-GEN will warn the user when a
value given by the user is not in range.
SEQ-GEN's editor enables a person to
form a request, consisting of one or more
commands (and also "activities"; see
below) and to add that request to the
sequence.

Command-level Sequence

One output of SEQ-GEN in the simple
adaptation described above is a file of all
the commands (in mnemonic form), in
time order, ready to be translated to bits
and sent to the spacecraft.

In addition, SEQ-GEN produces a
timeline (see Figure I) , both
interactively on the screen, and on paper.
The timeline shows visually the position
in time of each request in the sequence.

Such an adapted SEQ-GEN is useful for
building sequences for use before launch
in the testing of the spacecraft. It is also
useful for simple projects where
command-level sequence planning is
adequate, and where any constraints on
interactions of commands can be
checked by hand.

Spacecraft Clock

If precise timing of commands with
respect to the spacecraft's clock is vital,
the adapter can define the units of the
clock and their nominal durations. The
definition is then used in some of
SEQ-GEN's calculations. For example,
there is an option in SEQ-GEN to align
all commands' times to the nearest whole
unit in the spacecraft's clock. The
relation between Universal Time and the
values of the spacecraft's clock is given
to SEQ-GEN at run-time, to account for
differences in the clock's rate from its
nominal rate.

Merging Sequences

Another feature of SEQ-GEN is the
ability to merge sequence files. For
example, SEQ-GEN could be used
individually by different flight team
members making their individual request
files. Those files can then be merged to
produce a single time-ordered file with
all of the requests. Each request retains
its requestor's name (or other identifying
string), so that the individuals can check
that their requests were properly
handled.

Different requestors could include
members of the engineering team (for
example, an attitude control analyst
requesting a calibration), or of the
navigation team (requesting a
maneuver), or of science teams
(requesting scientific observations).

Predicting Events

It is often useful to predict the effects of
the commands in a sequence. The
adapter can supply models to SEQ-GEN
that enable predictions of the state of the
spacecraft based on the commands in the
sequence.

Flexibility of Models

A nice feature of SEQ-GEN is the
variability possible in the models. One
possibility, of course, is to have no
models at all. In this case, as discussed
above, SEQ-GEN's output is the time-
ordered list of commands in the
sequence.

Models of varying complexity can be
added. For example, if the amount of
power being used at any time during the
sequence is of interest, a power model
could be added. The adapter defines a
model element by specifying its
attributes (i.e., state variables). An
attribute can be of any type (same
choices as for parameters of a command;
see above), and the adapter can define
the allowable range of each (in which
case SEQ-GEN will give a warning to

the user if the attribute's value ever
becomes out of range). For each
spacecraft command that affects an
attribute, the adapter describes the effect,
using a simple language provided by
SEQ-GEN. The language includes the
basic programming language constructs,
such as IF statements and loops. In
addition, the language C can be used by
the adapter to specify calculati~ns. No
compiling or linking of SEQ-GEN is
needed to incorporate the adapter's
compiled C code; the linking of the
adapter's code is dynamic, done at run-
time.

The effect of a command can depend on
the state of the model before the
command. The most common effect of a
command is to change the value of an
attribute.

Simple models, such as ones that keep
track of whether a switch is "on" or
"off", are simple for the adapter to
specify. Each project can model the
details appropriate for its sequencing
needs.

The modeling done in SEQ-GEN is a
discrete event simulation, where the
commands in the sequence are the
triggering events. SEQ-GEN processes
each command by interpreting the
simple language in which the adapter has
written the effect of the command, and
by calling any C functions the adapter
may have used.- The adapter can use
SEQ-GEN's "stimulus" concept to
promote the effect of a command to
future time or to several model elements.

SEQ-GEN has built-in the ability to read
files of Deep Space Network view
periods and allocations, a file that
contains predictions of downlink data
rate capability, and a file that contains
trajectory events, such as occultations.
The adapter can write effects of such
events in the same way as writing effects
of commands. For interplanetary
missions, where the light time is non-
negligible, SEQ-GEN has the capability
of adjusting times between ground time

and spacecraft time using a file giving
the light time.

Predicted Events File

SEQ-GEN produces a comprehensive
file that contains the results of the
modeling (see Figure 2). The file is a
time-ordered list that contains an entry
whenever an attribute of a model is set to
a value. The entry consists of the time,
the values of the attributes of the model
element, and an indication of the causal
command. The file also lists all
commands in the sequence. (Activities
and rule violations are also in the file;
see below.) The file can be used to
review a sequence.

Interactive Display of Models

The user of SEQ-GEN can turn the
modeling on or off at will. The user can
also have SEQ-GEN display a graph of
the value of any one or more attributes
above the timeline of requests (see
Figure 1). The user can change what to
display any time during the SEQ-GEN
session. When the user changes the
sequence, SEQ-GEN models the part of
the sequence being viewed and updates
all the displays.

Thus the adapter has great flexibility in
what models to build and how detailed to
make them, and the user has complete
flexibility in choosing what model
attributes to display on the screen during
the session.

Different Users, DifSerent Models

Even on a single flight project, different
adaptations of SEQ-GEN could be used.
For example, an attitude control expert
may include more detailed models of
attitude, but omit models of interest only
to a scientist, and vice versa.

Checking Rules

The adapter can add "rules", which are
stated in terms of the model attributes.
SEQ-GEN has eight types of rules. A

rule contains a boolean-valued
expression of model attributes. During
modeling of a sequence, if the
expression becomes true (or remains true
for too long, or for not long enough, or
becomes true too many times, or not
enough times, or becomes true before
some other state has occurred for long
enough), the rule is considered violated.
An indication of the violation occurs
above the timeline of requests (see
Figure 1). The user can click on the
indication to get details of the violation.
Rule violations are also incIuded in the
Predicted Events File.

By defining rules, the adapter enables
SEQ-GEN to perform some of the
validation of a sequence.

For situations where none of the eight
built-in types of rule adequately reflects
the constraint desired to be checked, the
adapter can use logic in the models
themselves to declare a conflict. An
indication of conflict appears above the
timeline (see Figure l), and appears in
the Predicted Events File.

Thus SEQ-GEN is flexible in the rules it
can check. Just as different users could
use different models, so they could use
rules tailored to their interest.

Making High-Level Requests;
Activity Types

SEQ-GEN offers flexibility in the level
at which a user requests commands for
the sequence. The adapter can define
"activity types" (also called "blocks"),
which can then be used in users'
requests.

A simple activity type is a list of
spacecraft commands, with their relative
timing specified. The activity type has a
name. By requesting an activity of that
name, the user is effectively adding all
the commands in the activity type's
definition to the sequence, timed relative
to the time specified for the request.

DEEP SPACE NETWORK
ALLOCATIONS and VIEW PERIOD FILES---+ 11
LIGHT TlME FlLE

SPACECRAFT CLOCWEVENT TlME
COEFFICIENTS FlLE

TELECOMMUNICATIONS CAPABILITY
PREDICTIONS FILE P-

FILE (S) of REQUESTS +
ACTIVITY TYPE FILE (S) b

4
P

MODEL FILE (S) W
0\

RULE FILE (S) W

READ and MERGE
REQUESTS

EXPAND ACTIVITIES to
COMMANDS

* MODEL, PREDICT STATES

CHECK RULES

ADD, DELETE, EDIT
REQUESTS

ENVIRONMENT FILE 11 DISPLAY TIMELINE

CONTEXT VARIABLE FlLE (S)-b

INITIAL MODEL and RULE
CONDITIONS FILE b

* WRITE OUTPUT FILES

USER INPUTS -II

SPACECRAFT - SEQUENCE FILE

PREDICTED EVENTS
FILE

MERGED and EDITED - FILE OF REQUESTS

PLOT FILES

FINAL MODEL and RULE - CONDITIONS FILE

Figure 2. SEQ-GEN FUNCTIONS

SEQ-GEN is flexible in how
complicated the definition of an activity
type can be. An activity type can have
parameters. The user, when requesting
an activity of that type, is prompted by
SEQ-GEN's editor for values of the
parameters. The values can be used for
parameters in commands that appear in
the definition of the activity type. The
values can also be used in logical
constructs (such as IF statements) that
govern what commands will be used in
the activity. For example, in an activity
type that represents a maneuver of the
spacecraft, a parameter could be an
option determining whether or not to
turn on the gyroscopes.

The definition of an activity type can
refer to other activity types (i.e.,
activities can be nested).

Activity types are "expanded" by
SEQ-GEN to produce commands. The
commands are modeled along with any
commands requested explicitly by the
user.

Using activities allows the user to think
at a higher level than individual
commands. Also, the definition of an
activity type can be written or checked
by experts, and tested before use. A
person who is not an expert can then
safely use the activity.

Some activity types represent on-board
programs that can be invoked in a
sequence to yield several commands.
Such an activity type, called an on-board
block, is expanded by SEQ-GEN for
modeling, but is not expanded on the
Spacecraft Sequence File (see below).

form packaged for transmission to the
spacecraft is not a function of
SEQ-GEN.

Planning without Commands;
d-commands

Activity types can actually be defined
even if spacecraft commands have not
been defined. SEQ-GEN has the concept
of d-commands (dummy commands),
which are requested by the user and
modeled by SEQ-GEN as commands
are, but which are not placed in the
Spacecraft Sequence File. In this way,
an adaptation of SEQ-GEN can be made
wherein activity types are defined in
terms of d-commands, which can trigger
abstract or approximate models. An
example of an abstract model is one
telling whether a maneuver is in
progress. Such an adaptation is useful
for planning sequences early in the
planning stage, or early in the life of the
project.

Both actual commands and d-commands
can be used in the same activity type and
in a single sequence. Thus modeling and
rule checking involving actual
commands can be supplemented by
modeling and rule checking of
abstractions.

Changing Adaptation

The adaptation information is given in
ASCII files (plus optional C code in the
model or activity definitions). The
adaptation can be changed as the mission
progresses. Another program, called
SEQ-ADAPT, is being developed to aid
the adapter in producing syntactically
correct and consistent adaptation files.

Writing the Spacecraft Sequence File
History and Use of SEQ-GEN

Another output of SEQ-GEN is a
computer file called the Spacecraft
Sequence File. This file contains (a
mnemonic representation of) the
information that must actually go to the
spacecraft, i.e., spacecraft commands
and calls to on-board blocks.
Conversion of this file to binary in a

SEQ-GEN (under different names) has
its historical roots in the Mariner Mars
1971 project, a Mars orbiter. Most
major later projects at the Jet Propulsion
Laboratory, including Voyager and
Galileo, wrote new versions specific to
the project. In the last few years, the

current version, which is a multimission
version, was developed.

Its activity features were used on Mars
Observer. It will be used on Mars
Pathfinder, VIM (Voyager Interstellar
Mission), and Cassini. SEQ-GEN is
hosted on Sun SPARC and Hewlitt-
Packard workstations.

Development of SEQ-GEN

SEQ-GEN has about 55,000 lines of
code, written in C++ in an object-
oriented style (Wirfs-Brock et al., 1990).
SEQ-GEN is Category A; it was
developed with full rigor and testing.

Summary

SEQ-GEN is a comprehensive and
flexible tool for use in uplink planning
and sequence generation. SEQ-GEN is
flexible in that

*it can be adapted for use in any
flight project, or for different classes
of user in a single project

*it can be adapted in several versions,
with or without spacecraft
commands, models, rules, and
activity types

*models can be simple or detailed

*models can be of actual spacecraft
parts andlor of abstract quantities

*models can be triggered by
spacecraft commands or by
d-commands

*adaptation does not require
compiling or linking of SEQ-GEN

Acknowledgement

The work described in this paper was
performed by the Jet Propulsion
Laboratory, California Institute of
Technology, under contract to the
National Aeronautics and Space
Administration.

The SEQ-GEN program was developed
by Russ Brill, Imin Lin, Win Lombard,
Bob Oliphant, John Sisno, Jose Salcedo,
and Tom Starbird.

References

McLaughlin, W.I. and Wolff, D.M.,
"Automating the Uplink Process for
Planetary Missions", AIAA 89-0580,
AIAA 27th Aerospace Sciences
Meeting, Reno, January 9- 12,1989.

Salcedo, J., "Version 19 SEQ-GEN User
Guide," D- 1 126 1, December 1, 1993
(JPL internal document)

Wirfs-Brock, R., Wilkerson, B., &
Wiener, L.(1990). Designing Object-
Oriented Sofmare. Englewood Cliffs,
New Jersey: Prentice Hall.

TROUBLESHOOTING

Charisse Sary
Computer Sciences Corporation

7700 Hubble Drive
Lanharn-Seabrook, MD 20706

Abstract

The Packet Processor I1 (Pacor 11) Data
Capture Facility (DCF) acquires, captures,
and performs level-zero processing of packet
telemetry for spaceflight missions that adhere
to communication services recotnmendations
established by the Consultative Committee for
Space Data Systems (CCSDS). A major goal
of this project is to reduce life-cycle costs.
One way to achieve this goal is to increase
automation. Through automation, using
expert systems and other technologies,
staffing requirements will remain static,
which will enable the same number of ana-
lysts to support more missions.

Analysts provide packet telemetry data
evaluation and analysis services for all data
received. Data that passes this evaluation is
forwarded to the Data Distribution Facility
(DDF) and released to scientists. Through
troubleshooting, data that fails this evaluation
is dumped and analyzed to determine if its
quality can be improved before it is released.
This paper describes a proof-of-concept
prototype that troubleshoots data quality
problems.

The Pacor I1 expert system prototype uses the
case-based reasoning (CBR) approach to
development, an alternative to a rule-based
approach. Because Pacor I1 is not operational,
the prototype has been developed using cases
that describe existing troubleshooting experi-
ence from currently operating missions.

Through CBR, this experience will be avail-
able to analysts when Pacor 11 becomes
operational.

As Pacor I1 unique experience is gained,
analysts will update the case base. In essence,
analysts are tr-uinin,? the system as they learn.
Once the system has learned the cases most
likely to recur, it can serve as an aide to
inexperienced analysts, a refresher to experi-
enced analysts for infrequently occurring
problems, or a training tool for new analysts.

The Expert System Development Methodol-
ogy (ESDM) is being used to guide develop-
ment.

Pacor I1 Overview

The Pacor I1 DCF acquires, captures, and
performs level-zero processing of packet
telemetry for spaceflight missions that adhere
to com~nunications services recommendations
established by CCSDS. Pacor I1 provides
three forms of service for packet processing:
real time, routine producdon, and quicklook.
It strips packets from telemetry frames,
reassembles packets, sorts packets by selected
fields, merges packets from different sessions,
and delivers scientific data sets and other
related products to the user.

Analysts provide packet telemetry data
evaluation and analysis services for all data
received. Data passing this evaluation is
foiwwded to the DDF and released to scien-
tists. Through troubleshooting, data failing

this evaluation is dumped and analyzed to
determine if its quality can be improved
before it is released.

A major goal of the Pacor I1 project is to
reduce life-cycle costs. One way to achieve
this goal is to increase automation. Through
automation, using expert systems and other
technologies, staffing requirements will
remain static, which will enable the same
number of analysts to support more missions.

Problem Identification

Through discussions with Network and
Mission Operations Support analysts, addi-
tional candidate areas for automation were
identified. We focused on areas where the
human reasoning processes of experts could
be automated. Analysts provided a study that
showed where they spent their time in the
Hubble Space Telescope (HST) DCF for a 1-
week period. Fifteen tasks were identified.
The study described the percentage of staff-
hours expended in each task for current
operations and for projected future operations
as workloads are expected to increase. The
troubleshooting/dump analysis task had the
highest potential benefit and was also suitable
for implementation as an expert system.

Benefits

have to discuss it with each other or look up
the problem and solution in a log book. Log
books are available for analysts to record how
they fix problems; however, specific require-
ments for the information stored there does
not exist. The information may be sketchy,
inconsistent, and difficult to find.

Analysts felt that a record of their prior
troubleshooting knowledge, with an easy way
to access the information, would help them in
solving new or recurring problems. They also
felt that troubleshooting experience from
prior missions, including Pacor I, would be
beneficial for Pacor I1 analysts at the start of
the Pacor I1 mission, even though some
problems may be new.

Expertise available during o f hours: Shift
analysts are the first analysts who fix prob-
lems that occur. If these analysts cannot fix a
problem, troubleshooting analysts fix the
problem. However, troubleshooting analysts
only work during the day shift. An expert
system could be an assistant to shift analysts
on other shifts who do not have access to
troubleshooting analysts and who are not as
proficient in fixing problems.

Retain expertise with high turnover rate: Due
to the nature of operations, analysts are
required to work rotating shifts. Because this

Through additional discussions with analysts, is demanding on the individuals involved,
analyst turnover is high, which results in a the troubleshooting problem was further
high demand for training of new analysts. evaluated for implementation as an expert

system. Several potential benefits appeared to Analysts felt that it would be useful to have a

be possible. system that would help in training and
assisting inexperienced or new analysts

Capture and store experience: Analysts felt perform their jobs. Also, because the Pacor I1
lifetime is expected to be long, expertise can that it would be useful to have a system that
be retained during personnel turnover through would enable them to more readily access
the use of expert systems.

prior troubleshooting problems and solutions.
currently, when problems recur, analysts
must remember how they were fixed. If it is a Increased workload jor same number of staf:

problem that another analyst handled, analysts Facility personnel currently handle complex
decision-making processes. Through the use

of expert systems, some of these processes are two types of adaptation: manual and
can be automated, which frees the analyst to automatic. In manual adaptation, a user
concentrate on exceptional situations and modifies a closely matching case manually.
relieves the analyst from performing the more
routine decision-making tasks. This automa-
tion would enable the same number of
analysts to handle an increased workload.

Case-Based Reasoning Overview

CBR is a kind of expert system or another
way besides rules to build an expert system.
CBR uses past experience in solving new
problems by storing previous experience or
cases in a case base or database of cases.
Cases are indexed so that they can be easily
retrieved from the case base, and retrieved
cases can be adapted to solve new problems.

Figure 1 illustrates the CBR process. Appli-
cation domain knowledge is stored as a set of
cases that describes past experience. Each
case is composed of a set of features with
values associated with these features. Typical
information that might be included as features
of a case are a description of a problem, a
solution for the problem, how the solution
was reached, and the expected result follow-
ing implementation of the solution. Most
often, the case base is developed incremen-
tally over time as users find and solve new
problems.

When a new problem is encountered, an
analyst enters the characteristics or symptoms
of the new problem as a new case. The CBR
system searches the existing case base for
cases that match and then displays a set of
closely matching cases. Cases are ranked to
indicate the degree of match between an old
case previously stored in the case base and the
new case.

If there are no exact matches, adaptation is
often performed where a closely matching
case is adapted to fit the new situation. There

The modified case is then stored so that it can
be reused when the problem occurs again. In
automatic adaptation, the system automati-
cally adapts an existing case. This adaptation
is typically performed using a set of rules that
describe how an existing case should be
adapted.

Figure 1. CBR Approach to Problem
Solving

Advantages to CBR Approach

The CBR approach to problem solving has
many advantages. Solutions to problems can
be quickly derived because past experience is
applied to the current problem. Previously
obtained solutions can be reused rather than
repeating the entire reasoning process each
time the same problem recurs. Novices can
use a CBR system to quickly obtain solutions
to probleins without a deep understanding of
the process involved in deriving the solution.
Also, with CBR, novices are prompted for the
important features and do not have to remem-

ber what is important, which makes CBR
systems useful training tools. Finally, past
correct solutions and solution paths, as well as
past mistakes that may have been forgotten,
can be reapplied to new problems, eliminating
"reinventing the wheel." The system becomes
more robust as more cases are added or
existing cases are modified.

Rule-based expert systems have been widely
used to handle problems dealing with auto-
mating the human reasoning processes of
experts. The CBR approach to problem
solving has many advantages over the rule-
based approach. It is often easier to add new
cases to a case base as compared to adding
new rules to a rule base. For example, it is not
always clear what the effect of adding one
rule to a rule base will have on other rules in
the rule base. In CBR, each case is an inde-
pendent entity and does not -interact with
other cases as a rule does when it fires other
rules.

CBR solves problems more similarly to the
way humans solve problems. Humans most
often use what they already know in solving a
new problem, reapplying a previous solution
path and solution, rather than generating a
new solution every time. They adapt what
they already know to solve a current problem.
Because cases are more understandable to the
end user or expert, CBR systems are easier
for a human to understand, build, use, and
maintain, which also makes knowledge
acquisition easier. However, as with any
intelligent system, users must be cautioiled
not to blindly apply the recommended solu-
tion without thoroughly evaluating it to
ensure that it is indeed the correct one.

Two types of problems are most suited to the
CBR approach: (1) those where a significant
number of past experiences or cases are
available that are applicable to new problems
and (2) problems where all solutions or

expertise are not known in advance or where
the domain is not well understood.

Rationale for Choosing CBR

Based on the characteristics of the trouble-
shooting problem, we felt that the CBR
approach was a suitable approach for trouble-
shooting for several reasons. Pacor II con-
ventional software is under development.
Therefore, the necessary troubleshooting
expertise for Pacor I1 does not currently exist.
However, a troubleshooting assistant could be
developed for Pacor I1 analysts from existing
mission experience and, subsequently, for
logging Pacor I1 troubleshooting sessions
after Pacor I1 becomes operational. A Pacor II
troubleshooting system could be developed
incrementally as knowledge is gained. Also,
analysts could take a major part in populating
an initial case base during development, after
case base design is stable, and they can
perform their own maintenance during
operations.

Methodology

ESDM describes a standard methodology to
follow when developing an expert system.
Because requirements are unknown at the
beginning of an expert system project, by
developing a series of progressively more
complex prototypes, requirements will be
identified and validated. ESDM is based on
an iterative life-cycle model or spiral model.
Each iteration adds knowledge about what the
human expert does and what the requirements
should be for the system. Each iteration also
reduces the risks and uncertainties about the
feasibility and practicality of using expert
system technology for a given system.

ESDM is composed of five stages. The
product of each stage is an executable proto-
type. We are using ESDM for this project and

have developed the first-stage prototype or a explanation of what an analyst should do to
Feasibility Stage prototype. handle the anomaly (action). Figure 2 pro-

vides a sample case.
The prototype produced during the Feasibility
Stage automates one or a few key functions of
the human expert and concentrates on feasi-
bility issues.

Prototype Implementation

We have developed a proof-of-concept
prototype that assists analysts in troubleshoot-
ing data quality problems. If the quality of the
data received in the DCF is below a certain
level, the analyst must determine the cause of
the problem and decide if the quality of the
data can be improved before it is forwarded to
the DDF and to scientists.

The initial prototype is composed of a set of
12 cases. We expect the final system to
contain about 100 cases. The cases range in
level of detail from very broad, network-type
anomalies to very specific, spacecraft-related
anomalies. Categories of cases were classified
into four general types:

Spacecraft problem or spacecraft to
ground station link problem
Ground station to NASA Communica-
tions (Nascoin) (GSFC) link problem

* Nascom to GSFC Building 23 inter-
building data distribution re-
source/interbuilding data transmission
system (XBDDRIIBDTS) link problem

* BDDRDBDTS to Pacor I1 link/Pacor I1
internal problem

Title: Nascom to Sensor Data Processing
Facility (SDPF) Link Problem
Problem Description:
Frame-level errors-Cyclical redundancy

code (CRC)
Block-level errors-Polynomial errors
System results match-Generic Block

Recording System
Packet errors--Missing packets or gaps
Percent recovery-Greater than 100%
Data Type-Playback Recorder
Data Inversion PerfonnedAVo
Gap characteiistics---No gap in block time
100% recovery-Yes
Inversion flag changes and frame synch

pattern is valid but inverted4Vo
Duration of gap-Less than 4 minutes
Number of missing packets-Greater than I
Frame CRC corresponds to each packet gap

location-Yes
Location of fratne ei-sors corresponds to

location of block ei-sors-Yes
Solution Description: Link problem between
Nascom and SDPF
Action: Notify the Payload Operations
Control Center and request a retransmission
from the ground station. Request Nascom
support for line checkout.

Figure 2. Sample Case

To match a new case with a case stored in the
case base, a similasity assessment technique The initial case base contains cases from the
must be defined. In the prototype, the sirni- first three categories. Six of the cases ase

from Pacor I and six are from the HST DCF. larity between two cases is calculated by
generating a score that indicates the normal-

Each case is composed of a title to identify a ized sum of the number of features that match

case, a set of symptoms or a description of the between a new case and a case stored in the

problem, a description of the cause of the case base. Features that describe the symp-

anomaly (solution description), and an

toms leading to a problem are used in
generating this score.

Figure 3 illustrates a sample prototype screen.
At the top of the figure, an analyst has entered
the characteristics of a current acquisition
session. All of the closely matching cases
retrieved from the case base are displayed at
the bottom. Each line contains a score that
indicates the degree of match between the
current case and a stored case, the name of the
matching case, and a brief description of the
problem causing the anomaly. An analyst
may retrieve a stored case from the case base
and compare it to the case describing the
current situation.

We currently use manual adaptation. If no

exact matches are found, an analyst reviews
the cases provided to see what other analysts
have done in the past and decides if any of the
proposed solutions are applicable to the
current situation. If this is a new problem, an
analyst may build a new case by entering the
characteristics of the new problem, including
the proposed solution. Later the solution may
be verified or changed to a better solution,
other incorrect solutions that were tried and
discarded may be added, or alternate suitable
solutions may be added.

Tool Chosen

The prototype was developed using the
ESTEEM CBR tool, developed by Esteem
Software Incorporated. ESTEEM is a

71 DataGaps Frame CRCs detected in
71 PacketFill Bad spacecraft time cau
53 NascomSDPFLinkPSNLink problen between Ma
47 GSNascomLinkPSN Link problem between gr
41 VarmRestart Varm restart on board s
29 LossTDRSSSupport Loss of data in dovnlin

Figure 3. Sample Screen

standalone tool that runs on an 80486 IBM-
compatible PC with 16 megabytes (optimal,
4-megabyte minimum) of memory, 5 mega-
bytes of hard disk space, and a VGA monitor.

Future Issues

A major result of prototyping was to uncover
issues that must be addressed in subsequent
work. During maintenance in the operational
environment, many analysts will have access
to the case base. It needs to be determined if
all analysts or if only the most experienced
analysts will be permitted to add new cases to
the case base. Also, it is very likely that
analysts will have differences of opinion
concerning the correct problem resolution. It
needs to be determined whether all possible
solutions or the most popular solutions will be
added. Having alternatives could prove to be
useful for situations where a close match is
not found and an alternative solution is inore
suitable.

It is expected that in the operational environ-
ment, cases will evolve over time. A solution
that an analyst initially thinks to be good
could turn out to be in error, or an alternative
solution may be better. The CBR system must
be capable of evolving through this process.

For the prototype, we defined a set of features
that describe the characteristics of the prob-
lem, the recommended solution, and the
actions for handling the problem. For subse-
quent prototyping efforts, we need to deter-
mine if this set of features is suitable for all
types of problems that analysts typically
handle and for new, not-yet-encountered
Pacor I1 problems. We need to determine if
other information might be useful, such as
other solutions tried that proved inadequate,
additional background information or defini-
tions for the inexperienced analyst, diagrains
on how to fix a problem, and steps to follow
to uncover the problem. A small analyst team

has provided the expertise to build our initial
prototype. The prototype must be evaluated
by other analysts.

Because the Pacor I1 environment is UNIX
based, we plan to port the prototype to the
UNIX environment. The operational system
will run as a tool for analysts who will extract
feature values directly from the Pacor 11
database to minimize operator input. The final
system will generate trouble reports automati-
cally following an evaluation. Subsequent
efforts will also include extending the case
base and upgrading the computer-human
interface.

Conclusion

This prototyping effort represents a novel
approach to solving the troubleshooting
problem using CBR. With advanced tech-
nologies such as expert systems, more auto-
mation can be introduced into operations, thus
reducing life-cycle costs. Expert systems have
been developed to handle troubleshooting
using the rule-based approach. However, due
to some of the unique characteristics of the
Pacor I1 environment, the requirements of
operations analysts, and the shortcomings of
rule-based systems, an alternative approach
was tried. This paper describes an initial
proof of concept for the troubleshooting
problem using CBR. A significant result of
prototyping has been to confirm our hy-
pothesis-we feel that this approach is a
viable one for the troubleshooting problem.

Acknowleclgments

The author would like to thank analysts Tony
Walsh, Wende Peters, and Mark Hilliard for
their contributions as experts during devel-
opment.

References

Barletta, RaIph (August 1991). An Introduc-
tion to Case-Based Reasoning. A1 Expert,
Volume 6, Number 8.

Kolodner, Janet (1993). Case-Based Reason-
ing. San Mateo, CA: Morgan Kaufmann
Pnblishers, Inc.

AN INTELLIGENT AUTOMATED COMMAND AND CONTROL $- '(
SYSTEM FOR SPACECRAFT MISSION OPERATIONS

A. William Stoffel
Human Performance Studies

NASA, Goddard Space Flight Center,
Mission Operations Division

ABSTRACT

The Intelligent Command and Control (ICC)
System research project is intended to provide
the technology base necessary for producing an
intelligent automated command and control
(C&C) system capable of performing all the
ground control C&C functions currently
performed by Mission Operations Center
(MOC) project Flight Operations Team (FOT).
The ICC research accomplishments to date,
details of the ICC and the planned outcome of
the ICC research, mentioned above, are
discussed in detail.

INTRODUCTION

Beginning this year and extending into the
foreseeable future mission operations personnel
are being required to operate more complex
ground systems with less flight operations team
(FOT) personnel and lower budgets than in the
past. The Intelligent Command and Control
(ICC) system research is intended to provide
the technology base necessary to solve these
problems through automation and intelligent
machine Case-Based reasoning and decision
making. The need for the ICC is due in some
cases to the fact that FOTs will be asked to
command and control (C&C) more complex
missions such as those of the Earth Observing
System (EOS) and in others to the fact that
FOTs will be required to operate several
spacecraft concurrently from the same Mission
Operations Center (MOC), such as in the case
of the Small Explorer (SMEX) and the
International Solar and Terrestrial Physics
(ISTP) missions. These facts require that we
develop an intelligent C&C system which is
capable of acting as a cooperative assistant to
the FOT, reduce the workload of existing
FOTs, and reduce the cost burden of creating
ever larger FOTs.

DEFINITION

The Intelligent Command and Control (ICC)
System is designed to ultimately produce the
technology necessary for development of a
highly intelligent automated machine based
C&C for Spacecraft mission operations which
is capable of performing all the C&C functions
currently performed by FOTs. While that is the
ultimate goal, it should be noted that many
very valuable interim products are being
produced and will be produced which are and
can be used to improve, automate, and reduce
the cost of MOC operations.

This project was originally planned as a five
year research project but, while interest in the
ICC research is very high in the Space Ops and
process control communities, funding has been
halved and therefore the end-point of the ICC
project is now 8-9 years out from the original
start point of April, 1993.

A detailed description of the technology
involved is provided later in this paper.

Program Objectives

The following are the objectives of the ICC
research and development program:

1. To demonstrate that we can improve and
simplify spacecraft MOC command and control
by building and operating a real time Intelligent
Command and Control (ICC) system utilizing
AI, object oriented techniques, & animated
graphical user interfaces.

2. To create a command and control
system that can act as a cooperative member of
an FOT.

3. To demonstrate that Mission Operations baseline C&C with the ICC will involve five
Center (MOC) Command and Control steps:
functions can be fully automated and that such
a system can perform intelligent machine based 1. Collecting data on the current or
decision making. baseline C&C.

4. To demonstrate that such a system 2. Turning off the baseline C&C
would show tremendous savings in both and taking over all C&C functions with the
development and operating costs by: ICC prototype for at least one pass.

* Limiting or reducing the number 3. Collecting data on the ICC
of FOT personnel. prototype.

* Intelligently automating 4. Turning off the ICC prototype
spacecraft MOC functions to the point where and returning command and control to the
management by exception can become a reality. baseline C&C.

* Reducing operator enor through 5 . Steps 1 through 4 above will be
more intuitive user interfaces, automation, the repeated until sufficient data on the
use of true machine decision making, and the performance and reliability of the ICC
application of standardized commands. prototype has been collected to establish the

results and conclusions of the ICC research.
Technical Approach

The technical approach we have chosen to
accomplish these objectives is as follows:

1. Establish a collaborative activity among
the Mission Operations Division's (MOD)
technology and operations groups, academia,
and private industry.

2 . Survey and evaluate existing advanced
technology products available for possible use
in the ICC.

3. Select and use an existing command
and control system as a baseline with which to
.compare the ICC.

4. Prototype & evaluate the ICC using
reiterative validation and development
techniques.

5 . Perform a side by side evaluation of the
ICC and the baseline C&C.

Completion of ICC Research

Significance and Benefits

The following benefits potentially apply to all
future NASA missions. Specific and strong
interest in the ICC research, its results and
products have been received from the following
projects and organizations: ISTP, SMEX,
Hubble Space Telescope (HST), EOS, and the
Network Management and Operations Support
(NMOS) Flight Projects Support Division, and
the European Space Agency (ESA).

Expected benefits of the ICC research are:

1. Reducing operator error through
more intuitive user interfaces, automation, and
selection of standardized commands.

2. Lowering system supervisory
costs through the use of management by
exception.

3. Limiting or reducing the number
of FOT personnel.

4. Faster, more cost effective and
robust spacecraft system status, and operations Successful completion of the ICC research and models. project is defined as completing a successful

side by side test of a working ICC prototype
and the baseline C&C. The comparison of the

5. Simplified and reduced cost of
training through the use of a command and
control system which is both more generic, or
standardized, for all missions, and internally
more flexible (i.e. easier to modify for
specific missions).

Accomplishments

Accomplishments to date are as follows:

1. Completed technology survey.

2. Completed 1 st Transportable Payload
Operations Control Center (TPOCC) Task
Analysis (SMEX).

3. Completed ICC Prototyping Plan .

4. Completed Operator Function Model.

5. Completed initial ICC MOC Simulator
which accepts actual TPOCC data as input .
6. Completed Task Analysis of Anomaly
Detection and Correction Processes.

Deliverables and Future
Accomplishments

The deliverables and accomplishments
expected for the remainder of the ICC research
project are as follows:

7 . Develop Case-Based+ Reasoning Tools
for ICC.

8. Develop Advanced Tutor-Aid Paradigm
for use in ICC (described below).

9. Complete Automation Analysis for
implementation of control center management
by exception.

10. Complete Second Task Analysis
(ISTP).

1 1. Complete initial, basic research .ICC
Prototype.

12. Conduct reiterative redesign and
reevaluation of basic ICC prototype.

13 Complete detailed architecture (both
structural and functional) of the ICC Inference
Engine.

14. Construct robust ICC MOC Simulator.

15. Begin construction of ICC inference
engine.

16. Complete Construction of ICC
inference engine.

17. Conduct reiterative Integration and
Testing (I&T) of ICC components.

18. Assemble ICC components into robust
ICC prototype.

19. Conduct reiterative I&T, evaluation,
and redesign of complete robust ICC
prototype.

20. Conduct sided-by-side test of ICC and
baseline C&C.

Item Twenty (20.) marks the end of the
research phase of the ICC project.

Technology Description

Functional Description:

Downlink Telemetry
Handling:

The completed operational ICC when fully
integrated into MOD operations will reside in
the TPOCC workstation accepting data from
the Front End Processor (FEP) Data Server
Task (DST) and consist of the following: An

intelligent object oriented command and control
system capable of accepting downlink telemetry
in real time, and passing the telemetry (or
database) updates to the ICC Reasoning
Machine (RM). The RM, or inference engine
using case based, and most probably a
combination of A1 machine reasoning
techniques, will match the input with robust
spacecraft and ground control system
models/simulators and then decide what actions
should be taken based on that information. The
ICC will decide whether these actions are to be
taken by the ICC directly, sent to the human
operators (FOT) for further action, sent to other
ground control systems (e.g., small Generic
Systems Analyst Aid [GenSAA] built expert
systems), or other users (e.g., Primary
Investigators, or subsystem engineers) . What
actions the ICC takes can be preset by the FOT,
have default settings or be based on previous
cases or extrapolations from such cases.

Uplink Commanding:

The Command side of the ICC will be capable
of acting cooperatively as another member of
the FOT. It will be capable of accepting and
sending commands in real time, from a number
of sources: default routine commands set by the
FOT prior to the mission, commands set by the
FOT for a given pass, Reasoning Machine
ordered commands sent in response to
electronic input. Whatever the source of the
commands, it is currently envisioned that they
will be converted from either operator
graphically generated commands or RM
generated commands into the Systems Test and
Operations Language (STOL) commands that
will be processed by the existing STOL
Processor. That is our current plan, although
we may find that the ICC can bypass STOL
and go directly from machine generated
commands or human graphically generated
commands to a lower level language.

User Interface Description:

The user interfaces (UI) will be, mostly,
graphical animated user interfaces. The
guiding principle behind any UI design .and the
first question which will be asked in designing
each user interface will be "What type of user
interface most enhances task (and thereby

mission) performance?" Therefore some user
interfaces will be two dimensional graphical
animated interfaces (such as those currently
used in the operational Visually Inspectable
Tutor and Assistant [VITA] training system
[Chu, 19911). Others will be real time
interactive 3D graphical animated interfaces
(such as those being developed for the 1997
Hubble Space Telescope (HST) Servicing
Mission), some will use voice interactive
interfaces, and still others will be alpha-
numeric command line interfaces. The idea is
to apply the most effective type of interface for
the task to be accomplished and this will be
determined by a reiterative process of
prototyping and prototype evaluation using
FOT personnel to conduct the evaluations.

Detailed Description of
Conceptual Deliverables:

The following descriptions and discussions are
derived primarily from work conducted under a
NASA grant by Dr. Christine M. Mitchell of
the Georgia Institute of Technology (Mitchell,
1994).

SAMPEX Operator
Function Model:

The Operator Function Model (OFM) is a
hierarchical-heterarchical decomposition of the
FOT functions required to carry out real-time
operations involved in satellite ground control.
The OFM provides a detailed normative model
specifying how operations are intended to be
carried out. The OFM is hierarchical. At the
highest level it specifies the components that
comprise the overall real-time operations: pre-
pass, on-pass, and post-past. It decomposes
each function into its component activities that
may be mapped to lower levels including sub
functions, and tasks. At the lowest level, the
OFM specifies operator actions, both, manual
(e.g., issue this command) and cognitive (e.g.,
check the current state of the power subsystem)
needed to canyout individual tasks. The OFM
is both heterarchic and dynamic. Its
components depict the concurrent activities
typical of satellite ground control (e.g., execute
and monitor a command to ensure that it is
properly carried out at the same time as running
procedures to up-load another command). The
dynamic component provides the context:

triggers represent how new operator activities Case-Based Reasoning for
manifest themselves as a result of system
events and previously executed operator Real-Time Ground
actions. Control Operation:

SAMPEX Task Analysis
of Anomaly Detection and

This analysis is intended to understand how
often and what happens when unanticipated
events and anomalies occur. The study
addresses events that occur post launch and
early orbit (L&EO), i.e., examination of those
events that are considered to have occurred
during the SAMPEX nominal operations
phase. In particular, the study documents for
each anomaly (other than those identified by
one of the SAMPEX experts as a peculiarity of
the L&EO) the process of 1) failure detection
(i.e., when, how, by whom was the anomaly
first noticed?); 2) failure management (i.e.,
how long, and what happened, between the
time when the anomaly is first detected, and
when corrective action is initiated); 3) fault
compensation (i.e., what was done, who did it
(with emphasis on the decision maker's
qualifications, e.g., spacecraft analyst,
command controller). The study will include
identification of time required to resolve the
anomaly and distribute information to the FOT.
This study will be coordinated with the
SAMPEX OFM, particularly with respect to the
issue of non-preplanned activities. Recall, the
OFM will include comments on what actions
are pre-planned (always, usually, sometimes),
opportunistic (i.e., planned and executed on the
fly without inclusion in the pass plan). In the
latter case we will attempt to document the
types of opportunistic activities undertaken and
the personnel who formulate and execute them
(e.g., lead analyst, spacecraft engineer).

Building; a
Knowledge Base of
Experience of
Real-Time Decision
Making:

This component of the ICC project will
investigate the use of case-based reasoning
technology to accumulate a knowledge base of
actual operations experiences and,
subsequently, to use that experience as aid or
advice in an intelligent decision support
system. Initially such a system monitors real-
time operations forming a knowledge base that
reflects the range of nominal operations. As
unplanned andfor anomalous events occur the
case base grows, in fact it automatically learns,
broadening its knowledge base to include
operations experience accrued in managing
these unanticipated events. Such a system uses
case-based reasoning technology to build an
extensive repository of operations experience--
i.e., cases, that over time, can function as the
knowledge base for an autonomous system.
This project represents one of the first
applications of case-based reasoning to real-
time decision making and system control. It
provides an alternative, and potentially richer,
knowledge base than such applications as rule-
based systems. Given the extent of operational
experience that comprises the foundation of
FOT expertise, a case-based system that can
learn from skilled operators is a promising way
to encapsulate and capitalize on human
experience and subsequently make it available
to both other operators and intelligent systems.

The Tutor-Aid
Paradigm

This project builds on the highly successful
VITA intelligent tutoring system as the first
component of an integrated tutor-aid
architecture. The tutor-aid paradigm proposes
that an effective approach to operator aiding
and training is the integration of aiding and
training into one comprehensive system that

differentially responds depending on the skill
level of the operator. An integrated tutor-aid
provides a great deal of assistance and guidance
to unskilled operators, i.e., operators-in-
training; as the operator skills increase the tutor
becomes less active and transitions into a well-
understood assistant. The tutor-aid paradigm
promises to be very effective. An integrated
tutor-aid system is cheaper to build and
maintain. Functionally, a versatile and
intelligent tutor is likely to evolve into a well-
understood and trusted aid. The knowledge
bases that support an intelligent tutor-aid
system (e.g., system and task models of what
to do, how, and when) are exactly those
needed for more autonomous system operation
and control.

ICC-TPOCC (A Real-
Time Simulator of the
Operator Interface to
TPOCC-Based Ground
Control Systems):

Another component of the ICC project is the
development of a researchlexperimental
testbed, the ICC-TPOCC testbed. In addition
to research concepts exploring intelligent
systems for operator aiding and training, the
ICC project is concerned with proof-of-concept
demonstrations and evaluations of these
technologies. Long term, the intent is to
provide a side-by-side demonstration
comparing conventional operations with
operations incorporating the proposed aiding
systems. In the interim, the individual research
efforts can be demonstrated and empirically
evaluated in the context of the ICC-TPOCC
testbed. The ICC-TPOCC testbed is a real-time
simulation of the operator interface to the
satellite ground control system. It is modeled
after the SAMPEX TPOCC mission operations
center operations. The testbed provides the
ICC project with the ability to implement the
proposed system, and using NASA operations
personnel as subjects, conduct experiments that
compare current and proposed systems.

Automation Analyses:

of a completely autonomous control center and
a statement of working assumptions that
underpin the belief that an autonomous control
center is possible. The feasibility study will
examine the existing facilities and procedures
integral to satellite ground control, specifically
focusing on impediments to a completely
autonomous control center (why are operator's
needed and what do they do). As impediments
to intelligent automation are identified, the
study will attempt to suggest technological
alternatives to the impediments. The sets of
impediments and technological alternatives
define the basis of the second study. This
study will articulate a set of working
assumptions that define the operating practices
(current or needed in the future) essential to
moving to fully autonomous ground control
operations.

State of the Technology

Current technology in operational use employs
windows and some point and click interfaces
but is still highly tied to alpha-numeric
command line and telemetry display
technology. Very little artificial intelligence
(AI) and animated real time graphics is built
into any of the current operational command
and control systems.

The technical challenges to developing the ICC
lie, first, in the area of developing the most
intelligent inference engine possible, second, in
determining the most intuitive and cost effective
graphical animated user interfaces. The third
area is that of developing robust spacecraft
simulators/models. The fourth technical
challenge is that of integrating the ICC with the
TPOCC systems.

Research Team

ICC Project Manager:

A. William S toffel, Human Performance
Studies, Code 513.1, NASA, Goddard Space
Flight Center, Greenbelt, MD

Team Members:

Two studies comprise the final component of Dr. Christine M. Mitchell, Center for Human-
the ICC: an in-depth analysis of the feasibility Machine Systems, School of Industrial and

Systems Engineering, Georgia Institute of Dr. Patricia M. Jones, Dept. of Mechanical and
Technology, Atlanta, GA Industrial Engineering, University of Illinois at

Urbana-Champaign, IL

References

Chu, R., (1991, September). Towards The TutorIAid Paradigm: Design of Intelligent Tutoring
Systems for Operators of Supervisory Control Systems. Doctoral Dissertation, School of
Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA.

Jasek, C., & Jones, P. M., (1994, June). Modeling and Supporting Cooperative Work in Mission
Operations: The Development of the ISAM System, Semi-Annual Progress Report, NASA Grant
NAS-5-2244. Report ICC-UIUC-9406, Engineering Psychology Research Laboratory, Dept. of
Mechanical and Industrial Engineering, University of Illinois at Urbana-Champaign, 1206 W.
Green St., Urbana, IL.

Mitchell, C. M., (1994, April) Intelligent Command and Control Systems for Satellite Ground
Operations, Semi-Annual Progress Report, NASA Grant NAG-5-2227. Center for Human-
Machine Systems, School of Industrial and Systems Engineering, Georgia Institute of
Technology, Atlanta, GA.

5. Orbit Determination Page 765

0P.5.a DSN Co-Observing Operations to Support Space VLBI Missions 767-772.- F>j!2
Valery I. Altunin, Thomas B. Kuiper, Pamela R. Wolken

OP.5.b Implementation of a Low-Cost, Commercial Orbit 773-784 4 2 ? 3

Determination System
J i m Corrigan

OP.5.c * Development of a Prototype Real-Time Automated Filter for 785-789 -17
Operational Deep Space Navigation

W. C. Masters, V. M. Pollmeier
0P.5.d * Magnetometer-Only Attitude and Rate Determination for a 791-798 - !-5-

Gyro-less Spacecraft
G. A. Natanson, M.S. Challa, J. Deutschmann, D.F. Baker

0P.5.e * TDRS Orbit Determination by Radio Interferometry 799-806 w/&

Michael S. Pavloff

* Presented in Poster Session

DSN CO-OBSERVING OPERATIONS TO SUPPORT SPACE VLBl
*

MISSIONS P- &
Valery I. Altunin

Thomas B. Kuiper
Jet Propulsion Laboratory

Pamela R. Wolken
Allied Signal Technical Services Corp.

ABSTRACT

Reliable radio astronomy support of
Space Very-Long-Baseline-
lnterferometry missions by ground
radio telescopes is mandatory in
order to achieve a high scientific
return from the missions. The 70m
DSN antennas along with other
ground radio telescopes will perform
as the ground segment of the Earth-
Space interferometer.

Improvements of radio astronomy
VLBl operations at the DSN to
achieve higher reliability, efficiency,
flexibility and lower operations costs
is a major goal in preparing for radio
astronomy support of SVLBI. To
help realize this goal, a remote
control and monitoring mode for
radio astronomy operations at the
DSN is been developed.

1. INTRODUCTION

Two Space Very-Long-Baseline
lnterferometry (SVLBI) missions are
to be operational during the second
half of the 1990's. The spacecrafts
and Space Radio Telescopes (SRT)
will be designed, manufactured and
launched by the Japanese (VSOP)
and Russians (Radioastron).

In addition to the flight elements, the
network of ground radio telescopes

which will be performing co-
observations with the SRTs are
essential to the mission.
Observatories in 39 locations
around the world are expected to
participate in the missions [I ,2].
They should provide co-observing
support with detection of signals
from celestial sources in L,C, K-
bands for VSOP and Radioastron,
and additionally P-band for
Radioastron, two circular
polarizations at each channel and
recording of signals in VLBAIMKIV
compatible formats.

The 70m DSN antennas along with
other ground radio telescopes will
perform as the ground segment of
the Earth-Space interferometer.
DSN radio astronomy co-
observations for future Space VLBl
missions will play a special role due
to the performance of the faciiiiies
(longest baselines, co-location with
spacecraft data acquisition and
phase link stations, 70m class of
antennas with 22 GHz antenna
efficiency up to 40-50%), and the
inherent reliable operability of the
DSN which is oriented to supporting
routine operations (daily for 3-5
years).

The importance of DSN co-
observing support for SVLBI
missions 'is recognized by DSN
management as evidenced by their
preliminary allocation of DSN 70m

time in their long-range resource
allocation plan. The value of the
DSN 70m network to SVLBl
missions' efficiency is illustrated by
Figl. (Courtesy of D.Meier, JPL).
This figure shows an estimation of
SVLBl mission efficiency (percent of
time per orbit actually used for
observations by a SRT) vs average
DSN 70m usage for co-observing
with a SRT. The change of
efficiency for a SVLBl mission can
be significant due to a change in the
level of the DSN co-observing
support [3].

Requested level

Average DSN 70m usage
(percent of DSN hours in the year)

Preliminary consideration of the
DSN 70m co-observing
requirements and cost estimates for
corresponding upgrades of the DSN
systems did show that upgrading
the existing DSN capabilities is the
only way to keep the cost upgrades
at a reasonable level and satisfy
minimal requirements for SVLBl
mission co-observing support.
Another condition is to accept a
lower than is usually used for s/c
operations reliability of DSN

operations to maintain radio
astronomy support for SVLBI.

Three main areas of activities are
under development to upgrade
DSN VLBl radio astronomy
performance and to provide
adequate and reliable co-observing
support:
- improvements of the current VLBl
Radio Astronomy operations;
- renovation of radio astronomy
receiving systems and upgrade of
the MKlll to MKlV VLBl recording
system;
- testing equipment and training
operations personnel.
Some of these upgrades are part of
an ongoing improvement of DSN
radio astronomy capabilities. Others
are specific to the SVLBl missions.

The purpose of this paper is to
describe ongoing improvements of
the current VLBl Radio Astronomy
operations at the DSN in order to
meet SVLBI co-observing
requirements.

2. DSN OPERATIONS
CONCEPT TO SUPPORT
SVLBl RADIO ASTRONOMY
CQ-OBSERVATIONS

Improvements in VLBl Radio
Astronomy operations at the DSN to
achieve higher reliability, efficiency,
flexibility and lower operations cost
is one of the major goals in
preparing for DSN co-observing
support of SVLBI. These
improvements will also resuly in
major advancements in the DSN's
support of other radio astronomy
activities.

Radio astronomy co-observing
support for SVLBl is very similar in
structure and content of the

observing sessions to Radio
Astronomy and Special Activities
(RASA), but the volume of SVLBl co-
observing activities is expected to
be a few times more (yearly
average) than the regular volume of
RASA activities at the DSN.

Because of this, it is logical to
improve the operations performance
of existing DSN VLBl radio
astronomy activities to meet
requirements for SVLBl co-
observing.

2.1. SVLBl co-observing
concept

The required operations reliability
for the DSN 70m antennas serving
as radio telescopes in support of
SVLBI is 90-95%. The SVLBl
projects (VSOP and Radioastron)
will provide the schedule for
observations (DRUDG file) one
month in advance, but in cases of
"Targets of Opportunity," the
telescope has to be able to change
its configuration and support a new
program for observations in three
days.

Essential improvements in hardware
to be used for co-observing are
needed: use more reliable
equipment, (e.g., instead of masers
use HEMT LNA), provide spares,
backup receivers and recorder,
improve status of monitoring and
calibration. Flexibility in operations
can be provided through fast and
simple ways to change operations
configurations and modes, and
through the standardization of
operations procedures.

The goal of significantly improving
operations performance without
increasing the cost of operations

can be achieved by reducing the
amount of hands-on activity and
automating routine activities as
much as possible. Since the largest
component of operations costs is the
staff, by introducing automated and
remote operations the costs can be
lowered [4].

2.2. VhBl Radio astronomy
operations functions and
operations scenario

Existing VLBI Radio astronomy
operations functions performed at
the DSN, excluding the time
allocation on the DSN, are listed in
Tablel.

The proposed improvements
include:
(a) automatically processing
DRUDG files (VLBI radio astronomy
schedule files) received from the
SVLBl project via lnternet to DSN
Predicts;
(b) remote monitoring and control of
receivers (K, L, C-bands) by using
dedicated Radio Astronomy
computers connected with a
computer at JPL via lnternet at each
DSN site;
(c) capability for remote monitoring
of the antenna position and recorder
status;

(d) station personnel will petform the
initialization, aalibrations (Antenna
Gain Curve, Tsys) and tape logistics.

Radio Astronomy operations at the
DSN are working toward an
automated and remotely-controlled
configuration such as is shown in
Figure 1. As this capability develops,
it may be an attractive resource for
future SVLBl co-observing support
possibilities.

VLBl radio astronomy operations functions at the DSN

l~ red ic ts ~DRUDG to VLBl recorder predicts INOA VLBl I

I

~DRUDG to Briefing Message
I

INetwork Operations Project Engineer for RASA 1

Functions
IDRUDG to Antenna predicts

Staff
NOA VLBl

~VLBI Recorder
I

IDeep Space Complex operations staff 1
Control

t ~ a i n curvelnonlinearity
I

1 Radio Astronomy engineer I

Antenna configuration*
Antenna pointing

Calibration

Deep Space Complex operations staff
Deep Space Complex operations staff

Figure 1. DSN VLBI RA operations configuration for 70m subnet

Receivers ---
Boresighting
Tsys

Monitoring

Tape logistics

Radio Astronomy engineer
Deep Space Complex operations staff
Deep Space Complex operations staff

*Subreflector/waveguide

System coherence test

Antenna status
VLBl Recorder
Receivers
Tapeschange

Log file
Shipmentrrapes label

- -
Radio Astronomy engineer

Deep Space Complex operations staff
Deep Space Complex operations staff
Radio Astronomy engineer
Deep Space Complex operations staff

Deep Space Complex operations staff
Deep Space Complex operations staff

The majority of the radio astronomy
community, including the SVLBl
projects, in order to schedule VLBl
co-observing, produce a generic
scheduling file referred to as a
DRUDG file. Because the DSN is
used for a wider range of
measurements than only VLBl radio
astronomy (e.g. navigation, TM), the
DSN uses its own scheduling
format. DSN stations are incapable
of reading DRUDG files. For this
reason, someone must perform the
conversion of DRUDG files to DSN
gredicts. SVLBl co-observing vl~ill
require performing this activity much
more intensively, basically every
day. As result, this operation
becomes very labor intensive.
Automatically processing of the
VLBl radio astronomy schedule files
(DRUDG files), should eliminate or
significantly decrease the workload
to execute this function.

The Radio Astronomy Server
(workstation) located at each station
or in JPL, will automatically convert
DRUDG files coming from the Space
VLBl project to DSN predicts.

To provide security for DSN
operations, it is required to have an
"air gap" when information comes
from outside the network it is
transferred to inner network
computers on diskette. The radio
astronomy controller will serve as an
additional filter to allow only
commands which are permitted by
the DSN complex. Finally, the
observing program loaded on the
Radio Astronomy Controller can be
initiated only from the Complex
Monitor and Control computer. In the
future, the "air gap" may be
eliminated with operations being
remotely executed from the JPL
control /monitor computer.

For planned SVLBl co-observations,
a number of different DSN RA
configurations are considered. The
number of configurations is
estimated to be 3 receivers x 2
polarization's x 4 recording modes =
24. An observing program may be
different from day to day. An
extensive automation of the control
of the antenna, receivers and VLBl
recorder configurations are
necessary to provide reliable
support without increasing of the
workload of the stations personnel.

To monitor the VLBl DSN status
during the observations, the
necessary information will be taken
from the regular flow of the DSN
status information available in the
Network Operation Control Center
and displayed on the Radio
Astronomy Monitor at JPL.

For Space VLBl co-observing, the
Radio Astronomy Server and
Controller may be considered as a
Project resource for generating the
required input files for the DSN
Network Sypport System (NSS).

The station personnel will monitor
activities on site during the
observations for security reasons,
but the automation afld remote
monitoring of many VLBl RA
operations functions can
significantly decrease the demands
on the workforce thus enabling them
to be shared by other projects.

Since by following the above
recommendations the role of the
DSN operations staff for co-
observations will be minimized,
more responsibility for successful
observations must be assumed by
the SVLBl Project. The Project

should be prepared to accept the
higher probability of failures.

2.3 Implementation status

A new software for conversion of
radio astronomy schedule files into
DSN predicts is now under
development (N.Vanden berg,
Goddard SFC). The software will
allow 'conversion of files which will
arrive by the Internet to the Radio
Astronomy Server atomatically and
prepare the DSN predict files to use
for DSN SVLBI co-observing
operations.

The remote monitor control system
development has been completed
and its software has been
successfully tested in Goldstone for
34m antenna operations (J.Leflang,
JPL). The system is under
development for the 70m antenna
in Goldstone, and then will be
implemented on other 70m DSN
antennas

Dedicated RA computers (H P9000)
exist at each complex. The
automation of receiver control was
demonstrated in Canberra DSCC.
This needs to be implemented at the
other complexes. It may be
necessary to upgrade the computers
at the other complexes to achieve
full compatibility.

The monitor of data flow from DSCC
via MOSO will be available on the
RA computer at JPL in the near
future. Software needs to be
developed for the RA computer.

Antenna monitor data captured
locally at each complex is available
via the Radio Astronomy workstation
at each complex. Software is being
actively developed.

The new Radio Astronomy VLBl
observations concept is under
development at the DSN to provide
co-observing support for future
space VLBl missions. The concept is
focused on a high degree of
automated operations with
elements of remote monitoring and
control of the VLBl radio astronomy
equipment.

The upgrades will benefit not only
the SVLBI project but also VLBl
radio astronomy and other related
VLBl activities (sic navigation,
geodesy, astrometry) at the DSN.

4. REFERENCES

1. Altunin V.I., Technical Parameters
of the Ground Segment and Data
Management the Radioastron
Project, The 2nd internaiionai
Symposium on Space Information
Systems, AIAAINASA, Pasadena,
CA, USA, September 17-1 9, 1990,
2. Altunin V.I., Robinett K.R., Mission
Operations System for Russian
SVLBI Mission, 43rd Congress of
the International Astronautical
Federation, August 28-September 5,
Washington DC, 1992,
3. Meier, D.L., Contribution of Space
VLBl Co-observations to the DSN's
Overall Efficiency and the
Importance of the DSN 70m
Antennas to the Space VLBl
Missions, 1994, JPL memo,
4. Wall S.D., Ledbetter K.W., Toward
Lowering the Cost of Mission
Operations, Proceedings of the
Second International Symposium
on Ground Data Systems for Space
Mission Operations, Nov. 16-
20,1992, Pasadena, CA.

3~905#
lmplementation of a Low-Cost, Commercial

Orbit Determination System p- i/

July 22, 1994

Jim Corrigan
Storm Integration, Inc.

2025 Gateway Place, Suite 118
San Jose, CA 95110

(408) 451-0620 FAX (408) 451-0622

Abstract

Traditional satellite and launch control systems have consisted of custom solutions requiring significant
development and maintenance costs. These systems have typically been designed to support specific
program requirements and are expensive to modify and augment after delivery. The expanding role of
space in today's marketplace combined with the increased sophistication and capabilities of modem
satellites has created a need for more efficient, lower cost solutions to complete command and control
systems.

Recent technical advances have resulted in Commercial-Off-The-Shelf products which greatly reduce
the complete life-cycle costs associated with satellite launch and control system procurements. System
integrators and spacecraft operators have, however, been slow to integrate these commercial based
solutions into a comprehensive command and control system. This is due, in part, to a resistance to
change and the fact that many available products are unable to effectively communicate with other
commercial products.

The United States Air Force, responsible for the health and safety of over 84 satellites via its Air Force
Satellite Control Network (AFSCN), has embarked on an initiate to prove that commercial products can
be used effectively to form a comprehensive command and control system. The initial version of this
system is being installed at the Air Force's CEnter for Research Support (CERES) Iocated at the
National Test Facility in Colorado Springs, Colorado. The first stage of this initiative involved the
identification of commercial products capable of satisfying each functional element of a command and
control system. A significant requirement in this product selection criteria was flexibility and ability to
integrate with other available commercial products.

This paper discusses the functions and capabilities of the product selected to provide orbit determination
functions for this comprehensive command and control system.

Precision Orbit Determination SystemTM (PODSTM)

Introduction
The Precision Orbit Determination System (PODS), developed by Storm Integration, Inc., is a
workstation-based orbit determination system. PODS is layered on top of the commercially-available
Satellite Tool Kit (STK)B produced by Analytical Graphics, Inc. PODS also incorporates the
Workstation/Precision Orbit Determination (WS/POD)TM product offered by Van Martin Systems, Inc.
The STK graphical user interface is used to access and invoke the PODS capabilities and to display the
results. WS/POD is used to compute a best-fit orbit solution to user-supplied tracking data.

The Precision Orbit Determination System (PODS)'" grew out of a need to process antenna tracking
data to determine a spacecraft orbit. The determined orbit can then be used to generate antenna
pointing commands to control a ground antenna. Such a system is necessary for full "closed-loop"
satellite command and control (i.e., from processing of telemetry and tracking data to the transmission
of commands) and augments commercial command and control systems such as Storm's Intelligent
Mission Toolkit (IMT)".

PODS provides the capability to simultaneously estimate the orbits of up to 99 satellites based on a
wide variety of measurement types including angles, range, range rate, and Global Positioning System
(GPS) data. PODS can also estimate ground facility locations, Earth geopotential model coefficients,
solar pressure and atmospheric drag parameters, and measurement data biases. All determined data is
automatically incorporated into the STK data base, which allows storage, manipulation and export of
the data to other applications.

PODS supports three levels of processing: Standard, Basic GPS and Extended GPS. Standard allows
processing of non-GPS measurement types for any number of vehicles and facilities. Basic GPS adds
processing of GPS pseudo-ranging data to the Standard capabilities. Extended GPS adds the ability to
process GPS carrier phase data.

Requirements
A workstation-based capability is desired for compatibility with other workstation-based products (such
as Storm Integration's IMT). The system should function stand-alone, but offer interfaces for
integration with other products. A Commercial Off-the-shelf (COTS) product approach is desirable for
potential resale either alone or integrated with other command and control products. Finally, the
development and certification costs must be kept low, which suggests incorporation of existing, proven
COTS products in the implementation as much as possible.

Solution Approach
Storm chose two commercial products for incorporation into PODS: Satellite Tool Kit (STK)B by
Analytical Graphics, Inc. (AGI), and Workstation/Precision Orbit Determination (WS/POD)'" by Van
Martin Systems, Inc. (VMSI). PODS consists of these products as well as the additional code and data
required to integrate the products, accept user inputs and provide output data in operationally useful
formats.

Commercial Products

Satellite Tool Kit
STK is a workstation-based, interactive system for analyzing the relationships among satellites, Earth-
bound vehicles, ground stations and targets. STK incorporates both text-based tables and graphics to
display satellite orbits, periods of visibility, access times, and sensor coverage patterns for multiple
satellites, ground stations and targets. The graphics allow animation of satellite constellations to see
how sensor coverage and visibilities change over time and with orbital position.

STK allows the input of initial orbit conditions for satellites, facility and target coordinates, and Earth-
and satellite-based sensor parameters via ASCII text file or Motif-based user interface panels. Output is
displayed via graphical ground traces on a variety of map projections, and tables of access angles and
ranges over windows of visibility. Both text and graphics output can be sent to files for printing andlor
incorporation into other systems.

The STK user interface uses an object-oriented approach for defining and manipulating data. For
example, a Scenario object consists of multiple Vehicle, Facility and/or Target objects. Each of these in
turn may have one or more Sensor objects. Objects are created, saved, and restored separately. Data
for objects are stored in individual ASCII files with pre-defined extensions (e.g., ".v" for vehicle files,
etc.).

STK Programmer's Library
The Satellite Tool KitIProgrammer's Library (STKPL)'" offers C application programmers access to
the underlying functionality of the STK runtime version. The STIWL includes header files and selected
source code modules to allow programmers to develop add-on applications that are seamlessly
integrated with the STK user interface, or stand-alone applications that use STKRL as a library of
functions. The S T W L includes access to the object manager, user interface, and graphics, as well as
astrodynamics libraries, time and coordinate conversion functions, and the orbit propagators. The
S T W L is written in an object-oriented manner which allows rapid modification and addition of new
functionality. The PODS User Interface is being developed using the STWPL.

Workstation/Precision Orbit Determination
WSIPOD is a state-of-the-art precision orbit and geodetic parameter determination software system
derived from the GEODYN I1 Version 8609 software used by NASA's Goddard Space Flight Center
(GSFC). Van Martin Systems, Inc. has ported the GEODYN I1 software to numerous workstation

platforms, enhanced it in the area of GPS data processing, and packaged it as a commercially available
and supported product.

WS/POD processes satellite tracking data using a Bayesian weighted least-squares data reduction
algorithm and detailed environmental modeling using a Cowell-type numerical integration scheme to
determine precisely various quantities related to the satellite orbit and tracking stations. Specific
capabilities include the following:

Physical Models
* Atmospheric drag using the Jacchia 1971

atmospheric density model
Solar radiation pressure

* Earth gravitation (up to 180 x 180
geopotential matrix)
Polar motion
Earth rotation
Solid Earth tides
Third body gravitation
Earth precession and nutation
Tropospheric refraction

Parameters Estimated
* Orbit state vectors

Parameters of atmospheric drag and solar
radiation pressure
Measurement and time tag biases
Tropospheric refraction scale parameters
Satellite and station clock polynomials

* Earth gravitational coefficients
* Tracking station coordinates

Measurement Types
* Laser and radar range
* Radar range rates and dopplers (including

single and double differences)
Radar altimeter range

* Topocentric right ascension and declination
East and north direction cosines
X/Y angles relative to the tracking station
Azimuth/elevation angles relative to the
tracking station
GPS pseudo-range and carrier phase,
includhg single, double and triple differences

Algorithms and Capabilities
* Cowell-type numerical integration

Bayesian weighted least-squares estimation
algorithm
Batch data processing
Automatic data editing with criteria specified
by the user
Simultaneous estimation of up to 99 satellite
orbits in a single run

WS/POD receives inputs and produces outputs exclusively through files. There is no user interface
provided. Program control is provided by input files of 80-column card images with data in rigidly-
defined column format. Data is provided and produced in ASCII text and binary files, with the file
formats defined in the WSIPOD documentation.

Summary
STK offers a state-of-the-art graphical user interface that has been perfected through many years of
development, upgrades and customer feedback. WS/POD offers more algorithmic and data processing
capabilities that any other commercially-available orbit estimation system. WS/POD also benefits fiom
its NASA heritage, which assures that the algorithms have been tested using a wide range of operational
scenarios over a span of decades

PODS Solution Approach and Features
PODS is separated into two components: PODS User Interface and PODS External Procedure
(PODSKP). PODS User Interface is implemented using STK/PL. PODSKP is a stand-alone program
independent from STK and provides a C-language interface to WS/POD. The PODS functional
breakdown is shown in Figure 1: PODS Functional Breakdown and is described below.

Figure 1: PODS Functional Breakdown

User Inputs +
useroutputs

PODS User Interface

STK provides an object-oriented user interface in which the data applies to a selected object (either
Vehicle, Facility or Scenario). PODS data is treated as an extension to the data for the existing STK
object class. This allows STK to store the PODS user inputs in the STK object files and use previously-
entered values as defaults for subsequent runs. This approach also allows PODS input data to be
specified in the ASCII object files instead of through the user interface.

i user I
k e r f a c e 1

SIX/PL

EJ
j PODS i

PODS operations are implemented as extensions to the existing STK operations and are invoked via the
standard STK user interface. The PODS input panels are similar to existing STK panels, providing
Motif pull-down menus, on-line help, and standardized range and data format checking.

Numerical outputs from PODS are displayed in standard STK output data windows, which allow
scrolling through the output data, exporting to files, queuing to a system printer, and real-time units and
time format conversions. Selected PODS data (e.g., ephemeris and facility locations) are entered into
the existing STK data structures, allowing STK to display the data graphically and use it as the basis for
accesses and other computations.

PODS/XP Input
Interface

b

PoDS/XP Ouput
I nterface

PODS/XP

PODS External Procedure
The PODS External Procedure (PODSKP) provides a C-language interface to the WS/POD product.
It is designed to be independent from the specifics of the user interface, which allows the use of other
user interfaces or calls from external applications. The interface data are consolidated in a series of
structures in header files that are incorporated by the application providing the data (initially STWPL).
PODSKP is designed such that calls to it can be made from any C program that makes use of the
PODS structures.

Processing Levels
PODS provide three levels of support for users with a variety of mission requirements: Standard, Basic
GPS, and Extended GPS All levels provide the STK-based graphical user interface and inputloutput
capabilities. The different levels are licensed externally, allowing users to upgrade without re-
installation of the PODS software. Each level is described in more detail below:

Standard - Provides the capability to determine the parameters and process the measurement types
listed in the section titled Workstation/Precision Orbit Determination, including processed GPS
positionlvelocity data. Depending on the quality of the data and models used, sub-meter orbit
positional aecuracies are achievable.
Basic GPS - Includes the Standard capabilities plus the ability to process GPS pseudo-range data
from any number of GPS satellites and receivers. To achieve a more accurate solution using GPS
data, PODS estimates the orbits of the GPS satellites based on tracking data from ground receivers
rather than using the downlinked GPS navigation data.
Extended GPS - Includes Basic GPS capabilities and the ability to process carrier phase data. Orbit
position accuracies within 10 cm and ground station coordinate accuracies within 1 cm are
achievable.

Inputs
This section summarizes the avaiIable inputs.

Inputs from User

PODS user inputs are provided per STK object (Scenario, Vehicle, or Facility). Scenario inputs apply
to all vehicles and facilities in the Scenario. Inputs per object type are listed below.

Scenario Inputs
Input tracking data file names and formats
Selection criteria for tracking data by time span,
measurement type, vehicle or facility, etc.

* Earth flattening coefficient
* Earth gravitational constant and sigma
* Maximum geopotential model degree and order

for all vehicles

Vehicle Inouts
Transponder delay
Geopotential model degree and order to be
used in the force model for this vehicle
Vehicle area and mass

* Initial orbit state vector in a variety of
coordinate systems and element forms
(Cartesian, Keplerian, non-elliptical forms,
etc.)
Span for orbit estimation and/or propagation

Earth gravitational model coefficients and sigma
values
Solar flux data and times
Magnetic flux data and times
Coordinate system reference date
Data pass definitions
Minimum and maximum number of iterations
Convergence criteria
Sigma editing criterion
Initial RMS values
Orbit integrator step size
Selection of optional output reports as listed in the
section titled Outputs to User

Facility Inputs
* Minimum elevation angle before data is rejected

Facility coordinates (in a variety of coordinate
systems) and sigma values

* Coordinate system for station adjustments
* Facilities which are constrained in position relative

to one another
* Earth semi-major axis and flattening overrides for

geodetic conversion per station
* Antenna mounting type and displacement
* Nominal received wavelength

Turn-around factor (ratio of wavelength
transmitted to wavelength received)
Biases and sigma values for all measurement types

* Override sigma values for normal equations and
data editing
Temperature, pressure and humidity at facility and
time spans over which the data applies

Inputs from Files

* Optional unmodeled acceleration and sigma
values

* Solar pressure coefficient and sigma
* Atmospheric drag coefficient and sigma

value
Biases and sigma values for all measurement
tY Pes
Covariance matrix for initial orbit elements

* Selection of optional output files

Additional GPS Inputs (GPS options only)
Names of RINEX files containing GPS
tracking data
Names of navigation files containing GPS
navigation data
Time span and/or measurement type criteria
for selection/deletion of GPS data
Radiation pressure model name for GPS
orbit perturbations

* Identification of hub receivers used in
construction of single differences

* Allowed tolerances between receiver times
when forming differences

* Selection of optional output data

Tracking Data Files - Files containing tracking data (formats described in PODS documentation.
Environmental Files - Files containing Earth geopotential matrix; time system, polar motion and flux
data; and planetary ephemeris.

* STK Object Files - ASCII files containing the STK and PODS data (user inputs, estimated
parameters, orbit ephemeris, etc.) stored between runs.

Outputs to User
Ail user outputs are displayed through the STK user interface. STK provides the ability to change
display units and time systems, export data into a format suitable for use by a spreadsheet program, and
send data directly to a system printer. The Mandatory Outputs are displayed during or after every
PODS run, and the Optional Outputs can be displayed in addition to the Mandatory Outputs at the
user's choice. The items in each output type are listed below.

Mandatory Outputs
* Tracking data summary, including:

- Vehicles, facilities and measurements types
for which tracking data exists in the
selected files

- Start and stop time of selected tracking data
by vehicle, facility and measurement type

- Number of passes
- Time span for each pass
- Vehicle, facility and measurement types per

pass
* Convergence status (convergedldiverged) for

solutions
* Convergence criterion for solution
* Number of iterations performed
* List of parameters estimated
* For each estimated parameter:

- A priori value
- Estimated value before last iteration
- Final estimated value
- Difference between final and a priori values
- Difference between final and last iteration

values
- Final sigma value
- Final sigma value multiplied by the RMS

value
- Epoch times (for estimated orbits)

* List of STK objects updated
Ephemeris data (including ground traces) for each
estimated orbit
New locations for each estimated facility

Optional Outputs
* Correlation and covariance matrices for

solved-for parameters
* Last iteration residuals
* Number of measurements per type used

in each iteration
* Summary per measurement type,

including:
- Name
- Units
- Total number of measurements in

tracking data
- Number used
- RMS and mean value of both the

residual and weighted residual
* RMS history per iteration
* GPS vehicle orbit elements (GPS options

only)
* WS/POD TDF Run File
* WS/POD TDF Block Summary File

WS/POD GDF Run File (for GPS
options only)

* WS/POD FixCIock Run File (for GPS
options only)

* WS/POD CNTL Run File
* WS/POD EXEC Run File (132-column)
* WS/POD EXEC Terminal Output File

(80-column)

outputs to Files

Solution FiIes - WSPOD output files saved after the PODS run. File formats are outlined in the
PODS documentation.
Environmental Files - Updates to the Environmental Files used by WSIPOD.
STK Object Files - Updates to the ASCII object files with the latest object data.

Applications

Single Satellite Maintenance
One potential application for PODS is the Air Force Satellite Control Network (AFSCN), which
determines the orbit of individual satellites using azimuth, elevation and S-band range and range-rate
from a world-wide network of Remote Tracking Stations (RTSs). Tracking data is generated by the
stations and sent to a Mission Control Complex where an orbit estimation is performed. The new orbit
is used to generate antenna pointing angles, which are in turn sent to the RTSs to drive the antenna for
subsequent contacts with the vehicle.

A typical sequence of events using PODS is as follows:
The analyst creates the vehicle in the STK database including the initial orbit estimate. This can
either be the result of a previous PODS run propagated to the present time, or generated by STK
using NORAD 2-Line Mean Element Set (2LMES) inputs.
The tracking data from the RTSs are reformatted into a PODS data format. This can be
accomplished using a database management system, custom program, or text formatting tool such
as UNIX awk.
The analyst produces a tracking data summary as necessary to display the types and spans of
tracking data available.
After approval of the tracking data contents, the analyst sets the estimation parameters and performs
a PODS estimation run, resulting in a display of solution data and a ground trace for the new vehicle
orbit.
After examination of the output, the analyst can elect to accept the results by saving the vehicle
object in STK, or can overwrite the results by reloading the original vehicle object from the data
base.
The analyst invokes the standard STK Access operation against the saved orbit ephemeris data to
generate antenna pointing angles for the RTSs.
After viewing the pointing angles, the analyst can export the data to a file for use in controlling an
antenna in real-time.

The saved PODS results supply the input field defaults for the next PODS run for the same vehicle. The
PODS-generated ephemeris data is used by other STK utilities and/or optional add-on STK products.
The analyst can also at any time extend the ephemeris span of a PODS orbit by invoking the PODS orbit
propagator from the STK VehiclelOrbiting menu.

Automated Constellation Management
One of the powerful features of the PODS implementation is the ability to process the data for many
satellites simultaneously. This allows management of entire constellations from a single workstation.
The nature of the STK interface and object file storage capability allows inputs to be specified by an
automatic process, eliminating the need for a user to manually enter data for each run.

As an example of such a process, consider a constellation of several dozen low-flying satellites at high
inclination (as is proposed for several commercial global cellular communications networks). Tracking
data for the satellites is collected by multiple ground stations around the world. A process utilizing
PODS is as follows:
* Collect the tracking data for the different stations.

Using a network management system (such as Storm Integration's IMT) perform the following:
- Reformat into PODS tracking data types. Data from multiple stations andor vehicles can be

included in a single PODS tracking data file.
- Automatically generate the PODS inputs and build the STK ASCII object files containing the

PODS inputs per object.
- Invoke PODS for the entire constellation. Graphical results for the entire constellation appear in

STK.
- Automatically save the estimated results for the entire constellation.
- Use the Inter-process Communication (IPC) features of STK to automatically generate

scheduling information, ground station access times and antenna pointing angles for the
constellation.

* The analyst can perform periodic updates of the solar and magnetic flux information, Earth polar
motion and UT1 coefficients using the PODS database management utilities, or these can also be
automated.
Manual overrides can be used at any time, entered either through the user interface or the object
files.

Initial orbit estimations may require multiple passes of data in order to accurately estimate the effects of
solar pressure, atmospheric drag, and the Earth gravitational field per vehicle. Longer data spans using
multiple stations can also be used to precisely determine the location of the tracking stations as well as
any biases associated with the measurements from the individual tracking stations. The best estimates
of these parameters can be used in the automated scenario described above and can be updated at any
time.

GPS Data Processing
PODS provides a variety of options for GPS data processing. The simplest option is supported by the
Standard level and involves incorporation of GPS receiver point position vectors into an orbit solution.
Vehicles with on-board GPS receivers generally telemeter the position vectors computed by the
receiver. These position vectors can be combined with ground-based measurement types (e.g., range,
range-rate, etc.) to form a single set of data for which PODS will compute the orbit that best fits the
available data. The GPS receiver data can supplement ground-based measurement types, which can
reduce the number andlor required coverage areas of ground stations while still achieving high
accuracy. The GPS data can also be used as a reference to calibrate the ground-based receivers.

A more sophisticated approach can be supported when the on-board GPS receiver passes along the raw
pseudo-range and carrier phase data. The GPS options of PODS can process these data types directly
to obtain user satellite position solutions with 10 cm accuracy. Processing of pseudo-range and carrier
phase data from ground-based receivers allows determination of ground receiver locations as well as
orbit solutions for the entire GPS constellation with uncertainties below 1 m.

Summary
PODS combines two powerful COTS products, STK and WSPOD, into a single integrated system
combining ease-of-use with high-fidelity algorithms. STK provides a modem graphical user interface
and seamless integration of the estimated parameters with a wide range of existing mission planning and
analysis tools. The integration with STK makes PODS a natural extension of existing STK capabilities.
WSPOD provides powerful computational capabilities with demonstrated reliability due to the heritage
from NASA programs. The system is designed so that it can be entirely configured by the end user with
minimal assistance from the vendor.

Applications of PODS range from single satellite control to constellation management. The three
different processing levels based on inclusion of different types of GPS data allow the user to choose the
level of support appropriate for mission requirements. The open nature of the PODSISTK interfaces
allow easy integration with existing command and control systems.

References
Volume 1. Microcosm@ Systems Description, Version 9302.00, February 1993 published by Van
Martin Systems, Inc., Rockville, MD.
Volume 2. Microcosm@ File Description, Version 9302.00, February 1993 published by Van
Martin Systems, Inc., Rockville, MD.

* Volume 3, Microcosm@ Operations Description, Version 9302.00, February 1993 published by
Van Martin Systems, Inc., Rockville, MD.
Volume 1. Microcosm@ Installation and Tutorial, Version 9302.00, February 1993 published by
Van Martin Systems, Inc., Rockville, MD.

* Satellite Tool Kit@ User's Manual, Version 2.0 for Engineering Workstations, published by
Analytical Graphics, Inc., King of Pmssia, PA.

* Satellite Tool KitProgrammerls Librarv (STKPL)'" Programmer's Guide, published by Analytical
Graphics, Inc., King of Prussia, PA.
Satellite Tool KitIProgrammer's Library !STK/PL)'" Proe;rammerls Reference, publishkd by
Analytical Graphics, Inc., King of Prussia, PA.

3

Development of a Prototype Real-Time Automated Filter for 3 5 4052%
Operational Deep Space Navigation 6 3'

W. C. Masters? and V. M. Pollmeiertf

Jet Propulsion Laboratory
California Institute of Technology

Pasadena, CA 9 1 109

Abstract

Operational deep space navigation has in the past, and is currently, performed using
systems whose architecture was originally designed to accommodate tape data transfers and
computing environments with a tiny fraction of the current capability. Additionally, this
architecture requires constant human supervision and intervention. A prototype for a
system which allows relatively automated processing of radio metric data received in near
real-time from NASA's Deep Space Network @SN) without any redesign of the existing
operational data flow has been developed. This system can allow for more rapid response
as well as much reduced staffig to support mission navigation operations.

Introduction

In the past and current practice, deep space navigation operations have been relying
on a system architecture that was designed for tape data transfers. The entire navigational
procedure consists of processing batches of observations to correct spacecraft initial
conditions and then using the corrected initial conditions to regenerate spacecraft trajectory.
This practice not only requires constant human intervention but also makes it impossible to
process data in an automated fashion.

In certain operational scenarios, it is desirable to recursively process data as they
become available and to obtain the most current improvement on spacecraft trajectory (vice
the correction on the initial conditions). Since the current software system can not serve this
purpose, the development of the prototype system, which is dubbed the Real-Time
Automated Filter (RTAF), is intended to fill this vacuum. The fundamental building block
of RTAF is the Extended Kalman Filter [Ref. 11, which allows processing of data one at a
time. The data driven feature of the system takes advantage of the architecture of the X-
Windows Real-Time Display (XRTD) software [Ref. 21. This system works recursively
and each recursive step consists of the followings. A data point is first obtained and
validated; then the spacecraft trajectory is propagated to the time corresponding to the data;
and then the data point is used to correct the propagated spacecraft trajectory, which will be
used for propagating the spacecraft trajectory when the next data point becomes available.

Interestingly, the Kalman Filter algorithm has been widely used and proven
powerful in many data reduction applications including geo-satellite orbit determination.
However, no utilization of any forms of the Kalman Filter has been documented in the

t Member Technical Staff, Navigation Systems Section, Jet Propulsion Laboratory
ft Technical Manager, Navigation Systems Section, Jet Propulsion Laboratory

literature of deep space navigation operations. This prototype, once developed fully, may
be the first such application using the Kalman Filter.

Approach

In the RTAF, the models for the spacecraft dynamics and measurements are a
subset of that in the operational orbit determination software in JPL. The spacecraft
dynamics include the n-body point mass gravitational accelerations, solar radiation pressure
with an assumed cylindrical spacecraft geometry, a limited oblateness perturbation, and
accelerations due to maneuver motor burns of finite time length. The measurement models
are restricted to the coherent two-way Doppler with precision light time corrections for
transmission and receiving times, as well as tropospheric delay of the radio signal. Filter
parameters include the spacecraft state (position and velocity) and system parameters.
Currently, the hydrostatic and wet zenith delays of the troposphere are treated as system
parameters. Other examples of system parameters are solar radiation pressure and finite
motor burn direction and duration.

Using the Extended Kalman Filter modeling definition, the spacecraft dynamics are
modeled by first order nonlinear stochastic differential equations, the system parameters by
first order Gauss-Markov process, and measurements by discrete nonlinear equations.

In above equations, 'j; is the spacecraft state vector; { is the dynamic system parameters,
such as solar pressure and maneuver parameters; 7 is the ground system parameters, for
example, the tropospheric zenith delays. For the measurement model, three times are
involved, the station transmission time tz, the station receiving time e , and the spacecraft
transmission time $, all corresponding to the k-th data point. These times are related via
precision time tran'sfonnations between station time and ephemeris time as well as precision
light time corrections. Statistical assumptions are the usual ones, such as the noise terms

+
-t -D

w, u, p, and v are uncorrelated and are of mean zero. Data validation is a simple minded
approach currently, which is to check that each raw data point lies within a specified
deviation limit. Data outside of this limit is discarded.

The data flow from NASA's DSN to the navigation workstation is accomplished
via the same interface as is used with the XRTD software system (Ref. 2). This system
taps into the already existing radio metric information stream. Data flows from each DSN
antenna to the Ground Communications Facility (GCF) located at JPL. From this facility,
the data flows to VAX computers which serve the Radio Metric Data Conditioning team, a
part of the DSN's Multi Mission Navigation Team at JPL. At this point, an auxiliary data
stream is created which allows the tracking data to flow from this DSN computer through a
gateway machine also controlled by the DSN to the navigation operations workstation.
This gateway is connected via DECNET to the DSN VAX and via TCP/IP to the
navigation workstation. The direction of the data flow is exclusively controlled from the
secure DSN machines and is restricted to a limited set of operations machines. Additionally
no direct contact between the DSN operations computer and project computers occurs.

However, the result is that the navigation workstations receive the same Multi Mission
Spacecraft Record (MMSPR) file that exists on the DSN computers with a time lag of no
more than one minute. Figure 1 illustrates this data flow as well as highlights the software
processes and file manipulations that occur on each machine. Initially a process named
DSNLISTEN receives incoming data and generates individual files of data blocks (DBF's).
The SPRCREATE process creates individual spacecraft record files (SPR's) and multi
mission spacecraft record files (MMSPR's) at a predetermined schedule which is defined
via the human controlled process SPRCREATE. The maximum frequency at which the
MMSPR's are created is limited by the speed of the DSN Vax computer and is currently
limited to once per two minutes. A process called SPRNET which runs on a DSN
rnicroVax monitors the MMSPR file on the primary machine and when it has been updated
then transfers it to the navigation workstation via TCP/IP where a waiting process named
SPRD receives the file and creates a copy of it on the navigation machine. The RTAF, then
access the latest data from this file.

/ DSN MMNAV

DSN MMNAV \I AX
I I

W INPUT
..,<x:>$v I ' 8 I

,&$<:w . ..,:.;..
...I ?@"+ N A ~ G A TION

&F

SPR

WWKST C"' AT ION
,, :.:.::

I From GCF
I I

Figure 1 : Network Data flow

As data flows in to the navigation workstation, the RTAF then recursively validates
each data, extrapolates the spacecraft state and system parameters, computes predicted data
using extrapolated state and system parameters, forms residual using the raw data and the

predicted data, and corrects the extrapolated state and system parameters. The following
structure chart of the RTAF depicts this recursive process.

I Perform Fttsring I

171 Data Recor 1 T l F M LiehtTime ST<->ET Fl F] Parameters Correction ransfo rmation Measurement Covariance

Figure 2: Filter Processing Algorithm

Conclusions and Future Plans

The RTAF represents a radically different way to perform deep space navigation
operations. It has been shown to be well suited for real-time automated data processing,
which would be impossible to accomplish using the traditional batch or batch sequential
filter and it has high potential in autonomous navigation applications. In addition, it
provides significant advantages over the traditional epoch state or pseudo epoch state
formulations in its simplicity and extensibility as well as its natural way of modeling the
temporal process.

Though this prototype has great promises, to be truly an operational tool, more
work needs to be done. The future development will expand the spacecraft dynamic
models and observable models. More sophisticated statistical methods will be incorporated
in data and solution validation. Currently the system outputs a time history of changes in
the estimated parameters. It is desired to have this system interface directly with one or
more commercial numerical data analysis packages to allow greater data analysis
capabilities. This prototype was developed in less than one year using parts of already
existing systems. It is planned to develop a completely new operational tool based on this
system design during the next eighteen months.

This new system will be similar in overall design to the one described here, but
should provide much greater capabilities for autonomous operation as well as possible
future application in on-board systems which do not use radio metric data types.

Acknowledgments

Special acknowledgment must be given to those who assisted in the development of
this prototype including E. A. Rinderle, L. E. Bright, G. C. Rinker and T. P McElrath.

The research described in this paper was carried out by the Jet Propulsion
Laboratory, California Institute of Technology, under a contract with the National
Aeronautics and Space Administration.

Reference herein to any specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise, does not constitute or imply its endorsement
by the United States government or the Jet Propulsion Laboratory, California Institute of
Tec hnology .

References

Chui, C. K. and G. Chen, (1991). Kalman Filtering with Real-Time Applications, 2nd
ed., Springer-Verlag, Berlin Heidelberg.

Pollmeier, V. M:, (November 1992). XRTD: An X-Windows Based Real-Time Radio
Memc Display and Analysis System, Proceedings of Second International
Symposium on Ground Data Systems for Space Mission Operations, Pasadena,
California.

Magnetometer-Only Attitude and Rate Determination 7 g
for a Gyro-Less Spacecraft.

G. A. Natanson and M. S. Challa
Computer Sciences Corporation (CSC)

Lanham-Seabrook, Maryland, USA

J. Deutschmann and D. F. Baker
Goddard Space Flight Center (GSFC)

Greenbelt, Maryland, USA

ABSTRACT
Attitude determination algorithms that require only
the Earth's magnetic field will be useful for contin-
gency conditions. One way to determine attitude is
to use the time derivative of the magnetic field as
the second vector in the attitude determination
process. When no gyros are available, however,
attitude determination becomes difficult because
the rates must be propagated via integration of
Euler's equation, which in turn requires knowledge
of the initial rates. The spacecraft state to be de-
termined must then include not only the attitude but
also the rates.
This paper describes a magnetometer-only attitude
determination scheme with no a priori knowledge
of the spacecraft state, which uses a deterministic
algorithm to initialize an extended Kalman filter.
The deterministic algorithm uses Euler's equation
to relate the time derivatives of the magnetic field
in the reference and body frames and solves the re-
sultant transcendental equations for the coarse atti-
tude and rates. An important feature of the filter is
that its state vector also includes corrections to the
propagated rates, thus enabling it to generate highly
accurate solutions.
The method was tested using in-flight data from the
Solar, Anomalous, and Magnetospheric Particles
Explorer (SAMPEX), a Small Explorer spacecraft.
SAMPEX data during several eclipse periods were
used to simulate conditions that may exist during
the failure of the on-board digital Sun sensor. The
combined algorithm has been found effective,

yielding accuracies of 1.5 deg in attitude (within
even nominal mission requirements) and 0.01 de-
gree per second (deglsec) in the rates.

INTRODUCTION
The coarseness of the attitude information derived
from the Earth's magnetic field, $, limits the use-
fulness of magnetometers in accurate attitude de-
termination systems. On the other hand, magnetic
field measurements offer several advantages: (1)
the sensors are inexpensive, (2) measurements can
be made any time regardless of the spacecraft's ori-
entation in space, and (3) usually changes direc-
tion rapidly enough to make computation of its
time derivative possible and these changes during
the orbit are sufficiently large to enable determina-
tion of all three Euler angles using only a three-axis
magnetometer (TAM).
The first and second advantages make a TAMytL
tractive for Small Explorer missions that have
modest attitude requirements. The third advantage
prompts a closer look at contingency attitude al-
gorithms that use only TAM measurements and are
the subject of this paper. In fact, the third advan-
tage allows the spacecraft rates to be computed, in
principle, by examining time derivatives of 5.
Therefore, we address here the following nontrivial
problem: Can we reliably estimate both attitude and
rates of the spacecraft using only TAM measure-
ments and no a priori information? If so, we can
provide for sensor contingencies of a gyro-less

* This work was supported by the National Aeronautics and Space Administration (NASA)/Goddard Space Flight Center
(GSFC), Greenbelt, Maryland, under Contract NAS 5-31500.

spacecraft such as SAMPEX, as well as of a gyro-
based spacecraft when the gyros are not functional.
Note that the second situation is not hypothetical.
For example, the Earth Radiation Budget Satellite
(ERBS) experienced a control anomaly
(Mronenwetter and Phenneger, 1988, and
Kronenwetter et al., 1988) during a hydrazine
thruster-controlled yaw inversion maneuver that
resulted in the spacecraft tumbling with rates of
over 2 deglsec. As a result, both Sun and Earth
sensor readings became unreliable, and the gyro
output was saturated. Similarly, control of the Re-
lay Mirror Experiment (RME) satellite was lost af-
ter the failure of the Earth sensors (Natanson,
1992). In both cases, a TAM became the only
functional attitude instrument.
We present here a combined scheme invoking two
different algorithms-deterministic attitude deter-
mination from magnetometer-only data
(DADMOD) and the Real-Time Sequential Filter
(RTSF)-both of which have been tested success-
fully for SAMPEX in giving the positive answer to
the above question. The DADMOD (Natanson et
al., 1990; Natanson et al., 1991; and Natanson,
1992) is an algorithm that relates the time deriva-
tives of 5 in inertial and spacecraft body coordi-
nates to determine the attitude and the body rates.
DADMOD has been successfully tested for ERBS
under normal conditions as well as for RME after
the aforementioned horizon sensor failure
(Natanson, 1992).
The RTSF (Challa, 1993, and Challa et al., 1994) is
a novel extended Kalman filter that estimates, in
addition to the attitude, errors in rates propagated
via Euler's equations. The RTSF is sensitive to rate
errors as small as 0.0003 deglsec (Natanson et al.,
1993), and this feature makes it a very robust and
accurate real-time algorithm. In particular, it has
been shown (Challa, 1993, Challa et al., 1994) that
the RTSF converges successfully in TAM-only
situations using inertial initial conditions; i.e., the
spacecraft is assumed at rest in the geocentric iner-
tial coordinates (GCI) with its axes coinciding with
the GCI axes. Note that the RTSF does not ex-

are the main source of errors in the deterministic
scheme.
The combined method suggested here uses the de-
terministic solution for initializing the RTSF to
guarantee and speed up its convergence. In this
scheme, the initial conditions for the RTSF are de-
termined by the DADMOD using a 100-second
batch of magnetometer measurements. The method
is applied here to flight data for SAMPEX during
eclipse periods. During these periods, the magnetic
torquer is turned off, so that the spacecraft attitude
is controlled only by the momentum wheel (Forden
et al., 1990, and Frakes et aI., 1992); this situation
is similar to the aformentioned contingency condi-
tions for RMIE. Remarkably, the accuracy of our
attitude estimates is less than 2 degrees, which is
within the SAMPEX requirements under normal
conditions (Keating et al., 1990).

MAGNETOMETER-ONLY
DETEIIQR.IHNISTIC ATTITUDE/RATE
DETERMINATION
The deterministic scheme starts by constructing the
second vector measurement from the first time de-
rivatives of $ resolved in the reference and body
frames. This gives the usual transformation equa-
tions

AjjR = g A , (la)

and

where A is the attitude matrix, 6 is the angular
velocity vector, and superscripts R and A imply that
that the corresponding vectors are resolved in the
reference and body frames, respectively. If the ini-

tial value of cSA is known, then cSA can be ob-
tained by integrating Euler's equation, and the
TRIAD algorithm (Wertz, 1984) can be used to
compute the attitude matrix A from the vector pairs

(5", ZA)

and

plicitly compute the time derivatives of 5 , which

as has been done by Natanson et al. (1993). The two roots, a , (@) is substituted into the second
nontrivial nature of the problem considered here
arises from the unknown initial conditions for
Euler' s equation.
As shown by Natanson et al. (1990), the problem
can be cast in the form of transcendental equations
as follows. Taking into account that the vector
lengths must be the same, regardless of the frame in
which it is resolved, the projection G, of G A onto

the plane perpendicular to iA can be expressed as
a function of an unknown angle aP between the -

[' I [vectors A B R x B R and B A x B A

thus reduces to two unknown variables: the angle
and the projection o, of 6 in the direction of

5, with the attitude matrix A dependent only on
the angle @ . To find and o,, Equations (la)
and (lb) must be supplemented by Euler's equa-
tions, which can be written in the following sche-
matic form:

where the vectors Go(@), &(a), and G, are
given by Equations (25a) through (2%) of Natan-
son (1992).* The kinematic equation relating the

second derivatives Z A and g R is then formally
represented as

1To(a)+1T,(cD)~l+;\2a;=a (3)

where the vectors ;\, (a), A, (a), and ;\, are de-
fined by Equations (23a) through (23c) of Natan-
son (1992).

Two nontrivial equations (transcendental in @) are
obtained by projecting the vector equation (3) on
two directions perpendicular to i . One of the re-
sultant equations is then analytically solved with
respect to a, at different values of cD, and one of

* Note that the cited equations erroneously used

I-I [F x Z] = I-'F x 1-9
instead of the correct expression

I - ' [f x Z] = I ~ x 121det I
where I is the inertia tensor of the spacecraft.

a . .

equation. [The selected root a, (@) must turn into
the solution of the linear equation in a , , which

arises in the limit & A -t 6 (Natanson et al., 1990).]
Finally, the resultant transcendental equation is
numerically solved with respect to @ .

The RTSF's state vector 2 comprises the four
components of the attitude quaternion, q' , and the

three components of the rate correction, c , to G A :

2 = [$' "'I'
The RTSF uses sensor data to estimate q' as well

as g , with b being estimated kinematically in the
same manner as gyro biases for a gyro-based
spacecraft, i.e., by attributing differences between
the measured and propagated attitudes to errors in
G A . The 6 estimates are then used to correct G A ,
and these corrected rates are used as initial condi-
tions to propagate Euler's equation to the next
measurement time. The propagation of B is rnod-
eled via a first-order Markov model:

where ;ii, is a white noise vector, and 7 is a fdte
time constant. The novel feature of the RTSF is
that, since b represents rate errors accumulated
between measurements, the optimum value for T is
the data period: 5 seconds for the SNAPEX data
used here. (In contrast, the same model, when used
for gyro bias estimation, requires T of several
hours.)

BRIEF DESCRIPTION OF SAMPEX
SAMPEX is the first of the Small Explorer satel-
lites and is designed to study elemental and isotopic
composition of energetic particles of solar and
cosmic origin. It has a 550 x 675-km orbit with an
82-deg inclination. SAMPEX nominally is Sun-
pointing and has a rate of one rotation per orbit
(RPO) about the spacecraft-to-Sun vector. The

attitude accuracy requirement of 2 deg is achieved
using a fine Sun sensor (FSS), and a TAM. The
control hardware consists of a momentum wheel
and a magnetic torquer assembly (MTA). During
eclipse periods, the MTA is turned off, and attitude
control is performed by only the momentum wheel
under the assumption that the spin axis remains di-
rected along the Sun vector.

The wheel momentum, 6, is directed along the
body y axis, which is also the FSS boresight. The
SAMPEX mass distribution is approximately sym-
metric about this axis. The body z axis is directed
along the boresights of the science instruments.

ATTITUDE CONWNTIONS
In following Crouse (1991), the Sun-pointing or-
bital coordinate system (OCS) used here has its
z axis directed along the target vector as it was ini-
tially defined by Flatley et al. (1990). Later
McCullough et al. (1992) modified the control law,
and as a result, the nominal direction of the body
z axis in space differs slightly from the direction of
the OCS z axis. The roll, pitch, and yaw angles are
defined as the 1-2-3 decomposition of the matrix
transformation from the OCS to the body frame.
During the nominal 1-RPO mode, the roll and yaw
angles are both close to 0, and 6 A - (0,0.06, o)=

deglsec, while the pitch angle may deviate from
zero by a few degrees for the reason mentioned
above.
The present work also uses the 2-3-2 Euler de-
composition of the matrix transformation from GCI
to the body frame. The advantage of this attitude
parametrization during eclipse is that the third
Euler angle directly reflects the 1-RPO rate of the
spacecraft, while the other two angles are very
nearly constant because no external control torque
exists, and environmental torques acting on the
SAMPEX are negligibly small.
The tests discussed below were performed using
SAMPEX telemetry data for an eclipse on July 12,
1992. The truth model here is the attitude solutions
from the single-frame TRIAD algorithm (Wertz,
1984), which are computed using the onboard al-

gorithm; i.e., assuming that the Sun vector remains
unchanged during eclipse.

RESULTS
Figures l(a) and l(b) present the first and third
Euler angles for the 2-3-2 decomposition of the
GCI-to-body attitude matrix, respectively. Except
for the region between 400 and 700 seconds
(discussed below), only two solutions are obtained,
which significantly differ from each other. If atti-
tude control is performed solely with the momen-
tum wheel and enviromental torques are neghgibly
small, one can use conservation of the angular mo-
mentum to select the physical solution (Natanson,
1992). In the absense of spacecraft nutation, this
implies that the first two Euler angles must remain
unchanged. In fact, the first Euler angle depicted in
Figure l(a) remains unchanged for one of the two
deterministic solutions and significantly varies for
another. Except for the region of multiple solu-
tions, the physical solution closely follows the
straight lines of the TRIAD solution.
A similar conclusion can be drawn from an analysis
of Figures 2(a) and 2(b) presenting the x and y
body components of the angular velocity vector.
Note that the DADMOD solutions presented here
were obtained assuming constant wheel speed
equal to the nominal value. Taking into account
actual values from telemetry did not result in any
noticeable gain in the accuracy.

More than two solutions appear when B becomes
perpendicular to the pitch axis about 400 seconds
after the beginning of the eclipse. Before this oc-
cured, the vector functions &(a) and XI(@) in
Equation (3) could be roughly approximated as:

det I

det I

where

a:(@) I I-' [6x6,(0)],

The approximation can be understood easily by
taking into account that the magnitude of the vec-
tor I 6 * is generally much smaller than wheel mo-
mentum. For the same reason, one can neglect the
quadratic term in Equation (2). By projecting the
resultant equation onto the vector 8" x @, one
then obtains the following quadratic equation:

which is analogous to that derived by Natanson
et al. (1990) for the constant-angular-velocity limit.
Obviously, this equation may not have more than
two solutions. (Another advantage of this approxi-
mation is that one needs only thefirst derivatives of
i with respect to time, which can be evaluated
relatively accurately from a 30-second batch of
magnetometer measurements.) However, the ap-
proximation made to derive Equation (7) fails if
6 . IE" goes to zero, so that the vectors i t (@)

and A: become parallel regardless of the particular
value of 0 . Because SAMPEX is very nearly
symmetric about the pitch axis, the relation

$. ~ j j " =:O

is satisfied in the region where becomes per-
pendicular to the pitch axis. In addition, in this re-
gion

6,(@). zEA - 0

regardless of the particular value of @. Conse-
quently, (0) vanishes at any 0, which implies
that the coefficients of quadratic Equation (7) are
all equal to zero. Therefore, when i is perpen-
dicular to the pitch axis, one cannot disregard the
contribution from the vector I 6 " to A, (@) . The
coefficients of quadratic Equation (7) remain small
for some time, making its solution completely un-
reliable.

Figure 3 compares the RTSF roll and pitch angle
results obtained after initializing the filter with two
different schemes: the inertial initial conditions
mentioned in the introduction to this paper, and the
correct DADMOD sdution from Figures 1 and 2.
For both starting conditions, the roll angle results
of Figure 3a reflect oscillations with the space-
craft's nutational period of 120 sec. The amplitude
of the oscillations is a measure of the magnitude of
the transverse component of GA at t = 0. The true
nutational amplitudes, however, are negligible for
this data span (Natanson et al., 1993). Thus, the
amplitude of the oscillations is RTSF errors and is a
direct consequence of the initial rate errors.
Although the filter's rate-corrections feature en-
ables it to converge (not shown here) after 2500
sec to within 0.01 deglsec of the true rates even
with the inertial initial conditions, it is clear that the
DADMOD reduces the initial errors, as well as the
convergence time, by an order of magnitude. More
important, the correct DADMOD solution, by
providing starting attitude and rates close to the
true values, nearly eliminates the possibility of filter
divergence.

CONCLUSIONS
We find that, using only magnetic field data and no
a priori information, the RTSF determines the atti-
tude to within SAMPEX mission requirements of
2 deg and rates to within 0.01 deglsec, respec-
tively. Using the DADMOD to initialize the RTSF
reduces the a priori errors and the RTSF's conver-
gence time by an order of magnitude (to within a
few hundred seconds) and also reduces the possi-
bility of divergences.
The DADMOD allows one to find the TAM-only
attitude solution with an accuracy of 10-15 deg,
unless the spacecraft passes through a region where
i is perpendicular to the wheel momentum. The
DADMOD results are consistent with those re-
ported for the RME satellite (Natanson, 1992),
where the onboard conditions after the failure of
the Earth sensor are similar to those used here.

0 100 200 300 400 500 600 700 800 900 loo0

TIME (SEC)

Figures-1(a) and (b). Attitude Solutions Generated by DA DMOD

SOLID = RTSF, INITIALIZED WITH DADMOD PHYSICAL SOLUTION SOLID = RTSP. INITIALIZED WITH DADMOD PHYSICAL SOLUTION

-----=TRIAD. USING LAST OBSERVED SUN VECTOR ---- = TRIAD, USING LAST OBSERVED SUN VECTOR

TIME (SEC) TIME (SEC)

Figures-3ta) and (b). RTSF Results Showing Faster Convergence
Using the Correct Solutions for Figures 1 and 2

0.1

0.08

0.06

0.04

0 8

- o." "9, (3 -
m." ,,t; - ."o"

O C ?
0 O 0 - 00

0

-0.04 -

-0.06 -

-0.08 - o = DETERMINISTIC SOLUTION

-0.1
0 100 200 300 400 500 600 700 800 m loo0

TIME (SEC) TIME (SEC)

Figures-2(a) and (b). Rate Solutions Generated by DADMOD

The current presentation has been deliberately lim-
ited to the case with no external torques so that the
choice between physical and spurious deterministic
solutions can be made by analyzing changes in the
direction of the total angular momentum in space.
It should, therefore, be noted that the inertial initial
conditions enable the RTSF to converge in more
severe conditions such as SAMPEX's Sun-
acquisition mode, where the magnetic torquers are
used to vary ox and o, rapidly, with amplitudes
up to 0.6 deglsec. This is shown in Figure 4 where
the telemetered data span the transition (at about
2000 sec) from SAMPEX's Sun acquisition mode
to the 1-RPO mode. Here, the TRIAD attitude so-
lutions are obtained using both Sun and magnetic
field data, and these are differenced to produce the
TRIAD rate solutions. These TRIAD results serve
as the truth model for evaluating the RTSF, which
used only the magnetic field data. Despite a priori
errors of up to 90 deg in attitude and 10 RPO in
rates, the RTSF attitude and rate estimates con-
verge to within 2 deg and 0.01 deglsec, respec-
tively, in about 1200 sec.
Therefore, the RTSF can also be used for TAM-
only attitude determination in the magnetic despin
mode using the magnetic field solely for the atti-
tude control. This mode has been successfully used,
for example, to despin ERBS during the control
anomaly mentioned previously in this paper.

ACKNOWLEDGMENT
The authors thank J. Keat for his helpful comments
on the manuscript.

REFERENCES
Challa, M. (1993, April). Solar, Anomalous, and
Magnetospheric Particle Explorer (SAMPEX) Real
Time Sequential Filter (RTSF): Evaluation Report
(553-FDD-931024ROUDO). NASNGSFC, Flight
Dynamics Division, prepared by CSC.
Challa, M., Natanson G., Baker, D., and
Deutschmann, J. (1994, May). Advantages of Es-
timating Rate Corrections During Dynamic
Propagation of Spacecraft Rates-Applications to
Real-Time Attitude Determination of SAMPEX.
Greenbelt, MD: Flight Mechanics and Estimation
Theory Symposium, NASNGSFC.
Crouse, P. (1991, September). Solar, Anomalous,
and Magnetospheric Particle Explorer (SAMPEX)
Real-Time Attitude Determination System for Per-
sonal Computer (SRTADSPC) Specifcations
(554-FDD-911145). NASNGFSC, Flight Dynamics
Division, prepared by CSC.
Forden, I., Flatley, T., Henretty, D., and Light-
sey, E. (1990, May). On-board Attitude Determi-
nation and Control Algorithms for SAMPEX,
Flight Mechanics and Estimation Theory Sympo-
sium. NASA Conference Publication 3 102.

20
0.5

0

0
-20

a 8
8 , 8
$ g -0.5
2

-60
$

-1

-80 SOLID = RTSF SOLID = RTSF

-100 -1.5
0 500 1000 1500 2000 2500 0 500 1000 I500 2000 2500

TIME (SEC) TIME (SEC)

Figures-4(a) and (b). RTSF TAM-Only Results Using Inertial lnltlal Condltlons
and SAMPEX Sun Acqulsltion Mode Data

Frakes, J., Henretty, D., Flatley, T., and Mar-
kley, F. (1992, May). Sampex Science Pointing
Modes With Velocity Avoidance (Paper No. 17).
Greenbelt, MD: Flight MechanicsEstimation The-
ory Symposium, NASNGSFC.
Keating, T. et al. (1990, July), Small Explorer
(SMEX)-1 Solar, Anomalous, and Magnetospheric
Particle Explorer (SAMPEX) Flight Dynamics
Support System (FDSS) Requirements (CSCfTR-
90/6002), CSC.
Kronenwetter, J., and Phenneger, M. (1988). Atti-
tude Analysis of the Earth Radiation Budget Sat-
ellite (ERBS) Control Anomaly (CSCJTM-
8816154). CSC.
Kronenwetter, J., Phenneger, M., and Weaver, W.
(1988, May) Attitude Analysis of the Earth Radia-
tion Budget Satellite (ERBS) Yaw Turn Anomaly
(Paper No. 18). Greenbelt, MD: Flight Mechan-
icsEstimation Theory Symposium, NASNGSFC.

Natanson, G. (1992, September). A deterministic
method for estimating attitude from magnetometer
data only (Paper No. IAF-92-0036). Proceedings
of the World Space Congress. Washington, DC.
Natanson, G., Challa, M., Kotaru S., and
Woodruff, C., (1993, August). Attitude Dynamics
Task: Attitude Determination Using Only Magne-
tometer Data for the Solar, Anomalous, and Mag-
netospheric Particle Explorer (SAMPEX).

Natanson, G., Keat, J., and McLaughlin, S. (1991,
March). Sensor and Advanced Attitude Studies:
Deterministic Attitude Computation Using Only
Magnetometer Data (CSCITM-9 1/60 17).
NASNGSFC, Flight Dynamics Division, prepared
by CSC.
Natanson, G., McLaughlin, S., and Nicklas, R.
(1990, May). A Method of Determining Attitude
From Magnetometer Data Only. Greenbelt, MD:
Flight Mechanics and Estimation Theory Sympo-
sium, NASNGSFC.
Wertz, J., ed. (1984). Spacecraft Attitude Determi-
nation and Control. Dordrecht, Holland: D. Reidel
Publishing Co., 424-425.

J

TDRS ORBIT DETERMINATION BY RADIO
INTERFEROMETRY ?- *

Michael S. Pavloff
The MITRE Corporation

Bedford, MA 01730

ABSTRACT

In support of a NASA study on the application of radio interferometry to satellite orbit
determination, MITRE developed a simulation tool for assessing interferometric tracking
accuracy. The Orbit Determination Accuracy Estimator (ODAE) models the general batch
maximum likelihood orbit determination algorithms of the Goddard Trajectory Determination
System (GTDS) with the group and phase delay measurements from radio interferometry. ODAE
models the statistical properties of tracking error sources, including inherent observable
imprecision, atmospheric delays, clock offsets, station location uncertainty, and measurement
biases, and through Monte Carlo simulation, ODAE calculates the statistical properties of errors in
the predicted satellite state vector. This paper presents results from ODAE application to orbit
determination of the Tracking and Data Relay Satellite (TDRS) by radio interferometry.
Conclusions about optimal ground station locations for interferometric tracking of TDRS are
presented, along with a discussion of operational advantages of radio interferometry.

INTRODUCTION

As part of its effort to assess cost and
performance benefits of various emerging
technologies, NASA sponsored a series of
studies on the application of radio
interferometry to satellite tracking. Though
astronomers had applied radio interferometry
to astrometry for decades prior, it was not
until the late 1960s that interferometry was
proposed for use in satellite orbit
determination. In an experiment devised by
Irwin Shapiro, Alan Whitney, and others,
very long baseline interferometric (VLBI)
measurements were made on the TACSAT I
communications satellite in geosynchronous
orbit (GEO), and the semi-major axis of the
orbit was measured with accuracy on the
order of several hundred meters [I].
Subsequent experiments performed in the
1980s by Jim Ray, Curt Knight, and others
to determine the position of the Tracking and
Data Relay Satellite (TDRS) yielded accuracy
on the order of 75 meters [2]. Such orbit
determination accuracy, which derives from

the extremely high precision of the group
delay and phase delay observables, makes
radio interferometry an attractive option for
satellite tracking.

Operational considerations are also a benefit
of radio interferometry in satellite orbit
determination, because the group and phase
delay measurements are made completely
passively. Whereas the existing Bilateral
Ranging Transponder System (BRTS) is
taxing on TDRS communications resources,
radio interferometry can derive its
measurements from any signal, including the
signal intended for the TDRS user
community. Therefore, an interferometric
orbit determination system for TDRS would
eliminate traffic for tracking on the TDRS
transponder. Because an interferometric
tracking system would be passive, it would
place no design constraints on the space
segment, and it would therefore provide
backward compatibility with all generations
of TDRS. These potential operational and
accuracy benefits led NASA to investigate
radio interferometry for future TDRS
tracking applications.

NASA sponsored a series of studies to
investigate whether an operational radio
interferometry system could provide TDRS
orbit determination services (1) at lower
cost, (2) at greater accuracy, and (3) across
considerably smaller baselines than BRTS.
Contributors to these studies included
Interferometrics, Inc., where a Small
Business Innovative Research (SBIR)
contract was executed to demonstrate
hardware and software that would provide
group delay measurements on TDRS with
VLBI. CSC performed an assessment for
the Goddard Space Flight Center (GSFC) on
a variety of TDRS tracking alternatives,
including VLBI and Connected Element
Interferometry (CEI) systems. The Jet
Propulsion Laboratory (JPL) sponsored a
series of experiments to determine CEI
accuracy from its Goldstone facility. For its
part of the effort, MITRE assessed optimal
site locations and programmatic
considerations of an operational
interferometric TDRS orbit determination
system.

For accuracy assessment purposes, MITRE
developed a Monte Carlo simulation tool, the
Orbit Determination Accuracy Estimator
(ODAE), that models error sources in orbit
determination with VLBI and CEI systems.
In ODAE, the user can specify a satellite
orbit, any set of ground stations between
which group or phase delay measurements
are to be made, and the statistical properties
of the errors in those measurements. Upon
each iteration of the Monte Carlo simulation,
the orbit of the satellite is determined based
on measurements with errors added, and the
errors in the resulting satellite ephemerides
are recorded. Thus, the user may study the
statistical properties of the enor in the batch
orbit determination process resulting fiom
the use of group or phase delay
measurements.

We applied ODAE to study the effects of
varying satellite and measuring station
geometries on orbit determination accuracy.
This paper presents an assessment of optimal
siting for TDRS tracking by radio
interferometry. A discussion of the
operational and programmatic considerations

of an interferometric tracking system are also
presented.

THE ODAE MODEL

ODAE, which was implemented in
Mathematica to allow maximum flexibility,
models the batch maximum likelihood orbit
determination process applied in the
Goddard Trajectory Determination System
(GTDS) [3 J. The user specifies a reference
true satellite orbit, a set of observing stations
(earth-based or space-based), the
observation types, and the times at which
measurements are to be made. Given a set
of observations on the satellite (e.g., radar
measurements, group or phase delay
measurements, o r pseudorange
measurements), ODAE determines the set of
parameters (e.g., state vector, clock offsets,
or atmospheric parameters) that best fit the
observations. Upon each iteration of its
Monte Carlo simulation, ODAE injects
errors of user-specified statistical properties
into various parts of the orbit determination
process. ODAE computes the error of the
measured parameters at each iteration, and at
the end of the simulation, ODAE computes
the statistical characteristics of the error.

Error sources that can be modeled by ODAE
include inherent measurement imprecision,
station location uncertainty, atmospheric
delays, and clock offsets. The user must
specify the statistical properties of the error
sources. Trajectory propagation schemes
available in ODAE for dynamic orbit
determination range from the two-body
approximation to numerical integration of the
fully disturbed equations of motion. A
detailed mathematical specification of the
coordinate frame, force models, and
numerical integration techniques used in
ODAE are given in Reference 4. The only
significant deviation from the GTDS
approach to orbit determination is the use of
Bulirsch-Stoer rational function extrapolation
for numerical integration [S, 61. For the
numerical integration of the equations of
satellite motion, the Bulirsch-Stoer technique
has been shown to provide the same

precision as more traditional techniques,
such as predictor-corrector integration or
Runge-Kutta integration, but at reduced
computational cost [4,7].

For short-term dynamic orbit determination
accuracy studies, it is often sufficient to
apply simplified trajectory propagation
schemes for the sake of reducing
computation time. Absolute trajectory
propagation accuracy is not of concern for
the assessment of the relative effects of
changes in geometry or measurement errors.
For the study on TDRS tracking by radio
interferometry, we were concerned only with
the effect of ground station geometry on
initial orbit determination accuracy, and so
dynamics came to play only over the time of
signal propagation from the satellite to the
tracking stations. Therefore, we applied the
two-body approximation for trajectory
propagation and state transition matrix
computation.

Since its initial application to the problem of
optimal ground station siting for
interferometric tracking of TDRS, MITRE
has applied ODAE to a variety of problems,
including an assessment of Space
Surveillance Network Improvement Program
(SSNIP) tracking accuracy on various
classes of orbits, and an assessment of the
accuracy of GPS for satellite telemetry,
tracking, and command (TLT&C).

INTERFEROMETRY OVERVIEW

Consider an interferometric orbit
determination scenario in which 0 is the
origin of an earth-centered inertial (ECI)
coordinate system, r is the position vector of
a satellite with respect to 0 , bl and b2 are
the position vectors of two ground stations
from which measurements are to be made,
and dl and d2 are the position vectors of the
satellite with respect to those ground
stations, as pictured in Figure 1. The
position vectors r , bl, b2, dl, and d2 are all
functions of time. The sum of a station
position vector, bk , and the satellite position
vector measured from that station, dk , is

simply the satellite position vector r ;
therefore, dk = r - bk. If the propagation
rate, c, of the signal through the atmosphere
is known, then the transit time, Tk, of the
signal from the satellite at point P to ground
station number k at point Bk will be given by

Note that in equation (I), the vectors r and
bk are measured at slightly different times.
Now, the true group delay, z, between
stations i and j is the differential transit time
of the signal between these two sites:

Figure 1. Illustration of the Interferometric
Measurement Scenario

During the Monte Carlo simulation, ODAE
computes measured group delay by adding
measurement or atmospheric fluctuation
errors to the true group delay as computed
from equations (1) and (2). The solution of
the orbit determination problem on each

iteration of the simulation, as described in
Reference 7, follows the GTDS maximum
likelihood estimation approach, one step of
which is the computation of the Jacobian, or
matrix of partial derivatives of equation (2)
with respect to the state vector parameters at
epoch.

For phase delay measurements, ODAE
converts phase delay into equivalent group
delay, as described in Reference 7. This
computation can be accomplished so long as
the cycle ambiguity can be determined from a
priori information about the satellite's
position vector. ODAE can model both the
case where cycle ambiguity is unknown and
the case where it is known. We assumed the
latter in this study.

ODAE APPLICATION TO TDRS

In this section, we assess the level of orbit
determination accuracy that can be attained
for a geosynchronous satellite with radio
interferometry, and we draw conclusions
about optimal station-satellite geometry. The
results are applied to recommend optimal
ground station siting for orbit determination
of TDRS by radio interferometry.

Radio interferometry with baselines the size
of BRTS's, which are intercontinental,
would translate the high level of observable
group delay accuracy into greatly improved
TDRS tracking accuracy. However, it was
NASA's desire instead to accept only a
modest improvement in accuracy while
reducing system cost and ameliorating other
operational considerations by greatly
shortening the baselines. This led naturally
to the study of a CEI-based system, where
baselines are very short. Because of the
requirement for a CEI system to have
interferometer sites connected by fiberoptic
cable in a temperature-controlled
environment, the cost of lengthening
baselines is very high. We constrained our
baselines to 20 km maximum length for the
purposes of this study.

We used ODAE to assess position
determination accuracy on a GEO satellite for
a sample interferometer siting scenario, and
we determined the effects of varying the
relative satellite to ground station geometry.
Because the effect only of relative geometry
was to be studied initially, it was not
necessary to select true TDRS ephemerides
or true potential ground station locations.
The reference orbit chosen was
geosynchronous with a 4' inclination and a
subsatellite longitude of 18OW. To provide
three independent baselines across which
phase delay could be measured, we
constrained four CEI sites to lie on the
vertices of a square with a 20 km baseline,
as shown in Figure 2. The site latitudes,
longitudes, and altitudes for this reference
scenario are given in Table 1. ODAE
modeled simultaneous phase delay
measurements across the baselines from
station 2 to station 1, station 3 to station 1,
and station 4 to station 1 (denoted 2- 1, 3- 1,
and 4- 1, respectively). These baselines are
illustrated in bold in Figure 2.

Figure 2. CEI Station Locations

An extension of Alan Whitney's work [8]
shows that the theoretically achievable
precision of the phase delay observable, 04,
is given by

1

where v is the center frequency, in Hz,
sampled by the interferometer, and SNR is
the signal-to-noise ratio. Since the TDRS
downlink to White Sands is centered at
14 GHz and SNR = 50, the theoretically
achievable precision of the phase delay
observable is 0.23 picosec. While no TDRS
tracking experiments were performed with
JPL's CEI equipment at Goldstone,
observations were made on natural radio
sources at 8.4 GHz to assess the precision of
the phase delay observable [9, 101. JPL
demonstrated the standard deviation in the
phase delay observable to be approximately
1 picosec, which is 70% larger than the
theoretically achievable value given by
equation (3). Extrapolating this result to the
theoretically achievable phase delay precision
for TDRS, we estimated the practically
achievable precision to be 0 . 2 3 ~ 1.7 = 0.4
picosec. We took this measurement error to
be independently normally distributed across
each baseline.

Table 1. CEI Station Locations for
Reference Scenario

Station Geodetic Longitude Altitude
Number Lat. (ON) (OE) (km)

1 45.00000 0.0000 0.1
2 45.00000 -0.2545 0.1
3 45.17997 0.0000 0.1
4 45.17997 -0.2545 0.1

For the initial study, it was assumed that
there were no equipment biases, that there
were no atmospheric delay errors, that all
station were connected by fiberoptic cable to
one clock and frequency standard, that there
were no local oscillator offsets between the
four stations, and that station positions were
known with perfect accuracy. Thus, the
pure effect of measurement geometry and
observable precision on orbit determination
could be assessed.

ODAE Monte Carlo simulation of the orbit
determination scenario described above with
200 iterations showed a lo root-mean-
squared (RMS) position vector accuracy of

3.2 krn. We also assessed the accuracy that
can be attained with the use of other
combinations of baselines. It is practical to
have one site in common for all three
measurements so that the common site can
act as the correlation center at which the
phase delay observables are generated. For
the particular satellite and ground station
locations in this scenario, selection of three
measurements where one station is common
to each pair (i.e., 2-1, 3-1, 4-1; or 1-2, 3-2,
4-2; or 1-3, 2-3, 4-3; or 1-4, 2-4, 3-4)
results in a la RMS position vector
accuracy of 3.2 km. Thus, there is no
geometrically-preferred common site for the
measurements.

The orbit determination scenario described
above was the starting point for the
assessment of the effects of varying
interferometric measurement geometry on
orbit determination accuracy. Since only
relative geometry matters, and since it would
have been more cumbersome to vary the
positions of four ground stations, we instead
varied the satellite's initial position vector.

First, we studied the effect of relative
interferometer baseline size on orbit
determination accuracy. Satellite range from
station 1 was varied while keeping the
elevation angle and azimuth angle from that
station constant. Because the baseline sizes
are small relative to the range to GEO, the
range, elevation angle, and azimuth angle
from each of the other three stations are close
to those of the first. For the sample orbit
determination scenario described above,
range from each site to the satellite is
approximately 37,850 km, the elevation
angle is approximately 3g0, and the azimuth
angle is approximately 155O. As shown in
Figure 3, the smaller the range to the satellite
for a constant baseline length (or,
equivalently, the longer the baselines across
which phase delay is measured relative to the
range to the satellite), the greater the position
vector accuracy.

Next, we assessed the effect of satellite
azimuth angle on orbit determination
accuracy. The azimuth angle of the satellite
at station 1 in the original scenario was
varied while keeping the range and elevation

angle from that station constant. The results
indicate that for a configuration of four
interfernmetric ground stations at the vertices
of a square, position error is maximized
when the satellite's azimuth angle is an
integer multiple of 90°, and position error is
minimized when the satellite's azimuth angle
is an odd integer multiple of 45'.

.-
" 2 --.-.......-

0 20,000 40,000 60,000

Range to Satellite (km)
<

Figure 3. Position Error vs. Range to
Satellite

Finally, we assessed the effect of satellite
elevation angle on orbit determination
accuracy in this scenario. The elevation
angle of the satellite at station 1 was varied
while keeping the range and azimuth angle
from that station constant. As can be seen in
Figure 4, for this particular orbit
determination scenario, position error
increases monotonically with elevation
angle. Thus, based on the criterion of
minimizing ephemeris enor due only to enor
in the phase delay measurement, optimal
viewing geometry is at the lowest possible
elevation angle, and the scenario becomes
degenerate when the satellite is at zenith.

A tradeoff is suggested by the geometrical
result that greater orbit determination
accuracy is attained at lower elevation
angles. The tradeoff arises because

statistical models of the variation in signal
propagation rate through the troposphere
show that, because a signal must pass
through more of the troposphere as the
elevation angle of the satellite decreases,
errors in predicting signal propagation rate
increase as elevation angle decreases [I 11.
Moreover, errors in predicting propagation
rate due to tropospheric fluctuations tend to
be the dominant error source in overall
accuracy for CEI systems [12]. Thus, we
sought to determine the optimal elevation
angle far CEI measurements with
consideration of both measurement error and
tropospheric delay error.

0 20 40 60 80

Satellite Elevation Angle (")

Figure 4. Position Error vs. Satellite
Elevation Angle

We modeled tropospheric fluctuations
between each interferometer site and the
satellite as being independent and normally
distributed. The assumption of indepen-
dence is based on the fact that water vapor
cells can be of several kilometers in
diameter, and so tropospheric delay errors
from each site can in fact be independent.
From Reference 11, we computed the
elevation angle dependence of the standard
deviation in tropospheric delay error for 100
second measurement arcs of phase delay.
The results are shown in Table 2.

Table 2. Tropospheric delay error as
a function of elevation angle CONCLUSIONS

Elevation Tropospheric Delay
Angle ('1 Error (uicosec)

For varying satellite elevation angles, we
used ODAE to model error due to
tropospheric fluctuations as well as inherent
phase delay imprecision. The resulting la
position errors are shown in Figure 5. As
can be seen, the optimal satellite elevation
angle is approximately 30°. In the
conclusions section of this paper, we show
how these results can be applied to optimally
siting a CEI system for TDRS orbit
determination.

We have derived conclusions about optimal
geometry for orbit determination of a GEO
satellite by radio interferometry. These
results can be applied to the problem of
optimally siting a CEI system to track
TDRS. For a particular TDRS satellite, and
for a configuration of four interferometer
sites located at the vertices of a square, a
geographical position should be chosen so
that the satellite's elevation angle is as close
to 30° as possible, and the square should be
oriented so that the satellite's azimuth angle
is an odd integer multiple of 45'. For
TDRS-W at 17 1°W, the maximum elevation
angle visible within the -20 dB contour of
the White Sands downlink is in southern
California at approximately 20' elevation.
For TDRS-E at 41°W, an elevation angle
near 30' can be attained within the -20 dB
contour of the White Sands downlink by
siting a CEI system in eastern Louisiana or
western Mississippi.

DISCUSSION

0 10 20 30 40 50 60

Elevation Angle (degrees)

Having determined optimal siting for a CEI
TDRS tracking system, we return to a brief
discussion of operational considerations. As
stated previously, benefits include freedom
from requirements placed on the space
segment, the potential for excellent orbit
determination accuracy, and the ability to
locate the system entirely within the United
States. It is expected that these benefits
would ameliorate cost and operational
constraints. Estimates have placed required
staffing levels for an interferometric TDRS
tracking system in the range from 10 to 20
full-time equivalent staff [13]. With respect
to initial costs, Interferometrics demonstrated
prototype hardware and correlation software
for less than one million dollars [14].
Expected development and production costs

Figure 5. Position Error vs. Elevation Angle for an operational system are expected to be
with Tropospheric Effects Included an order of magnitude larger [13]. Finally,

we note that interferometry offers low
technological risk because- it has been
successfully applied in a number of related
fields for several decades.

LIST OF REFERENCES

1. Preston, R. A,, et al, 27 October 1972,
"Interferometric Observations of an
Artificial Satellite," Science, Vol. 178,
pp. 407-409.

2. Ray, J., et al., October-December 1988,
"VLBI Tracking of the TDRS," The
Journal of the Astronautical Sciences,
Vol. 36, No. 4, pp. 347-364.

Long, A. C., et a1 (ed.), July 1989,
Goddard Trajectory Determination
System (GTDS) Mathematical Theory,
Revision 1 , FDDl552-891001,
Greenbelt, MD: Goddard Space Flight
Center.

Pavloff, M. S., September 1993, A
Monte Carlo Tool for Simulation of
Satellite Orbit Determination by Radio
Interferometry, Cambridge, MA: The
Massachusetts Institute of Technology,
S.M. Thesis, Department of
Aeronautics and Astronautics.

5. Bulirsch, R., and J. Stoer, 1966,
"Numerical Treatment of Ordinary
Differential Equations by Extrapolation
Methods," Numerische Mathematik,
Vol. 8, pp. 1-13.

6. Stoer, J., and R. Bulirsch, 1980,
Introduction to Numerical Analysis,
New York: Springer-Verlag Inc.

7. Pavloff, M. S., September 1992,
Analysis of Orbit Prediction Algorithms
for the Universal Modem System, WP-
92B0000263V1, Bedford, MA: The
MITRE Corporation.

8. Whitney, A. R., January 1974,
Precision Geodesy and Astrometry Via
Very Long Baseline Interferometry,
Cambridge, MA: The Massachusetts
Institute of Technology, Ph.D.
Dissertation, Department of Electrical
Engineering.

9. Edwards, C. D., April 1989, "Angular
Navigation on Short Baselines Using
Phase Delay Interferometry," IE EE
Transactions on Instrumentation and
Measurement, Vol. 38, No. 2.

10. Edwards, C. D., August 1990,
"Development of Realtime Connected
Element Interferometry at the Goldstone
Deep Space Communications
Complex," AIAA 90-2903, AIAAIAAS
Astrodynamics Conference.

11. Treuhaft, R. N., and G. E. Lanyi,
March-April 1987, "The Effect of Wet
Troposphere on Radio Interferometric
Measurements," Radio Science, Vol.
22, No. 2, pp. 251-265.

12. Edwards, C. D., January-March 1989,
"The Effect of Spatial and Temporal
Wet-Troposphere Fluctuations on
Connected Element Interferometry,"
TDA Progress Report 42-97.

13. Potash, R., et al., September 1989,
Advanced Tracking Systems Design
and Analysis, CSCITM-8816060,
Greenbelt, MD: Computer Sciences
Corporation.

14. January 1991, TDRS Interferometric
Satellite Tracking System Field Station
Hardware Manual and Guide to
O p e r a t i o n s , Vienna, VA:
Interferometrics Inc.

0P.6.a Cost Efficient Operations for Discovery Class Missions 809816-f7
G. E. Cameron, J. A. Landshof, G. W. Whitworth

> I

0P.6.b Ground Station Support for Small Scientific Satellites 3 h, 817-824 -v +,2

R. Holdaway, E. Dunford, P. H. McPherson
OP.6.c Design of Ground Segments for Small Satellites 825-835 V;dY

Guy Mace'
837-846 WCi i j 0P.6.d The SAX Italian Scientific Satellite. The On-Board

Implemented Automation as a Support to the Ground Control
Capability

Andrea Martelli
0P.6.e Small Satellite Space Operations

Keith Reiss

Presented in Poster Session

COST EFFICIENT OPERATIONS FOR DISCOVERY CLASS MISSIONS
G. E. Cameron*, J. A. Landshof* and G. W. Whitworth*

The Johns Hopkins University
Applied Physics Laboratory

Laurel, Maryland 20723-6099

ABSTRACT
The Near Earth Asteroid Rendezvous

(NEAR) program at The Johns Hopkins
University Applied Physics Laboratory is
scheduled to launch the first spacecraft in
NASA's Discovery program. The Discovery
program is to promote low cost spacecraft
design, development, and mission operations
for planetary space missions. In this paper,
the authors describe the NEAR mission and
discuss the design and development of the
NEAR Mission Operations System and the
NEAR Ground System with an emphasis on
those aspects of the design that are con-
ducive to low-cost operations.

INTRODUCTION
NEAR will launch in February 1996 and

rendezvous with the asteroid Eros in January
1999. The spacecraft is to orbit Eros for up
to a year, mapping the asteroid and collect-
ing data on its gravitational and magnetic
fields as well as its elemental composition.
Significant challenges are anticipated in
NEAR mission operations. NEAR will be
the first spacecraft to conduct orbital opera-
tions around a small, irregularly shaped
planetary body. Stringent orbital plane
restrictions are required to simultaneously
maintain instrument fields of view of the
asteroid, communications antenna coverage
of the Earth, and illumination on the solar
panels. During certain portions of the year
of asteroid operations, orbital maneuvers
may be required every three days to
maintain the orbital plane. Given the
irregular shape and size of the asteroid,
simple nadir pointing mapping strategies
will not be sufficient for conducting opera-
tions at Eros; a flexible planning strategy
must be implemented to coordinate scientific
priorities given limited observation
opportunities. These scientific observations
must be combined with routine subsystem

* Member of the Senior Professional Staff

maintenance, orbital maintenance, and
navigation requirements. A sophisticated
sequence planning system with quick
reaction capability is required (priorities and
orbital dynamics can be expected to change
on a continuous basis, requiring constant
adaptation of operations to mission science
needs).

These considerations generally increase
the cost of mission operations in an era
when Mission Operations and Data Analysis
(MO & DA) costs are being scrutinized as
never before. If NEAR and future Discov-
ery class missions are to succeed, they must
set new standards for cost efficiency. The
goal of this paper is to show how mission
operations costs can be controlled by the
application of advanced technologies and
operations concepts.
Organization of P a ~ e r

Following the Abstract and Introduction,
this paper begins with a discussion of low
cost mission operations. This is followed by
a description of the NEAR Mission
Operations System (MOS) which highlights
those elements of the system design that
contribute to low cost mission operations.
Following the MOS description is a section
detailing the design of the NEAR Ground
System (NGS), again, with an emphasis on
the low cost operations aspects of the
design. Finally, we provide a summary of
our recommendations for implementing low
cost mission operations on Discovery class
missions.

LOW COST MISSION OPERATIONS
The MOS is often the last element of the

program to be developed; as such, the MOS
frequently must make up for gaps and
problems that have developed in the mis-
sion, spacecraft, and instrument designs.
The MOS is generally custom developed for
each mission, which is decidedly non-
optimal from a cost-effectiveness viewpoint.

Mission Operations costs can be divided
into two major categories: development
costs (mostly pre-launch) and operations
costs (mostly post-launch). In the following
discussion, potential cost saving measures
are introduced in each category.

Svstem Development
System development costs are primarily

pre-launch and are generally incurred late in
the pre-launch program. If a program gets
into budget problems late in the spacecraft
development phase (this is not uncommon),
mission operations development costs fre-
quently attract the attention of the budgetary
ax-wielder. Saving money in development
costs at the expense of repetitive costs in the
post-launch mission ope;ations phase is
cost efficient over the mission life cvcle, yet
this trade is frequently made. In the follow-
ing, several approaches to saving costs in
MOS development are discussed which do
not compromise either mission capability or
total life cycle cost.

Existing Infrastructure
Always take advantage of existing

infrastructure where cost efficient. If an
existing voice communications system or
ground station network will work for your
mission, why re-invent the wheel? It should
be noted that existing infrastructure is not
alwavs cost efficient. Maintenance or
personnel costs associated with outdated
systems can negate their advantage. Each
element must be individually evaluated on
the basis of cost-efficiency.

Commercial-Off-The-Shelf Systems
Examine Commercial Off-The-Shelf

(COTS) hardware and sofhvare systems for
applicability to your program, again, on a
cost efficiency basis. COTS systems have
shown a tremendous growth in capability in
recent years; low-cost programs can get a lot
of bang for the buck compared to the devel-
opment costs of custom systems. There are
two major shortcomings of COTS systems.
First, "COTS" elements for space mission
applications are not the shrink-wrapped
products we have come to expect in the truly
commercial (i.e., PC) marketplace; they lack
the smooth polish of a mass market product
(e.g . , documentation, on-line technical sup-

port) and must frequently be customized for
each application. Make certain that the costs
of these modifications are considered in the
total cost of a COTS system. Second, many
functions that are necessary to operate a
complex space mission are not found in the
COTS offerings. Straight-forward Teleme-
try, Tracking, and Control (TT&C) opera-
tions for a commercial satellite (such as a
communications satellite) are significantly
different from operations for a planetary
exploration mission with complex planning
tasks and command sequence development.
COTS products tend to be stronger in meet-
ing the needs of commercial users than sci-
entific mission planners.

Concurrent Engineering
Use modern concurrent engineering de-

velopment techniques. Traditional ap-
proaches to system development (re-
quirement definition, specification devel-
opment, preliminary and detailed design,
fabrication, and test) are slow, cumbersome,
and costly. Modern methods of system
development such as concurrent engineering
and rapid prototyping can be faster and
cheaper. There are risks in this approach,
however, the benefits generally outweigh
these risks. For Discovery programs, higher
risks must be tolerated to achieve the
avowed goals of faster, better, and cheaper.

Design for Operability
Design the spacecraft and Mission

Operations System for operability. Too
often, flexibility and operability are rele-
gated to the ground system and mission
operations team to save development costs
in the spacecraft. While this is an under-
standable approach (complexity vs. reliabil-
ity tradeoffs in the spacecraft favor simplic-
ity), this may not be the optimal approach.
In some cases, relatively minor changes in
spacecraft or instrument design can signifi-
cantly save in operations costs (sometimes,
over and over again). For example, thermal
and power robustness may eliminate the
need for complex analysis of every
maneuver sequence, saving time and money
in the development of sequence uploads. A
mission level system engineer should have
the authority and responsibility to perform
such tradeoffs at a high level.

System Commonality

Build systems that achieve simplicity
through the use of common architectures.
Cost savings due to system commonality
may not be apparent at the mission opera-
tions level, but are observable at the pro-
gram level. Many Integration and Test
(I&T) functions are duplicated in the Mis-
sion Operations System and vice versa.
Why should these capabilities be developed
twice? Using a common system design for
Mission Operations (MO) and I&T saves
money not only in design and development
of the ground system, but in sparing, training
of personnel, and staffing during test,
launch, and mission ops.

The division of operations costs between
pre- and post-launch is mission dependent.
Pre-launch development of operations teams
and processes, personnel training, and sys-
tem testing can be significant cost items. If
the mission is short, or if it can be staffed at
a very low level, pre-launch costs can be a
significant portion of overall operations
costs to the program. If the mission is long,
complex, or both, post-launch costs tend to
be the driver of overall costs. In the sections
that follow, we shall show how intelligent
application of pre-launch funding can signif-
icantly reduce post-launch costs.

Low Staffing Levels
Minimize the number of personnel

needed to operate the spacecraft during
post-launch operations. The major post-
launch cost item for most missions is per-
sonnel. In most programs, the key to lower-
ing operations costs is to reduce the number
of people required to operate the spacecraft.

Personnel reductions can be achieved
merely by paying attention to the type and
capabilities of personnel hired and the
changes in skills needed during different
phases of the mission. As teams become
smaller, the competence and breadth of
individual members becomes more impor-
tant. Small teams can not afford to have
members with specialized or limited skills';
every team member must contribute signifi-
cantly to the overall productivity of the team
for operations to be cost efficient.

It is important to note that the skills
required during design and development of
the MOS are not the same as those required
during post-launch operations. Personnel
should be added as their skills are required
and removed when their skills are no longer
applicable to the needs of the program. This
may conflict with the policies of some
organizations, but is essential to controlling
operations costs. Large institutions fre-
quently utilize matrix management tech-
niques that allow the program to draw from
a broad mix of skilled personnel, paying
only for the time charged to the program.
Matrix techniques can be advantageous in
the implementation of these practices.

Spacecraft Autonomy
Build spacecraft systems that. require

minimal operations support. Perhaps the
most obvious way to reduce operations cost
is to build a spacecraft that does not require
operations! The more autonomy built into a
spacecraft, the less the MOS needs to do.
The prevailing view is frequently the inverse
-- the more the ground does, the less the
spacecraft needs to do. Mission system
engineering of the spacecraft and MOS
offers the capability to partition require-
ments between the ground and flight sys-
tems. If the optimization goal is to minimize
overall program costs, operations costs will
generally be lower. Even if cost is not an
optimization parameter, the consideration of
mission operations issues in the design of
the spacecraft will generally result in cost
savings (due to operability enhancements).
Frequently, the spacecraft design team has
options that have little impact on the space-
craft but significant advantage to mission
operations.

Spacecraft autonomy features which
simplify operations include: telemetry moni-
toring and alarming; processor memory
management; anomaly detection, correction,
and/or reporting; automated data handling;
and multi-level autonomous safe modes.
Each of these features are discussed below.

Autonomous telemetry monitoring and
alarming reduces the work load on ground
personnel, especially if the MOS is designed
to communicate spacecraft generated alarms
to operations personnel immediately. This

reduction in the need for ground system
monitoring reduces the number of personnel
and the frequency of contacts required. Dur-
ing missions with long cruise phases and
infrequent contacts, onboard alarming, cou-
pled with storing alarm status in memory,
can enable operations personnel to instanta-
neously assess the state of spacecraft health
since the last contact. This reduces the con-
tact time required, the operations load, and
thus, the total cost to the program.

Automation of memory management
allows the MOS to use lower fidelity models
of onboard processors, thereby reducing
development costs. Additionally, fewer
commands are required for processor mem-
ory management, reducing the costs of test-
ing those commands as well as simplifying
operations.

Autonomous anomaly detection, correc-
tion, and reporting is similar to onboard
telemetry monitoring and alarming with
respect to operations. The potential reduc-
tion in operations workload and the increase
in intervals between contacts results in a
reduction in operations personnel.

Autonomous data handling, in which the
spacecraft processes, stores, and retrieves
data by instrument or subsystem without
detailed operator intervention, allows the
operations team to use contact time more
efficiently and send fewer commands,
reducing the workload and cost of oper-
ations.

Multi-level safe modes allow the space-
craft to assume intermediate modes of
operation between fully operational and
"cocoon" mode (minimal activity, awaiting
ground command). For example, a failure in
the data handling system may cause the
spacecraft to shut down the data handling
system, point the antenna at Earth (assuming
guidance, navigation and control functions
are unaffected), and await instructions.
Allowing the good subsystems to remain
operational means that the anomaly will be
addressed more quickly than would other-
wise be the case. This allows for longer
intervals between contacts, which reduces
operations loads and costs. This also
reduces the time spent and the assets utilized
in recovering from a failure.

Ground System Automation
Build ground systems that minimize per-

sonnel requirements. The use of automation
in the ground system can significantly
reduce requirements on operations person-
nel. Most apparent is the application of
automated telemetry display and command
generation capabilities. The use of high
level command languages reduces opera-
tions personnel requirements, as do inte-
grated databases, graphical user interfaces,
and automatic report generation and trans-
mission capabilities.

The next logical step in ground system
automation is ground systems that
autonomously receive, process, interpret,
and respond to spacecraft telemetry. While
totally automated operations are not yet fea-
sible for scientific missions, many functions
can be automated. Automated monitoring of
telemetry can not only alert an operator to an
out-of-bounds condition, it can spawn a pro-
cess to advise the operator what to do (i.e.,
retrieve a contingency plan from a database),
or even take action itself (depending on the
nature and severity of the anomaly). Space-
craft data trending and analysis can be
highly automated, generating formatted
reports and delivering them electronically to
the correct parties at the appropriate times
(e.g., at shift changes or on Monday morn-
ings). Clearly, all of these capabilities can
be used to reduce the personnel otherwise
needed to perform these tasks.

Advanced Technology

Utilize advanced technologies, where
applicable, to enhance productivity in
operations. The application of advanced
technology throughout Discovery class mis-
sions has been mandated by NASA (the
NEAR mission design predates this man-
date, and NEAR is specifically exempted
from this requirement). Advanced technol-
ogy can reduce operations costs by enhanc-
ing productivity, i.e., allowing fewer people
to accomplish more work with fewer
resources expended. Two ways in which
advanced technology can be used to enhance
productivity are: 1) advanced technology
can enable the use of higher level interfaces
to gain insight into data and processes, and;
2) advanced technology can be used to assist

in making decisions. The application of
advanced graphical techniques to gain
insight into complex data sets is called
visualization; and the use of software to
assist in decision making processes falls in
the category of expert systems.

Everyone has seen global maps with
projected spacecraft ground traces, coverage
circles of ground receiving sites, and per-
haps time ticks indicating when a spacecraft
will or did pass over a particular spot --
these types of displays were a staple of the
highly publicized manned space missions of
the 1960's. This type of display is a prime
example of the use of visualization to
provide insight into a complex data set -- in
this case, the orbital ephemeris of the
spacecraft, the locations and views of each
of the ground network's tracking stations,
and the time the spacecraft will be available
for contact at each of the ground stations.

Humans excel at the assimilation of
visual information. The recent trend in
returning to traditional watches and clocks
from the digital variety is evidence of this
phenomenon. People easily interpret the
time of day from the angles of clock hands,
whereas a digital clock requires assimilation
and interpretation to understand. Computer
graphics are a powerful tool for taking
advantage of this characteristic of the human
brain to reduce operations costs. The trend
in operations systems is away from
alphanumeric screens with numbers and
cryptic mnemonics towards graphical dis-
plays, including analog dials, graphs, and
trees of color coded boxes representing
spacecraft systems and subsystems, etc.
Aircraft cockpits with modem CRT and flat-
panel displays utilize representations of
analog dials and "tape" gauges for the same
reasons operations systems do; these dis-
plays rapidly and intuitively present more
information to the user more quickly than
alphanumeric displays, thus allowing fewer
people to monitor a complex system more
efficiently and completely -- and with fewer
errors. Fewer people mean lower costs, and
fewer errors mean greater spacecraft safety.

Expert Systems
More advanced than visualization

(already in use in operations centers, albeit
sparingly) is the use of expert systems to
assist in decision making processes. Rule-
based expert systems are currently in use in
some operations systems to assist in teleme-
try monitoring and display functions. Rule-
based systems may also be used in the near
future to help diagnose spacecraft anoma-
lies, again, based & inte6reting spacecraft
telemetry. In artificial intelligence circles,
however, rule-based systems have fallen out
of favor because of their inherent lack of
robustness; these systems can only apply
pre-programmed rules to a known data set,
and can be very difficult to adapt rapidly to
changing conditions. For complex systems,
the rule sets can get very large and difficult
to manage. Finally, rule-based systems
require ijill rules to be programmed before
the system is very useful.

Model-based systems are being investi-
gated for spacecraft operations because they
address these problems. Model-based rea-
soning (MBR) methods use models of sys-
tems and subsystems to make estimates of
systems states. MBR allows incremental
growth in capability as models are added,
refined, or updated, and can provide answers
that are both qualitative and quantitative.
MBR can be used to diagnose problems
based on spacecraft telemetry, but the mod-
els can also be used to support analysis in
the sequence generation process.

Model-Based Reasoning appears likely
to reduce MOS costs in two ways. First, it
may allow the development of a single set of
spacecraft models to perform planning, anal-
ysis, and assessment functions, thereby
reducing system development costs over
traditional MOS designs. Second, it may
allow fewer analysts to generate very com-
plex spacecraft sequences with greater con-
fidence, thereby reducing personnel require-
ments while enhancing mission capability.
MBR may be a suitable alternative to the
building of costly hardware-based spacecraft
simulators traditionally used for command
sequence vetting.

Figure 1. NEAR Ground System

&ITSSTON OPERATIONS SYSTEM testing at GSFC, and prelaunch testing at the

Ground Svsterq launch site. The ITOGS and MOGS are
identical; by virtue of the interconnecting

Figure 1 is a high level diagram of the data network called NEARnet, each has con-
NEAR Ground System (NGS). There are trolled access to the spacecraft.
six major ground facilities: the Mission
Operations Center (MOC); the Ground Sup-
port System (GSS); the Mission Design
Center (MDC); the Science Data Center
(SDC); the Mission Navigation Center; and
the Deep Space Network (DSN), which is
linked via NASA Communications
(NASCOM) circuits at Goddard Space
Flight Center (GSFC).

Mission operations will be conducted
from APL. Therefore, the MOC and MDC
are located at APL. The principal equip-
ment in the MOC is a suite of interface
equipment and high-end workstations,
including software, known as the Mission
Operations Ground Segment (MOGS).

The GSS includes a parallel construction
called the Integration and Test Operations
Ground Segment (ITOGS) as well as the
Ground Support Equipment (GSE). The
GSS is used to perform integration and test
of the spacecraft at APL, environmental

Science data received by the MOC is
processed and passed on to the SDC, which
further processes the data for dissemination
to the science community. The Mission
Navigation Center, located at the Jet Propul-
sion Laboratory (JPL), provides navigation
data and products to the MOC, the SDC,
and the MDC.

The NEAR Ground System maximizes
the use of existing infrastructure, including
the DSN and NASCOM. The DSN is used
for all TT&C for NEAR. Operated by JPL,
the DSN is a ground network primarily used
for interplanetary missions, with ground sta-
tion complexes in Barstow, California,
Madrid, Spain, and Canberra, Australia.

Access to the DSN is provided via
NASCOM. NASCOM will be used for vir-
tually all NEAR communications. This
includes extensions of the NEARnet to the

ITOGS as it moves with the spacecraft to
GSFC and to the Kennedy Space Center
(KSC) and Cape Canaveral Air Force Sta-
tion (CCAFS). The cost effectiveness of
using NASCOM for NEAR is multiplied
because the arrangements for its use are
provided by the DSN as a service.

A third major use of existing infrastruc-
ture is internal to APL. As discussed, the
workstations, GSE, and peripherals of the
MOGS and ITOGS are tied together as one
large system via the NEARnet. Within
APL, NEARnet uses an existing ethernet
communications system called the APL
Network Information System (APLNIS).
APLNIS is ubiquitous throughout APL and
supports multiple interface configurations.
APLNIS supports TCPIIP protocols and has
an existing connection to Internet, which
provides off-campus access to the SDC.
Connections of the ITOGS and MOGS to
the APLNIS will utilize a router to provide
protection against unauthorized access to
spacecraft control and telemetry.

It should be noted that the NEAR space-
craft conforms to the standards of the Con-
sultative Committee on Space Data Systems
(CCSDS), and will be the first spacecraft to
use CCSDS for uplinking. In using this
system, NEAR is effectively making use of
another set of existing infrastructure that
results in reduced costs within the NGS.

Commercial-Off-The-Shelf Systems
An important aspect of the NGS imple-

mentation approach is the use of COTS mis-
sion operations systems. Although this
industry is still young, a number of available
systems offer capabilities in one or more
aspects of spacecraft telemetry processing,
performance assessment, and command and
control. The core of the NGS is COTS.
This core provides telemetry monitoring,
alarming, and archiving, as well as
spacecraft command and GSE control. Two
systems are being procured for the MOGS
and ITOGS; when augmented with
additional workstations and custom software
developed by APL, they will constitute the
ITOGS and MOGS.

The core system includes a VME-based
front-end, a workstation, and peripherals.

The front-end provides the telemetry and
command interfaces to the spacecraft (or
more correctly, the spacecraft GSEs and/or
the DSN via NASCOM) as well as realtime
decoding, error correction, and data handling
required to provide data for display on
operator workstations. Workstation process-
ing includes calibration, engineering unit
conversions, display, alarming, and com-
mand script generation. Workstations may
analyze realtime or archived data, or a
combination. A large number of worksta-
tions can be supported on the NEARnet, and
as described previously, these can be located
anywhere.

Like many other current COTS systems,
the NEAR MOC and GSS use networking
and distributed processing. In each area, the
workstations, peripherals, and command and
telemetry interfaces are merely logical
groupings of equipment on the NEARnet,
with equal access to all data whether it
enters the system via the MOC or the GSS.
Each workstation has equal access to the
"front end" of either area. The look and feel
of the system remains the same in all
locations; the parallel nature of the
networked system provides a mutual backup
capability.

This networked architecture permits the
system to take advantage of distributed pro-
cessing. The NEAR MOS has no large cen-
tral computer with the resultant interference
and speed problems as different worksta-
tions access and run processes on the central
facility. These workstations simultaneously
and independently run different processes on
the same or different realtime or archived
data. This permits a single database (e.g.,
telemetry and command dictionaries) to be
accessed from any workstation, preventing
the problems of maintaining multiple dictio-
naries. Incremental growth in the ground
system can be easily accommodated without
disrupting existing (operating) components.

The NEARnet extends beyond the
MOGS and ITOGS, providing controlled
(authorized) access to selected data on the
NEARnet by other workstations or PCs.
One recipient of data is the Science Data
Center (which also has workstations and
peripherals connected to the NEARnet).

The SDC is given essentially raw science
data at the CCSDS Transfer Frame and
Packet level and provides various levels of
processing to generate products for the sci-
ence community, which* accesses these
products via the NEARnet. Off-campus sci-
ence teams may obtain access via the Inter-
net. Two other Centers have access to the
NEARnet Science Data Center. These are
the Mission Design Center and the Mission
Navigation Center.

One additional aspect of the-ITOGS and
MOGS worth noting is the use of an open
operating system. All of the commonly rec-
ognized advantages of this approach are
realized for NEAR. For example, access to
commercial software is maximized; in-house
software can be developed on non-NEARnet
workstations or PCs with minimum prob-
lems in transporting these to MOS worksta-
tions. Further, the NEARnet configuration
is much more supportable and expandable
over the life of the mission.

Common architecture for I&T and MO
It is important to note that the MOGS

and ITOGS are identical in configuration,
software, hardware, and command and
telemetry capability. This is significant in at
least two aspects. First is the reduced devel-
opment and maintenance costs resulting
from identical workstations, front-end
equipment, and peripherals. Because a
single system design and architecture is
used, overall complexity and design effort is
reduced, as is the number and cost of pro-
cured components. Additionally, spares and
maintenance costs are minimized.

The second significant aspect of using
identical systems for I&T and MO is that the
spacecrafi will be flown as it was tested.
The look and feel of the two segments is the
same to the user. Since both sets of front-
end equipment are also identical, (each sup-
porting the three modes of interface with the
spacecraft: RF GSE, umbilical GSE, and via
NASCOM and the DSN), and since either
can be accessed from a workstation in either
the MOGS or ITOGS, the only distinction
between the two is established by access
authorization. While I&T activities will be
principally controlled from the ITOGS due
to its proximity to the spacecraft and GSE,

considerable capability exists, and will be
utilized, to exercise the spacecraft from the
MOC during the I&T phase. When this
commonality of hardware and software is
considered in light of the current plan to
have a number of mission operations per-
sonnel involved in integration and test, the
transition from I&T to MO should be as
seamless as is achievable. This blending of
traditionally separate and distinct functions
significantly reduces the total cost and
development time for the ground support
elements of the NEAR mission while
improving the quality and reliability of the
overall product.

SUMMARY
This paper began with a discussion of

low cost mission operations, including a
number of specific recommendations for
controlling costs. These are summarized
below: 1) Always take advantage of existing
infrastructure where cost efficient; 2) Use
Commercial Off-The-Shelf hardware and
software systems where applicable and cost
effective; 3) Use modern concurrent engi-
neering techniques; 4) Design the spacecraft
and Mission Operations System for oper-
ability; 5) Build systems that achieve sim-
plicity through the use of common architec-
tures; 6) Minimize the number of personnel
needed to operate the spacecraft during post-
launch operations by building spacecraft and
ground systems that minimize personnel
requirements, and; 7) Utilize advanced tech-
nologies, where applicable, to enhance pro-
ductivity in operations. While these simple
statements may seem obvious, they are fre-
quently forgotten or overlooked as heritage
often dictates the design and implementation
of the MOS.

The second part of the paper included a
description of the NEAR MOS and ground
system with an emphasis on those elements
of the system design that contribute to low
cost operations. In the case of NEAR, we
were able to apply almost all of the practices
discussed in this paper. It is our hope that
NEAR Mission Operations will introduce a
new way of doing business for Discovery,
and that this will lead others to identify even
better approaches to controlling costs in
today's cost-constrained environment.

GROUND STATION SUPPORT FOR SMALL SCIENTIFIC SATELLITES 43- %
R. Holdaway, E. Dunford and P.H. McPherson

Rutherford Appleton Laboratory
Chilton, DIDCOT
Oxfordshire, OX 1 1 OQX, UK

ABSTRACT

In order to keep the cost of a complete small scientific satellite programme low, it is necessary to rninimise the
cost of the Ground Station Operations and Support. This is required not only for the operations and support
per se, but also in the development of Ground Station hardware and the mission associated software. Recent
experiences at the Rutherford Appleton Laboratory (RAL) on two international projects, IRAS and AMPTE,
have shown that the low cost objectives of operations using smaller national facilities can be achieved. This
paper describes the facilities at RAL, and the n~cthods by which low cost support are provided by considering
the differing in~plications of hardwarelsoftware system modularity, reliability and small numbers of dedicated
and highly skilled operations staff.

INTRODUCTION

Rutherford Appleton Laboratory (RAL) is part of the UK Engineering and Physical Sciences Research Council
(EPSRC) - formally the Science and Engineering Research Council (SERC). RAL has a long history of Space
Science and Technology going back to the early 19601s, and in more recent times RAL has had TT&C
responsibilities for a number of space tnissions. In 1983, RAL operated the Infra-Red Astronomical Satellite
(IRAS) on behalf of NASA, SERC and the Dutch Aerospace Agency NIVR. Operations with IRAS covered all
aspects of ground System work, including Mission Planning, Command Generation, Satellite Control, Data
Reception, Satellite Health Monitoring, and Detailed Science Analysis. The mission lasted for 10 months, and
operations went flawlessly, with no passes being missed. In 1984, the Ground System was re-configured for
operations on the Active Magnetospheric Particle Tracer Explorer (AMPTE) mission. AMPTE was a UK
sub-satellite operating as part of a NASA, UK, West German mission. Unlike IRAS (which was in a
sun-synchronous orbit), AMPTE was in a hi~hly eccentric orbit, taking apogee out to 200,000 km, giving
real-time operations of up to 14 contini~ous hours per day. In both those missions, hardware, software and
operations were developed and run by a closely-knit group of experienced space engineers, all contributing to a
cost-efficient operational progranme, even though in the case of IRAS it was not classified as a 'small' mission.

The RAL Ground Station is currently being re-configured again for operations with Small Satellites. Data
reception monitoring will begin shortly on the Space Technology Research Vehicle (STRV) program. STRV is
a UK Ministry of Defence mini-satellite, operating at S-band frequency. Once the downlink end-to-end system
has been checked out, RAL will finalise plans for complete end-to-end, low cost operations on another
mini-satellite programme, called BADR-B. BADR-B (Urdu for full-moon) is a Pakistan mini-satellite
programme managed by the Space and Upper Atmosphere Researchf Commission (SUPARCO) in Karachi.
Due for lauilch in 1995, BADR-B \\.ill be placed in a near-polar orbit at an altitude of about 800 km. Prime
operations will be run from Karachi and Lahore in Pakistan, and UK operations will be run from RAL, using
an ultra-low cost approach as defined in the remainder of the paper.

THEMES FOR LOW COST OPERATIONS

The starting point in defining the requirements on the Ground Station is to consider what the User actually
needs (as well as what he wants, which may not necessarily be the same!). Overall, a rough guide to the main
requirements may be considered as:

Lowest possible cost, but reliable operations (not missing passes or losing data), fast return of critical
data, regular return of bulk data, rapid response for critical commanding and ease of access to data

In order to achieve the low cost goal, it is not, however, unreasonable to expect some compromises to be made.
These may include:

Acceptance of occasional (1 in 20?) lost passes, acceptance of some (5%?) lost data, and/or non-rapid
return of non-urgent data

With these ground rules understood, we can look at some of the potential areas of cost reduction.

COST REDUCING SCENARIOS

The cost of mission operations represents a significant portion of the total programme costs, often 20 to 30%.
Thus the ground segment configuration (ie. hardware, software) and the operational modes (ie. complexity)
have a significant influence on total costs and must be given serious consideration in overall system design.

The ground segment fulfils several functions:

- mission planning, including command preparation and validation,

- tracking, telemetry and command (TT&C) interface with the satellite,

- status and health monitoring of the satellite,

- reception of mission data via satellite telemetry,

- initial pre-processing of the data prior to distribution from the operations part of the ground segment to
the user for final processing and analysis,

use of EGSE before and after launch.

The following are some general considerations concerning the ground segment configuration and operation.

System modillaritv

In exactly the same way that satellite costs can be significantly reduced by greater use of common modularised
subsystems, ground system configurations can also be modularised. Instead of developing individual EGSE
(Electrical Ground Support Equipment) and Ground Segment equipment for every instrument and/or satellite,
there are now being developed standardised off-the-shelf equipment that can subsequently be customised to the
individual needs, at much lo\\ler cost. Within the ground system itself, computing power is sufficient these days
to combine the tasks of TT&C into a single low-cost workstation. Of even more potential benefit is the reuse of

previous mission software for many of the data analysis functions. As an example of this, the data analysis
software for the JET-X instrument, which will fly in 1995 as part of the Spectrum-X mission, is almost entirely
based on software developed for the ROSAT niission launched in 1990. This scenario alone has cut the
software development cost for this mission by a factor of three.

National facilities

Probably the greatest potential for cost reduction of the ground system is by making greater use of national
facilities. Agency facilities are clearly required for large (manned and unmanned) missions, but are often too
cumbersome and inflexible for small missions. It has usually proven far more cost-effective to employ national
facilities - ideally utilising just a single ground station. For instance, the two European AMPTE spacecraft
were controlled from single stations in Germany and England, respectively. The UK station was developed at
very low cost by updating the original IRAS control centre to the requirements of the AMPTE mission.
Although new software and operational procedures were necessary, very little new hardware was required. As
an example, the 12 m S-band tracking station and control centre at the Rutherford Appleton Laboratory can be
used for TT&C on an "as required basis", the operations staff being redeployed to other tasks during non-active
satellite periods, thus significantly cutting down tlie running operations costs even for satellites producing many
hundreds of Mbitslday. Similarly, for low-cost satellites producing kbits rather than hlbits of data, it is now
possible to receive data using rooftop antennae and to command~receive using desktop PCs.

Reliability versus cost

For larger missions, it has always been normal practice to masimise the reliability of the ground system despite
the associated increase in co$t. This is not unreasonable for man-rated missions, but is often an unnecessary
expense for most other missions. There is a very sizeable potential reduction in cost to be obtained by
accepting just a small reduction in system reliability. It is proposed here to agree "up-front" that a small
percentage (perhaps 5%) of satellite passes can be lost through ground system outage. This may (though not
necessarily) lead to some data loss, but even so a data loss of a few percent is not usually significant. By
agreeing to this reduction in reliability, the level of hardware redundancy (and perhaps software complexity)
required in the ground system can be significantly reduced, and hence the cost is lower. Likewise, if the number
of passes required per day to support the mission operation can be reduced through a slightly less than optimal
coverage programme, the cost of operations can also be reduced.

Data availability

There is no doubt that for all missions it is essential to be able to process some subsets of the data in Real-Time
andlor Near Real-Time. Ho\vever, the less data that has to be processed in this manner the simpler the
immediate ground system coniplesity becomes. For the majority of small satellite missions, it should only be
necessary to process instrument/bus health data as a matter of urgency, thus decoupling the task of satellite
"operations" from that of off-line data processing.

Data transfer

There are basically two different methods of transferring data from the operations part of the ground system to
the user or data processing centres. The first (and ~iiost expensive) is via one of the many space or terrestrial
data links. This is the common route for most satellite data and gets the data to the end user very quickly.
However, it is more often the case that although tlie end user likes to have this data "as quickly as possible" it is
not often an absolute necessity. In this case an alternative route via mailed magnetic tapesloptical disks can be

just as satisfactory; possibly some (small) percentage of the data can still be transmitted via a low bandwidth
(and lower cost) data link; it is important to try to avoid the exclusive dedicated use of these links as this too
adds to the cost.

Data access

There are as many different philosophies regarding methods of data access as there are concerning designs of
satellite. Generally however, the most cost efficient and practical method is the concept of a Centralised Data
Handling Facility which is accessible by users over local data networks. This concentrates the pipeline data
processing in one place, whilst allowing the individual users both to develop their own specialised software and
to make full use of centrally developed software.

With these principles addressed, we now look at the Ground Station and Operations facility at RAL.

RAL GROUND STATION HARDWARE

The Science and Engineering Research Council's Rutherford Appleton Laboratory (h ~) operates a Ground
Station and Control Centre on its site at Chilton, Oxfordshire, UK. (5 1.57'N, 1.3 1°W).

Fiy. 1 RAL 12 m Antenna

820

The main antenna is a transportable 12 metre S-band cassegrain instrument (Fig. 1). Built in 1965 by the
North American Aviation Company for the ATS project, it was re-commissioned in 1980 on the Chilton site as
the prime antenna for the joint UWUSIDutch mission IRAS (low-Earth polar orbit).

Antenna Svstem

The main reflector of the antenna is a hyperboloid section, made with 20 petals constructed from 2 in thick
aluminium honeycomb and faced with aluminium sheet. The reflector, the radio frequency feed, cassegrain
sub-reflector and equipment cabinets are supported on elevation over azimuth bearings at the top of a
cylindrical steel pedestal. Three tubular steel legs provide support for the pedestal and, with screw jacks, allow
accurate levelling of the antenna structure. The whole antenna weighs approximately 32 tons. Attached to the
edge of the main reflector is a 1.2 metre diameter paraboloid antenna which, because it has a wider beamwidth
(ie. field of view) is used to locate satellites whose position is uncertain.

The radio frequency feed mounted at the vertex of the main reflector is a complicated waveguide structure. It is
able to transmit and receive simultaneously at S-band frequency, in either right-hand or left-hand circular
polarisation. In the receive mode, three output ports are available: one is the channel containing the received
signal, the other two provide error signals (one each for azimuth and elevation axes) so that, with a servo loop,
the antenna can lock on to an incoming transmission, allowing very accurate tracking of selected satellites. In
addition to this autotrack mode, the antenna can be driven along a predicted path by computer.

The pointing error of the antenna is approsinlately 1 arc minute. The success of the antenna, as a machine for
tracking moving sources, depends ultimately on the quality of the servo mechanism. The electric drive system
incorporates two motors per axis and a redcsigned set of servo amplifiers, aimed at maintaining the peak
tracking error within 6 arc minutes, at mean wind speeds of up to 30 knots. Tests have shown that this figure is
easily met and a typical peak tracking error is 2 arc minutes in a mean wind speed of 20 knots with gusts above
30 knots.

A summary of the technical details of the antenna are as follows:

Mechanical
Cassegrain configuration
12 m diameter paraboloid primary reflector, f/d ratio 0.325
1 m diameter hyperboloid secondary reflector
Eccentricity 1.4 13
Main reflector surface accuracy 0.89 inm rms
Mount: elevation over azimuth, Azimuth rotation * 270 deg , Elevation rotation -5 deg to +95 deg

Drive
Electronically servo-controlled electric motors
Two motors in tandem in each axis
Static pointing accuracy * 3.5 sec arc nns, Tracking accuracy * 2 min arc rms
Velocity, azimuth and elevation 7 deglsec mas
Acceleration, azimuth and elevation, 4 deg/sec2 mas
Modes of operation: Standby, Mantlual or Progra~n-Track

Data output: Position encoder 20 bits, Accuracy * 1.23 sec arc

RF Transmit Receive

Antenna gain 45.8 dB 46.5 dB
Beamwidth (3 dB) 0.9 deg 0.8 deg
Nominal frequency 2075 MHz 2253 MHz (IRAS)
Transmitter power into antenna 10 watts
Max side lobe - 18 dB from main lobe
System noise temp 115 K at zenith
Feed: Four horn monopulse

Left or Right hand circular polarisation receive and transmit
Output: 3 channels - sum and two orthogonal error channels

Acquisition Aid

1.25 m diameter paraboloid reflector (fixed to rim of main antenna)
Receive only
Antenna gain 26 dB
Beamwidth 6 deg
Nominal frequency 2253 MHz
RH circular polarisation
Output: 3 channels - su111 and two orthogonal error channels

The receivers and exciters were previously sited at the NASA STDN ground station at Madrid and were used
on the Apollo programme. They are based on the NASA unified S-band system.

The system comprises:

(1) Two identical receivers with a common phase reference generator,

(2) Two identical transmitters with a common phase modulation drive,

(3) An RF path-switching sub-system,

(4) The Control and Monitor sub-system,

(5) The Calibration and Test sub-system.

These sub-systems are physically distributed between an inner cabin on the antenna pedestal (S-band
components, adjacent to the antenna feed), outer equipment cabinets, also moving with the antenna, and the
remainder within the Operations Control Centre about 250 m from the antenna pedestal base. Almost all of the
OCC sub-systems operate at 50 MHz and below (Receive) and 65 MHz and below (Transmit). However,
low-loss coaxial feeder is used between OCC and antenna.

Each receiver comprises three channels. 'The ReferenceITelemetry Channel establishes carrier phase-lock,
supports wide-band (Dump) telemetry and outputs video TLM. Two Angle-Error Channels detect the angular

deviation from antenna boresight in the X and Y planes relative to the antenna feed, and output error signals for
feedback to the antenna servo drive to establish autotrack.

Each transmitter comprises a multiplier chain to raise the phase-modulated RF drive to the Uplink frequency
and a stage of power amplification to produce the final RF level of 10 W into the diplexer.

An associated Translator unit samples the outgoing Uplink and converts this to the Downlink frequency, as a
Test Input to the down-conversion stages of the receiver. The common phase-modulation drive is derived from
a VCO, tripled and modulated with the Command Sub-carrier which is itself modulated with command
messages generated in the computer.

Control Centre Equipment

Equipment located in the Control Centre coinprises a Unified S-Band (USB) TT&C set, PCM bit conditioners,
a time standard, two wide-band instrumentation tape recorders and test gear. Control of the antenna and
handling of the telemetry is accon~plished with two desktop computers, which monitor the status and health of
the Ground Station and satellite as well as generating the satellite commands for uplinking during each pass. At
the modest data rates generated by small satellites, modem desktop PC's are quite capable of acquiring
telemetry and processing it in real time, using hard disk as the primary storage medium.

Ground Station Performance

During the IRAS Mission, the antenna system successfully tracked over 1500 consecutive passes. Following
the IRAS mission, the system was reconfigured for operations with the UK sub-satellite of the AMPTE mission
(apogee 125,000 krn), where passes over several hours duration were taken every day of the mission.
Additionally, the ground station has been used to track several other spacecraft including LANDSAT-IV, IUE
and EXOSAT. In all cases, command and control down to 8' elevation is possible, and for the majority of
cases elevation down to 2%' is possible.

GROUND STATION SOFTWARE

It is a traditionally held view that ground soR\\?are has to cope with all of the problems which have been left by
the hardware engineers. This may always be true to a certain extent, but the trade-offs for low cost need to be
made in a detailed way early in the planning of a mission. A number of early decisions may, on the one hand,
allow the in-flight component to be simplified, but at the expense of more complex operations and software.
Alternatively, decisions on whether to adopt for instance, a standard telemetry format (CCSDS) would permit
standardisation of ground software and minimal changes for successive missions. Thus the ground segments
should always be considered to be an essential, integrated part of the mission right from the start.

Advantage can be taken of the increasing power and modularity of computers, both on the ground and in space.
Thus, there is an opportunity to provide flexibility on-board the satellite to reduce data telemetry volumes,
without the fear, which has existed up to the present, that irrevocable techniques could lead to at least partial
mission failure if the instrumentation subsequently performs unpredictably. On the ground, sufficient checks
can be built in to permit the use of autonlated passes, eliminating the need for expensive shift working.
However, for this to be viable, the hard\vare design has to build in this requirement from the start and the
control station hardware and software also.

The experience of RAL on many scientific missions has been that high efficiency and low costs can be achieved
by using highly qualified and experienced staff throughout the design, development and operation of the ground
systems. Despite the additional costs per staff year, there are significant gains in productivity from adopting
this philosophy. Team members are selected to ensure a mixture of backgrounds in operations, formal
computing training and research in the subject area of the spacecraft. Benefits are seen to be greater
motivation, a strong understanding of mission objectives, which in turn makes the teams very adaptable and
capable of proposing and implementing solutions to problems. Producing systems which the team themselves
will have to run is a strong concentrator of the mind and the considerable costs of training and detailed
documentation as the project progresses are significantly reduced.

It is not only in formatting that the adoption of standards can be of benefit. The existence of cosrdinated
national facilities in the UK such as Starlink in the Astronomy area and the British Atmospheric Data Facility
(formerly GDF) has also led to standardisation of data handling tools and data bases, allowing the reuse of
software for analysis despite the widely differing instrumentation being flown. More could be done to exploit
these universal tools, but a start has been made, although each project may have to accept compromises and
possible lower perfomlance if the goal of minimal new software is to be achieved.

CONCLUSIONS

It has been shown that mission costs for the Ground System can be significantly reduced by making just small
compromises in data return, together with standardisation of hardware and particularly software subsystems,
and in greater use of National facilities.

DESIGN OF GROUND SEG
FOR SMALL SATEELITES

MATRA MARGONI SPACE
3 1, Rue des Cosmonautes, Z.I. du Palays

3 1077 Toulouse Cedex - France

New concepts must be implemented when
designing a Ground Segment (GS) for small
satellites to conform to their specific mission
characteristics : low cost, one main instnunent,
spacecraft autonomy, optimised mission return,
etc ... This paper presents the key cost drivers
of such ground segments, the main design
features and the comparison of various design
options that can meet the user requirements.

Key words : Small satellites, Ground
Segment, Mission Control, Data Acquisition.

1- Introduction

The Ground Segment for control of the
spacecraft and for exploitation of their data
represent a growing part in the space mission
budgets. Therefore it has been considered
important by Industry and by such Agencies as
ESOC (1) and CNES (2) to review the state of
the art for the Ground Segments that support
the SmaIl Missions, to understand the possible
degree of optimisations and the cost
implications.

Small satellite missions usually consist of one
or two instruments aboard a small spacecraft
thanks to technology progress. The
development time frame and the programme
costs are major drivers that will have to be
fully considered for the definition of Ground
Segment development and operations. The
main driver to optimise the design while
considering the cost constraints is thus to
consider the space system (Figure 1) as a
whole and to think integrated system.

DESIGN

Figure 1 : Concurrent Engineering
for Ground Segment design

The paper presents the cost drivers to be
examined when designing a Ground Segment,
the typical overall Ground Segment design
characteristics and the main latitudes for
optimisation. Finally the emphasis is placed on
the definition of major Ground Segment
elements, the Mission Control System and the
Ground Stations to highlight where an
optimum design can stand.

2- Mission related cost d ~ v e r s

Since the cost constraints must be considered
from the beginning, it is necessary to analyse
where lay the cost drivers for ground segments.
The cost drivers may vary from one mission to
the other, may depend a lot on the category of
service proposed by the mission : data for
scientists, commercial service for
telecommunications. However some general
trends have been highlighted from examination
of a number of conventional missions and of
small missions.

For a typical observation small mission (Table
I), the GS design must consider with specific
attention all requirements that may impact the
number and definition of the Ground Stations
and the Flight Dynamics functions on-ground.
In this example, the Ground Station and Flight
Dynamics elements have a sizing costs within
the Ground Segment costs.

The accuracy of orbit restitution needed for
payload data processing is a characteristic of
this mission that directly impacts the flight
dynamics processing on-ground. The ground
station is a unique S-band station that supports
both the Payload and the TWTC housekeeping
data. The other elements have a lower
importance since either based on reuse of
existing components or based on a limited
development for a simple mission : for
example, the mission planning function is
limited due to only one payload instrument
with no direct interaction with the users who
require a systematic observation.

Satellite Pointing requirement
RF Payload constraints 1
SATELLITE DESIGN
Orbit control 1 2
Attitude control 2 3 2
TMJTC interfaces 1
RF design 3
Data rates/response times 4 1 1 1
Number/~~mplex Ops modes 1 1

Table 1 : Typical Cost Drivers for a small satellite mission (Observation)

826

The methodology followed was to identify
what are the requirements that can impact the
Ground Segment Design. In relation with the
Users, the following requirements are identified
as having a significant impact : the Mission
Purpose that defines mainly coverage (image
size, trajectory), resolution and duration of
observation, the permitted mission outage
expressed in possible interruptions of on-board
service or observations, the availability of
payload data criterion corresponding to the
delay between the observation on-board and
the time of reception of data at user site. The
Mission Analysis then considers these
requirements and the characteristics of a space
system to derive such characteristics as the
mission lifetime, the satellite pointing
requirements or the RF payload constraints
(e.g. number of ground stations, RF band
selection). From the Mission Analysis a
Spacecraft &sign will also impact the Ground
Segment &sign with such requirements related
to orbit control, attitude control, TMITC

interfaces defmition, data rates and response
times, RF links characteristics and link budget,
number and complexity of operations modes
that will have to be handled from the ground.

For comparison an observation conventional
mission is considered : the GS costs are equally
shared between the Ground Stations and
Comms development, the Mission Planning
and the Satellite Control Centre. For such a
conventional mission, the main cost drivers
were impacting most elements in a more
distributed fashion as shown per Table 2.

The above elements must be given full
consideration, when performing the necessary
iterations between the Ground Segment design,
the costs, the operations and satellite definition.

The main Ground Segment design
characteristics for a small mission are now
highlighted.

Table 2 : Typical Cost Drivers for a conventional satellite mission (Observation)

827

Conventional SATELLITE MISSION
GS DEVELOPMENT COST
(Most sizing cost driver graded 5)
USERS REQUIREMENTS
Mission purpose
Permitted mission outage
Availability of payload data
MISSION REQUIREMENTS
Mission Lifetime
Satellite Pointing requirement
RF Payload constraints
SATELLITE DESIGN
Orbit control
Attitude control
TMITC interfaces
RF design
Data ratedresponse times
Number/complex Ops modes

Flight
Dynamics

2

1
3

2
3

1

Ground
Stations

3
2
1

1
2
2

1
2
1
3
3

Comms
Infhstruct.

2
1
1

1

3

Mission
Mission
Planning

3

1

Control
lTC

processing

1

1
1

1
2

1
1

Other
functions

1

1

1

3- Ground Sewent dsign

The Ground Segment design for a small
mission must be such as to support the overall
mission, but with much emphasis placed on
costs aspects both for development and for the
typical 3 years mission duration (2 to 5 years
depen'ding on the mission).

A first major trend of the design will be to
d s e the use of existing components in the
ground infrastructure : this trend limits the
development costs and the maintenance effort
since the hardware is based on off-the-shelf
items and the software is flight proven in other
programmes. This is why an important design
effort will be dedicated to the overall
architecture definition to identify the building
blocks, to define their interfaces and the
missing elements, and last but not least to react
on requirements whenever it is felt to simplify
the design while meeting the overall mission
objectives.

To design a Ground Segment with building
blocks will be more easily achieved if the
system is built as a distributed system. And
since cost efficiency for operations is an other
major criteria, the collocation of the Ground
Segment facilities must be enforced. Therefore
a typical Ground Segment design for a small
mission will be based with its components
collocated around a Local Area Network
(Figure 2) : Ground Station, Satellite Control
System, Flight Dynamics, Mission Planning,
Payload Preprocessing with the capabilities to
communicate payload data to users either by
mail or by communication links.

For small missions, the availability
requirements can be less stringent than in
conventional missions. No hot redundancy will

be implemented as a rule : as experienced in
conventional missions, it is costly since it
requires more hardware, automatisms, specific
procedures adding to the complexity of
operations, documentation, training and
maintenance.

Figure 2 : Typical design for a Small Satellite Ground Segment

828

The other main features of the GS design for
small missions are : collocation of Eacilities,
reduced staffing, use of pmven off-the-shelf
hardware and software, automation of routine
operations, compliance to standards (e-g.
CCSDS and ESA COES) to enf- further
commonalties for reuse. Table 3 hereafter
compares the main features for a Low Cost
ground segment option, for a Lower risk
ground segment option and for the design

attached to a conventional mission. The Lower
Risk option will mainly differ from the Low
Cost option in the operations concept that wiU

provide a higher security level for operations
and a higher mission availability.

How the Lower Risk option can best meet the
overall mission requirements and what are the
possible risks attached to a Low Cost option
are given a preliminary answer in the following
section.

Table 3 : Main features for the overall GS Design

STATION Design

MCS Design

4- Ground segment optimisation

The allocation of costs for a Ground Segment must
be carefully considered to select design options that
will rnaximise a mission return criteria, i.e.. the
amount & quality of data versus the investment.

Standard products,
small antennae

Reuse existing packages
Minimum adaptations

Typical costs allocations are shown for a
Telecomms conventional mission (Figure 3) and
for a Small Mission (Figure 4). The total GS cost
includes the following costs : Ground Stations &

Comrns, Mission Control System, Prelaunch
operations (Flight procedures preparation, MCS
database definition and validation, ground and
flight operations validation and rehearsals) and a
normalised period of 3 years operations.

In the conventional mission example, the Ground
Stations costs were important due to the number of
antennae considered and to a 11 meter antenna
supporting accurate angular measurements. The
ground station cost for the small mission was
limited since VHF/UHF data links were considered
both for payload messages (less than 20 Kbps) and
for housekeeping TWTC with no ranging
requirements imposed on ground other than
processing the on-board GPS transmitted data.

Idem + reuse
of a station network

Reuse existing packages
More tailored to ops

With these characteristics a significant cost of the
small mission Ground Segment corresponds to the
operations costs. Therefore it is important to
analyse how these costs can be reduced and how
this reduction can impact the GS availability and
the risks for operations.

New development

New development
Many ops requirements

GS & Operations costs

W@y-)
23% Q-cud

stalim &

PrelcLnchcp
Ccmrs

43%
11%

Mssim
Ccntd
23%

Figure 3 : Cost break-down for a Telecomms Conventional mission

T elecommb : Low cost option

I

Figure 4 : Cost break-down for a Telecomms Small mission

Figure 5 below presents a typical example of a
GS availability as a function of the GS total
cost for typical GS options with different
design, maintenance and staffing orientations.
The availability was computed using
equipment failure rates and mean time to repair
as checked during several years of operations
and the time for intervention considered for
exploitation. The main difference between
options availability characteristics proceeds
from this time for intervention, i.e. time spent
between the occurrence of a failure and the
staff performing failure detection, investigation
and replacement of the faulty equipment. With
today's GS equipment high reliability figures, it
is the exploitation characteristics that mainly
drive the GS availability.

In the Low Cost option, staff is only available
during working hours. In the other option (Low
cost/24 Hours, ESOC reuse, Low risk) only

the design is different when the staff is
available day and night, including week-ends to

react to any ground failure detected with spare
equipment available for ground equipment.

The Low Cost option is interesting since it
presents a substantial cost advantage of about
3 MAU with respect to the other options and a
higher mission return per cost unit (defined as
the amount of data a user can expect over the
mission duration, and therefore proportional to
the GS availability figure). From the user
perspective the mission return is 2% lower but
the sensibility of theses availability figures and
their statistical meaning show that this will

have little effect on the user satisfaction wrt the
amount of data acquired over the 3 years.
Therefore the 24 Hour Manning Low cost
option does not bring a significant advantage to

be considered.

LDw risk

Figure 5 : Staffing & Maintenance impact on GS availability and cost

An alternative could be to change some
characteristics so that the mission return be
much lower at a significant saving. From the
cost drivers analysis this orientation would
bring a minor cost saving with a substantial
degradation of mission return and a higher risk:
for example operators only working upon
automatic anomaly detection could be felt more
risky without a significant advantage.

This is why it is of the utmost importance to

appreciate the risks induced by the Low cost
approach in comparison with the more
conventional approaches. The following
elements contribute to the risk specific to the
Low Cost option and not supported by the
other options :

- The whole expertise (spacecraft and ground)
is supported by a 3 engineers staff coming
from the spacecraft development team. In the
other options an operations support
infrastructure is identified that support
spacecraft contingency analysis or such
expertise domains as flight dynamics, or
ground equipment maintenance. The difficulty
consists in the level of skills required from this
3 engineers team and whether they can
efficiently support contingency cases. The
typical spacecraft autonomy of 1 week, the on-
board securities and the expertise gained by the
staff during spacecraft development should
compensate most of the risk.

- The simulator is not foreseen in the low cost
option and limited testing will be performed
with the spacecraft (or its engineering model)
on ground. A number of operations will not
have been tested prior to launch : this could be
accepted if the spacecraft is safe, robust to

ground errors and that a number of spacecraft
specialists are available at the beginning of life
so that operations imperfections be detected
quickly and correct procedures be validated.

The beginning of spacecraft lifetime would
lead to less data availability, what could be
accepted since a first period is often considered
for calibration and with full support of the
spacecraft engineering team. However it is
strongly recommended to keep the siniulator
even in a low cost option, since the fareseen
benefit for operations security is important
with regards to the cost of such a recurring
product which represents less than 3% of the
total mission cost.

Each of the GS components are further
examined with emphasis on the major design
options.

5- Mission Control System

The Mission Control System (MCS) is
con~posed of the following functions : TWTC
function with real time control and satellite
performance analysis, flight d ~ ~ c s and
mission planning. The main outcome for small
missions will be the reuse of existing software
packages. Most packages are running now on
Unix workstations and the integration can be
limited when only exchanging few data files.

An important trend to reach additional cost
saving for small missions, will be to consider
all Ground Systems needed in a programme :
with reuse of existing EGSE and MCS
building blocks, it is now envisaged to build a
"Universal Test Bench that can be used in all
stages of the satellite development and
operations.

Figures hereafter (Figures 6 to 8) examine the
relative development costs for observation
missions : a Conventional mission, a Sea
Altimeter small satellite mission and a
Cartographic small satellite nlission.

G r o u n d S e g m e n t D e v e l o p m e n t costs

Flight Management
MISS Ion Dynarnlcs & Integraflon
~ l a n n l n a 3 % 4 9 9 ~ - . . m .. ,"

25% Ground
s tatlons (2) &

Cornrns
24%

MCS : T M/T C
36%

Figure 6 : MCS costs for a conventional mission (Observation)

GJ Development for Small Sea AHlmeter SatellHe

Maagt&lnBgofm
11%

45%
12%

Figure 7 : MCS costs for a Sea Altimeter small mission

GS Development for S mall E arth
Observation satellite

Flight
Dynamics Managt &

Integration

S tation &
Comms

36%

I

Figure 8 : MCS costs for a cartographic small mission

The above examples show that with this
strategy of reuse with minimum adaptations,
the amount of the Mission Control System in
the overall development costs is lower than for
conventional missions. Depending on the
ground station characteristics, the MCS can
weight 36% to 44% of the Ground Segment
development cost.

6- Ground stations and Communications

The Ground Stations and the ground
Communications part of a Ground Segment is
usually a sizing ratio of the total development
cost. Therefore special attention must be
granted to the characteristics that contribute to
the costs (Table 4).

The Antenna itself in the ground station can be
the sizing cost element when high
performances are required from the specified
bandwidth and data rates. This is why a
ground and board optimisation must take place
to review the data rates with respect to user
requirements, to review then the budget link
requirements, to retain only one system of
communications both for payload and

housekeeping operations. The choice of the
frequency bandwidth (X band, S band or lower
band such as UHF) and the mission orbit
characteristics will then make the price of the
antenna. A common characteristic of many
small missions is that only one antenna system
is used for communications of both payload
and housekeeping data of the satellite platform.

The RF equipment and Baseband equipment
are then to be considered in the cost but they
are usually off-the-shelf equipment with high
reliability figures : the Monitoring & Control
equipment can limit itself to the set-up of
equipment configuration and to support
investigation and no longer as a procedure
driven system to act on the redundancies and
switches. In addition, for a low cost solution, a
new range of VSAT equipment is available at
a lower cost with possibly lower reliability
performances that can be adequate for small
missions. As for other elements of the Ground
Segment, a major contributor to costs, as
experienced in passed conventional
programmes, is the development of specific
equipment or of new technology when off-the-
shelf equipment exists.

Table 4 : Cost drivers for Ground Stations and Communications

834

COST DRIVERS

OFT-THE-SHELF
EQUIPMENT
ANTENNA & RF

RANGING

LEOP

COMMUNICATIONS

SMALL MISSION
Systematic

Only 1 station
for payload and data

Use of GPS

Interface with existing network
Transportable l T C station
SIC autonomy wrt LEOP

Collocation on LAN as baseline
Files transfer at low data rates

CONVENTIONAL
cost of technology changes

Network of stations
Sizing costs

Can be costly on ground

Specific requirements

Usually low relative costs

7- Conclusion
An other important cost item can be related to

the requirements imposed on ground to

perform the ranging. In conventional missions
these requirements imposed range equipment in
the station, or large antenna with complex
mechanics for accurate angular measurements.
For small missions these requirements are
alleviated either by lower performance
requirements on orbit determination or by the
availability on-board of GPS or other
equipment that provide orbit measurements.

Finally communications can be achieved more
simply than in conventional missions with
relaxed requirements for data timeliness that
defines the time spent to provide the user with
data. Depending on missions, simple mail
procedures can be accepted or an electronic file
transmission system using standard networks
(e.g. INTERNET or other national or
international networks) can be used. To
decrease the communications costs, one
solution if feasible may consist of having users
collocated at Ground Segment site and
receiving their data on the LAN. The
communications analysis can impact the place
where the data demultiplexing can be
performed : either at Station or at Control
Ground System level.

Small missions constraints enforce a new
approach for development of both the satellite
and its associated ground systems. With due
consideration to existing technology and
products, the project team must review in an
iterative way the requirements, design and
costs implications on both the satellite and the
ground systems for satellite testing and for
operations. This new approach can be
summarised as the Integrated System
Approach relying on a new ground system
means, the "Universal Test Bench" which
building blocks will be used according to

satellite development and operations stages.

ACKNOWLEDGEMENTS
Mr. Van der Ha (ESOC), Mr. Oberto (MMS)

REFERENCES
(1) Small Satellite for Ground Segment and
Operations : ESOC study conducted in 1993-
1994 under Mr. J. Van der Ha 's responsibility
(2) Ellips study : CNES study conducted in
1994

THE SAX ITALIAN SCIENTIFIC SATELLITE. THE ON-BOARD IMPLEMENTED P4 19
AUTOMATION AS A SUPPORT TO THE GROUND CONTROL CAPABPLITY "

I

Andrea MARTELLI /'

Alenia Spazio S.p.A. - Turin Plant
Corso Marcbe 41

10146 Torino - Italy

ABSTRACT INTRODUCTION

This paper presents the capabilities implemented in the
SAX system for an efficient operations management
during its in-flight mission.

SAX is an Italian scientific satellite for X-ray Astronomy
whose major mission objectives impose quite tight
constraints on the implementation of both the space and
ground segment. The most relevant mission
characteristics require an operative lifetime of two years,
performing scientific observations both in contact and in
non-contact periods, with a low equatorial orbit
supported by one ground station, so that only a few
minutes of communication are available each orbit.
This operational scenario determines the need to have a
satellite capable of performing the scheduled mission
automatically and reacting autonomously to contingency
situations.

The implementation approach of the on-board operations
management, through which the necessary automation
and autonomy are achieved, follows a hierarchical
structure.
This has been achieved adopting a distributed avionic
architecture. Nine different on-board computers, in fact,
constitute the on-board data management system. Each
of them performs the local control and monitors its own
functions whilst the system level control is performed at
a higher level by the Data Handling Application

The SAX satellite is part of a scientific program whose
objective is to observe celestial X-ray sources in the
broad energy band fiom 0.1 KeV to 300 KeV. The SAX
mission has been planned to achieve a systematic,
integrated and comprehensive exploration of galactic and
extra-galactic sources, providing significative
improvements for more complete and extensive studies
in X-ray astrophysics.
SAX is a joint program managed by the Italian Space
Agency (ASI) and by the Netherlands Agency for
Aerospace Programs (NIVR) coordinating the scientific
interest of the Italian and Dutch scientific community
and funding an international industrial team whose
overall organization structure includes:

Alenia Spazio as main contractor for the Space Segment

Telespazio as main contractor for the Ground Segment

Martin Marietta - Commercial Launch Services - as
main contractor for the Launch Vehicle

Italian and Dutch Scientific Institutes as Scientific
Consultancy.

The SAX Payload hosted on-board consists of the following
six scientific Instruments (Ref. 1):

Low Ehergy Concenh-ator Spectrometer (LECS) whose
task is to perform X-ray spectrometry/imaging in the
0.1-10 KeV energy range

software. Medium Energy Concentrator Spectrometer (MECS)
The SAX on-board architecture provides the ground whose task is to perform X-ray spectrometryfirnaging in
opentors with different options of intervention by three the 1-10 KeV energy range
classes of telecommmis. The management of the scientific
opentions will be scheduled by the Opention Control Cenk @ High Pressure Gas Scintillation PrOportional Counter
via dedicated openring plans. (HP-GSPC) whose task is to perform X-ray

spectrometry in the 3-120 KeV energy range
The SAX satellite flight model is presently being a phoswich Detector System (PDS) whose is to
integrated at Alenia Spazio premises in Turin for a perform X-ray spectrometry in the 15-300 KeV energy
launch scheduled for end '95. range and gamma-ray burst monitoring in the 60-600
Once in orbit, the SAX satellite will be subject to Kev energy range
intensive check-out activities in order to verifiy the
required mission performances. An overview of the Two Wide Field Cameras (WFCs) whose task is to
envisaged procedure and of the necessary on-ground perform X-ray spectrometry1 imaging in the 2-30 KeV

activities is therefore depicted as well in this paper. energy range.

Fig. 1 - Satellite Overall Configuration

The WFCs are mounted along the +Y and -Y satellite
axes, allowing an observation of a wide sky portion,
whereas all the other Narrow Field Instruments are
aligned along with the +Z axis. Fig. 1 illustrates the
satellite overall configuration.
The SAX pointing capability ensures a target
measurement accuracy of 1 arcmin and a pointing of 3
arcmin for a maximum of 16 seconds, i.e., one clay.
All the project design has been developed to cope with a
mission of at least two years preceded by a
commissioning phase period, estimated to extend for
about eight weeks.
The satellite is currently in a very advanced C/D phase.
The Flight Model is under integration as the last step of
a system integration and test campaign involving the
developing of a Structure Model, an Engineering Model,
and a Software Verification Facility. The launch will
take place by end '95 with an Atlas Centaur vehicle. The
SAX Ground Station will be located in Singapore and
will be connected via Intelsat to the SAX Operation
Control Center and the Scientific Data Center, both
located in Rome.

MISSION CHARACTERISTICS

The major constraint entailed by the scientific objectives
requires a satellite orbit such that the background particle
radiation for X-ray detection be very low and the effects
of radiation from the South Atlantic Anomaly region be
reduced. This leads to the choice of a circular low Earth
orbit at a 600 Krn altitude - Begin of Life (450 End of
Life) - and an inclination of about 4'. The orbit period is
thus of 97 minutes with an alternance of 60 minutes of
sunlight and 37 minutes of eclipse.

One single ground station, located near the equator, will
suppat the mission offering satellite visibility each orbit, 'Ihe
coverage period is anyway no longer than 11 minutes so that
about 90% of orbital life is out of visibiity.
The pointing domain is limited by the allowed sun
incident angle range on the satellite solar array surface.
A maximum of 30" (with occasional excursions to 45')
inclination is allowed with respect to the sun direction to
ensure a proper battery charge. This implies a pointing
domain for the Narrow Field Instruments limited within
a band in the sky 60" wide available for observation each
orbit (except some possible occultations by celestial
bodies). In a one year period, the whole sky will be
observable for a scientific activity that can be estimated
as performing between 2000 and 3000 independent
observations (Ref. 2).

THE SYSTEM ARCHITECTURE

The above introduced operational scenario determines
the need to have implemented on-board the capability of
supporting, in an autonomous way, the execution of
on-ground predefined mission plans. That also requires
the on-board architecture to manage the nominal
activities as well as the pre-conceived anomalies, in all
the mission phases, taking into particular account that
most of the mission is out of the ground coverage.
The implementation approach of the required operation
management is based on an avionic architecture which
makes extensive use of a distributed on-board
intelligence (Ref. 3). Nine on-board intelligent terminals
constitute the SAX system architecture as shown in Fig.
2 (see following page).
Each of them performs the autonomous control of the
relevant subsystem (S/S) local functions including the
surveillance of its health status. The control of the system
overall activity is assigned to a higher hierarchical level and
is implemented in a Central Terminal Unit (CTU). The CTU
is &voted to coordinating and controlling the Data
Management and Communication System as well as to
managing the system nominal operations and to u n d d n g
the system level recovery actions. A set of non-intelligent
subsystems, including the Telemetry Tracking & Command
SIS, the Reaction Control S/S and the Electrical Power S/S
are placed under the dkct control of the CTU via serial lines
through a Remote Terminal Unit.
The interprocess communication is based on the ESA
standard serial digital bus arbitrated by the CTU and
composed of:

0 Interrogation Bus for CTU to local terminals
interrogations

Response bus for local terminals to CTU transmission of
Housekeeping Data (HKD)
Block Transfer Bus for Scientific Instruments to CTU
bansmission of Scientific Data

:;bandband-
1. - - - - - -

M A G Bus

Fig. 2 - System Architecture

The data communication protocol is designed to ensure a
collection of about 16 kbit/sec of HKD from the satellite
subsystems and science instruments and up to 100
kbit/sec of scientific data. Two different formats of HKD
can also be selected: one essential format including a
basic set of SAX HKD, one intensive format including
some extra information on hot redundant units and Data
Handling traced operations. All the data gathered in
non-visibility are temporarily stored on a dedicated tape
recorder, with a capacity of 510 Mbits, until requested to
be dumped to ground during the coverage periods. Two
channels are implemented to dump to ground the satellite
telemetry in High Bit Rate mode:

* channel "I" for dumping the real-time collected
telemetry at 13 1 kbps

* channel " Q for dumping the tape recorded data at 917
Kbps.

A 16 Kbps link is also available to implement a Low Bit
Rate transmission mode.
The telecommand bit rate allows an uploading of 2
Kbps, that is about 20 frame instructions/sec.

ON-BOARD REDUNDANCY CONCEPT

The SAX mission characteristics have led to a system
design with a high degree of reliability to cope with so
long an autonomous lifetime.

All the spacecraft S/Ss are designed to be single failure
tolerant whereas the Scientific Instruments implement
redundancy only at interface level. Critical on-board
items (e.g. receivers, decoders, gyroscopes, power units,
protected memory) all operate in hot redundancy. In this
context single spacecraft unit malfunction does not affect
the nominal mission performance.

The intelligent subsystems - i.e., On-Board Data
Handling (OBDH), Attitude and Orbit Control S/S
(AOCS), Thermal Control SIS (TCS) - are based on a
fully redundant architecture. Each of their unit classes
includes one redundant item so that one fatal failure can
be recovered by properly activating this redundancy.
The Scientific Instruments, not having implemented any
internal redundancy, perform only a reduced Failure
Detection and Isolation function for specific problems.

All the on-board computers maintain at least the software
(SW) basic functions stored in Programmable Read Only
Memories so that any reseuswitch-over cannot cause the
loss of the code, as it is downloaded from PROM to
RAM any time a (re)-initialization takes place.
Embedded circuitry for error detection and correction of
corrupted memory cells by single event upset as well as
a watch-dog circuitry for autonomous reconfigurations
are provided in all the intelligent subsystems.
All the data considered critical for the proper on-board
autonomous maintenance of the mission, in any nominal
or contingency situation, are dynamically maintained in
dedicated Protected Memory Areas. According to the
relevant OBDH and AOCS performed control, this data
set is so classified and grouped:

0 OBDH Application S W (A/SW) vital data, including the
Solar Array deployment status, the launcher separation
status, the system and some critical S/S items active
configmtion (e.g. transmitters, battery discharge
regulators, reaction control S/S branches, etc.)

OBDH Basic SW (BISW) vital data, including the
launcher separation status, the OBDH active unit
configuration, the redundancy management data

Time Tagged commands to be scheduled at their own
preset time

Real Time commands to be executed at CTU
switch-over

AOCS S/S active configuration and launcher separation
status, maintained in dedicated AOCS solid state latches.

The failure management of non-intelligent S/Ss is
performed at centralized level by the OBDH AISW.
Some exceptions deviate from this general approach:
* Power S/S performs the failure management for its own

units;
* the hydrazine flow control valves are under control of

the AOCS when it makes use of thrusters;

and these are driven by time intervention constraints.

MISSION PHASES

The SAX mission can be divided into four overall
mission phases.

Launch Phase
LP begins at spacecraft power-on just before vehicle
lift-off and extends to the physical separation between
the launcher and SAX. In this phase the S/Ss are
initialized and perform a continuous control of the
powered units. No attitude manoeuvre is of course
executed as the AOCS is in its initialization mode
until the separation. The on-board produced data are
stored on the tape recorder, just after the launch
vibrations terminate, for later transmission to ground.

Commissioning Phase
This begins at the SAX-launcher separation and
extends to the completion of all initial in-orbit tests
and calibrations. As a first step, it consists of an Early
Orbit Phase which comprises a short post separation
coast period, a reduction of any residual S/L body
rates and a subsequent SuniEarth acquisition period.
Upon successful completion of these activities the
deployment of the Solar Arrays is autonomously
operated.
The commissioning of the satellite shall proceed with
an initial health check-out continuing with systematic
functional checks of all the subsystem nominal
functionalities.
The Scientific Instrument activation and functional
verification shall be operated as a last step. Some
overlaps between the two shall be necessary for a
complementary check-out of both the spacecraft and
the Scientific Instruments. All these operations shall
be initiated by ground and supported by the on-board
SW tasks.

Operational Orbit Phase
This phase covers the period of the satellite's useful
scientific lifetime. It shall be nominally two years and
shall be characterized by routine scientific operations.
The satellite design shall, anyway, allow an extention
of the mission beyond the nominal period up to a total
four years lifetime.

End of L@e Phase
This phase covers the period when SAX is no longer
capable of producing useful scientific information due
to either component degradation or altitude decay.

SATELLITE MODES

The system mode design has been structured to cope
with all the SAX mission phases (Ref. 4). The satellite
modes - implemented with a direct correspondence with
the AOCS modes - drive all the on-board autonomous
operations. Their transitions can be initiated either upon
ground commands or at the occurrence of automatic
fallbacks caused by system autonomous emergency
re-configurations. The SAX mode transitions diagram is
reported in Fig. 3 (see following page).
The mission/science support modes are the principle
configuration to support the scientific activity. The
defaulusafety modes correspond to the main operative
configurations to be assumed in case of interim science
activity or on-board emergency. Two further modes
support special operations during the launch phase and
during the orbit raising manoeuvre - if ever needed.

Satellite Launch Mode (SLM)
Routine operations are performed to ensure an health
satellite status ready to operate just after the
S AX-launcher separation.

I Sate11ite Launch
Mode (SLM) I

S9tdLite Safe Mode
Commudcd h i t i o n

--._ _.-- ----__.__._-------
MISSION/SCIENCE MODES

Fig. 3 - Mode Transition Diagram

The produced telemetry is recorded only after the
vibration level is reduced - the activation of the
on-board tape recorder is made by a time tagged
command.

c Satellite Sun E d Pointing Mode (SSEPM)
This mode is automatically entered either at
SAX-launcher s e w o n or as fall-back from the other
Nominal Satellite modes. Purpose of this mode is to
maintain the satellite in a 3-axis stabilized attitude
optimizing the sun incidence on the Solar Arrays. As
this mode is entered from the separation, it has to
accomplish a very critical sequence of operations most
of them to be performed autonomously since they are
out of the ground coverage. The major operations are
initiated by the OBDH and AOCS software that have to
coordinate the safe attitude acquisition with the Solar
Arrays deployment. Trigger of these operations is the
SAX-launcher separation, detected by a dedicated fully
redundant hardware circuitry and sent to both the S/Ss.

Satellite Interim Science Mode (SZSM)
This mode configures the SAX satellite in a accurate
three-axes stabilized attitude making use of one star
tracker, besides all the other used sensors. This fine
pointing helps in keeping a default attitude (e.g.
Polaris pointing) and in fastening attitude transitions
to scientific modes.

SateUite Nominal Science Mode (SNSM)
The satellite remains in this mode while operating the
planned scientific observations. A very fine pointing
is made by use of the AOCS star trackers. All the
scientific data produced by the Scientific Instruments
are collected by the OBDH according to a dedicated
polling algorithm.

Satellite Slow Scan Mode (SSSM)
This mode will mainly be used to perform calibrations
of Non-Imaging Scientific Instruments by performing
sequential slews across a known target.

Satellite Delta-V Mode (SDVM)
This mode is designed to cope with the altitude decay,
raising the satellite orbit in the case the SAX altitude
decreases below the 450 Km.

Satellite Ssfe Mode (SSM)
This mode is entered upon detection of specific
system-level failures. A safe attitude is then maintained
by the AOCS pointing the Solar Array surfaces toward
the sun and aligning the satellite with the earth magnetic
field.

OPERATION MANAGEMENT STRUCTURE

The management of the SAX system operating modes is
implemented by a multi-level hierarchical structure (Ref.
5) involving, in increasing priority:

the S/L Subsystems and Scientific Instruments

the OBDH Application Software

the Ground Operation Control Centre.

To the upper levels is assigned the task of initiating the
scheduling of system level functions as well as the
capability of controlling and overriding the lower level
decisions. On the other hand, the main nominal
operations autonomously performed at local level allow
the proper control and setting of the relevant S/S. In
particular, the intelligent terminals and Scientific
Instruments are designed to be fully autonomous in
performing their relevant tasks so that they can in
principle continue operating consistently without any
external intervention. Few inputs are, in fact, needed
only for tuning their performances and their
configurations with respect to either the system
configuration or the current mission characteristics.
Each of the intelligent subsystems also performs a
Failure Detection, Isolation and Recovery (FDIR)
management on its own, keeping under control the
configuration, functioning and health status of all its
relevant units. In the case a malfunction is detected, the
fault unit can be substituted by the redundant one. If the
main S/S computer is affected an automatic switch-over
takes place. The redundant intelligent unit will then be
initialized assuming a safe mode of functioning.
The Scientific Instruments, not having a redundant
architecture, adopt a self disabling policy, in particular,
against a too high level of particle radiation able to
damage the instrument itself.
Purpose of the OBDH A/S W is to keep under control all
the subsystem level operations; that implies a system
supervision to ensure the proper nominalfsafety satellite
consistency. What has been assigned to the A/SW is the
role of the on-board coordinator of all the major flight
operations between themselves and with respect to the
ground scheduled plans.

It is in particular devoted to:

* perform Solar Array deployment following the launcher
separation and sdearth acquisition

* inform the AOCS of the new inertia matrix to be used
after the Solar Array deployment

* support the distribution and enabling of operating plans
to the AOCS and Scientific Instruments

* support the Ground-to-Satellite link acquisition and
downlink telemetry operations

* enable/disable power resources to the non-essential
satellite loads, i.e., Scientific Instruments, Reaction
Control S/S, thermal control heaters

* perform the deployment of the Scientific Instrument
baftles

* manage satellite mode transitions as a consequence of
" Intelligent S/S switch-over
" AOCS mode fallbacks
" Power S/S protection triggering
" Scientific Instrument particle over-radiation detection.

All the A/SW operations are coordinated and
synchronized by the proper activation of dedicated
pre-defined command sequences and command loops.
These can be activated either by ground or autonomously
to accomplish the above introduced operation set. The
OBDH A/SW core is based on three principal modules
acting as the kernel of the AJSW architecture, as
illustrated in Fig. 4 (following page).

The Mission Manager: it monitors the mode transitions
of all the subsystems and instruments which require
corrective operations. It is based on a mode transition
table indicating all the actions to be undertaken at the
occurrence of S/S mode transitions. It in particular
specifies the safe configurations to be adopted in case of
some critical mode fall-backs. It also drives the
enablingldisabling statuses to be applied to the AJSW
controls, as a function of the satellite mode
configuration.

The Fault Managec it cyclically checks a predefined
sub-set of the on-board produced monitors to undertake
subsequent actions to isolate and/or recover the related
problems. The data set includes all the mission critical
on-board items, provided on a periodic basis and kept
under control by means of a table driven FDIR manager.
The control is performed by periodic tasks scheduled
every second.
A cross-check is then made between the measured
values and their relevant expected ranges. Any
discrepancy activates a direct recovery action on the
non-intelligent S/S with possible extension to a system
reconfiguration in the case the malfunction can severely
affect the system performance.

Telemetry
Report

$ 2 g2
COMMAND

Fig. 4 - OBDH Application Software Architecture

The Telecommand Sewer: it manages the ground
initiated operations distributing and verifying the
command execution.
It furthermore applies a consistency checks on the
ground uploaded requests against the current system
configuration. In the case a conflict is detected a report
is provided in the A/SW telemetry but no action is
undertaken until an explicit ground override is operated.

The top level of the SAX operations is, of course, a
ground task. It is responsible for acting on the satellite
configuration in order to set it up properly to accomplish
the planned scientific observations. It has therefore to
operate on both the spacecraft and the Scientific
Instruments. Besides, routine maintenance operations
have to be scheduled to cope with the orbit and mission
events/constraints.
Some of the more frequent operations are anyway related
to the orbit contact management whose ground
intervention extends to:

* linking acquisition via the proper activation of the
transmitter linked to the ground facing antenna. This is
done by a time tagged telecommand acting on a
dedicated AJSW command sequence which is devoted to
verifying the correct functioning of the on-board link
chain

* enabling the telemetry transmission to ground once the
down-link caniex is obtained. This concems the
real-time telemetry and, on request, the on-tape data
stored in the non-coverage period

* restoring the on-board data recording and termination of
the link befote the end of the contact period

* command the issuing of the on-board time samples for
on-ground data correlation

* managing the antennae switch-over as the coverage
concerning the facing antenna is going to end. Note that
two hemispherical antennae are implemented on SAX in
order to cover the whole space mund the satellite.

Less frequent operations are related to scientific
observation management. That involves:

* changes of the satellite attitude via dedicated AOCS
Operating Plans

* changes of allowed pointing domains
* changes of Scientific Instrument operating modes
* Scientific Instrument configuration management, in

particular at any entry/exit of the South Atlantic
Anomaly.

Other infrequent operations are related to performance or
maintenance aspects. In this context, the ground control
centre shall periodically monitor the satellite dumped
telemetry to keep under control the actual on-board
configuration. It can therefore intervene for recovering
any on-board assumed safe mode or, simply, for tuning
some control parameters such as, for example, battery
End Of Charge and/or End Of Discharge levels, thermal
loop thresholds and/or enablingldisabling flags, sun
vector and attitude quaternion values, etc..

GROUND COMMANDING CAPABILITY

The ground commanding capability is driven by three
major parameters:

the visibility period

the uplink characteristics

the on-board command management design &
operations.

The major constraint on the commanding capability
comes from the very limited visibility window. This
requires the Operation Control Centre to prepare a
well-defined timeline for a long period, e.g. one week -
corresponding to about one hundred passages, operating
in the interin of two passages just to analyze the dumped

woldN Checkwm T8R
MSB LA------

Fig. 5 - Block Command Structure

telemetry and to react to any anomaly detected. All the
commands necessary for operating the satellite both in
and out of visibility must be uploaded during the
contact period.
The up-link characteristics are based on the ESA PCM
Telecommand Standard. It allows the transmission of
2000 bps, that is - as the ESA standard telecommand
frame is 96 bits long - a bit more than 20 frameslsecond.
The minimum instruction can be based on a single frame
structure. In the case a complex command is needed, a
mutiframe message - constituting a block command - can
be uploaded. The block command structure used on
SAX is shown in Fig. 5.
Based on the above mentioned standard, the on-board
design provides ground with three different options of
intervention. Three classes of commands are, in fact,
made available and properly managed on board.

* Single frame commands that can be used to up-load high
priority command whose purpose is to o p t e on a
critical subset of the satellite hardware devices. This type
of commands by-passes any on-board SW control and,
via the decoder, directly acts on the end items. This class
is thus useful as a back-up in case of an emergency.
Typical applications are switching opt ions involving,
for example, unit selection and separation event override
command to AOCS.

* Single fmme commands that can be used to directly
issue single instructions on the OBDH Bus to my
terminal. This class might be used only in the case of
OBDH BISW bus management malfunction since they
by-pass the OBDH B/SW control. Care might therefore
be taken because such asynchronous instructions can
affect the proper OBDH Bus protocol functioning.

* Block commands that represent the nominal way of
commanding. Their structure can be flexibly filled in so
that they can contain either one multi-parameter
command or a set of single instructions or one operating
plan. Their routing is performed by the OBDH BISW
according to the destination field content. Other
syntactic/semantic information is contained in the block
header for on-board verificabion and execution, i.e.,
begin pattern, destination, name and length.

What is particularly important to emphasize is the
on-board capability of managing the block commands as
delayed commands. By means of a dedicated flag,
ground can, in fact, impose their execution at the time
specified in the relevant tag field A queue of one
hundred time tagged commands is dedicated in the
OBDH protected memory area.- an estimation of about
60 block commands, as a maximum, has been evaluated
as necessary each orbit for nominal spacecraft and
Scientific Instrument operations. It is worthwhile noting
that a dedicated flag is also present in the block structure
indicating whether the command has to be deleted in
case of CTU switch-over. Since a system reconfiguration
takes place at the CTU switch-over, this option is quite
useful to avoid any unwanted ovemde unless not
explicitly authorized by ground. The mission critical
commands, e.g. Transmitter ON command, should,
anyway, always remain in the queue until their
scheduling time elapses.
Within these commanding possibilities ground can
address specific requests to any on-board subsystem
coordinating the mission operations both in and out of
visibility.

One of the major aspects offered by the OBDH A/SW
design is the capability of modifying the OBDH AjSW
control, devoted to the system operations, by means of
simple enabling'clisabling commands. As the most
important A/SW functions are implemented by a table
driven mechanism, a flag has been associated to each of
the table entries.

The relevant control can be made active or inhibited by
setting the proper value of these flags. An easy updating
of the table elements, used as comparison for activating
autonomous recovery actions, can be, as well, easily
done by mean of dedicated commands.

One of the more powerful features that are made
available for emergency ground intervention is specific
command to the OBDH operating system. The OBDH
SW - in particular the A/SW - is based on a very
modular architecture so that each command loop and
sequence has been implemented as a stand alone task.
Therefore, proper acting on the operating system
primitives can modify the task scheduling mechanism.

In particular, the following main interventions can be
run-time commanded:

* change the task priority
* init~start/stop tasks
* sendbxeive messages on mailboxes.

This mainly allows the introduction of a new task
implementing new functionalities or replacing the current
ones.
The lowest level of possible intervention by ground is
the patching of the Intelligent Terminal software. It can
be accomplished through the OBDH support which
either autonomously executes the patch command on
itself, if so addressed, or routes the new datalinstructions
towards the relevant Intelligent Terminal via the OBDH
Bus protocol. The same can be done by directly sending
patching commands to the AOCS and the LECS which
implement the capabilities of executing the patching by
themselves. This avoids putting the microprocessors in
wait state until the patch is terminated.

Both the interventions on the operating system and the
code have anyway to be planned very carefully with the
support of a Software Maintenance Facility whose team
shall have a very thorough expertise.
As far as the telemetry commanding capability is
concerned, two major features are provided on SAX.
The fmt one concerns the housekeeping data
transmission to ground whose format can be selected
between two:

* one essential format corresponding to the produced data
set fmm all the subsystems

* one intensive format that, besides the previous set,
includes extra data packets from the hot redundant
battery control unit and the BISW tracing process.

The second is devoted to driving the scientific data
collection algorithm. The algorithm, once the scientific
activity is enabled, is executed every second, polling the
six scientific instruments to get the number of ready
scientific packets. The share of the successive scheduled
acquisitions between the instruments is based on two
ground configurable allocation tables, each of their
entries indicating one, out of six, instrument address.
Adjustment of the content of the two tables can be done
by ground according to each Scientific Instrument data
production forecast. Two dedicated commands are
available for this purpose.
Last but not least, extra data can be required by ground,
dumping both the code and the &ta segments of each
Intelligent Terminal for diagnostic purposes. That in
particular allows to obtain some memory areas of the
Intelligent Terminals devoted to storing history or tmce
records not included in the periodic provided telemetry.

OPERATING PLANS

Setting the AOCS and Scientific Instrument
configurations and modes usually requires many
commands. This can overload both the time tagged
command queue and the related scanning process. A
solution to this potential problem has been found in
grouping a consistent set of commands into only one
Operating Plan.
Two types of plans are, in particular, implemented on
SAX:

AOP - Attitride Operating Plans - devoted to
commanding the mode transitions of the AOCS and to
controlling the attitude manoeuvres within the fine
pointing modes

* POP - Payload opemting Plans - devoted to setting-up
the instrument configuration and the data output formats
for the required scientific performance.

These plans can be up-loaded encapsulated into one
command block and then stored in a dedicated Parcking
Memory Area. Their activation is requested by ground
via the associated Tranqer and Enable Commands,
either in real-time or delayed with proper time tags. The
actual execution, by the destination terminal, shall follow
the correct reception and validation of the incoming
Operating Plan only once the Enable command is
received. Supervision of the whole consistency of this
transferlenabling process is centralized and
autonomously made by the OBDH NSW. It is, in fact,
in charge, if enabled, of filtering the Tranger and Enable
commands if not consistent with the satellite
mode/configuration, e.g. in the case of Safe Mode
fall-back.
As far as the safe AOCS modes are concerned no AOP
are, anyway, needed since the related attitudes are
autonomously acquired and indefinitely kept.

COMMISSIONING CHECK-OUT

The in-flight verification of SAX will be performed in a
designated eigth week Commissioning Phase following
its launch and separation from the launch vehicle.

The purpose of the Commissioning Phase is to validate
the functionality and operability of the satellite and give
the go-ahead to the scientific mission. The relevant
check-out activity is comprised of two principal
sub-phases.

Phase 1 involves the basic functional/ performance
verification of each of the spacecraft subsystems.
Phase I1 complements Phase I by extending the verification
to all the Scientific Inshuments and completing the
verification of the fully active system codigmtion.

A summary of the planned activities includes:

o Mode Functionality Venf~ation
All nominal modes shall be verified for functionality,
valid telemetry parameters and expected ranges with
respect to the inherent functions of each mode.

* Commanded Mode Transifions
All nominal mode transitions requiring an uplinked

- procedure from Ground will be performed and
verified. Certain transitions will be omitted for
specific reasons, e.g. Delta-V mode transitions.

Autonomous Mode Transitions
Verifications of autonomous fall-backs will not be
performed as they require fault conditions forced by
ground.

Cyclic and Selec&ble Telemefq Ven@Wion
All the cyclically generated telemetry will be verified
for correct protocol handling, telemetry block
structures, parameter location and consistent time and
block counter fields. Variable telemetry activated by
ground will be verified as well, e.g. dumped data and
scientific packets.

On-board Memory Patch and Dump
Dump operations will be required to evaluate control
parameters not visible in regular telemetry, e.g. AOCS
database, history areas, etc. Patches of program or
data memories are not a nominal activity but could
sometimes be necessary for table item updating, e.g.
LECS Instrument. A dump should always be required
after a patch operation.

Conbol Function Calibrafions
Calibrations or maintenance are required to optimize
the overall performance of both the Scientific
Instruments and the Subsystems, e.g. thermal control
loops thresholds, Instrument digital and analogue
discriminator levels, etc..

Redundant Unit Check-out
Under nominal operations all operative redundant
units will be verified for correct functionalities, e.g.
gyros, decoders, receivers, etc.. Cold redundant units
will not be activated or verified unless necessary
because of failures. It is considered more prudent to
maintain a good nominal configuration rather than
risk possible failure in activating the redundant one.

CONCLUSIONS

The SAX satellite is the result of a quite challenging W o n
requbment implementation.
Once in orbit it will support the extensive activity of six
complex Scientific Instruments performing parallel X-ray
observations.
The system design is based on a distributed intelligent
architecture allocating to each of the on-board computers
its own specific function. This has been designed to
provide the maximum flexibility and reliability in
autonomously executing the ground mission plans. The
SAX implementation of the operating modes, in fact,
allows the on-board configuration to be maintained by
itself, supporting, at the same time, the ground required
operations.

To conclude, the SAX mission will not only provide the
most up-to-date results in the field of X-ray astrophysics,
but it will also make operative a very powerful system
that is the product of Italian scientific satellite
engineering.

REFERENCES

1. Finwhim G., Santoro P., Attirh P. - SAX Satellite
Design and Verification, XII AIDAA National
Congress, Como, Italy, July 1993.

2. Butler C., Scarsi L. - The SAX Mission, Adv. Space
Re., 8,265-279,1991.

3. SAX Design Report, Alenia Document SX-RT-AI-118.

4. SAX User's Manual, Alenia Document
SX-MA-AI-019.

5. Martelli A., Fowler M., Ciarnpolini V. - On-board
Autonomy Concepts and Implementation on the SAX
Low Earth Orbiting Scientific Satellite, IFAC
Workshop on Spacecraft Automation and &-board
Autonomous Mission Control, Darmstadt, Germany,
September 1992.

Small Satellite Space Operations

Keith Reiss, Ph.D.

CTA Space Systems
1 52 1 Westbranch Drive

McLean, VA 22 102

ABSTRACT

CTA Space Systems (formerly DSI) has played a
premier role in the development of the "lightsat"
programs of the 80's and 90's. The high costs and
development times associated with conventional
LEO satellite design, fabrication, launch, and
operations continue to motivate the development of
new methodologies, techniques, and generally low
cost and less stringently regulated satellites. These
spacecraft employ low power "lightsat"
communications (v.s. TDRSS for NASA's LEOS),
typically fly missions with payloadlexperiment
suites that can succeed, for example, without
heavily redundant backup systems and large
infrastructures of personnel and ground support
systems. Such small yet adaptable satellites are
also typified by their very short contract-to-launch
times (often one to two years). This paper reflects
several of the methodologies and perspectives of
our successful involvement in these innovative
programs and suggests how they might relieve
NASA's mounting pressures to reduce the cost of
both the spacecraft and their companion mission
operations. It focuses on the use of adaptable,
sufficiently powerful yet inexpensive PC-based
ground systems for wide ranging user terminal
(UT) applications and master control facilities for
mission operations. These systems proved
themselves in successfully controlling more than

these concepts since a user can easily mount a
lightweight antenna, usually an omni or helix with
light duty rotors and PC-based drivers. A few feet
of coax connected to a small transceiver module
(the size of a small PC) and a serial line to an
associated PC establishes a communications link
and together with the PC constitute a viable ground
station. Applications included geo-magnetic
mapping; space borne solid state recorder
validation; global store-and-forward data
communications for both scientific and military
purposes such as Desert Storm; UHF transponder
services for both digital data and voice using a
constellation; remote sensor monitoring of weather
and oceanographic conditions; classified payloads;
UHF spectrum surveillance, and more. Ground
processing has been accomplished by automatic
unattended or manual operation. Management of
multiple assets highlights the relative ease with
which 2 constellations totaling 9 satellites were
controlled from one system including constellation
station keeping. Our experience in small end-to-
end systems including concurrent design,
development, and testing of the flight and
operational ground systems offers low cost
approaches to NASA scientific satellite operations
of the 1990's.

BACKGROUND

two USAF, USN, and at As Congressional budgets tighten and conventional
CTAISS. UT versions have linked with both GEO military threats appear to dissipate, private
and LEO satellites and hct ioned autonomously in industrial R&D, universities and other potential
relay roles often in remote parts of the world. LEO participants in primarily LEO missions are
applications particularly illustrate the efficacy of increasingly drawn to consider new options. while

STS flight availability and piggyback experiments
flown on larger missions are still possibilities, the
resurgence of small satellites as viable experiment
platforms is a distinct part of the general solution.
This is especially so for new commercial
applications and the exercise of new technologies
in the space environment where time from design
to launch is of the utmost importance. Five years is
not the answer while two years, or less, can meet
competitive and marketing needs. On the other
hand, science and technology innovations are
difficult to fund on their own, but can often fit
nicely into multi-mission oriented lightsats.

Costs of experiments borne by "lightsats" can dip
considerably below many other options, though the
lightsats may not offer the same degree of
reliability as their larger and costlier counterparts.
Lightsats are often deployed in clusters to diminish
the relative launch costs. Complementing the
reductions in space segment cost, the ground
segment can usually support most missions at a
fraction of the expense imposed by current
standards. In the past ten years CTAISS has
produced a large number of "lightsat" system
designs utilizing compressed schedules for
development and test and very low key mission
operations. The evolution towards more automated
bus, experiment and ground operations and less
cumbersome spacecraft command and control is
leading towards provision of stable mission
operations without the customary large levels of
ground support. Additionally, inexpensive space-
to-end user terminals have been developed. Such
services can provide direct experiment to
laboratory connectivity which is of great interest in
university science and engineering applications as
well as commercial or government circles.

SIMPLIFICATIONS

Small satellites with small budgets for operations
must still satisfy broad requirements:

Provision for bus control via ground
commanding
Provision for experimentlpayload control

e Provision for onboard telemetry collection of
both bus and experiment/payload systems
Provision for on-board autonomous health and
stability protection
Provision for TT&C data flows and
experimentlpayload data flows

In the most common instance, mission operations
are performed from a central location where the
state of health (SOH) of the entire spacecraft is
continuously assessed. It is generally here also that
flight commands are issued to the spacecraft. In
CTA Space Systems' history, we have built and
operated the first GLOMR satellite in 1985 from a
PC but without any automation of communications.
Telemetries (TTMs) were received and commands
sent aloft from an inexpensive adjunct transceiver
module under micro-control and employing a
simple roof-mounted UHF omni-directional
antenna. Command streams were short and TTMs
limited in this spacecraft, but for those that
followed, there were many improvements and
adaptations stemming from a growing assortment
of mission requirements. It is important to embody
certain "simplifications" into the fabric of the
overall system design in order to facilitate low cost,
yet reliable, small satellite operations.

We seek to accomplish certain key objectives:

1. Operate experiments from pre-established
command sequence files

2. Provide pre-uplink command verification
3. Employ macro style bus and experiment

commands
4. Provide spacecraft scheduled (i.e., for future) as

well as immediate command execution options
5. Provide reliable (error free) and autonomous

communications
6. Provide "intelligent" SOH displayslreports
7. Provide key mission operations software

elements as part of the EGSE (avoiding full

probably separate efforts) and use throughout
I&T (Integration and Test), the IST (Integrated
Systems Test) and Environmental Testing

8. Offer autonomy in routine communications
scheduling

9. Wherever possible encourage provision of
experiment autonomy with independence of
other experiments and bus

10. Wherever possible use autonomous bus sub-
systems (notably ADACS) requiring minimal
ground attention

Item (1) is tried and true through such programs as
STACKSAT (three satellites: TEX, POGS &
SCE); SCSC (two satellites known as
"MACSATS" and seven "MICROSATS); REX;
and RADCAL. The savings and reliability
associated with the construction and pre-validation
of operational sequences which make up mission
operations segments are very significant. For
example, a series of commands required to operate
a difision pump and to trigger a particular set of
experiment actions is accomplished by writing a
series of commands under software control. Each
individual command is range-checked and
otherwise evaluated to be a valid command (as
noted in item 2) and is encapsulated in a 16-bit
check sum (CRC) to assure future integrity. The
set of commands is saved as a file and can be
evoked during all phases of ground-based testing as
a block with individual command execution times
shifted by a definable increment avoiding having to
make up sets with specific pre-set execution times.
The same segment can be conveniently recalled
and sent to the spacecraft when on-orbit. The very
significant work force necessary to conduct around
the clock environmental and integrated systems
tests is greatly reduced by avoiding the effective
hand entry of large numbers of detailed commands.
Errors are nearly eliminated in the process. Item
(3) is a significant objective in that it suggests that
wherever feasible, the ground to space interface is
held to as simple a structure as possible. That is,
the spacecraft bus or experimentJpayload
commands should be process-oriented if possible.

For example, in the case of the preparation of an
instrument application, there may be a 25 step
timed sequence of "micro style" commands
required. If the controller for that experiment or
the bus processor can maintain that sequence as
part of its operational flight code, then all the
ground team needs to do is to evoke that process by
a simple command such as "Experiment 2, Process
5, ON=2/23/95 13:OO:OO." Similarly the shutdown
might be commanded "Experiment 2, Process 6,
ON=2/23/95 1 3 :45:00." These two commands are
easy to deal with and will achieve the highest level
of reliability. If this is not possible, then the
command sequence file approach can be used
instead with the operator simply evoking the two
procedures adjusting the process execution times
according to the plan. The disadvantage here is
that there are now many commands to uplink and it
is essential that they are all accounted for on the
spacecraft prior to beginning the execution of the
procedure. Verification of the presence of the
entire command chain for a process in the past has
usually been accomplished by a satellite schedule
dump and on the ground review. The operator then
had the option to re transmit missing commands or
to delete commands. A better method involves the
addition of a special command type that will inhibit
execution of incomplete command streams. This
command spawns a notification message to the
ground that its powers have been evoked and that
the sequence is either incomplete or OK. With
present and emerging powerful and robust flight
digital electronics including wide usage of EDAC
RAM or other (nearly) non-volatile mass memory,
storage of command chains onboard that can be
evoked by an immediate or future-acting ground
uplink command are more prevalent.

Normally commands are sent to the spacecraft in
advance of planned execution and are executed at
future times under the action of the spacecraft's
software scheduler. Immediate commands (with
zero tokens for execution dateltime) are, however,
allowed to execute immediately. Given that the
uplink commands and downlink TTMsIdata are

reliably communicated, there is little in the area of
routine flight operations that necessitates constant
operator attention much less "crisis-like"
circumstances on the ground. Indeed, with easily
interpretable and "to the point" SOH displays
available on the ground, the missions are virtually
made to "fly themselves" for considerable periods
of time.

Item (7) represents an important ingredient to
planning and executing a successful low cost small
satellite mission. It is a standard practice at
CTNSS to develop the TTM and command
formats and specifications early in the systems
design stage and to build around them the
essentials of ground station processing and
communications software. These elements are
assembled into the PC-based EGSE suit that
accompanies the satellite from the I&T test bed,
throughout I&T and environmental testing and
beyond. These same elements which have
accumulated much equivalent "flight time" and
have been perfected in a natural manner are then
incorporated into master or remote ground station
packages. There is no separate team associated
with the ground station operational software; it is
basically an inherited evolute of the spacecraft
development process.

Point (8) suggests an innovation that is currently
underway in three CTNSS programs. Unlike older
systems that require scheduling and pre-
programming of satellite communications events,
some new programs are now operating via
intelligent space and ground systems to totally
avoid routine contact scheduling which is a tedious
process. The UTs, for example, maintain their own
ephemerides and simply come on the air when the
satellite is known to be visible at some preset
minimum elevation angle andlor in an allowed
azimuth band. In some programs the satellite itself
autonomously contacts ground units without
cumbersome deterministic scheduling uplinked
previously by the master controller. Not only is

this much more efficient, it also allows dynamic
response disallowed by too much pre-planning.

The final two points refer to spacecraft subsystem
and experiment levels of autonomy and non-mutual
interference. A very great deal of labor and
engineering efforts are expended throughout testing
and later mission operations; labor that escalates
sharply when systems conflict in any way or when
excessive and too-frequent monitoring and control
is required. This placing the operators "in-the-
loop" in the manner of a very stiff control law.
Building inexpensive space systems for small
satellites that do not impose these penalties may be
a challenge, but should always be entertained in
both the bus and experiment arenas.

SMALL SYSTEMS, SMALL OPERA-
TIONS APPROACH

A Case Study: POGS

The typical lightsat ground configuration consists
of a frequency agile UHF transceiver with
mod/demod capabilities in various forms of BPSK
and FSK modulations operating under a simple
micro controller. This unit can be rack mounted
inside, or configured in an environmental housing
for exterior deployment. Coax connects the RF to
a RHC or LHC circular polarized omni-directional
radome-covered antenna or complementary pair.
From the transceiver unit there is a standard serial
(RS-232) line interfacing an ordinary PC. This
comprises the minimal standard configuration. A
variant is the replacement of the ornni-directional
antenna is a light weight directional antenna which
may be either linearly or circularly polarized, but in
either case can be driven by inexpensive light duty
commercial rotors. Such directive antennas are
driven by open-loop controllers connected via PC
cards implants or via an additional PC RS-232
serial ports. A component of the ground station
software generates antenna tracking data for each

pass and provides it to the antenna controller.
While there is nominally only a few dB's of gain
advantage, it is often useful in noisy metropolitan
areas and the same system can also lead a high gain
X-band antenna, for example, to acquire the
satellite and allow it to switch to closed-loop
tracking for more precise alignment.

A typical mission illustrates the major points in
CTAISSs small systems approach. The USAF
STACKSAT mission deployed three small
satellites into nominal 300 nm polar orbits. POGS
(Polar Orbiting Geomagnetic Satellite) was
dedicated to the primary NORDA mission of
magnetic mapping of the Earth's field and was
equipped with a 6 foot boom-mounted NASA
magnetometer instrument and a 4 Mbit CMOS dual
channel SSR (solid state recorder). To prepare the
operational staff of a one or two individuals from
Bay St. Louis, a two week long training program
was conducted in McLean. Shortly thereafter, and
while the future operators looked on, CTNSS
conducted the initial on-orbit testing procedures
which commenced with the deployment of the
spacecraft's gravity-gradient boom equipped with
hysteresis rods to quench spin and libration. With
the boom and antennas deployed, the satellite was
ready for checkout and the entire procedure was
handled from a PC system with omni antenna from
the rooftop of our building just outside the
Washington Beltway at Tyson's Corner Virginia.
Despite high local noise levels various sources
including one nearby arc-welder, everything went
smoothly and the spacecraft was soon ready for
hand-off. Operations had consisted first of a
mission plan previously approved by the USAF
and Aerospace. The plan permitted sufficient
latitude thus avoiding serious delays while
necessary variations would have been proposed and
officially accepted. This is important to the low
profile operation that we designed and budgeted.
Finally the station at the user site at Bay St. Louis
took over the operation that included two key
unmanned high latitude receiving sites. Data down
linked from POGS was automatically diverted to a

WORM optical disk drive occasionally removed
and mailed to the Bay. St. Louis facility although
data was frequently recovered remotely via a dial-
up link. Software updates and parameterization
changes were facilitated via the remote dial-up link
which also allowed operators at either Bay St.
Louis or CTNSS to "man" the remote station.
This also allowed one to see all the displays and to
operate the keyboard remotely as though present
on-site. POGS provided its requisite magnetic data
in a few months and is still operating after about
four and a half years. POGS also has a number of
communications capabilities and other sensors all
of which have performed flawlessly and have been
operated with the most minimal of ground support.

Communications scheduling for all ground
elements and the spacecraft is handled over
intervals of generally ten days time by the Bay St.
Louis PC from which the appropriate files are
simply "modemed" into the remote Arctic sites.
The uplink to the satellite of command files can be
accomplished from any of the three stations.
Multiple sites provide excellent redundancy
although the avoidance of non-standard computers,
other equipment and software always provides
inexpensive and obtainable components which
need not be duplicated as spares. This approach
permits a natural flow of technology improvements
to the ground systems. It hinges on the use
wherever possible of commercial software and
hardware products and the use where possible of
standard interfaces. This is not generally true of
government systems.

Hishli~hts of Cost Reduciny Factors

0 Relaxed Official Coordination/Documentation
Requirements
Technical Backup Availability Including On-
Line Operational Support
Spacecraft Supports Long Term Scheduling to
Allow Autonomous Operation of Both Bus and
Experiments for Days or Weeks on End

e Semi- or Fully-Automated Ground and
Spacecraft Communications Scheduling
Software

e Compact and Powerful Spacecraft Commands
e Telemetries and Telemetry Displays Keyed to

Early Warnings via Color Coding at the Top
Level

0 Use of COTS (Consumer Off The Shelf)
Products:
o Generic IBM-like PCs and Peripherals
o Land-Based Communications
o Standard File Transfer (e.g., KERMIT)
o Operating Systems (space and ground)
o Use of Standard Protocols (HDLC[space-

ground], TCPIIP [Internet], etc.)
e Planned Software Reusability
o Training and Simple SOPS (Standard Operating

Procedures)

FUTURE IMPROVEMENTS

As small satellites (nominally of Class C
construction) improve and advance with continuing
miniaturizatiodweight reduction and other
technical innovations, inclusion of new
technologies and science applications are bound to
create enhanced demands. Obtaining high cost-to-
effectiveness for many future missions will depend
on successes in modifying conventional approaches
to today's large scale expensive launches and flight
operations. These changes may be perceived as
somewhat radical today, and yet to a large extent,
they represent a rebirth of older principles of
pioneering space developments that, over the years,
have become somewhat anachronistic. The
procurement process for DoD and NASA and
associated regulatory demands are simply not
structured to foster the rapid development of small
satellite missions (including inexpensive LVs). To
an extent they may also appear to conflict with STS
mission elements since many tasks have and
continue to be executed by manned crews- tasks
that for a fraction could be carried out not for days
but for years by small satellites linked to
inexpensive ground systems and targeted to the

needs of the experimentersllaboratories.
Conventional approaches to flight operations are
grand by comparison to the probable minimal
needs of many potential candidate packages. To
regain the spacecraft "pioneering" spirit of the '60s
using today's small powerful computers both
onboard and on the ground together with spectrum
of technology improvements in both materials,
components, structures, and manufacturing
processes we can achieve magnitudes more results
for the same relative costs.

A major and bold new NASA initiative is fully
targeted towards achieving the goals and objectives
typified by the small satellite mission under
discussion in this article. The Small Spacecraft
Technology Initiative (SSTI), dubbed
"pathfiider" by the program sponsor, will produce
two spacecraft "LEWIS" and "CLARK" with the
latter being built by CTAISS with Martin Marietta
utilizing a set of IPDTs (Integrated Product
Development Teams) including commercial
entities, universities, NASA research centers and
others involved with technology and science
infusiodassessment and in fostering US
commercialization efforts. CLARK is a fast track
24 month-to-launch program lofting a 3-meter
optical imaging payload, a variant of the successful
MAPS instrument ("pMAPSM), an X-Ray
Spectrometer, an Atmospheric Tomography Retro-
reflector while also incorporating 3 6 explicit
advanced technologies for space testing. Major bus
elements including the 32-bit RHC3000 processor
and SOA ADACS components offer unique
opportunities to combine otherwise independent
activities to provide enhancements in both science
results and in operational efficiencies. The use of
the pMAPS to detect clouds and prevent down link
of useless images is but one example. NASA has
adopted the entire tenant of the small satellite
mission- form initial design and development,
through launch and initial orbit, and throughout the
flight. All of the concepts advanced in this paper
are included in the CLARK plan which will allow
the enhancement previously tested equipment,

software and operational methodologies in an
expanded context enveloping the disbursement of
larger volumes of experiment data and in the
promulgation of other mission information utilizing
more open Internet accessways to facilitate wide
community participation in this interesting
endeavor. The low cost of the entire mission
makes necessary the reforms cited and includes the
active participation of the NASA sponsor as an
IPDT member and not as an outside force passing
judgment based on periodic reviews. SSTI
significantly is an Initiative and will add impetus to
future small satellite programs. In this sense the
moniker "Pathfinder" seems most appropriate.

1. Architectural Approaches Page 855

SD.1.a Embedded Parallel Processing Based Ground Control Systems 857-864 P * ?.
for Small Satellite Telemetry

Michael L. Forman, Tushar K. Hazra, Gregory M.
Troendly, William G. Nickum

SD.1.b Open Solutions to Distributed Control in Ground Tracking r 'I . 2, 865-877 r,,r '
Stations

Wm. Randy Heuser
SD.1.c An Agent-Oriented Approach to Automated Mission Operations 8794337 71 f

Walt Truszkowski, Jidt? Odubiyi
+> .</4c

SD.l.d Advanced Ground Station Architecture 889-896 ***, .*/'
David Zillig, Ted Benjamin

* Presented in Poster Session

EMBEDDED PARALLEL PROCESSING BASED GROUND CONTROL I"-
SYSTEMS FOR SMALL SATELLITE TELEMETRY

Michael L. Forman
NASA, GSFC, Code 5 13

Greenbelt, MD 20771
&

Tushar K. Hazra
Gregory M. Troendly
William G. Nickum

Martin Marietta Services, Inc.
GSFC, Greenbelt, MD 2077 1

ABSTRACT

The use of networked terminals which utilize embedded processing techniques results in totally integrated,
flexible, high speed, reliable, and scalable systems suitable for telemetry and data processing applications
such as h4ission Operations Centers (MOC). Synergies of these terminals, coupled with the capability of
terminal to receive incoming data, allow the viewing of any deJned display by any terminal from the start of
data acquisition. There is no single point of failure (other than with network input) such as exists with
conjigurafions where all input data goes through a single front end processor and then to a serial string of
workstations.
Missions dedicated to NASA's Ozone measurement program utilize the methodologies which are discussed, and
result in a multi-mission conJguration of low cost, scalable hardware and soffware which can be run by one
flight operations team with low risk.

KEYWORDS

Embedded parallel processing, Ground systems, Transputers, and Total mission concept.

1. INTRODUCTION

At the SPACEOPS '92 conference [5] , it was
shown that PC's could be used to control
spacecraft and were capable of high throughput
and performance if embedded processor
methods were used [I]. Control centers using
embedded serial processors were implemented
for Nimbus 7 (N7) and the Meteor31 TOMS
(M3lT) missions, and have operated flawlessly
since their inception in 1987 and 1991
respectively.

In 1991, development of embedded
systems using parallel processing components
based on transputer technology was begun. In

1992 we were tasked to develop a totally
integrated control center using one Flight
Operations Team (FOT) to operate N7, M3/T,
and the Total Ozone Mapping Spectrometer -
Earth Probe (TOMS-EP) missions. This facility
is the TOMS Mission Operations Center
(TMOC), and is leading the trend of combining
similar missions with similar systems into
multi-mission, single FOT facilities.

The trend in modern space mission
control systems is moving towards
standardizing telemetry systems design [9] as is
evidenced by the move towards the adoption of
CCSDS standards. These systems make use of
the rapid advances in workstation or PC

technology and contribute towards making the
multi-mission Mission Operations Center
(MOC) a reality. This paper will discuss the
TMOC configuration utilizing embedded
processing systems suitable for TOMS and
other missions as shown in figure 1.

2. EMBEDDED PARALLEL
PROCESSING : SCOPE AND BENEFITS

are usually implemented in a serial process.
Throughput gains are attained either through
hardware implementation of repetitive software
processes or the use of higher speed processors
such as the DEC Alpha chip. Most telemetry
processing for today's spacecraft can be
handled in a serial manner, especially if we
confine our hnctions to engineering or
command matters.

For the most part, telemetry processing is a bit The rapid advance of very large scale
oriented, repetitive, series of operations which integration (VLSI) technology, and the

I TOMS Mission Operations Center Local Area Network . , .
4 I 4

Figure 1: TOMS Mission Operations Center (TMOC) Configuration
Three missions are shown to interface to the NASCOM interface which provides inputs

to the TMOC. AM mission 'terminals and redundant ones (shaded) are connected through an
internal LAN. AU servers are switchable from the internal LAN to the NASA ethernet for

security purposes.

availability of low cost processors have made it
feasible to develop high performance, cost
effective, and efficient parallel computer
systems utilizing more than one processor,
while maintaining a software design for
implementation. These parallel methods lend
themselves to bit and computationally intensive
operations such as telemetry analysis, orbit and
attitude analysis, and science processing and
result in systems which are scalable, low cost,
high performance, flexible, and reusable.

These systems [4,5,6,7] are based on
the use of transputers as the parallel processing
device. Transputers feature a built-in hardware
scheduler which permits more than one
concurrent process to share the processors
time, and four DMA links to provide highly
efficient inter-processor communication and
data transfer. Hence, if the computation to
communication ratio of component processes is
considerably high, and the task allocation is
uniform; multiple processes can be executed
efficiently in parallel fashion. This strategy can
be extended in dealing with future requirements
by adding extra processing modules. In other
words, embedded parallel processing offers
scalability and flexibility to the system.

For our telemetry and command
applications, a large body of software has been
developed which executes on the embedded
processor, requiring no significant resources
from the host operating system, with a shared
memory capability. This sets the basis for doing
bit operations on the embedded processor
while the host serves as the man/ machine
graphical interface. More details on the scope
of uniting of PC's and transputers as embedded
processors can be obtained from references
[2-71. The benefits of utilizing the embedded
parallel processing technology are:

a) Flexibility - Systems can capture
all downlinked data, and immediately begin
initial processing or data distribution. Systems

are small, truly transportable, and require only
normal office surroundings with clock and
signal as inputs. Standard and non standard
telemetry inputs can be processed
simultaneously while commands are being
output in required formats and rates.

b) Data Throughput - Base
throughput rates depend on the number and
architecture of the components as well as the
parallel programming design. Rates in excess of
10 Mbits are achievable on our TOMS-EP
system with NASCOM deblock only. Other
levels of decommutation utilizing software
algorithms slow the effective real time rate
down to about 50 Kbits sustained for full
health and safety while simultaneously
archiving input data at the 10 Mbit receive rate.

c) Efficiency - System modularity,
reusability, and ease of implementation lead to
low costs, rapid implementation, and high
performance.

d) Scalability - Systems can be
built or expanded according to the demand of
jobs or tasks to be performed and the systems
can be reused in whole, in part, or with
additional processing modules.

In addition, the use of embedded
parallel processing and transputer technology
contributes directly toward enhancing the
unique features of the total mission concept.
Based upon the granularity of parallelism
exploited in the design, the system can be
expanded to achieve the flexibility, reliability,
and performance desired in the total mission
system. The Total mission concept will be
discussed in section 4.

3. CURRENT CAPABILITIES OF
THE SYSTEM

The system architecture utilized in the TOMS
Mission Operations Center (TMOC) is based
on commercial off the shelf (COTS) products.
Low cost, reliable, upgradable, user friendly,

multifunction, standardized hardware and
software are just a few of the goals in the
system design. The TMOC is entirely driven
by Personal Computers PC's) utilizing the
Intel Processor family. Embedded parallel
processing is added to critical systems where
real-time processing and/ or high
computational requirements may be needed,
and hence eliminating the need for high cost
workstations and related software, as well as
separate, costly fiont end processors (FEP).
The ability to selectively add special purpose
parallel processing modules gives the total

system great flexibility. At a relatively low
cost, the system can be reconfigured to support
many of the current and proposed NASA
missions.

The major functional areas are shown in
figure 2, which include Real-time Command
and Control, Health and Safety, and Mission
Planning. The individual control center
systems are connected via a standard ethernet
Local Area Network (LAN). This makes it
possible to transfer data between major system
fbnctional areas, as well as between individual

Figure 2 : An overview of the TOMS-EP mission system. The operations center exhibits its major aperations
-command,health and safety, and mission planning. The center interacts with the DSN or Wallops station via NASA

communication network (NASCOM), and also with the launch control room, Flight dynamics facility (FDF),
Jet propulsion laboratory (JPL) and Science processing facility daring its telemetry operations.

systems. The TMOC interfaces with external
components by several communication paths
such as:

1. The Deep Space Networks (DSN)
and the Wallops flight facility are utilized for
support of command, telemetry, and tracking
for the TOMS satellites. The NASA
communications (NASCOM) network provides
the interface between the DSN sites and the
TMOC at the GSFC facility. The embedded
parallel processor incorporates the FEP
internally, making the single PC based
workstation hlly portable; the internal FEP is
hlly programmable for many packet formats
received from TDRSS, DSN, MDM, IOS, or
raw data from a bit synchronizer.

2. The Flight Dynamics Facility (FDF)
provides the attitude determination and
verification, as well as orbit determination
support. The FDF products are transferred
directly to the mission planning systems for
incorporation into on-line databases. A
standard ethernet network utilizing TCP1I.P
provides the interface to the mission planning
systems.

3. The Jet Propulsion Laboratory
(JPL) and mission planning coordinate and
schedule all support for different components
of the mission. Dialup1 dialback modems are
utilized within the mission planning systems for
the JPL interface. With the FDF data, JPL
schedules, and instrumenter's command
requests, command loads are prepared from the
databases and transferred directly to the on-line
Command systems.

4. The Science processing facility
receives Level-0 processed TOMS data and
hrther processes the data to create various
products. The science facility receives data on
a daily basis via standard ethernet using
TCPIIP. Long term trending data is archived
in the control center on CD-ROM media and

hrnished to the Science facility on an as
required basis.

The on-line systems that are connected
to the NASCOM network are all identically
configured systems as shown in figure 1. For
the TOMS-EP there are four systems on-line:
a Primary Command system, a Primary Health
and Safety system, a backup Command system,
and a backup Health and safety system. Each
on-line system has a UNIX Operating System
(0s) with an X-windows based Graphical
Users Interface (GUI) supporting the Motif
X l lR5 standard. All of the Command, Health
and Safety, Level-0 processes, and analysis
applications are written in C language using the
Motif library. This standardized approach
enhances the portability of the application
source code to other platforms, as it may be
necessary in future. Using UNIX and Motif
also allows the system to incorporate NASA
products such as Satellite Telemetry Operating
Language (STOL) into the Command system.
Since all of the on-line systems are identical,
any one may execute the Corilmand software
or the Health and Safety software.

Currently, the TOMS-EP command
system utilizes a command database specifically
tailored for the EP satellite and TOMS
instrument. The command system not only has
Real-time command capability, but also full
storage and forward capability. These features
allow for frequent use of stored sequences of
commands, and preprogrammed matrices that
will be executed onboard the spacecraft at
predetermined times. All commands
transmitted are verified by echo blocks from
the DSN site and further verified by the
telemetry downlink. The telemetry downlink
is in a CCSDS format and is fully
decommutated in real-time in the internal FEP.

The TOMS-EP Health and Safety
system provides a full analysis of both the

spacecraft and the instrument in real-time. The
screen format is set up as four quadrants, each
quadrant may be customized by a satellite
subsystem. In addition to the four quadrants, a
general status panel is always visible at the top
of the screen for a running summary of pass
statistics. From a pull down menu bar and also
hot keys, multiple panels are available for
display by pressing of a button or clicking a
mouse. Every telemetry point is in a database
driven lookup table that is being updated in
real-time through a shared memory interface.
The embedded FEP does all the
decomrnutation of the telemetry which places
the processed data into the shared memory
interface. Within the database, several things
are occurring on each entry point such as
calibration, floating point conversion, mode,
event and alarm determination. The entry is
then displayed based on a user defined display
format. A row of subsystem buttons
continually show the current status of each
subsystem by changing the color. Green
implies a normal operation, Yellow and Red
indicate potential problems. By moving the
mouse cursor on the subsystem button and
clicking the mouse button, the event and
telemetry panels associated with that subsystem
are immediately displayed for analysis. In
addition, there are X-Y plots that may also be
configured in the display panels.

Along with the primary Health and
Safety UNIX based systems, there are several
standard PC's without FEP's. These PC's are
configured as standard ofice systems running
MS-DOS OS and Windows and are connected
to the LAN. With an X-windows package,
they are capable of running remote Health and
Safety sessions in a client/ server configuration.
The UNIX system becomes the server and
executes the prime Health and Safety program.
The DOS PC logs into the server as a client
and executes a slave version of the same
program. This configuration allows multiple

screens of several subsystems to be viewed
simultaneously. The DOS PC is used to
transfer telemetry data points from the UNIX
system and run trend analysis tools such as
Quattro-Pro, Lotus, Excel or other packages
that a user is familiar with. A note needs to be
made at this point, with this type of PC
environment, a relatively low cost control
center can be put into full operation.

A localized LAN is being utilized for
the control center communications. The
bandwidth of the LAN can support the slave
DOS client systems, mission planning, and an
Astromed stripchart subsystem. The Astromed
stripchart subsystem consists of four Astromed
MT95000, 16 channel digital strip chart
recorders. The four recorders are controlled
by a front-end PC connected to the same LAN.
The prime Health and Safety system sends raw
telemetry directly to the 64 channel subsystem.
The telemetry points, recorder speed and all
controls are setup through a pop-up X-window
during the pass. Any page on any terminal can
be "popped" up on any other terminal on the
network.

4. THE TOTAL MISSION CONCEPT

The TMOC control center architecture is
designed for its missions and is self contained
but can be expanded to include flight dynamics
and science processing within the control
center. The system is very modular allowing
dynamic reconfiguration 'on the fly'. Figure 3
represents a Total Mission Concept that may
be implemented within the TMOC requiring
very little external support by adding the
following functions:

1. Flight Dynamics
a. Integration of some of the Flight

Dynamics functions directly into the control
center. Several off the shelf products are now
available from commercial companies such as

STORM Technologies and Integral Systems
Corporation that make this feature doable now
for attitude computation and mission planning
products. It is assumed that precision 2-3 line
elements are available.

2. Science Processing
a. The Level-0 product is already

processed within the control center. The
system can easily be enhanced by scaling up the
system compute power by adding parallel
processing nodes to provide Levels 1, 2, and 3
processing. These products could then be
distributed to users and archived.

b. The addition of image quick look
capability to verifjr data quality during
real-time and playback data recorder dumps.

The Total Mission Concept for a
control center can be implemented today in a
very cost effective scenario. The same
operations personnel could perform all the
fbnctions listed above fiom mission planning,
through acquisition, analysis, data archiving,
and the creation and distribution of science
products. Multiple missions may be controlled
by the same equipment and operations
personnel by just selecting the missipn type on

XMT CMD LOADS

CLK ERROR DET
NB ARCHIVE (SHORT

RTlPB DATA CAPTURE

N

A

S DSN -b TRACKING GENERATE CMD W A D S
OR CONSTRAINT CHECK

WALLOPS +
C

0
I

M
I
I

FL,GKT
ORBIT DETERMINATION

SCHEDULING I
-;) ATTITUDE CONTROL

I

I

Figure 3: The Total Mission Concept implementation on the TMOC architecture.
The dotted box exhibits the extension that can be added to achieve the tlight
dynamics and science processing capabilities to the system to perform orbit

determination and level 1,2,3 processing.

screen. The nonreal-time DOSI Windows
systems are utilized in a multi-purpose mode
from daily office operations to a client/ server
based evaluation tool. All of this leads to
efficient utilization of facilities, equipment,
personnel and bottom line mission cost.

5. SUMMARY

The basis of using Transputers and Alpha chips
in an embedded processing environment was to
support the expansion of the Ground System
from a simple command and telemetry analysis
system to a system that supports spacecraR
I&T, command & telemetry, and science
processing and distribution. The cost
effectiveness of this Total Mission concept and
the ability to support multiple satellites
simultaneously provides for a smaller
operations staff resulting in an overall lower
life cycle cost. In today's environment, this is a
definite benefit when planning new missions.

Acknowledgments

The work described in this paper involves
several engineers of the Martin Marietta
Services team headed by Richard A.
Stephenson. The iroject is sponsored by
NASA under the contract no. NAS 5-3 1739 at
Goddard Space Flight Center, Greenbelt, MD.
The Authors gratehlly acknowledge the
support of NASA Goddard Space Flight
Center, and the highly efficient design efforts
exerted by the motivated team of B.J.Gonciarz,
Dr.S.S.Chen, B . Singh, S.A.Burns,
A.M.Larson, J.T.Fate,Jr. and others in system
development and operations team.

Bibliography

[3] Ellis, G.K., (1989,0ct.), Data
Acquisition and Control Using Transputers,
Proceedings of The Second Conference of The
North American Transputer Users Group,
(pp. 6 1-76).
[4] Forman, M.L., Hazra, T.K., Troendly,
G.M., Nickum, W.G., (1993,0ct.), Applying
PC-based Embedded Processing for Real Time
Satellite Data Acquisition and Control,
Proceedings of The Twenty Ninth Annual
International Telemetering Conference, Las
Vegas, NV, (pp. 165- 173).
[5] Forman, M.L., Troendly, G.M.,
Nickum, W.G., (1992,Nov.), High
Performance Low Cost, ' Self-contained,
Multipurpose PC-based Ground Systems,
Proceedings of The Second International
Symposium on Ground Data Systems for
Space Mission Operations, (pp.733 -737).
[6] Hazra, T.K., Troendly, G.M.,
(1994,May), Designing the Earth Probe
Control Center for Telemetry Processing
Utilizing Embedded Parallel Systems,
Proceedings of The European Telemetry
Conference, (pp.287-297).
[7] Hazra, T.K., Stephenson, R.A.,
Troendly, G.M, (1994,0ct.), The Evolution of
the cost effective, high performance ground
systems: A Quantitative Approach, To Appear
in The Proceedings of The Thirtieth
International Telemetering Conference.
[8] Muratore, J.P., et al, (1990,Dec.), Real
Time Data Acquisition at Mission Control,
Communications of The ACM, Vo1.33, No. 12,
(pp. 18-3 1).
[9] Sielski, H.M., et al, (1991), Modern
Space Telemetry Systems, ITEA Journal, Vol.
XII, NO. 4, (pp.27-33).
[lo] Sloggett, D.R., (1 989), Satellite Data:
Processing, Archiving, and Dissemination, Vol.
I & 11, Ellis Honvood.

[l] Austerlitz, H., (1991), Data Acquisition
Using Personal Computers, Academic Press.
[2] Cook, R., (1 99 1, June), Embedded
Systems in Control, BYTE, (pp. 153-1 58).

Open Solutions to Distributed Control
in Ground Tracking Stations

by
Wm. Randy Heuser

Member of the Technical Staff
Jet Propulsion Laboratory

California Institute of Technology
Mail Stop 301-235

4800 Oak Grove Drive
Pasadena, California 9 1 109

Office phone (8 18) 354-0956, Fax (8 18) 354-9068
email: rheuser@binky.jpl.nasa.gov

Abstract

The advent of high speed local area networks has made it possible to interconnect small,
pokverfbl computers to function together as a single large computer. Today, distributed
computer systems are the new paradigm for large scale computing systems. However,
the conmlunications provided by the local area network is only one part of the solution.
The services and protocols used by the application programs to communicate across the
network are as indispensable as the local area network. And the selection of services and
protocols that do not match the system requirements will limit the capabilities,
performance and expansion of the system. Proprietary solutions are available but are
usually limited to a select set of equipment. However, there are two solutions based on
"open" standards. The question that must be answered is "which one is the best one for
my job?"

This paper examines a model for tracking stations and their requirements for inter-
processor conmunications in the nest century. The model and requirements are matched
with the model and services provided by the five different software architectures and
supporting protocol solutions. Several key services are exanlined in detail to determine
which services and protocols most closely match the requirements for the tracking
station environment. The study reveals that the protocols are tailored to the problem
domains for which they were originally designed. Further, the study reveals that the
process control model is the closest match to the tracking station model.

Introduction

Tracking stations are a collection of different pieces of equipment, integrated into a single
system to support cotlmunications between the ground and a spacecraft. The antenna equipment,
the receiver equipment, the transmitting equipment and associated signal processing equipment are
built by esperts in their field. Over the past decade, computers have been incorporated into this
equipment to operate and automate their increasingly complex functions. Today, this conlputerized
equipment (called subsystems) can be linked together with cornnlunication protocols into an
operating tracking station. However, the degree of difficulty to integrate these subsystems into a
single tracking station, and the level of automation that can be achieved, will be a direct function of

the protocol selected. This paper exanlines a number of non-proprietary protocols that have been
used or suggested as possible candidates for the tracking station application.

Today, commercial vendors market computer controlled components for tracking stations.
As government budgets shrink and commercial exploitation of space grows, these products offer
cost effective solutions to one-of-a-kind development efforts. However, vendors are looking to
protect their share of the market and their proprietary products. To this end, some vendors offer
complete, fully automated tracking stations. However, these turn-key solutions usually provide
limited services. And in general, single vendor solutions are not attractive to government or
industry. An "open solution" provides a multi-vendor environment where the best products for the
job can be integrated into a single system. Commercial inter-processor communications protocols
that provide an "open solution" while affording protection to proprietary products are needed to
support the integration of different vendor components into a single automated tracking station.

Operational Scenario

An examination of the various candidate protocols is facilitated with a simple model of a
tracking station. Consider the construction of a new tracking station to be built using commercial-
off-the-shelf components. Four different companies will provide computer controlled equipment
that will be integrated into a fully automated tracking station. The elements include: the antenna
subsystem, the receiver subsystem, the telemetry subsystem and the command subsystem (see
Figure 1). Each subsystem is operated by a computer integrated with the subsystem hardware.
The subsystem computer performs specific functions directly related to the subsystem hardware.
A workstation will be used to automate the operation of the tracking station and will provide a
central facility to monitor the operation of the tracking station. The workstation and the subsystem
controllers will be linked together through a Local Network Area (LAN). All of the software for
these systems will be delivered as executable products. All of the systems will be installed and
configured without software development, compilation and linking of code. The installation
process will be automated to the greatest degree possible.

The operational scenario for this new station implements procedure control through the
workstation. The workstation allocates the station resources required to support any given activity
at the station. All high level control functions are initiated from the workstation. In turn, the
workstation monitors the operation and performance of all the station subsystems and takes action
to correct anomalies. Individual subsystems must initiate subordinate subsystem operations as
required. And in turn, individual subsystems monitor the operation and performance of
subordinate subsystems as necessary. In other words, all operation of the station is coordinated by
the workstation, but individual subsystems will control and monitor other subsystems directly.
Support files are managed by the workstation and transferred as required to the appropriate
subsystem. The scenario outlined above encompasses the six basic functional requirements for
monitor and control in the Deep Space Network tracking stations (see Table 1).

Several commercial companies are currently building tracking station components that
provide an X-Window based Graphical User Interface (GUI) for operation of their equipment.
Several NASA organizations have also provided an X-Windows based Graphical User Interface

(GUI) for operation of NASA developed equipment. Since X-Windows is a common solution to
support remote operation of computers and in current use, we should examine its application as a
standard for tracking station automation.

A tracking station built to be operated using the X-Windows protocol would require each
subsystem to be designed as an x-client. In the example tracking station, each subsystem controller
would come equipped with a GUI to support its operation. The Station Operations Workstation
would be used as an x-server to operate each subsystem (see Figure 2). This approach permits the
development of subsystems in isolation and safeguards the proprietary s o h a r e of the commercial
vendors. However, the X-Windows protocol was developed to support terminal operations on
remote computers independent of the manufacturer. It was not designed to support automated
operation of the remote computer. Consequently, an operator is required at the Station Operations
Workstation to run the remote subsystems. In addition, X-Windows makes no provisions for the
direct exchange of data between subsystems without operator involvement. The operational
scenario requires subsystems to operate other subsystems and exchange data directly.
Consequently, X-Windows alone will not fulfill the automation requirements.

Distributed Computing Environment

The emergence of the Open Software Foundation's (OSF) Distributed Computing
Environment (DCE) has prompted speculation that DCE could be applied to the problems of
tracking station automation. DCE was designed and developed to provide the services required by
systems with multiple conlputers interconnected by a local area network (LAN) or a wide area
network (WAN). As the name suggests, DCE services are designed to perform distributed
computing. An underlying assumption for the development of DCE is that the work performed can
be independent of location (that is, an application that requests a service is not concerned with
where the service is performed). An overview of the DCE basic services with respect to the Open
Systems Interconnect (OSI) Basic Reference Model is shown in Figure 3. There are five basic
components to DCE:

1) The Distributed File Services (DFS) in DCE provide extensive tools to manage and
manipulate files in a distributed computing system.

2) The DCE Time services provide for the synchronization of computer clocks in a
distributed computing system.

3) The DCE Naming and Directory Services contains the names of users, machines and
resources available in the distributed system

4) The DCE Management Services provide the tools to operate the distribute system.

5) The DCE Security Services control access to the distributed system.

All of these services use the DCE Remote Procedure Call (RPC) to access the network.

The application of DCE in a tracking station would likely rely heavily on the Remote
Procedure Call (RPC) for most inter-processor communications. The DCE RPC provides an
Interface Definition Language (IDL) which is used to create both client and server elements of an

RPC. The IDL also provides for the common representation of data in different computer systems.
Once the IDL specification for an RPC is created, the IDL client and server elements are compiled
and linked on the appropriate systems (see Figure 4). Applied to the example tracking station, each
subsystem integrated into the station would include a set of client and server IDL definitions. The
IDL definitions would be compiled and linked on the Station Operations Workstation. In addition,
client and server IDL definitions would be compiled and linked on each subsystem that directly
inter-operates with another subsystem. In the example tracking station, the application of the DCE
RPC approach would produce the following scenario:

A receiver subsystem is purchased and delivered along with a set of IDL specifications
to support the operation of the receiver. The client IDL specifications are copied to the
Station Operations Workstation, compiled and linked. Software is then developed to
automate the receiver operation using the RPCs. In addition, the receiver operates as a
client to access the antenna positions' values as a part of normal operations. The
receiver also operates as a server to the antenna subsystem providing signal power
measurements as required. The client and server IDL specifications for inter-operation
of the receiver must be copied to the antenna subsystem, compiled and linked to support
antenna-to-receiver communications. In turn, the antenna subsystem IDL specifications
must be copied to the receiver subsystem, compiled and linked to support receiver-to-
antenna comnlunications.

A complex, highly automated tracking station would require hundreds (if not thousands) of RPCs
to operate. Consequently, the management of RPCs will become a critical part of any DCE based
tracking station. Though the DCE approach may offer a solution to the problems of inter-
operability, compiling and linking RPCs from different vendors does not guarantee problem free
integration. In addition, the DCE does not address the burden of software development for the
Station Operations Workstation to automate the RPC finctions.

The application of DCE Management Services (called Distributed Management
Environment - DME) offers an alternative solution to compiling and linking IDL specifications into
RPCs. The DME services provide high level data object management tools and are based on the
Common Management Information Service Element (CMISE) standard. A DME based approach
would be very similar to CMISE approach discussed in more detail in a later section.

Simple Network Management Protocol

Simple Network Management Protocol (SNMP) was developed in the Internet community
to address the monitor and control of devices that support LANs and WANs. Network bridges and
routers are typical devices where SNMP has be applied. To my knowledge, SNMP is not currently
used or under consideration for use in tracking station operations. However, SNMP is similar to
two protocols currently in use at tracking stations and is very similar to those protocols in its basic
design. Therefore, a review of SNMP serves to identify conllnon elements and finctions in three
similar protocols. In addition, deficiencies in the SNMP approach with respect to tracking station
applications are identified.

SNMP provides a set of services designed to access the Management Information Base
(MIB) established in a device. The MIB is a collection of objects that represent real resources in
the device. For example, a network router used to bridge a local area network to an exterior

communications line will have a network address and sub-network address. Each address can be
an object in the network router MIB. The SNMP Get service provides for the retrieval of objects
contained in a remote MIB. The SNMP Set service supports the modification of an object in a
remote MIB. Also, SNMP has a Trap service that provides for a remote node to report a changed
condition to a management node. In addition, sofhvare to access SNMP services through a GUI is
available for workstations.

The application of SNMP in the example tracking station would find a Management
Information Base installed on each subsystem (or device). The Station Operations Workstation
would access each subsystem MIB using the SNMP Get and Set services (see Figure 5). The
configuration and operation of subsystems would be accomplished using the Set service to change
objects in the MIB. The status and performance of the subsystems would be determined by
accessing objects in the MIB through the Get service. Anomalous conditions in the subsystems
could be reported to the Station Operations Workstation using the Trap service. SNMP provides
for the common representation of data through the Basic Encoding Rules (BER) to formulate
messages in Abstract Syntax Notation 1 (ASN. 1). SNMP services could also be used to support
subsystem-to-subsystem communications. Using the antenna-to-receiver example discussed
earlier, the receiver would use the Get service to access the antenna positions directly from the
antenna subsystem. In tum, the antenna could use the Set service to initiate signal power
measurements on the receiver and access the results using the Get service. Finally, commercial
software to access SNMP services would be used to automate the Station Operations Workstation

There are however, a number of problems with the application of SNMP in a tracking
station. First, SNMP Set and Get services are designed to operate on simple data types: scalars
and two-dimensional arrays of scalars. Using SNMP Version 1, access to large sets of MIB data
objects require multiple Sets or Gets. The SNMP GetNextRequest can simplifl the process but
this limitation still imposes perfomlance constraints where large amounts of data must be accessed.
SNMP Version 2 will expand the supported data types and add the GetBulkRequest service to
address current limitations. Also, SNMP does not provide a service to access a directory to the
contents of the MIB. The contents of the MIB can be determined through interrogation with a
series of SNMP GetNextRequests, however: it is a time consuming process. A directory to the
contents of the MIB is necessary to access specific data objects with Get and Set services. In
addition, SNMP provides no mechanism to establish an alias data object. In the antenna-to-
receiver example, the object names on both subsystems must match for the antenna or receiver to
access each others MIB. For example:

Conlpany A builds the receiver with the name of the data object representing the
operating radio frequency as "RF-Frequency". Company B builds its telemetry
processor with the same parameter represented with the name of
"Operational-Frequency". Under this condition, an SNMP Get made by the telemetry
processor to access the receiver value of "RF-Frequency" would fail and generate an
error.

A service to create an alias data object that could be associated with an existing data object would
minimize the problen~s of inter-operation of subsystems. Finally, most in~plementations of SNMP
operate over the User Datagram Protocol which is not a guaranteed delivery service. The
successful operation of the tracking station will depend on the inter-subsystem communications.
Consequently, a reliable protocol will be required to support the automation of the station.

The SNMP services were designed and developed to manage systems performing dedicated
tasks in local and wide area networks. The functions performed by these systems are limited in
scope and the services of SNMP reflect that limited scope. The subsystems in the tracking station
also perform dedicated tasks; however, the scope of these tasks varies over a wide range of
functions. The contents of each subsystem MIB will be completely different and a directory
service would simplify the installation and management operations. This deficiency in SNMP
could be addressed with implementation requirements imposed on the manufacturers. For example,
a file with a directory to the MIB could be delivered with the product, copied to the Station
Operations Workstation and made available to an application or user. Similarly, provisions could
address the creation of alias named objects in remote MIBs. And, reliable transport services could
be furnished by TCP. However, these implementation requirements amount to amendments to the
SNMP specification which are unique requirements to the tracking station implementation.

Common Management Information Service Element

The successful implementation by the European Space Operations Center of a tracking
station based on Common Management Information Service Element (CMISE) is a compelling
rationale for further examination of this protocol. The Consultative Committee for International
Telegraph and Telephone (CCITT) and the International Standards Organization (ISO) jointly
developed CMISE as the management standard for equipment in the communications industry.
The basic approach to the design of CMISE is similar to SNMP, however the eleven services
provided by CMISE are more extensive and robust. Like SNMP, the services of CMISE are
designed to manage data objects in a MIB. The CMISE Set and Get services are designed to
operate on virtually any data type. Consequently, CMISE is not as limited as SNMP. In addition,
the CMISE Event service is more robust and sophisticated than the SNMP Trap service. Like
SNMP, CMISE provides for the conlmon representation of data through the BER to formulate
messages specified in ASN. 1. And also like SNMP, CMISE provides no service to access a
directory to the contents of the MIB. However, CMISE does provide Create and Delete services
that could be used to establish alias data objects on remotes. For example:

Company A builds the receiver with the name of the data object representing the
operating radio frequency as "RF-Frequency". Company B builds its telemetry
processor with the same parameter represented with the name of
"Operational-Frequency". The telemetry processor would use the CMISE Create
service to establish a data object called "Operational-Frequency" on the receiver and
associated with the data object "RF-Frequency". The receiver would then respond to
a CMISE Get "Operational~Frequency". The association of the two data objects
would be part of the subsystem installation procedure. At the end of the activity, the
telemetry processor would use the CMISE Delete service to remove
"Operational-Frequency" from the MIB of the receiver.

The application of CMISE in the example tracking station, like SNMP, would find a
Management Information Base installed on each subsystem (or device). The Station Operations
Workstation would access each subsystem MIB using the CMISE Get and Set services (see Figure
5). The configuration and operation of subsystems would be accomplished using the Set service to
change objects in the MIB. The status and performance of the subsystems would be determined by
accessing objects in the MIB through the Get service. Anomalous conditions in the subsystems
could be reported to the Station Operations Workstation using the CMISE Event service. CMISE

services would also be used to support subsystem-to-subsystem communications. Finally,
commercial software to access CMISE services would be used to automate the Station Operations
Workstation. However, CMISE makes no provisions for file management. Consequently, an
additional protocol will be required to move and manage the support files required to operate the
subsystems and the station.

Manufacturing Message Specification

The process control protocol Manufacturing Message Specification (MMS) has also been
successfully implemented in a tracking station. Originally sponsored by General Motors, MMS
provides 86 services designed to support automation of factories. Like SNMP and CMISE, MMS
is designed to manage the data objects in a MIB and provides for the common representation of
data through the BER to formulate messages in ASN. 1. And also like SNMP and CMISE, the
systems managed through MMS perform dedicated tasks in the factory. However unlike SNMP or
CMISE, MMS was designed to support systems that would span a wide range of manufacturing
operations. Consequently, MMS provides 86 services to manage the resources in an automated
facility.

The application of MMS in the example tracking station would find a Management
Information Base installed on each subsystem (or device). The Station Operations Workstation
would access each subsystem MIB using the MMS Read and Write services (see Figure 5). The
configuration and operation of subsystems would be accomplished using the Write service to
change objects in the MIB. The status and performance of the subsystems would be determined by
accessing objects in the MIB through the Read service. Anomalous conditions in the subsystems
could be reported to the Station Operations Workstation using the MMS Information Report
service and the MMS Event Management services. MMS services would also be used to support
subsystem-to-subsystem conununications. Unlike CMISE, MMS provides an Identify service,
GetCapabilityList service and a GetNamedVariableList service which describe the subsystem on
request. The GetNamedVariableList service provides a directory to the contents of the MIB in the
form of a list of the named objects contained in the MIB. The integration of different
manufacturer's subsystems would be facilitated using the DefineNamedVariable and
DeleteVariableAccess services to establish alias data objects on the station subsystems. Returning
to the previous example:

Company A builds the receiver with the name of the data object representing the
operating radio frequency as "RF-Frequency". Company B builds its telemetry
processor with the same parameter represented with the name of
"Operational~Frequency". The telemetry processor would use the MMS
DefineNamedVariable service to establish a data object called
"Operational-Frequency" on the receiver and associated with the data object
"RF-Frequency". The receiver would then respond to a MMS Read
"Operational~Frequency". The association of the two data objects would be part of
the subsystenl installation procedure. At the end of the activity, the telemetry
processor would use the DeleteVariableAccess service to remove
"Operational-Frequency" from the MIB of the receiver.

Finally, the MMS file management services like Fileopen, FileRead, Fileclose, FileDirectory,
FileDelete and FileRename would be used to manage the support files required by the subsystems.

Beyond the basics, MMS provides services to support the kinds of subsystems commonly
installed in tracking stations. The MMS Program Invocation Management services are designed to
support subsystems with multi-tasking operating systems. Using MMS, a standard set of services
can be used to start, stop, resume or kill programs running on remote subsystems without regard
for the specifics of the target operating system. The Domain Management services support block
memory transfers between subsystems. Using the MMS Domain services, subsystem configuration
tables could be efficiently transferred between the Station Operations Workstation and the
subsystems. The Journal Management services provide for the logging of activities and events in a
process control environment. The Semaphore Management services provide support for systems
with shared resources. In tracking stations with multiple antennas and limited equipment
redundancy, contention for limited resources can be supported through MMS semaphore services.

An additional advantage to the employment of MMS, is the availability of "Application
Enabler" products for use on the Station Operations Workstation to automate station operations.
These products are commonly found in the manufacturing sector and often referred to as
"Supervisory Control and Data Acquisition (SCADA)" packages. Used to automate factories,
Application Enabler products are software packages that can be customized for a specific
installation without software development. The companies that build Application Enablers provide
communication drivers to access proprietary devices, like Programmable Logic Controllers
(PLCs). Today, a number of these companies provide MMS communication drivers. Using these
products in conjunction with MMS, the, software for the Station Operations Workstation can be
purchased and configured to operate the tracking station without software development.

Discussion

All five protocols surveyed could be used to build a spacecraft tracking station. However,
each of these protocols were designed and developed for a specific environment. The question is
'Which environment most closely matches to environment of a spacecraft tracking station?" A
second question is 'Which protocol will provide commercial vendors with the tools to develop and
deliver products that can be installed and integrated without software development?"

Spacecraft tracking stations are composed of devices with dedicated resources performing
dedicated operations. The antenna subsystem is dedicated to operating the antenna hardware while
the receiver subsystem is dedicated to operating the receiver hardware. The operations performed
by these subsystems vary significantly. X-Windows provides an environment for the remote
operation of these devices but does not provide for automation. DCE provides an integration
environment but does not relieve the burden of software development. The management of a device
through its MIB with SNMP, CMISE or MMS can provide automation and relieve the burden of
software development. However, the limited services of SNMP make it the least likely candidate
for operation of a tracking station. Given the similarities between CMISE and MMS, what is the
basis for a final selection? A detailed examination of these two protocols reveals some differences
to direct a final selection.

At first glance, the CMISE Get and Set services appear nearly identical in function to the
MMS Read and Write services. However, there are subtle differences between the two protocols
that are derived from their intended applications. Consider the factory enviroim~ent:

A factory is a confined environment where control must be decisive. Arbitrary control of a
server might create catastrophic problems on the factory floor. Therefore, an MMS client
must establish an association with a server before a dialog of MMS services can begin. If
an association can not be established, control can not be initiated. Server systems are
designed to fail in a safe mode, protecting the plant and personnel. When problems
develop on the factory floor, MMS-based automation alerts operations personnel to
investigate the problem and take corrective action. To provide decisive control, the
exchange of MMS control messages employs confirmed services that require the client
application receive an acknowledgment from the server application. The MMS Write
service is a confirmed service that requires acknowledgment for completion.

Now consider a wide area communications network environment:

A wide area network is not a confined environment, frequently distributed over tens, or
hundreds or thousands of miles. Communication device servers are also designed to fail in
safe mode while redundancy provides for alternative means of communications. Rarely
does a failure present a threat to life or property. Therefore, CMISE is designed to operate
with or without an established association. The CMISE Set service can operate in both
confirmed and unconfirmed modes.

The difference in these services in important for their respective applications. Corrective action in
a factory frequently requires human intervention to safe guard life and property. Corrective action
in a communications network can frequently be accomplished remotely. For example:

A recurring fault can cause a network router to fail. The router can be designed to reboot
on failure to safe mode, reboot on failure to diagnostic mode or reboot on failure to
operational mode. The recurring failure results in the router continuously rebooting. The
time interval between faults is too short to support the normal establishment of an
association and leading to a Set service to force the router into the diagnostic mode. The
unconfirmed Set service provides a mechanism to reset the router to diagnostic mode
before the fault occurs again.

Another subtle difference between CMISE and MMS can be seen in the Event services.

Both CMISE and MMS provide Event services. Though similar in principle, the services
perform differently reflecting the environments for which they were designed. A detailed
examination of the event data structures reveal that both CMISE and MMS provide an attribute for
event-priority. However, only MMS provides an attribute for event-severity. From my experience,
I believe this distinction is derived from the difference between the communications environment
and the factory environment. Rarely do events in communications networks produce property or
life threatening situations. However, events on the factory floor can produce these conditions.
Therefore, the MMS Event service provides for severity of a failure.

Consequently, it is my opinion that MMS offers the best fit to the spacecraft tracking
station environment. Based on experience, MMS provides the commercial vendors with a standard
for automation. Using MMS, a comm~ercial product can be installed and configured into an
automate tracking station without site specific software development. And the availability of
commercial products for factory automation based on MMS, supports this conclusion. In addition,

MMS based Application Enabler products provide the tools to automate spacecraft tracking
stations without traditional software development efforts.

References

Introduction to OSF DCE, Open Software Foundation, Prentice-Hall, Incorporated, 1992.

Schulz, Klaus-Jurgen; Service Management of a Spacecraft Ground Station Network in Support of
Spacecraft Operations, Integrated Network Management, I11 (C- 12), 1993 IFIP.

Stallings, William; SNMP, SNMPv2 and CMIP, The Practical Giuide to Network-Management
Standards, Addison-Wesley Publishing Company, 1993.

Tang, A. & Scoggins, S; Open Networking with OSI, Prentice-Hall, Incorporated, 1992.

International Organization for Standards, IS0 9506, Information Processing Systems - Open
Systems Interconnection - Manufacturing Message Specification, 1989.

Heuser, Wm. Randy, Chen, Richard, and Stockett, Michael H.; Using Manufacturing Message
Specification for Monitor and Control at Venus, Network Technology Conference, NASA
Conference Publication 324 1, 1993.

Table 1. This table provides a comparison of the hnctional requirements (down the left side)
for monitor and control in Deep Space Network tracking stations and the protocols
examined in this article (across the top).

Protocol 1 X-Windows I DCE 1 SNMP 1 CMISE I MMS
Functional Requirements
Allocation of station
resources
Configuration and Control

Yes

of subsystems
Monitor status and

Yes

performance
Inter-subsystem data

Yes

Yes

exchange
Event and Alarm handling

Yes

No

Logging
File distribution and

Yes

Yes

No

management
*No software development,

* Derived requirement to support conllnercial products derived as executable products.

Yes

Yes

No
No

compilation and linking
*Data Object Alias

Yes

Yes

No

Yes

Yes

Yes

Yes

No
Yes

No

Yes

Yes

Yes

No

Yes

Yes

No
No

No

Yes

Yes

Yes

Yes
Yes
No

No

Yes
Yes

Yes Yes

Yes Yes

Figure 1.

Subsystem 7-l
An example tracking station with four computer controlled subsystems inter-connected
with a workstation through a Local Area Network.

Figure 2. The application of X-Windows to support tracking station integration and automation
would require each subsystem to operate as an x-client. The subsystems could be
operated from the Station Operations Workstation operating as an x-client server.
However, direct subsystem-to-subsystem data exchange is not supported by X-
Windows.

Applications

Application Layer

I I R 1 I Distributed File Services I(1.

Remote Procedure Call 1-1 and presentation services I

Figure 3. This figure shows the relationship between the DCE Architecture and the OSI Basic
Reference Model.

Data Link Layer

Physical Layer

Define interface
in DcE i m : -1

Architecture

* DCE Threads a e related to
th. op@r?ding SYSINII
swvices and have no

Run IDL Compiler: 6

counterpefi in the OSI Basic
OSI Basic Reference Model Referents M O ~ I .

Ciient
Stub

RPC
Runtlme] Application I

Subsystem

Install on
Ciient

install on
Server

Figure 4. This figure shows the DCE process to create remote procedure calls from DCE IDL.

"" I Antenna
Control

Subsystem

Protocol Service

Management Information Base

Figure 5. SNMP, CMISICMIP and MMS all provide services to access and manage a
Management Information Base (MIB) on remote systems. In this example, the
operator workstation provides monitor and control the of subsystems in a simple
receiver only tracking station through services that access the MIB.

An Agent-Oriented Approach to Automated Mission Operations

Walt Truszkowski
NASA Goddard Space Flight Center, Code 522.3

Greenbelt, MD 2077 1
Email: truszkow@kong.gsfc.nasa.gov

Jide Odubiyi
Lord AeroSys, 7375 Executive Place

Seabrook, MD 20706
Email: jideo@ groucho.aerosys.loral.com

Abstract

As we plan for the next generation of Mission Operations Control Center (MOCC) systems, there
are many opportunities for the increased utilization of innovative knowledge-based technologies.

The innovative technology, discussed in this paper, is an advanced use of agent-oriented
approaches to the automation of mission operations. The paper presents an overview of this
technology and discusses applied operational scenarios currently being investigated and
prototyped. A major focus of the current work is the development of a simple user mechanism that
would empower operations staff members to create, in real time, software agents to assist them in
common, labor intensive operations tasks. These operational tasks would include: handling
routine data and information management functions; amplifying the capabilities of a spacecraft
analystloperator to rapidly identify, analyze, and correct spacecraft anomalies by correlating
complex datatinformation sets and filtering error messages; improving routine monitoring and trend
analysis by detecting common failure signatures; and serving as a sentinel for spacecraft changes
during critical maneuvers enhancing the system's capabilities to support non-routine operational
conditions with minimum additional staff.

, An agent-based testbed is under development. This testbed will allow us to: (1) more clearly
understand the intricacies of applying agent-based technology in support of the advanced
automation of mission operations, and (2) to access the full set of benefits that can be realized by
the proper application of agent-oriented technology in a mission operations environment. The
testbed under development addresses some of the data management and report generation functions
for the Explorer Platform (EP)/Extreme Ultraviolet Explorer (EUVE) Flight Operations Team
(FOT). We present an overview of agent-oriented technology and a detailed report on the
operation's concept for the testbed.

1.0 Introduction

Major advances have been made in the process of automating mission operations over the last
several years. However, in keeping with changing operational requirements and the need to more
effectively realize cost and manpower savings in the area of mission operations, the necessity for
more advanced automation technologies is clear. As examples of areas for continued improvement
consider the following:

- Mission Operations Control Center (MOCC)*software systems are currently developed using
classical software engineering paradigms. To bring about added degrees of flexibility in how
these systems could handle unexpected problems, the engineering of these systems along
agent-oriented technology lines looks promising.

Even with the increasing use of expert systems in support of telemetry monitoring and
command constraint checking much reliance is placed on the manual intervention of operators.
The use of agent-oriented techniques can effectively provide additional levels of automated
support in handling these important types of operational activities and further reduce the need
for manual interventions.

With increasing automation of mission operations, there is a growing need for more advanced
approaches to information handling. The use of agent-technology in support of the full
range of information management functions will significantly reduce the growing
possibilities of information overload on the part of operators.

It is becoming apparent that for future automated mission operations, more consideration will have
to be given to the roles that distributed problem solving and computer-supported cooperative work
will play. These increasingly important issues can be addressed by employing intelligent,
distributed processes [6] found in a multi-agent based approach, described in this paper.

The rest of this paper presents an ontology [12], i.e., a conceptual framework for describing the
mission operations domain, and an implementation framework for automating the operations in that
domain. Our approach for dealing with the task of developing an agent-based mission operations
environment is to first specialize by applying our agent methodology to automate the report
generation function. Once this is accomplished we will then generalize and apply the agent-based
approach to other functions in the MOCC as shown in Figure 1 below. Our approach for
generating the agent-based report-generation solution is to employ an information agent model and
define agent roles in a multi-agent environment required for this selected subdomain function.

Spacecraft

-r--L

Commands //"...-/
Real-Time Data Management System Operations' Workstation

I Real-Time Operations Displays I

Spacecraft Subsystems Data Analysis Displays

Trending
0 Performance Statistics

Resource Prof~les
RepoIt Generation

Figure 1: An Overview of a Spacecraft Mission Operations Control Center

statisti& Analysis
and Gra hing

"
* Statistical

Computations

Histow DatdStatistics
* Data Search

Management
System

Non-Real-

Database Stored Commands

Software Jackages Data Filterine TIme Data

We present related work on the use of agent-based approaches for automating information location
and retrieval systems and the contribution of our investigation in proving the utility of agent-based
technology in mission operations.

2.0 The EPIEUVE Report Generation Process

The EPEUVE's operational environment is a heterogeneous network consisting of two
MicroVAXs (VMS), a Sun workstation (UNIX), an HP-9000 workstation (UNIX), and i386
personal computers, using the X.25 and TCPDP protocol.

Subsystem engineers for EPEUVE are responsible for daily monitoring of the satellite's
subsystem performance, detection of anomalous subsystem behavior, weekly reporting of
subsystem performance, generation of commanding products for subsystem operations, and
continuing preparation for subsystem anomaly Detection, Isolation, and Resolution (DIR). These
products reside on heterogeneous distributed computing nodes. Off-line analysis (Trend system)
provides daily plots of over 600 mnemonics for visual checks of subsystem performance and
trends. Subsystem engineers' performance is evaluated based on how well they handle a spacecraft
anomaly, not on their daily activities. For example, based on an analysis of operator activities over
a period of time, it was concluded that 90 percent of their time is spent performing daily routines.
Each week, three of the Explorer Platform's engineers spend a total of 40 hours generating a
weekly report on the performance of the system. The routine activities that consume most of the
operators' time can be automated to allow them to spend time on more critical tasks.

Three categories of reports are generated by the Flight Operations Team (FOT) of the EP/EUVE
system. The three subreports which correspond to the three subsystems of the EPtEUVE are the
Modular Power Subsystem (MPS) subreport, the Command and Data Handling Subsystem
subreport, and the Modular Attitude Control Subsystem subreport. Other subreports included in
the KPS subreports include reports on the Battery Health and Safety, the Solar Array
Performance, the MPS Neater Duty Cycle, the Critical MPS Events' Summary, and the Thermal
System. The critical MPS Events' Summary is generated from the computer workstation which
generates the Real-time and Trend data.

Adequate preparation for a spacecraft anomaly's DIR is the key to successful spacecraft flight
operations. The level of preparedness depends on the amount of "spare time" a spacecraft
subsystem engineer has to study the subsystem, and the time between anomaly detection and
resolution. Automating the report generation process will allow the spacecraft subsystem engineer
to devote their time to more productive mission operations such as early detection of anomalies,
data analysis, and development of scenarios for anomaly prevention.

The subreports for the Command and Data Handling Subsystem result from collecting six other
subreports. The subreports are orbit decay (EP/EUVE 's decrease in orbit periods), tape recorder
performance, clock delta trends, transponder performance, Ultra State Oscillator frequency trends,
and Modular Antenna Pointing Control.

3 .0 An Agent-Oriented Solution to Support the Report Generation Process

An Agent-based FLight Operations AssociaTe (AFLOAT) is currently being prototyped to support
the FOT in generating weekly reports. Each agent is an entity that can function semi-autonomously
in an environment where other agents exist, accept instructions from a user, and communicate with
other agents. In addition, it can be persistent, and can migrate from one node to another to process
and retrieve information as requested. The agent can operate independently in the background
without interfering with user's actions. An overview of agent-oriented technology and our
approach for applying this technology to automate the EPEUVE operations report generation
process are described in the following paragraphs.

3.1 An Overview of Agent-oriented Technology

What is an agent? In the most general form, a software agent as opposed to a hardware agent (e.g.,
a robot) can be defined as an entity that enables a user to specify what the user wants leaving the
process of hP;II! and when to accomplish it to the agent [3]. Huhns and Singh [5] present a more
comprehensive definition for a software agent as an active knowledge-based computational entity
that has knowledge, intentions, and mechanisms for perceiving, reasoning, acting, and
communicating. An agent, in our initial prototype, is characterized by a subset of the capabilities of
the agent in this comprehensive definition, as explained in paragraph 3.5.

3 . 2 Distinction between Agent-based Systems and other Computer System
Services

There is general confusion on what agent-based systems are and how they differ from other
computer system services such as Directory Assistance Programs and Information Brokers [5].
Directory Assistance Programs support interoperation between conventional software programs by
accepting requests and routing them to appropriate programs for execution. Information Brokers or
Distributed Object Managers such as the Common Object Request Brokering Architecture (CORBA)
the Distributed Information Manager (DIM) for EOSDIS, and the Dynamic Data Exchange (DDE)
programs, either statically or dynamically provide access to information making the source of the
information transparent to the user. In addition to serving as directory assistants, they can also
execute requests and return results. All these system services use procedures to communicate with
other objects. True software agents use declarative directives that are more expressive to reason and
communicate complex concepts with other agents instead of relying on procedural directives which
are efficient but they are less expressive.

3 . 3 Agent Types

An agent's behavior may vary along a spectrum of factors ranging from a controlled learning
process to self-learning, controlled behavior to full independence, and simple to complex
interactions. An agent's capability may be simple or complex; its interaction with its environment
may be reactive or planned (i.e., deliberative). Reactive agents [2] are robot-like with very limited
internal reasoning mechanisms while deliberative agents [4] have substantial reasoning capabilities.
The agents in a multi-agent system may or may not coordinate their activities. All the agents may be
identical or each may be unique, and they may communicate either by directed message passing or
broadcast. The number of agents may range from a single agent to thousands. As you will see in
paragraph 3.5, the agents in our prototype will be able to learn; each has some degree of
independence. The agents can interact with their environment with deliberative reasoning, and
communicate with one another through direct message passing and multicast via shared memory.

3.4 Essential Architectural Issues of Multi-agent Systems

To be successful in developing a multi-agent based system, the following four architectural issues
must be addressed and the fifth issue is optional: (1) an approach must be established for
describing, decomposing and distributing tasks among the agents; (2) a format must be defined for
interaction and communication between agents; (3) a strategy must be formulated for distributing
controls among agents in which a local control strategy demands that agents communicate only
their results, or centralized control where one agent assigns all the tasks, or a predefined mixed
results/tasks share control; (4) a policy must be made for coordinating the activities of agents,
either by competition through negotiation as in ContractNet Protocol or cooperation through
centralized or distributed planning; and (5) a rationale should be established for maintaining truths,
i.e., consistent beliefs and conflict resolutions among agents [6] or mental states or trusts [lo]. Our

current architecture, described below, can address the five architectural problems. Our initial goal
is to resolve the first four issues making the resolution of the fifth issue a long-term goal.

3.5 A System Overview of an Agent-based Solution to Automate Mission
Operations

Our objective is to develop AFLOAT as a multi-agent based system where a user interface agent
interacts with the user to accept user requests, collaborates with other agents at a local host or over
the Internet in locating, retrieving, and presenting the information to the user in appropriate form,
with the correct amount and level of detail, and at the right time. An implementation framework for
AFLOAT consists of an architecture for a software agent, a methodology for implementing the
interactions between the user and a user interface agent, collaboration between multiple agents, and
an approach for making background software agents specialize in data retrieval from distributed
information sources. User-to-agent and agent-to-agent interaction issues are resolved by
developing a communication protocol, a language format, and an agent migration process across
networked computer systems. Our strategy for information location and retrieval is based on the
premise that domain-dependent keywords used by the user will form an index to the information in
the domain and to the specialized agent. If the key word does not exist, then retrieval is not
possible, and the user interface agent will issue appropriate advice. Knowledge in AFLOAT can
be stored as rules, objects, cases (examples), models, and programs. Each agent has access to a
set of support services such as: creating, destroying, managing, or monitoring the activities of
spawned agents; mechanisms for message transport; directory of other agents; information
processing and presentation; and system performance monitoring.
In addition to supporting on-line and off-line flight operations of the EP/EUVE report generation
process, agents in AFLOAT can also support the spacecraft platform and instrument Fault
Detection, Isolation, and Recovery W I R) services.

Our architecture for automating mission operations has been designed to address the top four basic
architectural issues and to be extensible enough to accommodate the fifth. The implementation
framework is based on a deliberative agent architecture, depicted in Figure 2. The architecture has
structural elements for data storage, coordination, and monitoring of activities between agents,
execution of internal and external functions, inter-agent communication, and interface with other
domains in the MOCC.

Architecture of AFLOAT's Deliberative Software Agent. Each of AFLOAT'S software
agents is deliberative, which means that it will reason before it acts. An architecture of such a
software agent in AFLOAT is displayed in Figure 2. It addresses the issues that must be resolved
in a deliberative multi-agent based system. The coordinator determines the type of coordination
(task sharing or result sharing), and coordination policy (negotiation, shared memory, or an
explicit domain-driven task delegation policy) that will be employed. In AFLOAT, agents
coordinate their activities by sharing results, and an explicit domain-driven task delegation policy is
employed since each agent is considered a specialist in a specific domain. The agent's coordinator
module is also responsible for planning and scheduling the tasks of each agent. Each agent's
monitor is responsible for monitoring interactions between agents, incoming and outgoing
messages, the state of the agent, and maintaining a history of the agent's actions. Saving an
agent's past actions aids it in learning by drawing from experience when presented with new tasks.
The external models module of each agent maintains global functions that are accessible for use
by other agents. Each agent must maintain its access rights to external information so as to aid the
domain agents in the information retrieval process. The internal models module maintains
functions (such as managing access to the skills of each agent or maintaining its message buffer)
that are private to each agent and are not accessible to external agents except the AFLOAT executive
agent. Each agent also has an inter-agent communication module which is responsible for
validating inter-agent, semi-structured language format, sending outgoing messages, receiving
incoming messages, and broadcasting messages to shared memory. The brain of each agent is its

information base where all the modules store their data and other information such as the name
of the local system management agent (AFLOAT executive), buffers for incoming and outgoing
messages, each agent's name, type, and state, and messages in shared memory. Communication
with each agent is done by adding a message to its information base. Each agent can store
knowledge as rules, objects, cases (examples), models, and programs. The structure of each
agent, coupled with its behavior (i.e., capabilities) provides it with enough intelligence to respond
effectively to information retrieval tasks delegated to it.

I INTERAGENT COMMUNICATION MODULE

I OTHER
AGENTS AND/

OR USERS I
Figure 2. Architecture of A FLOA T's Deliberative Software Agent

An Information Agent Model for Supporting Information Retrieval: Agents in
AFLOAT are characterized by five "action-oriented [9] capabilities: First, migration, is the ability
of an agent to move to other nodes to process or retrieve information. This ability can support load
balancing, improve efficiencies of cammunication, and provide unique services which may not be
available at a local node. Second, semi-autonomy, is the ability to respond to a dynamic
environment without human intervention, thus improving the productivity of the user. Third,
spawning, is the ability to create other agents to support the parent agent, thereby promoting
dynamic parallelism and thus fault-tolerance. Fourth, persistence, is the ability to recover from
environmental crashes and support time-extended activities, thus reducing the need for constant
poling of the agent's welfare and better use of the system's communication bandwidth. The fifth
and final capability is interaction mechanisms for supporting agent-to-agent and user-to-agent
interactions.

Operations Concept for AFLOAT Prototype: An operations concept for the AFLOAT
testbed prototype is illustrated in Figure 3. It describes the procedures for using agents to locate,
access, retrieve and present EP/EUVE reports or information located at remote information
sources. To do this, the user generates a user agent. The user agent requests the system to display
a set of reporting options. The user then selects one or more items from the list displayed by the
system. Upon completing the selection process, the user agent generates a report agent and assigns
it the responsibility of generating the reports. The report agent identifies specific subreports and
requests the agents' directory manager (or name/skill server) for the names, locations, and services
provided by agents that can support the generation of requested reports.

-
S ialiit

Wtrbuted

Names +
Loc@ons +

Agent + SeMC8S of
Requests

I 4 I
1. Cloned report agent mi rates lo. or communicates wnh speaatlst agents to request reports.
2. S p I k t a g M ~gra?e to. or corn- l h information m r o * to gather information and deliver

t em to the doned report a p t .
3. The d d report agent pe odlcally sends status of report generation pmcess tothe user ageM via the

repotl agent FiT agent returns to the primary report agent environment u n co letion d re; athering
4' Dks;%rrns ~rimarv rewrt went on where the -rts are stor~before%trovino Iself. The orimarv

ieport agent then'preseht the reezlls as direued by 1 6 user agent.
. " , .

5. Based on user's reference the report agent displays a 'Report Generation Completed' mesa e displays
reports, or transkrrns itsen into a dormant icon on the screen to be reactivated when selected l i t h e user.

Figure 3: Operations Concept for Agent-based FLight
(AFLOAT)

Interface to
Information
Servers

Operations AssociaTe

In addition to knowing the names, locations and services provided by the specialist agent, the
report agent must also determine if there are restrictions to services provided at certain locations. If
an access is restricted to information sources or there is an absence of unique services required by
specialist agents, the report agent may request the reports remotely via message passing. If there
are no such restrictions, the report agent generates and sends a clone with enough information
necessary to generate the report to migrate to remote information sources, interact with agents with
special skills, and retrieve the reports. Allowing the report agent to send its clone to retrieve reports
while it stays at the user's environment adds some fault tolerance to the system. Therefore, if the
cloned report agent fails, the primary agent has all the information needed to create another clone.
Periodically, the cloned report agent informs the primary report agent resident at the user's
environment on the progress of the report generation process. Steps 1,2, 3,4, and 5 in Figure 3
explain the interactions between the agents and the report generation process.
Development Environment and Status and Plans for AFLOAT Project: The
development environment for implementing AFLOAT is the NASA/Johnson Space Center
developed C-Language Integrated Production System (CLIPS) version 6.0 with CLIPsTOOL

software from KNOWARE Inc. (for building the user interface) running on a Sun SPARCstation
with UNIX operating system, X-windows, and OSF/Motif Style Guide. The application of the
defmodule construct (in CLIPS) which promotes the partitioning of knowledge bases will enable
us to achieve agent independence. We have just completed Build 1 of the AFLOAT testbed. This
build provides location transparency to information sources for generating reports on Battery
ChargeDischarge ratios of the three batteries on the spacecraft. This build is also being used by
two George Washington University researchers to investigate the issue of trust of automated
systems. In their experiment, an operator is assigned a task that helshe must perform plus an
additional task of monitoring the quality and number of faults correctly detected by the agents. The
operator's trust level of the agent is based on the frequency and types of incorrect faults. Build 2 of
AFLOAT will provide the users with the ability to generate reports on the operations of the three
subsystems, i.e., the MPS, the CDHS, and the MACS from distributed information sources.

4.0 Related Agent-based Information Retrieval Systems

Several agent-based information retrieval systems are being prototyped at several research
laboratories. Most of the research work attempts to resolve the fundamental architectural issues
described earlier in paragraph 3.4. The research work of Amy Lansky at NASAIAmes [8], and
Bond and Gasser [I] focuses on multi-agent planning and addresses the issues of coordination,
synchronization, and control of multiple autonomous agents. Shoham's work [lo] investigates the
issue of an agent's mental states as they relate to beliefs, intentions, and capabilities. Other research
on agent-based information retrieval similar to ours include the work by Kahn and Cerf [6] in
which agents, called Knowbots, each hard coded to perform a specific task, are used to retrieve
information from digital libraries. Etzioni's work [3] on Softbots employs software agents to
perform different UNIX tasks to support a UNIX programmer. A very important contribution of
his work is the ability of the Softbots to retrieve information with an incomplete request.
Papazoglou and Laufmann [9] employ coarse-grained agents with a semi-structured language and
message passing to support information retrieval from distributed information sources. The serni-
structured language format is quite expressive and it can help the agents in communicating their
goals, results, and states, thus facilitating coordination among the agents. Gio Wiederhold [12]
employs very coarse-grained agents called mediators which can be used to filter data by resolving
any mismatches in the data. A major contribution of the mediator approach is the merit of this
architecture over integrated or federated agent-based system architectures. While it is more difficult
to implement, the mediator architecture is easier to scale up and add new interfaces than the other
two.

While each of the research efforts described above address various aspects of the architectural
issues of multi-agent systems, AFLOAT'S architecture has been built as an extensible testbed and it
can address all the basic architectural problems of a multi-agent-based system. In addition to its
capability to automate distributed information retrieval, it can also support automation of other
operations such as fault detection, isolation and recovery of satellite subsystems, and other
domains. Whereas in a large majority of other multi-agent systems, the base prototyping language
is either LISP or PROLOG which very often is not well received by the operations staff due to a
lack of experienced programmers; AFLOAT is based on an expressive A1 shell written in C with
the UNIX operating system, making it readily portable to other platforms and acceptable to
operations staff.

5 .0 Conclusion

The distributed nature of the operations in a satellite MOCC calls for solution approaches to
problems in the domain to consider the use of intelligent distributed modules instead of isolated
intelligent systems. Such intelligent distributed modules have been modeled as a multi-agent
system and prototyped as the AFLOAT testbed to support the automated report generation process,
and described in this paper. An overview of agent-based technology has been presented with

essential architectural issues that must be addressed to successfully implement a multi-agent based
system to support automated mission operations. We have shown how the architecture of each
agent coupled with its behaviors (i.e., its capabilities represented as an information agent model),
can be used to resolve basic architectural problems of multi-agent systems.

The use of multi-agent based designs is not limited to the mission operations domain. They can be
employed in any environment where the user needs to delegate an associate to perform information
management activities such as in telecommunications network management, software reuse
management, and automated -c incident management systems.

6.0 Acknowledgements

This work originated with a paper by Truszkowski and Moore [l l] . We wish to thank Mike
Moore for his major contributions to the development of the agent model and testbed concepts
which are now being prototyped. The funding for this work is being provided by NASA
Headquarters Code 0 (Office of Space Communications).

Bibliography

1. Bond, A. H., and Gasser, L. (1988). Readings in Distributed Artificial Intelligence ,
Morgan Kaufmann, San Mateo, CA.

2. Brooks, Rodney A. (April, 199 1). Intelligence Without Reason, Computers and Thought,
IJCAI-91, A1 Memo No. 1293, pp. 1-27.

3. Etzioni, &en, (1994, July). A Softbot-Based Interface to the Internet, Communications of
the ACM, pp. 72-76

4. Ferguson, Innes A. (1992, May). Touring Machines: Autonomous Agents with Attitudes,
IEEE Computer, pp. 51-55.

5. Genesereth, M. R., and Ketchpel, S. P. (1994, July). Software Agents, Communications
of the ACM, pp. 48-53

6. Huhns, M. N., and Singh, M. P. (1994, May). Distributed Artificial Intelligence for
Information Systems , MCC, Austin, TX 78759.

7. Knoblock, C. A., Arens, Y., and Hsu, C. (1994, May). Cooperating Agents for
Information Retrieval, Second CoopIS-94 Proceedings, University of Toronto, Canada,
pp. 122-133.

8. Lansky, Amy, (1994, April). Data Analysis Assistant, RecornNASA Ames Research Ctr.

9. Papazoglou, M., Laufmann, S., and Sellis, T. K. (1992) An Organizational Framework
for Cooperating Intelligent Irgformation Systems, International Journal of Intelligent and
Collaborative Information Systems, Vol. 1, No. 1, pp. 169-202.

10. Shoharn, Yoav. (1990). Agent-Oriented Programming, Technical Report, STAN-CS-
1335-90, Robotics Laboratory, Computer Science Dept., Stanford University, Stanford,
CA.

1 1. Truszkowski, Walt, and Moore, M. (1992). Towards an Information Ecology, AIP
Conference Proceedings 283, pp. 884-892.

12. Wiederhold, Gio. (February 1992). Mediators in the Architectures of Future Information
Systems, IEEE Computer, pp. 38-49.

887

* . , % h \ 7- 0 - 6 6 w 7 i i .
1 1 j 0, .-'

ADVANCED GROUND STATION ARCHITECTUlRlE /
David Zillig (NASA GSFCKode 531.2)

Ted Benjamin (Stanford Telecomm, Reston, VA)

ABSTRACT

This paper describes a new station architecture
for NASA's Ground Network (GN). The
architecture makes efficient use of emerging
technologies to provide dramatic neductions in
size, operational complexity, and operational and
maintenance costs. The architecture, which is
based on recent receiver work sponsored by the
Office of Space Communications Advanced
Systems Program, allows integration of both GN
and Space Network (SN) modes of operation in
the same electronics system. It is highly
configurable through software and the use of
Charged Coupled Device (CCD) technology to
provide a wide range of operating modes.
Moreover, it affords modularity of features
which are optional depending on the application.
The resulting system incorporates advanced RF,
digital, and remote control technology capable
of introducing significant operational,
performance, and cost benefits to a variety of
NASA communications and tracking
applications.

INTRODUCTION

The NASA Ground Network (GN) station
architecture has been used very successfully
over the last 25 years to support a multitude of
low earth orbiters (LEO's), expendable launch
vehicles (ELV's), geosynchronous (CEO's) and
lunar missions in the Spaceflight Tracking and
Data Network (STDN). The GN RF subsystem,
based on the Multifunction, polarization
diversity Receiver (MFR) and the STDN tone
ranging equipment, still provides extensive
support to NASA programs. This support
includes: (1) Shuttle launch and landing at GN
stations; (2) LEO's, including Small Explorer
spacecraft at the DSN 26-meter subnet stations;
(3) TDRS GEO spacecraft at the GN, DSN 26-
meter subnet, and GRO Remote Terminal
System (GRTS) stations. Its hardware has been
upgraded and replaced over the years to
maintain its ability to provide reliable support to

NASA's critical missions, but its basic architecture
remains the same as when the STDN was formed in
the early 70's from the Space Tracking and Data
Acquisition Network (STADAN) and the Apollo
Manned Space Flight Network (MSFN).

While individual functional blocks have been and
could continue to be replaced by modern electronics,
it is expected that the biggest gains will result from
developing a new system architecture that makes the
most efficient use of emerging technologies for the
most dramatic reductions in size, operational
complexity, and operational and maintenance costs.

During the past year, GSFCICode 531 has been
studying new ground station architectures capable of
high levels of hardware integration. The
architecture incorporates flexible software
configurability for implementation of a wide range
of modes, and is designed specifically for effective
automation of most operational and maintenance
functions. The hardware systems are designed to
mate with the overall station control philosophy of
the Automated Ground Network System (AGNS).
AGNS is based on an open architecture comprised
of loosely coupled station subsystems (such as the
RF subsystem of concern here) that maximize the
use of commercial standards and interfaces.

A highly integrated, automated ground station with
the capability of meeting stringent Shuttle S-Band
communications and tracking requirements can also
serve as the next generation near-earth-to-lunar,
multipurpose ground terminal. It also lends itself to
applications requiring compact, transportable
systems and remotely controlled stations that supply
direct downlinks to small satellite experimenters.

This paper briefly reviews current GN station
architectures and hardware configurations. It then
presents functional and signal processing
requirements for the upgrade RF subsystem. The
advanced station architecture is then described,
followed by sections detailing the flexible advanced

889 PAGE BtAW M T mYED

equipment that support this new station
architecture.

CURRENT STATION ARCHITECTURE

The current GN station RF equipment is
primarily comprised of what is referred to as the
RER -- Receiver, Exciter, Eange equipment. As
configured today, these three basic functions are
distinct equipments, each associated with a
dedicated rack of electronics. For example, the
MFR receiver consists of a 7' rack containing 7
equipment drawers or modules. The exact
hardware configuration varies from station to
station depending on specific requirements. A
typical RER equipment group is comprised of
about 6-7 equipment racks to support a user
satellite link.

The GN station antenna system provides a sum
signal (23) and two error signals (X and Y) in
each of two orthogonal polarizations ----
resulting in six receiver input channels. The
MFR performs optimal ratio combining of these
orthogonal polarized signals and, thus, is
referred to as a polarization diversity receiver.
Experience has shown that this is a critical GN
function that allows continuous operations even
through significant fades of the polarized signal
that is dominant through most of a pass. To
accomplish this processing, and provide
redundancy to meet stringent reliability
requirements, 4-5 MFRs are typically used (each
MFR requiring a rack of equipment) to support
user services.

As noted above, substantial equipments are
currently required to meet GN mission
requirements. This, coupled with the fact that
the underlying processing architecture is more
than 20 years old, places a substantial burden on
GN operations and maintenance. This situation
is exasperated as the GN stations are called
upon to support new and expanded requirements
as user mission needs evolve.

DESIGN GOALSIREQUIREMENTS

General requirements and design goals are first
presented. Key receiver, ranging, and transmit
requirements are then discussed, in turn.

General Requirements. Except for some few
obsolete requirements (e.g., FM Uplink), the RER
Upgrade must support all current RER capabilities,
and meet or exceed associated performance
requirements. To accommodate Space Station, and
the Shuttle Launch Support System (SLSS), the
RER Upgrade must also support SN signal modes.
This capability can serve as a ground-based SN
backup capability. Support of both SN and GN
modes by a GN ground terminal affords the option
to user missions to reduce transponder power and
weight by having only a SN mode capability.

SN modes use suppressed carrier modulation, as
well as PN spread spectrum signalling. Spread
spectrum operation also provides benefits by
allowing NASA to mitigate RF interference into, as
well as from NASA satcom links --- a key concern
as the RF spectrum becomes increasingly crowded.

Receiver. The receiver must perform the following
basic functions: Telemetry Data Demodulation,
Polarization Combining, Baseband Telemetry Data
Processing, Autotrack, Range Tracking, and Doppler
Tracking.

Telemetry data demodulation is required for both
SN and GN signals, involving both residual and
suppressed carrier formats. Moreover, in the GN
mode, up to 3 subcarriers may need to be supported
(e.g., engine data from Shuttle's three main
engines). The following signal modulations are
possible, involving symbol rates from 100 bps to 5-
10 Msps.

* Carrier PM Modulated by Data, Range Tones and
PSK Subcarriers (0-3)
Carrier PM Modulated by Data, CW Range
Subcarrier (Shuttle)

* Carrier FM Modulated by PSK-Modulated
Subcarrier (Shuttle Engine Data)

* Carrier FM Modulated by TVIAnalog Data
* Carrier FM Modulated by Digital Data (FSK)
* BPSK, QPSK, PNJBPSK, SQPN.

Polarization combining of orthogonal polarized
signals has been an important and necessary feature
of the current GN MFRs. The extent that
polarization is needed varies from spacecraft to
spacecraft and even pass to pass. Polarization
combining seems to be particularly critical for high
elevation passes.

The antenna system provides X-axis (6x) and Y-
axis (6y) error signals, each in two orthogonal
polarizations, to the receiver as part of the
autotrack function. Analogous to the processing
of the two orthogonal sum channels (X, and &),
the receiver must: (1) optimally combine the
orthogonal error signals for each axis, (2)
amplitude detect the combined signal, and (3)
provide the recovered X and Y error signals to
the antenna tracking system.

Ranging. The existing GN ranging function is
implemented in separate equipment from that of
the exciter and receiver. For the REiR Upgrade,
an important goal is to integrate the ranging
function into the receiver and exciter. This
approach reduces and simplifies equipment, and
thereby, reduces operations and maintenance
costs. GN ranging is a tone ranging system, in
which transit time is determined by comparing
the phases of transit and receive tones. Tones
from 500 KHz to 10 Hz are used, in conjunction
with an ambiguity resolving PN code for range
ambiguities of 644,000 Krn. An accuracy of 1
meter (1 o) is required at a GIN, of 50 dB-Hz.

Transmitter. The transmitter must perform the
following basic functions: Command Data,
Modulation, Range Tone Generation, Test Signal
Generation, Frequency Upconversion (to S-
band), Range Zero Set, and Command Echo
Verification.

For the uplink command signal, the modulation
is required to provide for (1) GN Mode: a PM
signal with either datalrange tones directly on
the carrier or on a subcarrier, and (2) SN Mode:
PSK signal withlwithout PN spreading. To
enhance overall operability and maintainability,
the transmitter must also be capable to operate
as a test signal generator for the receiver, which
requires the generation of all the input signal
modes and formats noted earlier for the receiver.

In summary the RER Upgrade must not only
meet current GN and SN requirements, but also
provide this capability in a fashion that reduces
costs and enhances operations. Also critical is
that the Upgrade be compliant with AGNS, by
facilitating high-levels of automation and
standard interfaces.

UPGRADE RER ARCHITECTURE

In response to the above needs, an upgrade
architecture has been developed and is shown in
Exhibit 1. Both uplink command and downlink
telemetry signal processing are implemented in
equipment chains or strings. Key features to note
are:

A processing "chain" consists of dedicated
equipments that handle all processing between
baseband and RF, thereby effectively eliminating
all switching in operational signal paths

Levels of reliability are achieved through
redundant processing chains, which can operate in
various "stand-by" modes, depending on
outagelcontingency requirements

Additional receive chain reliability is achieved by
configuring two or more receivers within each
receive chain at the multicoupler output.

The upgrade architecture is modular, flexible, and
expandable --- critical characteristics to meet current
and future growth requirements. Accordingly, each
station can tailor the specific number of chains and
redundant units within chains to suit their individual
needs and service support requirements. For
example, Shuttle support, which requires high
reliability, may be achieved with additional
processing chains andlor additional receiver units
within a receive telemetry chain.

This so-called "string" architecture has also been
adopted by NASA's STGT (Second TDRSS Ground
Terminal) in response to lessons learned from
WSGT, which uses a pooled equipment approach to
architecture. The GN Upgrade architectural
approach is greatly facilitated by advanced flexible
receiverltransmitter units (described below) which
are compact and relatively low cost. Today's rack
of equipment for a single receiver or transmitter can
be reduced to a single chassis or drawer within a
rack.

In another related effort, all telemetry baseband
processing is being performed within a single PC,
further enhancing the "string" architecture approach.
Based on these efforts and advances in signal
processing, Exhibit 2 depicts the corresponding
hardware configuration that supports the advanced

Exhibit 1: RER Upgrade Architecture

STATE-OF-THE-ART RER EQUIPMENT I RER HARDWARE ARCHITECTURE I

Flexible Advanced
Receiver FAR)

IF-Sampling Downconversion via a
programmable CCD - Elimination of Conventional IF-to-

Baseband Mixers . Wide Dynamic Range
Reduced Rate AID Conversion at
Baseband
Configuration Flexibilrty

I Reduces Digital Signal Processing
Burden

Firmware-Based Signal Processing
of Baseband Signal - Enhanced Configuration

Contrd and Flexibility
Hiahlv-FlexibldMaintainabld
~ i l i i ~ ~ t a b l e : ~ p ~ ~ d ~ b d g e ~ ~ ~ n O n Advanced Demodulation Algorithms

Optimally Exploits Both Carrier and
Data Portion of Signal

e Optimally Combines Dual Pdarized
Signals (GN)
Optimally Comb is Quadrature
PSK Signal Components (SN)

I Flexible Advanced
ModuhtorlExciter (FAME)

DDS-(Direct Digital Synthesis)
Based Design
Provides Uplink and Receiver Test
Signals
Highly StableIMaintainable

I I I

0711 1/94 PAPER_94\TB1102

Exhibit 2: Advanced Architecture Hardware Description

Station Architecture. In effect, one command
chain and one telemettry chain (with two
receiver units) can be reduced to a single rack --
a reduction of more than 4 to 1.

A receiver design has been developed to meet
the requirements and design goals noted earlier.
The receiver, referred to as the Flexible
Advanced Receiver (FAR), is an evolution of
the advanced CCDISoftware receiver technology
developed under sponsorship of NASA
MQICode 0 (Advanced Systems) and
GSFUCode 53 1. The FAR is a state-of-the-art
(SOA) system employing novel architecture and
advanced technology to provide extensive
capability in a compact package. Moreover, as
the name indicates, much of the receiver
processing is performed in software which
promotes the desired flexibility and
maintainability.

The receiver is comprised of two fundamental
processing blocks that maximize the use of SOA
analog processing, employing programmable
CCD's (Charged Coupled Devices) followed by
firmware processing, using multiple Motorola
DSP96002 DSP chips. The CCD is essentially
an analog tapped delay line with programmable
tap weights. The FAR CCD is the 2-ATC chip
which is the latest of Lincoln Lab's
programmable CCD chips. The 2-ATC chip is
specifically tailored for NASAISN applications,
and was developed under sponsorship of NASA
HQICode 0 (Advanced Systems) and
GSFUCode 53 1. The resulting architecture is
extremely powerful, yet flexible to support a
wide range of signal formats and conditions
through software changes only.

Exhibit 3 presents the FAR receiver architecture,
showing support to all six input channels
required to handle polarization combining and
autotrack processing. As shown, there are four
basic modules whose functionality is highlighted
below:

Common IF Module - Tunes 1st IF to a Common Fixed IF (e.g.,
140 MHz)

- Performs Noncoherent AGC on

Wideband Input Signal
Advanced Diversity Demod (ADD)
- Optimally Combines GN Orthogonal

Polarized Sum Channels (ZA and &)
- Optimally Processes SN BSK Quadrature

Components (I and Q)
- Demodulates CarrierISubcarriers to Provide

Telemetry Data & Range Tones
Autotrack IF Processor (AIP)
- Provides Digital Difference Channel Samples

to ASP
Autotrack Signal Processor (ASP)
- Combines Dual Polarized Channels
- Provides Amplitudes to Antenna Subsystem

for Antenna Pointing.

Preliminary design analysis indicates that the FAR
receiver, in its full capability, will consist of 15
printed circuit boards or cards. Noteworthy is that
specific functionality is assigned to distinct cards, so
that a station needing less capability can simply
remove corresponding cards and save costs. For
example, a user not requiring autotrack can reduce
the card set by five. The card set is comprised of a
combination of COTS (Commercial-off-the-shelf)
and custom cards.

The heart of the FAR is the Advanced Diversity
Demod (ADD) which provides the powerful signal
processing capability. The ADD high-level
architecture is shown in Exhibit 4, which depicts the
analog front-end followed by DSP firmware
processing.

The CCD card receives the IF sum channels (I;, and
&) from the Common IF module. The input IF is
140 MHz, and is downconverted to a third IF
through a novel scheme using a Track and Hold
Amplifier (THA). The THA, whose sample rate is
controlled using a NCO provides an aliased signal
component at a lower IF which is extracted by the
anti-aliasing low-pass filter.

The lower IF is then IF-sampled by the CCD to
provide an analog sampled baseband output signal.
The signal consists of alternate quadrature I and Q
samples. Relative to conventional mixing to
baseband, IF sampling eliminates the "sin/cos"
mixers, and provides all the information in a single
path, with substantially reduced complexity.
Moreover, by appropriately adjusting the CCD
programmable tap weights, the CCD performs as a

DOPPLER DATA
CCD. IVD TIMING (A,B)
RECOVERED DATA

RECOVERED DATA

I I I U Y ~ rnrcn-a*!trn~ao

Exhibit 3: Advanced Receiver Architecture

Recovered Data

A/D of Baseband Si

Firmware Processing

07/11/94 PAPER_94\TBI 103

Exhibit 4: Advanced Diversity Demod (ADD) Architecture

matched filter in three ways: (1) matching to the
alternating (1.-1) of the "peaks" of the IF CW,
(2) data matched filtering by accumulating
samples from the same symbol within a CCD
length, and (3) PN code despreading with a
local PN code (for spread spectrum signalling).

The CCD weighted-sample accumulation is a
critical aspect of this unique architecture in that
it greatly reduces the processing requirements
imposed on the subsequent digitayfmware
processing. This, coupled with the wide
dynamic range inherent in analog processing,
provide significant benefits over pure digital
receivers. Furthermore, the 2-ATC chip
provides two distinct CCDs on a single chip
(ideally suited for two orthogonal polarized
signals or quadrature QPSK components)
offering the potential for compact, low power
applications.

The analog CCD output is AID converted and
provided to the digital cards for signal
processing-- all in pP firmware. There are four
DSP cards to handle carrier, subcarrier, and
range processing. All DSP cards are identical,
having the same hardware architecture. Key
features are listed below:

Four 32-Bit DSP96002 Floating Point DSPs
- Arranged in a Fully Interconnected

Modified Hvwrcube Architecture
- Operating at 20 MIPS each with Full

Resource Redundancy
* Design Repetition at Each Processor

Standardizes Programmer's Interface
* Serial Communications

- 4 LAN and up to 8 Serial Ports
- Eurobus Digital Interface Facilitates

System Expansion through Memory-
Mapped Add-On Cards.

Receiver signal processing uses the receiver
architecture discussed above to perform the
following basic functions: (1) Signal Tracking
(carrier, symbol, PN code), (2) Polarization
Combining, (3) Subcarrier Processing, and (4)
Range Processing. All signal processing
performed to support signal tracking is
performed in DSP firmware that, in turn, adjusts
appropriate NCOs to effect tracking. An
"integrated" receiver tracking approach is used

in which, for example, the symbol synchronizer is
used for data-directed carrier tracking operations.
This improves overall SNR performance relative to
conventional Costas Loop operation for PSK
signalling. For the FAR, it is also applied in a
novel way to optimally demodulate PM modulated
signals.

TRANSMITTER ARCHITECTURE

To complement the receiver performance upgrades,
and support the overall RER Upgrade architecture,
a new, flexible transmitter design has been
developed. The new transmitter architecture,
described in Exhibit 5, is referred to as the Flexible
Advanced Modulator/Exciter (FAME). It makes use
of emerging technologies such as Direct Digital
Synthesis (DDS) and embedded micro-controllers
that allow for effective automation.

The FAME architecture is divided into five
functional blocks: (1) Baseband Modulator, (2)
Upconverter, (3) Verification Receiver, (4)
Synthesizer, and (5) FAME Controller.

The Baseband Modulator stands to benefit
significantly from DDS technology. Exhibit 6 is the
high-level Baseband Modulator architecture, and
shows the extensive use of highly integrated ASICs
now available for DDS, Forward Error Correction
(FEC), and PN Coding. Use of ASICs promises
dramatic size reductions as well as enhanced
automatic control capability. To make the
transmitter as flexible as possible and make efficient
use of the emerging technology, eight MUXs allow
for the routing of digitally represented waveforms in
a variety of paths such that it can assemble a
diverse set of signal structures. The DDS ASICs
themselves offer excellent phase and frequency
resolution with minimal or no calibration.

SUMMARY

An advanced station architecture has been designed
that promises to substantially reduce equipment and
operational complexity. The architecture is based
on new, flexible receiver and transmitter units that
uniquely leverage the state-of-the-art in both analog
(e.g., CCDs) and digital signal processing (DSPs)
technologies. Noteworthy is that the capabilities of
this equipment can simply evolve and expand
through software changes.

Ccammnd Uplink @ R Vaitistion Signal fram PA

RF RCVR Tan1 Signal

IF RCVR Test Signal

I(.rmvorrd Command Data
fran Vsrification Signal

Exhibit 5: Flexible Advanced Modulator/Exciter Architecture

Under uC

c o ~ m l c w m 1 conlml

Exhibit 6: Baseband Modulator Design

+To DAC

2. Development Tools Page 897 .. -
SD.2.a Automating Testbed Documentation and Database Access 899-904 r5-2

Using World Wide Web (WWW) Tools
Charles Ames, Brent Auernheimer, Young H. Lee

ex< 2. ,*

SD.2.b * Towards a n Integral Computer Environment Supporting 905913 "-x -. B
System Operations Analysis and Conceptual Design

E. Barro, A. Del Bufalo, F. Rossi
cp

SD.2.c SEQ-POINTER: Next Generation, Planetary Spacecraft 915-922 ~ ~ 6 3 fi
Remote Sensing Science Observation Design Tool

Jeffrey S . Boyer .. "j"
SD.2.d * Knowledge-Based Critiquing of Graphical User Interfaces 923-928 Q+ !

With CHIMES
Jianping Jiang, Elizabeth D. Murphy, Leslie E. Carter,
Walter F. Truszkowski

SD.2.e SEQ-REVIEW: A Tool for Reviewing and Checking 929-936 " .
-

Spacecraft Sequences
Pierre F. Maldague, Mekki El-Boushi, Thomas J.
Starbird, Steven J. Zawacki

SD.2.f Simplifying Operations With a n UplinWDownlink
Integration Toolkit

Susan Murphy, Kevin Miller, Ana Maria Guerrero,
Chester Joe, John Louie, Christine Aguilera -

SD.2.g ELISA, A Demonstrator Environment for Information Systems 945952 3 %
Architecture Design

Chantal Panem
SD.2.h Software Interface Verifier

Tomas J. Soderstrom, Laura A. Krall, Sharon A. Hope,
Brian S. Zupke

* Presented in Poster Session

35~21s
Automating Testbed Documentation and Database Access 6

Using World Wide Web (WWW) Tools
3- 2

Charles Ames Brent Auernheimer Young H. Lee
Jet Propulsion Laboratory California State University Jet Propulsion Laboratory

California Institute of Technology Dept. of Computer Science California Institute of Technology
Mail stop 179-206 Fresno, CA 93740-0109 Mail stop 301-340

Pasadena, CA 9 1 109 2092782573 Pasadena, CA 9 1 109
818 354 7098 209 278 4197 (fax) 8183541326

818 393 6154 (fax) brent-auernheimem CSUFresno.edu 818 393 4100 (fax)
chuck@ tsunami.jpl.nasa.gov young@natashi.jpl.nasa.gov

Abstract
A method for providing uniform transparent
access to disparate distributed information
systems was demonstrated. A prototype testing
interface was developed to access documentation
and information using publicly available
hypermedia tools. The prototype gives testers a
uniform, platform-independent user interface to
on-line documentation, user manuals, and
mission-specific test and operations data. Mosaic
was the common user interface, and HTML
(Hypertext Markup Language) provided
hypertext capability.

Introduction
The Jet Propulsion Laboratory's Test
Engineering Laboratory (TEL) evaluates new
technologies for possible use during spacecraft
system testing.

Formal test environments are highly structured
and information intensive. Information that may
be useful for later analysis of failure reports or
change requests is not always obvious during
system test. Clearly, it is better to err on the side
of collecting data that may never be used.
Testers also consult numerous reference
documents, including test plans, handbooks,
acronym lists, and glossaries.

For these reasons, spacecraft system testing is a
paper-intensive operation. The project described
in this paper addresses this problem using freely-
available, multi-platform hypertext interfaces.

Several NASA centers support related work. An
inter-center working group, ICED l (Intercenter
Electronic Documentation workgroup) i s
informally organized to share information among
groups exploring the use of hyper- and multi-
media interfaces to testing, operations, and
ground data systems.

This paper is organized as follows: the context of
the prototype, the JPL system test environment,
is described; next, the development of the
prototype is outlined; the transition from
prototype to product is documented; finally,
future work is described.

The JPL System Test Environment
JPL's Advanced Multi-Mission Operations
System (AMMOS) is a . networked computer
system consisting of 28 software and hardware
subsystems. Its principle purposes are to
sequence and uplink commands to spacecraft and
to process downlinked telemetry. Both testers
and users provide feedback to AMMOS
developers about needed repairs and
improvements in the form of Failure Reports
(FRs) and Change Requests (CRs) which are
stored in the Anomaly Tracking System (ATS)
database. Developers and testers refer to this
database to prioritize their work.

 ICED has regularly scheduled teleconferences and
maintains an on-line repository of findings. The contact
person for ICED is Anthony Griffith,
agriffitw jscprofs.nasa.gov.

Preparation for system test occurs in parallel with
system development. Test preparations include:
writing test plans; organizing test cases, data, and
scenarios into test procedures; defining
acceptance criteria; and negotiating the test
schedule.

System verification and validation includes
functional, performance, security, and reliability
testing. Test logs are maintained, reports are
generated, and FRs are written detailing
software, hardware, or configuration failures.
Engineers generate CRs in response to FRs. A
change board approves or disapproves each CR
after impact analysis.

As proof of concept, a variety. of physical
documents used by testers were converted to
hypertext. These documents include:

References: Test Engineering Handbook,
Acronym List, and Glossary
AMMOS User manuals and guides
Flight project specific documents: test
plans, procedures, and reports
Articles posted to the Internet about
software testing.

More than 4MB of testbed specific documents
were converted to hypertext. All of these
documents are accessible through a WAIS (Wide
Area Information Server) full-text search and
retrieval [WAIS]. Figure 1 is the result of a
WAIS search of software testing articles.

HTML (HyperText Markup Language) was used
to decorate text with hypertext tags (links and
anchors), and to make explicit the logical
structure of documents [HTML]. A client-server
relationship is a fundamental assumption behind
the use of markup languages and related
presentation clients (viewers). That is, authors
embed tags in their documents to make the logical
document structure discernible by client viewer
programs. For example, an author may wish to
organize information as a bulleted list. Figure 2
shows the document as authored, and the
document as presented by two client viewers
(Mosaic and Lynx [Mosaic, Lynx]).

I automation

Rc AtbibuW d Automated Tutr
EE ~ t u b u t u a hutwaahd Tutr
ANNOUNCEMENT: TESTJND C- S o m V a -
~ O S T : T u i i n e C o m u M S W C ~ m c e
Re Atlnnutcr ot Autmotul 'Puts

e *#*a- : prr Atb.%utu of hlrtomalcd Tests
e 8 a #- : RE A?tm:utu sf Automatcd T&J

- . It*- : RE Amibutu o! hutornoted Tests
4 I##- : T u t h r k c ~ C&&
4 t t : P S ~ ~ B C ~ontwut S O ~ U O ~ w w C O ~ W _ S M
e $+ : &k(h71uW llf Autbm&-

Figure 1. Result of WAIS search

 Tuesday
 Uednesday

Figure 2. HTML, Mosaic and Lynx
example (cont'd on next page)

Document URL:
-........-

Figure 2 (Cont'd). HTML, Mosaic and
Lynx example

It is important to note that the format of the
presentation is determined by the client interface.
The advantage of this separation of logical
structure and format is that HTML clients exist
for several platforms. A disadvantage, however,
is that authors cannot be sure of exact placement
of objects on users' screens. This is unacceptable
for certain engineering and operations tasks.

The TEL prototype demonstrates the use of
graphical data to resolve this problem. Graphical
data can be traditional images or documents
requiring a specific display format. Mosaic
invokes data-specific viewing applications during
the interpretation of an HTML document. For
example, mission Sequence of Events (SOE)
schedules and Space Flight Operations Schedule
(SFOS) timelines are difficult to represent in
HTML. The SFOS is a graphical timeline
representation of critical information contained in

the SOE. The prototype maintained a uniform
user interface by launching special viewers for
these documents from Mosaic. Figure 3 is the
result of a query for an SOE segment.

Figure 3 An SOE segment.

Finally, the prototype's most innovative aspect
is the access provided to the existing Anomaly
Tracking System (ATS) database of failure
reports (FRs). The ATS is essential to the daily
work of JPL testers. The prototype allows ATS
information to be queried in a straightforward
way by any combination of spacecraft,
subsystem, criticality, date, and other criteria.

Previously, access to an FR database required the
use of a commercial relational database interface,
or telephone calls to support personnel requesting
that a query be submitted. Using the capabilities
provided by Mosaic it is possible to significantly
simplify query formation and submission. This
makes the FR database accessible to users
unfamiliar or uncomfortable with relational
databases. No modification to the existing ATS
system was necessary.

Figure 4 is the search form as it appears using a
Mosaic interface. Users compose a query by
clicking buttons to choose menu items. The form
in Figure 4 has been set up to choose a "listing"
format of all open failure reports. The query is
submitted by clicking the "generate" button. This
new interface provides simple and consistent

access to users from any workstation. Users
have reported a reduction in time required to
access the ATS and an increase in utility of the
ATS system. The result of the query is shown in
Figure 5.

theWWWhtd8ccto &cMOSO AnomeTraddngSystrm FBIoutthebrmbdowamd
n'Gmulte' torebiwc .Lt 01 FdmRepolts.

..............................

LlSE - Lwel 1 System Engineering
LPSE - Lwel 1 Syslem Engineering

(M) MlSSlON CONTROL &DATAMANAGEMENT -
CMD - Command
DBA - Database Adminklration
DMS -DataManagemen1 Subsystem
DPS -Data Produds Subsystem

i zJ'lRlow:

..............................

Figure 4. FR database query form

The Mosiac interface to ATS was implemented
using a Common Gateway Interface (CGI)
extension to a World-Wide-Web (WWW) server2
[WWW, CGI]. CGI extensions are used to
create interactive documents. Figure 6 illustrates
how CGI defines the interaction between a
WWW server and programs run by the server to
carry out special client requests. User inputs are
encoded by Mosaic as special Uniform Resource
Locators (URL) and passed to the WWW server
[URL]. The server invokes the CGI application
and passes the user's inputs to it. The CGI

2 ~ ~ ~ ~ s httpd v1.3 was used for both the prototype and
delivered system

application then carries out the user's request
(e.g., extracts data from a database) and sends
the result back to the WWW server in HTML
format. Finally, the WWW server forwards the
result back to the client viewer for presentation to
the user.

ATS Search Results I Ill
This report contrhu a f l h g of a l l ~ ~ w c ~ ~ m d u ~ ~ ~ ~ e d g a t l o ~ CDB
sublynrm

M A - (1LL - CDB - Vl9d -- C a t 2 : P d l - - OPEN(Mull,1994)
Drctiplbn: C D B ' B u W doem'twrk wm.lorh.mu data I tutcdthis uring
unchu e n g . (q u t ~ u l l) . n d d u a W d~tltl(quatrbdod7). B s d r y I ~ d FBIlr
reprucntcddIK.inthuc2cuu d h b o t h c . s ~ , ~ w ~ ~ d . A n shews th&r ot
bcrtingforuschuulM m &

S 1 W - MM - CDB - VIVv19EV17 -- CrilZ : Pri 1 -- OPEN(Scp41993) -
Drc.iplbn:cdb andmy dahbuehg ' s inumccf onfflu &at mloadcd- tksuvurunr
onu tc t~nc- cso~o~k. .tth~ttimc~d~~it11&uytime~1dtags~efflc8hrs h
~ h e e o l ~ m b w u l o ~ d e d - 1 M O u t c - Il:Wun-lMO&uy-6:@0pnrthc6:mpm :

is thchethatcdb w d d t a g ~ ~ c I o ~ d e d . t l ~ u t c I :I =. - MM - CCD - VI8J -- C d t 3 :PniJ -- OPEN(Feb2.1993)
Daezinthn:lF AN ATTEMPT IS MAKE TO REPLACE A FILE WHEN THAT FILE \ 1: 11
DOESNOT EXIST, THEERROR MSG-USW'SALEX NOT AUTHORIZED TO
REPLACE FlLE'COZU~1'POR'MO,95, CMD-DSN" THISIS MlSLEADlNO SINCE
SALEXCAN SUCCESSFULLYREPLACE IFTHEFILE IS ALREADY IN THE PDB. I 11

Figure 5. Result of FR database query
using Mosaic interface

WWW Browser

I Sewer Extension 1
I

I

WWW Sewer Header
I 1

J.
Server

Figure 6. WWW server extensions

Development of the prototype
The prototype system was developed over 12
weeks by three people. It consisted of
approximately 2000 pages of hypertexted hard
copy documents, and 1500 lines of Per1 scripts to
interface with the existing ATS database front
end [Wall and Schwartz].

One of the advantages of using HTML and
Mosaic viewers was that potential users were
able to see working prototypes quickly as
development continued.

The prototype has provided a foundation for
future work by demonstrating user-level
integration of separate information systems and
providing a uniform view of these systems
across workstations.

HTML and Mosaic were chosen over other
systems for several reasons. Adobe ~c roba t3
offers excellent cross-platform document
browsing capabilities, but provides only
rudimentary support for hyperlinks and does not
support client-server interaction, making it
difficult for one server to support multiple
platforms over a wide area. Hyperman [Crues],
developed at the Johnson Space Center and based
on Adobe's PDS (Page Description Language),
allows personal annotations and stronger
hypertext capabilities, and will support the client-
server model in the future. However, neither of
these tools support "on-the-fly" document
generation required for access to ATS, nor do
they allow integration of user-defined viewers for
unanticipated data types.

Current status
The TEL's prototype system has become a
product supported by the Multimission
Operations Systems Office (MOSO). The
production version includes a hypertext form for
submission of change request (CR) queries, as
well as forms for submission and update of FRs
and CRs. A larger effort is under way to convert
AMMOS user documentation to HTML format,
and the Cassini project is making much of its
project documentation available through HTML
clients.

Future work
One problem with using client user interfaces to
interpret tagged hypertext documents is that
clients may interpret logical organization tags in
documents as suggestions rather than
commands. Clients are free to display documents
in idiosyncratic ways. In practice, the behavior of
clients is not as anarchical as it sounds.

Because of the necessity of absolute format
control in some engineering and operations
documents, the TEL is continuing to evaluate
extensions to HTML. In particular, HTML+
[HTML+] promises to provide increased support
for mathematical symbols, tables, change bars,
and floating panels (sidebars).

Second, future prototypes will allow testers to
attach "personal annotations" as well as MIME
(Multimedia Internet Mail Extensions) [MIME]
format objects (i.e., screen dumps, core files,
support documents, etc.) to FRs.

Third, the Deep Space Network (DSN) maintains
a similar problem report tracking database
accessed by sites worldwide. A system based on
the TEL prototype and MOSO ATS product is
being developed.

Summary
The TEL prototype demonstrates an integrated,
consistent view of existing distributed
information systems using low cost tools. In
some cases, greater integration is achievable
using hypertext (i.e. linking references to FRs in
documents to the FRs themselves). Making
information available in this way reduces delays
due to information not being readily accessible
when needed.

3~crobat is a trademark of Adobe Systems Incorporated.

Acknowledgments interface. Diane Miller and Debbie Tsoi-A-Sue
provided logistical support.

The work described in this paper was performed
at the Jet Propulsion ~ a b o i a t o r ~ , California
Institute of Technology, under a contract with the Availability
National Aeronautics and Space Administration. The URL for the TEL's homepage is
Specifically, David Hermsen, manager of the http://tsunami.jpl.nasagov/tel-home.html.
TEL, recognized the potential of this work and
supported the effort. John Louie assisted with the
p6t'~typing of the Per1 interface to the ATS. Tho
Le developed the ATS production system

References

[CGU The CGI specification is http : / /hoohoo . ncsa . uiuc . edu/cgi.
[Crues] E. 2. Crues. HyperMan 2.0 Enhanced Electronic Document Viewing. Presentation to KSC Mini-

Workshop on Electronic Docurhentation, February 1994. Dr. Crues' email address is
ezcrues@gothamcity.jsc.nasa.gov.

IHTML] The specification is http://info.cern.ch/hypertext/WWw/MarkUp/HTML.html. A
beginner's guide is http : / /www . ncsa . uiuc/demoweb/html-primer . html.

wML+] The draft HTML+ document is ftp: //cis. internic .net/internet-drafts/draft-
raggett-www-html-00.txt.

[Lynx] Lynxisdescribedinhttp://ww~.cs.~kans.ed~/abo~t~~yn~/about~~ynx.html.

[MIME] MIME is described in RFC 1341, RFC 1343, and RFC 1344, available at
ftp://ftp.internic.net/rfc.

[Mosaic] The home page for Mosaic is
http://www.ncsa.uiuc.edu/SDG/Software/~osaic/NCS~osaicHome.html.

[URL] An overview of URLs is http : //www . ncsa . uiuc . edu/demoweb/url-primer . html, The
specificationis ftp://info.cern.ch/pub/doc/url-spec-txt.

[WAIS] A bibliography of WAIS documentation is
ftp://quake.think.com/wais/bibliography.txt.

[Wall and Schwartz] L. Wall and R. L. Schwartz. Programming perl, O'Reilly & Associates Inc., 1990.

[WWIVJ Links to documentation about rhe World-Wide-Web, including a bibliography, are at
http://info.cern.ch/hypertext/WWW/TheProject.html.

TOWARDS AN INTEGRAL COMPUTER ENVIRONMENT SUPPORTING SYSTEM
OPERATIONS ANALYSIS AND CONCEPTUAL DESIGN

E. Barro, A. Del Bufalo, F. Rossi
VITROCISET S.p.A.

Via Salaria 1027
00138 Roma - Italia

ABSTRACT

VITROCISET has in house developed a
prototype tool named System Dynamic Analysis
Environment (SDAE), which aim is to support
system engineering activities in the initial
definition phase of a complex space system.
The SDAE goal is to provide powerful means for
the definition. analvsis and trade-off of
operations and design concepts for the space and
ground elements involved in a mission.
For this purpose SDAE implements a dedicated
modelling methodology based on the integration
of different modern (static and dynamic) analysis
and simulation techniques.
The resulting "system model" is capable of
representing all the operational, functional and
behavioural aspects of the system elements
which are part of a mission.
The execution of customised model simulations
enables:

the validation of selected concepts w.r.t.
mission requirements;
the in-depth investigation of mission specific
operational and I or architectural aspects;
the early assessment of performances
required by the system elements to cope with
mission constraints and objectives.

Due to its characteristics, SDAE is particularly
tailored for non conventional or highly complex
systems, which require a great analysis effort in
their early definition stages.
SDAE runs under PC-Windows and is currently
used by VITROCISET system engineering
group.
This paper describes the SDAE main features,
showing some tool output examples.

1. INTRODUCTION

Modern space systems are evolving towards
higher levels of complexity in both the
functional and behavioural domain. This is a
natural consequence of the increasing reliability
of technologies based on intelligence and
automation.
Spacecraft on board autonomy levels are
progressively enhanced, and more "intelligent"
and sophisticated operation control and support
systems are conceived and developed.
Such a context demands for a complex
engineering effort in the first phases of the
system life cycle, when

the suitable identification and I or selection
of mission elements,
the definition of system functions and
functional sharing between elements,
the establishment of a mission operations
concept,
the identification of system design and
performance drivers,
the validation of system conceptual
definition w.r.t. mission objectives,
requirements and constraints,

imply in depth analysis and trade-off among a
wide scope of interdependent technology and
implementation solutions.
The selection of an optimum mission
configuration and operational strategy also
affects heavily elements procurement or
development and utilisation risks and costs.
In parallel with the evolution of space operations
conduct and support technologies, it is therefore
necessary to adequately improve engineering
support aids to the conceptual design of the

mission and its constituting space and ground
elements.
This can be achieved through extensive use of
modern computer aided modelling and
simulation methods and technologies.
VITROCISET is working since some years in
this field, through:

a methodo1og;ical effort based on the
definition of an integral modelling
methodology for a complex system, capable
to suitably support different kinds of
representations (operational, functional,
architectural) for conceptually different
systems.
Such a methodology has been derived by
exploiting commonly adopted description,
analysis and simulation synthaxes (e.g. OOA,
SADT, Petri Nets).
a develovment effort for the integration
within a unique computer environment of
system description and analysis capabilities,
providing in this way the user with a single
point of access to the whole system
information, and means for information
derivation, handling, consistency check and
executable simulations preparation,
execution and evaluation.

o an a~vlication effort, aimed at exploiting the
computer environment capabilities in the
frame of concrete projects and at deriving
from the application experience requirements
for environment upgrades.

System definition and analysis methodology has
been already presented and discussed in
precedent papers of the same Authors (Ref. 3,5).
In parallel with the methodology development
and refinement, VITROCISET has developed a
PC based tool named System Dynamic Analysis
Environment (SDAE), which has been
progressively enriched in the last years up to
covering with automated support a large part of
the methodology characteristics.
The System Dynamic Analysis Environment
finds its natural application in the fields of
system operations analysis and systems
engineering, in the frame of both high level (A
and pre-B phases) studies related to satellite

operations and in the system definition and
design phase.
Currently, SDAE supports mainly the following
activities:

mission and system requirements definition
and management;
operations modelling;
functional static and dynamic modelling;

0 behavioural modelling;
e models parametrisation with operational and

performance attributes derived from mission
and 1 or system requirements;

0 executable simulation and statistical
evaluation of simulation results.

2. SDAE MAIN PRINCIPLES

SDAE tool is based on a layered modelling
approach, depicted in figure 1.

Level 1 Model

I Level 2 Model I

Power SI

Figure I : The Eayered Modelling Approach.

Each hierarchical layer is constituted by a set of
models which structure and organise system
information within well defined entities.
The scope and the purpose of the modelling
activities vary according with the level of details
of the system description.

On top layer, the entities managed by the tool are
the main mission elements (physical or logical),
such as the flight element(s) and its supporting
ground facilities, or the spacecraft environment
as well.
Entities can be functionally described as objects.
in all those static and dynamic aspects which are
of particular interest for the engineer in order to
analyse a specific problem for the mission.
At this stage modelling supports initial mission
analysis and operations concept definition
activities, such as selection of mission support
infrastructure, assessment of operational
strategies and derivation of related design
requirements and constraints.
A core modelling functionality enables the
definition of dvnamic relationships between
objects (in terms of e.g. data exchange, events or
dynamic modification of model parameters
which affect objects behaviour).
Lower level models can be progressively defined
for more specific analyses (e.g. command and
control concept definition, budget analyses,
element conceptual design and trade-offs).
The utilisation of a unique descriptive
methodology at all the levels of details enables a
straightforward traceability among the different
modelling layers.
At bottom level, the tool can support the
definition and description of end-to-end
functional architecture models for the mission
elements and their sub-components.
Any object at any level can be customised with
characteristic parameters and reused in different
contexts, even though at high level it constitutes
only a partial view of the described element.
The execution of interactive simulations is
therefore supported by a set of configurable
library modules, including environmental models
such as e.g. drag models and orbital propagators.
Simulation input parameters can be derived
directlv from associated reauirements, as well as
output parameters can be source for lower level
requirements through dedicated derivation rules.

3. SDAE DESCRIPTION

SDAE tool provides the capability to build and
execute dynamic operational, functional and
behavioural models of a system, associating
model parameters to mission or system
requirements.
A high level architecture of the SDAE is
provided in figure 2. Dotted lines in the figure
show functionalities which are presently under
development or test.

MMI
1 1 1

Libraries Simulators

' g:f 1 1 1 1
Model Pr p ration

Figure 2: High Level SDAE Architecture.

The SDAE is constituted by three separate
environments:
o Model Preparation;

Simulation Run;
o Evaluation.

simulation
Run

3.1 MODEL PREPARATION B

Evaluation

Models are generated by means of:
o an obiect management facility (under

development) for the static definition of
basic model entities and their
characterisation by means of a set of
variables;

o a model editor facilitv for the end-to-end
description of objects dynamic behaviour and
relationships or interfaces;

0 a reauirements management and link facility
for the models parametrisation with numeric
parameters derived from mission or system
requirements.

The model objects descriptions can be stored
within object libraries and reused.
Models can also be interfaced at design time
with external application specific simulation

libraries, with which they exchange data and
status at run-time, providing in this way a
realistic scenario for the simulation.
The Model Editor realises the core modelling
functionality.
Such an editor is based on a Petri Nets-like
synthax, and exploits a dedicated extension of
Petri Nets methodology.
The editor enables the model dynamic
specification through:

a core state-transition network with
deterministic and lor stochastic
transitions;
a predicates editor, which supports the
definition of network predicates
(conditions and actions) by means of a
dedicated simulation language, and

enables the model link with external
simulation libraries.

The Requirements Management and Link
facility enables the mission 1 system
requirements handling, through:

e a requirements database editor;
a linker between model variables and
numeric requirements parameters, with
possibility to specifL input and output
links, together with derivation rules for
derived parameters;

The model preparation environment also enables
the generation of ad-hoc panels for simulation
monitor and control.
An example of SDAE preparation environment
display output is provided in Figure 3.

Figure 3: SDAE Model Preparation Environment.

3.2 SIMULATION RUN The simulation execution environment allows:
e initialisation of simulation parameters (e.g.

Once the model has been generated, a simulation duration, step) and variables;
can be executed by means of the Simulation three different modes of simulation:
engine of the tool. e batch (the model works stand-alone with

user interface);

e step by step (the model stops in case of
firing conflicts in order to highlight
decision branches in system behaviour);
debugging (the user decides which
transition shall fire, among those enabled,
in order to experiment predefined
behavioural paths);

e capability to stop, continue or restart a
simulation with the same or different initial
conditions;
user interaction in batch mode, by means of
monitoring and controlling the model
through customised control panels defined at
design time;

e simulation history log;
on-line display of simulation statistics.

During the simulation, the run module executes
the model syntax, interfacing with external
simulation software.

The capability of defining firinn conditions for
the network transitions enables the
implementation of priorities, in case the
modelled process is fully deterministic, i.e. no
resource conflict between concurrent functions is
allowed.
The definition of transitions associated actions
enables the parametrisation of network tokens,
modelling in this way the availability of different
kind of resources within the system.
Examples of simulation execution environment
display outputs are shown in Figures 4 and 5.
The shown examples reflect different simulation
and design objectives, as pertaining to different
stages of system life cycle.
The application shown in Figure 4 has been
developed within ESAJDornier ARTSTOTELES
Phase A and Pre-B studies.

Figure 4: Simulation output example: ARISTOTELES ORM Analysis.

It constitutes the modelling of a spacecraft The overall objective of the study was the
operational process, the Orbit Raise Manoeuvres definition of an optimum strategy for satellite
(ORM) execution process, which involves tracking and ORM execution, identifying the
ground, spacecraft and environmental functions. impacts of the selected strategy onto the flight

element and ground segment architecture.

In particular the following topics were addressed
by the study:

define the on board autonomy level, working
on the flexibility of the mission;
identify a safe orbit maintenance manoeuvre
sequence;
ensure required scientific return from the
system operations viewpoint;
identify the interrelationship of chosen
coverage, link budget and memory budget
with the selected operational strategy;
validate the sequence of events in the
operational scenario;
analyse consequences of failure on the
chosen design (e.g. redundancy philosophy).

Figure 4 shows:
the model of ORM process within the
Simulation Run Environment display screen;
the ORM monitor panel, including an orbital
propagator (external module) outputs and
significant simulation variables monitoring;
the Altitude display panel with an
atmospheric drag model (external module)
output;
the log display of satellite contacts with
Kiruna Ground Station, as computed by the
orbital propagator.

The execution of the ORM process model for
different initial conditions and environmental
conditions (contact failures scenario) has enabled
the selection and validation of an operations
strategy, which satisfied all the system
requirements in the defined worst case
conditions.
The model has also been exploited as a
breadboard of the process under study, deriving
and verifying quantitative parameters
determining the sensitivity of the strategy (and
therefore strategy failure conditions) to the
variation of any of the parameters of the model,
like e.g. the spacecraft decay rate or the altitude
determination errors, with respect to the
reference values.
A wide number of statistical results about the
process under study has been derived, as the time
distribution of manoeuvres intervals and of
manoeuvres size, the deadband utilisation figure,
the scientific return distribution.

Finally, concrete impacts on the space and
ground architecture have been identified on the
basis of simulation results, especially with
respect to On Board Data Handling System (in
terms e.g. of definition of autonomous functions,
sizing of mass memory required for manoeuvres
parameters storage) and Ground Station
architecture (e.g. need for a dedicated ground
station, which has been derived as an "a
posteriori" constraint for successful exploitation
of ORM strategy).
The application shown in Figure 5 has been
developed in the frame of ESAISAT CONTROL
Hermes Board Observability Breadboard (BOB)
software project.
The BOB is a spacecraft simulator which models
the generation and downlink of Hermes
telemetry, with the scope limited to Guidance,
Navigation and Piloting (GNP) functions.
The objective of the BOB is to provide a mean
(breadboard) for the definition of an optimum
telemetry strategy, and the verification of how
this strategy copes with spacecraft observability
requirements.
In this context, VITROCISET has been
responsible for the definition and development
of the on board Telemetry Generation Assembly
simulator, which reproduces the generation of
CCSDS telemetry packets on the basis of on
board events and operator directives, and their
delivery to Communications subsystem for
downlink.
The Telemetry Generator Assembly (TGA) was
designed with the SDAE simulation support.
A behavioural model of the assembly was
generated and executed, in order to validate
system behaviour w.r.t. specifications, to
experiment different implementation solutions
and to derive performance objectives for the
software modules in order to cope with system
requirements.
The model was able of fully reproducing the
system behaviour, including partial modelling of
hardware equipment (disk driver, buffers).
As an example, the model reproduced the
following characteristics:
0 packet generation directives acceptance and

rejection policy (including input data format

and parameters check and consistency check
with current packet generation status) and
related timing;
directives processing operations;
directives scheduling policy (e.g.
insertioddeletiodupdate of schedule items,
schedule execution tasks "jumping" in case
of critical delays) and related timing;
internal synchronisation and priorities (e.g.
enabling 1 disabling of packet playback on
the basis of schedule status, blocking and
non blocking operations, internal overrides);

e packet generation policy (e.g. handling of
measurement variations occurred during the

generation of a packet, generation policy of
supercommutated packets).

The model accepted as an input a timeline of
telemetry generation directives, and enabled the
operator interaction by means of issuing at any
time new directives for the model. The output of
the model was a list of generated packets, with:

packet generation and delivery times;
list of included measurements and related
values.

The time resolution of the simulation was chosen
of 1 millisecond.

Figure 5: Simulation output example: BOB TGA Architectural Design.

Figure 5 shows:
the process model within the Simulation Run
Environment display screen;
the test operator monitor and control panel,
including:

directives panel for the generation of
telemetry generation directives by the
operator;

* packet generation status monitoring panel;
current system schedule;

status of the main system functions.
The execution of the TGA behavioural model
provided the designer with a lot of information
on the system. In particular different scheduling
policies and packet ,generation policies have been
tested before selecting the one which optimised
system functioning under nominal and peak load
conditions.
Even though the model was at behavioural level,
inferences on system performances have been

derived by setting and changing maximum
allowed times for software tasks execution, and
deriving in this way objectives to be pursued in
single functions implementation in order to meet
the overall system performances.
In depth analysis of deadlock conditions has
been performed, by means of identifying and
quantifying the relationship between the input
data rate and the system response, which under
critical conditions is characterised by a
degradation in performances due to the skipping
of packet generation tasks in order to avoid
propagation of delay with respect to the
schedule.
In addition, the system response under different
modes of functioning (e.g. recorder, playback,
filler activated 1 deactivated with a predefined
rate) allowed the determination of packet
generation rate achievable in the different modes,
deriving in this way differentiated constraints for
packet generation function.
Finally, the partial modelling of some significant
time consuming hardware functions (access to
disk, inputloutput operations) enabled the

assessment of limits imposed by the hardware
onto system performances. -

3.3 EVALUATION.

After the simulation run, the log file is processed
by an Evaluation environment, which computes
and displays the main network statistics, i.e. for
each transition:

overall number of firings;
minimum, average and maximum time
between two successive firings.

The environment also supports the generation of
customised graphical reports by means of
interface with standard Windows facilities and
the processing of the log file, providing
statistical figures of predefined network
parameters and variables (e.g. distribution of
parameters values across the simulation).
An example of Evaluation Environment screen
layout is provided in Figure 6, representing the
ARISTOTELES ORM process model simulation
statistics.

Figure 6: Evaluation Environment output example: ARISTOTELES ORM Analysis.

912

4. CONCLUSIONS

SDAE prototype implementation has been
originated with the purpose of investigating the
system engineering process of a modern space
system in the first phases of its life cycle.
In particular, the ultimate objectives of the tool
were:
1. to provide an efficient breadboard for

testing "on the job", within limited
implementation costs and effort,
methodologies aimed at:

ensuring a harmonic and consistent
growth of system information in this
phase;

0 empowering system analysis and
validation capabilities, especially for
highly automated or non procedural
systems.

2. to derive requirements for methodologies
assessment and refinement, on the basis of
concrete engineering needs outcoming from
the tool application experience.

SDAE application has resulted to effectively
support both system analysis and conceptual
design, lowering the engineering effort for the
execution of operations analyses and
architectural trade-offs and providing, by means
of simulation, significant support to operations
and system concepts validation capabilities.
In particular the following characteristics of the
prototype have been found of particular interest,
especially in comparison with engineering tools
available on the market:
e the flexibility of modelling methodology,

which enables the easy generation and
maintenance of "on purpose" models,
without constraining the engineer to
rigorous top-down approaches, but at the
same time providing capabilities for system
information consistency keeping;

0 the adequacy of modelling and simulation
tools to non procedural, event drive
systems;

0 the reusability of model objects and
simulation modules;

the "live dialog" capability of system
models with mission and system
requirements parameters through numeric
data exchange and derivation rules, which
highly enhance ability to manage, control
and validate system information.

Those positive outcomes suggested the
prosecution of the internally funded SDAE
prototyping activity, which currently is being
performed in the direction of both:

improvement of tool modelling
powerfulness and engineering support
scope;
increase of tool application experience,
through the investigation of new
application areas, such as communications
and ground data control and distribution
systems.

REFERENCES

1. Agerwala T. 1979. Putting Petri Nets to
work. Computer, Dec. '89, 85-94

2. CISET. ARISTOTELES Phase Pre-B Study:
Satellite Autonomy. Ref. ARI-TN-CI-00 1,
Issue 1.1, April 3rd, 1992

3. E. Barro & F. Rossi. An Application of
Timed Petri Nets to Operations Analysis: the
ARTSTOTELES Autonomy Concept. In
Proc. ESA Symp. "Ground Data Systems for
Spacecraft Control", Darmstadt, FRG, ESA
SP-308,3 17-322.

4. SAT CONTROL. BOB Software and
Hardware Architecture Description. H-NT-
0 12 10-0286-SATC, Issue VO, September
8th, 1992.

5. E. Barro, A. Del Bufalo & F. Rossi.
Operational Characterisation of
Requirements and Early Validation
Environment for High Demanding Space
Systems. In Proc. NASA 2nd Symp. "Ground
Data Systems for Space Mission
Operations", Pasadena, California, USA,
November 16-20 1992,845-850.

SEQPOINTER: NEXT GENERATION, PLANETARY SPACECRAFT fJ. 6
REMOTE SENSING SCIENCE OBSERVATION DESIGN TOOL

Jeffrey S. ~ o ~ e r '
Jet Propulsion Laboratory

California Institute of Technology
4800 Oak Grove Drive

Pasadena, California 9 1 109
USA

Phone: (8 18) 354-3944 Fax: (8 18) 393-5074

ABSTRACT

Since Mariner, NASA-JPL planetary missions have been supported by ground software to plan
and design remote sensing science observations. The software used by the science and sequence
designers to plan and design observations has evolved with mission and technological advances.-
The original program, PEGASIS (Mariners 4,6, and 7), w9s re-engineered as POGASIS (Mariner
9, Viking, and Mariner lo), and again later as POINTER (Voyager and Galileo). Each of these
programs were developed under technological, political, and fiscal constraints which limited their
adaptability to other missions and spacecraft designs.

Implementation of a multi-mission tool, SEQPOINTER, under the auspices of the JPL Multi-
mission Operations Systems Office (MOSO) is in progress. This version has been designed to
address the limitations experienced on previoug versions as they were being adapted to a new mis-
sion and spacecraft. The tool has been modulai-ly designed with subroutine interface structures to
support interchangeable celestial body and spacecraft definition models. The computational and
graphics modules have also been designed to interface with data collected from previous space-
craft, or on-going observations, which describe the surface of each target body. These enhance-
ments make SEQPOINTER a candidate for low-cost mission usage, when a remote sensing
science observation design capability is required.

The current and planned capabilities of the tool will be discussed. The presentation will also
include a 5- 10 minute video presentation demonstrating the capabilities of a proto-Cassini Project
version that was adapted to test the tool.

The work described in this abstract was performed by the Jet Propulsion Laboratory, California
Institute of Technology, under contract to the National Aeronautics and Space Administration.

Keywords: remote sensing science observation, adaptable tool, interchangeable models, digital
terrain map-defined celestial body

INTRODUCTION

POINTER provides functionality analogous to a professional photographer's process of preparing
for and taking photographs. POINTER supports this process for a remote robotic photographer
that has no control over the environment where it has been sent to gather images and other data of
the surrounding phenomenon. The functions which are similar to the photographer's process
define the foundation of POINTER. These foundation functions are listed and illustrated in Figure
1. In SEQ-POINTER, the functions have been designed and implemented for multiple missions.
The mission specific capabilities are incorporated via a process called adaptation.

1. Cognizant Development Engineer (CDE)
2. Planetary Observation INstrument Targeting and Encounter Reconnaissance

Model Celestial Body

Translate Observation
Into Spacecraft
Instructions

Earth

Model Spacecraft/Scan
Platform Pointing
(observation)

ReadIModel Star Positions
Attitude

Figure 1. POINTER Foundation Functions

CURRENT CAPABILITIES

The foun ation functions are augmented by capabilities which allow SEQPOINTER to fit within 4 AMMOS , the multi-mission operations support system being developed by MOSO. The tool
capabilities with respect to AMMOS are illustrated in Figure 2. The primary capability is the
interface with the Sequence file. The Sequence file contains spacecraft instructions and ground
software directions in the form of requests. Requests perform remote sensing as well as fields and
particles science observations and engineering activities during mission operations. The remain-
ing capabilities are the interfaces with the Spacecraft & Celestial Body Ephemerides file and the
Spacecraft Clock file. The Spacecraft & Celestial Body Ephemerides file(s) lump together space-
craft, planetary, and satellite ephemerides (currently N&) and star catalog(s). The Spacecraft
Clock file provides spacecraft clock adjustment data referenced by the tool.

The upper portion of Figure 2 illustrates the primary SEQPOINTER operator displays, the oper-
ator interface and observation design depiction. The operator interface (left) is an X Window Sys-
ternmotif application. It provides the operator with capabilities to manipulate observation design
instructions and to perform a simulation of spacecraft execution instructions which are graphi-
cally depicted (on the right by the Project module). Figure 3 contains images illustrating sample
menus (top) and a sequence component (bottom) from the operator interface. The observation

3. Advanced Multi-Mission Operations System
4. Navigation Ancillary Information Facility

1 I . ' I
\ .. ' \. , # . .# # .I

,'.-.. . .-". ' . ..
0

. . . . I . , - ..-. ' I . \- .* ..
*. . --. .- SE*QPOIN?F.F.. .-.- ..-=*-

Spacecraft
Spacecraft & Celestial Clock
Body Ephemerides

Figure 2. SEQPOMTER in the MOSO AMMOS

graphically depicted is a perspective projection of Saturn with events (footprints) from a Cassini
Project instrument. Figure 4 contains a sample image of the same observation from a different
vantage point than depicted in Figure 2 The implemented module in the Project module family is
an X-Window ~ ~ s t e m / ' o t i f / P ~ ~ ~ ~ + ' application. The depiction of the target body is data
driven, based-on a PHIGS data structure that models the surface of the body. The data structure
can be derived from a variety of sources: an o late-spheroid body shape algorithm or the same 8 algorithm with an electronic version of a USGS Albedo Image file. The Saturnian rings are mod-
eled in the same fashion. However, the data structure for the rings is created at run-time from ring
system constants read by the tool.

ARCHITECTURE

To facilitate a mission adaptable tool, SEQPOINTER has been organized around the concepts of
modular executable programs (module families) and interchangeable models. The tool comprises
three module family groups: infrastructure programs, observation design utility programs, and
observation activity programs. The groups and some of the constituent module families are illus-
trated in Figure 5. The infrastructure group consists of module families which contribute the
underlying data flow architecture for the tool: Operator Interface, Activity Design, Modeler, Posi-
tion, Project, Present, and Targeting Update. A description of each module appears in Table 1.

The design utility and observation activity program groups consist of activity and command mod-
ules, the sequence components of an observation. The design utility program group currently con-
sists of two module families, Solar System BodyJSurface Point Trajectory and Stellar Position.
These modules are used to produce geometric and photometric data the operator analyzes for

5. Programmer's Hierarchical Interactive Graphics System (ANSI-Computer Graphics)
6. United States Geological Survey

?Main Menu B

&Iierarchical
Popup Menus
(here the
sequence
component fa
the Saturnian
orientation
constants)

parameters
the Saturnii
orientation
constants
sequence
component

Figure 3. Operator Interface Module - Sample Windows

918

for
m

Figure 5. SEQPOINTER Module Family Architecture

Table 1. SEQ-POINTER Infrastructure Module Family Descriptions

Module Family

Operator Interface

Activity Design

Modeler

Position

Project

Present

Targeting Update

designing desired observations. The observation activity program group consists of the module
families for all levels of sequence components. The sequence components are expanded to com-
mands and later modeled as the events of an observation.

Functional Description

interactive operator and sequence file-request interface

processes observation activities through module families
"expanding" activities to the resulting commands

calculates spacecraftJscan platform and instrument(s) events
from the commands resulting from expansion of the mission
dependent activity modules and formats the event data for output

calculates celestial body and spacecraft position data from inter-
nal and operator-supplied data or external ephemeris file(s)

graphically depicts the observation events (footprints)

reads the output event data file loading a Lotus 1-2-3 spreadsheet
where charts illustrating event data can be output

batch sequence file processor for updating all observations in the
sequence for the latest ephemeris data

The tool can be adapted to a new spacecraft because the architecture segregates the mission and
spacecraft dependencies. Adaptation is designed into the tool through function modularization
and the concept of interchangeable models. The segregation of mission and spacecraft dependen-
cies into independent and dependent module families is illustrated in Figure 6. The independent

..... I Legend: P Spacecraft Independent I

.....

Spacecraft Dependent
Note: CDSF is the script language file

Figure 6. SEQPOINTER Module-Data Flow

module families read dependent data file(s) to incorporate mission and spacecraft information.

Illustrating interchangeable models, the dependent module families in the design utility and
observation activity groups contain both independent and dependent sections. These modules are
designed around generic drivers which call plug-in models written in C language functions. The
calling and return interfaces are defined for each model family. The model family instance con-
tains or retrieves any model-unique data necessary to calculate the return data.

For example, the interfaces for the celestial body position model family are: as input, the refer-
ence (i.e., Sun) and subject (i.e., Saturn) body identifications and the time of the position and, as

output, the position and velocity vectors of the subject body relative to the reference body. The
interfaces are the same whether the ephemeris data is interpreted from a conic element set, NAIF
ephemeris data, or Navigation Team data. Each model instance gathers the data necessary to
define the vector set at the input time. For the conic element model, it calculates the vector set
from the conic element set and the necessary celestial body constants. For the NAIF or Navigation
models, it-interpolates the vector set using the ephemeris file readers.

ADAPTATION

Adaptation of SEQPOINTER for a mission and spacecraft is performed manually. An adaptation
utility program provided by another AMMOS tool is planned to be updated, enhanced, and deliv-
ered in the future. The following adaptation steps are performed after capability definition to cre-
ate the mission and spacecraft module suite for the mission specific version of the tool:

1) identification of the' necessary models and modules for the mission to be adapted,

2) identification of which existing mission independent models in the model families library sat-
isfactorily provide the necessary capabilities,

3) modification of existing mission independent models in the model families library which must
be altered to provide the necessary capabilities,

4) design and creation of new models which must be added to complete provision of the neces-
sary capabilities,

5) design and creation of the sequence components which define spacecraft instructions and
translation of the components into a SEQPOINTER specific file format (Lockfile), and

6) compilation of the mission version models and modules to create the executable module suite.

FUTURE CAPABILITIES

Enhancements to SEQPOINTER consist of items which were not incorporated during previous
development cycles due to technological or resource inadequacies, and items which result from
evolution of the mission operations concept. The changes are taking the operations concept from a
centralized system using experienced MOS operators to a distributed system where the primary
users are scientists and their representatives.

Additions to address the changing environment include enhancements to make the tool more
usable by a broader user population and closer association with the spacecraft flight software
operation algorithms. Development of a user interface which provides direct graphical manipula-
tion of observation events which are reverse-translated into spacecraft instructions has been pro-
posed. One delayed capability would allow observation design with an irregularly shaped celestial
body (e.g., asteroid). A new body surface family model would be developed to access a celestial
body digital terrain map for instrument footprint calculations. Also, a new PHIGS data structure
translation utility would be included which reads the digital terrain map and produces the data that
is used to graphically depict the celestial body with the observation instrument footprint events.

REFERENCE

W. I. McLaughlin, M.J. Deutsch, L. J. Miller, D. M.WoH, and S. J. Zawacki (6-9 January 1992). Cost, Capability,
and Risk for Planetary Operations. AIAA-92-0600, AlAA 30th.Aerospace Sciences Meeting, Reno. NV.

Acknowledgements - While the author has sole responsibility for the contents of this paper, the development of
SEQJOlM'ER was a team effort. I wish to extend my thanks to the following personnel who contributed their tal-
ents and energies to the implementation of SEQPOINTER, Johnny E. Freeman and Lawrence N. Seeley of JPL and
Shawn M. Veloso and Steve Wong of TELOS.

KNOWLEDGEBASED CRITIQUING OF GRAPHICAL USER INTERFACES
WITH CHIMES*

Jianping Jiang
Elizabeth D. Murphy

Leslie E. Carter

CTA INCORPORATED
6116 Executive Blvd. Suite 800

Rockville, MD 20852, USA

ABSTRACT

CHIMES is a critiquing tool that automates the
process of checking graphical user interface (GUI)
designs for compliance with human factors design
guidelines and toolkit style guides. The current
prototype identifies instances of non-compliance
and presents problem statements, advice, and tips
to the GUI designer. Changes requested by the
designer are made automatically, and the revised
GUI is reevaluated. A case study conducted at
NASA-Goddard showed that CHIMES has the po-
tential for dramatically reducing the time formerly
spent in hands-on consistency checking. Capabili-
ties recently added to CHIMES include exception
handling and rule building. CHIMES is intended
for use prior to usability testing as a means, for
example, of catching and correcting syntactic in-
consistencies in a large user interface.

1. INTRODUCTION

With continuing support from the National Aero-
nautics and Space Administration (NASA, Code
O), the evolution of the CHIMES methodology
and toolset has taken place in a series of research
and prototyping cycles. The goal has always been
to improve the usability of user interfaces devel-
oped at the NASA-Goddard Space Flight Center
(GSFC) by providing user-interface designers with
an automated design-evaluation capability. Re-.
cent prototypes have focused on implementing the
CHIMES concept of knowledge-based compliance
checking.

*For further information contact: Walter
F. Tmazkowski, Code 522.3, NASA-Goddard Space Flight
Center, Greenbelt, MD 20771 U.S.A. (301)286-8821, FAX:
(301)286-1768, Email: truszkow@kong.gsfc.nasa.gov.

Walter F. Truszkowski

NASA-Goddard Space Flight Center
Code 522.3

Greenbelt, MD 20771, USA

Available user-interface design software provides
designers with many useful capabilities, with the
notable exception of any capability to evaluate
the "look and feel" of a graphical user interface.
Such interfaces are often evaluated for compliance
with human factors guidelines or corporate style-
guide requirements. Evaluation is typically done
by time-consuming, manual review and usability
testing. Taking steps to speed up the evaluation
process, the present CHIMES prototype is capa-
ble of evaluating the look of single and multiple
display screens that include alphanumerics, color,
and graphics. The full CHIMES concept encom-
passes rulebased evaluation of user-interface be-
havior.

CHIMES is intended for use by GUI designers
prior to formal usability testing, as a means of
cleaning up a GUI and improving consistency from
screen to screen. Rules in the knowledge base cri-
tique the design, and an advice generator offers
advice, warnings, and tips to the designer. Ex-
plication of the CHIMES knowledge base and cri-
tiquing process is the primary purpose of this pa-
per.

2. OVERVIEW OF CHIMES DATA FLOW

Figure 1 provides a conceptual overview of the
flow of data during a CHIMES evaluation. Mov-
ing from left to right on the figure, the resource

, file representing a GUI design is acquired by
CHIMES and transformed into an intermediate
representation, which is transferred to the knowl-
edge base. The acquired GUI design is then sub-
mitted to analysis and evaluation by the user- se-
lected rule set. Products of the analysis include
problem statements ("critiques"), advice, and sug-
gested modifications. User-selected modifications

are made automatically by CHIMES and sent to
the knowledge base for re-evaluation. The re-
source file representing the GUI design is also au-
tomatically updated.

The remainder of the paper focuses on the con-
tents of the knowledge base, describes the cri-
tiquing process, presents a case study, and dis-
cusses plans for enhancing CHIMES.

3. KNOWLEDGE BASE

The knowledge base stores a representation of the
design to be-evaluated as well as the rules that
encode the heuristics for design evaluation. Each
rule in the CHIMES knowledge base can be con-
sidered a critic[l]. Key components of the knowl-
edge base include the qualitative and quantitative
heiristics for evaluating the graphical-design and
use of color in a single display screen and, for mul-
tiple panels, heuristics on design consistency. The
knowledge base is implemented in CLIPS[2].

Graphical Display Heuristics. CHIMES
uses guidelines from the OSF/Motifl Level One
certification Checklist[S] and from the human fac-
tors literature to evaluate the "lookn of single and
multiple display panels. The CHIMES approach
allows compliance checking of requirements and
guidelines not included in the OSF/Motif defaults.
For example, the number of type sizes and number
of fonts per screen, as well as text justification and
use of highlighting, can be checked for compliance
with human factors recommendations.

Color Heuristics. The key human factors recom-
mendation on color is that it should be used
for functional purposes, not simply to decorate
the screen. Functional purposes include attract-
ing attention to critical data objects, commu-
nicating organization, indicating status, and es-
tablishing relationships between distant items[6].
To assist GUI designers in the effective use of
color, CHIMES not only suggests appropriate
colors but also incorporates its suggestions with
the designer's functional purposes for using color
and provides remedies for misuse of color.

Color heuristics implemented in the most recent
prototype permit CHIMES to evaluate the consis-
tency of color usage across multiple panels. The
tool checks the consistency of both foreground and

Motif is a trademark of the Open Software Foundation,
Inc.

background colors; offers alternatives to the origi-
nal color combination; allows the designer to pre-
view different color combinations; and permits au-
tomatic modification of colors when the user fin-
ishes making changes.

The following are a few of the color heuristics a p
plied in a CHIMES evaluation[5]:

Pale foreground colors should not be
used on a very bright saturated green
background because of the resulting very
low contrast.

The same background color should be
used for both a panel and its items un-
less there is a functional, user-task re-
lated reason for using different colors.

0 Some background colors are not recom-
mended for use with certain foreground
colors because of the resulting color in-
terference.

These heuristics are implemented in dozens of
highly specific rules. Once the detected colors have
been evaluated, CHIMES gives specific advice to
improve color contrast and legibility.

Consistency-Checking Heuristics. Consistency is
one of the primary human factors principles of
screen design. Consistency of object location and
screen behavior supports the end user's develop-
ment of expectations about where to find common
controls and of how the GUI will respond to user
input. In general, an interface that reliably meets
end-user expectations supports more efficient hu-
man performance as compared to an interface that
violates end-user expectations.

As a basis for checking the internal design consis-
tency of multiple panels or screens, the CHIMES
knowledge base contains a set of rules on which
there is general agreement in the human factors
literature. When departures from consistency
are warranted in the context of user's tasks[3],
CHIMES is capable of handling exceptions.

The following are a few of the consistency-checking
heuristics implemented in the CHIMES knowledge
base[5]:

The typographic elements of data items
which serve the same type of function in
a design are consistent within and across
panels, unless there is a functional or

user-task related reason for using differ- design patterns. For example, the rule "check-
ent typographic elements. background-color-accord-pnl" represents a way to

check item background inconsistency. Once the
The background color of panels in a de- heuristics are modeled as rules, the CLIPS infer-
sign is consistent across panels, unless ence engine uses the rules to critique the GUI de-
there is a functional or user-task related sign that has been acquired by CHIMES.
reason for using different colors.

The shadowing of pushbuttons is con-
sistent within and across panels unless
there is a functional or user-task re-
lated reason for using different shadow-
ing thicknesses.

Although checking the consistency of location of
displayed objects presents difficult technical prob-
lems, CHIMES is capable of checking the place-
ment of the menubar. The current criterion for
menubar placement is that recommended by the
OSFIMotif guidelines[8]: "at the top edge of the
application, just below the title area of the window
frame." In the full CHIMES concept, other GUI
style guides can be encoded as sets of rules in the
knowledge base and applied upon user selection.

4. CRITIQUING PROCESS

The CHIMES heuristics are represented as CLIPS
rules. A CLIPS rule has two parts: a conditional
part and an action part. The conditional part de-
scribes the CLIPS data-memory configuration for
which the rule is appropriate. (The GUI design to
be evaluated is represented as facts in the CLIPS
data memory.) The action part of a rule specifies
the instructions to be executed when the condi-
tional part of the rule is satisfied.

The CLIPS inference engine is the executor that
determines which heuristics should be used by se-
lecting and then executing the appropriate rule.
Three steps are involved in selecting and executing
rules: 1) match rules; 2) select-rules; and 3) exe-
cute rules. In the first step, match-rules, the infer-
ence engine finds all of the rules that are satisfied
by the current contents of data memory according
to the inference engine's comparison algorithms.
The matched rules are potential candidates for
execution. The second step, select-rules, applies
some selection strategy to determine which rules
will actually be executed. The last step, execute-
rules, fires the rules previously selected.

Using the CLIPS inference engine and represent-
ing the GUI design as CLIPS facts allows the rep
resentation of heuristics as rules to match specific

4. CASE STUDY

Aa a preliminary test of CHIMES' ability to de-
tect human factors problems in a user-interface
design, we applied CHIMES to a real- world soft-
ware application known as the Request Oriented
Scheduling Engine (ROSE). Developed by NASA-
Goddard, ROSE was designed to meet the needs
of mission planners and spacecraft operators in a
satellite ground-control environment [lo].

The evaluation of the ROSE user interface was
designed to meet two goals: 1) to identify human
factors issues in need of resolution by the ROSE
developers; and 2) to study how CHIMES can as-
sist a GUI designer in catching and correcting hu-
man factors problems. For comparative purposes.
we conducted both a CHIMES evaluation and a
heinistic (manual) evaluation[4].

CHIMES Evaluation of the ROSE User Interface.
The CHIMES evaluation took less than 10 minutes
and detected three problems related to the use of
fonts and typographic elements. ROSE used more
than the three fonts permitted by a conservative
rule in the CHIMES knowledge base. Contrary
to the convention of using normal style fonts for
menu options, ROSE used an italic font for o p
tions in pull-down menus. This use of italics made
ROSE inconsistent with other OSFIMotif applica-
tions. CHIMES also detected typographic incon-
sistencies across widgets in ROSE. Several labels
for the same kind of button had been implemented
in mixed case, while others were in all upper case.

Heuristic Evaluation of the ROSE User Interface
Three evaluators conducted the heuristic evalu-
ation. (Two were human factors professionals
who specialize in user-interface design; the third
was an experienced designer of GUIs.) They
spent a total of 12 person hours reviewing the
ROSE documentation and on-line demonstrations.
The heuristic evaluation found additional prob-
lems that CHIMES was not able to detect because
of current limitations in its knowledge base.

To detect some of the problems found by the eval-
uators, CHIMES would need knowledge of user-

interface behavior. For example, any attempt to
access the ROSE help facility caused the system
to crash because this facility had not yet been
implemented, although a help icon was displayed
on some screens. CHIMES did not detect this
problem because its current knowledge base en-
compasses only the look, but not the behavior of
buttons. The full CHIMES concept includes eval-
uation of user-interface behavior.

The human evaluators found problems in screen
layout that CHIMES was not able to detect.
In some instances, interface elements were not
grouped to aid the user's understanding of their
interrelationships. Further, the heuristic evalua-
tion found that certain panel overlays obscured
useful information. To detect problems of this
kind, CHIMES would need semantic capabilities
beyond its current scope. For example, CHIMES
would need knowledge of user goals and informa-
tion requirements in order to suggest alternative
layouts.

A particularly difficult issue for an automated
evaluation is the absence of information that
should be, but is not, displayed. For example,
the human evaluators noted a general lack of user
guidance (i .e., instructions displayed on the screen
to aid the user in navigating through the ROSE
user interface). Fairly sophisticated capabilities
would be needed for CHIMES to detect the ab-
sence of user guidance or other missing informa-
tion.

Similarly, advanced semantic capabilities would
be needed to detect redundant information. The
heuristic evaluation found, for example, a redun-
dancy in panel titles, and the evaluator recom-
mended simplifying the user interface by removing
the redundancy.

Problems of appropriate widget selection, iden-
tified by a human evaluator, pose a significant
challenge to CHIMES or any automated user-
interface evaluation tool. For example, five pull-
down menus were lined up horizontally to perform
a task that should be performed by a menubar.
Although CHIMES can detect the misplacement
of a menubar, it cannot currently assess the ap-
propriateness of the widgets selected by the user-
interface designer.

As highlighted in the case study, the capabilities
and limitations of CHIMES make it a useful tool

to aid the user-interface designer, but not one
that will replace usability testing. In the realm
of user-interface syntax, CHIMES can reliably d*
tect both inconsistent design elements and non-
compliance with style guidelines. With syntactic
issues cleared up prior to usability testing, such
testing can then concentrate on semantic issues
that affect end-user performance and satisfaction.

5. CURRENT AND FUTURE DIRECTIONS

The existing CHIMES prototype reads and evalu-
ates GUIs created in TAE Plus[9]. Although TAE
Plus supports CHIMES development, it limits the
designs that CHIMES can evaluate. To make
CHIMES a useful tool to GUI designers who do
not use TAE Plus, we are developing an interface
to 0SF/Motif7s user interface language (UIL)[7],
which will allow CHIMES to evaluate any Motif-
based design.

We are also currently developing a capability to
allow CHIMES users to customize the knowledge
base. We have demonstrated that CHIMES can
work with a knowledge base containing several sets
of rules. Switching from one set of rules to another
does not require recompiling. Further, we have
demonstrated that a rule can be modified through
the CHIMES user interface and that the modified
rule can be sent back to the knowledge base for
execution. Now we are developing a capability to
allow CHIMES users to set up new guidelines by
customizing existing guidelines. A new guideline
can later be loaded into the CHIMES knowledge
base for evaluating GUI designs.

Other plans for the future call for research into
possible uses for CHIMES as an intelligent agent
and for experimental evaluation of the effects of
CHIMES capabilities on the performance of user-
interface designers.

References

[I] G. Fischer, A. C. Lemke, T. Mastaglio, and
A. I. Morch. Using critics to empower users.
In Proceedings of CHI'90 Human Factors in
Computing Systems, pages 337-347, N.Y.,
1990. ACMISIGCHI.

[2] J . C. Giarrantano. CLIPS User's Guide (Ver-
sion 5.0). NASA Lyndon B. Johnson Space
Center, Houston, TX, January 1991.

[3] J. Grudin. The case against user interface
consistency. Communications of the ACM,
32:1164-1173,1989.

[4] J. Jiang, L. E. Carter, -E.'D. Murphy, S. C.
Bailin, and W. F. Truszkowski. Automated
evaluation of graphical user interfaces (GUIs)
using CHIMES. In 2nd Mid-Atlantic Hu-
man Factors Conference, pages 57-63, Fair-
fax, VA, 1994. George Mason University.

[5] J. Jiang, E. D. Murphy, and L. E.
Carter. Computer-human interaction mod-
els (CHIMES), revision 3. Technical &port
DTSL-94008, NASA-Goddard Space Flight
Center, Greenbelt, MD, 1994.

[6] D. J. Mayhew. Principles and guidelines in
sofiware user interface design. Prentice-Hall,
Englewood Cliffs, NJ, 1992.

[7] Open Software Foundation. OSF/Motif Pro-
grammer's guide (Revision 1.1). Prentice-
Hall, Englewood Cliffs, New Jersey, 1991.

[8] Open Software Foundation. OSF/Molif style
guide (Revision 1.2). Prentice-Hall, Engle-
wood Cliffs, New Jersey, 1993.

[9] M. R. Szczur. Transportable applications en-
vironment (TAE) plus user interface designer
workbench. In Proceedings of CHI'92 Human
Factors in Computing Systems, pages 231-
232, New York, May 1992. ACMISIGCHI.

[lo] T. Weldon and J. Odubiyi. Users guide for the
request oriented scheduling engine (ROSE).
Technical Report DSTL-89-021; CSCITM-
90/6108, NASA-Goddard Space Flight Cen-
ter, 1990.

355/23
SEQ - REVIEW: A Tool for Reviewing and Checking tL

Spacecraft Sequences
Pierre F. Maldague

Mekki El-Boushi
Thomas J. Starbird
Steven J. Zawacki

Jet Propulsion Laboratory
California Institute of Technology

4800 Oak Grove Drive
Pasadena, CA 91 1 09-8099

ABSTRACT QFD matrices that relate product functions

A key component of JPL's strategy to make
space missions faster, better and cheaper is
the Advanced Multi-Mission Operations Sys-
tem (AMMOS), a ground software intensive
system currently in use and in further develop-
ment. AMMOS intends to eliminate the cost of
re-engineering a ground system for each new
JPL mission. This paper discusses SEQ-RE-
VIEW, a component of AMMOS that was
designed to facilitate and automate the task of
reviewing and checking spacecraft
sequences.

SEQ-REVIEW is a smart browser for inspect-
ing files created by other sequence generation
tools in the AMMOS system. It can parse
sequence-related files according to a com-
puter-readable version of a "Software Inter-
face Specification" (SIS), which is a standard
document for defining file formats. It lets users
display one or several linked files and check
simple constraints using a Basic-like "Little
Languagen.

SEQ-REVIEW represents the first application
of the Quality Function Deployment (QFD)
method to sequence software development at
JPL. The paper will show how the require-
ments for SEQ-REVIEW were defined and
converted into a design based on object-ori-
ented principles. The process starts with inter-
views of potential userq, a small but diverse
group that spans multiple disciplines and "cul-
tures". It continues with the development of

and characteristics to user-demanded quali-
ties. These matrices are then turned into a for-
mal Software Requirements Document (SRD).
The process concludes with the design phase,
in which the CRC (Class, Responsibility, Col-
laboration) approach was used to convert
requirements into a blueprint for the final prod-
uct.

THE UPLINK PROCESS
The multi-mission environment in which
SEQ-REVIEW is intended to operate is fairly
complex. This Section introduces the basic
elements of the uplink process and explains
where SEQ-REVIEW fits in that process.

Sequence Generation
The ultimate goal of the uplink process is to
allow ground operations personnel to control
the spacecraft by sending it radio signals that
the spacecraft can receive, decode and store
in its memory. The decoded information usu-
ally consists of commands that are to be exe-
cuted in a precise sequence at specified
times. We will refer to these commands as
"spacecraft commands", and to a set of such
commands sent to the spacecraft as a whole
as an "on-bard sequencen.

Much of the uplink process is concerned with
the planning, generation and verification of on-
board sequences. This process can involve
many people: mission scientists interested in
planetary data request new observations;

engineers concerned about the capability,
health and safety of the spacecraft issue
maintenance requests; mission planners try to
accommodate requests into a realistic sched-
ule; sequence engineers translate high-level
requests into detailed instructions that will
cause the spacecraft to perform the required
tasks; and finally, the flight team must check
the detailed sequence against all flight rules,
possibly including rules that were added at the
last minute to compensate for equipment not
operating at specification or software bugs
aboard the spacecraft.

Analogy with Programming
The process just described resembles that of
generating executable code for an ordinary
computer, an analogy that will be used exten-
sively in this paper. The spacecraft and its
sequence are analogous to a microprocessor
and its machine instructions. The process of
planning and generating a sequence is similar
to the task of designing and implementing
software. Just as software engineers would
find it impossible to do their job using machine
code, sequence engineers find it useful to
work not with the on-board sequence itself,
but with a human-readable version of it that is
similar to an assembly language program.

Of course our analogy between a spacecraft
and a microprocessor is not perfect. Modern
spacecraft have considerable processing
power at their disposal, so that spacecraft
commands are usually much more complex
than typical microprocessor instructions. This
complexity is reflected in the large number of
arguments required by many commands. In
spite of this, the analogy between spacecraft
commands and assembly code remains valid
in the sense that spacecraft commands are
expressed in a special-purpose language that
is hard to understand unless one is familiar
with the architecture of the spacecraft.

Translating Requests into Commands:
SEQ-GEN
Programming efficiency can be increased dra-
matically when using a high-level language

instead of assembly code. The tool that makes
this possible is the compiler, which translates
high-level code into assembly code.
Sequence engineers also find that program-
ming sequences directly is prohibitively diffi-
cult, and that time can be saved by expressing
commands as high-level "Requestsn instead of
low-level "Commandsn. Something similar to a
compiler is now needed to translate the former
into the latter. In the AMMOS system, this role
is assumed by SEQ-GEN, a program that
expands requests into sequences of com-
mands. The figure on the following page
shows the similarities between the conven-
tional code development process and the
uplink process.

Since SEQ-GEN is a multi-mission tool, it
must obtain mission-specific information from
external files. This is unlike most compilers,
which are hard-coded around the syntax of a
specific language. A second difference with
compilers is that SEQ-GEN defines and main-
tains an internal model of the spacecraft. The
mission-specific files required by SEQ-GEN
therefore need to describe the spacecraft
model as well as the basic commands and
their effect on the model. Other mission-spe-
cific files used by SEQ-GEN define high-level
"activity typesn, which are analogous to sub-
routines, and flight rules, which are formulated
in terms of the spacecraft model (see Ref. 1
for more details on the operation of SEQ--
GEN).

SEQ-GEN generates'two basic output files.
The first file is the Spacecraft Sequence File,
which is an ASCll representation of the actual
on-board sequence. This file is an input to
another program, SEQ-TRAN, which converts
ASCll mnemonics into binary code, links the
program, and performs necessary memory
management and packetization tasks. The
second file is the Predicted Event File (PEF),
which shows in time-ordered fashion the com-
plete sequence of commands, ground events,
and optionally the status of the internal space-
craft model that is predicted to result from the
Request File. In the following, we focus on the
PEF.

Compilation rules:
C Programming
Manual

Fig. 1 : SOFTWARE DEVELOPMENT PROCESS

. Final Product:
Executable Code

C Compiler

I Activit~Types, hG
Model e initions,

Compilation:

High-level source:
C Code

Final Product: I

Product Documentation: / Assembler Source
(seldom used),

nsion: On-Board Sequence
Flight Rules 1 -

SEQ - GEN

High-level requests: Product Documentation:

Request File Predicted Event File

Fig. 2: SEQUENCE GENERATION PROCESS

Compiler Errors
and Warnings

Checking the Sequence: SEQ-REVIEW
Testing conventional software is a straightfor-
ward procedure: the worst that can happen is
that the program "crashesn under the benevo-
lent supervision of the operating system. In
space exploration, however, sequence engi-
neers do not have the luxury of trying again:
the sequence HAS to work the first time. Sim-
ulation tools such as those incorporated into
SEQ-GEN provide valuable help in validating
sequences. However, the final arbiter of a
sequence's validity is the sequence engineer
and other flight team members who review it.

The main difficulty in checking a sequence is
to zero in on the information that is pertinent to
a single flight rule or constraint. The documen-

tation provided by SEQ-GEN in the form of an
event file is quite extensive, but that makes it
hard to read. Traditionally, sequence checkers
have used a variety of ad hoc methods to deal
with this complexity:

- manual inspection of computer printouts

- BASIC and C programs that "stripn event
files of unwanted information

- UNlX "awk" scripts for reformatting event
files

The purpose of SEQ-REVIEW is to offer
sequence engineers and other sequence
reviewers an alternative, multi-mission pack-
age that is easy to use, adapt, port and main-
tain.

THE REQUIREMENTS . . PHASE

The SEQ-REVIEW software requirements
document (SRD) was based on the TQM tool
Quality Function Deployment (QFD), which we
briefly outline here. A more detailed account of
our QFD approach will be found in Ref. 2.

The QFD Approach
The emphasis in the QFD approach is on cus-
tomer requirements and on how to ensure that
these requirements are reflected, i. e.,
"deployed", through the design process. The
first step in the process as implemented here
was to collect information from potential users
of the software through interviews. Responses
to the interviews were then analyzed by a
Committee with representatives from user,
developer and systems engineering groups.
The primary goal of this first step was to come
up with three basic lists:

- Demanded Qualities, which express
what the user wants to be able to do
with the program. Example: easy to strip
and reformat a PEF. All of these Quali-
ties were taken from user responses.
The Committee organized them into 6
broad categories such as "Sequence
Validationn and "Ease of Usen, and then
into additional sub-categories such as
"fnd stimuli of violationsn and "fiter and
re-order f ieldsn.

- Quality Characteristics, which express in
a quantitative manner how users and
developers would rate the SEQ-RE-
VIEW product against other methods for
achieving the same task. Examples:
"check one constraint in at most 5 lines
of SEQ-REVIEW 'Little Language'
coden; "keep the program to 18,000 or
fewer lines of coden.

- Functions. These are program features
which will allow the product to meet cus-
tomer requirements. Most of these were
requested by users directly ("Perform
time conversion on requestn); a few
were provided by developers.

A questionnaire was then circulated, asking
users to rank the Demanded Qualities in order
of importance. The responses were used to
compute an average score for each one of the
Demanded Qualities. Listed at the top were:

- "Easy to Strip and Reformat a Filen

- "Draw Timelines"
- "Reduce the Amount to Read"

- "Allow Annotations"

- "Work with Event Files"

Some of the least important Qualities were
"Correlate Event and Request Filesn and
"Work with Spacecraft Sequence Files."
Clearly, our users were mostly interested in
making event files easier to read.

In the next step of our QFD implementation,
these user-assigned priorities were propa-
gated through a set of "correlation matricesn
that relate the users' Demanded Qualities to
factors that the developers can influence
through their design, primarily Quality Charac-
teristics and Functions. These matrices spec-
ify whether for any given Demanded Quality1
Quality Characteristic or Demanded Quality1
Function pair, the correlation between the two
members of the pair is (i) nonexistent, (ii)
weak, (iii) moderate or (iv) strong.

Based on these matrices, we used a QFD
software package to compute scores for each
Quality Characteristic and for each Function.
These scores were then used to prioritize the
development process as well as the overall
objectives for the product. The highest-priority
items were

- provide users with a rule definition lan-
guage (the "Little Languagen)

- provide a graphic interface that lets
users specify a rule in under 5 minutes

- .design the "Little Languagen so that
users can formulate a rule in 5 state-
ments or less

- adapt existing timeline generation soft-
ware from other.programs (such as
SEQ-GEN)

Some of the less important characteristics to provide the reader with a sense of
were "Ability to add a feature in one week or how the product would operate.
lessn, and 'Keep the code to 18,000 lines or While these tasks delayed the SEQ-REVIEW
less". the emphasis was On providing SRD somewhat, we felt that the overall sched-
users with ways to express rules and ule would not be adversely impacted. First,
on providing timeline capabilities without re- additional up-front work would make design
inventing the wheel. and im~lementation easier later on. Second,

Generating Requirements
Since the QFD methodology does not pre-
scribe a specific method for generating
requirement documents, we had to come up
with our own. Our first attempt consisted in
translating the correlation matrices for Func-
tions and Quality Characteristics into plain
English. The Functions were used primarily to
explain the method used to meet the require-
ments, while the Quality Characteristics were
used primarily to state testable objectives for
the finished product.

our teniative GUI could be turned very easily
into the first Section of the SEQ-REVIEW
User's Guide, again saving us time later on.
Finally, we felt that making our tentative GUI
available to users early on would contribute
significantly to the ultimate success of
SEQ-REVIEW.

The software requirements for SEQ-REVIEW
were strongly influenced by two parallel efforts
that took place in the summer of 1993.

Prototyping Activity
First, prototypes were built to demonstrate the

This first approach was rejected because the fessibility of SEQ-REVIEW. These proto-
resulting requirements document was hard to typss established afirm basis for the following
read. The problem was that our lists of Quali- mncepts:
ties and Functions did a good job of summa-
rizing user requirements, but did not provide
the reader with much of a feel for the function- 1. zero in on useful information by letting
ality of the SEQ-REVIEW product. the user specify patterns and searches

in a simple, intuitive way
Our second, more successful approach was to 2. translate sequence files into text files
realize that the task of stating our require- suitable for input into spreadsheet pro-
ments was going to be a lot simpler if we first arams such as Lotus 1-2-3 -
carried out a couple of "pre-designn steps prior
to writing requirements: 3. express rules and constraints easily by

writing simple programs in a Little Lan-
(i) design a tentative Graphical User Inter- guage designed to handle the type of

face (GUI). This would give us a chance information found in seauence files
to organize user-demanded features in
a logical manner. It was also decided to
implement this preliminary design in
Visual BASIC and make it available to
potential users for feedback.

(ii) show a concrete example of a Little Lan-
guage (LL) and explain how it relates to
the desired functionality of SEQ-RE-
VIEW. This step actually required little
effort since a LL was already developed
as part of the prototyping effort (see the
next Section). While this LL didn't meet
all the requirements, it is close enough

4. reformat sequence files by letting users
specify records of interest and fields of
interest within these records, using
either simple pattern definitions or the
Little Language

5. build on previous experience by saving
search patterns and simple algorithms
so they can be reused in future review
sessions

6. allow the program to read arbitrary
(within reason) text files by specifying
the file format on-line, as opposed to re-

compiling a new "ersion of the software
featuring new hard-coded file formats

Second, a Quality Function Deployment
(QFD) Committee was formed. This Commit-
tee included representatives from potential
users of SEQ-REVIEW as well as software
developers. The Committee used the QFD
methodology to identify desired features and
qualities that the SEQ-REVIEW product
should exhibit. How this work was used to
establish the present requirements was
described in the previous paragraphs.

User Interface
Since the primary purpose of SEQ-REVIEW
is to display sequence file information to the
user, it is anticipated that most users will want
to interact with the program through a
Graphical User Interface (GUI) similar to that
used by many text editors. This should be
qualified in two ways:

- a small but significant minority of poten-
tial SEQ-REVIEW users requested the
ability to control the program through a
command-line interface, as opposed to
clicking on buttons and pull-down
menus;

- SEQ-REVIEW needs to support "batch-
moden operation, in which a predefined
set of commands is fed to the program
from a command file. In this mode,
SEQ-REVIEW acts as a "filter", e. g. to
identify violations of rules not yet imple-
mented in SEQ-GEN.

To accommodate these requirements,
SEQ-REVIEW will be provided in two forms:
interactive and batch. The interactive version
will be GUI-based. In addition to the usual
menu bar and push-button, the GUI will fea-
ture a special window for command-line input.
Every SEQ-REVIEW function will be accessi-
ble as a command line as well as through
menu selections. "Menu acceleratorsn will also
be provided; these are short, user-definable
keystroke combinations that can be used as a
substitute for menu selections.

The batch version of SEQ-REVIEW will not

display anything to the user and will accept
commands from "standard inpur, which can
be either the user's keyboard or a text file
specified to UNlX as a source of redirected
input. The only use of the batch mode version
will be to create output (text) files that can be
read by the user or scanned automatically to
detect rule violations. It is anticipated that this
version of SEQ-REVIEW will be used in highly
automated, Operations-type throughput-criti-
cal environments.

The figure on the next page shows our prelim-
inary design for a toplevel menu of SEQ-RE-
VIEW that satisfies user-demanded qualities
and functions. When the user first activates
the program, only the top (highlighted) line of
each menu is visible; these lines form the
"Menu Bar" at the top of the SEqREVlEW
screen. The expanded menus shown in the
figure appear when the user clicks on the cor-
responding menu title in the Menu Bar.

THE DESIGN PHASE
The method used to design SEQ-REVIEW is
essentially the Class/Responsibility/Collabora-
tion (CRC) approach described by Wirfs-Brock
et al. (Ref. 3), with the following modifications1
adaptations:

(M1)the starting point of the design is the
SRD, which concentrates almost exclu-
sively on the user's perspective of the
program. The requirements do not
address how the program is supposed
to accomplish the various tasks.

(M2)SEQ-REVIEW will rely on the MOTIF
toolkit for all graphics. Because MOTIF
has its own class definitions, there is
potential conflict with internal SEQ-RE-
VIEW classes. This problem is not really
discussed in Ref. 3.

(M3)a specific methodology was adopted
early on to deal with the fact that
SEQ-REVIEW needs to be delivered in
two flavors, GUI and batch. The decision
was that the two programs would share
the same object structure, and that
MOTIF, X Toolkt and X Window calls

1 Redo I
Un Xi hli ht Lighig% &lor.. .

Next
Previous -
Goto ... -

Annotate -
Start(End) Learn -
(Un)link Scrolling

Strips ...
Formats. .. -
Constraints ... -
States ...
Iransitions ...
Graphs ... -
Sclipts.. . 11,

Programs ...
Fig. S : e E v I E w USER INTERFACE

Timeline ... Build Form.. .
graph ... Mail Form ...
Observation.. . Qpen Form ...

Close Form ...
Time Conv

would be "dummied upn in the batch ver- This is of course dangerous, since many
sion. design decisions could be made inadvertently

(M4)we decided to use a fair amount of while writing scenarios. We avoided this prob-

Vertical inheritancen in our design, as lem by keeping the scenarios as simple,

opposed to the Wirfs-Brock strategy "down to Earthn as possible and subjecting

which emphasizes "horizontal inherit- them to frequent scrutiny.

The starting point of our design was an index
of keywords extracted from the SRD. The
index was then edited into a table of "SRD
objectsn, to be used as a first step towards
designing the classes of SEQ-REVIEW.

As a result of (MI), however, we found that the
SRD was not "rich enoughn as a source of
objects when it came to describing the inner
workings of the program. In particular, it was
difficult to write scenarios that went beyond
the user interface. We then decided to use the
scenarios as a source of objects, rather than
as a means to check the validity of the design.

After writing five or six scenarios and looking
at the objects that would be necessary to sup-
port them, it became clear that objects fell into
well-defined classes, and that these classes
should be organized into hierarchies using the
inheritance scheme. The resulting classes
provided our first "draft" of the design.

A "shelln program, featuring all these classes
but only some of their responsibilities, was
implemented in C++. This was done to vali-
date our design and to make sure that the C++
compiler would not object to our inheritance
scheme. We learned the following lessons:

- Our design is compatible with the CU
compilers we are using.

- Inheritance, which had been the focus of
our class-building effort, is only part of
the story. It became clear that classes
had a definite "personalityn and that
classes with similar personalities should
be grouped in separate subsystems.

This naturally led to the next phase in the
design: organizing classes into subsystems.
The need for this was made more pressing by
the requirement phrased in (M2) and (M3)
above: we need a clear description of how
MOTIF is to be interfaced to the rest of the
system.

In the next step of the design, we built two
more prototypes. The first one was a refine-
ment of the earlier "shell". Although this new
version was still only a shell, it was able to
print in indented, scenario-like style what it
was doing. It also provided a rudimentary user
interface which demonstrated how the menu
structure and the callback philosophy of the
GUI version could be brought into the batch
version of SEQ-REVIEW.

The second of these prototypes consisted of a
MOTIF implementation of the "Define Stripn
panel of the SEQ-REVIEW user interface.
This is probably the most complex graphic
object in the GUI. The prototype therefore
demonstrated the feasibility of our approach
and helped focus the discussion of how the
GUI and batch versions of SEQ-REVIEW
would coexist.

As a result of all this prototyping activity, we
gained the confidence necessary to organize
our preliminary classes into well-defined sub-
systems. We feel that our subsystem design is
robust enough that it will survive any last-
minute change to the class definitions, and we
therefore look at our subsystem descriptions
as the central part of our design.

CONCLUSION

ated with spacecraft sequences. The require-
ments for SEQ-REVIEW were derived from
interviews of potential customers. These inter-
views were converted into a requirements
document using the QFD approach. Require-
ments were then translated into a high-level
design using an object-oriented methodology.
The overall process was facilitated by the use
of numerous prototypes. Multi-mission
aspects were built into the requirements from
the start.

ACKNOWLEDGMENTS
We extend our thanks to our many colleagues
who contributed their time and insight, and in
particular to the flight team members who
helped phrase the requirements for SEQ-RE-
VIEW. Special thanks to Todd Bayer, Vickere
Blackwell, Carlos Carrion, Julia Henricks, Tim
Kaufman, Bob Kerr, Chuck Klose, Bill Nelson,
Brian Paczkowski, Steve Peters and Bruce
Waggoner for their thoughtful comments, and
to Jose Salcedo for sharing his knowledge of
the sequence generation process.

SEQ-REVIEW is currently under development
at the Jet Propulsion Laboratory, California
Institute of Technology, under contract to the
National Aeronautics and Space Administra-
tion.

REFERENCES

1. Salcedo, Jose, & Starbird, Thomas (1 994,
Nov.). SEQ-GEN: A Comprehensive Multi-
mission Sequencing System, Space Ops
'94 (These Proceedings).

2. ELBoushi, M. , Zawacki, S., & Domb., E.
(1 994, June). Towards Better Object Ori-
ented Software Designs With Quality
Function Deployment, Transactions from
The Sixth Symposium on Quality Function
Deployment, Novi, Michigan.

3. Wirfs-Brock, Rebecca, Wilkerson, Brian,
& Wiener, Lauren (1 990). Designing
Object-Oriented Software, Prentice-Hall.

SEQ-REVIEW is a tool that will facilitate the
task of reviewing the various text files associ-

SIMPLIFYING OPERATIONS WITH AN
UPLINKDOWNLINK INTEGRATION TOOLKIT 3592.25

SUSAN MURPHY (Contact)
KEVIN MILLER

ANA MARIA GUERRERO
CHESTER JOE
JOHN LOUIE

CHRISTINE AGUILERA

Operation Engineering Lab
Jet Propulsion Laboratory, MS 30 1-345

California Institute of Technology
4800 Oak Grove Drive

Pasadena, California 9 1 109-8099

ABSTRACT

The Operations Engineering Lab (OEL) at
JPL has developed a simple, generic toolkit
to integrate the uplinkldownlink processes,
(often called closing the loop,), in JPL's
Multimission Ground Data System. This
toolkit provides capabilities for integrating
telemetry verification points with predicted
spacecraft commands and ground events in
the Mission Sequence Of Events (SOE)
document. In the JPL ground data system,
the uplink processing functions and the
downlink processing functions are separate
subsystems that are not well integrated
because of the nature of planetary missions
with large one-way light times for spacecraft-
to-ground communication. Our new closed-
loop monitoring tool allows an analyst or
mission controller to view and save uplink
commands and ground events with their
corresponding downlinked telemetry values
regardless of the delay in downlink telemetry
and without requiring real-time intervention
by the user.

An SOE document is a time-ordered list of all
the planned ground and spacecraft events,
including all commands, sequence loads,
ground events, significant mission activities,
spacecraft status, and resource allocations.
The SOE document is generated by
expansion and integration of spacecraft
sequence files, ground station allocations,
navigation files, and other ground event files.
This SOE generation process has been
automated within the OEL and includes a

graphical, object-oriented SOE editor and
real-time viewing tool running under
XIMotif. The SOE toolkit was used as the
framework for the integrated implementation.

The SOE is used by flight engineers to
coordinate their operations tasks, serving as a
predict data set in ground operations and
mission control. The closed-loop SOE toolkit
allows simple, automated integration of
predicted uplink events with correlated
telemetry points in a single SOE document
for on-screen viewing and archiving. It
automatically interfaces with existing real-
time or non real-time sources of information,
to display actual values from the telemetry
data stream.

This toolkit was designed to greatly simplify
the user's ability to access and view telemetry
data, and also provide a means to view this
data in the context of the commands and
ground events that are used to interpret it. A
closed-loop system can prove especially
useful in small missions with limited
resources requiring automated monitoring
tools. This paper will discuss the toolkit
implementation, including design trade-offs
and future plans for enhancing the automated
capabilities.

INTRODUCTION

The Operations Engineering Lab (OEL) at
NASA's Jet Propulsion Laboratory has
developed a simple, generic toolkit that

integrates uplink events with downlink
telemetry information, (often called closing
the loop,). This toolkit provides capabilities
for integrating telemetry verification points
and ground monitoring information with
planned spacecraft commands and ground
events in the Mission Sequence Of Events
(SOE) schedule. In the existing SOE for
planetary missions, each spacecraft command
item has a descriptive text field that contains a
list of related engineering telemetry
parameters. These parameters are monitored
by mission controllers using a data monitor
tool that processes and displays the downlink
telemetry stream. However, the relevant
downlink telemetry for command verification
may not arrive for hours or even days after
the commands have been sent because of the
large one-way light times and limited contact
periods of some planetary missions. The
closed-loop system will integrate these tasks
by interfacing the SOE with the real-time or
non-real-time telemetry data streams and
automatically append appropriate channel
values and limit checks with command and
ground event items. Our new closed-loop
monitoring tool allows an analyst or mission
controller to browse and archive uplink
commands and ground events with their
corresponding downlinked telemetry values
regardless of the delay in downlink telemetry
and without requiring real-time intervention
by the user. Figure 1 shows a sample SOE
with integrated telemetry channel
information.

BACKGROUND

An SOE document is a time-ordered list of all
the planned ground and spacecraft events,
including all commands, sequence loads,
ground events, significant mission activities,
status and resource allocations. The SOE
document is generated by the multimission
control team by expansion and integration of
sequence and ground files. This SOE
generation process has been automated and
includes a graphical, object-oriented SOE
editor and viewing tool running under
XIMotif. The SOE is used by the mission
controllers and spacecraft and instrument
engineers to coordinate their operations tasks,
serving as a predict data set in ground
operations and mission control.

APPROACH

The Operations Engineering Lab (OEL)
proposed a research task to design and
implement a toolkit that allows simple,
automated integration of predicted uplink
events with actual downlink telemetry in a
single SOE document for viewing and
archiving. This integrated SOE serves as the
basis for a closed-loop monitoring toolkit that
can automatically interface with existing real-
time or non-real-time sources of information
and display only selected values from the
telemetry data stream.

A significant research effort was in the design
and implementation of the interprocess
communication interfaces and interactive
controls for retrieving and passing
information from a variety of downlink
processing applications to the SOE tool. A
flexible approach was chosen to allow
phasing of planned future enhancements,
including expansion of the SOE capabilities
for automated mission controller logs,
telemetry logging, system test procedure
execution, and automated command
verification.

During the requirements analysis, the JPL
Multimission Control Team (MCT) indicated
that the closed-loop monitoring system
should include automated log keeping
capabilities for mission controllers in order to
include their real-time logs in the sequence of
events. In the current operations
environment, the MCT logs real-time
information on specific uplink and downlink
events on hand-written forms. The MCT
cannot meet an electronic logging requirement
without automation tools - manually typing a
log report would be impossible during
intense periods. Although the SOE tool can
currently be used to enter comments and act
as a logging tool, the mission controller
logging requirements were very broad and
not clearly defined enough to implement
within an already-developed tool such as the
SOE editor. Thus, we decided to implement a
separate tool for automated logging that
would integrate manual log inputs, predicted
events input files (such as the SOE), real-time
broadcast data, and output from other

downlink telemetry processing and
monitoring applications.

OEL LOGGING TOOL

The OEL Logging Tool (OLOG) provides
automated and manual logging of predicted
and actual mission events in a graphical easy-
to-use format. The user interface and pull-
down menus are completely configurable by
an individual end-user to meet mission-
specific needs. An initialization file can be
read on startup that customizes menu options
and defaults. The OEL Logging Tool is
shown in Figure 2.

The OEL Log Tool provides capabilities for
manual entries to the log, either by allowing a
user to select items off pre-defined menus or
entering text manually into the entry area. The
pre-defined menus and default values can be
customized for various teams by creating an
initialization file. The OEL Log Tool is also
designed to interface in real-time with
external input sources (downlink telemetry,
monitor data, interprocess messages, predicts
and actuals files), thus providing capabilities
for automated log entries. The tool is
designed to allow automated and manual log
entries to occur concurrently with automatic
ordering based on time tags. The current tool
implementation includes several mechanisms
for communicating with downlink processes
based the MGDS custom Data Transport
Subsystem (DTS) services. We have also
implemented a telemetry data processing
program that captures and processes data
from the real-time telemetry data stream or
spooler files, and passes log messages into
the OEL Log Tool.

INTERPROCESS COMMUNICATION

The OEL Log Tool uses the MGDS DTS
services to implement message passing
capabilities. The tool connects to a broadcast
channel or virtual circuit if a channel option is
chosen. While processing input events, the
tool continually checks for pending
messages.

Several programs and routines have been
written to implement real-time downlink data
processing functions and cooperative

message passing mechanisms. These
programs provide a flexible approach to
process various input data sources, which are
then reformatted as log messages to be sent to
the OEL Log Tool.

* A program that uses a DTS broadcast
channel or virtual circuit for sending time-
stamped messages. The OEL Log Tool
cooperates by receiving and processing
the messages for input into the log in time
order.

A generic routine that uses the MGDS
Data Transport functions (DTS) to
connect to a broadcast channel or virtual
circuit for sending time-stamped
messages and a corresponding OEL Log
Tool routine that creates a broadcast
channel or virtual circuit to receive
messages.

A program that reads the output from
an existing real-time Smart Alarm Tool. It
processes the output and then sends log
messages to the OEL Log Tool.

A program that reads MGDS
downlinked telemetry data from a virtual
circuit, real-time broadcast channel, a
bytestream file, and/or a spooler file
using the DTS functions. It processes the
data by parsing telemetry headers and
checking for selected data types which are
then extracted, processed, and passed to
the OEL Log Tool. It uses DTS services
to send log messages to the OEL Log
Tool. This program provides a model for
building additional programs for
processing data from real-time telemetry
streams or from data output by other
applications and then generating log
messages to be integrated with the predict
information in the log tool.

Figure 3 shows the OEL Log Tool and its
telemetry processing interfaces.

CLOSED-LOOP SOE TOOL

The new closed-loop SOE tool is designed to
allow integration of uplink predict events
with actual downlink telemetry values.

Ground event and spacecraft command items
in the SOE have associated telemetry
parameters that can be used to verify the
execution of each command or ground event
or to establish the state of the spacecraft or
ground system. These parameters are now
interleaved with the commands and ground
events in the closed-loop SOE, for easy
access and viewing by the analyst. The
closed-loop monitoring system can
automatically interface with existing real-time
sources of information, to capture and
display actual values from the telemetry data
stream. The graphical SOE viewing tool
allows a user to highlight events of interest
with a mouse on the screen and mark them
for automatic alarm notification in real-time.
This tool also allows a user to run the SOE in
demand mode, specifying any time desired,
and to search or step through the document
for events of interest.

The following capabilities have been
incorporated into the SOE tool to implement
real-time, closed-loop monitoring capabilities:

Real-Time Capabilities: A scroll bar
has been added to allow for scrolling
during real-time viewing. Real-time
viewing can be accessed and controlled
from a menu. It is possible to step
through each event under user control or
to run the SOE in real-time or in playback
mode. The real-time control capabilities
are based on an interrupt algorithm.

Channel Objects: A new item format
has been defined for the SOE to allow
creation of a telemetry channel object.
Each channel object is defined by a
description field and is associated with
the uplink predict item preceding it. There
can be multiple channel objects associated
with a single uplink event. The
uplinkldownlink commandlchannel
integration is based on cross-referenced
information within the telemetry and
command dictionaries.

Channel Options: A new option
button hm been implemented that allows
a user to optionally display channel
records in the SOE.

Downlink Interface: Interprocess
communication and data transport
functions have been implemented to allow

integration of the downlink telemetry
stream.

Figure 4 shows the graphical closed-loop
SOE tool.

BENEFITS

New missions are demanding electronic
mission controller logs rather than the current
hand-written reports. Without the automated
log keeping capabilities in the new OEL Log
Tool, a controller would spend most of their
time manually typing in electronic log
reports.

The closed-loop SOE and OEL Log Tool
implementations have laid the groundwork
for an advanced closed-loop monitoring
system that can significantly reduce the need
for operations teams to understand the
complex set of processing and display tools
in the existing JPL Multimission Ground
Data System (MGDS). The current MGDS
approach requires understanding multiple
subsystems, and their often subtle interfaces,
to allow an end-to-end processing of
downlink data. There is also no current
method to integrate or compare predict with
actual values. The closed-loop SOE tool can
greatly simplify a user's ability to access and
view telemetry data, and provides a means to
view this data in the context of the commands
and predicted values that are used to interpret
it. In this context, it is expected that
significant cost savings can be realized from
the productivity improvements that will be
realized over the hundreds of current users of
the SOE document and related uplink tools.

Some proposed areas of future work include
expansion of the closed-loop SOE capabilities
for adaptation to system test, dynamic alarms
based on tolerances from predicted events,
automated monitoring of spacecraft and
ground system configurations at selected
times, real-time timeline display of the SOE,
generation of as-flown SOE schedules, and
automated command verification. An
advanced closed-loop monitoring system is
essential to a more automated monitor and
control system and to significant productivity
improvements for the smaller missions of the
future.

SEGUEUCE OF EVENTS: YEAR-MY OF Y W --> 1993-280
S/C = 094

CENRATED Gu M Y OF vuvl - 317 SCROLL
FILE - --> e2.fl.y..f.4

SEQ - C2.FS WTFUT FILE MI+€ --> c2.so. bv. lbrr 13, 1993 OO:M:18 UTC

Figure 1 - Sequence of Events (SOE) Printout

Totdl of 257 1- read
Total of 1M5 l i w s read
Progrsn i t in Emll lodc

Figure 4 - Realtime Closed Loop SOE Tool

Figure 2 - OEL On-Line Logging Tool (OLOG)

Miss on Control Team Operations Log

DOY: 21 1 Page 1
7/30/93

received SFOC G/W query for routing tbl 1054-03:00:271

Figure 3 - Sample OLOG Printout

TLM Id: C307 -- SCP Telemetry
SFDU X 25 DDP-ID = C307 SCP Telemetry
OOcO eb73 0079 1891 Obel 0019 0091
SCLK: 412158945 Segment: 25
EDF Status Word 0091 MISSION MODE D-0, 8=2
EDF Digital Telemetry
68 58 10 7f 7f 40 48 ef ff 9a
EDF Clnalog Telemetry
00 Oa 6a 66 7b 01 3c b4 b3 11 46 7a 7b 00
b4 00 7a 78 74 7a 46 88 6e 3b e7 83 bc 83
SCP Status Word de84 from CONTROL SCP
CV Word c006
SCP Telemetry
c006 c2b0 0001 feec 0001 8c35 13c2 cf54 Oeb9 f872 0019 0008
eed8 fffc fble ffff 0522 10d8 b061 50e3 0000 0000 ffe8 0067
0032 0000 0000 5898 49d4 c006 ce30 0001 feec 0001 89f0 122d
d48e

ACKNOWLEDGMENTS

This work was done at the Jet Propulsion
Laboratory, California Institute of
Technology, under a contract from the
National Aeronautics and Space
Administration. We would like to
acknowledge the work of the technical staff
in the OEL and the JPL Mission Operations
Teams for their enthusiasm and support.

ELISA, A DEMONSTRATOR ENVIRONMENT FOR
359327

"

INFORMATION SYSTEMS ARCHITECTURE DESIGN. ? - f
Chantal PANEM

CNES French Space Agency
18 Avenue Edouard Belin

3 1055 Toulouse Cedex- FRANCE
Tel.: (33) 61 28 26 72

email: panem@melies.cnes.fr

ABSTRACT

This papers describes an approach of reusability of software engineering technology in the area of ground
space system design. System engineers have lots of needs similar to software developers ones: sharing of a
common data base, capitalization of knowledge, definition of a common design process, communication
between different technical domains. Moreover system designers need to simulate dynamically their system
as earlier as possible. Software development environments, methods and tools now become operational and
widely used. Their architecture is based on a unique object base, a set of common management services and
they home a family of tools for each life cycle activity. Late 92, CNES decided to develop a demonstrative
software environment supporting some system activities. The design of ground space data processing
systems was chosen as the application domain. ELISA (Integrated Software Environment for Architectures
Specification) was specified as a "demonstrator", i.e. a suEcient basis for demonstrations, evaluation and
future operational enhancements. A process with three phases was implemented: system requirements
definition, design of system architectures models and selection of physical architectures. Each phase is
composed of several activities that can be performed in parallel, with the provision of Commercial Off the
Shelves Tools. ELISA has been delivered to CNES in January 94, currently used for demonstrations and
evaluations on real projects (e.g. SPOT4 Satellite Control Centre), it is on the way of new evolutions.

Keywords: PCTE (Portable Common Tool Environment), Satellite Control Centre, Ground segment,
computer science, data processing, architecture, simulation, queueing networks.

This article starts by a presentation of the
rationale for ELISA development, it describes
the implemented life cycle, the workbench
architecture and ends with first conclusions of
the project.

FROM SOFTWARE ENGINEERING TO
SYSTEM ENGINEERING ...
After several years studying software engineering
environments, mainly for the needs of the
Hermes program, it appeared that they become
operational and that any software project can
find rather easily satisfling COTS environments,
methods and associated tools.
On the other hand, in the area of system
engineering, the lack of an approved, detailed
and well-defined common design process, the
variety of tools and the poorness of

communication between them, increase
difficulties when the project size grows.
The idea that the knowledge acquired in
software engineering area could help the design
of space systems was the starting point for this
new orientation of our activities.

A REUSABLE TECHNOLOGY FOR
"SYSTEM" DESIGN ?

Before trying to show how the technology was
reused, lets explain it in few sentences.
Up-to-date software engineering environments
are based on a so-called "integration platform" or
"integrated project support environment (IPSE)"
or "integration framework", in which a variety of
tools are "plugged-in". The framework offers
tools integration services, in three degrees: data
integration via a repository, which role is to
define, store and control all data needed by

heterogeneous tools, control integration for
communication between tools (interoperability)
and presentation integration for uniform access
to tools via the user interface. Some frameworks
also provide process integration services for
piloting of users activities according to a
predefined life cycle. Two kind of services
complete the environment to get a full
"workbench": "horizontal" services, like
documentation, configuration management,
project management which are used in all the
project phases, and "vertical services'' which
support individual life cycle activities by means
of COTS tools (e.g. IDEF tool).
Such architecture did not seem limited to
software engineering applications, but its
adequation for system engineering needs had still
to be proved.

ELISA, A FIRST STEP TOWARDS A
WORKBENCH

FOR DATA PROCESSING
SYSTEM DESIGN

It was thus decided to develop a "demonstrator",
i.e. a demonstrative environment based on an
IPSE technology and supporting a coherent and
consistent set of system activities. The chosen
application domain was the design of data
processing systems for ground space segment.

ELISA (Environnement Logiciel Integre pour la
Specification &Architectures informatiquesl
Integrated Software Environment for
Architectures Specification) users requirements
specifications were produced in december 92.
The objectives were:

- to demonstrate the benefits of software
engineering P S E frameworks in the system
area,
- to increase CNES experience on three
points: modeling of a design process, interface
with a technical knowledge capitalization
system and integration facilities,
- to show the interest of specific system tools
and moreover of an integrated workbench
with respect to isolated tools.

ELISA development was then reduced to the
minimum set of services needed for demons-
trations and evaluation but as a reusable basis for
future enhancements. The constraint was to
reuse as far as possible commercial tools and to
limit specific developments.

THE ELISA REPOSITORY: a kernel for
traceability and reusability.

ELISA is based on a PCTE repository (ECMA
and Draft International IS0 Standard). The
repository is an object management system,
which allows to define entities with the Entity-
Relationship-Attributes model, to store them in a
distributed way and to execute operations on
them (calls to external tools). The ELISA data
model has been defined in a modular way (thanks
to PCTE) leading to an organised network of
objects representing pertinent information for the
user (functions, requirements, documents,
architecture, equipments, simulation scenarios
and results, etc..).

In ELISA, links between the objects represent
either composition relationships, either trace
relationships. Trace links are used to store
implementation/ validation relations according to
the process model steps: for example a computer
linked to a performance requirement can mean
that the computer implements it. Traceability
allows the user to navigate directly between
heterogeneous objects, to assess requirements
coverage by architecture trade-offs and to
analyse the impact of changes of a customer's
requirement, or a system fbnction. Through the
trace matrixes produced by ELISA, the list of
objects impacted by a modification is available at
any step of the process.

The ELISA repository is also used as a
"Technical Memory" storage, a place in the data
model allows to capitalize information from old
projects, feedback from previous studies,
catalogues of hardware and software products
and also architectural data from previous
projects realised with ELISA.

The user can at any time consult and reuse a
hnctional or physical architecture from this
technical memory.

The definition of a complete, coherent and
efficient data model is one of the tasks that
require most reflexion, by the fact that it's the
basis for tools integration and invocation.
Extension to the data model is easy, but deletion
or modification of data types seem more delicate
once the environment is used by several projects.

WHICH ACTIVITIES
DOES ELISA SUPPORT ?

Large projects are composed of a large number
of complex and inter-related tasks. The initial
work was to define the reduced life cycle that
should implement ELISA, this comprises the
definition of the activities that will be supported
(WHY), their scheduling (WHEN), the persons
who will perform them (WHO), the tools that
will be used (HOW) and the products that should
be available as inputs and outputs of the tasks
(WHAT). This work appeared to be hndamental
for the good achievement of the project.

The ELISA process model has three phases:
- System requirements definition,
- System architectural models design,
- Physical architectures assessment.

As it concerns a design process for early phases
of a space system, flexibility is the major issue
for an efficient assistance to users. The three
phases are not purely sequential, but the user can
complete them in an iterative way.
The EAST IPSE framework has been chosen,
mainly for its ability to define, control and
monitor any user defined process model, through
the user interface. Different types of users have
been defined (customer, architect, administrator
and project manager). When a user starts the
environment, he can activate tasks that have been
assigned to him by the project manager. Starting
a new project according to the ELISA process
model become a mere operation.

PHASE I: DEFINITION OF SYSTEM
REQUIREMENTS

The first task the designer deals with, is the
capture of the requirements and constraints of
the system. ELISA assists him in performing
three activities: formalization of system and
hnctional requirements, hnctional architecture
analysis and definition of the logical sequencing
of data processings.

Extract imposed requirements:
The first step is to deduce from input system
specifications and customer interviews, the
information which will be pertinent and/or
constraining for the system architecture. These
information are identified as requirements and
can relate to several system aspects like
performance, security, integrity, sizing, fault-
tolerance.
With ELISA, requirements are managed by the
LOTUS 123 spreadsheet tool, tables of
requirements are created and filled-in by the user.
Requirements are formalized by several
attributes: an identifier, a textual description, a
status (to be defined, hypothesis, computed,
stable) and a value that can be the result of a
formula computation from other requirements
values.
Input specifications and interview notes can be
stored in the repository if compatible with
FrameMaker format, traceability links can be set
towards them in order to keep the origin of
design choices.

Analyse the functional architecture of the
system:
The second step covers the analysis of the
system hnctions. ELISA assists the user by the
integration of the ASA tool supporting the
IDEFO methodology. The designer creates a
hnctional model, edit it and refines the system
hnctions in a hierarchical way, until obtaining a
tree where leafs correspond to processes or
software pieces. Each hnction is extracted and
accessible in the repository as an object,
automatically linked to its father and sons.

Tables of functional requirements can here also
be attached to any function of the tree (node or
leaf), for enabling the user to add details like
performances, input and output data volumes or
activation frequency.
ELISA ensures the consistency of the functions
tree and the attached requirements tables; if
some functions are renamed, moved or deleted in
ASA tool, the corresponding objects in the
repository are automatically changed; on the
reverse, if the user deletes objects in the
repository, he will receive inconsistency
warnings.

Define logical sequencing scenarios:
Starting from functions and associated

performance and data flows requirements, the
designer usually defines a set of data processings
and looks for their sequencing and
synchronization constraints.
Functional analysis only gives a static view of the
system which is not sufficient, the dynamic
behavior is represented via "chronograms".
Chronograms graphically express duration, start
and end dates of each processing execution, in a
given time. scale. Several chronograms are
necessary to analyse nominal and critic paths of
the system. This step allows to highlight possible
parallelism, concurrency and synchronization
constraints between processings. With the
FrameMaker graphical toolbox, it is possible to
create, edit as many chronograms as needed
(exploitation chronograms, telemetry level n
processing sequence..) and to link them to
requirement tables and functions.
At any time, one can query the "technical
memory" for estimation of some processing
duration, by comparison with previous similar
projects.

PHASE 11: DESIGN OF MODELS OF
THE DATA PROCESSING
ARCHITECTURE

A key feature in system design is to predict
system performances as soon as possible, in
order to foresee system evolution ability,

according to potential customer requests. System
designers perform trade-offs between central
processing, distributed, clientlserver or cluster
architectures and have to propose the best one.
Alternative solutions are often provided on
designers experience basis or on hardware
constraints. But few solutions are in fact really
studied for a given project.

The objective of this phase is to come up with
alternative models of the system hardware and
software architecture, which all satis@ the
requirements defined in the previous phase.

ELISA gives help in three inter-related activities:
- software architecture modeling,
- hardware architecture modeling and
- overall model validation.

The support to the whole phase relies on an
integrated toolset for system modeling and
performance evaluation: MODLINE. It is an
open environment for modeling discrete event
systems, developed and sold by SIMULOG (F).
At the time the ELISA project started, no
commercial tool with a satisfjing high level user
interface was available. MODARCH, a new tool
has been added to MODLINE on CNES request,
starting from an existing mock-up.
System designers are rarely familiar with formal
technics (e.g. petri-nets) or with queueing
networks, so they need to manipulate
"macroscopic" and realistic components. With an
ergonomic graphical object oriented interface,
MODARCH let them manipulate and compose
tasks, processors, networks, storage devices,
terminals.. .
The tool relies on the queueing networks theory
(QNAP21 Queueing Network Analysis Package,
from Inria and Bull F).
It must be kept in mind that the objective is not
to monitor precisely the performances of a
system, but to evaluate roughly the performances
and sizing capacities of a future system. Most of
its parameters and then results will be known in
an approximative way, but in an acceptable
margin, depending on the current project phase
(A, B or C).

Model software architecture:
The activity consists of defining a model of the
software application that answers to the
hnctional architecture of phase I. For
simplification purpose and demonstration of data
sharing between integrated tools, ELISA
implements a single concept: functions; this
means that a hnction, a software, a processing
or a task represents the same object in the
environment.
From the hnction tree, the environment
automatically extracts the leafs and generates the
software tasks each time the user edits the
MODARCH architecture.
ELISA again maintains consistency: the
hnctional analysis may evolve, software
architecture modifications will automatically
follow, for example adding a hnction in ASA
will add a task in MODARCH, but removing a
function will generate a warning.
Automation is provided when possible, but the
user is still free to work in inconsistent states,
ELISA guides him in a predefined way but does
not enforce him, at least he is warned.
The initial architectural model is composed of a
set of independent tasks (names of leaf
functions). The designer refines them by filling
attributes (priority, memory) and activation
conditions. The behavior of the tasks is defined
with QNAP2 language and operations (read1
write in a storage, send message to other task,
consume CPU, etc..). Four task types are
provided: sources which allow to activate tasks
by sending requests, tasks which execute some
code on reception of requests, in-out tasks for
modeling files, data bases, exit tasks for deletion
of requests. This ends with an executable tasks
network.

Model hardware architecture:
The architect now looks for a hardware
configuration that satisfies the software
application. Without leaving MODARCH, ' he
selects components in an equipments data base
(processors, storage devices, terminals,
networks..). Each component is typed (a printer
and a screen are of terminal type, the processor

type includes workstations and mainfkames), and
its attributes can be instantiated with user defined
values (memory, swap, CPU, rates.. .). The
behavior of the hardware equipments is coded in
QNAP2 and is hidden to the user, standard
algorithms, systems (Unix) and communication
protocols are available.

A major requirement towards MODARCH was
the flexibility of the projection of software tasks
to hardware equipments. With a simple graphical
link, the user affects a task to a processor or to
another. No user code is modified if the task is
moved or if the storage device to which it sends
write operations is attached to a remote machine.

The objective is indeed to analyse several
solutions as easily as possible. The MODARCH
user interface ensures consistency controls (a
task can only be mapped on a processor, a
source can be mapped on a terminal, an in-out
task can be mapped to a terminal or a storage).
Each hardware and software component of a
model can be parameterized (e.g. a CPU size, a
message length, a task priority), the parameters
values will be used for simulation purposes.

At any time, the user can call the other tools, in
order to have all the system views in his screen.
When he decides to close his model, the
repository automatically imports the system
components and the mapping links between
software and hardware. New tasks will then be
created and linked to the processor objects,
existing ones (functions) will be updated with
MODARCH information.

The user can add trace links between new
objects and previous ones. The result is a graph
of inter-related objects which allow direct
navigation between activities (fkom a
requirement table relating to hnction A to the
description of the computer which runs the task
A). The impact of a requirement evolution is thus
immediately visible if the user lists the traced
objects; the reverse is true, if a hardware
equipment evolves, the user can control the
impact on traced requirements or hnctions.

Stations-SSL mes-CUG acq-slgnaux Arch declen-traj

< . - - - - - - - -

Validate the overall model:
The last activity consists of executing the
simulation model and analyzing the results. The
MODLINE toolset integration in ELISA is
helpful.
Simulation scenarios (experiment plans) allow to
define variation laws for the parameters values of
the above model.
Via a single operation, MODLINE automatically
checks, generates and compiles the code,
executes and provides results. With a graphical
results analyzer, the user can edit curvs or
resources occupation chronograms. An
animation tool allows to follow messages
exchanges dynamically and then helps debugging
of the model.

objects are set by the environment. Through the
repository the user can compare output analysis
chronograms and those issued in phase I, this
assessment may help him choosing an
architecture type or another.

The process is iterative, according to resources
utilization analysis, the user can change his
models until obtaining the better optimized one.

Figure 1 shows the ELISA user interface with
views on the repository, ASA and MODARCH
models and a chronogram.

Each data is stored in the repository: scenarios,
results, analysis drawings, links to its parent

estimation), the user can edit a Decision
PHASE m: ASSESSMENT OF PHYSICAL Justification Document with FrameMaker.

ARCHITECTURES

HORIZONTAL SERVICES
In the last phase, the designer chooses a real
physical architecture aRer studying several
implementations for each model (HP, SUN,
IBM?). ELISA supports four activities:

- Selection of real equipments,
- Validation of physical architecture,
- Cost computation,
- Choice of physical architecture.

The tools are the same as above: MODARCH/
MODLINE, LOTUS 123 and Frame Maker.

Select real equipments. The architect selects
existing physical equipments for each compo-
nent of the chosen model. Specially, he chooses,
via the MODARCH component base, a given
workstation (e.g. SUN Sparc 10) or a given disk
(e.g. Sundisk), and all their characteristics are
updated. He may also refine the tasks behavior if
necessary (e.g. Oracle for a data base model in
phase 11). When leaving the MODARCH tool,
the repository is updated with new objects and
links towards the origin model and functions.

Validate physical architecture. The validation
of the physical architecture can be directly
performed by using the scenarios of the source
model. The user has to verifL that the physical
architecture still satisfies the system
requirements.

Compute architecture cost. The objective is to
provide an overall cost for the physical
alternatives. By affecting a cost to all the
components in MODARCH and with a LOTUS
123 integration, the user gets a table of costs he
can complete and sum.

Propose an architecture. The end step is to
give a proposition to the customer. With. all
information issued by previous steps
(performances evaluation, requirements
coverage, fbnctional decomposition and costs

Documentation with Frame Maker.
Documentation is a very time consuming task,
specially in early project phases. ELISA supports
the user in composing and editing documents
containing information produced by the tools.
The "specification document" can be assembled
in a semi-automated way: the IDEFO graphics,
the spreadsheet requirement tables, the
chronogram drawings are imported in a synthetic
document, from a predefined template. The user
can yet complete and polish it before printing.

Configuration management.
The ELISA framework allows the user to
manage versions of objects and to generate full
or user-defined configurations of his project.
Snapshots of his project will allow to stabilize
versions of his work.

Administration tasks.
The administrator is responsible of the
environment evolutions, of the repository
management (save and restore operations), of
feeding the technical memory, and of users and
projects management.

ELISA ARCHITECTURE

The ELISA architecture is compliant with the
one defined in the ECMA reference model
[ECMA 911 and can be represented as in Figure
2.

ELISA runs on a Sun SparcStation 2, SunOS
4.1.3, Motif.
The PCTE repository is the Emeraude
implementation.
ELISA has been developed by CIS1 S.A.

PCTWEmeraude
!

Figure 2: ELISA and the ECMA reference model

FIRST CONCLUSIONS

ELISA has been delivered in January 94.
Architects have been trained to the
demonstrator. Some demonstrations, at CNES
and externally, have shown the public interest
for the subject for the ELISA solution. Studies
on system engineering environments currently
raise in the european space and confirm our
opinion.
The project allowed to complete our experience
in tools integration, mainly in the impact of real
data sharing between tools and the induced
severe consistency checks.
The benefits of a system simulation tool are
clear for the users. Moreover, with the ELISA
environment, one can measure and better
understand the benefits of integration like
traceability, transparency of tools invocation,
common services , and specially assistance to
the generation of documentation.

ELISA has been delivered with an integrated
real test case based on the CE-GPS project. It is
currently being calibrated by Matra Marconi
Space on the operational SPOT4 Satellite
Control Center.
Some evolutions are going-on: porting on
ECMA PCTE, moving to an operational enviro-
nment, adding demonstrative features (multi-
platform communications), integration of new
tools version and process model enhancement.

References

[ECMA 911 ECMA, "A reference model for frameworks of
software engineering environments", ECMA report no TRl55.

ASA is a registred trademark of VERILOG
EAST is a registred trademark of SFGL
E~neraude is a registred trademark of GIE Emeraude
FrameMaker is a registred trademark of Frame Techn. Corp.
Lotus 123 is a registred trademark of Lotus Development Corp.
MODLINE is a registred trademark of SIMULOG
MOTIF is a registered trademark of OSF Inc.
SUN is a registred trademark of SUN Microsystems, Inc.
UNIX is a registred trademark of AT&T

Software Interface Verifier
35qQ230

Toms J. Soderstrom, Laura A. KraQ Sharon A. Hope, Brim S. Zupke
\ g

Telos Corporation
320 N. Halstead, Suite 260

Pasadena, CA 9 1 107
tomas.soderstrom@pLnasa.gov

Abstract - A Telos study of 40 recent
subsystem deliveries into the DSN at JPL
found software interface testing to be the
single most expensive and error-prone
activity, and the study team suggested
creating an automated software interface test
tool. The resulting Software Interface
Verifier (SIV), which was fimded by
NASAJJPL and created by Telos, employed
92% software reuse to quickly create an
initial version which incorporated early user
feedback. SIV is now successllly used by
developers for interface prototyping and unit
testing, by test engineer for formal testing,
and by end users for non-intrusive data flow
tests in the operational environment.
Metrics, including cost, are included.
Lessons learned include the need for early
user training. SIV is ported to many
platforms and can be successllly used or
tailored by other NASA groups.

1. Interface Testing History and Problem
Statement

The Deep Space Network (DSN) Deep
Space Communication Complex computer
environment is highly distributed, with major
hctions allocated to subsystems. These
subsystems are hosted in separate computers
and communicate with each other and JPL
via a LANAVAN. All communications
follow negotiated interface agreements

which prescribe the communications
protocols, data formats, and data ranges.

Over the past four years, JPL and Telos
developers on the Telos DSN Task Contract
fielded 40 subsystems into the DSN.
Frequently, mission requirements forced
subsystems to negotiate new interface
agreements and to deliver asynchronously.
The typical subsystem profle was:

A telemetry, tracking, command, or
supporting applications
Communications and hardware intensive
High reliability requirements
70K lines of C code, mostly realtime
Six external LAN interfaces
Development cost of $70K - $2M

The study team found interface testing to
have been the most costly and error-prone
activity. It proved nearly impossible to
manually ver@ and all possible data ranges
and data combinations for all interfaces
during live tests. This was due primarily to
excessive requirements for test equipment
and test persbnnel in high demand.
Consequently, interface errors sometimes
were not detected until the subsystem was in
operational use.

Metrics collected by the study team
supported the high cost of testing. Typically,
3 - 10 attempts were necessary before the

average interface was successfdly tested.
End-to-end interface tests required from 5 -
12 personnel, and multiple tests were
necessary. Programmers spent a total of 4 - 6
work months writing unplanned interface
simulation code to support the test activity.
In addition, they spent another 2- 4 work
months per interface in creation and testing
activities.

a SW Goals

The study also showed that overall testing
accounted for a large part of the
development effort of the 40 deliveries. This
agreed with an Association of Computing
Machinery study of seven large software
projects, which found that 50% of the
resources were spent on the overall test
effort. The Telos study team estimated that a
comprehensive, automated, reusable test tool
could save 40% of the current interface
costs. The team M e r found that 173 DSN
interfaces could benefit from this tool within
the subsequent five years.

What features would be needed in such a test
tool? A literature search and interviews of
personnel involved in testing found that the
tool should:

* Understand DSN-specific protocols
Be flexible and extensible, yet easy to use

Test interfaces in an exhaustive but
automated manner

Provide both realtime visibility into the
testing and off line results

* Be available in time to prototype interface
agreements
Support developers' unit testing
Support test engineers' formal testing
Support DSN end-users' application

simulation and data flow testing

In addition, the test tool should combine
three types of test tools and have the
following specific capabilities:

1. Generate Test Data
Control data to the bit level

e Produce static, variable, and predicted
dynamic data
Simultaneously run in batch mode and
int eractively
Send single data blocks at specified
times and intervals
Send data blocks or streams to multiile
destinations

2. Capture and Compare test data
Specifl which streams to capture and
compare to expected results
Specifl expected data values and
ranges

0 View automatic comparison of test
data to expected values both on- and
off line
Mask out data which would not require
an exact match

3. Simulate the entire application
e Create, run, and repeat complete

application scenarios for multiple
interfaces of multiple subsystems
Interactively change the behavior of the
simulated, scripted application
View online and printed detailed results

Telos proposed the Software Interhe
Verification (SIV) tool with all the above
hctionality. It was to be rapidly developed
and fielded with increased fbnctionality

in two subsequent deliveries. SIV
was fbnded by NASAIJPL and developed by
Telos. The SIV provjdes all the functions

listed above listed above and summarhd in simulate an application session, such as
Figure 1. sending the data fiom a typical Telemetry

pass.

User Inputs

PI cordigure teat LAN DATA FLOW - - . -?
a Sdect data flowfiltera
s Contrd simulation Rcws Simulated Teat Dab ---C
ra Modify simulated data contents &flow
ci W r i n t repoltddumpa ~ 0 e n s r P t e d O u t p u t o P t P
a Initiate automated (batch) testa
s Contrd wbsystem

Intarface
Dd~nitiona

AutomPtsd
Teat Scrim

Subsystem &
LAN ConfiurPtion Data

Schwa Intarface Veritier:

4 Generates data blocks that simulate inputs from a subsystem
4 Receives data from a wbaystsm under teat and verifies that the data is

within valiidatarange
Prwideswibn reporh, and on-line diaplaya

Figure 1 SIV Conceptual Operation

The following steps summarize the typical
SIV user scenario.

1. Create an ASCII table describing the
interface agreement (called a Rapid
Interface Definition - RID). It contains
interface definitions, including data types
and minimum/maximum/expected values,
incrementing values, etc. (In the next SIV
version, this will be automatically created
from the interface agreement. For now, it
must be typed in once.)

2. Download the RIDs to SIV fi-om LAN or
floppy and select which RIDs to use via a
type-in.

4. Select which tests to run, such as
generating test data, logging and
comparing test data, andfor simulating
entire applications.

5. Select which online displays to view
(detailed data dumps, overall status
monitoring, or none).

6. Start the tests and, as desired, interactively
start/stop/modify ihe data flows via SIV
type-ins.

7. When the test is complete, or manually
terminated, print the test report or
download it via LAN or floppy. Note
that the tests can be set up to cycle
indefinitely.

3. Select or create application simulation
scripts, if desired. This will enable SIV to

Ill. SW Development

The SIV development team consisted of one
technical lead who interfaced with the users
plus one programmer and one half-time
tester. The primary obstacles to be
overcome were:

Users' reluctance to use an unproven test
tool
Requirement to support multiple operating
environments
Limited budget

Quick results needed to meet users'
schedules

include adding new protocols, porting SIV
to new hardwareloperating system platforms,
changing the user intefice, and
addinglchanging SIV fimctionality. Figure 2
describes the SIV software architecture and
major fimctionality. For example, to
incorporate a new, low-level LAN protocol,
only the LAN Protocols module of Multi-use
Software need change.

In order to meet the budget, time, and
multiple operating environment constraints,
the development team reused a working
skeleton subsystem fiom the Multiuse
Software reuse library, which had been
previously created by Telos and had already
been ported seven hardwareloperating
system platforms. In addition, existing test
software fiom other development efforts was
adapted for use within SIV.

To overcome the users' reluctance to learn
and trust new test tools, the technical lead
concentrated on fiequent communication
with potential users. This included electronic
mail, phone calls, visits, demonstrations, and
presentations. In addition, the team solicited
feedback and carefidly folded new user
requirements into subsequent
demonstrations. This convinced skeptical
users by providing them continual visibility
and input into SIV development progress
and capabilities.

Although SIV was created as a DSN-specific
test tool, it was developed in a layered
fashion to facilitate later porting. This could

Figure 2. SIV S o w e Architecture

W. SW Results

SWs primary goal was to reduce the cost of
interface testing and the number of software
interface errors in the DSN. To achieve this
goal, skeptical users had to be convinced that
using SIV would save them time. We
originally hoped that cost savings due to SIV
usage would exceed SIV total lifetime costs
($420K) during SWs second year of use
(19'96).

As Figure 3 shows, the goal to obtain user
acceptance was met with a wide margin.
SIV was initially targeted for use by only 13
projects, or user groups, during the 1994-
1999 time fiame. However, witbin the first
seven months of development, and one
month aRer the first release, SIV had
acquired 23 interested user groups, 10 of
which have already used the SIV.

e End users - use SIV to simulate entire
subsystems for data flow tests, for
training, and for simulating hard-to-
create error conditions at the official test
facilities.

Metrics have been collected for three
months: two months before official SIV
release, and one month following the release

users I....!

DEC JAN FEB MAR APR MAY JUN JUL AUG SEp
W94 (by end) (by end)

.
0 interested future users i : originally projected users

actual users EB revised projection

I Figure 4 SIV User Interest and Involvement has Surpassed Original Goals
of version 1. The metrics support the

In these 23 user groups, there are now three anticipated savings as well as ones not
distinct types of SIV users: originally considered.

e Developers - use SIV to unit-test low- The following relates some specific user
level interfbces m their development reports:
laboratories.

The Metric and Pointing Assembly
Test engineers - use SIV to (MPA) group saved 50 development
performance/stress test their applications hours otherwise needed to write
at DSN's official test ficility. simulation code to test a new mterfbce

which would not be available until well
after MPA delivered.

The Central Monitor and Control group
reported saving 20 work hours because
of Sn?s ability to insert predicted errors
in the interfkces. This would have
otherwise taken several weeks and
multiple 350-mile round-trips to the DSN
station to induce the interface errors, test
whether the assembly reacted correctly,
and return to make needed software
corrections.

Multi-use S o h a r e saved 80 hours of
dedicated Test Facility resources and
associated travel by using the SIV in
their development laboratory to i d a t e
and correct a complicated software
anomaly.

So far, SIV users have detected and
corrected the following types of errors in
their applications, without the need for live
tests: formatting errors, data range errors,
routing problems, and errors due to
misinterpretations of interface agreements.

The metrics listed in Table 1 represent three
months of SIV usage by six user groups.

Let us tackle the difficult process of
estimating cost savings achieved. Of the six
user groups, an average of three user groups
were concurrently using the SIV each month
for a three month period. To estimate cost
savings achieved, let us assume the DSN
average development cost (including burden
charges) to $67 per work hour and test
facility usage to $200 per work hour
(including support personnel, rent, hardware
maintenance, etc.). These values when

Table 1. Initial SIV Metrics

Subsystem Jntd~ces Tested 11 intexf~ces

Data Flaws T d 20ddaflaws

Iuterfece Daioitians h a s t e d 63 RJDs

~ t e f ~ E r r a s ~ v e r e d 24 arm c u r d

EsC Test Facility Time Saved 146 work hours saved

This exceeds our originally projected cost
savings of $51K for FY94 and $324K for
FY95. In more general terms, this minimally
translates into the developer having more
time to work on other subsystem
development areas. It also means more
available test facility time to other users.
Overall, SIV usage should siguificantly
reduce the risk and cost of the typical DSN
subsystem delivery.

Est. Additirnal Use Time Saved

Est. Sirnulatian Code Time Saved

Est. SlV Learning Curve Tdal Cost

Additional savings due to automated testing
using SIV include:

190 work hours saved

100 work hours saved

10.5 work hours
invested

Reduced amount of travel to -- and use
of expensive -- Test Facility
Faster turn-around times when testing
within development labs--no need to wait
for scheduled test times or personnel
availability
Costly simulation code need not be
generated nor maintained

combined with the savings in the above table
result in a total savings of $48.6K for the
three months or $5.4K per user group per
month. Applying the $5.4K to our projected
Fiscal Year 1994 (FY94) and FY95 users
(see Figure 3), results in a total cost savings
of $216K for FY94 and $875K for FY95.

* Fewer end-to-end test resources required
since data content and protocol routing
can be pre-verified with SIV
Automated regression tests can be run at
computer speed

Although the initial SIV version has just been
fielded, early results clearly indicate the value
of automated testing and that SIV met its
goals and will help test DSN interfices at all
levels. Developers, test engineers, and end
users no longer have to be "sold" on using
automated test tools such as SIV. The early
results indicate that automated testing will
continue to pay dividends.

K Lessons Learned

What did we do right?

We solicited user acceptance. The SIV
Technical Lead spent a considerable amount
of time with skeptical users to learn their test
and simulation needs and teach them SIV.

We held early and Pequent demonstrations.
These also allowed for design refinement and
identification of new requirements. When
acted upon, this was especially important as
it created user acceptance.

We selected an experienced stafJ: The
developers, who were experienced with the
reused packages and testing in the DSN
environment, experienced no learning curve.

We employed signiJicant reuse. The
completed SIV consists of 8% (or 8K lines)
application-specific code and 92% reuse
fiom Multiuse Software and adapted
simulators and test software obtained from a
reuse depository. Besides for helping speed
up the SIV development, the reused software

had been previously proven, extensively
tested, and ported to seven platforms.

What could we have done better?

We should have allocated more schedule
time to the demonstrations. Although
invaluable for the eventual SIV progress, the
cost of each demonstration was 3-5 work
days to plan and hold plus 3 work days for
user requirements change requests, follow-
up, and action items.

We should have provided earlier user
training. This would have lessened the drain
on SIV personnel for user support which we
under-estimated.

We should have held smaller training
classes customized to the group's needs.
This would have allowed more customized
training to better enable the users to
recognize and use the powers of simulation
and automation that SIV possesses.

W. Applicability For Other Groups

SIV can be successfully used on all large,
distributed s o h e development efforts
where computers interfice over a LAN.
Although standards, such as the Distributed
Computing Environment, and Abstract
Syntax Notation, have great promise, they
are often too late to immediately benefit
current, large s o h e environments. The
SIV is a flexible test and simulation tool
which can test other subsystems over a LAN.
It can be easily adapted to use new custom
or standard high- or low-level protocols.

SIV is written in C and currently runs on a
Sun under the Solaris operating systems and
on Modcomp's Unix work stations running

the ReaVix operating system. It can easily be
adapted to run on all other platforms
supported by Multiuse Software (PDOS,
VxWorks, VADSWorks, and OSl2). It is
currently being ported to run on Intel 80386
computers (and greater) running a shareware
Unix variant called Lkux. SIV is M y
documented and available fiom Telos or JPL
by request to the authors. We plan to
implement TCP/IP during F M i n t e r 1994,
which should make the SIV instantly usable
by groups outside the DSN.

Acknowledgments

The work described in this paper was
accomplished by Telos Corporation under
contract to the Jet Propulsion Laboratory,
California Institute of Technology and
sponsored by the National Aeronautics and
Space A-ation.

We would like to thank Joseph Wackley,
Roger Crowe, and Sheila Davis of JPL for
their support of Muhiuse Software and the
Software Interface Verifier project and for
their vision and relentless efforts to create an
automated testing environment m the DSN.

>

SD.3.a OODIOOP Experience in the Science Operations Center Part of 963-970 * ' ' w*

the Ground System for X-Ray Timing Explorer Mission
Abdur Rahim Choudhary wl *; .?Lb: f. > -

SD.3.b Mission Operations Development: A Structured Approach
Michael Fatig

SD.3.c * The Cooperative Satellite Learning Project: Space Missions 973p 3 ': .
Supporting Education

Michael Fatig be

SD.3.d A Proven Approach for More Effective Software Development 975-983 L : T ' f

and Maintenance
Rose Pajerski, Dana Hall, Craig Sinclair

51 /
SD.3.e XMM Instrument On-Board Software Maintenance Concept 985992 9

N. Peccia, F. Giannini
*&) c 4

SD.3.f Integration of a Satellite Ground Support System Based on 993-1000 " .:<
Analysis of the Satellite Ground Support Domain

R. D. Pendley, E. J . Scheidker, D. S. Levitt, C. R. Myers,
R. D. Werking

' s + .J

SD.3.g * SoRware Process Assessment (SPA) 1001-100fj " , I (.

Linda H. Rosenberg, Sylvia B. Sheppard, Scott A. Butler
+ 1

SD.3.h * Taking Advantage of Ground Data Systems Attributes to 1009-1014 -: 3 9
Achieve Quality Results in Testing Software

Clayton B. Sigman, John T. Koslosky, Barbara H.
Hageman

SD.3.i SCOS I1 - An Object Oriented SoRware Development Approach 1015-1022 g(i&
Martin Symonds, Steen Lynenskjold, Christian Miiller

* Presented in Poster Session

OODIOOP Experience in the Science Operations Center part ,O - 8
of the Ground System for X-ray Timing Explorer Mission

Abdur Rahim Choudhary
Hughes STX, Technology Applications Group, 7701 Greenbelt Road, Greenbelt, Md-

20770, USA. (301-441-4229), rahim@rosserv.gsfc.nasa.gov

1.0 Introduction

The Science Operations Center (SOC) for the X-ray Timing Explorer (XTE) mission is an
important component of the XTE ground system. Its mandate includes:

Command and telemetry for the three XTE instruments, using CCSDS standards.

Monitoring of the real-time science operations, reconfiguration of the experiment
and the instruments, and real-time commanding to address the targets of
opportunity (TOO) and alternate observations.
Analysis, processing, and archival of the XTE telemetry, and the timely delivery of
the data products to the principal investigator (PI) teams and the guest observers
(GO).

The SOC has two major components: the science operations facility (SOF) that addresses
the first two objectives stated above and the guest observer facility (GOF) that addresses
the third. The SOF has subscribed to the object oriented design and implementation; while
the GOF uses the traditional approach in order to take advantage of the existing software
developed in support of previous missions.

This paper details the SOF development using the object oriented design (OOD), and its
implementation using the object oriented programming (OOP) in C++ under Unix envi-
ronment on client-server architecture using Sun workstations. It also illustrates how the
object oriented (0 0) and the traditional approaches coexist in SOF and GOF, the lessons
learned, and how the OOD facilitated the distributed software development collabora-
tively by four different teams. Details are presented for the SOF system, its major sub-
systems, its interfaces with the rest of the XTE ground data system, and its design and
implementation approaches. -

2.0 Distributed Development

SOF development is distributed from following points of view:

Development by a team with components distributed at Hughes STX and the three
PI team locations at Goddard Space Flight Center (GSFC), University of California
at san Diego (UCSD), and Massachusetts Institute of Technology (MIT). It also
implies development under heterogeneous'management structures, as each team
component has its own management.
Development on computer systems distributed at above team component locations,
and internetworked using TCP/IP. This also includes development on
heterogeneous types of machines.

SOF development uses the incremental build approach, with builds roughly six months
apart. It employs the philosophy that the system software will be so modularized that the
modules can be developed by the components of the team that has best expertise for them.
Thus the software development related to a particular instrument is allocated to the corre-
sponding PI team. These include the instrument health and safety, instrument commands,
instrument telemetry unpacking algorithms, and algorithms to construct physically mean-
ingful data partitions from the telemetry.

The rest of the system development is performed by Hughes STX. This includes the over-
all system engineering, development of abstract classes and base classes, integration of the
total software system, testing of the system and the subsystem components, and integra-
tion of the SOF with the rest of the XTE ground system. The overall responsibility for the
SOF remains with Hughes STX. This includes coordination with the various teams, clear
definition of the development interfaces, and meeting the software build schedules.

Legend: Object Oriented Non Object Ori-
Development 0 ented Development

GSFC Code
500 Elements

?,,,-,,J

Figure 3-1: SOF interfaces and context within the XTE ground segment

3.0 SOF Context and Interfaces

Figure 3-1 shows the distributed parts of the SOF development effort together with the
relationship of SOF with the rest of the XTE ground system. The SOF box shown in the
center represents the net result of object oriented development by the PI teams and the
Hughes STX. It has important interfaces with other ground system elements which are not
object oriented. The GOF is not object oriented, but it needs to retrieve telemetry data

products from the SOF generated objects in order to generate the Flexible Image Trans-
portation System (FITS) files. This interface is provided by data management subsystem
of the SOF (see Fig. 4-1) that communicates with the XTE FITS Formatter software of the
GOF using a set of data descriptors formulated according to a data description language
(DDL) defined by the GOF for this purpose.

SubsystemConf ig

Subclasses
Attributes

This is the base class for the DesiredConf ig and
P redictedconf ig classes.
DesiredConfig
PredictedConfig
RWCString configurationName;
The configuration name.

RWCString description;
A descriptive string for the configuration.
SubsystemConfig 0 ;

Public Constructors Constructs a configuration with no description or configuration name.

virtual -SubsystemConfig 0 ;
Destructor.
void setConfigurationName (const char* name);

Public Member Functions Sets the configuration name.

const char* getConfigurationName() const;
Returns a pointer to the configuration name.

void setDescription (const char* name);
Sets the descriptive text field.

const char* getDescription0 const;
Returns a pointer to the description,
virtual const char* getSubsystemName() const;

Virtual Member Functions Returns the name of the subsystem.

virtual CommandScript* getCommandScript() const;
Returns the command script.

virtual TelemRate* getTelemRate (const Source&
source) const;
Returns a telemetry rate.

virtual void printshort (ostream& ostr) const;
Prints a description of the configuration.

virtual void print (ostream& ostr) const;
Prints a description of the configuration.

virtual void printLong (ostream& ostr) const;
Prints a description of the configuration.

Figure 3-2: An example of detailed class prototype from command generation subsystem.

The non Object Oriented interfaces are defined in traditional sense. All the data to be
exchanged between SOF and an element of the ground system were identified; their for-
mats were specified; the frequency and mode of each data transfer and the corresponding
data volume was determined; and the standards to be adhered to were noted. A separate

ICD was concluded between SOF and the corresponding ground data element (as opposed
to a single ICD between SOF and all other elements). This approach allowed the logistic
complexities to be minimized and updates to these ICDs manageable by keeping the num-
ber of involved parties small.

The interfaces between the SOF and the components of the SOF to be developed by the PI
teams were necessarily object oriented. The traditional methods for the interface treatment
could not be employed in this case. To define the object oriented interfaces, first the class
hierarchy was developed. The base classes were all allocated for development by the
Hughes STX team. The subset of derived classes to be implemented by the PI teams were
specified. The interfaces were defined in terms of the public member functions that these
classes were required to support. As part of the interface definition, all such classes were
prototyped; and those public member functions of each class were also prototyped upon
which the other party depended for the implementation of their code. This set of prototype
classes and public member functions were formulated early in the development and docu-
mented in an ICD. An example of such prototype class and its methods with their signa-
tures is given in Fig. 3-2.

Separate ICDs were developed with each PI team. Further, the commonality between the
ICDs with PI teams was explicitly acknowledged to facilitate their development, to avoid
reinventing the parts already developed, and to manage the configuration of the common
interfaces. This further facilitated the interface implementation, since the commonality
explicitly formulated in the ICDs allowed the re-use of the corresponding software devel-
opment approach among the PI teams.

4.0 Analysis and Design Approach

The book "Object-Oriented Modelling and Design" by Rumbaugh, J., Blaha, M., Premer-
lani, W., Eddy, F., Lorenson, W. (Prentice Hall 199 1) was used by the SOF team to follow
the Object Modeling Technique (OMT) advocated by these authors. The following proce-
dure was found useful and worked for the SOF team, even though the various steps
described below were often concurrently analyzed and subsequently refined via iterations.

1. The SOF team started with the usual requirements analysis. The requirements are
sourced from the customer, domain experts, and the users.

2. The requirements were allocated to a set of high level functions. These functions were
grouped into the subsystems, shown in Fig. 4-1. A lead engineer was appointed for
each subsystem. The analysis described below was performed on subsystem basis.

3. The nouns used in the requirements allocated to a subsystem were potential objects.
After the redundancy was weeded out and the overlap between the objects was mini-
mized, the team had a fairly good starting set of the objects.

4. The associations between the objects can be indicated by the verbs in the requirements
definition, This led to some objects being identified as the class attributes. The dynamic
modelling scenarios were used to identify the objects that potentially form the member
functions.The initial objects set was thus grouped into a set of classes, their attributes,
and member functions.

Mission

Desired Time-Line Predicted Time-Line

I
configuration Mission Measured

Monitoring lime-Line

Packet Files

7-T
Safety Mon. Trends

Management science data Science
Monitoring

Figure 4- 1 : SOF software subsystems

+ I 4

5. A further analysis of these classes based on the bottom up and top down approaches
was used to develop inheritance relationships between classes. The classes were then
generalized to form the abstract classes; various specializations of which led to the
derived classes. Some classes in each subsystem fell in the domain of expertise of the
PI teams. Those were allocated for development by the PI teams. Such allocations how-
ever were not rigid so that they were reviewed as the design progressed and during the
implementation phase of various builds.

Telemetry Object Database

Figure 4-2 shows an example of the object model for the command generation subsystem.
The SOF design document has such object models for each subsystem and additional
information as follows:

1. Subsystem introduction 7. Subsystem interfaces

2. Applicable requirements 8. Subsystem object model

3. Operating scenarios 9. Subsystem class hierarchy

4. Outstanding issues 10. Detailed class design

5. Major design features 11. Review comments and responses

6. External interface

GOF

The detailed class design is similar to the example presented in Fig. 3-2.

Subsystemconfig

wnfigurationName
description

virtual getCommandScript
virtual getTelemetryRate
setConfigurationName
getConfigurationName
setDescription
get Description

virtual inheritprediction
virtual getDeltaCommandScript c

PktCCSDS Ea

Figure 4-2: An example of Object Model from command generation subsystem

5.0 Development Environment

SOF decided for a client-server architecture using SunSparc workstations. However MIT
wanted to use their existing DEC Ultrix workstations for their part of the SOF develop-
ment. This meant that all development standards and the tools needed to be available on
these two machines. To keep the development away from specific features of these two
machines, a SGI IRIS Indigo was acquired to test that the software built on a third plat-
form. The software development environment of the SOF are summarized in Table 5-1.

The internet connectivity between the computers on the four sites facilitated the distrib-
uted software development by the three PI teams and the Hughes STX. This allowed the
developers to collaboratively debug problems on each others' computers using remote
logon. It also allowed the periodic deliveries of the software and documentation from the
PI teams to the Hughes STX for the SOF builds. Monthly meetings of all four components
of the team were held. Other collaborations were ongoing using electronic mail. Each item
in table 5-1 and all upgrades were discussed using these forums and kept in a standards
document. Copies of all XTE SOF documents were available via an anonymous ftp
account.

TABLE 5-1: Software development environment of SOF

Starting
Software Tool Version

4.1.3
I

Motif 1 1.1.4
I Objectcenter 1 2.0

CFront

I RogueWave tools.h++ 1 5.2

GNU Make
Purify
xteprob (home grown)

RCS
TAE+

Current
Version I Comments

5.6.0.1
5.2

4.1.3 I Sun Overating System I
1.2 I GUI I

6.0 I C++ library I

2.0.6

3.0

Lapack 1.0
2.10

5.6.0.1 Revision control system
GUI Builder

X Windows

4.0 Wordprocessor plus graphics

C++ Debugger

AT&T C++ translator

Math.h++ and Maix.h++ supersets
Oregon grad. inst. analysis package

2.0 I Unix style man pages I

6.0 Object Persistence

3.70
2.1
1.1

Commercial object oriented data base management systems (OODBMS) were initially investi-
gated for use in SOF. Ontos was selected for detailed evaluation. A pathfinder analysis showed
that in the SOF context Ontos had several difficulties: presence of memory leaks, the perfor-
mance limitations (SOF is required to ingest at an average rate of 64 kilo bits per second and a
peak of one mega bits per second), and the fact that Ontos persistence mechanism required
modifying those class library header files which must be persistent.

make utility

check memory leaks/corruption
descrepancy tracking system

SOF's main data management needs are object persistence and persistent object retrieval. The
more advanced features of an OODBMS such as sophisticated query capabilities or the trans-
action commit mechanisms are not required. The RogueWave (RW) Tools.h++ class library
offers a means of making objects persistent. The UNIX file system together with the Dictio-
nary classes in RW offer a means of accessing persistent objects; i.e. a way to simulate a global
namespace. A prototype of the archival portion of the Ingest subsystem using Rogue Wave
Tools.h++ was roughly ten times faster than the equivalent Ontos version. SOF therefore
decided to develop internally the mechanisms it needed to satisfy many of its data manage-
ment requirements.

7.0 Object Oriented Implementation

Some practical experiences during SOF implementation are presented in this section. The
development was facilitated by early implementation of the object oriented interfaces. As can
be seen from the example in Fig. 3-2, these interfaces were defined in terms of the method pro-

totypes in C++. The crucial parts of the code were therefore developed and scrutinized
early in the process. As illustrated in Fig. 3-2, many of the interfaces were defined as vir-
tual methods. This was very helpful in developing software with complete reliance on the
PI teams for their instrument expertise and without the need for the Hughes STX engi-
neers to also acquire such expertise. In fact the virtual method interfaces were often identi-
cally defined with each of the three PI teams; the specific instrument expertise were
encapsulated in the way these interface methods were overridden by an individual PI
team. At the same time the formulation presented a uniform interface to the Hughes STX
engineers that were independent of the intricacies of the individual instrument subsystems.
This approach is taken in many important instances including instrument configurations
specification for command generation and mission monitoring, the telemetry unpacking to
recover CCSDS packets, to assemble CCSDS packets into physically meaningful parti-
tions, and to access that infomation from the persistent objects. This is a remarkable
advantage of polymorphism in object oriented approach. The class hierarchy in such cases
is illustrated in Fig. 4-2 for the case of instrument configurations. In this case the sub-
classes of PredictedConfig and DesiredConfig (except those for ACS and Obs) are devel-
oped by the PI teams while the rest are developed by the Hughes STX. The PI teams are
free to derive their own sub-hierarchy.

The C++ templates were helpful. The real-time data ingest subsystem has a real-time
server that passes CCSDS packets to the real-time clients. A real-time client template was
developed that proved useful for the PI teams, the health and safety subsystem, the science
monitoring subsystem, and the mission monitoring subsystem to write their own real-time
clients.

The RW object oriented libraries of Tools.h++ proved very useful in saving the develop-
ment effort on mundane things. The RW persistence and retrieval mechanism however
was sometimes difficult for new developers to grasp.

8.0 Conclusion

Our OODIOOP experience in SOF can be summarized as follows:
Initial analysis and design activity took a while (the team was also passing through
a learning phase); but the implementation proceeded pleasantly fast (couple of
experienced C++ programmers later came on board, and thd example of their work
was helpful for the rest).
Our decision not to use an OODBMS proved right.
The COTS object oriented libraries saved SOF time and cost.
Design changes due to the management decisions and requirements evolution were
gracefully accommodated.
The total SOF team is 11 persons, which is modest compared to similar past
missions. XTE launch is scheduled for August 1995; the OODIOOP approach has
so far allowed SOF development on schedule and within cost.

MISSION OPERATIONS DEVELOPMENT: A STRUCTURED
APPROACH

Michael Fatig
AlliedSignal Inc.

Paper Not Available

THE COOPERATIVE SATELLITE LEARNING PROJECT: SPACE
MISSIONS SUPPORTING EDUCATION

Michael Fatig
AlliedSignal Inc.

Paper Not Available

973
X.!

pi$%E q(l __.* ' ... s m u - $:;'~y:ci.l)!,i,y $$$$fiii

PA= & A M m% WMm

359237
A Proven Approach for More Effective Software

Development and Maintenance

Rose Pajerski
NASA Goddard Space Flight Center, Code 552

Beltsville, Maryland

Dana Hall
Science Applications International Corporation

McLean, Virginia

Craig Sincldr
Science Applications International Corporation

McLean, Virginia

Abstract

Modern space flight mission operations
and associated ground data systems are
increasingly dependent upon reliable,
quality software. Critical functions such
as command load preparation, health and
status monitoring, communications link
scheduling and conflict resolution, and
transparent gateway protocol conversion
are routinely performed by software.
Given budget constraints and the ever-
increasing capabilities of processor
technology, the next generation of control
centers and data systems will be even
more dependent upon software across all
aspects of performance. A key challenge
now is to implement improved
engineering, management, and assurance
processes for the development and
maintenance of that software; processes
that cost less, yield higher quality
products, and that self-correct for
continual improvement evolution.

The NASA Goddard Space Flight Center
has a unique experience base that can be
readily tapped to help solve the software
challenge. Over the past eighteen years,
the Software Engineering Laboratory
within the Code 500 Flight Dynamics
Division has evolved a software
development and maintenance
methodology that accommodates the
unique characteristics of an organization

while optimizing and continually
improving the organization's software
capabilities. This methodology relies
upon measurement, analysis, and
feedback much analogous to that of
control loop systems. It is an approach
with a time-tested track record proven
through repeated applications across a
broad range of operational software
development and maintenance projects. .

This paper describes the software
improvement methodology employed by
the Software Engineering Laboratory,
and how it has been exploited within the
Flight Dynamics Division within GSFC
Code 500. Examples of specific
improvement in the software itself and its
processes are presented to illustrate the
effectiveness of the methodology.
Finally, the initial findings are given
when this methodology was applied
across the mission operations and ground
data systems software domains
throughout Code 500.

Introduction

A recent analysis conducted by the NASA
Software Engineering Program found that
over 30% of the NASA Goddard Space
Flight Center (GSFC)' Code 500 civil
servants and support contractors spend
the majority of their time directly involved

in the management, development,
maintenance, and/or assurance of
software (Reference 1). That represents
over 1600 people out of the total of 5000
GSFC Code 500 civil service and support
contractor community. Correspondingly,
that same analysis found a tremendous
investment in developed, operational
software throughout the Mission
Operations and Data Systems Directorate.
Not including common off-the-shelf
varieties of shrink-wrapped word
processors, spreadsheets, and other
typical tools, GSFC Code 500 is
responsible today for some 21 million
lines of operational code. This represents
almost half of the 43 million lines of code
currently operational throughout GSFC
(Reference 2). Most of that is in one way
or another involved in the preparation for,
conduct of, or results analysis from
spaceflight missions.

Given the importance of software in
much of what the Mission Operations and
Data Systems does and hopes to do, its
not surprising that more attention is being
paid to software; the tools and practices
by which it is engineered; the
management oversight by which it is
coordinated and paid for; and the means
by which products, tools, and know-how
are disseminated and shared. The NASA
Software Engineering Laboratory (SEL)
and its software improvement
methodology is a premier example of an
attempt to understand the roles of
software within GSFC Code 500 and to
identify and promote practices that real
experience shows are effective and
beneficial.

Software Engineering
Laboratory (SEL)

The Software Engineering Laboratory
(SEL), located in the Flight Dynamics
Division of GSFC Code 500, was
developed to study the effectiveness of
new software engineering technologies as
part of the existing Code 500 software
development projects. The SEL is a 300

person organization charged with
producing operational flight dynamics
software for each GSFC space mission,
but it is also an organization that has
intentionally and carefully for eighteen
years experimented with languages,
tools, and techniques to continually
improve its software development and
maintenance process. Within the SEL,
every software project is considered to be
an "experiment" where a new software
technology is injected, its effectiveness
measured, and if it proves useful the new
technology is incorporated into the
software development processes for the
next project. The SEL organization works
as a partner with the production
organization's software developers to
incrementally improve the software and
its processes over time.

Figure 1 illustrates the three key
components of the SEL environment that
are critical to the success of improving an
organization's software development
process and software products. The first
component is the development
organization. This component is
responsible for the software development
of a real missions operations or ground
data system application. This
organization develops the software and
documentation using the processes
provided by the analysis organization.
The development organization also
provides software measurements, pro~ect
characteristics, and lessons learned to the
analysis organization.

The second component is the analysis
organization. It uses the software
measurements and project data to
understand the developers' software and
software process characteristics well
enough to propose an improvement goal,
analyze the effectiveness of the
improvement, package the results, and
feedback the result to the development
organization for use in the current and
future development efforts. The analysis
component interacts with the development
component to extract, examine, and
compare the consequences of applying

PROJECT ORGANIZATION SOFMlARE ANALYSIS ORGANIZATION

Execute Process

Execution Plans

Figure 1: Components of the Software Engineering Laboratory Environment

specific methodologies, standards, and
tools.

The third component is the support
organization, which archives the
information captured from the
development and analysis organizations
such as software measurement data,
process models, training materials, and
other documentation.

Over the last 18 years, the SEL has
worked with more than 100 production
projects where the software was used for
mission operations and ground support of
GSFC missions. In each of these, SEL
analysts quantitatively assessed process
changes on the developed software of real
projects. These software projects ranged
in size from 4 thousand lines of code to a
million lines of code (Reference 3).

Software Improvement
Methodology

* Evolutionary not revolutionary
Continuous
Incremental
Bottoms-up rather than top down
Quantitative software measures
Software experimenters work .
with software developers

These attributes are the key to success.
Experience in many complex endeavors
has shown that true process improvement
takes time and commitment. The culture
of an established organization must
continually absorb and adapt to better
ways of accomplishing its business.
Experience has repeatedly shown that
mandating a standard software
engineering process from the top, for
example, won't be accepted into an
organization's culture. The people who
comprise that organization must be part of
the evolution of the process, the rules,
and the techniques that they find work
best for them in their particular
environment.

The key distinguishing features of the The GSFC SEL software improvement

SEL software improvement methodology strategy focuses around the simple three

are the following: layer paradigm shown in Figure 2. This
model recognizes that in-depth
understanding must precede any attempt

Package new process
(e.g. standards 81 policies)

0 Determine improvements - set goals

Measure changed process and product

I s
Figure 2: SEL Software Process Improvement Model

to improve. Detailed insight about the
functions an organization performs, the
dynamics of their interactions, the quality
of their products, and the processes and
tools they apply forms the basis for the
second "layer" of the improvement
model. This second layer benefits from
the ongoing understanding activity to
define focused, incremental improvement
experiments. The term "experiment" is
important, because change must be
~lanned. instrumented. and comuared.
 an^ experiments may 'not prove 6elpful
or at least not be beneficial in the ways or
to the extent originally conceived.
Further, the success of each incremental
candidate improvement requires people
"buy-in" which can only be gained
through careful explanation and training,
application, and results analysis. As
stated above, true improvement takes time
and is, by definition, bottoms-up. As
improvements are shown to be helpful,
they are packaged appropriately for
ongoing use by the organization (the top
layer shown in the figure). Usual
examples of packaging are well-written
user guidebooks and training materials.
The state of the organization's business

practice is thus altered. The packaged
processes, tools, training, and guidance
become that organization's software
policies and standards. And those are
effective policies and standards because
they reflect what the organization really
does (Reference 4).

Software Improvement
Results

As an example of the application of
collecting and analyzing of software error
statistics at GSFC, the SEL collected data
to determine the impact of the cleanroom
approach on software error rates. Figure
3a shows the error rates of the baseline
approach and two small (20-40
KSLOCs) development p ro~ec t s
(Reference 5). Each time the cleanroom
approach was used, the error rates
decreased showing that the cleanroom
approach had a positive effect on error
detection rates and possibly should be
adopted as part of the baselined
development process for Code 552.

PROJECTS

SEL BASELINE

I ST CLEANROOM STUDY

2ND CLEANROOM STUDY

PROJECTS: PROJECTS:
1985 - 1989 1990 - 1993
8 SIMILAR 8 SIMILAR
SYSTEMS SYSTEMS

I 3A: CLEANROOM STUDY 38: REUSE STUDY I
Figure 3: Cleanroom Error Rates and Object-Oriented Design Reuse Studies

Another effort focused on the use of
object-oriented technology with the goal
of increasing the reuse levels of software
within the Flight Dynamics Division
resulted in significant impacts as depicted
in Figure 3b. The average level of code
reuse increased from approximately 20%
in the 1985-1989 time frame to over 61%
reuse for FORTRAN projects and 90%
reuse for Ada projects during the 1990-
1994 period (Reference 3). Such
improvements provide evidence of the
benefits potentially derived from the
application of evolving state-of-the-art
software engineering practices such as
object-oriented design.

Since the SEL has been monitoring and
measuring the progress of GSFC mission
operations and ground data software for
over a eighteen years, the cumulative
effect of the SEL software improvement
technique on software error rates was
analyzed. The software error rate is
defined as the number of errors per
thousand lines of code. The analysis
shown in Figure 4 that the average
software error detection rate decreased

from 8 errors per KSLOC to 2 errors per
KSLOC, a 75% decrease from 1977 to
1993. This type of information leads to
well defined models and relationships of
software parameters supporting improved
management and control of future
projects (Reference 3).

Improvement of the product within Code
552 (flight dynamics software) by
changing and measuring results of
software process changes on real projects
has produced real gains in error rates,
reuse, and productivity over the last 5
years. For a set of similar GSFC projects
using this methodology since the late
1980s, the error rates decreased 75%
(from 4 errors1KSLOC to 1
errorIKSLOC), reuse increase from 20%
reuse to 75% reuse, and the productivity
increased 75% (from 440 staff-months to
110 staff-months) for an equivalent
amount of software.

PROJECT MIDPOINT
0 Fortran Projects A Ada Projects

I I

Figure 4: Software Error Detection Rate Over 16 Years for SEL Projects

Software Improvement
Within GSFC Code 500

The basic methodology used by the SEL
for flight dynamics software was applied
to the Mission Operations and Data
Systems Directorate as a whole. In
accordance with the SEL software
improvement model, a software
"baseline" for Code 500 was established
(Reference 1). The data for establishing
an understanding of the Code 500
software and its development and
maintenance processes was gathered via

gained through the surveys by reviewing
software policies, standards, staffing
data, project plans, and other
organizational and project data. After
initial review of the data, we conducted
roundtable discussions with groups of
respondents to refine the data and to
obtain suggestions on how software
processes might be improved. Finally,
we conducted one-on-one interviews with
selected managers to increase our
confidence that ' our data was
representative of the software work
performed by that organization.

four integrated approaches: a
comprehensive nine page survey, reviews The published software baseline included

of organizational and project data, both software product descriptions

informal roundtable discussions, and (amount of software, cost of software,

one-on-one interviews. software staffing, software error rates,
etc.) and software process descriptions

We sampled the GSFC Code 500 civil (standards used, metrics use, project

servant and support contractors by volatility, development and test

selecting respondents from organizations methodology use, training, etc.). This

performing the majority of the software baseline data was then analyzed. Using

work. We then supplemented the insight the basic goals of decreasing cost,
increasing productivity, and decreasing

error rates, specific areas for potential
software improvement were identified.
These areas were researched and a set of
recommendations for improvement of the
software product and processes within
GSFC Code 500 were developed. Three
of those recommendations are presented
here.

Recommendations

Establishing our understanding baseline
for GSFC 500 took time, patience, and
careful analysis. We believe our
understanding was sufficiently detailed
and reasonably correct enough to move
smartly into the second thrust of the
improvement process; i.e., defining
focused incremental improvements and
experimenting with those improvements
in controlled ways.

Three major areas that promise large near-
term payoff for relatively small
investments are:

1) Introduction of ongoing. continual
software improvement into the culture
of the Directorate

involvement is critical. So is the
participation of everyone throughout the
organization that has anything to do with
software development and maintenance.
People must be involved, have influence
on, and help shape where their
organization is going. Simply assigning
another working group or holding an
occasional meeting won't accomplish the
sof tware improvement goals.
Improvement working teams or Software
Process Groups must be established at all
levels (Directorate, Division, and
Branch). Both process improvement and
software product improvement need to be
emphasized. An initial task might be to
develop a Code 500 approach (not
necessarily standards) for the
development and maintenance of
software. With the help of improvement
guidance such as the Software
Measurement Guidebook (Reference 6) ,
the Software Manager's Guidebook
(Reference a), SEL experience, and the
materials from the Software Engineering
Institute, this hierarchy of Software
Process Groups could identify, define,
and implement techniques designed to
continually improve Code 500's software
capabilities.

2) Establishment of an integrated Software Training Program
software training Drogram

3) Implementation of an effective
software measurement program

These improvements can be accomplished
for relatively little money and in a short
time period because significant
components of what are needed already
exist.

Organizational Software Improvement
Infrastructure

In order to implement and sustain any
software improvement change across the
Directorate, it is necessary to put in place
a software improvement infrastructure
throughout the organization. Upper
management commitment and long term

GSFC Code 500 could benefit from an
integrated software training program.
Our findings indicate that software
training tends to be focused on specific
"hot" technologies as opposed to overall
software process and development of
personnel for key software positions.
This goal could be accomplished with a
bottoms-up approach by allowing project-
level experiences to drive the content of
the integrated training program. The
needed disciplines are at minimum those
of software project management,
software requirements management,
software contractor management,
configuration management, quality
assurance, and the software engineering
life cycle. The courses must be
consistent in approach, show the role of
software measurement and feedback in
the context of each discipline, and be

tightly integrated to the GSFC Code 500
approach to software development.

The curriculum will be most effective if
each course has an overview version that
is 3 to 4 hours in length and a full
duration version (1 to perhaps 3 days
depending upon the subject.) The
overview version would be taken by
everyone involved with software, but not
directly responsible for that discipline
area. For example, only software project
managers and those people training to
become such managers would take the
full length software project management
course. An effective enhancement to the
basic training program would be on-line
refresher modules accessible from any of
the organization's networked
workstations.

The basic elements of this training
curriculum already exist at CSC, SAIC,
and in the SEL at GSFC. This existing
courseware and instructors can be tailored
and enhanced and could be ready for use
without a long delay or large additional
investment.

Continually decrease software cost
Assist in the management of
software projects
Assure timely delivery of products
Improve software reliability

Fortunately, practical solutions and
experience are readily at hand. The SEL
in GSFC Code 552 is one of the few
nationally leading organizations that has
proven, long term experience in the
definition, analysis, and application of
software metrics. The SEL-developed
NASA Software Measurement
Guidebook (Reference 6) will be released
shortly. Code 500 should adopt a top
level software measurement policy with
the local organizations choosing their
own specific goals for measurement,
picking the minimum set of metrics
needed to meet their goals, and
performing metric analysis and feedback.
The know-how in this Guidebook
combined with an integrated training
program are key improvement tools that
are easily available.

Conclusions
Somare Measurement Program

We found that little attention is given to
software measurement in most GSFC
organizations. Several contracts required
metrics to be collected and forwarded to
the government, but little or no analysis
was being performed and even less in the
way of improvement feedback into the
actual projects. The consequence was the
project and line management and staff had
virtually no real insight about critical
status indicators such as the number of
errors in the delivered code, the amount
of time any activity actually took, or how
well the documentation matched the
design, code, or testing.

Our recommendation is that GSFC Code
500 develop an effective, practical
software metrics program to collect,
analyze, and provide feedback for the
following purposes:

The GSFC Mission Operations and Data
Systems Directorate has successfully
developed many millions of lines of code
for 'ground systems of numerous
spacecraft. Even so, our analysis of the
ground and data software systems shows
that are areas that could benefit from a
sustainable, continuous software
improvement program. The Software
Engineering Laboratory is an example of
this. In the past five years, the SEL saw
a 75% increase in productivity and a 75%
decrease in software error rates in flight
dynamics projects. The SEL software
improvement method of working directly
with the development projects and using
quantitative measures to test new
software technologies can be applied
throughout the GSFC Code 500 software
domains.

The SEL approach of understanding,
assessing, and packaging the assessment

results was applied to the Code 500 GSFC Code 500 has a superb
software domains in general. This study opportunity to leverage the isolated
identified three areas in which GSFC experiences already existent in their
Code 500 could enhance the success of organization to adopt a broad, experience-
their software development and based software improvement program
maintenance projects: institute a that could indeed be a model for both
Directorate-wide software improvement Government and industry.
program, develop an integrated software
training program, and develop a software
measurement program. We believe that

References

1. McGarry, F. & Hall, D. (1994, June). Profile of Software Within Code 500 at the
Goddard Space Flight Center. NASNCode QE. NASA Software Engineering Report
NASA-RPT-00 1.

2. McGarry, F., Hall, D. & Sinclair, C. (1994, June). Profile of Software at the
Goddard Space Flight Center. NASNCode QE. NASA Software Engineering Report
NASA-RPT-002.

3. McGarry, F., Jeletic, K. (1993, December). Process Improvement as an Investment:
Measuring its Worth. Proceedings of the Eighteenth Annual Software Engineering
Workshop. SEL Report SEL-93-003.

4. Caldiera, G., et.al. (1993, December). NASA Software Process Improvement
Guidebook. NASAIHQlCode QE. NASA Software Engineering Report
NASA-RPT-nnn. Draft.

5. Green,S.E., Pajerski, R. (1991, December). Cleanroom Process Evolution in the
SEL. Proceedings of the Sixteenth Annual Software Engineering Workshop. SEL
Report SEL-9 1-006.

6. Pajerski, R. & Bassman, M. (estimated 1994, July). Software Measurement
Guidebook. NASA HQICode QE. NASA Software Engineering Report
NASA-RPT-nnn. Draft.

7. McGarry, F., Waligora, S., Landis, L., et.al. (1990, November). Manager's
Guidebook for Software Development (Revision 1). NASAIGSFC. Software
Engineering Laboratory Report SEL-84- 10 1.

XMM INSTRUMENT ON-BOARD SOfiDITVAIRE MMNTENANCE CONCEPT P ' g
MP, N, Pda

European Space Operations Centre (IESOC.),
Robert-Bosch-Str. 5, 64293 Darmstadt, Germany

Mr. F. Giannini
European Space Technology Centre (ESTEC),

Keplerlaan 1, 2200 AG, Noordwijk, The Netherlands

ABSTRACT

Whilst the pre-launch responsibility for the
production, validation and maintenance of
instrument on-board software traditionally lies
with the experimenter, the post-launch
maintenance has been the subject of ad hoc
arrangements with the responsibility shared to
different extent between the experimenter,
ESTEC and ESOC.

This paper summarizes the overall design and
development of the instruments on-board
software for the XMM satellite, and describes
the concept adopted for the maintenance of
such software post-launch.

The paper will also outline the on-board
software maintenance and validation facilities
and the expected advantages to be gained by
the proposed strategy.

1. INTRODUCTION

In the last decade, the complexity of space
missions has increased significantly due to the .
more demanding requirements on mission
efficiency and quality of mission products.
Such requirements could only be satisfied by
designing intelligence on board for increased
autonomous operation of the spacecraft and the
instruments in its orbit.

On-board software and autonomy however
have a significant impact in the design of the
ground facilities for the support of the
mission. Although instrument on-board
software is designed, developed and tested
following strict quality assurance procedures,
experience of past and current missions show
that the capability of reprogramming
instrument on-board software from the ground
is an essential requirement throughout the
instrument lifetime.

Conclusions with respect to adequacy of this Certain events during the instrument lifetime
approach will be presented as well as can create the necessity to modify the flight
recommendations for future instrument on- software. The causes of change in the on-
board software developments. board software are manifold :

Keywords:
Change of specification (e.g. errors,

On-Board Software, System essentially numerical, in the specification
testing, Software life cycle, of thresholds, calibration, delays, etc.)
Software maintenance

Non conformance of the software with
the original specifications (e.g hidden

bugs not detected during testing on
ground

0 On board hardware failure following
which the instrument can only be
recovered by reprogramming the on-
board software. This event is the most
likely reason for the necessity of
maintenance activity because its
unexpected nature renders it impractical
to implement complete autonomy in the
software with respect to such failures.

Change in strategy in instrument
operation (e.g. changes to improve
capability o r efficiency)

The complexity of instrument on-board
software maintenance is directly related to the
on-board software configuration.

Different approaches have been taken to
instrument on-board software maintenance
from mission to mission. The main variation
has been the responsibility for actually making
software corrections and implementing new
on-board software requirements, which has in
some cases been done by the experimenters
and in other by ESTEC and/or ESOC.

The factors influencing the choice of a
particular maintenance scheme are :

availability of expertise

availability of :

a Software Development Environment
(SDE) which contains CASE tools
supporting on-board software lifecycle
for development and change of the
software, verification and validation,
configurat ion management and
documentation. The facilities also
include cross-compilers, cross-debuggers

and downloaders to compile, load and
debug the instrument software from the
host to the hardware target.

a Software Validation Facility (SW) for
on ground testing and validation. The
SVF provides facilities to emulate or
simulate the hardware environment of
the instrument on-board software.
Facilities range from software simulators
and emulators to replicas of instrument
on-board hardware systems.

duration of mission

2. XMM OVERVIEW

The X-Ray Multi-Mirror Mission (XMM) is a
high throughput X-ray spectroscopy mission
(photon energy range from 0.1 Kev to 10
Kev), which is the second cornerstone of the
ESA long term scientific plan. The XMM is a
facility type observatory open to the
worldwide astronomical community. The
scientific payload forms an integrated mutually
complementary package optimised to fulfil the
scientific aims of the mission and fully exploit
the ESA supplied X-ray optics.

The XMM observatory will offer a major step
forward in the field of X-ray astrophysics in
the 21st Century. It is envisaged as a long
duration facility class mission aimed at
performing detailed imaging spectrophotometry
of a wide variety of X-ray sources. The
observatory will be placed in a 24 hour highly
eccentric inclined orbit to allow uninterrupted
observations up to 16 hours using the
groundstation of Perth (Australia). The
spacecraft consists of a service module which
carries the payload module.

The scientific instruments are:

European Photon Imaging Camera
(EPIC)

The XMM x-ray telescope consists of
three separate co-aligned mirror
modules, for each of which EPIC will
provide an imaging x-ray focal camera.
Each of these cameras will be mounted
at the focus of the respective mirror
modules. Two different types of Charge
Coupled Devices (CCDs) will be used:
one type based on p-n and the other on
MOS technology.

e Reflection Grating Spectrometer (RGS)

RGS features two independent
instrument chains placed behind two of
the three mirror modules. Each chain
incorporates an array of reflection
gratings which pick off roughly half of
the X-ray light and deflects it to a strip
of CCD detectors offset from the
telescope focal plane. The remaining
light passes undeflected through the
grating stack where it can be utilised by
other instruments located in the focal
plane.

@ Optical Monitor (OM)

OM is a UV I optical telescope with two
chromatically split channels, the blue
channel and the red one. Both beams are
transmitted to the CCDs detectors.

The XMM spacecraft will be operated in a
continuous interactive mode from a Mission
Operations Control Centre (MOC) . XMM
Science operations will be conducted from a
Science Operations Centre (SOC) in close
interaction with the MOC.

Considering

* the long duration of the mission (10
years)

each experimenter has his own
SDEISVF

distributed processor architectures are
present in the payload

different languages are used on the
processors

the following sections describe how a different
set of instrument on-board software
maintenance and validation facilities could be
assembled, which would allow the SOC, given
the appropriate expertise, to assume the
responsibility for instrument on-board software
maintenance in the majority of the cases.

Additionally the following items will be
addressed

Design choices

Inclusion of hardware-in-the-loop

e "worst case" testability

exception handling in the software

The current baseline is that the Instruments
Software will be maintained in the SOC with
the Instrument Software Subsystem (ISS);
however during the early phases of the XMM
mission support from the instrument
development teams will be available (e.g. for
validation) .

3. XMM INSTRUMENT SOFTWARE
MODULES

This section describes briefly the various on-
board software modules in the Instruments,

mostly on different hardware units
(instruments contain more than one processor
with a maintainable software module) :

In the EPIC experiment SW is present in :

a) EPIC Mos Data Handling Unit
b) EPIC Control and Recognition

Unit
c) EPIC Pn Data Handling Unit
d) EPIC Pn Event Analyzer Unit
e) EPIC Pn Analogue Electronic Unit

In the RGS experiment SW is present in the
RGS Digital Electronic Unit running on the
following processors:

f) Instrument Controller Processor
g) Data Pre-Processor

In the OM Software is present in:

h) Instrument Controller Unit
i) Data Processing Unit

In the following the Software Modules will be
indicated by the above letters. These modules
are of different size and complexity, and they
can be classified in 2 categories:

@ Running on what is traditionally
identified as the Instrument Controller
(a,c,f,h)

Running on secondary processor
(b,d,e,g,i)

Regardless of the names used for the Units,
we will call IC the units interfacing with the
Spacecraft On Board Data Handling System
(OBDH).

The Software Modules run on different type of
processor:

a MIL-STD-1750A (a,c,f ,g,h)
• HARRIS 80C86 (b,d,e
a MOTOROLA 56001 (i)

and different language are used:

a Ada (a,c,f,h)
a C (b,d,e,i
a Assembler 1750A (g

Assembler is also used on other software
modules which are on PROM and are not
modifiable (e.g. bootlloader code for f and h).

4. X M M I N S T R U M E N T
DEVELOPMENT ENVIRONMEN'IS
(SDE)

The XMM instruments are being developed by
different experimenters across Europe (United
Kingdom, France, Italy, Belgien, Germany
and Netherlands) with some collaboration
from USA (RGS and OM instruments). The
consequence is the use of different host
machines, target processors, languages and
tools among the instruments.

Figure 1 summarizes the Software
Development Environments which are being
used to develop the various instrument on
board software modules.

5. XMM INSTRUMENT ON-BOARD
SOFTWARE MAINTENANCE
APPROACH

The following assumption are made:

Instrument simulators will be available
and they will be based on Instrument
Controller (ICU) processor emulator
running the on-board SW.

Figure 1 ; Instrument Software Development
Environments

experimenter on the other hand has been based
on the following assessment criteria :

@ Criticality of the on-board software,
which covers an assessment of the
impact an erroneous software
modification might have on the
performance of the instrument

@ Software complexity versus availability
of expertise, which addresses the degree
of expertise needed for a specific
software maintenance during the
commissioning and the routine
operations phases.

Cost aspects which addresses

- investment costs for hardware,
software and documentation
including installation at the SOC
and training of personnel

- operations costs at the SOC
All software modules need to be
maintained

6. DEVELOPMENT ENVIRONMENT
Modification of the instrument on-board
software cannot damage the instruments
while the instrument is monitored from
the ground.

The Software delivered with the
instrument flight model (FM) has been
fully validated.

The purpose is to outline a coherent approach
in the frame of a plan for the maintenance of
the software on the various on-board
processors and during the various relevant
phases (development, commissioning and
routine operations).

The trade-off between instrument on-board
software maintenance at the XMM SOC on the
one hand and maintenance via each

The set of activities involved in the
maintenance of the XMM instrument flight
software will be executed at the XMM
Scientific Operations Centre (SOC).

In order to perform. these activities the SOC
will require a common SDE which will ease
the maintenance activities and will limit the
costs. The development environment for the
Instrument Software will be composed of the
total set of Software tools used by the
developers of the Software modules.

All tools mentioned in the Figure 1 on section
4 will be available for modification of the
instruments Software to ensure compatibility
with the implemented instrument flight
software.

Other tools will be used in the development of
the Software (e.g. AdaNice HOOD tool for
the Architectural design of the EPIC Data
Handling Software), but the use of such tools
is not considered necessary for the
maintenance, due to the limited structural
changes in the code during the maintenance
phase.

The development environment will be hosted
on the smallest set of computer needed to host
all tools in a version equivalent to what used
by the developers. At the moment a SUN
SPARC and an HP9000 are needed to host all
tools. In order to ensure that the compiled
code produced by the SOC SDE is compatible
with that flown during the mission it will be
necessary to freeze the compilers version at
the version delivered with the instrument
Flight Model.

A configuration management tool should be
added in order to keep track of changes. No
configuration information prior to delivery will
be used. Configuration management will be
restarted with the Software as delivered for the
launch.

Full documentation of the Software
development will be available on paper as
delivered by the developers. Electronic form
of the documents might also be available, but
no standard format has been mandated.

The following will be available:

Source code of all instrument Software

All "makefile" and any image generation
procedure used by the developers

7. VALIDATION ENVIRONMENT

The validation environment will be different

for the various type of processors used and the
functionality of the Software module. The
main driver of the proposed approach is the
high investment and maintenance costs
associated with a SVF based on an
Engineering or spare Flight model.

7.1 INSTRUMENT CONTROLLER

For ICU software (modules a,c,f,h), the
capability of the instrument simulators to run
the Software will be exploited. This solution
does not have the fidelity of the actual
hardware, and therefore its adoption is
associated with an element of risk. The level
of risk is related to the degree to which the
instrument on-board software is sensitive to
the flight hardware performance (timing, 110
performance).

Other solution would be the "hardware-in-the-
loop" design, based on commercially available
VME cards and hosting the target processors.
This approach was discarded due to higher
costs because additional secondary processor
hardware is needed.

The use of the instrument simulator as a
validation tool has the advantage that it
implicitly contains a realistic environment
simulation and the means to easily vary this
environment. The preparation for and conduct
of validation tests is easier than for an EM
(Engineering Model) or a spare FM (Flight
Model) based system.

After the unit testing and software integration,
the new executable image of the module will
be first executed on the 1750 processor
emulator for simple tests.

It will be then loaded on the instrument
simulator, exercised by TC and stimulated by
data files reproducing the Instrument data

flow. The data files used in these tests are
available from unit tests or calibration tests.

This will allow to "partially" validate the
Software before up-linking into the instrument.
The settings of the instrument simulator will
allow to simulate Hardware failure in the
instrument. This strategy for test and
integration causes some difficulties on real
time embedded software, as follows :

Emulators have limited facilities for
exercising in real time and
simultaneously monitor the embedded
software

It is often impossible to reproduce a test
100%

It is very difficult to create a "worst
case" test

@ It is difficult to exercise exception
handling in the software

The proposed approach is also based on the
criticality of the Instrument Controller on-
board software. Error in new images or
software patches causes no damage to other
instruments. A power on reset will bring the
software back to the PROM reference. Full
ground validation is not required because of
criticality. The proposed partial validation is
necessary due to the complexity of some
software modules.

7.2 SECONDARY PROCESSORS

Modification to all other software modules
will only be tested on the host computers and
on the processor emulators (b,d,e,g,i) with
data files generated by simulation software or
collected during instrument testing. The impact
of software modifications on the secondary

processors is considered negligible.
Additionally the XMM instrument simulator
can not be used for validation because it does
not emulate the secondary processors.

Anyhow, the relative simplicity of these
Software modules makes them easier to test
except for timing behaviour. Furthermore, the
modification to these modules are more likely
to be needed during the early phases of the
operations, because of the possible difference
of the actual data from the expected ones.

During the early phases of the operation (6
months), the instrument developer teams will
modify the software using the Instrument
Software Subsystem at the SOC; validation of
the Software modules will be complemented
by the possible use of the test equipment
available at the experimenter premises.

After this period, if the experimenter facilities
are not available, the Software will only be
tested on the host computers; the last tests
before declaring the Software operational, will
be executed on the flying instrument using
when possible the period of the orbit below
40,000 Km.

It is, however necessary, that it be
demonstrated that changes to the instrument
software do not adversely affect the
performance of the system as a whole, either
functionally or in the consumption of
resources. This can be done by analysis (in
the absence of a validation facility), or by
demonstration.

The responsibility for demonstrating that any
changes to instrument software will not
adversely affect the system will lie with the
XMM SOC during the routine operations
phase.

8. CONCLUSIONS 9. RECOMMENDATIONS

In the XMM SOC project the instrument
software maintenance problem is tackled by
setting up a centralised software maintenance
facility, the ISS (Instrument Software
subsystem) , which will take over the on-board
software maintenance of all instruments when
the commissioning phase is over.

In order to fulfil the requirements and
responsibilities for such facility the XMM
SOC requires :

Q a common Software Development
Environment (SDE) compatible with
that used by the experimenters to
produce the flight software and
maintainable for the mission duration.
This common SDE will ease the
maintenance task and will limit the costs.

For missions with long lifetime, as XMM,
ESA should take over post launch instrument
on-board software maintenance. This will be
more cost effective, since it involves only a
marginal expansion of existing teams. It will
also result in a better and more responsive
service, will simplify the operational interfaces
and will help continuity of expertise in the
socs.

Standardisation of Software Development
Environments should be managed / mandated
early in the project in order to reduce the cost
of the maintenance environment without
penalising the instrument developers.

10. REFERENCE DOCUMENTS

Q delivery of the software module source 1. % i c e Operations Centre Implementation Requirement
Document (StRD). PX-RS-0392

code, the standards applied during
development and testing, the test 2. soc Implementation Plan (SIP). XMM-SOC-PL-0100

test procedures and test 3. Software Project Management Plan for EPIC Experiment, TL
results. 10002 EPIC-LAB-PL-001 Issue 1. April 1994

Q a Software Validation Facility ,also
4. XMM-OM Instrument Control Unit Software Development

maintainable throughout the mission, Environment. XMM-OMIMSSLISPIQO~~.~~ 25/5/94

which consist of :
- the instrument simulator running 5. XMM-OM Instrument Control Unit Software Verif~cation &

Validation Plan. XMM-OMIMSSLISP/0026.01 25/5/94
the instrument controller emulator

- simple emulators of the secondary 6. Digital Processing unit Electronic ~ m d support
Equipment and Software Development E n v i r k n t

processors for testing and XMM-OMIPENNISPIOOOS.~ 24/5/94

validation on the host computer
7. D P U S o f t w a r e V a l i d a t i o n P l a n . X M M -

OMIPENISP/0006.draft 3/5!94
The final decision whether or not to implement
an instrument software change resides with the 8. H U Y ~ ~ S Q~-Ihard Software Maintenance. ~ ~ ~ M D -

HW-OBS001, Issue 1. 17.02.94
XMM Project Scientist.

The proposed solution is based on the analyses
of the criticality of the XMM instrument on-
board Software as regards instrument
performance, on the availability of expertise at
the SOC during the various phases of the
mission as well as on a cost estimation.

INTEGRATION OF A SATELLITE GROUND SUPPORT SYSTEM BASED ON
ANALYSIS OF THE SATELLITE GROUND SUPPORT DOMAIN / -

R. D. Pendley, E. 1. Scheidker, D. S. Levitt, C. R. Myers, and R. D. Werking

Computer Sciences Corporation
101 10 Aerospace Road

Lanham-Seabrook, Maiyland 20706

This analysis defines a complete set of ground support functions based on those practiced in real space flight
operations during the on-orbit phase of a mission. These functions are mapped against ground support
functions currently in use by NASA and DoD. Software components to provide these functions can be
hosted on RISC-based work stations and integrated to provide a modular, integrated ground support system.
Such modular systems can be configured to provide as much ground support functionality as desired. This
approach to ground systems has been widely proposed and prototyped both by government institutions and
commercial vendors. The combined set of ground support functions we describe can be used as a standard to
evaluate candidate ground systems. This approach has also been used to develop a prototype of a modular,
loosely-integrated ground support system, which is discussed briefly. A crucial benefit to a potential user is
that all the components are flight-qualified, thus giving high confidence in their accuracy and reliability.

Introduction

The satellite ground support domain comprises
all ground-based (as opposed to onboard) activities
needed to operate an orbiting spacecraft, including
the bus and payload. It does not include such
activities as, for example, instrument data reduction
from a scientific satellite, image production from a
weather satellite, or message traffic management
from a communications satellite; although the
ground support domain does cover capturing and
making available the data required by such end-
user processes. This domain also includes the
integration of payload plans and commands into the
overall plan for mission support. The activities
supported by functions in this domain also differ
during the prelaunch, launch, early mission, on-
orbit, and end-of-1ife.phases of a mission. In this
paper we undertake to define a complete set of
spacecraft support functions that span the satellite
ground support domain during on-orbit operations
for one or more spacecraft.

The principal motivation for this analysis is the
belief that satellite ground control systems,
traditionally implemented on central processor
systems based on mainframe or mini-computers,
can be hosted on client-server or other
architectures, based on high-performance work-

stations linked in networks. Such systems have
been proposed within government organizations
such as NASA and the Defense Department, and by
numerous commercial firms.

By looking at the functions covered by two of
these proposed architectures and applying our own
spaceflight support experience, we have 'derived a
superset of functions that covers all the aspects of
satellite flight support. This set of functions
facilitates comparison among the numerous
approaches to distributed, open-system
architectures that have been proposed in the past
four years. We also discuss a loosely integrated
ground support system prototyped at CSC in an
effort to understand how to move to a distributed,
open-system architecture while taking maximum
advantage of the enormous amount of existing
flight-proven software developed for mainframe-
and mini-computer-based ground systems.

Spaceflight Ground Support Functions

The ground support functions found in the two
sources investigated for this paper are summarized
in Table 1. The first column lists the functions
summarized by A. R. Stottlemyer and his co-
authors in a paper proposing distributed
architectures for NASA ground systems

Table 1 - Two sets of satellite ground support functions

2 Create Satellite Support Plan
3 Update Satellite Support Plan

2 Remove communications artifacts 4 Configure, Test, and Verify System
3 Spacecraft position and orientation 4.1 Verify Configuration

3.1 Orbit determination 4.2 Test End-to-end Configuration
3.2 Attitude determination 4.3 Configure for Operations

4 Analysis of spacecraft operations performance 5 Perform Satellite Support
4.1 Trend analysis 5.1 Acquisition of Signal
4.2 Command Response 5.2 Verify Tracking

5 Analysis of scientific instrument performance 5.3 Verify Correct Telemetry Stream
5.4 Verify Frame Synchronization

5.2 Measurement quality 5.5 Verify Command Link
5.3 Calibration 5.6 Perform Planned Commanding

6 Operations planning 5.7 Verify Satellite State of Health
6.1 Spacecraft operations 5.8 Produce Output Products
6.2 Instrument operations 5.9 Complete and Verify Support Activities
6.3 Support environment operations 5.10 Log Activities
6.4 Supporting analysis 5.1 1 Terminate Pass

7 Spacecraft command and control 6 Deconfigure Resources
7.1 Command generation 6.1 Deconfigure Resources
7.2 Command validation 6.2 Verify Deconfiguration
7.3 Command issue 7 Orbit Data Collection and Verification

7.1 Collect Orbit (Tracking) Data 8 Scientific data analysis
8.1 Data preparation and management
8.2 Analysis algorithm management 8 Attitude Data Collection and Verification
8.3 Support for data access and manipulation 8.1 Collect Attitude Data
8.4 Product generation and distribution

9 Data acquisition and management 9 State of Health Data Collection
10 System resource management 9.1 Request State of Health Data

10.1 Physical resources 9.2 Collect State of Health Data
10.2 Operations staff 9.3 Process and Verify Data

1 1 Integration and test 10 Orbit Determination and Planning
10.1 Predict Orbit
10.2 Plan Orbit Maneuvers
10.3 Maintain Orbit Model

1 1 Attitude Determination and Planning
1 1.1 Plan Attitude Determination
1 1.2 Plan Attitude Maneuvers
1 1.3 Maintain Attitude Model

12 State of Health Determination and Planning
12.1 Determine State of Health
12.2 . Plan State of Health Activities

(Stottlemyer et al., 1993).The functions in the Satellite Control (ISC) Human Computer Interface
second column are taken from a Defense (HCI) Working Group (ISC HCI Working Group,
Department standard drafted by the Integrated 1993). NASA Goddard's Mission Operations

994

Directorate has also begun an extensive campaign
to take advantage of workstation-based, distributed
architectures for satellite ground support.
However, this effort, called the Renaissance
Initiative, is newly begun and it is therefore
premature to include it in this analysis.

These two sets of ground support functions
represent different views of satellite ground
support. The Stottlemyer et al. paper was written
primarily to explore the feasibility of system
architectures and is not meant to be an exhaustive
analysis of the ground support domain. Their paper
nonetheless contains a list of eleven high-level
ground support functions that we have broken into
subcategories to facilitate comparison with other
function sets. This architecture analysis was one of
the drivers of the Renaissance initiative and in this
analysis we use it as a snapshot of the NASA
ground support function set.

The Defense Department function set is taken
from an appendix of a standard drafted to define
DoD's view of the optimum interface between
humans and computers for satellite ground support.
In writing this standard, these authors also found
that they needed a generic set of satellite ground
support functions, which appears in this appendix
and which we have taken to represent a picture of
DoD satellite ground support.

In defining our superset of ground support
functions, we made the following assumptions:

only on-orbit operations considered in this
analysis
payload (instruments, e.g.) operations and
planning not included
integration of payload commands and
schedules received through external
interface included
no particular institutional organization
assumed, but system resources can be
physically separated

We created the superset of functions appearing in
Table 2 on the next three pages by combining the
two function sets in Table 1 and adding elements

drawn from our own ground support experience.
We have tried to generalize functions. For
example, NASA places considerable importance on
managing onboard flight recorders to maximize
scientific data return. A more general function
might be the optimum management of onboard
resources, for which different operations teams
might have varying goals such as maximum
observation time or extended mission life, One
purpose of our function 1.3.7, integrate commands
to form command load, is to optimize the planned
command load within such constraints.

To organize the listed functions, we set up the
seven main categories and sixteen subcategories
shown in the light grey areas of Table 2. These
areas are collectors of identifiable functions, which
are in turn mapped against the other function sets.
To facilitate comparison with reference functions,
we have mapped them into our categories, using
broad interpretations. Note that Stottlemyer
functions 1.1 and 1.2 are not included, because they
are requirements definition, hence prelaunch and
not part of the on-orbit phase. This arrangement
can be modified by adding or deleting lower level
functions. As we extend this analysis to other
mission phases, such as launch or end-of life, it is
reasonable to anticipate that the function set will
need modification.

The major categories were chosen by analyzing
the reference function sets and other models,
seeking high-level function collectors that would
span the entire domain of on-orbit flight operations
and would be significant for all identifiable
missions. These categories are discussed below.

Defining the spacecraft state (1) in terms of a
physical model and its state representation is the
basis of the spacecraft mission control systems
developed by the Altair Aerospace Corporation
(Wheal, 1993). We have called this part of the
spacecraft state the vehicle state (1 .I), defined by
the collection of its telemetry values. To fully
define the concept of the spacecraft state, we have
added the concept of the dynamic state (1.2),
reflecting the fundamental flight dynamics
definition of state as a set of parameters defining

Table 2 - Superset of ground support functions mapped against previous sets

6.2 Calibrate Telemetry Conversions
6.3 Correct Spacecraft Properties and Model
6.4 Correct for Biases and Misalignment
6.5 Calibrate Propulsion System
6.6 Calibrate Tracking Data

5,5.3
4.2
3.2,5,5.3
4.2
3.1

12.3
10.3, 11.3
11.3, 12.3
10.3

. .

. 7 ,CjmLATIoN - .
. . . . , , ,

7.1 Simulate Telemetry
7.2 Simulate Tracking

- -

7.3 Simulate Commands
7.4 Simulate OBC
7.5 Simulate Vehicle State
7.6 Simulate Dynamics State
7.7 Simulate System Resources

..

11
11

-- --

11
11
11
11
11

.

4.2
4.2

-

4.2
4.2
4.2
4.2
4.2

the spacecraft position, velocity, attitude, attitude
rates, and additional parameters needed to
determine its dynamics. Carrying this concept to
its logical conclusion, the process of commanding
becomes one of making transitions (1.3) between
states. Note that the command generation defined
in this category refers to generating commands for
uplink, distinguished from the command planning
that appears in the next category. We made this
distinction because of the potential applicability of
rules-based systems to generating and integrating
safe, optimized command loads.

The concept of mission and spacecraft
operations (2) appears in all the function sets. We
have divided this area into two parts. Planning and
scheduling (2.1) appear in both of the reference
function sets. The logging and reporting (2.2)
category is less well represented in the references.
Here logging refers to making records of actions
taken, plans executed, and events that have
occurred. Reports are passed among flight team
members and to outside parties, and are taken from
logs, data, and analysis of data. In all the superset
categories the low-level functions are stated as
singular, but can be combined to make complex
functions for multiple spacecraft. For example,
planning an orbit maneuver might require
optimizing fuel consumption, the target orbit, and
tracking and communication opportunities,
requiring iteration and integration of the individual
functions.

Spacecraft communications (3) is taken from
analysis of Goddard mission operations. Ground
R F support (3.1) covers the functions needed to
establish radio-frequency links between the
spacecraft and ground controllers, including
antenna modeling and signal management. Two
types of data may be received: tracking (3.2), '

bearing position and velocity information, and
telemetry (3.3), reflecting the vehicle state. Data
flows to the spacecraft as commands (3.4),
effecting state transitions.

Large volumes of data, particularly received
from the spacecraft and resulting from processing,
are characteristic of the ground support domain,

making data management (4) essential. As in most
application domains, this category includes archive
(4.1), retrieval (4.2), and analysis (4.3) of data. We
have additionally added reference databa,ses (4.4)
such as star catalogs, telemetry conversions, or
rules for applied intelligence processing.

As found in both reference function sets, system
operations (5) require functions of their own.
NASA and DoD functions differ sharply in this
area. For DoD spacecraft, a ground support system
deals with multiple spacecraft, while for a NASA
satellite there is generally a dedicated ground
system. Using one system for several spacecraft
makes configuration (5.1) and de-configuration
(5.2) significant problems. A NASA flight
operations team generally relies on ground
resources physically remote from its control center,
unlike DoD facilities that place all the resources in
one place. Dealing with distant antennas or
networks requires additional communication and
data channels for transactions with remote
resources (5.3).

We have added the category calibration (6) to
reflect the need to tune the performance of the
spacecraft and ground support system based on data
from past performance. Calibration results appear
in the reference databases of category 4.4.

There is some question whether simulation (7) is
a part of flight operations, or a test-and-integration
function only. We include it on the grounds that
changes onboard the spacecraft, evolution of the
mission objectives, and pursuit of operational
efficiencies will make modification of the system
and its configuration necessary, requiring testing
throughout the mission. Also, some mission teams
utilize simulated data for training, maneuver
prediction, and operational activity modeling.

Integrated Ground Support System Prototype

In 1992, CSC began work on a prototype ground
system proposed by R. D. Werking (Werking and
Kulp, 1993), called the CSC Integrated Ground
Support System (CIGSS). The goal was to
demonstrate that the functionality needed for

ground support could be placed on a RISC-based
workstation under UNIX by taking maximum
advantage of the large amount of existing ground
support software. Components were to be re-
hosted as necessary from other platforms and
operating systems, and loosely integrated by
creating file interfaces between pairs of programs.
Components were to be drawn from the NASA
Goddard software legacy, obtained fiom vendors,
or developed if necessary.

A working prototype has been developed and
demonstrated, showing the feasibility of this
approach and giving some insights into the
software and system engineering needed to exploit
the large amount of existing ground software on
workstations. For example, B. S. Groveman and
his co-workers have rehosted FORTRAN programs
from IBM mainframe computers, finding the
transition of computational modules straight-
forward, but the creation of user interfaces more
challenging. (Groveman et al., 1994).

The functions originally proposed for this
system were command and control, health and
safety monitoring, flight dynamics, mission
planning and scheduling, and payload data
management functions. However, in looking at how
to combine candidate components, we soon found
it necessary to have a function set that enabled us to
describe what a particular set of components could
do in combination. This experience led us to create
the superset of ground support functions.

Conclusions

We expect that future ground systems will be
integrated from existing components, certainly with
some modification and tailoring, but rarely
developed through the traditional lifecycle. Long-
time spacefaring agencies such as NASA and DoD
possess enormous legacies of expensively acquired,
flight-tested software, and an ever-growing number
of commercial vendors are offering products for
spacecraft ground support. The result is a range of
choices for nearly all the functions needed for a
ground support system, albeit in complicated

combinations needing some form of evaluation and
validation.

We have, therefore, developed a generic set of
ground support functions to guide evaluation of the
functionality of components and to assist in
choosing an appropriate set to integrate. With
these goals in mind, we intend to extend this
exercise in four ways. First, the ground support
domain is large and complex, and its boundaries
are not sharp, so we expect to adjust our functions
as we continue its analysis. Second, we intend to
cover other mission phases. Third, we intend to
evaluate different operations concepts and user
interfaces as a way to minimize operations costs.
Finally, the function set would make a far better
evaluation tool if it has quantitative performance
indices, which we plan to determine through our
continued evaluation of legacy software and COTS
products.

References

Groveman, B. S., Liang, E. Y., Starbuck, R. A.,
Tamkin, G. S., & Boland, D. E. (June 1994). A
Recommended Approach to Rehosting IBM-
Mainframe FORTRAN Software Systems to
UNIX Workstations, Fourth Annual CSC
Technology Conference. Atlanta, GA.

Integrated Satellite Control Human Computer
Interface Working Group, Department of Defense
(August 1993). Human Computer Interface
Standard, Draft 1.0, Appendix A 1.

Stottlemyer, A. R., Jaworski, A., & Costa, S. R.
(October 1993). New Approaches to NASA
Ground Data Systems, Proceedings of the Forty-
fourth International Astronautical Congress,
Q. 4.404. Graz, Austria.

Werking, R. D., & Kulp, D. R. (September 1993).
Developing the CSC Integrated Ground Support
System, Poster presented at the Seventh Annual
AIAA/Utah State University on Small Satellites.
Logan, UT.

Wheal, C. A. (1993). Application of State Space
Modeling Techniques to Satellite Operations,
Altair Aerospace Corporation. Bowie, MD.

SOFTWARE PROCESS ASSESSMENT (SPA) 8-
Linda H. Rosenberg, Ph.D. Sylvia B . S heppard Scott A. Butler
Unisys Government Systems NASNGSFC University of Maryland

10265 Aerospace Drive Code 522 Department of Psychology
Lanharn, MD 20706 Greenbelt, MD 2077 1 College Park, MD 20742

Abstract

NASA's environment mirrors the changes taking
place in the nation at large, i.e. workers are being
asked to do more work with fewer resources. For
software developers at NASA's Goddard Space
Flight Center (GSFC), the effects of this change
are that we must continue to produce quality code
that is maintainable and reusable, but we must learn
to produce it more efficiently and less expensively.
To accomplish this goal, the Data Systems
Technology Division (DSTD) at GSFC is trying a
variety of both proven and state-of-the-art
techniques for software development (e.g., object-
oriented design, prototyping, designing for reuse,
etc.).

In order to evaluate the effectiveness of these
techniques, the Software Process Assessment
(SPA) program was initiated. SPA was begun
under the assumption that the effects of different
software development processes, techniques, and
tools, on the resulting product must be evaluated in
an objective manner in order to assess any benefits
that may have accrued. SPA involves the
collection and analysis of software product and
process data. These data include metrics such as
effort, code changes, size, complexity, and code
readability. This paper describes the SPA data
collection and analysis methodology and presents
examples of benefits realized thus far by DSTD's
software developers and managers.

1 Introduction

Effective management of software development
projects requires continual assessment of the
development process and the resulting software
product. The Software Process Assessment (SPA)
program of the Software and Automation Systems
Branch (Code 522) of the Goddard Space Flight

Center (GSFC) was established four years ago in
order to promote understanding of our software
development process and to assure the quality of
our software products. For the purposes of this
paper, terms are defined as follows: "software
process" i s the set of activities and methods
employed in the production of software;
"measurements" are raw data relating to the
development effort or the software; and "metrics"
are combinations of measurements used to quantify
a software attribute (EEE-Std-6 10.12- 1990).

SPA'S ~ r i m a r v objective is to understand the
effects Lf diffkren; life cycles, project domains,
development languages, design methodologies,
and management techniques on resulting software
products. We are interested in developing a
process model that incorporates these issues and
that supports quality assurance and quality control.
At present, our guide for process improvement
involves tracking and analyzing daily activities in
the context of our experiences and lessons learned.
These analyses will benefit on-going projects by
reducing development times, decreasing
development costs, decreasing maintenance costs,
and increasing software reliability (Baumert &
McW hitney , 1992). Future development efforts
will benefit by having a more accurate basis for
predictions about development costs and
schedules.

The fundamental premise of SPA is that metrics
will not be used to evaluate programmers or project
managers. To foster confidence among the
programmers, each programmer and project is
identified by an identification number to maintain
anonymity. Through working closely with SPA
personnel, project managers use the metrics to
improve or evaluate current development
techniques. Guidelines for using the metrics are
being developed to assist managers in interpreting
project results.

SPA Metrics

I
Process Metrics Product Metrics

I
Personnel

Resources Form Software Analysis Changes

Effort

by phase complexity
Component Readability Origination Change

Report
Form Form

Figure 1: Measurable Components of the Software Process Assessment

2 SPA Metrics: Process, Product, and Changes

2.1 Process Metrics

SPA involves* the evaluation of process and
product metrics as indicated in Figure 1. To
evaluate process, we focus on the application of
resources, primarily personnel effort. By
understanding how personnel resources are
allocated in different phases, we can begin to
determine how a project applied a particular life
cycle model and the effects that life cycle had on
the allocation of effort. This information can also
assist in determining stability of requirements by
tracking the amount of effort that was devoted to
requirements specification. Requirement
specification should occur in the initial phases of a
project's life cycle; work on requirements later in
the life cycle may indicate instability in the project
definition (Baumert & McWhitney, 1992; Mills &
Dyson, 1990).

2.2 Product Metrics

To evaluate a product, we analyze the software
throughout development and after releases.

Multiple analyses allow comparisbns among
releases and allow us to correlate effort metrics to
change data. The frequency of analysis is
determined by development phase and project
manager requests.

Product assessments include metrics such as size,
complexity, and readability (Rombach, 1990). We
obtain these metrics using UX-Metric from SET
Laboratories (Set Laboratories, 1990). UX-Metric
produces McCabe's complexity metrics, counts
GOTOs and comments, and calculates size metrics
(IEEE-S td 1045- 1992).

Size metrics refer to line counts, such as total lines
of code (including comments and blank lines) and
executable statements (measured by delimiters).
Because we wish to compare metrics across
different languages, we use executable statements
as opposed to non-comment non-blank lines
(NCNB). Executable statements are least affected
by programmer style (Putnam & Myers, 1992).

Complexity metrics describe the logical structure of
the individual code modules. We are initially
evaluating the structure using McCabe's cyclomatic

complexity (McCabe, 1976), and the extent of the
use of the GOT0 statement (especially in object
oriented design systems) (Booch, 1991). At a later
time, we will include level of nesting, fan in and
fan out.

Readability metrics include the use of comments
and the average length of variable names. Using
comments and meaningful variable names
contributes to the reader's understanding of code.
Readability metrics, as well as complexity metrics,
are cited in the literature as contributing to
understandability of the code, an issue for code
reading during development and for later
maintenance of the code (Putnarn & Myers, 1992).

2.3 Changes to Code

Additionally, we track the types of changes made
to the code, when they were made and why they
were made (Baumert & McWhitney, 1992; SEL-
87-008). Errors, usability issues, and
modifications to requirements are all classified as
changes. In short, a change is anything that causes
a modification to the code once it has been
submitted to the project library. Change data are
collected from the time components are entered into
the project library until the completion of the
development effort and, sometimes, throughout the
project maintenance phase. We are also
investigating correlations between the number of
changes per modulelfile and the code metrics.

3 Data Collection

The data collection process was designed to ensure
that the metrics we collected would be reliable and
relevant, i.e. the data can be used to draw valid
conclusions and to answer specific questions
(Baumert & McWhitney, 1992). The data
collection forms are non-threatening, easy-to-use,
and non-intrusive. All forms are on-line and are
distributed and processed electronically.

SPA uses modified versions of three forms
developed at NASA Goddard's Software
Engineering Laboratory (SEL) (SEL-87-008). The
forms were modified to encompass the range of
activities and interests specific to the DSTD. The
Personnel Resources Form (PRF) provides
information about effort spent in various
development activities. It is completed each week
by all personnel performing either technical or
management activities on a project. These activities

have become an integral part of our software
development process as opposed to mere adjuncts
done at the discretion of the developers.

The Component Origination Form (COF) provides
details about an individual software module. A
COF is completed each time a component is added
to the system library. One area of interest is the
number of components generated "from scratch" as
compared to the number that are reused (or
modified and reused) from the DSTD Reuse
Software Library.

The Change Report Form (CRF) describes a
software change and provides a reason for the
change. A CRF is completed by any person who
implements a change to the system that involves
modifications to components in the project-
controlled source library.

4 Results

SPA data have been collected on over of thirty-five
projects to date. The projects are diverse in
application domain, use the waterfall or
evolutionary prototyping life cycles, and are
written in Ada, C, C++ or FORTRAN. Data for
some projects were collected using the method
described above. In other projects, completed code
was obtained, but no process data were available.

4.1 Resource Analysis

The process data collection has yielded interesting
results. One result is the use of metrics to drive the
development of a process model. Figure 2 shows
the total weekly hours by activity across the
development of a C++ project currently in the third
build. This chart can give management an
indication of staffing requirements and can indicate

'the effects of events such as holidays, winter
storms, and design reviews. When data from
several projects of this size and type have been
obtained, we hope to be able to build a model that
will help estimate the staffing requirements for our
specific development environment

Besides aiding in the development of a planning
profile for staffing, effort data can be used as
feedback for current development efforts. One
measure of the stability of a development process is
the stability of activities within a phase; earlier
phases should be largely completed before
subsequent phases begin. For example, once a

Distribution of Effort Across Lifecycle (by Week)

Week Ending

Requirements Design Code/Unit Test rn Integration Test
I I

Figure 2: Hours by Week by Activity

Total Hours per Activity by Build

'Om T

Activity

Build 1 Build 2 Build 3 11 Build 4
I I

Figure 3: Total Hours per Build by Activity

FORTRAN Modules

Extended Cyclomatic Complexity
Figure 4: FORTRAN Modules

project has entered the coding phase, requirements-
related activities should have been, for the most
part, completed. In Figure 2, the design activity
that begins on or about 9/3/93, was, in fact, in
preparation for Build 2. Had this redesign been
associated with Build 1, it would have been an
indication of design instability and could have been
costly to implement.

Figure 3 shows data from the same project, but
with a more detailed breakout of life cycle
activities. This graph shows that all requirement
activity was completed in the first build. This is a
good indicator of requirement stability.
Additionally, the large design effort for Build 1
appears to have reduced the need for design in
Builds 2 and 3. According to the project manager,
the more difficult capabilities were added in Build
2, hence a larger amount of system testing was
needed in that build.

4.2 Code Analysis

Code metrics can be used for identifying code that
may be difficult to maintain and for identifying
modules that may need additional testing. Modules
with high complexity and/or large numbers of
executable statements are prime candidates for the
most extensive testing (Set Laboratories, 1990).

These modules also need to be well-commented for
readability (Putnam & Myers, 1992).

Figure 4 shows data for a FORTRAN project.
Each square represents a module of code. This
project contained 906 modules with a total of
75,537 executable statements. Most of the code
was FORTRAN 77, but some was older
FORTRAN IV code. This older code was difficult
to maintain, but funding to rewrite it was not
forthcoming. Figure 4 shows five modules (on the
right-hand side of the graph) to be exceptionally
high in complexity as well as being rather large, as
measured by the number of executable statements.
Further investigation identified those modules as
part of the FORTRAN IV code. Using this chart,
it was argued that code this large and complex was
expensive to maintain, and an overall rewriting of
the code was approved.

For projects currently under development, an effort
is being made to prevent outliers such as the five
that were identified in Figure 4. Analysis of
modules as they are entered into the project library
allows project managers to identify modules that
need more testing, more extensive documentation
andfor division into more manageable components.

Space Ops Paper July 11,1994

Cumulative Changes - C++ Project

Page 6

Week Ending

-8- Changes - Errors

Figure 5: Number of Changes over Time by Development Phase

4.3 Software Change Analysis

Analyzing software changes can provide
information about the development process as well
as the product. In Figure 5, the black squares
represent the cumulative changes for a C++ project
currently in development. These changes may be
due to planned enhancements, clarifications,
requirements changes, or errors. It is expected that
when this "total" curve levels off, most (if not all)
errors will have been located, and the code will be
ready for release. The white squares represent
changes due to coding errors. In the initial phases,
changes are not due to errors, but by the time of
integration testing, most changes are the result of
errors. Identifying trends such as this one helps us
to allocate resources, both for testing and for error
correction.

5 Discussion

The initial results of the SPA measurement-based
process model are encouraging. We are meeting
our objectives to learn about techniques in applying
the life cycle in different application domains and
with different languages. On the basis of

management interest in the data and its application,
SPA seems to be succeeding in supplying useful
feedback during the development process. The
metrics are also useful in identifying more efficient
software development techniques.

The paragraphs that follow contain examples of
how SPA feedback has helped developers address
issues in the areas of design, training, budget, and
quality.

Example 1: We compared two projects done by
essentially the same personnel. On the first
project, personnel used diagramming for both high
level design and low level design. On the second
project, they used diagramming on only the high
level design and instead wrote class specifications
in C++, the development language. Additionally,
during low-level design for the second project,
they standardized on very structured development
techniques involving object-oriented programming
and specific call-back mechanisms. Comparing
SPA data from the two proiects helped to convince
management that the cganges in m~thodology had,
in fact, increased productivity. The new design
methodology will be continued in the future.

Example 2: SPA metrics have been used to draw
inferences about training and staffing. Information
on personnel activities is being used to justify the
number of hours allocated to various activities, e.g.
more time spent on training or more time spent
writing requirements/specifications. The analysis
of an Ada project indicated that more time should
have been spent training programmers to use Ada.
The supposition is that if more time had been
allocated early in the development cycle to learning
to program in Ada, the efficiency of the project and
the resulting code would have been improved.

Example 3: Another project we studied had
finished under budget and ahead of schedule. One
supposition for this outcome was that a larger
percentage of civil service personnel had been
added than had been projected or would normally
have been used on a project of this size. (Only
contractors' salaries are included in the cost of a
project, so in a sense civil servants are "free"
labor.) By using PRF data, we were able to
differentiate the number of hours and types of
activities performed by contractors and civil
servants. As a result, management was reassured
that the early completion of the project was, in fact,
due to more efficient development techniques rather
than an excess of civil servants. Because of this
analysis, future projects will adopt these
development techniques.

Example 4: SPA metrics have also been used to
settle questions about code quality. An abbreviated
development schedule caused management to
question the robustness and maintainability of an
application. Using the code metrics, we
demonstrated that the majority of the code met the
standards used at Johnson Space Center, which is
known for its emphasis on software quality.
Further, the metrics were used to argue
successfully that portions of the code were reliable
and maintainable and should not be rewritten.

6 Summary and Future Research

Metrics are often viewed by managers and
programmers as threatening, but for the past four
years they have been successfully collected and
used to evaluate the development process model
and software products in the DSTD at Goddard
Space Flight Center. We attribute this success to
the strict adherence to anonymity of personnel and
projects and to non-intrusive data collection
methods.

Although it is too early to quantify the financial
benefits from these analyses, we have seen process
improvements. For example, the need for training
in object oriented design methods and in
programming languages is determined at the start
of new projects. Design and development
techniques have been structured and formalized.
Different testing methods are being identified and
investigated.

The design and use of a measurement-driven
process model has been educational. Everyone has
become more aware of the structure of the
development cycle and the characteristics that are
related to quality program code. Through SPA, we
continually evaluate our processes, making
changes and improvements as necessary. Through
the application of metrics, we expect the software
development process to be more efficient, more
predictable, and we expect higher quality products
that are easier to maintain and reuse.

Our initial research used only a core metric set that
focused primarily on code. There is much more to
be done. We are working on correlating code
metrics with discrepancy and change data in order
to develop a baseline and tolerances that indicate
the quality and reliability. Other code metrics, such
as physical source statements, logical source
statements and nesting levels are being investigated
(Rombach, 1990). In the future we expect to use
code metrics for certifying code before it is placed
in the reuse library. We are also researching
applicable metrics for other phases of the life cycle.
The goal is to develop acceptability ranges for
software metrics, at all phases of the life cycle,
similar to those currently existing for hardware.

7 Acknowledgments

NASA's Software Engineering Laboratory (SEL)
provided early and important mechanisms for
understanding and managing the data collection
process. Papers from the SEL, that appeared as
early as 1977, have contributed greatly to the field
of software engineering. W e gratefully
acknowledge the help of SEL personnel in getting
the work cited in this paper started and in providing
the data collection forms used in the first phase of
these analyses.

8 References

Baumert, John H., & McWhitney, Mark S.
(1992). Software measures and capability
maturity model. Software Engineering Institute,
Carnegie Mellon University, CMUISEI-92-TR-
25.

Booch, Grady, (1991). Object oriented design.
BenjaminICummings Publishing Company,
Inc., Menlo Park, CA..

Software Engineering Laboratory, NASA Goddard
Space Flight Center (1987). Data collection
~rocedures for the rehosted SEL database.
Software Engineering Laboratory Series, SEL-
87-008.

IEEE Standard of Software Productivity Metrics,
IEEE-Std 1045- 1992, January, 1993.

IEEE Standard glossary of Software Engineering
Terms, IEEE-Std-6 10.12- 1990.

Mills, Harlan D., & Dyson, Peter B., (1990).
Using metrics to quantify development, IEEE
Software, March.

McCabe, Thomas J., (1976). A complexity
measure. IEEE Transactions on Software
Engineering, Vol. SE-2(4), Dec.

Putnam, Lawrence H., & Myers, Warren (1992).
Measures for excellence: reliable software on
time, within budget. Prentice-Hall, Inc.,
Englewood Cliffs, NJ.

Rombach, H. Dieter (1990). Design
measurement: some lessons learned. IEEE
Software, 7(2) March.

UX-Metrics, Set Laboratories Incorporated,
Oregon, 1990.

3s
TAKING ADVANTAGE OF GROUND DATA SYSTEMS ATTRIBUTES

TO ACHIEVE QUALITY RESULTS IN TESTING SOFTWARE f _ 6
Clayton B. Sigman

National Aeronautics and Space Administration
Goddard Space Flight Center

John T. Koslosky
National Aeronautics and Space Administration

Goddard Space Flight Center

Barbara H. Hageman
Integral Systems, Inc.

ABSTRACT

During the software development life cycle
process, basic testing starts with the develop-
ment team. At the end of the development
process, an acceptance test is performed for
the user to ensure that the deliverable is ac-
ceptable. Ideally, the delivery is an opera-
tional product with zero defects. However,
the goal of zero defects is normally not
achieved but is successful to various degrees.
With the emphasis on building low cost
ground support systems while maintaining a
quality product, a key element in the test
process is simulator capability. This paper
reviews the Transportable Payload Operations
Control Center (TPOCC) Advanced Space-
craft Simulator (TASS) test tool that is used in
the acceptance test process for unmanned
satellite operations control centers.

The TASS is designed to support the devel-
opment, test, and operational environments of
the Goddard Space Flight Center (GSFC) op-
erations control centers. The TASS uses the
same basic architecture as the operations con-
trol center. This architecture is characterized
by its use of distributed processing, industry
standards, commercial off-the-shelf (COTS)
hardware and software components, and reus-
able software.

The TASS uses much of the same TPOCC
architecture and reusable software that the
operations control center developer uses. The
TASS also makes use of reusable simulator
software in the mission specific versions of the

TASS. Very little new software needs to be
developed, mainly mission specific telemetry
commutation and command processing soft-
ware.

By taking advantage of the ground data sys-
tem attributes, successfkl software reuse for
operational systems provides the opportunity
to extend the reuse concept into the test area.
Consistency in test approach is a major step in
achieving quality results.

INTRODUCTION

The TASS is a crucial test tool used in the ac-
ceptance test process for unmanned satellite
operations control centers (Payload Opera-
tions Control Centers and Mission Operations
Centers) at GSFC. The TASS is used for de-
velopment, integration, acceptance and re-
gression testing phases of the system devel-
opment cycle.

For a software delivery to be completely suc-
cessfkl, it must meet or exceed all require-
ments, be delivered on time, within budget,
and with minimum defects. Typically, varying
degrees of success are achieved, and ideally
the software should be delivered to the cus-
tomer with zero defects.

To help support testing during the system life
cycle, the TASS was designed to produce
quality results in the testing process at the
lowest possible cost. By utilizing proven
testing fundamentals, commercial off-the-shelf

products, open industry standards, reusing Communications (Nascom), and ultimately the
software and taking advantage of the available spacecraft, through a matrix switch using pro-
infrastructure, the TASS provides a very cost prietary Nascom lines. These systems all util-
effective way to complete effective software ize generic core TPOCC software, a software
testing for numerous project software deliver- reuse library, which is the basis for which the
ies. mission software is built upon.

TESTING FUNDAMENTALS TYPICAL TEST SUPPORT SOLUTION

The goals of a quality software delivery is to
meet all the requirements, with zero defects,
on time and within budget. To ensure quality
software deliveries during the entire system
life cycle, effective testing is necessary for all
phases (unit testing, integration testing, accep-
tance testing, and regression testing). Figure 1
depicts a typical system life cycle.

In order to successfully test all phases of soft-
ware development, a carefully developed test
strategy must be used. First the test process
should accurately identifjl defects in a cost ef-
fective manner and perform this process in the
shortest possible time. Likewise, availability
of the necessary test tools has to be maxi-
mized, and the test tool must be easy to use.
Finally, the use of automation should be part
of the process in order to shorten the testing
time and eliminate human error.

OPERATIONS CONTROL CENTER

Next, an understanding of the operations con-
trol center infrastructure is necessary. At
GSFC, the operations control center is the fo-
cal point for the health, safety, command and
control of the unmanned satellite. The Flight
Operations Team (FOT) commands and con-
trols the spacecraft and monitors its health and
safety via the ground data system.

The design of the ground data system is based
on the TPOCC architecture and its reusable
building blocks. In the operations control
center, the ground data system includes a pri-
mary and a backup system. See figure 2. The
architecture of each system is a distributed
processing system consisting of a general pur-
pose workstation, X-terminals, and a real-time
front-end processor (FEP) connected by Eth-
ernet. The FEP communicates with NASA

In the operations control center development
environment, a tool to simulate the spacecraft
and the status messages of the ground station
is necessary to test the operations control
center ground data systems. The TASS de-
sign concept is to make use of the software
reuse library and be able to host its software
on existing ground data systems. The TASS
was developed with the capability to simulate
the Nascom link protocols required to support
various satellites, generate simulated space-
craft telemetry streams using the operations
control center operational data base, and re-
spond to spacecraft commands.

Unique implementations of spacecraft memory
load and dump capabilities are provided.
Network Control Center (NCC) communica-
tions protocol are simulated for Tracking and
Data Relay Satellite System (TDRSS) sup-
port. In addition, the TASS validates space-
craft commands and alters the real-time te-
lemetry stream in response to those com-
mands. The user has the capability to alter the
telemetry stream either by data base mnemonic
or by speciQing the individual bits in the te-
lemetry frame or packet. Complexity can also
be added by incorporating various dynamic
models for the telemetry generating functions.

The TASStrecords all received Nascom blocks
and all received spacecraft commands in his-
tory files that can be viewed for detailed
analysis through the use of an off-line utility
program. All system events, errors, operator
input, procedure input recorded in the event
log; and spacecraft memory images that are
saved can be viewed by using the off-line util-
ity programs. After completing the test, the
user generates test reports using the report
generation subsystem. These reports can later
be used to evaluate the test results during the
analysis process.

System Implementation
Integration and Sustaining Engineering,

Design Acceptance Test Operations and Phase 1 Test I Regression Test Out

components Maintenance
and Test

Subsystem

Unit
Detailed / Design / I y:t /

and Test / andTett
I I r

R$eqEnments

Figure 1. Typical Operations Control Center System Life Cycle

4 Subsystem Implementation t Integration Maintenance

POCC OR MOC MOR
used to configure, control, and monitor the

HP (TASS FEP from one or more user terminal.
SOFTWARE) n

MOR IAN (ETHERNET)

I * I

FRONT-END

SOFTWARE)

MOR LAN (ETHERNET)

FRONT-END
(POCC/MOC
SOFTWARE) n *

Figure 2. Typical Operations Control
Center Ground Data Systems.

Since the test tool is used in all phases of the
development cycle, it must be readily avail-
able, easy to use, and cost effective. In a typi-
cal operations control center, the design pro-
vides for a primary and a backup system. The
TASS was designed so that it can be hosted
on the primary or backup system; thus taking
advantage of the control center architecture.
Utilizing the backup system eliminates the
hardware cost of an additional system, the
need for additional floor space, power, cool-
ing, and maintenance. It also eliminates the
need to schedule Nascom communication lines
and an externally located simulation system
during the software development cycle.
Likewise, in the development facilities with
similar architectural capabilities, the TASS can
be hosted on any system string and is essen-
tially available at all times.

The hardware configuration that is used to
host the TASS consists of two distributed
computers connected by Ethernet and their
associated peripherals as shown in Figure 3 .
One of the computer systems is a real-time
VMEbus based front-end processor. It is used
to receive and process spacecraft commands
and to build and transmit the telemetry streams
utilizing the Nascom link protocols. The other
computer is a general purpose workstation

To minimize simuIator development cost, the
TASS utilizes a proven software reuse library.
A major component of the software reuse li-
brary is the generic TPOCC software. Sev-
enty-eight percent of the TASS software con-
sists of these TPOCC building blocks. This
reuse library is also the same core software
building block for the operations control ten-
ter. For the TASS, it is used mainly for the
user interface (display and TPOCC Systems
Test and Operations Language (TSTOL)) and
the Nascom interface. Another component of
the library used by the TASS is the TASS ge-
neric software that is shared across different
missions. These components account for sev-
enteen percent of the TASS software. Finally,
only five percent of the software is specific to
simulating each spacecraft. Figure 4 shows a
breakout of the TASS software reuse for a
typical mission. To hrther increase reuse, the
TASS utilizes many industry standards, includ-
ing C, TCPIP, sockets, XDR, Motif, XI1 and
RPC.

Another major consideration in the design of
the TASS is the user interface. First, to
maximize usability, the TASS makes use of a
graphical user interface (GUI) which is based
on X Windows and fblly adheres to the indus-
try-standard OSF/Motif principles. Since a
major portion of the software is common be-
tween the operations control center and the
TASS, they maintain a consistent look and feel
between both systems. Finally, an open dia-
log with the TASS users is maintained in order
to provide continued improvement in the test
process.

To help automate testing, user inputs from
both the command line and the GUI are proc-
essed by the TSTOL, the control center script
language. By utilizing TSTOL, it is possible
to log user inputs into a text procedure file.
This text procedure file can be edited and is
used to execute an automated test or repeat a
previous test under user control. The TASS
provides a means for saving and restoring pre-
defined test scenarios and results, telemetry
stream contents, and data structures. This al-
lows the user to repeat specific tests, retest

REAL-TIME
FRONT-END UNIT

19' COLOR MONITOR

9 TRACK

0
MOR LAN (ETHERNET

N

NOTE: SHADED HARDWARE REPRESENTS REQUIRED TASS HARDWARE

Figure 3. TASS Hardware Configuration

TASS GENERIC S O W A R E

I BLOCK PROCESSOR
COMMAND
HISTORY I

Figure 4. TASS Software Reuse

with known data, or continue testing from a
given point in the test scenario.

Another planned feature that is being devel-
oped to automate testing is called TestIScorel
Report. This fbnction automates testing of the
operations control center software in three
areas: telemetry decommutation, spacecraft
command processing, and spacecraft memory
load and dump processing. The TASS system
"tests" the operations control center software
and provides a "score" based on the test re-
sults. Finally, the TASS system provides for-
matted "reports" that document each step
performed during the test and the results of
each step. These features help to test new de-
liveries and perform regression testing in the
shortest time possible.

CONCLUSION

By taking advantage of the ground data sys-
tem attributes, it is possible to achieve cost
effective quality results in testing operations
control center software. By using proven
testing fundamentals, industry standards, reus-
ing available hardware and software, maximiz-
ing usability and automation, it is possible to
minimize the time and cost to perform quality
software testing.

REFERENCES

National Aeronautic and Space Administra-
tion. (June 1994). Tra~isportable Payload Op-
eratioiis Control Center, (TPOCC) Advaiiced
Spacecraft Sin~~tlator (TASS) Systenl Re-
qzriren~eiits Docrcnteiit (Revisioil 4). Goddard
Space Flight Center, Greenbelt, MD

National Aeronautic and Space Administra-
tion. (May 1994). Trailsportable Payload Op-
eratioiis Coiitrol Ceirter (TPOCC) Advairced
Spacecraft Simzrlator (TASS) Systenz User's
Guide for Release 7. Goddard Space Flight
Center, Greenbelt, MD

SpeczJication for Release 7. Goddard Space
Flight Center, Greenbelt, MD

National Aeronautic and Space Administra-
tion. (February 1994). Transportable Payload
Operations Control Center (TPOCC) De-
tailed Design Specification for Release 10.
Goddard Space Flight Center, Greenbelt, MD

Acknowledgments -- We wish to extend spe-
cial thanks to the following personnel for their
inspirational ideas used to formulate and irn-
plement the TASS: Carroll Dudley (National
Aeronautic and Space Administration, God-
dard Space Flight Center), Darlene Riddle
(Integral Systems, Inc.), Luan Luu (Integral
Systems, Inc.), and Nancy McCluer (Integral
Systems, Inc.).

National Aeronautic and Space Administra-
tion. (May 1994). Tra~isportable Payload Op-
erations Co~ltrol Ceiiter (TPOCC) Advaticed
Spacecraft Sinlltlator (TASS) Detailed Design

35Y2@7
P - 9

SCOS 11 - An Object Oriented Software Development Approach

Martin Symonds, Steen Lynenskjold, Christian ~iiller.'

Computer ~esources International A/S
Bregnergdvej 144

DK - 3460 Birker~d, Denmark

ABSTRACT INTRODUCTION

The Spacecraft Control and Operations System II (SCOS II), is
intended to provide the generic mission control system
infrastructure for future ESA missions. It represents a bold step
forward in order to take advantage of state-of-the-art technology
and current practices in the area of software engineering. Key
features include:

Use of Object Oriented Analysis and Design techniques

Use of UNlX , C++ and a distributed architecture as the
enabling implementation technology

Goal of re-use for development, maintenance and mission
specific software implementation

Introduction of the concept of a spacecraft control model.
This paper touches upon some of the traditional beliefs
surrounding Object Oriented development and describes their
relevance to SCOS II. It gives rationale for why particular
approaches were adopted and others not, and describes the
impact of these decisions.

The development approach followed is discussed, highlighting the
evolutionary nature of the overall process and the iterative nature
of the various tasks carried out.

The emphasis of this paper is on the process of the development
with the following being covered:

The three phases of the SCOS II project - prototyping &
analysis, design & implementation and configuration / delivery
of mission specific systems

The close co-operation and continual interaction with the
users during the development

The management approach - the split between client staff,
industry and some of the required project management
activities

The lifecycle adopted being an enhancement of the ESA
PSS-05 standard with SCOS II specific activities and
approaches defined

An examination of some of the difficulties encountered and
the solutions adopted.

Finally, the lessons learned from the SCOS II experience are
highlighted, identifying those issues to be used as feedback into
future developments of this nature.

'This paper does not intend to describe the finished product and its
operation, but focusing on the journey to arrive there,
concentrating therefore on the processes and not the products of
the SCOS II software development.

scos m
SCOS II (Spacecraft Control and Operations
System IT), ref. [10][11][12][13] is the latest of
ESA's (European Space Agency), efforts to
increase standardisation and reuse within its
control systems. SCOS II has as a predecessor
SCOS I which provides standard functionality
for the telemetry processing chain and various
data management features. These standard
features such as telemetry displays, out of limits
checking, database maintenance etc. were
provided as a collection of middleware routines
and tasks around which a mission would build
its Telecommanding chain and any other mission
specific components. SCOS I uses as front-end,
non standard, custom built workstations
connected to centralised VAX computers. An
enhancement to SCOS I which has recently
been made available provides the same
underlying functionality but using Sun
workstations connected to the VAX's.

SCOS II goes some steps further. In addition to
the functions provided by SCOS I, it not only
provides standard telecomrnanding facilities but
is also designed to allow much more mission
specific customisation of the kernel system. This
customisation is readily available as a result of
the Object Oriented approach and underlying
technology adopted, and is outlined in the
sections which follow.

Martin Symonds (martin@msymonds.demon.co.uk), Steen Lynenskjold (steen@acm.org) and Christian Muller (crnueller@esoc.bitnet) are
currently assigned to the European Space Operations Centre in Darmstadt, Germany. They have worked for CRI on the management,
analysis, design, implementation and testing of the Application part of the SCOS II project under a contract with the European Space Agency.

The approach taken by the SCOS I1 project was
designed to provide the maximum benefit from
use of current "State of the art" tools and
techniques in the field of Software Engineering.
These were not chosen for their own sake, but in
order to deliver very real benefits to the
development lifecycle and the final SCOS II
products. In particular, the use of Object
Oriented Analysis and Design techniques, and a
move towards an open distributed architecture
based on the use of C++ running under Solaris
on Sun workstations, complemented each other
well. In addition, tools such as those used for
user interface design and implementation helped
the prototyping and user requirements definition
considerably.

Probably the most important design driver was
that SCOS 11 should be generic. That is, not only
should it make use of the available technology
and the re-usability provided by object
orientation, but it should also ensure that the re-
use is embedded in the design and not just the
implementation.

For example, one can imagine the system
needing to know about gyros, heaters and
thrusters. To use the object oriented approach
one could implement these as separate classes
and then specialise from them in order to make
different kinds of gyro, heater and thruster. The
SCOS I1 approach however has found a way to
ensure that gyros, heaters and thrusters can all be
specialised from a single parent, called the
System Element. The adopted client-server
concept plus the distributed architecture brings a
flexible system with high performance. It is
these extra steps which will deliver some of the
real power and benefit of SCOS 11.

OOAWOD
As well as the standard functional goals and
requirements of a satellite control system, SCOS
I1 has a number of other goals for ESA/ESOC. In
particular these are centred around the concept
of reuse of the software and tools used during

the requirements definition, development and
maintenance phases of SCOS II. SCOS 11 is also
required to allow easy mission specific
customisation of the kernel whilst providing for
the mission specific components to be optionally
later included into SCOS II. This is achieved by
implementing a building block approach for both
the design and use of SCOS 11.

Previous Mission

1 = Re-use Existing Soflware
I
New Mlsslon Control System

Figure 1 : SCOS I1 Building Block A ~ ~ r o a c h

The concept behind this will allow a control
system to be put together from the SCOS 11
supplied components, modified SCOS 11
components and mission specific components.
This approach is illustrated in Figure 1 where the
final components of the system are shown as
being built from each of the various sources.
This building block approach is supported by the
use of C++ and the class libraries that the SCOS
11 project provides, allowing a "mix and match"
approach to system construction as shown in
Figure 1.

In addition to the goals and expected benefits for
the developers, there are also changes occurring
for the users. These changes include increased
involvement in the analysis and design process,
the capability to represent and control their
spacecraft through the use of a model and
changes in the physical appearance of the
system.

One of the most significant changes that SCOS the design specification; extending results of
I1 users have had to come to grips with is the analysis phase
change in emphasis between focusing on the
mechanisms used for controlling the spacecraft
to focusing on the spacecraft itself. For example,
the tendency in the past has been to think of
commanding and monitoring of the spacecraft in
terms of telecommands and telemetry, whereas
the SCOS II approach encourages focus on the
actual spacecraft and its components, i.e. those
objects being commanded or monitored (gyros,
heaters, thrusters etc.). This manifests itself

Maintenance and operations - Promoting
reuse of developed components; concealing
low level code changes.

These advantages can be considered a result of
the tools, methodology and languages used. In
particular the object oriented concepts of
encapsulation, inheritance and polymorphism
allow a number of the advantages listed above to
be realised.

primarily as a consequence of the Object The object oriented approach also supports an
Oriented and Design which iterative lifecycle where iteration is considered
allows the spacecraft model to be developed as part of the analysis and design process as further
part of the tasks carried out by the users when detail is added to the analysisldesign model.

the system' These Figure 2 below shows the iterative nature of the
features allow the easy expression of physical, lifecycle approach taken, which can be compared
thermal and electrical relationships as well as with the traditional waterfall lifecycle in Figure
abstract relationships as and when required by 2

J.

the users.

OBJECT ORIENTATION

The concepts of object orientation have been in
the software industry for some years now but it
is only recently that the tools, methods and
experience have become readily available to
allow the widespread take-up of this approach
and the techniques it supports. The benefits of
object orientation permeate the entire software
development lifecycle, from the analysis of user
requirements through to maintenance and
operations. The major advantages of object
orientation within the software development
lifecycle can be summarised as follows:

Analysis of Problem Domain - Allowing a
better understanding of the problem domain;
encouraging userlanalyst interaction;
providing a basis for evolution towards the
design and implementation

Design of solution - Encouraging
identification and utilisation of underlying
commonality within the problem domain;
providing a means of concealing changes to

Fi~ure 2 : Obiect Oriented Lifecvcle

The major difference is that iteration and
feedback is a fundamental part of the object
oriented lifecycle, whereas for the traditional
waterfall lifecycle, this feedback is generally
only permitted to rectify errors. The object
oriented approach allows the analysis results to
be gradually expanded and refined with
successive layers of detail until the design is
complete. It is hence of outmost importance to

define each iteration and its products as part of
the planning cycle.

Feedback to
previous phases is
allowed to address
errors.

I
Figure 3 : Traditional Waterfall Lifecvcle

SCOS I1

In order to satisfy the demands placed upon
SCOS 11, the project was approached in two
phases. In the first phase, the technology to be
used was proven in terms of functionality and
performance, and the initial analysis work was
carried out in conjunction with a significant
amount of user interface prototyping.

Once the technology had been proven and the
initial analysis performed, the project moved
into its main development phase which saw the
underlying technical services being provided and
the analysislprototyping activities moving
forward into design and implementation of those
generic parts of the system identified in the
analysis.

Whilst the initial phase was not a pilot project as
such, it did allow the project team to get to grips
with the technology, tools and problem domain,
providing them with the means to determine the
route to the system goals as part of the second
phase.

The project team structure saw a peak of some
20 software engineers. Of these, 5 were client
staff responsible for the overall management,

technical management and system testing
support. Industry was represented by two
consortia, each of 3 companies with clearly
defined responsibilities. The Application Team
was responsible for providing the analysis of the
problem domain and for ensuring that the users
functional requirements were satisfied. This
team also carried out extensive functional
prototyping and is responsible for delivering
SCOS IT applications. The second industry team
was responsible for providing the low level
technical infrastructure such as software to
handle the transmission and caching of data
across the network.

DEVELOPMENT APPROACH

In describing the development approach, it is
necessary to understand the standard ESOC
activities, how these activities were mapped on
to the phases adopted by SCOS II, the modified
lifecycle used by SCOS 11 and what were the key
features of the development under these
constraints.

Activities
ESA software development projects are
developed according to the ESA Software
Engineering Standards, ref. [9]. These standards
recognise five phases of the development
lifecycle known as:

User Requirements Definition - definition
of the problem domain to be solved by the
system to be procured

Software Requirements Definition -
Analysis of user requirements to define a
model to allow satisfaction of these
requirements

@ Architectural Design - Design of the
hardware and software architecture
including data and control flow

e Detailed Design - Design, code and test of
the system design

Transfer - Installation of software in target
environment; performance of acceptance
testing

These have traditionally been performed using
the traditional waterfall lifecycle shown in
Figure 3.

Whilst this is a well proven method, it has a
number of difficulties and inconsistencies. These
are emphasised when attempting to use this
approach in an object oriented environment. The
major difficulty is that in the waterfall lifecycle,
the output from one phase is the major driver for
'the following phase, and to a large extent stands
alone. The object oriented approach however
encourages successive refinement of the initial
analysis model right through to the code, without
being able to easily produce the corresponding
breakpoints of a traditional lifecycle. This is
demonstrated by Figure 4 which shows how the
relationship between the successive phases of a
traditional approach is less closely coupled to its
previous phase than that of an object oriented
lifecycle.

With the waterfall approach, there are clearly
defined deliverables at the end of each phase,
which stand alone. With the object oriented
approach, each iteration sees further refinement
and not necessarily a specific stand alone
product. Each iteration product should be
defined in a manner that it is tangible; hereby
giving the management the necessary
information to monitor progress.

A /F\ Traditional Waterfall

00 Iterative Evolution

Firmre 4 : Use of Lifecycle Products

Phases
The SCOS II approach required that the
development be object oriented yet maintain,
wherever possible, a correspondence to the ESA
PSS-05 phases and deliverables. This was not
easy and became more challenging as the project
progressed.

The prototyping and analysis phase
corresponded closely in some ways to the
traditional lifecycle with the SCOS II
development team producing an object oriented
SRD (Software Requirements Document), ref.
[2]. It was found that the nature of the object
oriented analysis was such that the SRD
activities could in fact be performed in parallel
with the URD, with final SRD updates lagging
behind the final release of the URD. During this
phase, extensive iterative prototyping took place
in order to:

help elicit user requirements

define user interfaces.

This proved to be a valuable exercise for the
users.

The methodology followed for this analysis
phase was the CoadIYourdon method, ref.
[5] [6] [7]. The object/class diagrams were
created using the OMTool product which uses
the Rumbaugh notation, ref. [3].

The Design and Implementation phase saw traditional documents. This reflects the lifecycle
SCOS II covering the traditional ADIDD comparison diagram in Figure 5. This is also
activities. Once more the nature of the object discussed in ref. [4].
oriented approach is such that it was found that
the SRD was more detailed than a traditional
SRD and addressed a level of detail not normally
found until AD activities. Similarly, the AD
documentation progressed to a point where
traditional DD issues were being addressed. It
was also noted that the coding and detailed
design activities were highly iterative, allowing
the design and software to evolve together and to
take into account feedback from users.
Integration however has been more of a
continuous process rather than one which
progresses in clearly defined stages.

The next phase of the project which will
commence in late 1994, will be to continue roll-
out of the SCOS 11 kernel in readiness for
customisation and enhancement by its first client
missions. These deliveries will consist mainly of
collections of C++ class libraries that will be
used by the client missions as a basis for their
custom and mission specific software
development.

Lifecycle Considerations
The mismatch between the traditional lifecycle
and that encouraged by the more iterative object
oriented lifecycle continues to be a source of
frustration. It is not easy to present documents
for external review that correspond to some
degree with the contents of traditional
deliverables of that phase. Whilst less detail
could have been documented during the SR and
AD phases, the nature of the approach stimulates
an analysis philosophy that repeatedly drops
down into detail and back up again. It would be
inefficient to ignore or document this
information in another fashion.

A

Manpower Effort

b
Time

Fi~ure 5 : Com~arison of Traditional vs. Obiect
Oriented Lifecvcle Phases

Figure 5 shows some interesting comparisons
between the traditional lifecycle and the object
oriented lifecycle. In particular it demonstrates
the 00 approach reaching the same level of
detail overall, but dropping down much sooner.
Similarly, the corresponding amount of effort for
an object oriented approach seems to occur
rather earlier in the development cycle with the
maintenance level is expected to be less.

SCOS 11 was able to take advantage of the
possibility of overlapping phases. Thus whilst
the UWSWADIDD phases have overlapped this
has not appeared to hinder development at all.
This is something of a two edged sword; on the
one hand it allows rapid progress towards an
initial version/prototype, while on the other it
does make the project management more
complex.

Whilst SCOS II has produced documentation for
review, such as the SRD, it has always been
clear that the level of detail contained in these
documents has generally been higher than the

Key Features
To summarise, the key features of SCOS I '
which have made it a success include:

Prototyping - This helped considerably to
elicit requirements, define interfaces and to
demonstrate progress to the users.

The iterative approach - Allowing frequent
tangible results during both the analysis and
design phases.

0 High level (Analysis and Design) -
Manifested through successive
refinement of the analysis model and
refined user requirements.

0 Low level (Coding and Delivery) -
Allowing successive deliveries to
provide increased functionality.

Object Orientation

0 User interaction 1 co-operation (Through
the Analysis Model) - Providing
increased visibility of the design
process, for the users and increased
visibility of the problem domain for the
developers.

0 Software Modularity - the
implementation of the building block
concept providing clean mechanisms for
mission specific control systems.

Management approach

0 3 groups (client and two teams from
industry) - Allowing diverse skills to be
brought to bear on a challenging, state of
the art project.

0 split into technical and applications
areas - Allowing clearly defined
responsibilities

0 one infrastructure (bottom up) - Starting
from the available technology and
providing services for the applications.

CONCLUSION

SCOS I1 is now well on the way to completion.
It is a suitable opportunity to take a look back
over the past couple of years and with the benefit
of hindsight, draw some conclusions from the
route that we have travelled.

The project may cost some 50% less than its
predecessor infrastructure (SCOS I and MSSS)It
is clear that the approach, technology and tools
used have led to greater productivity in many
ways.

The extent to which the benefits of ease of
maintenance and later re-use will be realised,
remains to be seen in client project applications.
Based on the experience of flexibility to change
and extent of re-use throughout the development
phase, we have considerable confidence that this
will be achieved

In retrospect it would have been immensely
useful to have been able to develop a small pilot
project. This would have enabled a number of
management, analysis, design, implementation
and standards issues to be resolved before SCOS
11 commenced. As it was these had to be
addressed as part of the ongoing project work
and sometimes distracted and indeed disrupted
progress. To tackle a project of this nature and
complexity where little appropriate expertise
was available, and to add an increased level of
complexity by making the SCOS II goal a
generic system, is a high risk strategy. That this
strategy is starting to pay off is a remarkable
tribute to the skills and dedication of the people
involved in the project.

0 one requirements (top down) - Starting
from the requirements and implementing
using the provided infrastructure
services.

REFERENCES

[I] SCOS 11 User Requirements Document,
ESOC DOPS-SYS-URD-001 -AMD, Issue 3,
February 1994.

[2] SCOS II Software Requirements Document,
ESOC SCOS II-SYS-SRD, Issue 0.6, June
1994.

[3] Object Oriented Modelling and Design,
Rumbaugh et. Al, Prentice Hall 1991.

[4] Object Oriented Design with Applications,
Grady Booch, Benjamin Cummings 199 1.

[5] Object Oriented Analysis, Peter
CoadlEdward Yourdon, Prentice Hall 1990.

[6] Object Oriented Design, Peter CoadJEdward
Yourdon, Prentice Hall 199 1.

[7] Object Oriented Programming, Peter
CoadIJill Nicola, Prentice Hall 1993.

[8] Modelling the World in States, Sally
SchlaerIStephen J. Mellor, Prentice Hall
1992.

[9] ESA Software Engineering Standards - Issue
2, ESA PSS-05-0 Issue 2, ESA Publications
Division, February 199 1

[IOISCOS 11: ESA's New Generation of Mission
Control Systems - The User's Perspective, P
Kaufeler, M Pecchioli, I Shurmer, ESOC -
these proceedings.

[11]A New Communication Protocol Family for
a Distributed Spacecraft Control System, A
Baldi, M Pace, ESOC - these proceedings.

[12]SCOS 11: ESA's New Generation of Control
Systems, M Jones, N Head, K Keyte, P
Howard, S Lynenskjold - these proceedings.

[13]SCOS II OL: A Dedicated Language for
Mission Operations, A Baldi, Dennis
Elgaard, S Lynenskjold, M Pecchioli - these
proceedings.

4. Modeling Page 1023

SD.4.a Evaluating Modeling Tools for the EDOS 10%l030 f k
Gordon Knoble, Frederick McCaleb, Tanweer Aslam,
Paul Nester

+< " > (-?

SD.4.b Solar and Heliospheric Observatory (SOHO) Experimenters' 1031-1038 g;"

Operations Facility (EOF)
Eliane Larduinat, William Potter

SD.4.c Galileo Spacecraft Modeling for Orbital Operations 1039-1&l.4 "
Bruce A. McLaughlin, Erik N. Nilsen

+ * ' f
SD.4.d The Advanced Orbiting Systems Testbed Program: Results to 10451054 '-s*F'~ I

Date
John F. Otranto, Penny A. Newsome

SD.4.e NCCDS Performance Model
Eric Richmond, Antonio Vallone

*. L + > y .
SD.4.f Evaluation of NASA's End-to-End Data Systems Using DSDS+ 1063-1069

Christopher Rouff, William Davenport, Philip Message
I I 3

SD.4.g Analysis of Space Network Loading 1071-1077 '"'

Mark Simons, Gus Larrson
SD.4.h Modeling ESA's TT&C Systems

Enrico Vassallo

* Presented i n Poster Session

Evaluating Modeling Tools for the EDOS
3 5 ~ 2 G!!.?

Gordon Knoble and Frederick McCaleb
NASA GSFC Code 560

P-
Greenbelt, RID 20771

Tanweer Aslam and Paul Nester
Computer Sciences Corporation

7700 Hubble Space Dr. Lanham, MD 20706

ABSTRACT

The Earth Observing System (EOS)
Data and Operations System (EDOS)
Project is developing a functional,
system performance model to support
the system implementation phase of
the EDOS which is being designed and
built by the Goddard Space Flight
Center (GSFC). The EDOS Project
will use modeling to meet two key
objectives:
(1) Manage system design impacts
introduced by unplanned changes in
mission requirements and (2) evaluate
evolutionary technology insertions
throughout the development of the
EDOS. To select a suitable modeling
tool, the EDOS modeling team
developed a n approach for evaluating
modeling tools and languages by
deriving evaluation criteria from both
the EDOS modeling requirements and
the development plan. Essential and
optional features for an appropriate
modeling tool were identified and
compared with known capabilities of
several modeling tools. Vendors were
also provided the opportunity to model
a representative EDOS processing
function to demonstrate the
applicability of their modeling tool to
the EDOS modeling requirements.

This paper emphasizes the importance
of using a well defined approach for
evaluating tools to model complex
systems like the EDOS. The results of

this evaluation study do not in any
way signify the superiority of any one
modeling tool since the results will
vary with the specific modeling
requirements of each project.

INTRODUCTION

A set of criteria specific to EDOS
modeling requirements was developed
for evaluating and selecting the most
suitable modeling tool. These criteria
identified potential strengths and
weaknesses of modeling tools which
would affect the EDOS model
development time, enabling the team
to initially screen each product prior to
evaluating its capabilities in detail.
This approach ensured timely
adjustments to the overall EDOS
modeling plan based on manpower
estimates for implementing a useful
EDOS model with the chosen tool.

The EDOS modeling tool evaluation
criteria were divided into two
categories, essential and optional.
Essential criteria (e.g., modeling of
high data rates) identified the
modeling tools which could
satisfactorily support the development
of the EDOS model. Optional criteria
(e.g., model software configuration
management support) were used to
identify modeling tool features which
could aid in developing and operating
the EDOS model by its users. A
ranking and weighting scheme

enhanced the evaluation process
further, ensuring that major
differences between modeling tools
were well understood by the modeling
team. The evaluation approach was
even further refined by requesting
each prospective vendor to develop a
sample model of a representative
EDOS function and demonstrate the
tool capabilities considered critical for
developing the EDOS model. These
demonstrations provided additional
modeling tool discriminators,
improving the team's understanding of
the tool capabilities and enabling them
to adjust the evaluation scores
accordingly. A detailed matrix of
evaluation results was developed on
an EXCELTM spreadsheet.

Major categories of the evaluation
criteria included: Simulation data
collection and generation of results,
ease of model development,
architecture representations (e.g.,
hardware, software, and data), user
interface, additional development
effort (necessary to compensate for
modeling tool limitations and meet
satisfactory requirements), model
execution control, tool reliability,
model platform choices and execution
speed, documentation and training,
vendor support, and portability of

developed models. Additional criteria
included modeling tool licensing and
training costs, annual maintenance
fees, and inherent risks (e.g., tool
immaturity). The modeling tool with
the best combination of evaluation
score, least additional manhours
estimated, and least implementation
risk was selected as the most suitable
tool for modeling the EDOS. If the
evaluation results in more than one
technically compliant candidate, then
cost may well become the major
deciding factor in the selection
process.

The NASA 1 CSC EDOS modeling
team consisted of experienced system
engineers, each with a t least ten years
of experience in developing functional
system performance models on various
projects. Because of their current
knowledge in the modeling field, they
were readily able to identifj a number
of potential candidates for modeling
the EDOS. Seven modeling packages
and two modeling languages were
identified as potential candidates.
These were either commercial-off-the-
shelf (COTS) items or available
through NASA GSFC. Table 1 lists
the candidate modeling packages and
languages, in alphabetical order.

Table 1: Candidate Modeling Tools for EDOS

EVALUATION APPROACH

The EDOS modeling team developed a
well defined, structured approach to
evaluate modeling tools, consisting of
the following activities:

Defining evaluation criteria
* Identifying available modeling

tools
* Screening modeling tools against

essential criteria
* Evaluating modeling tools in

detail
* Requesting vendors to model a

sample processing function
* Selecting the most suitable

modeling tool for EDOS

Defining Evaluation Criteria

The EDOS modeling requirements
document and the EDOS modeling
plan were used in identifying and
defining a uniform set of evaluation
criteria for modeling tool packages and
languages. A total of 12 evaluation
categories (EC) consisting of 101
essential features and 24 optional
features were identified. The
categories are listed in Table 2.

Identifying Available Modeling
Tools

Identifying suitable modeling
packages and languages as potential
candidates for modeling the EDOS
was the second step. The experience
of the modeling team members, as well
as a search of available literature,
produced several candidates. This was
not intended to be an exhaustive
search and many packages were not
identified simply due to the lack of
available time.

Screening Modeling Tools against
Essential Criteria

All candidate modeling tools were
evaluated against the essential
criteria. After an initial screening,
several modeling packages and
languages designed for specialized
applications (such as packet
switching) were clearly not suitable
for modeling the EDOS and were
rejected from further consideration.

Detailed Evaluation of Modeling
Tools

The detailed evaluation assessed the
capabilities of each modeling tool
qualitatively. The following scoring
scheme was used in the detailed
evaluations.

Scoring Scheme

A scoring scheme, ranging from "0" to
"5", was used to evaluate the modeling
tools in detail:

0: The modeling tool has no capability
(fail).

1: Only minimal (poor) capability is
provided, requiring extensive work to
overcome the problem. The additional
effort was estimated and included in
the detailed evaluation matrix.

2: The capability is less than satisfactory
(fair), requiring some work
compensate for the deficiency. The
additional effort was estimated and
included in the detailed evaluation
matrix.

3: The tool provides a satisfactory
(average) capability.

4: The tool provides more than a
satisfactory (good) capability.

5: The tool provides an excellent
capability.

Table 2: EDOS Modeling Tools Evaluation Criteria

model structure

flexibility of simul

support personnel

Assessment sf Additional
Development EEort

Modeling tool capabilities earning a
score of 1 or 2 were considered
deficient. The EDOS modeling team
carefully reviewed these deficiencies
and assessed the feasibility of
correcting them with additional
development effort. Previous model
development experience with similar
modeling packages and languages
aided in assessing the number of
manhours required to compensate for
any shortcomings. Consulting with
modeling tool vendors also aided in
arriving a t the most conservative
estimates for correcting the
deficiencies, if possible.

Modeling of a Sample Processing
Function

This step of the evaluation approach
was invaluable in the selection
process. The EDOS modeling team
prepared a sample modeling problem,
generic In nature, representing an
aggregation of typical processing
functions required for EDOS. Each
modeling tool vendor was asked to use
the sample processing function to
prepare a sample model, without cost
to the project, to demonstrate the
capabilities of their tool in support of
the evaluation. Four vendors chose to
model the sample processing function
free of charge to demonstrate the
capabilities of their tools; two did not
(three did not pass the initial
screening). Models of the sample
function were not developed with
modeling languages because of the
extensive effort required by CSC
personnel. There were no
disqualifications of modeling package
or modeling language vendors if they
chose not to develop and demonstrate

the sample processing function model.
However, the demonstrations of the
sample model enabled the EDOS
modeling team to accurate assess the
capabilities of those vendors' modeling
tools.

Selection of the Most Suitable
Modeling Tool for EDOS

All modeling tools meeting all
essential criteria participated in this
final evaluation activity. The
following steps were used to identify
the most suitable modeling tool for
EDOS:

a. The total score for each
modeling tool was calculated by
adding all scores for each
evaluation category (a total of
12).

b. The total effective cost for each
modeling tool was calculated by
adding modeling tool software
cost, training cost, and cost for
maintaining the tool for four
years.

c. The total additional
development effort required to
compensate for deficiencies of a
modeling tool and to improve its
performance to a satisfactory
level was calculated.

d. A risk factor (low, medium and
high) for each modeling tool was
assessed based on the results of
detailed evaluation and the
amount of additional
development effort (manhours)
required to improve the tool
performance to a satisfactory
level.

e. The modeling tool with the best
combination of detailed
evaluation score, lowest
manhours for additional
development effort, and least
implementation risk was
selected as the most suitable
tool for modeling the EDOS.

S OF EVALUATION
RESULTS

Of the nine candidate modeling tools,
only six: BONeS, DSDS+, OPNET,
QASE RT, ECSS 11, and GPSS V were
fully evaluated. The development
manhour estimates for the two
modeling languages, ECSS I1 and
GPSS V were beyond the scope of the
modeling schedule. Of the remaining
four modeling packages, DSDS+ and
QASE RT were chosen as the most
cost effective modeling tools which
meet or exceed the EDOS modeling
evaluation criteria. The data stream
feature of DSDS+ enables modeling of
scenarios spanning several days and
weeks. The separate HW and SW
architecture components of QASE RT
provide a more realistic, graphical
representation of the EDOS.

LESSONS LE ED

The following key lessons were learned
while evaluating the modeling tools for
EDOS:

1. The modeling tool criteria should be
developed from the modeling
requirements and objectives specified
for a candidate system. Therefore,
system requirements and plans
describing the modeling objectives
should be complete before defining the
modeling tool evaluation criteria.

the essential and optional features
considered. Non-critical requirements
having little impact on the system
development must not be allowed to
influence the modeling tool selection.

3. Predetermining optional features
desired can prevent the evaluation
process from being misled by a single
interesting aspect of a modeling tool.
Several tools had spectacular features
which, while very impressive, were not
applicable.

4. Vendor development of a sample
model of a representative system
function to demonstrate the real
strengths and weaknesses of a
modeling tool can ease the completion
of the modeling tool evaluation work
in a single demonstration session.

5. The best results are achieved by
team evaluation of modeling tool
capabilities, which aids in balancing .
any bias.

6. There is no perfect modeling tool
for any system. Use of additional
effort, if not major, should not be
overlooked for overcoming minor
deficiencies of an otherwise robust
modeling tool before eliminating it
from further consideration.

7. The number of discrete events
required for modeling a function has
an extremely detrimental effect on the
runtime ratio between simulated time
and real time, due mainly to the
exceptionally high packet rates. While
this risk is dependent upon the speed
of the platform selected, ways should
be investigated early on to minimize it
by properly designing the model's
structure.

2. The modeling tool evaluation
criteria should carefully distinguish

SOLAR AND HELIOSPHERIC OBSERVATORY (SOHO)
EXPERIMENTERS' OPERATIONS FACILITY (EOF)

1 - R

Eliane Larduinat, AlliedSignal Technical Services Corporation
William Potter, Goddard Space Flight Center, Code 514

ABSTACT
This paper describes the SOHO Instrumenters'
Operations Facility (EOF) project. The EOF is
the element of the SOHO ground system at the
Goddard Space Flight Center that provides the
interface between the SOHO scientists and the
other ground system elements. This paper first
describes the development context of the
SOHO EOF. It provides an overview of the
SOHO mission within the International Solar-
Terrestrial Physics (ISTP) project, and
discusses the SOHO scientific objectives. The
second part of this paper presents the
implementation of the SOHO EOF, its
innovative features, its possible applications to
other missions, and its potential for use as part
of a fully integrated ground control system.

Keywords:
Solar and Heliospheric Observatory (SOHO),
Instrumenters' Operations Facility (EOF),
EOF Core System (ECS).

INTRODUCTION
The SOHO mission is part of the ISTP
program. The SOHO EOF is the focal point
for instrument operations, experiment planning
and science data analysis. The EOF will
support the instrumenters in three main
functional areas: (1) commanding and
monitoring of the instruments' health and
safety, (2) receiving and archiving telemetry
data, and (3) planning and scheduling of
coordinated scientific observations. The
particularities of the SOHO mission have
dictated and influenced the design of the ECS.

This paper presents the software design for the
ECS as well as the physical architecture of the
EOF. It also discusses the various choices
made, cost savings and risk mitigation realized
and the possibilities of reuse of the SOHO
EOF for other missions.

SOHO MISSION OVERVIEW
The ISTP program is an international space
exploration program involving spacecraft built

and managed by the National Aeronautics and
Space Administration (NASA), the European
Space Agency (ESA) and the Institute of Space
and Astronautical Science (ISAS). This space
program is coordinated with ground-based and
theory investigations. Its intent is to
coordinate worldwide studies of Sun-Earth
plasma interaction, solar and heliospheric
physics and global geospace physics. The
ISTP program involves several spacecraft:
SOHO, the Plasma Turbulence Laboratory
(CLUSTER), the Geomagnetic Tail
(GEOTAIL), the WIND spacecraft and the
POLAR spacecraft.

SOHO is a joint venture between ESA and
NASA: ESA provides the spacecraft that is
built and tested in Europe and NASA provides
the launch vehicle, launch services and the
ground segment to support all pre-launch
activities and in-flight operations. SOHO is
scheduled to be launched in July 1995 and will
be injected in a halo orbit around the L1 Sun-
Earth Lagrangian point, about 1.5 million
kilometers sunward from the Earth. The
SOHO spacecraft will be three-axis stabilized
and pointing to the Sun. The total mass will be
about 1350 kg and 750 Watts power will be
provided by the solar panels. The payload will
weigh about 650 kg and consume 350 Watts in
orbit.

The SOHO mission duration is 2 years and 5
months and will consist of three main phases:
(1) Launch and early orbit phase which starts
at liftoff and includes the coasting period in
parking orbit.
(2) Transfer trajectory phase during which the
spacecraft will travel from Earth orbit to the
halo orbit (Some science observations may
begin during this phase).
(3) Halo orbit phase which starts with the
commissioning of the service module and the
on-board instruments (approximately one
month), after which the nominal routine
operations will start for a duration of at least 2
years.
SOHO is equipped with sufficient on board

consumables for an extra four years in orbit.
SOHO will carry eleven on-board instruments.

SOH0 Scientific objectives
The SOHO scientific objectives are to study (1)
the structure (density, temperature and velocity
fields) and dynamics of the outer solar
atmosphere, (2) the solar wind and its relation
to the solar atmosphere, and (3) the structure,
chemical composition, and dynamics of the
solar interior.

SOHO will carry a set of telescopes to study
phenomena initiated below the photosphere,
and propagating through the photosphere,
chromosphere, and transition region into the
corona. They will investigate problems such
as how the corona is heated and transformed
into the solar wind that blows past the Earth.

Spectrometers will study the emission and
absorption lines produced by the ions present
in the different regions of the solar
atmosphere, allowing to determine densities,
temperatures and velocities in the changing
structures. These measurements will be
complemented by the "in situ" study of the
composition and energies of the solar wind:
particle detectors will sample the solar wind as
SOHO passes through it.

While the solar interior is the region that
generates the kinetic and magnetic energy
driving outer atmospheric processes, almost no
direct information can be obtained about any
region below the photosphere. The neutrinos
generated by the nuclear reactions taking place
in the core, are the only direct radiation that
reaches us from below the photosphere.
Helioseismology is a relatively new technique
developed in the last two decades, allows us to
study the stratification and the dynamic aspects
of the solar interior. It analyses the acoustic
and gravity waves that propagate through the
interior of the Sun and can be observed as
oscillatory motions of the photosphere. The
analysis of these oscillations allow us to
determine the characteristics of the resonant
cavities in which they resonate, much in the
same way as the Earth's seismic waves are
used to determine the structure of the Earth
interior. To study the solar interior, SOHO
will carry a complement of instruments whose

aim is to study the oscillations at the solar
surface by measuring the velocity (via the
Doppler effect) and intensity changes produced
by pressure and gravity waves. This requires
both high resolution imaging and long
uninterrupted time series of observations. In
addition, because it is of prime importance to
understand the structure of the Sun in relation
to the oscillation measurements, the total solar
irradiance and its variations will be measured.

SOH0 Instrumentation
The SOHO instruments can be divided into
three main research groups: helioseismology,
solar atmospheric remote sensing, and "in situ"
solar wind measurements. Table 1 provides a
list of the eleven SOHO instruments, indicating
the corresponding research group and the
primary institution responsible for their
development.

The helioseismology instruments, GOLF, MDI
and VIRGO, primarily aim at the study of
those parts of the solar oscillations spectrum
that cannot be obtained from the ground
because of noise effects introduced by the
Earth's diurnal rotation as well as the
transparency and seeing fluctuations of the
Earth's atmosphere.

The solar atmospheric remote sensing
instruments, CDS, EIT, LASCO, SUMER,
SWAN and UVCS, constitute a set of
telescopes and spectrometers studying the
dynamic phenomena that take place in the solar
atmosphere at and above the chromosphere.
The plasma will be studied by spectroscopic
measurements and high resolution images at
different levels of the solar atmosphere.

The "in situ" investigation of the solar wind is
carried out by CELIAS and CEPAC, that will
determine the elemental and isotopic
abundance, the ionic charge states and velocity
distributions of ions originating in the solar
atmosphere. The energy ranges covered will
allow us to study ion fractionation and
acceleration from the "slow" solar wind
through solar flares.

SOHO will be placed in a halo orbit around the
L1 libration point. The halo orbit will have a
period of 180 days and has been chosen

Table 1. SOH0 Instruments

Solar atmospheric remote sensing

"In situ" solar wind measurements
CELIAS 1 Charge, Element and Isotope Analysis System I Max Planck Institute, Germany __
CEPAC I COSTEP-ERNE Particle Analysis Collaboration I University of Turku, Finland

because it provides a smooth Sun-spacecraft
velocity change, which is appropriate for
helioseismology, it is permanently outside of
the magnetosphere, which is appropriate for
the "in situ" sampling of the solar wind and
particles, and it allows permanent observation
of the Sun, which is appropriate for all the
investigatidns.

During in-orbit operations, the Deep Space
Network (DSN) will receive telemetry during
three short (1.3 hours) and one long (8 hours)
passes per day. Outside of passes, the science
data will be recorded on-board and played back
during the short passes. The MDI instrument
generates a high rate data stream that will be
transmitted only during the long station pass.
For two consecutive months per year, DSN
will support continuous data transmission,
including MDI high rate data. Whenever there
is data transmission, the basic science data (40
kbits per second) will be available in near real-
time at the EOF.

EOF within the SOH0 Ground System.
The SOHO EOF is part of the NASA Goddard
Space Flight Center ground system where it is
co-located with the Payload Operations Control

Center and the Command Management
System. The functions within the EOF are
focused on instrument operations. A separate
analysis facility, dedicated to the scientific
analysis of the SOHO data, will be located in a
separate building at the Goddard Space Flight
Center.

The EOF is comprised of two main elements:
The ECS which provides the

communications between the instrumenters and
other elements of the SOHO ground system.
The ECS includes hardware and software to
support the primary functions of instrument
commanding, telemetry reception, distribution
and archiving, and science planning and
scheduling. The ECS includes two specialized
workstations: the science operations
coordinator's workstation and the project
scientist workstation.

The Instrumenters Workstations (IWS)
which include hardware and software provided
by the individual instrument teams dedicated to
the operation of a given instrument and its
science analysis for planning purpose.

The instrumenters may be "resident
instrumenters" and be located at the EOF
where they have data processing equipment, or

IWSs. The ECS supports near-real-time
commanding capabilities and distribution of
real-time telemetry for the resident
instrumenters. The "remote instrumenters" are
located outside of the EOF, that is at their
home institution in the US or in Europe.
Mainly for security reasons, they may only
communicate with the EOF via file transfer.
They do not have access to the near-real-time
commanding and real-time telemetry
distribution capabilities. They can perform
preplanned commanding and they can access
the telemetry data archived within the ECS.
They may also use the telephone or facsimile to
communicate with the flight operations team or
with an EOF resident team member in order to
request changes in their instrument status.

The major ground systems elements that
interface with the SOHO EOF are:

The Information Processing Division (IPD)
Packet Processor (Pacor) which captures the
telemetry data from DSN via NASCOM and
transfers the real-time telemetry to the EOF.

The IPD Data Distribution Facility (DDF)
which provides quicklook telemetry files
(mainly tape recorder dumps) to the EOF.

The ISTP Central Data Handling Facility
(CDHF) which provides orbit and attitude data
to the EOF and receives other mission support
data from the EOF.
* The Command Management System.
which serves as the intermediary between the
EOF and the Payload Operations Control
Center for instrumenter commanding activities.

The ECS will communicate via the NASA
Science Internet network using file transfers
with international observatories and scientific
institutions including, but not limited to, the
instrumenters home institutions, ESA, the
National Solar Observatory (NSO), the ISTP
Science Planning and Operations Facility
(SPOF), and the NASA Space Science Data
Center (NSSDC).

SOHO EOF DESIGN CONCEPTS
Several considerations and choices have highly
influenced the EOF design.

* Conformity with the spacecraft integration
and test environment.
In order to minimize development efforts on

the part of the instrumenters, the ECS interface
with the instrumenters was closely modeled
after the interface provided by the spacecraft
contractors during the integration and test
phase. Some modifications have been
necessary to go from a test to an operational
environment, but the efforts to maintain that
protocol as much as possible have greatly
facilitated the integration of the various
instrument teamswith the ECS.

User involvement.
The EOF users were involved as much and as
early as possible. Scientists and members of
the flight operations team actively participated
in the definition of the functional requirements.
Additionally, an interface control document
was developed very early in the project life
cycle. This was of great benefit when dealing
with instrument teams that had little contact
with each other at the beginning of the project,
and whose main concern at that time was not
the details of the daily operations.

Need for adaptability and flexibility.
The functional needs of the various instrument
teams are very different. Some SOHO
instruments, mainly the coronal imaging
instruments, will be operated interactively
every day in real-time. Some other
instruments (CEPAC, CELIAS, VIRGO,
GOLF) will generally operate automatically
and will not need real-time operational control
except for surveillance of housekeeping data.
Consequently, some teams will need to
command their instruments and receive the
telemetry in real-time, while some other teams
will command in the traditional preplanned
manner from a remote site and only retrieve
telemetry files on a daily or weekly basis.

The instrumenters' requirements on the ECS
will also vary during the lifetime of the
mission. All the eleven instrument teams will
bring in their own equipment for integration
into the EOF and most of the teams are
planning to be at the EOF during the initial
phase of the mission. After the spacecraft is
commissioned, only 6 teams are expected to
remain located in the EOF while the others
teams will return to their home institutions.

The IWSs are supplied by the individual
instrument teams and represent a wide range of

hardware and software. The ECS must
provide connectivity for each IWS and
between IWSs. The ECS must be capable of
establishing connections with the SOHO
ground e4lements, the analysis facility and
with the outside world. The ECS must satisfy
stringent performance requirements. It must
be able to sustain the real-time telemetry and
commanding rates, it must have sufficient
storage capacity to archive the science data.
Finally, it must be able to support two month
per year of continuous science operations.

Software Reuse.
As much as possible, the ECS design
incorporates standard off-the-shelf hardware
and software. The main software systems that
have been reused in the ECS design are:
(1) the Transportable Payload Operations
Control Center (TPOCC), which has been
used to support what is referred to as "Global
Services" functions such as inter-tasks
communications, event generation and event
logging. TPOCC also provides an extensive
library of routines that have been reused in the
ECS implementation.
(2) the Interactive Experimenter Planning
System, was used as the basis for the
implementation of the ECS science planning
and scheduling functions. These functions
include batch and interactive scheduling,
conflict resolution and automatic scheduling
and re-scheduling of activities.

Rapid prototyping development approach.
Several software prototypes have been
developed during the ECS design phase to
verify major design choices. In particular the
following was evaluated or verified: hardware
performance for telemetry distribution,
applicability of reused software, and
demonstration of operator's interface
implementation to the users.

Adoption of implementation standards.
Representatives of the ECS development team
attended all the science operations working
group meetings, presented various draft of the
interface control document, and were able to
help and participate in the choice of a set of
standards such as : X-Windows (X l l) ,
Motif, Interactive Data Language (IDL),
TCPIIP Ethernet, Flexible Image Transport
System formats, Standard Formatted Data

Unit, Structured Query Language and Standard
U.S. commercial power and receptacles

SOH0 EOF IMPLEMENTATION

Facility
The EOF facility is located in Building 14 at
the Goddard Space Flight Center. It consists
of offices for the project scientist, the science
operations coordinator and the various
instruments teams. It also includes a large
conference room and various equipment such
as telephones, fax machine, color printer,
scanner, etc. The ECS equipment is located in
the science operations coordinator's office.
The EOF is also located next to the mission
operations center, where the flight operations
team will control the day-to-day operations of
the spacecraft

Software
The ECS software is comprised of five major
subsystems:

(1) The telemetry subsystem receives the
real-time telemetry from Pacor and distributes
it to the resident instrumenters according to
their requests. It also receives files of
quicklook telemetry, primarily containing tape
recorder dumps from DDF. The telemetry
subsystem archives all the SOHO telemetry
data for a period of seven days. The archived
telemetry is made available in the form of files
to the SOHO scientific community.

(2) The commanding subsystem supports the
real-time as well as the preplanned
commanding functions. It receives the
commanding data from all the instrumenters
and it provides a single interface to the
Command Management System and the
Payload Operations Control Center.

(3) The planning and scheduling subsystem
provides an automated tool to produce an
integrated and conflict-free observation plan.
It can merge the individual instrument plans,
accept input from the science operations
coordinator, incorporate predefined constraints
such as DSN schedule and reserved times for
spacecraft activities. This subsystem was
based on reused software, but it was re-
implemented using an object-oriented

methodology as described in more details
below.

(4) The user interface subsystem provides a
set of windows that will enable the science
operations coordinator to monitor and control
activities within the EOF.

(5) The "global services" subsystem
supports functions such as inter-task
communication and event logging. It was
implemented in large part by reusing the
existing TPOCC software.

Other ECS subsystems support E-mail
functions, time services, system administration
functions and data base functions. These
subsystems were implemented making
extensive use of off-the shelf products.

Physical Architecture
The physical architecture of the EOF had to
accommodate the diversity in IWS hardware
and operational requirements. It also needed to
provide efficient communications between
secure and public networks while satisfying
security requirements. The SOHO EOF
physical architecture is illustrated in Figure 1.
Its main characteristics are:

(1) Use of high power workstations able to
handle the real-time data rates, while allowing
the project scientist and the science operations
coordinator to monitor the EOF operations
through X-windows and use science analysis
software such as IDL.

(2) Use of a high performance router which
allows to isolate the ECS and its interface to
secure networks from the outside world. It
also separates the ECS "operational" data
traffic from the IWSs and the data traffic
associated with science analysis. Based on
predicted data volumes for each instrument
team, the IWSs were grouped and connected to
the ECS router via seven Ethernet "segments"
terminated by hubs and converters. This
provides a rather low cost standard connection
with all the IWSs. The filtering capabilities of
the router are also used to implement network-
level security.

(3) Full redundancy: All elements are
redundant and data storage is done on a

Redundant Array of Inexpensive Disks
(RAID).

APPLICABILITY OF THE EOF TO
OTHER MISSIONS

In many aspects, the SOHO EOF had to be
customized to the specific requirements of the
mission such as restrictive interfaces with other
ground system elements and adherence to the
pre-existing protocol used in the spacecraft test
and integration environment. However, the
EOF contains several "building blocks" that are
applicable to other missions. In particular, the
planning and scheduling subsystem was
designed and implemented with reuse in mind.
A more detailed description of this subsystem
follows.

Planning and Scheduling Subsystem
The SOHO EOF required a scheduling system
to find and resolve conflicts between the
individual schedules from each of the satellite's
eleven instruments. It had been proposed to
reuse an existing scheduling system to support
these functions. The EOF new system needed
to be flexible, fast and have the capability to
merge pre-existing individual schedules. Also,
it was to be supplied to several users: the flight
operations team within the Command
Management System and the instrument teams
that wish to use it for planning their own
observation sequences. This implied new
rules, broad kinds of strategies and activities
that the existing system could not support
without extensive modifications. This
presented the opportunity to re-design and re-
implement the scheduling system using object-
oriented methods, making it easier to
customize and port to different environments:
the Planning And Resource Reasoning
(PARR) system was developed using an
object-oriented design and was implemented in
C++.

PARR works as an intelligent tactical planning
tool to put specific activities on a timeline by
following the strategies and checking
constraints found in its knowledge base.
PARR's knowledge base consists of a list of
strategies used to schedule activities with
specific times and durations. One particularity
of PARR is that it uses a combination of

conflict avoidance and conflict resolution rules;
this limits the number of searches required to
build a timeline and accelerates the process of
building a conflict-free schedule.

The C++ implementation and the use of classes
allows to represent abstractions of scheduling
objects, such as activities, strategies, resources
and constraints Resources include both data
that PARR cannot change and data that
changes as a result of the schedule it is
creating. Activity classes represent types of
activity that can be scheduled. Constraints
represent PARR's conflict avoidance rules: a
constraint can state how an activity must be
scheduled in relationship to other activities or
resources. Strategies represent PARR's
conflict resolution rules: they are used to place
activities on the schedule, and to move
activities when the constraint checking process
discovers conflicts. PARR also uses several
paradigms, enabling it to control which activity
classes are to be scheduled, the order in which
they are scheduled and the merging of
schedules created outside of PARR.

Another feature of PARR is that its user
interface code has been separated from the
algorithmic code, making it easier to adapt to
other applications where the user interface is
usually the functionality that needs most to be
customized to respond a special requirements.

In conclusion, PARR has been designed to
facilitate its portability. The object-oriented
nature of PARR and its paradigm constructs
make it easy to customize for new planning
and scheduling applications: for each new
PARR application, the classes of generic
objects for resource classes, constraints, and
strategies can be supplemented with
application-specific types.

CONCLUSION

Overall the development of the EOF has been a
success. Costs have been kept under proposed
budget. All the initial requirements defined by
the scientists have been satisfied, and a few
additional capabilities have been implemented
without increased funding. The timeliness of
the EOF development was highly beneficial to
the other SOHO ground system elements: it

has provided them with early and precise
information concerning the interface with the
instrumenters. This aided in reducing risks to
the SOHO Project. The basic EOF design is
applicable to those missions that requires near-
real-time commanding, real-time telemetry
distribution, and close communications with
the flight operations team. Having the facilities
co-located allows cost savings in development,
facility operations and maintenance.
The physical architecture of the EOF allows for
great flexibility, allowing instrument teams to
modify or upgrade their software with minimal
impact. It has allowed to implement a
sufficient security level while allowing easy
communications with the outside world: this is
a basic requirement for the scientific success of
the mission. Finally its modular software
architecture makes the ECS a good candidate
for applicability to other missions

ACKNOWLEDGMENTS
The authors would like to thank Dorothy
Perkins, Code 5 10, Paul Ondrus, Code 5 10.1,
Patricia Lightfoot, Code 5 14, William Worrall,
Code 407, AlliedSignal Technical Services
Corporation, and the SOHO Project for their
support of this task. This work was supported
by NASA Contract NAS5-27772.

5
W

E
(D

?

S
r
e
C,

E
CC
(D

$%
E
(D PROVIDED BY

TEAMS

(1) Ports available for use by the instrument teams on the same segment.

(2) @ Media Converter (if needed)

Galileo Spacecraft Modeling for Orbital Operations

Bruce A. McLaughlin and Erik N. Nilsen
Jet Propulsion Laboratory

California Institute of Technology

ABSTRACT

The Galileo Jupiter orbital mission using the
Low Gain Antenna (LGA) requires a higher
degree of spacecraft state knowledge than was
originally anticipated. Key elements of the
revised design include onboard buffering of
science and engineering data and extensive
processing of data prior to downlink. In order
to prevent loss of data resulting from overflow
of the buffers and to allow efficient use of the
spacecraft resources, ground based models of
the spacecraft processes will be implemented.
These models will be integral tools in the
development of satellite encounter sequences
and the cruiselplayback sequences where
recorded data is retrieved.

Key Words: Aerospace, mission operations,
sequence planning, spacecraft modeling

1.0 THE GALILEO PHASE I1 DESIGN

The Galileo Phase I1 redesign for Jovian
orbital operations using the Low Gain
Antenna (LGA) is driven by the need to match
the high data acquisition rates with the low
spacecraft data transmission capability. Many
changes have been made to both the
spacecraft and the ground data systems to
optimize the effective data transmission rate.
Spacecraft changes include extensive redesign
of the Command and Data Subsystem (CDS)
flight software, modifications to the Attitude
and Articulation Control System (AACS)
software and selected instrument flight
software changes. Ground modifications

include adding noise reduction equipment at
selected DSN sites, intrasite and intersite
antenna arraying capability, new receivers and
signal acquisition equipment and extensive
ground software changes to support new data
transmission modes.

The changes to the flight system are numerous
and constitute a significant redesign of the
flight software. The primary modification to
accommodate the low data rates was the
switch from Time Division Multiplexed
(TDM) telemetry modes to a packetized
telemetry system based upon a highly
optimized CCSDS packet definition. This
allows a flexible, prioritized data transmission
system, eliminating the inherent data
redundancy of the TDM design.

Onboard data buffering is implemented to
allow high rate data acquisition. Central to
this design is the Data Memory System (DMS
- tape recorder) which will hold 900 Mbits of
data. This will be used to store high rate data
(remote sensing and fields and particles
science data) acquired during satellite
encounters and relayed to the ground during
the orbital cruise phase between encounters.
For onboard data manipulation and real time
data acquisition and storage, several buffers
are implemented in solid state memory. The
most important are the priority buffer, which
holds priority engineering and Optical
Navigation (OPNAV) data, and the multi-use
buffer, which is used for the storage and
manipulation of Real Time Science (RTS) and
the playback of data from the DMS.

Extensive data editing and compression is
implemented to reduce the number of bits
transmitted to the ground. The CDS can
select or deselect data sources based upon
mission phase and can edit many of the data
sources. Both lossy and lossless compression
schemes have been implemented onboard.
Lossy compression based upon the Integer
Cosine Transform (ICT) algorithm has been
implemented in the AACS software and is
used to compress images and Plasma
instrument (PWS) data sets. Compression
ratios of 2: 1 to 80: 1 can be selected. Lossless
compression using the Rice algorithms
(Reference 1) has been implemented for
selected science data sets, resulting in data
compression ratios of 1.2: 1 to 5: 1.

2.0 SPACECRAFT DATA FLOW

Figure 1 illustrates the typical data flow within
the flight system. As illustrated, the onboard
data buffers form key elements of the design.
Controlling the data input to the buffers and
the data output to the downlink are key tasks
for the flight sequences. If the aggregate data
input rate exceeds the data transmission rate,
the buffers will fill. Overfilling the buffers will
result in discarding new data. However, if
data acquisition is controlled such that the
buffers empty, fill data is inserted on the
downlink, lowering downlink efficiency.
Maintaining the delicate balance of the buffer
fill state will be a significant challenge for
Phase I1 operations.

MULTI-USE

Figure 1 - Spacecraft Data Flow

The data input process has three constituent
parts: the real time engineering (RTE) and
OPNAV data, which is placed in the priority
buffer, Real Time Science data (RTS) and the
Playback data which is processed through the
multi-use buffer. Real time data (RTE and
RTS) is taken continuously and is controlled
by the CDS. Data sources can be selected and
deselected in accordance with planned
observations and the data collection mode is
controlled by the CDS telemetry command.
Real time data acquisition and the downlink
telemetry rate are controlled using the same
command. This links the Real time data
collection with the downlink telemetry rate via
one of 90 selectable modes.

The OPNAV and Playback processes are
independent of the real time data acquisition
process, and are intermittent activities.
OPNAV activities occur prior to encounters,
and place certain restrictions on both the
multi-use buffer (where the data is processed)
and the priority buffer (where the data is
stored for transmission). The Playback
process for retrieving the recorded data is
completely gew for orbital operations. In
playback, the CDS performs autonomous
retrieval and processing of the data from the
DMS, controlled by a special parameter set
called the playback tables. These tables
contain information on the format of the
recorded data, lists the data to be retrieved
and the editing and compression to be
performed on the selected data. Playback data
is placed in the multi-use buffer for
processing. To control the filling of the multi-
use buffer a set of buffer pointers have been
implemented. When playback is active and the
buffer fill state falls below the low watermark
(i.e. the downlink rate exceeds the data
acquisition rate, allowing the buffer to empty)
the CDS will autonomously control the DMS
to replay data into the multi-use buffer. When
the buffer fill state exceeds the high

watermark, the CDS commands the DMS to
cease operation and processes the raw tape
data into completed data packets. This
process occurs simultaneously with real time
data acquisition and is exclusive of all other
record activities.

2.1 BUFFER MODELING

The buffer modeling task is necessary for the
system to work. The highly interactive nature
of the system and the statistical nature of the
data compression algorithms necessitates an
iterative approach to the design of spacecraft
command sequences for orbital operations.
With the number of independent variables that
must be factored, and the accuracy with which
they can be predicted, precise control of the
buffer states will be difficult. Without ground
based system models, the flight system could
not be operated efficiently.

To control the buffer fill rate, many variables
need to be controlled. On the output side, the
commanded downlink data rate is varied in
discrete steps over the course of a DSN track
to closely match the data rate capabiIity
(Figure 2). These data rate changes must be
predicted we11 in advance and scheduled in the
sequence. Any change to equipment
capabilities or link performance will affect the
data rate capability and the output from the
buffers.

On the buffer input, the various data sources
must be controlled and the rates at which each
source generates data must be predicted. This
includes modeling which instruments are
selected and deselected, the data editing
algorithms and the target compression ratios.
Each of these factors vary as a function of
time. In addition, the compressibility of some
of the sources is very data dependent, thus

Figure 2 - Downlink Telemetry Rate Change Modeling

,@, .

DATA RATE IN. ..
CAPABILITY

80 ..
DATA ..

DATA RATE
...

..
8

considerable variability in data volume is
expected.

--

DSN
STATION

The priority buffer has only two input data
sources; the real time engineering data and
OPNAV data. The only significant restrictions
on buffer state for the priority buffer is the
requirement that the buffer be empty before
initiating an OPNAV process. The current
priority scheme essentially guarantees that if
the downlink rate exceeds the engineering
acquisition rate, this state is achieved.

a CDSCC -
t------ GDSCC -

-MDSCC- INTERSITE C--- MDSCC
ARRAYING

The multi-use buffer requires significant
modeling to predict its state. The modeling
can essentially be broken down into two
separate modeling regimes: the encounter
phase, characterized by low downlink data
rates and high rate RTS data acquisition with
interspersed buffer dumps to tape, and the
playback phase with higher downlink rates and
with the Playback process active.

The bulk of the scientific data is gathered
during satellite encounters. This includes the
remote sensing and very high rate fields and
particles instrument data which is recorded

directly to tape at up to 806.4 Kbps, and the
high rate RTS data, which is processed into
the multi-use buffer. Typically, the desired
RTS acquisition rate well exceeds the
downlink rate, filling the buffer. .To allow
extended high rate data acquisition without
overflowing the multi-use buffer the Buffer
Dump to Tape function has been implemented.
This is a sequence controlled activity wherein
the CDS will transfer completed Virtual
Channel Data Units (VCDUs - Memory
Management Units) from the multi-use buffer
to the DMS, freeing the buffer for continued
data acquisition. Since buffer Dump to Tape
is a sequence controlled activity, it can be
scheduled to occur between other DMS
activities. Buffer management during
encounters consists of predicting RTS data
acquisition rates and scheduling buffer dumps
to tape when necessary to prevent buffer
ovefflow and loss of data.

During the orbital cruise phase, data is
retrieved from the DMS via the Playback
process. Typically, the downlink data rate is
higher than during encounters and the
continuous RTS data acquisition is set to a

lower rate. This allows the playback process
to transfer data from the DMS into the multi-
use buffer, process the data and prepare it for
downlink. Since the replay of data from the
DMS is controlled via the buffer high and low
watermarks, the process is self-regulating.
The modeling task for cruise consists of
multiple parts: insuring that the high and low
watermarks are properly set, insuring the RTS
data acquisition is low enough to prevent data
loss due to buffer overflow and modeling
playback data editing and compression to
recover all of the significant encounter data.

2.2 MODELING TOOLS

The Phase I1 ground system has two main
tools for predicting and controlling the data
flow on the spacecraft. They are: SEQGEN,
the primary sequence generation tool of the
Mission Sequence System (MSS) and
MIRAGE, a newly developed tool for
processing data rate predicts and producing
buffer models. Supporting the generation of
sequences and the modeling effort are a suite
of tools to automate the process. New tools
for Phase I1 are TLMGEN, which provides
automated generation of spacecraft telemetry
rate change commands based upon predicted
capability and the Playback Table Editor
which generates playback table entries based
upon the DMS tape map and models playback
data production based upon processing
parameters selected. These tools, along with a
host of existing science and mission design
tools, provide data input into the modeling
process and are used for optimizing data flow.

2.2.1 MIRAGE

Sequence Automation research group at JPL.
Plan-It-I1 was developed on an UNIX
platform using LISP, and specifically
developed to be extensible for multiple
missions. Plan-It-I1 provided the capability to
simulate hnctionally the operations of a
spacecraft, allow sequences to be staged
through the model, and rapidly and
interactively present the impacts of the
sequence and any proposed changes on the
spacecraft resources. The Galileo project
adapted the core of Plan-It-I1 to model the
Phase I1 design. Modifications include
incorporating Galileo specific time standards
and the Phase I1 hnctional design into the
model, defining new input data types,
providing new constraint checking algorithms
and modifications to the user interface to more
closely resemble familiar planning tools
currently in use.

Mirage provides an interactive environment,
displaying on-screen timelines of sequence
activities and accompanying graphs showing
the states of the spacecraft resources. It also
provides an interface to the details of the
science planning requests and allows the user
to add, delete and mod@ these activities.
This interaction allows the user to explore
different approaches to a situation, varying
parameters and displaying the results. This
results in the rapid development of a viable
sequence of data collection activities which
the spacecraft can accommodate.

MIRAGE will be used early in the science
sequence design process to analyze the effect
of the science observations on spacecraft
resources. Used primarily in the Orbit Activity
Plan (OAP) level, it will determine if a planned
set of Real-Time and recorded observations

The MIRAGE (Mission Integration, Real time generate buffer overflow conditions, monitor

Analysis and Graphical Editor) modeling tool the usage of the DMS and track the allocation

is based won an earlier multi-mission of resources to the various science

sequence planning tool developed by the observations.

GE will also play an important role
during sequence execution. Because of the
uncertainties involved in the
telecommunications link modeling and
onboard data compression, the actual data
flow may not proceed as predicted. Sequence
tweaking, involving modification of one or
more data acquisition or transmission
parameters, will need to be modeled to
determine the overall effect on the data flow.
Integral to this process will be the MIRAGE
analysis of the spacecraft resources.

2.2.2 SEQGEN

SEQGEN is an existing sequence development
tool which takes the OAP level inputs and
converts the activities into command
sequences and playback parameter tables.
SEQGEN is responsible for enforcing many of
the sequencing rules and constraints checking
for certain onboard data resources and
downlink data transmission. For the Phase I1
mission, SEQGEN was modified to generate
the playback table entries. These parameters,
which are independent from the spacecraft
sequence, instruct the CDS on how the
recorded data will be processed. Integral to
the generation of the Playback Table entries,
the Playback Table Editor allows modification
of the playback parameters, adjusting data
selection, editing and compression for the
recorded instrument data.

The output from SEQGEN can be routed to
MIRAGE for modeling. This allows an
iterative approach to the sequence generation
process. In the early sequence design stages,
an activity plan is produced and checked by
MIRAGE for proper data flow. This product
is refined into a working spacecraft sequence,
again using MIRAGE modeling and the
Playback Table Editor to adjust playback data
parameters. Once the sequence is executing,
sequence tweaks to optimize the data flow will

be verified using MIRAGE before being sent
to the spacecraft.

This paper has presented the ground based
modeling of the spacecraft processes for the
orbital operations mission using the Galileo
Low Gain Antenna. The redesign of the flight
software requires a higher degree of spacecraft
state knowledge than was originally
anticipated. In order to optimize the data
flow onboard the spacecraft and to the
ground, interactive modeling of the data
acquisition, buffering and transmission is
required during the sequence design process
and during sequence execution. These models
have been developed concurrently with the
flight software design, taking advantage of
existing ground software where applicable and
developing or adapting software for specific
modeling and sequence generation functions.

4.0 ACKNOWLEDGMENTS

The work described in this paper was carried
out by the Jet Propulsion Laboratory,
California Institute of Technology, ugder
contract with the National Aeronautics and
Space Administration.

.
The authors wish to acknowledge the
members of the Galileo Systems Development
Ofice and the MIRAGE and SEQGEN
development teams for their input and review.

5.0 REFERENCES

1. Rice, R. F., (November 1991) "Some
Practical Universal Noiseless Coding
Techniques, Part III, Module PSI 14, K+ ",
JPL Publication 9 1-3

35vaS3-
THE ADVANCED ORBITING SYSTEMS TESTBED PROGRAM: p / o

RESULTS TO DATE

John F. Otranto and Penny A. Newsome

CTA INCORPORATED
Rockville, Maryland USA

ABSTRACT 2. AOST PROGRAM OVERVIEW

The Consultative Committee for Space Data
Systems (CCSDS) Recommendations for Packet
Telemetry (PT) and Advanced Orbiting Systems
(AOS) propose standard solutions to data handling
problems common to many types of space
missions. The Recommendations address only
spacelground and spacelspace data handling
systems. Goddard Space Flight Center's (GSFC's)
AOS Testbed (AOST) Program was initiated to
better understand the Recommendations and their
impact on real-world systems, and to examine
the extended domain of groundlground data
handling systems. The results and products of the
Program will reduce the uncertainties associated
with the development of operational space and
ground systems that implement the
Recommendations.

1: INTRODUCTION

An overview of the C-2 AOST is presented in
Figure 2.1 - 1.

2.1 FLIGHT SYSTEM ELEMENTS

The C-2 AOST flight system elements include an
Instrument Simulator (IS), a Video Digitizer1
PacketizerIMultiplexer (VDPM) and a Wideband
Transfer Frame Formatter (WTFF). These
elements have been developed by the GSFC
Instrument Electronic Systems Branch (Code 738).

The Instrument Simulator creates simulated
spacecraft instrument data. The IS is capable of
simulating data for one to six instruments and
uses the CCSDS Version-1 Packet format
(Reference 1). The data generated by the IS are
input to the WTFF via Fiber Optic Transmitter1
Receiver Interfaces (FOXI).

GSFC's AOST Program continues to provide a
Flight Elemenb GroundElernents

bridge between the development and widespread
use of the CCSDS Recommendations. AOST
Program activities include developing and using
a Testbed, developing flight-qualifiable
components, conducting a test program,
performing studies, and actively disseminating the
knowledge gained. This paper presents an
overview of the Capability Two (C-2) AOST and
the results and lessons learned through AOST
Program activities to date (July 1994), including
architectural issues, the proposed standardized test
suite, and flight-qualifiable components. This
paper also summarizes the correlation between
the AOST and the Code 500 Renaissance effort,

Suppon Equipment and AOST future activities, including SAFE

implementation of the Space Communications """~*"'con~"'""'"usmersagaf'ow

Protocol Standards (SCPS) and the Mission
Operations Control Architecture (MOCA). Figure 2.1-1. C-2 AOST Overview

The VDPM generates CCSDS Version-1 Packets
and optionally multiplexes them into Multiplexing
Protocol Data Units (M-PDUs) (Reference 2). The
Packet data field contains either video data that
have been converted to digital form by the VDPM
or octet-aligned digital data input to the VDPM
via a FOX1 interface. The VDPM represents a
standard interface for CCSDS Path Packet Service.
The M-PDUs or Version-1 Packets are input as a
single data stream to the WTFF using one of seven
available telemetry user data input interfaces.

The C-2 WTFF is designed to serve as a gateway
providing transfer frame generation using PT and
AOS services for up to seven user virtual channels
(VCs). Data arriving from any of the seven user
data input interfaces are buffered and inserted into
Version 1 Transfer Frames (VlTFs) or Virtual
Channel Data Units (VCDUs). WTFF processing
of the data consists of: Reed-Solomon (R-S)
header, R-S frame, and bit transition density
encoding; multiplexing of the frames into a single
physical data stream; and appending of a frame
synchronization marker to each frame. The WTFF
also provides the interface to the ground system
elements. The WTFF can selectably output data
on one or two physical output channels.

2.2 GROUND SYSTEM ELEMENTS

AOST ground system elements include two Front
Ends (FEs), three types of Service Processors
(SPs), a Communications Address Processor
(CAP) and service management elements. The
CAP provides a connection to a ground
communications network (GCN). A network and
service management system controls, configures,
and monitors the AOST ground system elements.

The Microelectronics Systems Branch (Code 521)
is developing the Advanced Front End System
(AFES), which provides a multiprocessing
environment based on a VMEbus open
architecture. The AFES uses cards based on
custom Very Large Scale Integration (VLSI)
controllers to achieve a low cost, high speed, and
highly reliable implementation. Each custom card
has a 32-bit microprocessor. AFES components

are being developed for generic applications and
are being used in other systems such as the Small
Explorer (SMEX). Commercial off-the-shelf
(COTS) cards such as Ethernet and Fiber
Distributed Data Interface (FDDI) cards and disk
modules are used wherever possible.

The AFES provides return link processing
services, configuration management services, and
testing and verification services. The AFES
comprises a front end (AFESIFE) and one of the
SPs, the AFESISP, housed in a single VME
enclosure. Frame synchronization, bit transition
density decoding, R-S header and frame error
detection and correction, and VC sorting are
provided by the AFESIFE. The AFESIFE outputs
data formatted as Space Operations Service Data
Units (SOSDUs) (Reference 3), a data unit defined
by the AOST Program. The SOSDU provides a
mechanism for ground transportation and
identification of data types consistent with the
CCSDS Recommendations. The AFESIFE
transfers SOSDUs to the SPs or to the CAP for
routing to their user destination(s). The interface
to the AFESISP is internal to the AFES; the data
across this interface are formatted as .VC Frame
SOSDUs. The interface to the ATSPs and to the
CAP is accomplished using a FDDI LAN.

The AFESISP is an integral part of the AFES.
The AFESISP performs CCSDS PT and AOS
processing on the SOSDUs received from the
AFESIFE, creating Virtual Channel Access
(VCA), Bitstream, or Path Packet SOSDUs. The
resulting SOSDUs are transferred to the AFES
FDDI network interface function for transmission
to a predetermined destination address.

Code 52 1 has also developed a Stand-Alone Front
End (SAFE) that is identical to the AFESfFE;
these redundant FE systems enable the AOST to
process two simultaneous data streams from the
WTFF. The SAFE also uses FDDI interfaces to
transfer data to the ATSPs and to the CAP.

The Data Systems Engineering Branch (Code 564)
has developed two ATSP implementations using
solely COTS hardware and operating systems.
One implementation is using a "Single Board

Computer" (ATSPISBC) and a real-time operating
system (VxWorks). The second implementation
is using a SPARC workstation (ATSPISPARC)
and a UNIX-based operating system. Both the
ATSPISBC and the ATSPISPARC use Reduced
Instruction Set Computer (RISC) technology. The
input, output, and management interfaces are
identical for both ATSP implementations. The
ATSPs receive SOSDUs from the AFES/FE or
the SAFE via the FDDI LAN and process these
SOSDUs, providing VCA, Bitstream, or Path
Packet service processing consistent with
Reference 2. The goals of the ATSP developments
are to take advantage of and evaluate the potential
of the latest technological advancements that
industry has produced.

The CAP provides a gateway function for the
AFES, SAFE, and ATSPs, translating the global
CCSDS identifiers contained in the SOSDU
Header to the appropriate user destination
address(es), and providing protocol translation
between the AOS Testbed and the GCN. The CAP
was developed by the NASA Communications
Division's Advanced Development Branch (Code
541.3).

The GCN provides communications interfaces to
systems external to the Testbed.

The Service Management (SM) system developed
for the AOST allows users of a CCSDS service-
providing network to interact with that network
in terms of services rather than equipment
configurations. The service management system
manages equipment configuration information,
generates periodic reports about the quality of
services, and monitors ground system elements
for fault isolation. The AOST SM function
provides fault detection, isolation, and recovery
capabilities for CCSDS data services. The MITRE
Corporation is developing the Network and
Service Management elements.

The current management hierarchy for SM
comprises a Complex Manager that manages the
AFES, the SAFE, the ATSPISBC, the ATSPI
SPARC, and the CAP. Each managed system
comprises two conceptual components: the data

processor, which performs the actual processing
and presents the agent with a local representation
of managed parameters; and the agent, which
translates the management information from the
local representation to a global representation
understood by the Complex Manager. The agent
presents the Complex Manager with a view of
the processor as a collection of abstract functions
and system operation parameters. The CAP has
an agent that is integral to the CAP development;
the AFES, ATSPISBC, and ATSPISPARC have
SM proxy agents.

Proxy agents are separate modules that reside on
the Complex Manager workstation, and are not
integral to the development of the associated
ground element. These agents translate the
Management Information Base (MIB) parameters
received from the Complex Manager into
configuration setup tables that are then transmitted
to the appropriate AOST elements.

The AOST has developed and tested a
demonstration version of a standard MIB for
CCSDS services and protocols (Reference 4). The
MIB allows the Complex Manager and managed
systems to exchange management information
using a common, standard language. The Simple
Network Management Protocol (SNMP) was
chosen since it is a well-supported standard
protocol for managing network elements and
allows the use of public-domain and COTS
software for the implementation of the agents and
Complex Manager.

3. ACTIVITIES TO DATE

The C-2 AOST development effort is complete,
and the testing program for C-2 is nearly complete.

The C-2 AOST provided five CCSDS AOS
services: VCA service, VC Frame service, Path
Packet service, Bitstream service, and Insert
service. The C-2 AOST also support a non-
CCSDS service called Space Link Channel (SLC)
service. The C-2 AOST supports both
conventional CCSDS data units, VlTFs, and AOS
CCSDS data units, VCDUs.

A completely new test program was implemented demand or on a periodic basis. These status data
for the C-2 AOST (Reference 5). The test program can be displayed in real-time either numerically
implements the Master Test Suite (Reference 6) or in graphical format; periodic data can be
to provide a system-independent series of tests graphed over time to monitor data processing
that can be implemented to verify any systems' history.
compliance with the CCSDS Recommendations.

Functional testing associated with the C-2 AOST
is completed, and research and performance
testing is in progress. The C-2 program has
produced a number of results, some related to
implementation issues associated with the
development of AOST elements, and others
related to the CCSDS Recommendations
themselves. A selection of these results are
presented in Section 4.

Flight-qualifiable components have been produced
from the equipment in the AOST and additional
flight-qualifiable components are currently being
manufactured.

A library of AOST Program and related
documents continues to serve as a central
repository of knowledge gained and products for
the AOST Program. A second AOST Workshop
has been scheduled for November 1994 to
disseminate AOST results.

4. RESULTS

4.1 ARCHITECTURE

4.1.1 Service & Network Management

AOST SM has greatly facilitated the operation of
the AOST ground elements, and has streamlined
the testing and analysis process within the Testbed.
SM controls, configures, and monitors all Testbed
ground elements from a single workstation,
providing a focus for AOST ground system
activity. The SM graphical user interface allows
the operator to highlight AOST elements, select
predefined configurations, create new
configurations, and download these configurations
to appropriate AOST element(s). SM is also able
monitor the results of data processing by obtaining
status information from each element either on

The AOST SM mitigates sources of error in the
comprehensive configuration of the AOST by
centralizing and streamlining configuration and
control. The service-level specifications
manipulated at the Complex Manager workstation
concisely define the comprehensive Testbed
configuration, and mitigate configuration errors
often experienced in the past when local system-
level configurations were used. The simultaneous
configuration and coordination of several Testbed
elements via SM has reduced the number of
configuration mismatches, and has allowed for
spontaneous development of new scenarios and
what-if analyses.

By acquiring and displaying status information
from multiple ground elements simultaneously,
SM expedites the analysis of AOST data
processing activities. The ability to display and
graph data from multiple sources in near-real time
has been an invaluable tool to developing a
comprehensive view of AOST data processing
activities. SM also maintains log files that permit
more comprehensive post-test analysis.

One of the issues related to the development of
SM was the coordination of the proxy agent
development with that of the data processors. It
was necessary to maintain a constant dialog
between the proxy agent developer and the data
processor developer during the development
process to ensure that the system-level
configurations performed by the proxy agent
matched the system-level specification within the
data processor. On several occasions, small
software changes were made to a data processor
that required corresponding changes to the
configurations being managed by the proxy agent.
SM functionality is predicated on a successful
communication process to coordinate agent-
system interaction.

In the next version of the AOST, the Testbed
may develop a Network Management Integration
and Coordination workstation that manages a set
of Complex Managers. Also, SM may be extended
to flight elements, either via a direct link or across
a ground-space forward link.

4.1.2 Data Latency

The AOST has been addressing latency issues
associated with the AOST elements and the
interfaces between the AOST elements. Low data
latency is desirable, constant data latency is
required, and data loss is unacceptable. The AOST
test program is currently attempting to vary the
transmission approach across the LANs in the
AOST to best meet these three criteria. The AOST
is being subjected to a series of performance tests
designed to measure and improve data throughput.
A FDDI LAN analyzer is being employed to assist
in the analysis of the FDDI LAN components
and AOST elements.

Data losses have been experienced on the FDDI
LANs used to transmit data between AOST
ground elements. The AOST test program is
currently investigating these data losses,
employing strategies to analyze and eliminate
these data losses.

The FDDI LAN packet size in use for the AOST
is predetermined to be 4136 octets in length, with
4096 octets dedicated to data. A ground rule
established for AOST regarding the FDDI LANs
and designed to facilitate low data latency was
that a single FDDI packet would contain no more
than one SOSDU. With the exception of Path
Packet SOSDUs (which vary in length in
proportion to the packet length) the length of all
the SOSDU data types handled by the AOST are
significantly shorter than the FDDI LAN packet
length. Non-Path Packet SOSDUs use no more
than 32% of the FDDI LAN packet capacity.

The AOST will "pack" SOSDUs into FDDI
packets in an attempt to increase the effective

FDDI LAN utilization. The challenge is to ensure
low data latency and data delivery without
substantially compromising constant data latency.
Once hardware and software modifications are
made to effect this change in FDDI LAN
utilization, tests will be conducted to measure the
resulting data latencies and the data throughput
capability.

Future ground systems that transport data
consistent with the CCSDS Recommendations
should consider data transmission methodologies
that better facilitate the rapid transfer of variable-
length data units. For example, the use of variable-
length FDDI LAN packets that more closely
accommodate the varying SOSDU sizes would
improve AOST FDDI LAN utilization while
maintaining constant and low data latencies. The
equipment currently in use in the AOST does not
facilitate using variable FDDI LAN packets.

4.1.3 Data Distribution

Equipment designed to support data processing
consistent with the CCSDS Recommendations
should manage and control each VC data stream
separately. As built, AOST ground elements do
not always regard each VC as a separate channel,
limiting data management and distribution
capabilities. Furthermore, the inability to manage
each VC separately impacts other ground elements
in the Testbed.

The CAP was implemented within the AOST to
route data, based on VC, to destinations outside
the AOST. The CAP is the only AOST ground
element that can route data to multiple output
destinations by VC. During the C-2 design phase,
a decision was made to route the output of the
AOST FEs and SPs to a single destination by
Internet Protocol address. The implementation of
testing scenarios has been limited by the inability
to route data between the AOST ground system
elements by VC. For example, scenarios were
developed to use separate service processors to
process different VCs emanating from a single
front end system. It was not possible to selectively
route data from a single front end to more than

one service processor. To implement this scenario,
the front end system was set to "broadcast" data,
that is, send all the data to all the active service
processors. While introducing obvious security
concerns, data broadcasting forces each service
processors to examine each incoming data unit to
determine if it should be processed. A service
processor not designed to perform this query as
the initial data processing step will suffer certain
performance degradation as it partially processes
data before rejecting it.

A fundamental change in the approach toward
data transmission is being instituted in the AOST
to enable each AOST front end system to transmit
each VC data stream to a separate destination.
The extra processing required to route each VC
to a specific destination will have some effect on
the performance of the front end processors, but
should result in better service processing
performance. Implementation and testing are
necessary to determine the aggregate AOST
performance improvement.

4.1.4 Interactive Determination of
Grade of Service

In an attempt to achieve a more "data driven"
system (Reference 7), the C-2 AOST was prepared
to implement the dynamic model given in the
"AOS Green Book" (Reference 8), section A.4.1,
Option-B, for determining Grade of Service.
Figure 4.1- 1 presents a flowchart representing the
referenced algorithm. The AOST has identified
three issues associated with the interactive
determination of Grade of Service. The first issue
is related to R-S header decoding (Grade 3), the
second related to R-S frame decoding (Grade 2)
when the data zone is populated with an octet-
repetitive data pattern, and the third is related to
performing R-S decoding on a VC basis.

4.1.4.1 R-S Header Decoding (Grade 3)

The algorithm illustrated in Figure 4.1-1 initially
attempts to perform R-S frame decoding; the
presence of the R-S header encoding and CRC
fields are not considered in this portion of the

algorithm. If the frame fails R-S frame decoding,
R-S header decoding is then attempted. There is
a 3 1 % chance that a frame that is not R-S header
encoded will pass R-S header decoding with two
"correctable" errors (see R-S (1 0,6) Header
Decoding Analysis, next page). When the frame
is falsely identified as being R-S header encoded,
the "errors" are corrected changing values in the
header. The changed header values can result in
misidentification and misrouting of the frame. As
the algorithm checks for R-S header encoding
only after R-S frame encoding has failed, the
actual probability of a frame being altered due to
false determination of the presence of R-S header
encoding is 0.3l(probability of an uncorrectable
R-S frame encoded VCDU).

The AOS Green Book, section A.4.1, Option-A
specifies a dynamic model for determining Grade
of Service in which header decoding is performed
first. Using this same analysis, there is a 31%
chance that a frame that is not R-S header encoded
will pass R-S header decoding with two
"correctable" errors when Option-A is
implemented.

VCDU/CVCDU

Interleave

Fail
De,"dzing

Validated
Grade 2 Header
CVCDU Error Control

Error Control
Decoding

Validated Error-Flagged
Grade 3 Grade 3
CVCDU VCDU

Figure 4.1-1.Option-B Error Control Decoding

4.1.4.2 (255.223) R-S Frame Decoding of
Octet-Re~etitive Data Zone Patterns

The data used in the AOST is usually simulated
data that contains octet-repetitive data patterns in
the data zone portions of the packets and frames,
e.g., the data zone of a frame would be populated
with "A5A5A5A5A5A5.. ." (hexadecimal). Tests
reveal that a frame containing a high percentage
of octet-repetitive data patterns will be decoded
and "corrected" when the dynamic model for R-S
decoding is applied using the (255,223) R-S code,
whether or not the VCDU is R-S frame encoded.
An invalid correction can alter header values
resulting in misidentification and rnisrouting of
the frame.

R-S (10,6) Header Decoding Analysis

CCSDS R-S encoded headers consist of 3
octets of header data and 2 octets of parity.
The code can correct up to 2 errors in the 5
octet pattern. Since parity is derived from the
3 octets of header data, there are 2(8)(3) = 2"
possible codewords, and 2(8)(5) = 240 possible 5
octet patterns. Since parity of the R-S (10,6)
code is 2 octets in length, a 5 octet pattern has
a 1/2(8)(2) = 2-l6 probability of being a codeword
with no error.

The R-S (10,6) code operates on 4 bit
"nibbles"; for a 5 octet pattern, there are 10
nibbles. For each nibble, there is 1 correct value
and 15 possible incorrect values. The code will
correct for any of the 15 possible error patterns
in any one of the 10 nibbles. Therefore, there
are 15 x 10 = 150 possible single error cases
that will be corrected for each codeword.

A 5 octet pattern has a 150 x 2-l6 = 0.0023
probability of being a codeword with one
correctable error.

The code will also correct for any of the 15
possible error patterns in any one of the other
9 nibbles for each of the 150 single error cases.
Therefore, there are 150 x 9 x 15 = 20,250
double error cases that will be decoded
correctly for each codeword. A 5-octet data
pattern has a 20,250 x 2-l6 = 0.309 probability
of being a codeword with two correctable errors.

The source of this invalid correction is the fact
that 255 octets containing octet-repetitive data
represent a valid R-S codeword. Thus, if any set
of 255 octets has 239 or more octets that are
repetitive, a R-S frame decoder will "correct" the
set to have 255 repetitive octets. A R-S header
encoded VCDU with an octet-repetitive data zone
will contain only 10 octets not equal to the data
zone octets. The following 10 octets will be
"corrected" to match the repetitive octet pattern:

* frame primary header - 6 octets
header parity - 2 octets

* frame CRC - 2 octets

For a VCDU of Interleave 5 containing CCSDS
Version 1 Packets, the R-S frame decoder will
"correct" the frame first header pointer (2 octets)
and the packet primary header (6 octets per packet)
for up to 6 packets in the frame data zone,
assuming all the packet source data zones share
the same octet-repetitive data pattern.

4.1.4.3 R-S Decoding by VC

The AOS Blue Book (Reference 2), paragraph
5.4.9.2.1.5.a states, "The presence or absence of
[R-S frame encoding] is an attribute of the Virtual
Channel and is pre-specified by management."
The system performing R-S decoding and
correction must look at the VC to determining
whether to perform R-S header or R-S frame
decoding. Prior to decoding, the value in the VC
field is potentially erroneous and is therefore not
a reliable value upon which to base Grade of
Service determination.

4.1.4.4 R-S Decoding Conclusions

The AOST has addressed these three issues by
prespecifying a Grade of Service for the entire
physical channel, and limiting the physical channel
to a single Grade of Service. This approach
resolves the issues associated with R-S
specification per VC, and the potentially erroneous
decoding of both R-S headers and R-S frames
associated with "on-the-fly" Grade of Service
determination. While prespecifying a Grade of
Service for a physical channel is a compromise
of the Recommendations, it is currently the only
reliable alternative presently identified.

4.2 TEST SUITE analogous to the testing performed by a

The Master Test Suite (MTS) for New AOS
Implementations, (Reference 6) has been used to
implement the tests for the C-2 AOST Test Plan
(Reference 5). The functional test cases used for
C-2 testing have a one-to-one correspondence to
the tests identified in the MTS, and the structure
of each test case is as close to the specifications
in the MTS as possible.

There was no single AOST data generator that
could implement the entire MTS. A combination
of the C-2 AOST flight elements and a data
simulation tool developed by Code 52 1, the Test
Pattern Generator (TPGEN), were used to
implement portions of the MTS for the C-2 AOST.
A portion of the MTS could not be implemented
by any test tool available in the AOST; the error
patterns identified in some of the MTS test cases

programmer during integration and development.
The C-2 AOST Test Program is analogous to an
independent system verification and validation.
The C-2 Test Program provided at least one data
set to test each function identified in the MTS.

Providing one data set to test each function
identified in the MTS created significant
redundancy in the complement of tests. For
instance, the first test performed, frame
synchronization, also succeeded in testing
processing for R-S header decoding, CRC
decoding, and VC Frame creation. Some
streamlining of the MTS is appropriate when
testing is performed at the system level. The next
iteration of the MTS may provide a streamlined
set of test cases for testing performed at the system
level.

could not be created. The next iteration of the 4.3 CO~PONENTS
AOST may provide a test tool based on TPGEN
that provides the full complement of tests in the
MTS. Two CCSDS-based and one non-CCSDS flight-

qualified components are being developed:

The portion of the MTS that was implemented
provided a rigorous and thorough test of the
functionality of AOST elements. The AOST data
generators did not always provide a sufficient
amount of data, however. Some problems with
functional production occurred when the systems
were tested with large data volumes, for longer
periods of time, from a few minutes to 24 hours,
and at higher data rates. Systems that successfully
passed functional tests with brief test data sets,
composed of only a few hundred frames each
and processed within 1 to 5 seconds, developed
anomalies after processing more continuous data
sets and/or data transmitted at a higher data rate.
An analysis of the test cases identified in the MTS
will be performed to ensure that each test case
requires a sufficient amount of data.

The MTS defines tests to be implemented at the
system module level. For example, the test case
for frame synchronization tests only the part of
the system that performs frame synchronization.
The MTS approach of testing system modules is

* Reed-Solomon Encoder

* Reed-Solomon Decoder

* Lossless Data Compressor

The flight-qualified R-S Encoder features a
selectable interleave depth (1 to 8) and supports a
sustained data rate of 200 Mbps. This Encoder is
currently available fol: flight project use, and has
been delivered to the Tropical Rainfall Measuring
Mission and the X-ray Timing Experiment.

The flight qualifiable R-S Decoder is designed
and currently scheduled for production at the
NASA Microelectronics Research Center at the
University of New Mexico. This chip will perform
1 to 16 symbol error corrections at a sustained
data rate of 150 Mbps. The flight qualifiable R-S
Decoder will incorporate technology allowing the
production of flight-qualifiable components by a
commercial foundry.

The flight-qualified lossless data compressor has other components developed either within or
been developed and manufactured. This external to the AOST. The AOST has the potential
compressor chip is available for flight project use,
and has been delivered for use on Landsat 7.

to easily incorporate andlor test new components.

5. AOST FUTURE PLANS
4.4 KNOWLEDGE TRANSFER

The knowledge gained through the AOST
Program is disseminated to a wide audience that
includes flight projects, users, and ground system
developers, among others. Workshops provide a
forum for the exchange of knowledge between
AOST participants and other interested
organizations. A library and knowledge database
have also been created. An AOST workshop is
scheduled for November 1994.

4.5 AOST AND RENAISSANCE

The GSFC Code 500 Renaissance effort is an
approach to data systems development designed
to improve quality and lower development life
cycle cost through the implementation of
standards, modularity, and reusable components
(building blocks) supporting varying classes of
missions and complexity.

Should the Renaissance effort chose to implement
a Testbed for the prototyping of building blocks,
the AOST architectural approach is a effective
model. The concept of well defined functional
building blocks on a distributed communications
network that supports commercial protocols is
central to both the AOST and Renaissance. The
redundant front end processors are developed from
a set of Code 52 1 modular components. The front
end processors used in the AOST are easily
reproducible from both COTS and custom
components. Two of the service processors
developed in the AOST are also software based;
one is developed using the C programming
language on a UNIX platform, making it easily
transportable to a large number of commercial
workstations. The FDDI LAN connecting the
AOST ground system elements can incorporate

The next iteration of the AOST, Capability Three
(C-3) will incorporate a forward link capability
to demonstrate, validate, and verify future
implementations of the CCSDS Telecommand
(TC) and AOS (forward link) Recommendations.
Specifically, the forward link capability will be
designed to support the SCPS and MOCA.
Implementation of the TC and AOS
Recommendations, SCPS, and MOCA will
necessarily be incremental, since SCPS depends
on the underlying Layer 1 and 2 services provided
by the CCSDS Recommendations, and MOCA
depends on the upper layer services provided by
SCPS. The incorporation of the forward link will
require the addition of new ground elements to
the AOST, as well as enhancing existing ground
and flight elements.

6. SUMMARY

The AOST continues to provide a key source of
findings and information related to the
implementation of the CCSDS Recommendations.
The AOST work will continue through 1995 with
a Testbed that supports the AOS and TC forward
link command and uplink data generation and
processing, SCPS, and MOCA. The AOST
remains available to support testing of flight
elements and ground system data processors.

7. ACKNOWLEDGMENTS

The authors would like to thank Mr. Michael
Bracken, AOST Program Coordinator, and the
members of the AOST Program whose dedication
to the success of the AOST Program is reflected
in this paper. Thanks also to Mr. Charles Fuechsel,
NASA Headquarters, for providing the funding
for the AOST Program.

8. REFERENCES

1. CCSDS. 1987. Recommendations for Space
Data System Standards. Packet Telemetry.
CCSDS 102.0-B-2, CCSDS Secretariat, NASA,
Washington, D.C.

2. CCSDS. 1989. Recommendations for Space
Data Systems Standards. Advanced Orbiting
Systems, Networks and Data Links: Architectural
Specification. CCSDS 701 .O-B-1, CCSDS
Secretariat, NASA, Washington, D.C.

3. March 22, 1993. Space Operations Service
Data Unit (SOSDU) Format Definition Document,
Version 3, C T A INCORPORATED, Rockville,

5. September 29, 1993. Advanced Orbiting
Systems Testbed (AOST) Test Plan, Final, GSFC,
Greenbelt, MIZ.

6. February 28, 1994. Master Test Suite for New
AOS Implementations, CTA INCORPORATED,
Rockville, MD.

7 . November 16-20, 1992, Proceedings of the
Second International Symposium on Ground Data
Systems for Space Mission Operations. "The
Advanced Orbiting Systems Testbed Program:
Results to Date", C T A INCORPORATED,
Rockville, MD.

MD. 8. CCSDS. 1989. Report Concerning Space Data
System Standards. Advanced Orbiting Systems,

4. December 1993. Description of SNMP MIBfor Networks and Data Links: Summary of Concept,
CCSDS Space Link Extension Services: AOST Rationale and Performance. CCSDS 700.0-G-2,
Version, MITRE Corporation, Greenbelt, MD. CCSDS Secretariat, NASA, Washington, D.C.

NCCDS Performance Model

Eric Richmond
NASA, Goddard Space Flight Center,

Network Control Systems
Branch (Code 532)

Antonio Vallone
Computer Sciences Corporation

10 1 10 Aerospace Road .
Lanham-Seabrook, MD 20706

ABSTRACT

The NASNGSFC Network Control Center (NCC) provides communication services between
ground facilities and spacecraft missions in near-earth orbit that use the Space Network. The NCC
Data System (NCCDS) provides computational support and is expected to be highly utilized by the
service requests needed in the future years. A performance model of the NCCDS has been
developed to assess the future workload and possible enhancements. The model computes
message volumes from mission request profiles and SN resource levels and generates the loads for
NCCDS configurations as a function of operational scenarios and processing activities. The model
has been calibrated using the results of benchmarks performed on the operational NCCDS facility
and used to assess some future SN service request scenarios.

INTRODUCTION

The NASNGSFC Network Control Center (NCC) is the operational manager of the Space .

Network (SN) which provides communication services between ground facilities and spacecraft
missions in near-earth orbit. The SN consists of a constellation of Tracking and Data Relay
Satellites (TDRSs), TDRSs ground terminals, communication and computing facilities, and
operation personnel.

The NCC provides the following functions:

scheduling user support activities
disseminating schedules to the users and to the SN support facilities
controlling the services provided by the other SN elements
maintaining SN status and configuration information

* disseminating service performance data
coordinating fault isolation

* generating performance reports.

The NCC functions are supported by the NCC Data System (NCCDS) which is a distributed
computer system composed of a Communication and Control Segment (CCS), a Service Planning
Segment (SPS), and an Intelligent Terminal Segment (ITS) connected by local area networks. The
NCCDS performs the scheduling of the SN resources and processes the messages which the SN
users, the NCC, and other SN support facilities use for requesting services, for controlling the SN
configuration, and monitoring the SN service performance.

The Network Control Systems Branch (C0d.e 532) is concerned with the effect on the performance
characteristics of the NCCDS [I] due to changes in the SN resources (i.e., number of TDRSs and
ground terminals) and in the number and complexity of the space missions (e.g. EOS and space
station) requesting SN services. The volume of message traffic and the computational effort will

increase. The NCCDS performance can be kept to an optimal level by means of changes to the
NCCDS design by increasing the hardware and software capabilities and, possibly, by improving
the NCC operational procedures.

A model of the NCCDS has been developed with the objective of providing a tool for assessing the
impact on the NCCDS performance of workload changes due to the SN services that will be
required by future missions and to the new elements that will be added to the SN in the future.
This tool can also be used for evaluating the effect of possible modifications to the NCCDS design
and to the NCC operational procedure, and to support the identification of the most cost-effective
alternative.

NCCDS CHARACTERISTICS

The NCCDS functions included in the NCCDS performance model are summarized in Figure 1.
External messages to and from the NCCDS are exchanged via the Front End LAN (FEL) and the
High Speed Message Exchange (HSME) which routes the messages to CCS and SPS functions,
tests the communication links, and logs the messages. The inter-segment traffic is supported by
the Inter-Segment LAN (ISL).

Figure-1 NCCDS Functional Architecture

CCS monitors SN status and performance, sends related data to SPS and operators (ITS) and to
the SN users when requested. CCS also monitors SN use and processes users' requests for
reconfiguring the space link and the ground communication link. CCS functions are coordinated

Intelligent Terminal
Segment

(ITS)
Operator
Interface

Inter-Segment LAN (ISL)

f ~ o ~ ~
WSC
FDF
NGT
Nascom
SDPF

\ J

NFE 'RApP4HsMEt
Front-End LAN

(FEU

Service Planning Segment
(SF'S)

Communications and Control
Segment

(CCS)

,,

-

- Network
status
Messages

Acquisition
Data

Network
Monitor

1

Database
Malntainance

Active Schedule

Active Schedule

I

,

- Event
Monctor

1 -
Schedule ~equesk

Scheduling I
External
Message Log

I

with the SN scheduled events stored in a database which is periodically updated from the SPS.

SPS receives from the Flight Dynamic Facility (FDF) acquisition data messages and transfers them
to the SN Ground Terminals at White Sands Complex (WSC). SPS also performs the scheduling
of users' SN resources requests for future events (forecast schedule) and for changes to the current
schedule. It verifies users' requests, generates and maintains SN resource schedules, and
disseminates the schedules to WSC, NASA Ground Terminal (NGT), Nascom, Sensor Data
Processing Facility (SDPF), and Payload Operation Control Centers (POCCs).

The modeled NCCDS configuration includes the CCS and the SPS computer systems connected
by the ISL. Each system is composed by a processing component (CPU), storage peripherals
(drives and controllers of disks and tapes) for databases and log files, and the LAN interface
components. The model disregards the hardware required for redundancy purposes.

MODEL STRUCTURE

The main requirements [2] for the NCCDS performance model are (1) flexibility for assessing
several alternatives of SN users' needs, SN resources, and NCCDS configurations and operational
procedures and (2) consistency in comparing results of the assessed alternatives. These
requirements are satisfied by a model structure that separately models and integrates the NCCDS
performance factors.

Figure 2 illustrates the structure of the model.

Mission
Support
Statistics NCCDS Operations NCCDS Operational

Scenario Model Procuedures

Support
Profile

NCCDS
Traffic
Model

Resources
Model

NCCDS
Processes

Model

NCCDS Configuration Model
(ADAM)

NCCDS Performance
Statistics

Resources
Configuration

Figure-2 Model Structure

The NCCDS performance model includes the following main models:

mission support profile model representing users' requests on the SN resources;

SN resources model representing the number of TDRSs and ground stations;

* NCCDS traffic model representing the volume of messages transferred between the
NCCDS and the outside world;

* NCCDS operational scenarios model representing the timing of message distribution and
processing;

* NCCDS processes model representing the processes performed on each message and the
resulting data transfer between CCS, SPS, and ITS;

NCCDS configuration model.

The mission support profile model represents the daily average level of support provided to the SN
users and is the main driver for NCCDS message traffic volumes and processing loads. Input to
this model is the number events (TDRS contacts) and the length of SN resource usage (i.e., K-
band Single Access, S-band Single Access, and Multiple Access). The input values may be
directly obtained from the Mission Model Database (maintained by GSFC Code 534) or any
hypothetical value for "what-if' analysis. Outputs from the model are parameters for the daily load
to the NCCDS (i.e., the number of supported events, number of changes to the current schedule,
duration of support) and parameters for the forecast scheduling process (i.e., number of requested
events per week).

The SN resource model represents the SN configuration (i.e., number of TDRSs and number of
antennas per TDRS). It provides values to parameters by which the traffic volume is computed.

The NCCDS traffic model represents the average volume of messages received and transmitted by
the NCCDS during a nominal day. The traffic model has been derived from an analysis [3] of
message flows covering typical SN request scenarios. The messages are divided in six main
groups (Figure 3): schedule related messages, performance related messages, acquisition data
messages, configuration related messages, Restricted Access Processor (RAP) monitoring
messages and communication test messages, and acknowledgment messages. The grouping is
related to the processes performed on the messages.

Support
Profile
Model

SN Usage
events
duration

Schedule messages - active SARs & SDRs - schedule result & notification
- schedule dissemination - schedule status
Performance messages - ODMS & FlMS
- UPDRs & UPDMs - service (time delay, service end)

Acauisition data

Number of
TDRSs
Antennas

Resources
Model

- state vector propagation
Configuration messages - GCMRs & doppler compensation - reacquisition
- OPM status
- GCM status & disposition

RAP monitoring
Communication test
Acknowledgement

Message volume
per day

-

Figure-3 Traffic Model

' NCCDS

4

Operational

Operations
Scenario

~ ~ d ~ l
factors \

L

The model of the NCCDS operations includes two classes of processes (Figure 4): functions
initiated by the arrival of a message (i.e., data driven processes), and functions initiated by
commands of the operator or NCCDS procedures (i.e., procedure driven processes). The first
class of processes is directly driven by the average daily volume of messages computed by the
NCCDS traffic model. The operators commands or NCCDS procedures that initiate the second
class of processes is represented with a set of operational parameters which indicates the number of
initiation per day for each process.

Figure-4 Operational Model

NCCDS '
Operational
Procedures
\ J

Process
Activation
Schedules

c

t

Message
volume
per day

f 3
NCCDS
Traffic
Model

The NCCDS processes model provides the framework for generating the loads of the NCCDS
resources from the message volumes computed by the NCCDS traffic model. It represents the
actual activities which the NCCDS performs to process each message. Figure 5 is an example of
the representation of performance related messages processing.

The NCCDS configuration model represents the NCCDS processing resources (i.e., CPUs and
OSs, LANs and protocols, and data storages). It also includes the allocation of the NCCDS
process to the resources.

1. Data driven processes

2. Procedure driven processes
* Acquisition data process

- llRVs reception
- llRVs dissemination
Periodic schedule dissemination - WSC - NGT - Nascom CSS & SDPF - POCC
- CCS

Schedule forecast generation - frequency (e.g., weekly) - extent (e.g., on two days at 50%)
CCS system dump
SPS dynamic dump

3. Modeling modes
Daily averages
Individual process selection - data rate controlled - time window controlled

MODEL IMPLEMENTATION

b

Process
frequency
data size

The NCCDS performance model has been implemented by means of two computational packages

running on a PC: a spreadsheet (e.g., LOTUS 1.2.3. or EXCEL) and the Automated Distributed
Architecture Modeling tool (ADAM) which is an analytical queuing modeling tool. The reason for
splitting the implementation on two packages was to minimize the model development effort and
cost.

The spreadsheet component implements the mission support model, the SN resources model, the
traffic model, and the operational model. It includes a representation of the process model and
generates the parameter values which are input to ADAM.

POCCs
JSC

Generate
Messages

9252) kISFC
Performance Validate 9263
Messages

06 Generate

07 Displays

8803
0352
0357
0363

SN DBs ODMs 8 FlMS

UPDMz POCCs

Figure-5 Performance Message Processing

ADAM [4] has been developed by Computer Sciences Corporation for assessing distributed
architectures. Figure 6 illustrates ADAM structure.

Transactions
Transaction components

ControllerdDevices
Network 1inkdProtocols
Network elements

Figure-6 ADAM Structure

ADAM includes a representation of the traffic model (transaction components), of the processes
(software components) and of the hardware configuration. The three representations are linked by
means of allocation references from which the program computes resources workload and
utilization, and service and latency times.

MODEL RESULTS

Input to the model are the characteristics of the missions which use SN services, of the SN
resources configuration, and of the NCC operational procedures. The model provides traffic
loads, potential bottlenecks, and message service and response times.

To date we have successfully calibrated the baseline NCCDS model representing the current
equipment configuration and the data system functions. We have used actual SN resource requests
[5] as input to the model and compared the model results with the results of performance
monitoring executed on the operational NCCDS facility during the same period of time 161. The
CPU utilization computed by the model was 12% for CCS and 16% for SPS. This compares with
monitoring measurements of 14% and 18% respectively.

We have started analysis of future SN resource requests scenarios. Figure 7 shows the CPU
utilization of the CCS and the SPS when processing the workload generated by three different
hypothetical mission scenarios. The SN resources (two TDRSSs) are used with 1000,2000, and
3000 TDRSS contacts per week by 10 nominal missions. The scenario assumes a worst case day
in which the Space Transportation System (STS) is flying and forecast schedule generation is also
performed.

CPU Utilization

POCCs Events per weel

Figure-7 Model Results

The NCCDS performance model will be used for the assessment of the performance characteristics
related to various uses of the Space Network services, and alternative configurations of CCS and
SPS.

REFERENCES

1 . Network Control Center Data System (NCCDS) Detailed Requirements, 530-DRD-NCCDS,
November 1993.

2. NCCDS Performance Model - Model Requirements Specification, Contract NAS 5-3 1500,
CSCITA 33-600-A2, May 1993.

3. NCC Message Traffic Flow Analysis, TR 9201 4, September 1992.

4. Automated Distributed Architecture Modeling (ADAM). User's Guide,
Contract NAS 1 - 17757, CSCITM-8716074, Version 2.0, January 1988.

5. NCC Summary of STDN Operations, December 1993.

6. Operation Data for STS Schedule Generation and Mission Launch: Periods 8130193 through
1 2/3/93. .

EVALUATION OF NASA's END-TO-END DATA SYSTEMS USING DSDS+ f - 1
Christopher Rouff

William Davenport
NASA Goddard Space Flight Center

Code 522.1
Greenbelt, MD 20771

(301) 286-2938
(301) 286-5 149

Philip Message
Stanford Telecommunications Inc.

7501 Forbes Boulevard
Seabrook, MD 20706

(301) 464-8900

ABSTRACT

The Data Systems Dynamic Simulator (DSDS+) is a
software tool being developed by the authors to
evaluate candidate architectures for NASA's end-to-
end data systems. Via modeling and simulation, we
are able to quickly predict the performance charac-
teristics of each architecture, to evaluate "what-if'
scenarios, and to perform sensitivity analyses. As
such, we are using modeling and simulation to help
NASA select the optimal system configuration, and
to quantify the performance characteristics of this
system prior to its delivery.

This paper is divided into the following six sections:

I. The role of modeling and simulation in the
systems engineering wrocess. In this section,
we briefly describe the different types of
results obtained by modeling each phase of
the systems engineering life cycle, from con-
cept definition through operations and main-
tenance.

11. Recent awwlications of DSDS+. In this sec-
tion, we describe ongoing applications of
DSDS+ in support of the Earth Observing
System (EOS), and we present some of the
simulation results generated of candidate
system designs. So far, we have modeled
individual EOS subsystems (e.g. the Solid
State Recorders used onboard the spacecraft),
and we have also developed an integrated
model of the EOS end-to-end data processing
and data communications systems (from the

payloads onboard to the principle investiga-
tor facilities on the ground).

111. Overview of DSDS+. In this section, we
define what a discrete-event model is, and
how it works. The discussion is presented
relative to the DSDS+ simulation tool that we
have developed, including it's run-time opti-
mization algorithms that enables DSDS+ to
execute substantially faster than comparable
discrete-event simulation tools. .

IV. Summary. In this section, we summarize our
findings and "lessons learned" during the
development and application of DSDS+ to
model NASA's data systems.

V. Further Information.

VI. Acknowledgments.

I. THE ROLE OF MODELING AND SIMU-
LATION IN THE SYSTEMS ENGINEER-
ING PROCESS

As illustrated in Figure 1, modeling and simulation
are invaluable tools throughout the systems engi-
neering life cycle, as described in the following
paragraphs.

During the concept definition phase, modeling is
used to validate the operations concepts, and to
derive preliminary estimates of system requirements.
For example, an operations scenario for EOS entails
recbrding of payload data generated onboard the

Requirements Changes

Operations Concepts and Requirements

Objectives Concepts

+ Performance
Preliminary and Detailed Design Modeling

& . Cr~ucal

+

Maintenance

. Benchmark
Measure-
ments

Design Changes

Figure 1. The Role of Modeling and Simulation in the Systems Engineering Life Cycle

spacecraft during each orbit, followed by periodic
downlinking of the data during 10 minute contacts
scheduled with the Tracking and Data Relay Satel-
lite System (TDRSS). Modeling these scenarios
provides estimates of the minimum onboard and
ground-based storage requirements, and the mini-
mum communications bandwidths necessary to dis-
tribute all of the data received during a downlink
contact before data is received for the next contact
period.

During the preliminary and detailed design phases,
modeling is used to evaluate the performance of
physical resources, configured in a certain topology
to process the offered workload. The resources
modeled include CPUs, busses, disks, networks,
etc., and the workload includes software jobs/tasks
to be executed, data to be processedltransferred, etc.
Performance metrics generated by such a simulation
include CPU utilization, queue sizes, network utili-
zation, data latency, etc. Thus, simulation of the
physical design adds an additional level of fidelity
and insight into the anticipated behavior of the
system, and the performance metrics generated re-
flect the practical constraints of the real system,
above and beyond the theoretical minimums gener-
ated by modeling the operations scenarios.

During the integration and test phases, modeling is
used to identify critical system functions and inter-
faces, and aspects of the system that have the smallest
performance margins. Particular attention should be
paid to these areas during testing, and the simulation
results can be used to devise stress scenarios for
subsequent testing.

During the operations and maintenance phase, mod-
eling is used to evaluate the impact of any proposed
changes to the system requirements or system de-
sign, such that the changes can be well-understood,
and any side-effects identified. Further, perfor-
mance benchmark measurements can be taken of the
real system and compared against the simulated
results generated in earlier life-cycle phases. These
benchmark measurements can then be used to vali-
date the simulation models (and, if necessary, to
make refinements to the models), thereby enhancing
the fidelity and level of confidence in subsequent
simulation activities.

11. RECENT APPLICATIONS OF DSDS+

DSDS+ is currently being used at Goddard Space
Flight Center (GSFC) to model the space and ground
segments of the Earth Observing System, at Marshall
Space Flight Center (MSFC) to model the Space
Station Freedom Data Management System, and at

Johnson Space Center (JSC) to model the Space
Station Freedom Control Center.

A major component of NASA's Mission to Planet
Earth (MTPE) is the EOS program at GSFC. EOS
encompasses many project boundaries, each respon-
sible for different technical disciplines (e.g. space-
crafthnstrument command and control, raw telem-
etry data processing, science data processing, data
distribution, etc.); several of these organizations have
utilized DSDS+ to conduct performance assessment
studies germane to their areas of interest, and in
addition, GSFC is sponsoring development of an
end-to-end simulation model of EOS.

DSDS+ Model of End-to-End EOS System

The top-level schematic of the return-link, end-to-
end data flows modeled for EOS is illustrated in
Figure 2. The bullet-items listed to the right of each
subsystem in the figure indicate those functions that
have been modeled to-date. Other functions will be
simulated in the near future, and the model will be
updated as the EOS system definition evolves.

In addition to the wide range of functions noted on
Figure 2, the following salient features of the model
are worth pointing out:

The simulation consists of a single, integrated
model of thee distinct segments of the EOS
architecture: the EOS AM- 1 spacecraft, the
Space Network, and the EOS Data and Informa-
tion System (EOSDIS).

* The end-to-end model is supplemented with
more-detailed models of the Solid State Re-
corder, the Telemetry Processing Systems, and
the network connecting the Science Data Pro-
cessing Systems.

* The end-to-end model is being used to quantify
the performance characteristics of the systems
and sub-systems within each segment, as well as
the performance impact of one segment on an-
other.

* The fidelity of the simulation results is improved
by reading external instrument timelines which
specify the exact data rates of each instrument at

16 Day timeline drivers
CCSDS packet generation

Bandwidth allocation

Multi-buffer data storage
Sequential or concurrent
playback
CCSDS CADU generation

line of slght

w m

Real-time

Supplemented by
Detailed Telemetry

Processing
Sub-model DPF

Data distribution

Data demultiplexing 8
sorting
Quicklook data generation
File transfer

Data distribution

Production data generation
Archive
File transfer

t
by Detailed ECOM . Data distribution

SDPS Network t
EDC 1

SDPS GSFC

. L1 -L4 science data
generation

Bullets indicate sewices and Science data reprocessing
functions modeled to date * Archival - Data distribution

Figure 2. DSDS+ Model of End-to-End EOS
AM-1 Architecture

each point in time throughout the 16-day cyclic
period of the spacecraft. (The spacecraft makes
successive orbits of the Earth, such that the entire
surface area is viewed after 16 days, and then the
cycle repeats.)

* Each iteration of the model (i.e. each "what-if'
evaluation) is executed for a 16-day simulated
period, corresponding to the spacecraft cyclic
period. Each 16-day iteration takes less than 5
minutes to execute, due to the simuiation optimi-
zation algorithms described in Section IV of this
paper.

The model generates hundreds of statistics that
depict the performance characteristics from three
perspectives: end-to-end, point-to-point, and
sub-system by sub-system. For example,
Figure 3 illustrates the end-to-end latency of
NOAA data, assuming that there are no service
interruptions in the system. As illustrated, in this
scenario there is a 95% probability that NOAA
will receive its data in 81 minutes or less, and
none of its data will be delivered more than 127
minutes after the time of generation onboard.

I 95th
Percentile Maximum I

60

81 minutes 127 minutes

40 O0
Latency (Minutes)

697/Fig 3

Figure 3: End-to-End Latency for NOAA Data

DSDS+ Model of EOS Solid State Recorder

During the last five years, several different technolo-
gies and management schemes have been proposed
for implementation of the data recorders onboard the
EOS spacecraft. The particular solutions proposed
have had widely differing effects on cost, size, weight,
shelf-life, maintainability, and performance. During
this period, we have applied DSDS+ to evaluate the
performance metrics of these different technologies,
and we have determined factors such as: the number
of recorders required, their capacities, their latencies,
their required recording and playback rates, their
impact on the ground data processing system, etc.

mance benefits. For example, these devices enable
the different payload data streams to be written to
different physical partitions, that can then be played
back sequentially (thereby enabling high-priority
data sources to be transmitted first), or they can be
played back concurrently (thereby providing each
payload with equal access to the downlink channel).

The DSDS+ results recently obtained by modeling
the Solid State Recorders are illustrated in Figure 4.
As indicated, the maximum buffer size required to
support the EOS-AM1 payloads is approximately
122.5 Gbits, well below the planned capacity of 140
Gbits. However, these results are contingent upon
the assumption that there are "near-perfect" opera-
tions throughout the end-to-end system. A more
realistic assumption is that there are occasional
service interruptions: for example, missed contact
periods between the spacecraft and TDRSS due to
loss of signal. TheEOS-AM1 spacecraft makes 233
orbits during each 16-day cycle, and it is scheduled
to receive two contacts with TDRSS during each
orbit; i.e. it receives a total of 466 contacts per 16 day
cycle. Therefore, we re-ran the Solid State Recorder
model 466 times, missing a different TDRSS con-
tact each time. As each simulation executed, we
obtained the maximum buffer size observed during
the 16 day simulated period; we then plotted the
results, which are given in Figure 5.

EOS-AM1 Solid State Recorder Utllizatlon

l o I

I Simulated Time (Days) I
The most recent advances in technology now support
high capacity, space-qualified, solid state recording Figure 4. EoS State
devices (i.e. memory chips), with significant perfor- Utilization

Max. Buffer Size for 466 16-Day Scenarios

180

170 -
YI -
B

g 160 -
m
5 - ,. 150

140

130

120
0 50 100 150 200 250 300 350 400 450 500

TDRSS Contact Number Missed

with it that enable the user to define characteristics
such as the packet sizes to be generated, their inter-
arrival times, their priorities, etc. If desired, multiple
instances of an element may be included in the model
(e.g. multiple data generators), and each instance
will have its own set of parameters defining the
specific operations being simulated.

Models are developed pictorially in DSDS+, using a
graphical user interface that provides close correla-
tion between the model representation and the real
system. Further, the model drawings can be devel-
oped hierarchically, to any depth required, so that
complex models can be decomposed into a series of
detailed sub-level models, as illustrated in Figure 6.

697/FIg 5

As illustrated in the figure, events (i.e. messages) Figure Maximum EoS AM-1 "lid State flow from element to element within discrete-event
Recorder Utilization models. When the event arrives at an element. the

As indicated in Figure 5, the volume of data buffered
exceeded the Solid State Recorder capacity of 140
Gbits on eight occasions (e.g. when TDRSS contact
number 19 was missed, when contact number48 was
missed, etc.). Therefore, there is approximately a 2%
probability (8/466*100) that data will be lost if a
TDRSS contact is missed. Also, it is worth noting
that a TDRSS contact can be missed in the majority
of cases without impacting the maximum volume of
data that has to be recorded (i.e., the volume remains
constant at 122.5 Gbits because the worse-case buff-
ering occurs at some other point in the 16-day cycle,
and is not related to the TDRSS contact that was
missed).

111. DSDS+ OVERVIEW

The Data Systems Dynamic Simulator (DSDS+) is a
general-purpose, discrete-event simulation tool. It
contains an extensive library of pre-programmed
simulation elements that are connected together by
the user to represent the real system being modeled.
Examples of the pre-programmed elements include:
data generators and sinks, data processors (e.g. CPUs
with various service disciplines), buffers and queues,
and data switches and routers. Each of these ele-
ments simulates a particular function or service,
which may be tailored by the user to represent the
specific application being modeled. For example,
the data generator has a list of parameters associated

underlying code associated with the element is ex-
ecuted, and some action is taken to simulate the
operations of the real system. For example, an
element that simulates the TDRSS propagation delay
might hold the event for a quarter of a second before
forwarding it to the next element in the model. A
slightly more complex element might calculate the
transmission delay by dividing the bandwidth (input
as a user-supplied parameter associated with the
element) by the size of the incoming event to be
transmitted. As the model executes, simulation re-
sults can then be collected automatically, as a func-
tion of time, simply by observing the flow of events
in the system, or by observing the sizes of the internal
queues, etc.

It should be noted that DSDS+events do not carry the
real data with them in the model, but rather, they
carry attributes that define the characteristics of the
real data (such as the packet size). As illustrated in
Figure 6, the events are held on a chronologically
ordered list (called an event calendar) that is main-
tained by the scheduling engine. The engine re-
moves the event from the top of the list, it instanta-
neously advances the simulation clock time to the
new scheduled time, and it then forwards the event to
the appropriate element for subsequent execution.
Thus, there is no relationship between wall-clock
time and simulated time, and the next event might be
scheduled for processing in a (simulated) nano-sec-
ond or a (simulated) day.

events are scheduled

* Event at top of list is removed, and

Detailed Sub-Level Model

697.36PM941F19 6

Figure 6. DSDS+ Simulation Concepts

However, the time required for a discrete-event
model to terminate will increase with the total num-
ber of events to be processed. If each packet is
modeled as an event, then end-to-end models of
NASA's high data rate systems will require many
months to terminate, even when executed on high
performance workstation-class computers. The rea-
son is obvious: the real system will be implemented
by multiple "'super-computers" distributed through-
out the space and ground segments, each processing
tens of thousands of packets per second. Therefore,
how can a simulation model keep pace, since it is
hosted on a single computer? We have implemented
a solution to this problem within DSDS+, using a
hybrid continuous-flow and discrete-event technique
that we call "data streams". Briefly, the data stream
methodology takes advantage of the fact that succes-

sive packets flow through a data system at a constant
data rate, with relatively infrequent changes in the
rate. Thus, the system can be modeled by consider-
ing the impact of what happens when the rate changes,
without regard to the individual packets that consti-
tute the data flow. For example, if during some time
interval, a data source temporarily generates data at
a rate that exceeds the processing capacity, then the
queue size (and resultant queuing delay) will in-
crease linearly with time until the source stops gen-
erating data, and then the queue size will decrease
linearly with time (although the queuing delay will
continue to increase linearly with time until the
queue is empty).

The data stream approach is ideally suited to model
NASA's data systems, since many of the science

instruments generate data at a constant rate during
each duty cycle, with relatively infrequent rate
changes. Therefore, a data stream model is required
to process relatively few events (each of which
represent a change in data rate), and it doesn't matter
that the data rates themselves are extremely high
(typically, up to 150 Mbps). As a result, we are able
to utilize DSDS+ to model complex, end-to-end data
systems, at a detailed-level, for very long periods
of simulated time and yet generate the results
within just a few minutes (for example, the 16 day
simulations of EOS require less than 5 minutes to
terminate).

IV. SUMMARY

The preceding sections have demonstrated that mod-
eling and simulation are invaluable systems engi-
neering tools to help define and select the optimal
system configuration. Further, the performance char-
acteristics of this system will be known prior to its
delivery. This is not just because simulation results
have been generated, but also because modeling is a
two-way street, and the questions asked in order to
develop a model usually prompt the systems engi-
neer to resolve ambiguities or incomplete specifica-
tions that would otherwise have gone un-noticed.
Therefore, it is our belief that the steps required to
develop a model should be undertaken, even if the
model itself is ne'ver actually constructed.

Simulation models are also relatively inexpensive to
develop - far less than the cost of trying to correct
performance problems subsequently found in the as-
built system! For example, the DSDS+ simulation
models of the EOS Solid State Recorder were devel-
oped in just a few staff-weeks, and yet their pay-off
has been tremendous: the EOS project has decided to
increase the recorder capacity to 200 Gbits to prevent
loss of the science data.

Finally, we believe that the unique run-time optimi-
zation algorithms in DSDS+ make it the most suit-
able tool available to model NASA's end-to-end data
systems. While there are many excellent commercial
took on the market, none contain any optimization
methodologies; therefore, practical constraints limit

their use to evaluation of localized systems, simu-
lated for short time durations.

V. FURTHER INFORMATION

This paper is presented in conjunction with an online
demonstration of DSDS+, including the simulation
models developed recently of NASA's end-to-end
data system.

DSDS+ is a NASA-owned tool, and therefore it is
available free of charge to any NASA organization or
support contractor. For further information, please
contact Bill Davenport at (301) 286-5149, or at the
address given at the top of this paper.

VI. ACKNOWLEDGMENTS

The Data Systems Technology Division, GSFC Code
522.1, is managing the development of DSDS+, and
Stanford Telecommunications, Inc. is the imple-
mentation contractor, under the Systems Engineer-
ing and Analysis Support (SEAS) contract.

The following NASA organizations and programs
have sponsored the development andlor application
of DSDS+ to-date1:

GSFC Code 500 (1992 - 1993): Chief Engineer's
Office

GSFC Code 502 (1986 - 1991): Customer Data
and Operations System (CDOS) Project

GSFC Code 502 (1988 - 1990): Earth Observing
System Data and Information System
(EOSDIS) Project

GSFC Code 504 (1993 - 1994): Systems Engi-
neering Office

GSFC Code 505 (1993 - Present): Earth Science
Data and Information Systems (ESDIS) Project

GSFC Code 520 (1986 - Present): Data Systems
Technology Division

GSFC Code 560 (1993 - Present): EOS Data and
Operations System (EDOS) Project

HQ Code R (1991 - 1993): Office of Aeronautics
and' Space Technology (RTOP Project)

HQ Code S (1989 - 199 1): Space Station Freedom
Program

'Several of these projectslorganizarions have since been reorganized and renamed, but the affiliation names listed are the ones
in effect when the work was sponsored.

Analysis of Space Network Loading

Mark Simons
Goddard Space Flight Center, Code 534.2,

Greenbelt MD 2077 1
jsimons@ gsfcmail.gsfc.nasa.gov

301-286-7323

Gus Larrson
AlliedSignal Technical Services Corporation, 1 Bendix Road,

Columbia MD 21045
gcl@npasl6.atsc.allied.com

410-964-7664

Abstract

The NASA Space Network (SN) consists of
several geosynchronous communications
satellites, in addition to ground support
facilities. Space Network management must
predict years in advance what network
resources are necessary to adequately satisfi all
SN users. Similarly, users of the Space
Network must know throughout all stages of
mission planning and operations to what extent
their communication support requirements can
be met. NASA, at the Goddard Space Flight
Center, pe@orms Space Network and Mission
Modeling using The Network Planning and
Analysis System (NPAS), to determine the
answers to these questions.

Introduction

The Network Planning and Analysis System
(W A S) is a deterministic modeling tool that
accepts either generically or specifically stated
communication support requirements. Using
its own scheduling and orbital determination
software, the NPAS produces an operationally
valid schedule. Analysis software can then
generate a variety of reports such as the
percentage of satisfaction for users, or the total
utilization of the SN. Analysts can view
schedules graphically allowing them to identify
conflicts easily.

Detailed in its approach, the W A S can model
such difficult problems as antenna blockage and
support requirements based on the physical
position of a user satellite. The tool can also
model such factors as the effect of solar

radiation on the spacecraft and the
radio-frequency interference between users.
Also, the NPAS is not limited to the NASA
Space Network alone. Given the necessary
information, it can model other space based
communication networks, a s well as
ground-based networks, both foreign and
domestic.

NASA has used the various versions of NPAS
successfully over the past 15 years as a tool in
analyzing Space Network loading. The NPAS
has also changed with the times. It has recently
been ported to a Unix-based workstation and
has a new X-window graphical user interface.
Currently, efforts are in place to develop a
neural network application for the NPAS. This
application could be used to obtain an instant
response to many questions that arise during
the planning of communication support for new
space missions.

Overview of the Space Network

Modeling with the NPAS at GSFC is applied to
NASA's Space Network (SN) . The space-
based portion of the SN is referred to as the
Tracking and Data Relay Satellite System
(TDRSS). The TDRSS consists of five
geosynchronous Tracking and Data Relay
Satellites (TDRS), two of which are currently
operational at 410 W and 174" W. Two others
are held in reserve and the fifth, the oldest and
least capable satellite in the network, is
dedicated to support of the Compton Gamma
Ray Observatory.

Only low earth orbiting spacecraft can make use

of the SN. These users can communicate with
a TDRS at K-band using one of two Single
Access (SA) antennas or at S-band using SA
or Multiple Access (MA) Ground-station
limitations restrict the number of MAR users to
to about five per TDWS. Even though each
TDRS has only one MAF, the SA resource,
due to its heavy use, is by far the most
constrained TDRSS resource.

It is the job of the W A S to determine how this
network will perform in the future under
changing conditions.

Modeling SN Loading

Modeling different aspects of SN loading with
the NPAS proceeds along two lines, Space
Network Modeling and Mission Modeling.
In theory, SN Modeling methods hold user
requirements constant and vary network
resources. This is contrasted by Mission
Modeling techniques which hold network
resources constant and vary user requirements.

Analysts perform SN Modeling by determining
what combination of TDRSS resources and
mission priorities result in the best overall
performance of the SN on a yearly basis. They
make recommendations to NASA management,
who then decide what course to adopt. These
formally approved NPAS models are called
baseline models and used as starting points for
further studies. Using such approved
baseline models, analysts perform Mission
Modeling. Usually the requests come from
management of new or prospective mission
projects, or from management of existing
mission projects that are contemplating changes
to communications support requirements.
During the course of mission modeling analysts
produce variant models that reflect some
change, or a collection of changes, to a
baseline model. End products of Mission
Modeling are termed standard models to
differentiate them from true baseline models.

Regardless of the modeling method selected,
analysts interact with the NPAS software in the
same way, defining network resources,
mission requirements, and evaluating resulting
schedules.

Obtaining Model Parameters

The model parameters used by the NPAS can
be divided into two parts, scheduling and
coverage. Scheduling parameters include
information about mission support
requirements. Examples include minutes of
support needed per orbit and the minimum
separation between contacts. Coverage
parameters deal with the geometry between
user spacecrafts and network resources.
Locations of the TDRS, the orbital elements of
the user spacecraft, and information relating to
the blockage of the user antenna are examples
of such parameters.

The process of collecting user parameters is
conducted in advance of actual modeling. This
serves to reduce the needed during modeling to
acquire needed information.

Capabilities of the NPAS

Once the modeling requirements have been
gathered, the analyst can prepare to input the
parameters into the NPAS. The number of
steps required in this process is dependent upon
the type of study being performed and
similarities between the new requirements and
existing baseline, variant, or standard models.
Often times, minor modificationscan be made
to an existing model to analyze the new
requirements.

Usually, the first step taken by an analyst is to
define the support network. The support
network can consist of S N or ground-based
stations, and is referred to as the "network
model."

Then, missions that would be users of the
defined network for the year being studied are
modeled. The combination of orbital and
coverage parameters of the spacecraft with the
scheduling requirements of the mission is
referred to as the "mission model" for the
particular mission.

Once the network and all appropriate mission
models are created for the year being studied,
coverage data is generated for each mission at
each station. From this coverage data, and
subject to any constraints defined in the

network and mission models, a schedule for
each mission and each station can be generated.

This schedule can then be analyzed using a
number of applications included in the NPAS
package. Various mission and station report
analyses can be requested, and a facility exists
that allows an analyst to examine graphically
the schedule and certain coverage events.

Modeling the Network

A network model in the NPAS can consist of
stations, physical antennas, services, and
crews. Hardware limitations, such as TDRS
interface channels, may also be modeled.

SN and ground-network stations can have their
locations specified in a number of ways. In
particular, SN TDRS locations can be specified
as either fixed or moving. In the former case,
only the longitude and the height of the TDRS
need to given. In the latter, orbital elements for
the TDRS are specified by the analyst.

When creating the network model, the analyst
has the ability to define constraints, such as
service availability times and fixed down times.
Other special-purpose constraints, such as
allowing scheduling to occur on no more than
six out of eight SA antennas simultaneously,
also may be modeled. Events such as planned
maintenance a lso a r e easily modeled.

These features allow the analyst to define real-
world support network situations. Some
examples might include TDRS' that are
damaged or are otherwise not fully-functional.
In the course of analyzing SN loading using
baseline models, the number of single-access
(SA) antennas available at each TDRS is
,modified often, and the NPAS Modeling Tool
interface was designed to ease this process.

Defining Coverage Parameters

Embedded within the NPAS is a complete orbit
and coverage generation system which uses a
modified GTDS to generate station visibility
data with accuracy to the nearest second.
Additionally, a facility exists t o accept
externally-generated orbit data.

An NPAS analyst defines the basic orbital
parameters of a spacecraft using Keplerian
orbital elements. Other options exist that allow
more complex orbit models to be created from
this point. An example of such a model may be
one that uses impulsive orbital maneuvering,
thrust, or transfer orbits. Further modifications
to the spacecraft orbit can include gravitational,
solar and drag forces.

A number of mission-specific coverage event.
may also be calculated. Some of these mission-
specific events include mission apogee and
perigee points, ascending and descending
nodes, spacecraft or subpoint sun events, land,
water, and user boundaries. These events may
be calculated in the coverage event generation,
and would normally be used for scheduling
options in the schedule parameters portion of
the mission model.

Many missions in the loading studies
performed using NPAS include mission-
specific events to direct the mission scheduling.
One of these missions is Landsat, which
specifies a number of user and earth boundaries
over which to schedule. Also, this and other
spacecraft may only want to schedule when the
spacecraft or the Earth sub-point is in sunlight,
and this may be modeled using the mission-
specific events.

As another coverage parameter, the analyst also
can apply an antenna mask to the spacecraft,
and define the spacecraft attitude and antenna
orientation. Spacecraft masks are defined for a
small number of missions in the most recent set
of baseline models. The effects of masking on
individual spacecraft has been extensively
analyzed in variant antl standard models for
some missions, including EOS and the Space
Station. For the latter mission, a number of
masks reflective of the various "build" stages
were modeled.

Options exist to determine separation angle
events between a spacecraft and the sun or
another spacecraft. Here, the angle apex may
be located at either the spacecraft or the station,
and the station may be either SN or ground-
based. Separation angle events have been used
in the past in variant models in which mutual
interference between spacecraft was analyzed.

-. -
51 SS-F ! ~ o n f l ic; Analysis Croup: N/A

! Service Mask: Se&,&$k%# 6&%$&& @%%I
10) User Sp~cecr a f t Mask I

.! -. ̂̂ ._ :I / Prototype Event Code: SA02
: _ ^" .- I_ .̂ .̂ _I_ . _..̂ ._I! ...
Schedule Periods arc def ir~cd by o r b i t s . Each orbi t is 91 .32 minutes.

t o the s t a r t and end

I Delay scheduling t h i s request (Ellll Seconds _
from the- STAKT of the run.

I For each Schedule Period, attempt t o schedule a t l e a s t
and a t most prime 9et.vi ce e v e n t (s) .

I Each prime service should be a t l e a s t
and a t most minutes i n duration.

I Provide i r t Icilst. O and ill most. 99999 micmt.e:i b e t w e e r r service:;.

i Status: ACTIVE

Figure 1- Sample

Defining Schedule Parameters

Tasks to be performed by each mission are
modeled as schedule requests in the NPAS. A
schedule request is simply a request for a
service, or set of related services, of some time
duration, to be scheduled over a set of stations.
Each request is subject to a number of
constraints that can be imposed by the network
model, the given request, and other schedule
requests. Additionally, some constraints, like
mission pre-pass and post-pass times at various
relay stations, can be applied to all the requests
of a single mission.

Each schedule request is given a priority
number by the analyst and is subsequently
scheduled in "highest priority first" order.
Requests for different missions may be
intermixed to allow scheduling of all missions'
critical requirements before any other
requirements, if this is desired. The current
practice, however, is to schedule all requests
fo r any individual mission together,
and place the missions into priority order.

Schedule Request

Most schedule parameter modeling in the
NPAS is accomplished using generic schedule
requests. A generic request does not specify an
exact time at which the defined service or set of
related services i s to be scheduled.
Additionally, the request is typically repeatable
over periods that extend across the schedule
span.

Furthermore, using a generic request, an
analyst can specify a variable length service
contact time, in which shorter contact times,
down to a minimum, can be accepted if the
maximum length contact cannot be scheduled.

One mission that is modeled in NPAS using
generic requests is TRMM. The primary
request is one 20-to- 14 minute S-band forward
service, with concurrent S-band return service,
event per orbit. Only one generic request
would be required in the NPAS to model this
requirement.

In the above example (Figure l) , the TRMM
requirement was for two concurrent services,
"repeatable over the schedule span. Whenever

two or more services need to be related in some
manner and scheduled repeatedly over the span,
a Prototype Event (PE) structure is defined in
the generic request. A PE is best viewed as a
"template" for defining a variety of complex
relationships between desired services.

There are a number of options and constraints
that an analyst can model in each schedule
request in order to accurately represent the
request in NPAS and to emulate real-world
situations. One of these options is the mission
antenna masking toggle. This allows the
schedule request to use, or not use, the mission
antenna mask specified in the coverage
parameters for the mission. This toggle is
useful in determining the net effects of blockage
on the spacecraft visibility.

A multi-mission shared resources option allows
a number of selected spacecraft to communicate
simultaneously over one physical antenna. This
option could be used to model situations in
which the Space Shuttle and its payload can
communicate simultaneously on the same
TDRS link.

Many other options exist as well, including
dynamic rescheduling, in which selected
higher-priority requests can be removed from
the schedule if the invoking request did not
attain a given satisfaction. Once the other
requests are removed from the schedule, the
invoking request i s rescheduled, and the
requests which had been removed are
scheduled following.

Other special scheduling options include station
and station antenna schedule preferences,
forced-handover and hybrid support, and
maximum elevation priority scheduling.

Some constraints might include a minimum or
maximum separation between services, or
scheduling windows, which define repeatable
periods in which to schedule. Scheduling can
also be directed around mission-specific events,
such as when the spacecraft is in sunlight or
when passing over a desired land mass, for
example. The request can be directed to
schedule when these events occur, or they can
be directed to avoid scheduling at these times.
Other mission-specific events include any that

were defined in the coverage parameters for the
mission.

Schedule Algorithm Summary

Three of the more commonly used schedule
algorithms in the NPAS are the standard PE,
standard non-PE, and geometric optimization
algorithms.

Before any request is processed by these
algorithms, the set of available time on
individual station and mission antennas is
generated. This set, referred to in NPAS
documentation as "freetimes," consists of the
mission visibility at each station with any time
scheduled by previously scheduled requests
removed. Additionally, any station or station
antenna or service downtimes, as well as
mission-oriented station service suppressions,
would be removed from this set.

The standard PE and non-PE algorithms select
events to schedule from this set using the
aforementioned priority scheme in which higher
priority requests are scheduled before lower
priority requests. Further event scheduling is
performed on a longest-prime-service-length-
first, first-come, first-served basis.

The geometric optimization (GO) algorithm is
similar to the standard algorithms, but the major
difference is that this algorithm determines a
large number of suitable schedules for each
request and chooses the one that maximizes the
total scheduled time for the request. In GO, an
initial greedy schedule is determined by
selecting the local-optimal solutions from
partitions of the schedule span. If the total
scheduled time of this solution is less than the
predicted maximum, then a backtracking
process is invoked in which the schedule is
reevaluated using local-sub-optimal solutions
from one or more partitions.

Post-Schedule Analyses

There are a number of applications available in
the NPAS that allow an analyst to prepare
different types of reports from the schedule
results. For example, it is possible to create
reports of utilization of service types, antennas,
and frequencies. Analysts can also generate

Figure 2 - Sample NPAS Schedule

1998 - 2000 MDM Bandwidth Levels

3 - 4 4 - 4 . 7 4.7+
Mbps Mbps Mbps Mbps Mbps Mbps

MDM Data Ranges

Figure 3 -Results from TRMM Study

reports of mutual interference between
spacecraft. Communication channel loading
can also be analyzed using an NPAS report
application.

One of the more frequently used analysis tools
is the NPAS Resource Plotter (RPLOT).
RPLOT allows an analyst to view a mission's
or station's schedule graphically in an X-
Windows display. A wide range of options
exists for examining mission- or station-related
data, where different types of objects to be
plotted appear in different colors. Mission-
related data includes raw station antenna
visibility and mission-specific events, such as
apogee or a spacecraft-in-sun condition.
Station-related data includes station antenna and
service schedules. An example of an RPLOT
display appears below in Figure 2.

Recent Work

As examples of our work, we have two recent
mission studies performed for the Tropical
Rainfall Measuring Mission (TRMM) and the
Earth Observing System (EOS) projects.

The TRMM project will be launched in 1997
and will downlink data at 2 Mbps in real-time
during its 20 minute SA events. Since ground
terminal equipment (known as the MDM) limit
the total downlink bandwidth to 6 Mbps, the^
was a concern whether or not the TRMM
would experience data loss. Analysis using the
NPAS took into account the downlink rates of
all 1997 SN users, and showed that there is
little to no probability that such data loss would
occur. It also showed that loads on the terminal
equipment follows an exponential distribution.
Results are shown in Figure 3. We have also
recently provided the EOS project with a
projected schedule of the their EOS-AM1
spacecraft as modeled in 1998. This
information will assist them as they size the
needed on-board solid-state memory.

Future Directions

trained, could be used to achieve instant
responses to specific loading and user
satisfaction questions. The application would
be trained by automating numerous database
modifications, generating schedules, and then
collating and preparing the data

NPAS is a changing modeling system that has
adapted itself to the environment that it is
designed to model. It has served NASA well
over the years and will continue to play an
important role in the analysis of Space Network
loading.

We are currently exploring aspects of artificial
intelligence to help speed parts of SN
Modeling. SN modeling can be a time
consuming process. We are now developing a
neural network application that, once properly

Modeling ESA's TT&C Systems
35~2523'

Enrico Vassallo
p. /a ,
i

Stations and Communications Engineering Department
European Space Operations Centre

European Space Agency, Robert-Bosch-Strasse 5
D-64293 Darmstadt, Germany

ABSTRACT

After a brief introduction on the need for simulation packages for the analysis and design of satellite
communications systems, the software tool developed for the European Space Agency (ESA), its main
objectives and the design choices made during the development are presented. A very concise
description of the available communications and measurement block follows. The ESA standard
Telemetry, Tracking and Command (TT&C) system simulator is then introduced along with a
description of the ESA standard modulation and coding schemes. As an example, the simulation of the
ranging system which is a non-standard communications block, is described in details. Several
examples of TT&C simulations outputs are given and compared with measurement results or theoretical
approximations, when available. Finally, future developments like the support of advanced modulation
schemes and the dynamic satellite link simulation are presented.

I. Introduction

As telecommunications technology progresses, new design tools are required by the system engineer to
evaluate the performance of more and more complex systems and subsystems.
In fact, some equipment is so complex that no theoretical calculations can predict what the performance
is going to be. Sometimes only simplified formulas or "rules of thumb" exist to qualitatively compare
different hardware implementations. In either case some kind of tools are required to quantify system
performance under real operating conditions before any expensive hardware bread-boarding or
prototyping is attempted. Digital computer simulation for the analysis and design of communications
systems is deemed to be a very powerful tool complementing both theoretical calculations and
laboratory tests.
Therefore, the European Space Agency (ESA) has been supporting the development of a sophisticated
and reliable simulation package for telecommunications systems which would cover all aspects of
satellite communications, from radio frequency modulation to baseband encoding and decoding.
As the next step, the modeling of the ESA standard Telemetry, Tracking and Command (TT&C) ground
station and satellite equipment based on the developed CAD package has been undertaken.
The requirement was to be able to evaluate telemetry, telecommand and tracking performance with an
accuracy comparable to the measurement accuracy of real tests on flight and ground station hardware.
The main objectives of the TT&C simulator are broadly relating to the computer aided design and
analysis functions: the optimization of the communications link of any ESA's mission, the setting-up
of the various subsystems parameters, the preliminary assessment of radio frequency compatibility
between the satellite and the station equipment, the estimation of the end-to-end system performance
under the mission impairment conditions and operation modes, and the possibility of quantifying
system degradation due to unexpected events in the mission lifetime.

1079 d PAGE %thCIM NK)T FkMa eSk*L *-* a? 2 GaG s6 zwJ &'"\<

b-&..*a:F '

11. The Telecommunication System Simulator

For the analysis and design of satellite communications systems, ESA has initiated a research program
with the goal of developing a simulation package encompassing up-to-date communications equipment,
with a high degree of flexibility in changing parameters and structures yet so user friendly to attract
engineers not too keen in learning programming languages.
TOPSIM IV (TOrino Politecnico SIMulator, release IV) [5] is the result of this development. Being
written in the FORTRAN-77 language, it can in principle be installed on any digital computer
supporting a FORTRAN-77 compiler although the use of its sophisticated graphics interfaces requires
that the X Window/Motif software be available.
The simulator is based on the time representation of signals whereby a band limited signal can be
uniquely represented by a series of samples taken at the Nyquist rate or higher. This approach has been
preferred to the frequency domain representation which is not optimal in dealing with feedback loops
and non-linear devices. However, when complicated filters have to be simulated, the time domain
approach may result in time-consuming simulation runs; therefore, simulation blocks operating in the
frequency domain and integrated in the time domain by FFTs are available.
Linked to the time domain choice is the fact that telecommunications systems normally are
characterized by a large ratio between the carrier frequency and the useful signal bandwidth. Therefore,
the complex envelope representation of band-pass signals has been adopted to drastically cut down the
sampling rate and thus increase the speed of execution. It is well known that a narrowband signal x(t)
can be represented as:

x(t) = xp(t) cos 2nfot - xq(t) sin 2nfot

where xp(t) and xq(t) are the complex envelopes of x(t) and fo is the carrier center frequency. Each
signal is therefore represented by a three-position vector where xp, xq and fo are stored. The sampling
rate is determined by the bandwidth of the useful signal (xp, xq) and not by the carrier frequency.
Since in the time domain representation of signal, the sampling rate must satisfy the Nyquist theorem
for the element with the widest bandwidth, the multirate option is also available to further speed up the
run time when different rates are used in different parts of the system (spread-spectrum systems for
instance.) Special functions like pre-computation, program segmentation and block processing are also
available to increase efficiency and user-friendliness.
A very large library of blocks is available (more than 300 blocks modeling communications devices and
about 30 blocks performing various measurement functions.) The communications blocks encompass
signal and random generators, analog and digital modems, analog channels and non-linear devices,
analog and digital filters, carrier and clock recovery circuits, DSP modules, coders, decoders and trellis-
coded modems. The measurement library includes qualitative measurements (eye patterns, scattering
diagrams), statistical estimates Cjitters), bit error rate routines, power and power spectral density
evaluation.
User-defined blocks simulating more complex subsystems can be written from scratch on a default
template or by using the supplied TOPSIM routines as elementary building blocks, and then included in
a personalized library.
Flexibility, one of the goals of the simulator, is achieved in two different ways: first, none of the
parameters of the library blocks is fixed to a default number; secondly, the activation of different parts
of the simulation (program segmentation) to compare different configurations is supported by means of
simple logic variables.
~ ~ p l i c a t i o n programs can be very easily written by drawing the system block diagram on the screen
with the graphic input interface (GII) and letting it convert the drawing into TOPSIM code. Similarly,
the simulation outputs can be displayed by the X Window based graphic output interface (GOI) either
in on-line or off-line mode.

111. The ESA Sbndard TT&C Simulator

Of the many different application programs written with TOPSIM, SIMSAT has the task of
dimensioning all the parameters involved in the link between a TT&C Earth station of the ESA
Tracking (ESTRACK) network and an ESA, or CCSDS compatible, Near-Earth or Deep-Space
Spacecraft, or Geostationary Satellite.
The program allows simulation of simultaneous transmission of telecommand, telemetry and ranging
signals according to the various ESA standards [I]-[4], and models standard ESA Earth station and
spacecraft equipment, although different subsystems characteristics can be easily introduced should the
need arises.
The most difficult task SMSAT supports is the selection of telemetry and telecommand subcarrier and
ranging tone frequencies, and their modulation indexes minimizing mutual interference and
intermodulation due to transponder non-linearity and modulators' spurious signals.
Available simulation outputs are qualitative measurements (eye patterns, scattering diagrams), statistical
estimates (timing and phase jitters, ranging and Doppler mean and r.m.s. values), error rates (telemetry
and telecommand bit and symbol error rates, ranging erroneous ambiguity resolution probability),
power measurements and power spectrum evaluations.
Being SIMSAT based on the ESA funded satellite communications simulator, most of the subsystems
used in both the Earth and the space segment are standard library blocks. For those, trimming the
various parameters and introducing non-ideal effects (imbalances, skew, non linearity, AMIPM, phase
noise, etc.) according to both equipment specifications and measurement results has been the major task
in building the simulator.
On the other hand, the blocks simulating the ranging equipment had to be written from scratch.
RangingIDoppler subsystems are in fact not normally contemplated among basic communications
equipment.
The standard ESA tracking system, called the Multi Purpose Tracking System (MPTS) has been fully
modeled, including its sequence of operations (carrier and tone acquisition and tracking, code ambiguity
resolution, range and Doppler measurement.)
Among the blocks written to simulate the MPTS are the ranging code and tone generators, the replica
code and tone generators, the frequency-steered digital tone phase locked loop, the IF and digital
correlators, the time interval counters and the processing and control module making sure that the
sequential steps of the tracking process are correctly performed.

A. The ESA TT&C Systems

The standard ESA uplinking of commands to the spacecraft (telecommand) is specified to use the
following modulation scheme: the telecommand data, which is binary Non-Return-to-Zero-Level (NRZ-
L) encoded, phase shift-keys (PSK) a sinusoidal subcarrier (8 or 16 Hz); the composite video signal
then phase modulates (PM) the sinusoidal uplink carrier together with the ranging video signal.
The ranging signal [2], [7], [8] is a hybrid signal composed of a special code phase modulating the
ranging tone. The resulting video signal phase modulates the uplink carrier sharing its power with the
telecommand signal.

The uplink signal is therefore given by:

SU(~) = 4 2 ~ ~ C O S [~ n fo t + ~ T C STC(t) + ~ R G SRG(t)]
where

STC(t) = dTC(t) cos(2 n fTc t + IZI)
is the telecommand video signal,

SRG(t) = C O S (~ n fr t + mr rn(t))

is the ranging video signal, and

: uplink signal power
: uplink carrier frequency
: telecommand uplink modulation index
: ranging uplink modulation index
: telecommand baseband data stream
: ranging code
: telecommand subcarrier frequency
: ranging tone frequency
: ranging code modulation index
: telecommand subcarrier initial phase

Telecommand and ranging uplink modulation indexes are selected in order to optimize the TT&C link
budget.
For the telemetry signals transmitted from the spacecraft to the Earth station, both NRZ-L and Split-
Phase-Level (SP-L) binary encoding, Reed-Solomon, Convolutional or Concatenated (Reed-Solomon
plus Convolutional) channel encoding, and sine-wave or square-wave subcarriers may be selected
depending on the bit rate and the mission requirements. The resulting video signal finally phase
modulates the downlink carrier with the ranging signal which has undergone phase demodulation,
filtering and automatic gain control (AGC). Due to the limited filtering performed in the transponder,
the ranging signal is normally accompanied by the fed-through telecommand signal. Therefore,
telemetry, telecommand, ranging and thermal noise share the downlink power.

The downlink signal is given by 181:

where

is the telemetry video signal in case of sinusoidal subcarrier, and

StTC(t) is the filtered and level controlled telecommand video signal,

StRG(t) is the filtered and level controlled ranging video signal,

n(t) is the thermal noise in the transponder ranging channel, and

: downlink signal power
: downlink carrier frequency
: telemetry subcarrier frequency
: telecommand echo modulation index
: ranging effective downlink modulation index
: noise downlink modulation index
: telemetry modulation index
: telemetry baseband data stream
: telemetry subcarrier initial phase

Calculations of the downlink modulation indexes are reported in [6] whereas analytical expressions for
SIRG(t) are given in [8].

B. Modeling the Tracking System

The ranging and Doppler tracking system (MPTS) has been modeled by writing a series of user defined
blocks. Only the most important features will be described here. Detailed descriptions of the equipment
can be found in [7], 181.
The ranging modulator is made up of a special code generator, a tone generator and a linear modulator
where the code synchronously modulates the tone with three operations dependent modulation indexes.
The code is a periodic signal actually composed of subcodes in a proper sequence and was design to
allow fast ambiguity resolution. The resulting video signal is fed to the uplink modulator for modulation
with or without the telecommand signal.
The Doppler unit performs integrated Doppler measurement on the downlink carrier and estimates the
expected ranging tone frequency.
The ranging demodulator performs an I-Q correlation between the received IF ranging signal and the
replica ranging tone generated on the information from the Doppler unit. After conversion to baseband
by multiplication with the recovered carrier, the phase error is sent to the digital tone PLL. This
technique (tone frequency steering) has been devised to use very narrow loop bandwidths yet without
having too long acquisition times. When the loop is locked, the quadrature correlator IF output is
correlated with the locally generated replica code in phase and quadrature. The downconverted output
is filtered and fed to the code ambiguity resolver where the ambiguity resolution logic is implemented.
The processing and control module interfaces with the various units, supervises the various stages
involved, i.e. the carrier and tone acquisition, the sequencing of codes for ambiguity resolution, the
measurement proper, and generates the required statistical outputs (range and Doppler jitter and bias,
probability of erroneous ambiguity resolution, etc.)

C. Simulation Examples

Fig. 1 shows the simulated ESA TT&C space and ground segment. Some of the blocks shown are
actually macro blocks made up of several elementary blocks like the Ranging System whose internal
structure is depicted in fig. 2.
Fig. 3 is a typical result of the system and detailed design phase of a project, the optimization of the
satellite transponder back-off. The figure depicts the estimated telemetry BER for the IS0 spacecraft as
a function of the selected back-off.
Fig. 4 shows the simulated ranging spectrum of a CCSDS compliant mission whereby the ranging tone
is fixed at 100 kHz. The tone itself, the sideband created by the code modulation and the odd harmonics
of the tone are visible. This kind of plots can be used to select the telemetry subcarrier frequency.
Fig. 5 shows the worst case in-phase and quadrature ranging correlators output for the IS0 mission and
is used to determine the minimum code integration time necessary to perform the ambiguity resolution
with the mission specific probability of error.
Fig. 6 shows the in-phase ranging correlator output during ambiguity resolution for the CLUSTER
spacecraft when no noise is present. The actual curve shows a 10% reduction with respect to the design
value, due to the limited bandwidth of the flight transponder. This example demonstrates the tool
capability to quantify system performance degradation caused by subsystem non compliant with
specifications.
Fig. 7 and 8 respectively show the simulated and measured spectra at the output of the transponder. Due
to the limited bandwidth of the modulator, spurious lines at the even harmonics of the bit rate are
generated. Note the almost perfect match between simulation and measurement.
Comparisons between simulated and measured telemetry bit error rates (BER), for the cases of
telemetry only and simultaneous telemetry and ranging, are shown in fig. 9. The theoretical BER value
for the telemetry only case is also included. The maximum difference between simulation and
measurement is some 0.2 dB, of the same magnitude of the test equipment measurement accuracy.

HV. Future Developments

ESA is currently considering the use of bandwidth and power efficient (suppressed carrier) and spread-
spectrum modulation schemes for TT&C support of future missions.
The next generation modems are being introduced in SIMSAT to replace the present standard PSWPM
modulation. Besides, since suppressed carrier signals are deemed more sensitive to Doppler shifts and
rates, a dynamic satellite link simulator will be added to TOPSIM. The link simulator is to compute the
link geometry parameters (slant range, Doppler shift and rate, elevation angle, etc.) and derive link
budget parameters (carrier-to-noise density ratio, EbINo, etc.) versus time. The generated output file
will then feed the present simulation program so that a dynamic simulation is performed.

V. Conclusions

Based on TOPSIM, a digital computer simulation tool tailored to ESA's requirements in the field of
space communications, the simulation template for ESA's standard ground and space TT&C equipment
has been developed. The very accurate modeling of the various ground and space TT&C subsystems
has resulted in very good matching between simulation results and measurements performed on the
equipment itself. Thanks to the achieved accuracy, the simulator is very extensively used:
. during conceptual system design (feasibility or Phase A) to trade off various configurations of the

same system or different systems performing the same functions;
. during detailed design phase (phase B) to determine mission specific set-ups (modulation indexes,

loop bandwidths, correlation times, carrier and subcarrier frequencies, etc.);
. during the implementation phase (phase CID) to evaluate system performance under the predicted

mission impairments for which analytical solutions do not exist;
. after launch to simulate the effects of subsystem degradation's occurred during the mission and

validate corrective actions on a model prior to trying it out on the flying spacecraft.
Therefore, although final radio frequency compatibility tests between the space and the ground segment
are performed on the actual hardware as prescribed by the ESA standards [I], the complete design of the
TT&C link is done by simulation. Potential problems are likely to be discovered by simulations much
earlier than the expensive flight hardware is available for testing thereby potentially minimizing
schedule risks and program costs.

The performance of the simulator with respect to the actual equipment has encouraged the development
of a new template including future ESA modulation schemes and a dynamic satellite link simulator.

VI. References

European Space Agency (November 1989), RF & Modulation Standard, PSS-04-105, Issue 1.
European Space Agency (April 1990), Ranging Standard, Vol. I, Direct Earth-to-Space Link, PSS-04-104, Issue 1.
European Space Agency (September 1989), Telemetry Channel Coding Standard, PSS-04- 103, Issue 1.
European Space Agency (March 1979), S and SLi Band Coherent Transponder Specifications, PSS-48, Issue 1.
European Space Agency (1986), TOPSIM IV, Design and Implementation of Software for Simulation and Analysis of
Communication Systems, ESAlESTEC Contract No. 6981/86/ML/JG.
R. De Gaudenzi and M. Nahvi (1989), Telemetry degradation due to the ranging signal of the multipurpose tracking
system, CCSDS proceedings, RF and Modulation SubpanellE, NASA Ames Research Center, CA.
R. De Gaudenzi, E. E. Lijphart and E. Vassallo (1990), The New ESA's MPTS, ESA Journal, Vol. 14, No. 1.
R. De Gaudenzi, E. E. Lijphart and E. Vassallo (1992), A New High Performance Multi-Purpose Satellite Tracking
System, IEEE Transactions on Aerospace and Electronic Systems, Vol. 28, No. 4.

Figure 3. Telemetry BER vs. TWTA back-off

fr=Ia, kHz. Ncode-12, mRG..I.Orad

-20 I- I I , -I

20WCO 300000 4mml
Frequency (F-FO) IHzl

Figure 4. Ranging signal spectrum

Ranging Ambiguiily Resolution Phase

Figure 6. CLUSTER Ranging Correlation

1000

800

600

," Li
- E

0
a
0

-200 - -

-400 I I I I I I I I I

0 200 400 600 800 I000 1 200 1400 1600 1800 2000
NORMALED INTEGRATION TIME In51

Figure 5. IS0 Ranging correlators output
IN-PHASE CORRBLATOR OUTPUT DURJNG AMBIGUITY RESOLUTION PHASE

I I I I I I I I I

- I\ -
?! I

r l C ; I
I
I I - I I

C"
I

I
I

-

Figure 7. Simulated transponder output

RL -30 .00 ,dBm MKR 8 1 FRQ 70.017, MHz ,

RTTEN 10 dB - 6 0 . 2 2 dBm

I I
I i

I i I . . i 1
CENTER 70 .000 [HZ SPRN 5.000 !Hz

#RE 3 .00 kHz *UB 1.00 kHz * S T 1 5 0 . 0 msec

Figure 8. Measured transponder output

BIT ERROR RATE COMPARISON

,a
, - Theor RNG OFF

I

----+-- Sirn RNG OFF
!

I , -..
I * - - Meas RHG OFF

Figure 9. Simulated and measured telemetry BER

5. Simulation Page 1091 . , a . * .,+
SD.5.a A General Mission Independent Simulator (GMIS) and 1093-1100 , ,

Simulator Control Program (SCP)
Paul L. Baker, J . Michael Moore, John Rosenberger

rrir

SD.5.b A Reusable Real-Time Object Oriented Spacecraft Simulator 1101 --;zy+$j 2 :
Eric Beser

SD.5.c * Test/Score/Report: Simulation Techniques for Automating the 1103-1109~ ('<':'
Test Process

Barbara H. Hageman, Clayton B. Sigman, John T.
Koslosky

,Y.< /

SD.5.d Spacecraft Data Simulator for the Test of Level Zero 1111-1120 '=::: t
Processing Systems

Jeff Shi, Julie Gordon, Chandru Mirchandani, Diem
Nguyen

* Presented i n Poster Session

A General Mission Independent Simulator (GMIS) 3 s q a - q
and Simulator Control Program (SCP)

Paul L. Baker (GST Inc.)
J. Michael Moore (NASNGSFC)

John Rosenberger (CTA Inc.)

The Pur~ose of GMIS and SCP

GMIS is a general-purpose simulator for testing ground system software. GMIS can be adapted to
any mission to simulate changes in the data state maintained by the mission's computers. GMIS
was developed in Code 522 NASA Goddard Space Flight Center. The acronym GMIS stands for
GOTT Mission Independent Simulator, where GOTT is the Ground Operations Technology
Testbed . Within GOTT, GMIS is used to provide simulated data to an installation of TPOCC - the
Transportable Payload Operations Control Center . TPOCC was developed by Code 5 10 as a
reusable control center. GOTT uses GMIS and TPOCC to test new technology and new operator
procedures.

Ideally, mission operations staff should have a variety of simulators to serve several purposes:

Prediction - compute the future state of a system
- Evaluate the effects of a proposed operational step, i.e., to answer "what if ' questions.
- Verify that the planned steps will cause operations that lie within safety and other

operational constraints.

Test - supply a time-variable system state to exercise subsystems.

Training - create a realistic environment for training staff.
In practice, missions that use TPOCC have one or more simulators. Consequently, GMIS was not
developed to fill a void; rather, it was developed to offer an alternative with certain advantages:

1) Convenience - GMIS is easy to setup and use.

2) Extensible - it is easy to add more simulation functions.

3) Speed - eventually, we expect GMIS to run very quickly.
In the present version, we have not achieved these goals in equal measure. The convenience factor
is high, but the speed seems modest. The features that make GMIS extensible are useful, but there
is room for improvement. In this report, we will relate some feedback from current GMIS users
and indicate how we plan to improve the simulator in these three areas.

The GMIS manages the timing and external data links for optional simulation modules. It accepts
any number of compiled or interpreted modules. Compiled modules are written in C or C++. The
interpreted modules are written as procedures in TSTOL - TPOCC @stem _Test and Qerations
Language . This language is familiar to flight operations team members, but it is not especially -
easy to use. In fact, programmers often find it difficult to use because it looks familiar but has a
different syntax compared to programming languages. For this reason, the project developed the
SCP as a convenience feature.

The SCP is a graphical, syntax-aware editor for TSTOL. Although SCP is really a simulation
script editor, its name stands for Simulator Control Program, for historical reasons. SCP helps
you write a correct TSTOL procedure and then lets you run it with a click of a button. SCP has an
embedded copy of the TSTOL interpreter so that it can detect and report syntax errors locally.
Finally, SCP reads and displays all the variable names in the data server's database. That feature
helps the user find the correct spelling for system variable names.

60ll Scriot Builder (U1.3) g; SCP and GMIS Interaction Panels

GMIS always shows the updates to values when it receives them from SCP. The GMIS panel is
shown in Figure 2 just after the SCP has executed the script in Figure 1. Compiled simulation
modules are usually designed for a higher throughput and could swamp the display with output.
Consequently, GMIS does not automatically show updates for such modules. However, compiled
simulation modules can write progress messages to the display, if they wish.

File Command I
Script Name: plb2

The SCP has two panels that help a user write TSTOL. Suppose we want to add another statement
to the procedure. We only need to click the mouse at the point where we want the new statement to

appear. Then, we can go to the Statement Builder

Simple and easy to use Motif control panels are
responsible for much of the convenience of
GMISISCP. The panels strive for the same look-and-
feel as the panels that are used in the TPOCC control
centers.

The SCP has a main panel, called the Script Builder,
that is used to edit TSTOL scripts. Figure 1 shows a
copy of the panel at a point where the user has
completed a simple script.

This script will loop three times with two seconds per
loop, and it will set the value of the loop index, i, in
the system variable, tpex-s 1 i 1.

The script appears within a Motif Text Widget. All of

G e l and pull down th< Script menu. That menu
$D GMlS U1.3 shows the basic statements of the TSTOL language

Figure 1: SCP Main Panel the Widget's editing commands are available. The File
Menu has the usual options for saving and retrieving
copies of the script. The Command Menu has only one

option: Execute. When the user selects that option, the script runs and sends data values to GMIS.
From GMIS, the updated values find their way to the data server.

File Simulator Display as illustrated in Figure 3.

Many of the TSTOL constructs in the menu require
Mission Name: tpocc

simulator Status: started

Most Recent Changes:

Sinulation Started -------------------

40 TWCC-DECOM TPEX-SLII I
42 TPOCC-DECOM TPEX-SLII 2
44 TPOCC-DECOM TPEX-SLII 3

multiple lines. For example, all the block
structures have a starting and ending statement. In
those cases, the statement builder will insert
multiple lines and the user simply clicks within the
block to add the statements that belong there.
Moreover, some of the TSTOL constructs require
parameters. That is indicated in the menu by a
series of periods after the name. The Statement
Builder helps with two of those: Let and For.
When the user selects one of these constructs, the
main area of the Statement Builder changes to
display a fill-in form with the required parameters.

Figure 2: GMIS Main Panel

Figure 4: SCP Data Points Panel

When the script needs a TPOCC system variable name
as a parameter, the user can type the name or click on
the name in the Data Points panel. The Data Points
panel lists all the current data server variables. For
example, the user has just clicked SWP- SUP in
Figure 4. Just before the name was selected, we
started a L e t statement in the Statement Builder
window. When the name is selected, SCP copies it into

Figure 3: SCP Statement Menu the first entry field of the L e t statement shown in
Figure 5.

The statement that you construct in this window will be copied into the script when you click on
the Apply option. In this case, we made an error - f oobar is not a symbol TSTOL will
recognize. We inserted this statement anyhow to produce error messages intentionally. When we
execute a script, SCP brings up another window to show the dialog with the TSTOL process.
Figure 6 shows the dialog for this script and the TSTOL error messages.

LET

Figure 5: SCP Statement Builder - Parameter Form for "Let" Directive

:(7 GOT1 TSTOL Command Panel: plb2

[POI 1069 Procedure GENERIC completed,
LOO1 TPOCC TSTOL Server initialization complete,
[POI 1069 Procedure TPOCC-SERVER completed,
[OOI 1002 TPOCC STOL (TPOCC) processor, TPOCC-TSTOL-25830, activated
[OI 1 START tstolaaaa22205
[POI 1080 Warning proc name (TSTOLAAAA22205) does not match name in PROC
[POI 1070 Procedure TSTOLAAAA22205 started,
[PI] TSTOLFIRAA22205/2: FOR i = 1 TO 200 DO
[PI I TSTOLAAAA22205/3: let tpex-sl il= i
[PI] TSTOLAAAA22205/4: LET SIP-SUP#TPOCC-DECOM = foobar
1001 1011 syntax error, 1 ine 4 in "/mako2/tpocc/TPOCC11~HP/procs/tstolaa~
LO01 1012 in "LET SWP-[SUP#TPOCC-DECOM = foobarl "
[OOI 1038 Error - stopped at line 5: ""
[AS] Enter "GO" to continue +,,

Figure 6: SCP - TSTOL Script Execution Panel

GMIS Software Desipn

The design for GMIS has several distinguishing features that are illustrated in Figure 7. A major
design decision was to provide and maintain two copies of the system variables. The simulator
modules read from one copy and write to a second. At the end of the time step, any variable that
has changed is forwarded to the data server. At the same time, the first copy is updated from the
second. The point of this feature is that it allows multiple modules to contribute to the next system
state. The full state is written out at once after all the simulation modules have taken a turn.

The current version allows any number of internal, compiled simulation modules. In addition, the
SCP can interpret TSTOL procedures and send new data values to the GMIS. The SCP is running
asynchronously with the GMIS, but the internal modules are synchronized to a strict clock. The
internal timing is maintained by examining the system clock, computing the amount of idle time
between cycles, and then programming the Xt System software for the required delay. The basic
timing cycle is illustrated in Figure 8.

The current version has the feature - or the implementation restriction, depending upon your
viewpoint - that it is single threaded. Thus, the software cannot receive from the SCP when it is
running a model, nor will it start its scheduled time step while a read operation is in progress. In
future versions, we would like to be able overlap the data server communication with the other
operations by providing two or more separate threads.

current system variables

system variables, next time step

Figure 7 - The Data Flow in GMIS
A programmer who wants to extend GMIS with compiled modules must use C++ in the current
version of GMIS. C++ classes provide most of the routine simulator functions such as timing and
data communications. The functions are inherited by the simulator modules in the following way.
To write a new module, the programmer defines it first as a class that inherits from the
ModelEngineInte$ace class. Then the programmer makes a single instance of the class, which is
the actual simulator module. When the instance is constructed, it will connect itself with the GMIS
infrastructure automatically.

(asynchronous) Mainloop Models Data Server

Figure 8 - GMIS Timing Diagram

1097

I STvar I

1 I

Figure 9: The Major Class
Relationships in GMIS

The ModelEngineInte$ace class inherits its timing
properties from a utility class, called
ScheduledObject, and it acquires access to the
system variables by a composition operation. In
simple terms, it contains a pointer to a list of
system variables. There is a full set of utility
functions that come with the list as part of a class
called Tvar. The GMIS effort borrowed the Tvar's
from another project. Because theTvarrs didn't do
everything we needed, we made Tvar a subclass of
a new class STvar that added the new functions.
This programming trick avoided any modifications
to Tvar, initially anyhow. We will discuss
software maintenance experiences later. The class
relationships are summarized in the Figure 9.

Features Provided. Features Used

The GMIS simulator has been in operation for about 18 months. It has been used in experiments
in the GOTT and by three other projects. The feedback has been surprising because the features
that are used the most were not the most important during the development. Also, some of the
most important features during development are used little, or tend to be in the way of use.
Finally, we had to add features for two projects because there was a reasonable need that was not
satisfied by the baseline version. As a result, there is currently a baseline version and two
variations. The feature sets of these versions are summarized in the Table 1.

As we expected, the built-in connection to the data server has made GMIS a valued tool for testing
TPOCC related software. The interpreted TSTOL modules have proven more valuable than
expected. On the other hand, the class libraries have fared poorly in practice. The classes are not
simple enough to encourage reuse, although a lack of familiarity with C++ may also be a factor.
Moreover, the C++ class for data server access, Tvar , has proven very hard to maintain. Also,
the T v a r class only handles asynchronous data and it proved impossible to extend it for
synchronous data. Consequently, we had to write a special version of GMIS for a project that
requires synchronous data simulation . Our conclusion is that it may not be a good idea to wrap a
C++ class around a C library that is not well understood. This is certainly the case with T v a r and
the TPOCC data services library.

A surprising requirement has been the need for simulations in which the simulation calculation is
performed off-line and written to tape. The GMIS must then read the tape and supply the data at a
steady pace controlled by the simulation clock. In principle, there is no reason that an off-line
calculation could not be performed on-line. Indeed, one could keep the simulation software
wherever it is developed and provide simulated data over a network on demand. In practice,
software does not move freely and networks are not always connected to each other. For now,
this requirement is a real one for NASA and it required a special version of GMIS.

Table 1: Summary of GMIS Features and Their Extent of Use

Key:

6. Reusable C++ Classes

7. TPOCC Data Server Classes

8. Interpreted TSTOL Simulation Modules

9. Simulation Tape Playback

0 feature not supported
6 feature supported but not used
O feature supported and used extensively

6

6

O

0

Note:
Version 1.0 is the baseline version; Version 1 .X is a notation
for the several specialized variants.

The Future of GMISISCP

--

O

As the preceding summary shows, there are valuable features in GMIS that complement other
simulation facilities. However, there is still room for improvement in the three qualities we deem
important: convenience, extendibility, and speed.

In the area of convenience, it has long been our goal to have fast, compiled, simulation modules
that we can start on demand while GMIS is running. Tpese dynamically loaded modules would
give the experimenters in the GOTT laboratory more flexibility in their tests. This feature should
appear in the next version. The overall architecture of GMIS will then realize the design shown in
Figure 10. Presently, all the compiled modules are liriked statically, but that will change to
dynamic loading in the next version.

In principle, the module that connects GMIS and SCP is just another producer module. Similarly,
the module that connects to the data server is just another data consumer. In practice, it may be
difficult to build a dynamically linked module without revising the extensive body of TPOCC code
that is reused in these modules. Consequently, these modules will always be statically linked, but
compilation options will determine whether the modules are present or not.

The extendibility of the current version is based on C++ classes that offer a variety of scheduling
features as well as an encapsulated access to TPOCC data services. Only the simplest scheduling
features are used, however, and the encapsulated access is often more of an obstacle than an
advantage. For this reason, the next version of may be written in C, without classes.

The speed of GMIS should be improved considerably if we could overlap simulation calculations
with system variable output. We plan to explore this possibility as D& - Distributed Computing

Environment - is phased in. DCE has a built-in capability for multiple threads that should support
simultaneous network communication and computation.

For the future, the GOTT laboratory is not limited to TPOCC control center software. In the past,
the laboratory has hosted OASIS software and we are currently experimenting with software from
Storm Technology, Inc. For this reason, the GMIS should be independent from a particular
control center.

Opt ion al

Figure 10: Overall Architecture for GMIS

Contact Information

Paul L. Baker
Global Science and Technology, Inc.
64 1 1 Ivy Lane, Suite 6 10
Greenbelt, MD 20770

John Rosenberger
CTA Incorporated
61 16 Executive Blvd.
Rockville, MD 20852

J. Michael Moore
Software Automation Systems Branch
Code 522
NASA Goddard Space Flight Center
Greenbelt MD 2077 1

Point of Contact

Paul L. Baker
Email: pbaker @gst.gsfc.nasa.gov
Tel. (301) 474-9696

A REUSABLE REAL-TIME OBJECT ONENTED SPACECRAFT
SIMULATOR

Eric Beser
AlliedSigna.1 Inc.

Paper Not Available

3 5 v&6/
TEST/SCORE/REPORT: SIMULATION TECHNIQUES 5'

FOR AUTOMATING THE TEST PROCESS

Barbara H. Hageman
Integral Systems, Inc.

Clayton B. Sigman
National Aeronautics and Space Administration

Goddard Space Flight Center

John T. Koslosky
National Aeronautics and Space Administration

Goddard Space Flight Center

ABSTRACT

A TestIScoreIReport capability is currently
being developed for the Transportable Payload
Operations Control Center (TPOCC)
Advanced Spacecraft Simulator (TASS) sys-
tem which will automate testing of the God-
dard Space Flight Center (GSFC) Payload
Operations Control Center (POCC) and Mis-
sion Operations Center (MOC) software in
three areas: telemetry decornmutation, space-
craft command processing, and spacecraft
memory load and dump processing. Auto-
mated computer control of the acceptance test
process is one of the primary goals of a test
team. With the proper simulation tools and
user interface, the task of acceptance testing,
regression testing, and repeatability of specific
test procedures of a ground data system can be
a simpler task. Ideally, the goal for complete
automation would be to plug the operational
deliverable into the simulator, press the start
button, execute the test procedure, accumulate
and analyze the data, score the results, and
report the results to the test team along with a
golno go recommendation to the test team. In
practice, this may not be possible because of
inadequate test tools, pressures of schedule,
limited resources, etc. Most tests are accom-
plished using a certain degree of automation
and test procedures that are labor intensive.
This paper discusses some simulation tech-
niques that can improve the automation of the
test process.

The TASS system tests the POCCMOC soft-
ware and provides a score based on the test
results. The TASS system displays statistics
on the success of the POCCMOC system pro-
cessing in each of the three areas as well as
event messages pertaining to the TestIScoreI
Report processing. The TASS system also
provides formatted reports documenting each
step performed during the tests and the results
of each step. A prototype of the TestIScoreI
Report capability is available and currently
being used to test some POCCMOC software
deliveries. When this capability is fully opera-
tional it should greatly reduce the time neces-
sary to test a POCCMOC software delivery,
as well as improve the quality of the test pro-
cess.

1. INTRODUCTION

1.1 TASS Background

The Transportable Payload Operations Control
Center (TPOCC) Advanced Spacecraft Simu-
lator (TASS) system has been designed to sup-
port .the development, test, and operational
aspects of Payload Operations Control Center
(POCC) and Mission Operations Center
(MOC) software deliverables. TASS is
designed to test the majority of POCCMOC
low-level requirements. The TASS system
simulates spacecraft telemetry and command

functions. TASS takes advantage of the
TPOCC architecture by using the backup
POCCMOC system configuration hardware
for the simulator, or TASS can be separately
hosted on a streamlined version of the POCCI
MOC. This eliminates the need to schedule
hardware or Nascom lines during various test
configurations. In essence, the user has a sim-
ulator on call at all times.

TASS has the capability to simulate the
Nascom link protocols required to support sat-
ellites and generate simulated spacecraft
telemetry streams using the POCC'sMOC's
operational data base (ODB). TASS validates
spacecraft commands and alters the real-time
telemetry stream in response to those com-
mands. The user can alter the telemetry stream
either by data base mnemonic or by specifying
individual bits in the telemetry frame or
packet. Similar telemetry display pages at
both the simulator workstation and the POCCI
MOC workstation help identify telemetry pro-
cessing irregularities. As part of the system
design, software hooks are available so more
complexity can be added by providing various
dynamic models for the telemetry generating
function.

In the POCCMOC test environment, the
TASS system provides a means for saving and
restoring predefined test scenarios and results,
telemetry stream contents, and data structures
to allow the user to accurately repeat specific
tests, retest with known data, or continue test-
ing from a given point in the test scenario.
These features allow the user to perform
regression tests on new software deliverables
in the shortest possible time.

TASS records all received Nascom blocks and
all received spacecraft commands in history
files that can be viewed for detailed analysis
through the use of an offline utility program.
All system events, errors, operator input, pro-
cedure input recorded in the event log; and
spacecraft memory images that are saved can
be viewed by using the offline utility pro-
grams. After completing the test, the user gen-
erates test reports using the report generation
subsystem. These reports can later be used to
evaluate the test results during the analysis
process.

Unique implementations of spacecraft memory
load and dump capabilities are provided as
well as an NCC communications protocol
when TDRSS support is required.

1.2 TASS System Design

A typical POCCMOC system string is used to
host the TASS software. The hardware config-
uration to support TASS consists of two com-
puters connected by Ethernet and associated
peripherals as shown in Figure 1. These com-
puters are a real-time front-end computer or
processor (FEP) in a Versa Module European
(VME) bus enclosure and a general-purpose
computer or workstation. The real-time FEP is
used to process spacecraft commands and to
build and transmit telemetry streams. The
Hewlett-Packard HP 9000-7 15 workstation
allows the user to configure, control, and mon-
itor the FEP from one or more user terminals.

TASS makes extensive use of the same
TPOCC reusable software that the POCCI
MOC developers use, mainly the user interface
(display and TPOCC Systems Test and Opera-
tions Language (TSTOL)) and the Nascom
interface. The display system is based on X
Windows and fully adheres to the industry-
standard OSFMotif principles. TSTOL is the
user script language which is used to control
the TPOCC application system (either the
POCCMOC system or the TASS system).
TSTOL is also used to develop operational
scenarios and test procedures. Presently,
TPOCC reusable software comprises approxi-
mately 78% of the TASS system. Another
16% of TASS is reusable from mission to mis-
sion, such that only about 6% of TASS needs
to be newly developed with each added POCCI
MOC mission.

1.3 Control Center Configuration

Because of the methodology chosen for the
overall ground system design, no special
equipment or system configuration is required
for TASS. TASS uses the POCCMOC backup
system string and communicates with the pri-
mary POCCMOC system string thru the local
TPOCC switch. In a test configuration, the
TASS input/output data flow at the switch
interface looks llke the Nascom interface to the
primary POCCMOC system string. This

REAL-TIME
FRONT-ENO W I T -

TNIFRTN 4a,\-
NASCOM

OMT INlERFACE 42:-
SERIAL TIME

W E
1 6 7 Q M -
C W A

2 0 8
W E

SCSl
167.0331

DISK
cw 6

MVUE
I67U33.4
cw C

SCSl
DISK

Figure 1. TASS Hardware Configuration

POCC OR MOC
MOR

SOITWARE)

FRONT-END 1 s o k % E) 1
TPOCC
SWITCH

Figure 2. Contiol Center Configuration

architecture is shown in Figure 2.

The TASS system accepts spacecraft com-
mands from the POCCMOC and transmits
telemetry to the POCC/MOC via Nascom con-
nections on both FEPs. The workstations
show displays generated by the TASS and
POCCMOC system.

2. GROUND DATA SYSTEM TESTING

2.1 Software Delivery Test Process

GSFC Control Center Systems Branch is
responsible for testing the software deliver-
ables for the POCCMOC systems in the
TPOCC environment. TPOCC based POCCsI
MOCs support the WIND, POLAR,
SAMPEX, FAST, SWAS, SOHO, XTE,
TRMM, and ACE missions. Testing of these
POCCMOC systems consists of unit testing,
integration testing, and finally acceptance test-
ing.

Unit testing is performed throughout the soft-
ware implementation phase by the POCCI
MOC developers. Unit testing is completed
prior to delivery of the unit for system integra-
tion.

Integration testing is performed before deliv-
ery to the test team. This testing verifies inte-
gration of TPOCC generic software and
POCCIMOC unit software into the POCCI
MOC system and is performed by an integra-
tion manager who is supported by the develop-
ment team.

Acceptance testing is performed by the test
team before delivery to GSFC according to a
comprehensive test plan and procedures. This
testing verifies the functional and performance
requirements and is completed prior to deliv-
ery of the system to operationsluser commu-
nity.

2.2 Automating the Test Process

To achieve the goal of automating the test pro-
cess, several test methodologies have been
prototyped. The most promising concept is
Test/Score/Report. TASS and POCC/MOC
simularities in system architecture, user inter-
face, script language, and project data base

files are some elements that support this sys-
tem concept approach to automate the test pro-
cess.

3.1 Automated Testing in Three Areas

The Test/Score/Report capability currently
being developed will automate testing of the
POCCMOC software in three areas: teleme-
try decommutation, spacecraft command pro-
cessing, and spacecraft memory load and
dump processing. TASS takes advantage of
the ground system attributes in designing the
Test/Score/Report capabilities. Both the TASS
and the POCCMOC systems are using some
of the same reusable building blocks of
TPOCC software and running on the same
hardware architecture. By using this approach,
TASS can easily add features which enhance
the automated test process.

Figure 3 shows the data and control flows
between the two systems. The TASS system
simply establishes a socket connection with
the POCCMOC system in order to make
requests for data and to receive the data. This
connection is transparent to the POCCMOC
system and requires no new software be writ-
ten on the POCCMOC side. The TASS sys-
tem also reads the POCC'sMOCYs system
variable dump file and the ground image file
which both reside on the workstation's disk.
The system variable dump file contains all of
the telemetry parameters located in the opera-
tional data base as well as counters and status
information. This file is needed for initializa-
tion purposes before requests for data can be
made. The ground image file is used to vali-
date spacecraft memory load and dump pro-
cessing.

Telemetry decommutation is tested in two
ways. The first way is by comparing the val-
ues of telemetry parameters decommutated by
the POCCMOC against the telemetry parame-
ters commutated by TASS. Ideally, the
decommutated values should match the com-
mutated values. The second way is by com-
paring the limit specifications previously set
with the status words of decommutated telem-
etry parameters. Every telemetry parameter
located in the operational data base is automat-

r - - - - - -
I POCC/MOC

U '
I I u I

-,--,,J TPOCC LAN L , , - - ; ,
Figure 3. DataKontrol Flow Between TASS and the POCCIMOC

ically checked. Each discrepancy is displayed
as an event message which gives the value of
the decommutated telemetry parameter and the
value of the commutated telemetry parameter.
Summary event messages for the two teleme-
try decommutation tests state the total number
of telemetry parameters which decommutated
correctly, the total number of telemetry param-
eters checked, and the percentage of which
were correctly decommutated.

For spacecraft commanding, the test process
validates the various fields in the Nascom
block header for all spacecraft command
blocks received by TASS and validates the
individual spacecraft commands received in
valid command blocks. TASS also checks
whether the POCCJMOC verified the com-
mands after they were executed by TASS.
This is accomplished by making data requests
to the POCCIMOC for values of command sta-
tus parameters and counters. Summary event
messages are displayed which give the number
of valid command blocks, the number of valid
commands, the number of commands verified
by the POCCIMOC, and the percentages for
each of the above tests.

The spacecraft memory load and dump pro-
cessing is tested by comparing the spacecraft
image maintained by TASS against the ground
image file maintained by the POCCMOC.
This test is performed after memory load data
is sent to TASS from the POCCMOC via a
spacecraft command and after TASS transmits
a memory dump to the POCCMOC via the

telemetry stream. Ideally, the memory values
maintained by TASS should match values in
the POCCMOC ground image file. A sum-
mary event message informs the user of the
number of bytes that miscompared, the total
number of bytes in the spacecraft image, and
the percentage of bytes which had the same
value.

3.2 Scoring the Ground Data System

The initial scoring method will be in terms of
percentages and raw counts. More experience
in testing and interpreting the test results will
be required to develop a better scoring meth-
odology.

3.3 Reporting the Test Results

The TASS system displays statistics on the
success of the POCC/MOC in each of the three
areas as well as event messages pertaining to
the Test/Score/Report processing. The Test/
Score/Report display page shown in Figure 4
is broken up into two sections. The top section
gives the summary counts and scores for the
various tests. The bottom section is a scrolling
region which displays all event messages gen-
erated during Test/Score/Report processing.

The TASS system also provides formatted
reports documenting each step performed dur-
ing the tests and the results of each step. The
user can issue reports for each type of test (i.e.,
telemetry, limits, command, memory loads1
dumps). Report options include showing all

159-17:44:32.7 17014 11 valid commands out of 11 were sent by SWRS POCC. Score = 100% correct. I 159-17:44:32.7 17015 11 commands out of 0 were validated by SWAS POCC. Score = -1% correct.
159-17:45:42.5 17101 145 SCS bute mlscomuares found out of 333 total butes. Score = 56% correct.

Figure 4. Test/Score/Report Display Page

parameters tested or just those parameters
which miscompared or were in error. For
telemetry tests, the report shows the telemetry
mnemonic, the cornmutated value, and the
decommutated value. For limit tests, the
report shows the telemetry mnemonic, the
commutated value, the limit specification and
the status word of the decommutated pararne-
ter, and the decornrnutated value. For com-
mand tests, the report shows numbers of:
Nascom block header errors, command errors,
and commands verified. Finally, for memory
1oadJdump tests, the report shows the memory
address, TASS's spacecraft image value, and
the POCC'sNOC's ground image value.

4. PRESENT STATUS

A prototype of the Test/Score/Report capabil-
ity is available and currently being used to test
the WIND, POLAR, SAMPEX, FAST, SWAS,
and SOH0 POCC software deliveries and the
XTE MOC software delivery. This prototype
includes the "test" and "score" features
described in this paper. The "report" features
(other then the Test/Score/Report display
page) are currently being developed by the
TASS development team and are planned to be
released by early next year. The TASS devel-
opment team is actively worlung with the
POCCNOC test team and software develop-
ers to obtain feedback on the Test/Score/
Report prototype.

5. FUTURE DIRECTIONS

Basically we have completed our prototyping
stage of this project. We have been successful
in implementing this methodology in several
projects as mentioned in the previous section.
Future objectives are to automate more of the
test process by: 1) including additional
subsystem testing such as attitude, events,
packet extraction, history, NCC, and' database
testing; 2) improving the scoring
methodology; and 3) providing more
functionality and options for the report
process.

REFERENCES

NASA GSFC, (June 1994). Transport-
able Payload Operations Con-
trol Center (TPOCC) Advanced
Spacecrafi Simulator (TASS) System
Requirements Document (Revision
4).

NASA GSFC, (May 1994). Transport-
able Payload Operations Control
Center (TPOCC) Advanced Space-
craft Simulator (TASS) System
User's Guide for Release 7.

NASA GSFC, (May 1994). Transport-
able Payload Operations Control
Center (TPOCC) Advanced Space-
craft Simulator (TASS) Detailed
Design Specijication for Release 7.

NASA GSFC, (February 1994). Trans-
portable Payload Operations Con-
trol Center (TPOCC) Detailed
Design Specijication for Release 10.

Acknowledgements -- We wish to extend
special thanks to the following personnel for
ideas and review of the report: Carroll Dudley
(NASA GSFC), Luan Luu (Integral Systems,
Inc.), Nancy McCluer (Integral Systems, Inc.),
and Darlene Riddle (Integral Systems, Inc.).

--

S4/2B3
SPACECRAFT DATA SIMULATOR

FOR THE TEST OF LEVEL ZERO PROCESSING SYSTEMS f

Jeff Shi, Julie Gordon
RMS Technologies, Inc.

Code 520.9

Chandru Mirchandani, Diem Nguyen
Loral AeroSys

Code 521

NASA, ~ o d d & d Space Flight Center
"Greenbelt, Maryland 2077 1

ABSTRACT

The Microelectronic Systems Branch (MSB) at Goddard Space Flight Center (GSFC) has
developed a Spacecraft Data Simulator (SDS) to support the development, test, and verijkation of
prototype and production Level Zero Processing (LZP) systems. Based on a disk array system,
the SDS is capable of generating large test data sets up to 5 Gigabytes and outputting serial test
data at rates up to 80 Mbps. The SDS supports data formats including NASA Communication
(Nascom) blocks, Consultative Committee for Space Data Systems (CCSDS) Version 1 & 2
frames and packets, and all the Advanced Orbiting Systems (AOS) services. The capability to
simulate both sequential and non-sequential time-ordered downlink data streams with errors and
gaps is crucial to test LZP systems. This paper describes the system architecture, hardware and
software designs, and test data designs. Examples of test data designs are included to illustrate
the application of the SDS.

1. INTRODUCTION

Simulation of spacecraft data is a basic function of any space and ground data system. Over the
years, many simulation systems have been developed to support spacecraft and ground system
Integration and Test (I&T). However, very few are capable of testing LZP systems that are based
on CCSDS recommended data formats [1][2] and require large unique test data sets with complex
data scenarios.

In 1992, the Microelectronic Systems Branch (MSB) at GSFC developed a Spacecraft Data
Simulator (SDS) to support it's Very Large Scale Integration (VLSI) LZP system prototype
phase one (VLSI LZP-1) development [3]. The VLSI LZP-1 is capable'of performing LZP
functions for CCSDS packet telemetry at rates up to 20 Megabits per second (Mbps). In order to
test this system, it was necessary to simulate realistic streams of spacecraft data, including a
variety of errors and data gaps. The SDS was used to simulate data streams of 750 Mbytes each
(i.e., 5-minute sessions at 20 Mbps) with all valid timecodes and sequence counts. To emulate
onboard tape recorders, reversed data streams were generated for playback sessions. To test the
overlap deletion function, the forward real-time sessions and reversed playback sessions were
simulated with regions of overlap at the beginning and end of sessions. Many types of errors were
inserted into selected frames and packets in both overlap and non-overlap regions to fully exercise
system capability of handling errors.

The SDS was significantly enhanced through the development and deployment of Fast Auroral
Snapshot Explorer (FAST) Packet Processing System (PPS), that is based on the VLSI LZP-1
architecture [4]. The use of Solid-State Recorders (SSR) onboard FAST created many

complicated data scenarios never before encountered in conventional tape recorder-based missions
[5]. New functions were added to the SDS to simulate the scenarios, such as, downloading
thousands of data fragments in a single session, interleaving real-time and playback data with
identical packets being present on different Virtual Channels (VC), overlap occurring anywhere in
a data stream, and packet sampl-ing that resulted in non-contiguous packet sequence counts. These
enhancements enabled the SDS to be used successfully in the FAST PPS system development,
integration, and acceptance testing.

Early in 1994, the SDS was upgraded further to support the development of VLSI LZP prototype
phase two (VLSI LZP-2) [6]. Simulation software was modified to support CCSDS AOS data
formats, and key hardware components were upgraded increasing the maximum data output rate
from 25 to 80 Mbps.

2. SYSTEM OVERVIEW

The Spacecraft Data Simulator consists of a hardware subsystem and a software subsystem. The
hardware subsystem provides processing power, data storage, a network interface, and a telemetry
interface. The software subsystem takes in user specifications and generates simulated CCSDS
telemetry data accordingly.

The hardware subsystem, shown in Figure I, contains a simulation processor and a 5.5 Gbytes
disk farm. The simulation processor is contained in a Versa Module Eurocard (VME) equipment
rack; it consists of a Master Controller card, an Ethernet Interface card, a Disk Controller card, a
Memory card, and a MSB-developed Data Generator (DG) card. All cards except the DG-card
are Commercial Off-the-shelf (COTS) components that provide system base functions for data
processing, buffering, and network interfacing. The DG interfaces with the disk farm andis used
to store simulated telemetry data in the disk farm during offline data generation. During a test
session, the DG retrieves the data from the disk farm, serializes it and outputs it through an
RS-422 interface or an Emitter Coupled Logic (ECL) interface. The data rate is user-selectable
from 0 to ~O 'MHZ. The disk farm parallel architecture enables data transfer at rates up to 128
Mbps. The disk farm capacity is configurable from 5.5 to 40 Gbytes.

The software subsystem consists of two major components: the Test Pattern Generator (TPGEN)
and the Large Volume Data Generator (LVGEN). TPGEN is a menu-driven software package
that can generate small sets of Nascom blocks, and conventional and AOS CCSDS frames and
packets for up to 32 VCs and 256 Application Processes (AP). Packet and frame placement is
user-defined. The data can be either Cyclic Redundancy Checked (CRC) or Reed-Solomon
encoded, and many types of errors can be inserted in the data. TPGEN has been used to support
many missions including the Topographic Explorer (TOPEX); Solar Anomalous and
Magnetospheric Particle Explorer (SAMPEX); and FAST.

LVGEN is a script-based package. It uses TPGEN to configure "base sets" of frames or blocks
when the ratio and placement of packets from all sources are defined. It then switches among the
"base sets" while generating the test data set, with all timecodes and sequence counts increment
correctly during switches. The only restriction is that all "base sets" must share the same source
list.

LAN

Ser~al data output up to
80 Mbps (ECL mterface)

Serlal data output up to
25 Mbps (RS422 mterface)

Ser~al data mput up to

0
25 Mbps (RS422 mterface)

Code 521 Commerc~al
KEY: VLSI Cards Components

Figure 1. System Block Diagram

Figure 2 illustrates the information and process flow in SDS data set generation. Spacecraft needs
are interpreted as requirements and operational scenarios. Requirements are used to design the
data set and to specify the errors to be injected. The data set design includes simulating the
expected order, frequency, and content of the data from the spacecraft. This step produces external
files defining the complexity of the data, scripts encompassing the order and rules for error
injection and data generation, and the TPGEN catalogs (configuration files) defining the repeatable
sets of frames. LVGEN uses the products from the data design and error injection stage to
generate the data. The user interface downloads the test setup, and activates the DG to output the
simulated data stream using the LVGEN-generated data.

When a "base set" must contain a larger number of frames than can be defined in a single TPGEN
configuration file, it is broken down into "subsets," each with a separate configuration file.
Different versions of the same "subset" may be used to simulate the forward playback scenario
where identical packets from one source can be transmitted on more than one VC. The start count
for each file created by LVGEN defines the regions of overlap between the sessions.

For "complex data," where the transmission of packets out of time order by a spacecraft must be
simulated, LVGEN fills the sequence count and timecodes for each packet from external files that
are generated by a Packet Header Definition (PHD) utility based on the test scenarios. The
simulated science or engineering source data can be simple repeated patterns, or can be read from
files that may contain real spacecraft data, still images, or other interesting data patterns.

3. SDS APPLICATION

The SDS was used to functionally test the FAST PPS system through system development,
integration, and acceptance testing. This section will describe the strategy used to test the FAST
PPS which included exercising the functionality and performance of the PPS. The strategy was to
initially develop the minimum number of data sets which would base-line the functionality of the
FAST PPS; these data sets will have varying degrees of complexity. The next step was to place
errors in the initially-generated data sets that would cover the range of errors and performance
metrics to fully stress the PPS.

3.1 CALIBRATING DATA SET GENERATION

The first data set that was generated was referred to as 'clean' or 'calibrating,' i.e., with no errors. It
consisted of a single session of block-encoded frame data, with 564,131 blocks containing
300,600 telemetry frames that simulated a 30-minute session at 1.5 Mbps.

The calibrating data set simulated the expected proportions of the VCs as closely as possible.
Within each VC, relative proportions of Application Process Identifiers (APID) were configured
as specified in the FAST Data Management Plan. In order to expedite simulation, frames of the
same VC occurred in groups of not more than 1280 frames within the telemetry stream. The data
set consisted of playback and realtime interleaved data, bound on both sides by VC 7 fill data (see
Figure 3).

564,131 blocks (300,600 frames) 111111

T t t t t
PB Data#l Event Sources PB Data#2 NTLM Blocks PB Data#3

Fill

Figure 3. The Calibrating Data Set Composition

,.f
The playback data, VC 1, was dumped three times during the session at a rate of 1 out of every 5
frames downloaded. During the time VC 1 data was output, VC 2,3, and 4 data continued to be
read out in a similar order as when no VC 1 data was being dumped, although the contents of each
VC were slightly different due to simulation limitations. The first VC 1 dump occurred at the
beginning of the session; the second dump occurred in the middle of the session; and the last
dump was a partial dump that occurred near the end of the session. VC 0 was output at a rate of 1
frame every 8 seconds (approximately 1 frame every 1394 frames at 1.5 Mbps). VCs 2,3, and 4
were distributed throughout the scenario in alternating groups of each VC. For this data set, it was
decided that VCs 2 ,3 and 4 would have relative densities 8:0.125: 1. One APID had all its packets
in VC 3. Several other APIDs had packets in both VC 3 and 4; these APIDs were in VC 4 most
of the time but switched to having small numbers of packets in VC 3 no more than 20 times
during the course of the session.

A group of "non-telemetry" blocks was introduced in the middle of the data stream, to test
telemetrylnon-telemetry filtering. These blocks had different destination codes or message type
codes.

The calibrating data set was generated by LVGEN using TPGEN catalogs, PHD files and user
developed scripts. Variances in the data content were produced by switching between base sets
while generating the data. Although the data was Nascom block encoded, the base sets were
defined by the number of frames and the content of the frame data per base set.

3.2 DATA SET COMPLEXITY

Different types of complex data containing multiple segments were simulated to fully test the
capability of the FAST PPS. "Segment" is a concept referring to a group of packets of the same
source which has a consistent time order, either forward or reversed. Data is "simple" if there is
only a single segment received per session per source; data is "complex" if there are multiple
segments received from a source during a session. For the FAST spacecraft, there are three ways
in which complex data may be transmitted; each of these data types were simulated in the
calibrating data set.

For all sources in VC 2, the FAST spacecraft uses a "sampling" storage algorithm to write data
into the onboard SSR. Sensor (source) data is compared against a preset threshold. If the data
value is less than the threshold, the data is filled sequentially into a small buffer storage area on the
SSR. If the data value meets or exceeds the preset threshold, a sample of the subsequent sensor
data is sequentially stored in a partition within a larger buffer storage area on the SSR. After the
larger buffer storage area is full, samples are still taken and compared to all the stored samples

according to pre-defined criteria. If a new sample is better, it will overwrite an old sample with the
best value, that may be anywhere from the 1st partition to the Nth partition. As more observations
are made and the sensor value fluctuates, this scheme will result in segmented data in the SSR.
When the SSR is dumped sequentially from low to high address, the PPS will receive and
reassemble data segments that are completely out of time order.

In LVGEN, the FAST sampling process was simulated by placing the first packet of the defined
"sample" at the start of the second segment; and the remaining packets were then used to fill the
second, the first, and the third segments, in that order. This means, among other things, that if the
playback list, defined by external files, used by LVGEN specified adjacent forward-time-order
samples, the last packet of the third segment of the first sample was continuous with the first
packet of the first segment of the second sample. The proportion of the first segment to the
second segment for each sample was controllable within LVGEN. In the calibrating data set, VC
2 contained "complex data," with 8 simulated "samples" received in a mixed time order.

The second source of multiple segments in FAST data was the VC 1 engineering playback data.
During a pass, the FAST spacecraft may re-transmit stored engineering data several times,
resulting in several wholly or partially identical groups of packets which must be overlap
processed to delete redundant data. Multiple transmissions of playback engineering data and the
mixture of realtime and playback data (albeit on separate VCs) was also simulated in the
calibrating data set. The third type of FAST data segments result from the splitting of survey
science data between VC 3 and 4. On the FAST PPS, these two streams, which contain no
overlapping data, will be processed separately and merged, similar to the way VC 0 and 1 data
were processed.

The calibrating data set was a sequential data set, using a sequence count increment of 1. Some
complexity was introduced to base-line the functionality of the FAST PPS. In this data set, only
some VC 2 APIDs were fully simulated as sampled. The remaining sources were "simple," i.e.,
a single segment per session. The order of groups of packets within the data stream was specified
by means of listing the playback order of samples for VC 2 sources in the calibrating data set.
Two additional calibrating data sets were designed with greater complexity and used to further
stress the capability of the FAST PPS. They were also used to test non-sequential packet data
processing.

3.3 DATA SET ERRORS AND THEIR IMPLEMENTATION

The SDS was also used to simulate data streams with errors. Three scenarios were needed to fully
test the FAST PPS: (1) Introduce various types of errors, (2) Introduce a large number of errors,
5% and lo%, and (3) Introduce errors in sequential and non-sequential data, both partially and
completely overlapped, to exercise the capability to segment and locate questionable, or 'fuzzy'
packets.

The first scenario introduced errors in the calibrating data set to simulate realistic cause and effects
of data and transmission errors. The errors that can be,generated include: (1) Noise in the
transmission from space-to-ground, and (2) Noise in the ground-to-GSFC transmission. The
errors that can be generated, and the resultant effects at block, frame, and packet levels are shown
in Table 1.

Table 1. Errors, Results, and Statistics

To introduce these errors, TPGEN catalogs for the calibrating data set were modified to include
the errors. To ensure the number of times an error is to be repeated and its location in blocks,
frames, and packets, base sets were split into smaller sets and the subsequent modified catalogs
were used in conjunction with LVGEN to generate data with induced errors. For example, to
generate an error in the 10th frame of a 40 frame base set within a specific repetition of the base
set, (i.e., frame location,) it was necessary to break the base set into two smaller base sets of 9 and
3 1 frames, respectively. The sequence of the frames is still maintained, but to inject the error, the
LVGEN script will treat these two smaller base sets separately. For example, a data set requires
repeating a particular base set (BS3) 200 times, within which the 102nd repetition will have some
error introduced in the 10th frame. BS3 is split into BS3a and BS3b, and the script will specify
repeating BS3 101 times, repeat BS3a once, BS3b once, and subsequently repeat BS3 98 times.

ERRORS

Block Synchronization
Pattern Errors

Block & Frame CRC
Errors

Block CRC Errors

Frame Synchronization
Errors

Frame First Header
Pointer Errors

Frame CRC Errors

Frame Bit Slip Errors

Packet Length Errors

Three types of simulated block errors were adequate to test the requirements and statistics at block,
frame, and packet levels; Block Synchronization Error - by a flipped or incorrect bit in the block
synchronization pattern; Block Polynomial Error with Frame CRC Error - by an error of one or
more bits in the Nascom Block; and Block Polynomial Error with No Frame CRC Error - by
flipped or incorrect errors in the Nascom block header or trailer.

RESULTS

Dropped Blocks, Missing
Frames, Missing Packets

Tagged Blocks, Bad Frames,
Bad Packets

Tagged Blocks, Good Frames,
Good Packets

Missing Frames, Missing
Packets

Rejected Frames, Missing
Packets

Bad Frames, Bad Packets

Bad Frames, Good Packets

Bad Packets

STATISTICS

Number of Blocks, Number of Block
Synchronization Errors, Number of
Block Sequence Errors, Number of
Frames, Number of [Missing, Back to
Search, Lock, Check] Frames, Number
of Packets, Number of Missing
Packets, Number of Packet Gaps
Number of Block Polynomial Errors,
Number of Frame CRC Errors, Number
of Packet Errors
Number of Block Polynomial Errors,
Number of Frames from CRC Error
Blocks, Number of Packets from CRC
Error Blocks
Number of Frames, Number of
[Missing, Back to Search, Lock,
Check] Frames, Number of Packets,
Number of Missing Packets, Number of
Packet Gaps
Number of FHP Errors, Number of
Missing Frames, Number of Missing
Packets, Number of Packet Gaps
Number of Frame CRC Errors, Number
of Packet Errors
Number of Bit Slips, Number of
Missing Frames, Number of Missing
Packets, Number of Packet Gaps
Number of Missing Packets, Number of
Packet Length Errors, Number of
Packet Sequence Errors

Four types of simulated frame errors were adequate to test the requirements and test statistics at
frame and packet levels; Frame Synchronization Error - flipped or incorrect bit in the frame
synchronization pattern; Frame CRC Error without Block Polynomial Error - by one or more
incorrect bit in the telemetry data field; Frame Bit Slip Error - by dropped or extra bit(s) in the
frame; and Frame First Header Pointer Error - error in the first header field of the frame.

Packet length error was simulated to test the system requirements for detection and qualification of
packet level errors. It was simulated by flipping the last significant bit in the packet length field
specified in the packet header of the selected packet.

The next scenario tested the performance of the system and evaluated its capability to process data
with large quantities of errors. Two data sets with 'High Volume Errors' were designed to test
these capabilities. They consisted of the FAST VC 2 sources only, with frames and packets
similar to previous data sets, to simplify generation and predicted results. High-rate sampling was
not simulated; all sources were a single segment per session. Frame CRC, First Header Pointer
Errors, Frame Synchronization, Block Synchronization, and Packet Length errors were distributed
throughout the data set to bring the total percentage of packets with errors or gaps to 5% and lo%,
respectively.

The final scenario tested the capability of the system to process the maximum number of sources
with non-sequential and questionable packet sequence numbers. A data set called SRC200 was
designed to test the requirement that the FAST PPS was able to process up to 200 sources. It was
not intended to otherwise simulate the expected FAST telemetry format, neither in APIDs nor in
packet sizes. The opportunity presented by this non-realistic scenario allowed the SRC200 data set
to contain several "complex" sources with a full range of segment processing tests, including non-
sequential and sequential overlap cases. This data set had no induced errors or gaps, but was used
as the template for a later test set in which the complex data was used to test segment processing
with fuzzy packets and non-sequential segment processing with errors and gaps. The 200 sources
were generated by distributing 128 APIDs over VCs 0-6. The frame and packet format for
SRC200 was the same as for previous data sets. Packet size was specified as 1054 bytes for all
packets, resulting in one packet per frame for all sources.

4. CURRENT AND FUTURE DEVELOPMENT

During 1994, the Spacecraft Data Simulator was upgraded to support development and I&T of
VLSI LZP prototype phase 2 that performs LZP functions at rates up to 50 Mbps. The Data
Generator card was outfitted with a new mezzanine that increases output data rates from 25 to 80
Mbps. The TPGEN and LVGEN data generation packages have been modified to simulate
CCSDS AOS data for up to 32 VCs and 256 APIDs. To test the system's ability to provide AOS
services, the SDS simulated AOS Coded Virtual Channel Data Units (CVCDU) consisting of
Private Data Units for Virtual Channel Access Service, Insert Zone Data Units for Insert Service,
Bitstream Data Units for Bitstream Service, fixed and variable length packets within Multiplexed
Packet Data Units (MPDUs) with repeated APIDs on different VCs. The CVCDUs contained
incomplete and fill packets, and included the full range of errors as described in the FAST PPS
test scenarios.

In the current implementation, all error injection scenarios and the foibles introduced in the data
sets are designed in advance and manually catalogued through the TPGEN menu before the data
generation process is initiated. As data scenarios get more and more complicated, this can become

a tedious and time consuming process. Each time a scenario changes, even just adding or
removing one error, the entire data set has to be regenerated.

MSB is currently engaging in the development of a second generation data simulation package.
Based on UNIX platform, this package will be highly modular and script-driven, and can be
ported to different UNIX workstations. CCSDS telemetry data will be simulated by first
generating a set of basic data units, then piping it through a series of simulation modules, each of
which is responsible for one layer of CCSDS protocol or one type of data manipulation. Data or
error characteristics will be specified through scripts. Graphical-based user interfaces will be
provided to help users design, generate, modify, and examine their test data sets. While
maintaining all SDS capabilities as described in this paper, this layered and modularized
architecture will greatly improve efficiency.

5. SUMMARY

SDS has demonstrated its versatility and flexibility by supporting the LZP project through all
phases of development. Its unique capabilities to simulate realistic spacecraft CCSDS data
streams, especially SSR data scenarios, proved to be invaluable for system I&T of the VLSI LZP
prototype phase 1 and 2 systems as well as the FAST PPS. The knowledge and expertise gained
in the development of the current SDS will be used to develop the new generation of data
simulators capable of testing systems running at speeds in excess of 300 Mbps.

6. REFERENCES

1. "Packet Telemetry,," CCSDS 102.0-B-3, Blue Book, Consultative Committee for space '~a ta
Systems, November, 1992.

2. "Advanced Orbiting Systems, Networks, And Data Links," CCSDS 701.0-B:2, Blue Book,
Consultative Committee for Space Data Systems, November, 1992.

3. Shi, J., Horner, W., Grebowsky, G., Chesney, J., "A Prototype VLSI Level Zero Processing
System Utilizing the Functional Component Approach," Proceedings of International
Telemetering Conference, 199 1, pp. 5 19-53 1.

4. Shi, J., Horner, W., Grebowsky, G., Chesney, J., "Fast Auroral Snapshot Explorer (FAST)
Packet Processing System (PPS)," Proceedings of International Telemetering Conference,
1993, pp. 445-459.

5. Shi, J., Mao, T., Clotworthy, T., Grebowsky, G., "Lessons Learned Supporting On-Board
Solid-State Recorders," Space Ops 94.

6. Shi, J., Harris, J., Speciale, N., Bennett, T., "A Second Generation 50 Mbps VLSI Level Zero
Processing System Prototype," Space Ops 94.

7. NOMENCLATURE

AOS
AP
APID
CCSDS
COTS
CRC
CVCDU
DG
ECL
FAST
GSFC
I&T
LVGEN
LZP
MPDU
MSB
Nascom
PED
PHD
PPS
SAMPEX
SDS
SSR
TOPEX
TPGEN
VC
VME
VLSI

Advanced Orbiting Systems
Application Process
Application Process Identifier
Consultative Committee for Space Data Systems
Commercial Off-the-shelf
Cyclic Redundancy Check
Coded Virtual Channel Data Units
Data Generator
Emitter Coupled Logic
Fast Auroral Snapshot Explorer
Goddard Space Flight Center
Integration and Test
Large Volume Data Generator
Level Zero Processing
Multiplexed Packet Data Units
Microelectronic Systems Branch
NASA Communications
Polynomial Error Detector
Packet Header Definition
Packet Processing System
Solar Anomalous and Magnetospheric Particle Explorer
Spacecraft Data Simulator
Solid-S tate Recorder
Topographical Explorer
Test Pattern Generator
Virtual Channel
Versa Module Eurocard
Very Large Scale Integration

1. Re-engineering Page 1121
u v q &. <"

SE.1.a Re-engineering the Multimission Command System at the J e t 1123-1131 '' * ' A / *

Propulsion Laboratory
Scott Alexander, Jeff Biesiadecki, Nagin Cox, Susan
Murphy, T i m Reeve pes7

SE.1.b Re-Engineering Nascom's Network Management Architecture 1133-1141 ->"A"

Brian C. Drake, David Messent

SE.1.c Reengineering NASA's Space Communications to Remain 1143-1150" 5 w@4--
Viable in a Constrained Fiscal Environment

Rhoda Shaller Hornstein, Donald J. Hei, Jr., Angelita C.
Kelly, Patricia C. Lightfoot, Holland T. Bell, Izeller E.
Cureton-Snead, Wlliarn J. Hurd, Charles H. Scales

SE.1.d * A System Study for Satellite Operation and Control in Next 1151-1157
Generation

K. Nakayama, T. Shigeta, T . Gotanda, K. Yamamoto, Y.
Yokokawa

* Presented i n Poster Session

RE-ENGINEERING THE MULTIMISSION COMMAND SYSTEM
AT THE JET PROPULSION LABORATORY

SCOTT ALEXANDER
JEFF BIESIADECKI

NAGIN COX
SUSAN MURPHY

TIM REEVE

Operation Engineering Lab
Jet Propulsion Laboratory

California Institute of Technology
MS 301-345

Pasadena, California 9 1 109-8099
{salex, jeffb, nagin, sooz, timr@devvax.jpl.nasa.gov)

ABSTRACT

The Operations Engineering Lab (OEL) at
JPL has developed the multimission
command system as part of JPL's Advanced
Multimission Operations System. The
command system provides an advanced
multimission environment for secure,
concurrent commanding of multiple
spacecraft. The command functions include
real-time command generation, command
translation and radiation, status reporting,
some remqte control of Deep Space Network
antenna functions, and command file
management. The mission-independent
architecture has allowed easy adaptation to
new flight projects and the system currently
supports all JPL planetary missions
(Voyager, Galileo, Magellan, Ulysses, Mars
Pathfinder, and CASSINI).

This paper will discuss the design and
implementation of the command software,
especially trade-offs and lessons learned from
practical operational use.

The lessons learned have resulted in a re-
engineering of the command system,
especially in its user interface and new
automation capabilities. The redesign has
allowed streamlining of command operations
with significant improvements in productivity
and ease of use. In addition, the new system
has provided a command capability that
works equally well for real-time operations

and within a spacecraft testbed. This paper
will also discuss new development work
including a mulf mission command database
toolkit, a universal command translator for
sequencing and real-time commands, and
incorporation of telecommand capabilities for
new missions.

INTRODUCTION

The Jet Propulsion Laboratory has a long
history of building multimission ground data
systems that are designed to be easily
adaptable to new projects. The mainframe-
based systems of the 1970s have been
replaced by distributed, workstation-based
systems as part of JPL's advanced
Multimission Ground Data System (MGDS).
The new MGDS provides flexible, extensible
components that are easily adapted for new
missions, but more importantly, can also
support multiple missions concurrently.
However, as these ground systems have
evolved, it has become apparent that
providing advanced tools that help simplify
and automate the old way of doing business
is not enough to support the small, low-cost
missions of the future. In particular, the
uplink process has been very labor intensive
for planetary missions and it must be re-
engineered to provide the simple command
capabilities that will be needed for missions
with cheaper, more autonomous spacecraft
and for operators wanting remote telescience
capabilities.

The Operations Engineering Lab (OEL) has
developed and refined the MGDS Command
Subsystem to be an adaptable, low-cost,
multimission component of the overall uplink
process. As part of our development work,
the OEL is working with the sequencing
teams and developers at JPL to re-engineer
the uplink process so it can provide seamless,
easy-to-use capabilities for spacecraft
commanding. The goal is to provide an off-
the-shelf command package that can support
large to small missions that need to command
through the Deep Space Network (DSN).

MGDS COMMAND
SYSTEM DESCRIPTION

The MGDS Command functions include real-
time command generation, command
translation and radiation, status reporting,
remote control of DSN antenna functions,
and command file management. A
distributed, network-based, graphical
interface is provided to give real-time
command radiation status to users at remote
sites. This interface was implemented in
XIMotif. The Command System provides
security functions including authentication for
two user privilege levels, internal security
checks, a central node for controlling all
command radiation processing, a
configuration control environment for
command files, and a mode for non-
interactive Command viewing.

The primary control function of the
Command system is to permit real-time
transmission of command files and memory
loads from the ground to a spacecraft. The
Command Control Graphical User Interface
(GUI) (Figure 1) provides real-time,
interactive control of the command
transmission and radiation to the spacecraft.
The connection between Command and the
DSN is a secure process controlled by the
Data System Operations Team at JPL. These
operators allocate the connection resources to
a project mission control team after ensuring
a clean commanding interface.

Command files are first transmitted to the
DSN and held at the receiving end until the
completeness and integrity of the file transfer

can be verified. Once there, the user is free to
put the files in the queue of the Command
Processor Assembly for radiation to the
spacecraft either at that moment or some later
specified command window. The user also
uses the Command GUI to remotely control
the configuration of the antenna in terms of
when actual radiation of commands.

Any time the user is connected to a DSN
station, the station returns monitor data which
is displayed in the Command GUI for
inspection by the operator; Monitor data
contains information about the current
antenna configuration, acknowledgments of
command file radiation, and constant status
information including alarms, files at the
CPA, and receipt of command blocks.

Command files are generated prior to
transmission using the Command system or
the Sequence software system. Both
processes are similar. A spacecraft command
sequence is formulated and constraint-
checked and then the actual commands are
entered as command mnemonics, encoded
abbreviations (with parameters) that tell the
spacecraft what commands to perform. The
command mnemonics are translated into a
spacecraft-ready file that contains binary
translations of the mnemonics, spacecraft
identification information, start and
acquisition codes, and file integrity and error-
detection information. Once the command
files are prepared, they are stored and made
available to the Command system through a
secure database that checks command formats
and user permissions. Before transmission,
the command files are reformatted for
recognition and radiation by the DSN (Figure
2).

LESSONS LEARNED

When the MGDS Command System was
completed, existing projects were required to
transition from the mainframe MCCC
Command System. Voyager was chosen as
the first project to transition since it had
entered .its interstellar cruise phase. Their
experience provided multiple lessons learned
about simplifying the user interface and
reducing the number of steps in the uplink
tasks.

When the Mars Observer (MO) Project came
on line as a new project, they had no prior
system for comparison. Their experience was
different since they had a much higher
command rate than the Voyager mission.
They had also decided not to implement the
real-time command translation capability in
the MGDS Command System as a cost-
cutting measure. This meant that all of their
command files, even those with only a single
non-interactive command, had to be prepared
off-line using the more complex Sequence
software. As a result, the project was having
difficulty keeping up with its command rate,
even in the early cruise phase. When the
spacecraft went into emergency mode,
commanding became a 24-hour activity with
many engineers required in the process.

There were two lessons learned from the MO
use of the command system. First,
eliminating the real-time translator during the
mission planning phase resulted in increased
costs in the mission operations phase.
Second, the number of steps needed to
prepare commands had to be reduced. In
particular, the use of the security-controlled
Command GUI had to be re-evaluated. The
GUI was required to perform even simple file
reformatting functions, with no options for a
command-line interface or batch-mode. This
reliance on a graphical interface prevented
automating some steps with simple scripts
because a user had to be sitting at the
computer, pushing each button in turn. It
became apparent that we had to provide an
off-line command generation capability that
was based on non-graphical, less restricted,
command-line interfaces. The secure GUI
was still essential for transmission and
radiation of commands. With this re-design,
DSN resources are only required for the final
transmission and radiation of the Command
files to the spacecraft. The impact of this off-
line capability on required network resources
is significant.

Thus, the Command system interface was
redesigned to allow users to generate
command files in an off-line environment
without requiring a connection to the
command control GUI. First, the translation
and reformat functions were developed into

separate, stand-alone programs. The
translation program translates text mnemonic
commands into an intermediate Spacecraft
Message Format (SCMF) file containing
binary commands expected by the spacecraft.
The reformat program packages the binary
commands into the form expected by the
DSN. These programs can be started up by
the user on the UNIX command line or
script, as well as by the central command
system. The off-line capabilities have also
allowed script automation to reduce the
number of manual, interactive steps involved
in the generation of command files. A
graphical interface shell was built using the
JPL-developed PERL scripting language and
OELSHELL interface building tool.

This off-line translation toolkit also found
extensive use in spacecraft flight testbed
facilities where no connection to the DSN
was allowed. Testbeds provide an
environment for testing and validating
commands on a mock spacecraft. The testbed
command system sends commands directly to
the ground support equipment.

Another lesson learned was the need to
streamline and simplify the end-to-end uplink
process. The uplink process involves
multiple operations and development teams.
This creates a system with multiple tools and
interfaces, forcing the user to learn how to
operate across several different boundaries.
From a project perspective, there should only
be a single interface to the uplink process that
would allow a single user to perform all
functions including spacecraft sequence
generation and translation, ground sequence
of events schedule generation, real-time
command preparation, mnemonic translation,
and command transmission and verification.
The OEL has worked closely with the Mars
Surveyor Project to implement an integrated,
graphical interface tool that allows a single
user to seamlessly perform end-to-end
functions in the uplink process.

The successful experience of the early
projects using the MGDS Command system
eased the transition of the remaining projects.
All of the JPL planetary missions have now
transitioned successfully to the MGDS
Command System and the mainframe-based

Command system was decommissioned a
year earlier than originally planned.

RE-ENGINEERING
COMMAND TRANSLATION

Since both the Sequence and Command
software provided capabilities for a user to
generate command files, there were common
translation capabilities duplicated in both
systems. The OEL has worked closely with
Sequence developers to re-engineer the
translation process and develop a universal
command translator that can be used by both
subsystems. The redesigned system includes
the use of advanced graphics and object-
oriented techniques.

The translation functions in the Sequence
system were based on manually building
mnemonic-to-bit translation information in
each project's unique command macro
language. These project-specific adaptations
were time-consuming and error-prone. The
command translation process in the
Command software was based on a
multimission Command Definition Language
(CDL) that can be used to specify command
mnemonic-to-bit definitions and constraints.
The CDL file is compiled into a project's
Command Database. A command database is
built for each project, but the language
compiler, database interpreter, and translator
software is multimission. In the re-designed
uplink process, the command database
interpreter and translator software was re-
built as generic, universal libraries that could
be called by both Command and Sequence
software. This multimission, common
approach will significantly reduce uplink
costs.

An illustrative example of CDL code follows:

? define a memory load message
MESSAGE: memload-msg(buf: 200)

FIELDS
data: 160 ! 160 bit local variable

END FIELDS

! declare the kinds of arguments that will
! be entered by the user
LOOKUP ARGUMENT: name

! lookup value below in hex

CONVERSION: HEX
LENGTH: 8
'MEMLOAD' = 'A9'

END LOOKUP ARGUMENT
NUMERIC ARGUMENT: address

! user to enter number in hex
CONVERSION: HEX
LENGTH: 16
! acceptable range
'OOFF' TO 'FFFF'

END NUMERIC ARGUMENT
NUMERIC ARGUMENT: aword

! user to enter number in hex
CONVERSION: HEX _
LENGTH: 16

END NUMERIC ARGUMENT

! read mnemonics from user input
READ ARGUMENT name
READ ARGUMENT address
REPEAT 1 TO 10 TIMES

(COUNTING WITH nwords)
READ ARGUMENT aword
data := data 11 aword

END REPEAT

! combine converted input into a message
! counters like "nwords" are 16 bits*
buf := name I1 address 11 nwords 11 data

END MESSAGE

It defines a memory load message that can
load up to ten words, sixteen bits each, into a
certain area of memory. If the user's
mnemonic input was, for example,

MEMLOAD; 0A48; 1; 22; 333
the resulting hex output would be:

A9 OA 48 00 03 00 01 00 22 03 33
where the first byte is an op code that
signifies a memory load instruction, the next
two bytes are the address to load the data
into, the next two bytes are the number of
words in the data, and the remaining six
bytes are the data itself.

Since CDL files can become very complex, a
command generation toolkit is being
developed to facilitate their creation and
browsing. The CDL toolkit will include a
graphical CDL editor, a CDL parser and
compiler, and various report generators. In
the future, some text based on-line reference
tools and a smart editor to help a user create
mnemonics are planned.

The first step taken in the development of the
toolkit was to determine the data structures
for holding the information contained in a
CDL file. These structures are accessed
through a library that is used by all tools in
the toolkit. Here, an object-oriented approach
was used. For example, CDL has several
types of processing routines. So, one of the
classes was for that of a general processing
routine. A subclass of the general routine is a
message routine. Arguments are also objects,
with lookup arguments and numeric
arguments derived from a common, more
general, argument class. For the CDL code
above, there is one instance of a message
routine, memload-msg. There are instances
of both kinds of argument objects: name,
address, and aword.

When an object is created, a parent object is
specified. Whenever an object is destroyed,
all of its children are automatically destroyed
as well. For the example above, name,
address , and aword are children of
memload-msg . So if the user of the
graphical editor chooses to delete the
memlload-msg routine, the code for the
editor is simply one call to destroy the
appropriate parent object and all of the child
objects (which are not useful by themselves)
are automatically cleaned up.

CDL objects can refer to each other. For an
easy example, the READ ARGUMENT
address statement is itself an object (in this
case, of class input processing statement and
child of memload-msg). It contains a
reference to the object corresponding to the
argument to be read. Thus, if the CDL editor
user changed the name of the address
argument, when the CDL code was saved the
READ ARGUMENT address statement
would automatically be written with the new
name. Note that for this example, the editor
will not allow the address argument to be
destroyed until the reference to it in the
READ ARGUMENT address statement
is changed or the statement removed
altogether. It is easy to get a list of references
to any object. There are many constructs in
CDL not shown in the example that lead to a
single object being referred to in several
places.

The CDL language was designed years ago
as part of the old mainframe-based command
system. It is missing some important
functionality such as arithmetic and
comparison operators. CDL was also written
before the Telecornmand standard, so some
of its constructs are outdated and intended for
tasks such as embedding error polynomials
into the binary commands. In the new
Command system, any functionality not
present in the CDL language must be added
as hard-coded 'user hooks' to the command
translation software, creating additional
expense for development and testing. Thus,
as part of our re-engineering efforts, we are
incorporating important enhancements and
simplifications to the CDL language. For
some of these enhancements, we are
investigating the use of other process control
languages such as Spacecraft Control
Language (SCL) in the uplink process. With
the object-oriented approach taken and the
goal of reducing class-specific code, we
expect it to be easier to make changes to the
language.

We are also investigating extending CDL to
include information that would typically be
found in a command dictionary such as
telemetry verification points and flight rule
constraints. The graphical CDL toolkit is also
being enhanced to provide a complete
command definition and dictionary toolkit
with hypertext references to other mission
documentation.

Other recent development work includes
porting our code to multiple UNIX hardware
platforms, ANSI-C, and XPG-4 open
standards. In addition, we are incorporating
the 1987 Consultative Committee for Space
Data Systems (CCSDS) "Telecommand"
standards into the MGDS Command System.
All future JPL missions will comply with this
standard.

TELECOMMAND IMPLEMENTATION

The.Telecommand service model is a layered
model which more or less parallels the IS0
Open Systems Interconnect model. The
highest two layers of this model, the
Application Process layer and the System
Management layer, have not yet been

specified in detail. It is still up to the
individual project to define procedures and
data structures in these layers. The layers
below this, however, have been specified in
detail. Our response to the standard addresses
the Packetization, Segmentation, Transfer,
Coding, and Physical Layers

In the Command subsystem, the
Telecommand (TC) standard is being
implemented as a generic, batch-mode
"wrapping service." Clients of the service
supply the data to be wrapped in ASCII
formatted files called Command Packet
(CMD-PKT) files. The service takes
multiple, one or more, CMD-PKT files as
input, wrapping the data from each file record
and time-order merging the results into an
SCMF file.

CMD PKT file format

The format of the CMD-PKT file follows the
CCSDS Standard Formatted Data Unit
(SFDU) standard. The I-data (user) section
of the file is organized as a header section
followed by a series of data sections. The
section boundaries are defined with special
markers, and the information within these
sections is organized in a "keyword = value"
format. An example of a header section
follows:

$$MPF COMMAND PACKET FILE
"CMDPKT SEQTRAN.CMDPKTlJOB001
*OPERATOR Frank Zappa
*PROGRAM SEQTRAN - MARS

PATHFINDER V19.0 APR 29, 1994
"CREATION JPL 94-1 31/09:58:59
*BEGIN **a** NO DATA *****
*CUTOFF **a** NO DATA *****
*TITLE ***** NO DATA *****
*ZERO ***** NO DATA *****
*CMDI?IL ***** NO DATA *****
*FILSIZ 6
*SISVER 04/27/94
*FRMVER 1
"CDUACQLEN 22
*CDUACQ 55
"CLTUSSQLEN 2
*CLTUSSQ EB 90
*CLTUTSQLEN 8
*CLTUTSQ 55
*CLTUDLY ENDSTARTIBlTSlO

The header section contains global file
information. For example, the value of the
'FILESIZ' keyword tells you the number of
data sections which follow. 'CDUACQLEN'
and 'CDUACQ' together form a specification
of the acquisition sequence to be used for this
file. 'CDUACQLEN' is the number of octets
in the acquisition sequence and 'CDUACQ'
is the smallest repeat pattern. Using the above
record, the Telecommand wrapping service
would generate 22 octets of 55 hex.

Each data section contains ASCII
hexadecimal data to be wrapped, along with
enough information to fill in the
Telecommand headers. Here is an example:

$PKT SCGNLD
PKTVER 1
SEQFLGS FIRST
CHECKSUM 947D
VC 1
LENGTH 12
APPID 0
OPENWIN 82-08011 1 :40:00.000
CLOSEWIN 82-08011 2:00:00.000
FRMSEQ 0
FEC EACSUM55AA
CTRLCMD NO
BYPASS YES
PACKETIZE N
FRAMING YES
SEGMENTING NO
DATA

OAOl 0000 0200 0001 0002 0003
000400050006000700080009

$EOP

Following the DATA keyword is a sequence
of ASCII hexadecimal words. This
represents the binary data to be wrapped. The
format and structure of this data is known to
the higher layers of the CCSDS
Telecommand service model (system
management and application layers). The
values of other keywords enable the
wrapping service to fill in the TC headers.
For example, the value of the VC keyword
tells the wrapping service what to put into the
6-bit 'virtual channel ID' field of the TC
transfer frame header.

The creator of this file also has control over
which layers of wrapping are applied to the
data. The wrapping service concerns itself
with the following layers:

TC packetization layer (TC packets)
TC segmentation layer (TC segments)
TC transfer layer (TC transfer frames)
TC coding layer (Command Link
Transmission Units (CLTUs),
consisting of TC codeblocks)

For example, consider the keywords
PACKETIZE, SEGMENTING, and
F R A M I N G . P A C K E T I Z E a n d
SEGMENTING are both set to NO, while
FRAMING is set to YES. This means that
the TC wrapping service will consider the
data to be the contents of a TC frame, and
will only prepend a TC frame header (and
may also append a Frame Error Control
word, if the FEC keyword is set to a value
other than NONE), before creating a CLTU.
If PACKETIZE were set to YES, the
wrapping service would consider the data to
be the contents of a TC packet, and would
apply a TC packet header. Then, if
SEGMENTING and FRAMING were both
set to YES, the TC packet would be broken
into TC segments, and then each TC segment
would be wrapped as a TC frame, before
creating a CLTU. Currently, all eight
pe rmuta t ions of (PACKETIZE,
SEGMENTING, FRAMING) are allowed by
the wrapping service, though only three may
be legal: (NO, NO, YES), (YES, NO, YES),
and (YES, YES, YES). This flexibility
makes the name 'CMD-PKT' something of a
misnomer; perhaps 'CMD-TC' would have
been a better choice.

Currently, each data section of this file will
result in one or more CLTUs. Normally,
only one CLTU will be created per data
section; the only thing which can affect this is
the setting of the FRMSPERCLTU keyword
in the CMD-PKT header section. If this is set
to a value N, where N > 0, then no CLTU
may contain more than N TC frames. So, if
the amount of data in the data section is large
enough that when it is segmented, more than
N TC frames are created, more than one
CLTU will result.

Each data record contains a timestamp as
well. This may be specified as either a
window (OPENWIN, CLOSEWIN) or an
execution time (EXECTIME). Times are
expressed in GMT relative to the spacecraft
(Spacecraft Event Time, or SCET). For a
given data record, this means that the data in
that record will be at the spacecraft, ready to
be processed, at the given (EXECTIME), or
within the given window (OPENWIN,
CLOSEWIN).

TC Wravuing Service

This service is implemented as a single
process which consumes one or more
CMD-PKT files and produces a single
SCMF (Spacecraft Message Format) file.
Each data record of the SCMF file contains a
single 'spacecraft message', which in this
case is a CLTU.

Each CLTU within a record may be preceded
by an acquisition sequence, depending upon
the PLOP (Physical Layer Operation
Procedure) in use by the project. Currently
two PLOPS are defined in the TC standard.
In PLOP 1, CLTUs are individually radiated,
meaning that the physical telecommand
channel is deactivated after each transmitted
CLTU. In this case every CLTU in the
SCMF file must have an acquisition sequence
prepended. In PLOP 2, the physical channel
is not deactivated until the last CLTU in an
'upload' has been transmitted. For our
purposes, this means that only the first
CLTU of the SCMF file will be preceded by
the acquisition sequence.

The TC wrapping service places the resultant
CLTUs in ascending time order within the
SCMF. Further, the timestamp in each record
of the SCMF is the time of radiation of the
first bit in the record. This means that in
going from execution time in CMD-PKT
file(s) to an SCMF, all times have to be
backed off by the number of bits in the record
(multiplied by the time of one bit at the
current uplink rate), plus any inherent
spacecraft delay time, plus the appropriate
one-way light time. All of this is a fairly
complex operation, since we are merging
multiple CMD-PKT files, each of which can

have a mixture of window and execution time
records.

CONCLUSION

TC Wrapping Service Design

A modular approach was taken in the design
of the wrapping service. It is decomposed
into five primary modules, as follows:

1. CMD-PKT file I/O module.
2. SCMF file YO module.
3 . Light time module.
4. Telecomrnand module.
5. Main module.

The first four modules are implemented as
libraries. The main module calls functions in
these libraries. The CMD-PKT file module
depends upon the Telecommand module as
well, mainly for validation of TC header field
values.

The CMD-PKT file YO module isolates all of
the knowledge of the format and structure of
CMD-PKT files. Its set of exported
functions allow record-oriented I10 (both
reading and writing) of CMD-PKT files.

The SCMF file 110 module is directly
analogous to the above, for SCMF files.

The Light time module contains functions
which perform conversion between ground
transmission times (TRM) and spacecraft
event times (SCET). This module reads a
LIGHTTIME files in order to perform its
function.

The Telecommand module isolates all of the
knowledge of the TC data structures. It
contains a set of functions for validating all of
the TC header fields values, as well as a set
of functions for performing TC wrapping.
This module also maintains a table of project-
dependent Telecommanding data. Items such
as default acquisition, start, and tail
sequences, virtual circuit and application id
mnemonics, TC codeblock size, and PLOP
are included in this table. The main module is
responsible for the overall control of the
wrapping process, and deals directly with the
time-ordering issue.

The Operations Engineering Lab has
developed the JPL multimission command
system to provide low-cost, adaptable,
extensible uplink capabilities to new and
existing flight projects. The goal in the
ongoing re-engineering of the command
subsystem is to create a set of independent
tools to allow more flexibility for the user and
to make any necessary customization faster
and easier for future, low-cost missions.

ACKNOWLEDGMENTS

This work was done at the Jet Propulsion
Laboratory, California Institute of
Technology, under a contract from the
National Aeronautics and Space
Administration. Thanks to the technical staff
in the OEL, the early MGDS development
teams, and the JPL Mission Operations
Teams for their enthusiasm and support.

Sequence
Generanon

Mnemonic
Command
Real-Time
Translator

Command GUI

RE-ENGINEERING NASCOM 'S NETWORK MANAGEMENT
ARCHITECTURE

BRIAN C. DRAKE
GODDARD SPACE FLIGHT CENTER (GSFC)

CODE 541.2
GREENBELT, MD 20771

&
DAVID MESSENT

COMPUTER SCIENCES CORPORATION
7700 HUBBLE DRIVE

LANHAM-SEABROOK, MD 20706

ABSTRACT

The development of Nascom systems for
ground communications began in 1958
with Project Vanguard. The low-speed
systems (rates less than 9.6 Kbs) were
developed following existing standards;
but, there were no comparable standards
for high-speed systems. As a result,
these systems were developed using
custom protocols and custom hardware.

Technology has made enormous strides
since the ground support systems were
implemented: Standards for computer
equipment, software, and high-speed
communications exist and the
performance of current workstations
exceeds that of the mainframes used in
the development of the ground systems.

Nascom is in the process of upgrading its
ground support systems and providing
additional services. The Message
S w i t c h i n g S y s t e m (MSS) ,
Communications Address Processor
(CAP), and Multiplexer/Demultiplexer
(MDM) Automated Control System
(MACS) are all examples of Nascom
systems developed using standards such
as, X-windows, Motif, and Simple
Network Management Protocol (SNMP).
Also, the Earth Observing System
(EOS) Communications (Ecom) project
is stressing standards as an integral part

of its network. The move towards
standards has produced a reduction in
development, maintenance, and
interoperability costs, while providing
operational quality improvement.

The Facility and Resource Manager
(FARM) project has been established to
integrate the Nascom networks and
systems into a common network
management architecture. The
maximization of standards and
implementation of computer automation
in the architecture will lead to continued
cost reductions and increased operational
efficiency. The first step has been to
derive overall Nascom requirements and
identify the functionality common to all
the current management systems. The
identification of these common functions
will enable the reuse of processes in the
management architecture and promote
increased use of automation throughout
the Nascom network.

The MSS, CAP, MACS, and Ecom
projects have indicated the potential value
of commercial-off-the-shelf (COTS) and
standards through reduced cost and high
quality. The FARM will allow the
application of the lessons learned from
these projects to all future Nascom
systems.

INTRODUCTION

The development of NASA
Communication (Nascom) systems for
ground communications began in 1958
with Project Vanguard. The low-speed
systems (less than 9600 bps) were
developed following existing standards.
However, the existing communication
standards could not be used to meet the
higher data rates and transmission
reliability requirements demanded by
next generation of NASA projects. As a
result, custom protocols and associated
hardware had to be developed to meet the
needs of the growing space agency.

The Nascom protocol that was developed
in 1968 consisted of a 1200-bit block
with header information, data field, and
polynomial error control field at the end.
Over time, user communication
requirements increased and the Nascom
block size was increased to 4800 bits.
The basic structure remained the same,
but provided an expanded user data field.

In the 19701s, development began on a
system of geosynchronous satellites to
relay data around the world instead of
many earth stations. As the Tracking and
Data Relay Satellite System (TDRSS)
grew, it became evident the manual
network control and monitoring would be
impossible. Nascom began to automate
its portion of the network.

Once again, network management
standards did not exist to meet NASA's
requirements. Nascom began custom
development for automated network
management, using the existing Nascom
protocol with 1200-bit blocks as the
management protocol.

With today's reality of budget reductions
and the high cost of custom development,
the use of standards has become as
important as high-speed and data

integrity. Fortunately, communication
standards for both transmission and
management had been developing over
the last few years to keep up with user
demands.

Nascom began its move towards
standards with development of an X.25
network for the PacorIGamma Ray
Observatory (GRO) project and the
Mission Operations and Data Systems
Directorate (MO&DSD) Operational1
Development Network (MODNET)/
Nascom Operational Local Area Network
(NOLAN) for high-speed local data
distribution. Now, Nascom is
developing a high-speed Asynchronous
Transfer Mode (ATM) network for the
EOS project and re-engineering its
automated network management
architecture to integrate these standards-
based networks and the existing
customized network into a centralized
operations area.

EXISTING ARCHITECTURE

Nascom currently has three distinct
networks with separate management
systems: the Data Distribution and
Command System (DDCS), MODNET,
and the 4800-bit block network.

The DDCS X.25 network has two nodes
located at GSFC, a node at Marshall
Space Flight Center (MSFC) and a node
at the University of California at Berkeley
(UCB) (figure I), distributing X.25
packets at data rates up to 224 Kbps.
Each node has a redundant backup for
automatic fail over. It is composed of
COTS hardware and software with
integrated network management
software. The controlling node is located
in the Nascom computer facility at
GSFC.

Figure 1. The DDCS

The second network is the Mission (MODLAN), and the Information
Operations and Data Systems Directorate Processing Division LAN (InfoLAN).
(MO&DSD) Operationall Development This network provides high-speed, 50
Network (MODNET). MODNET was Mbps, interconnectivity between
formed in May 1986 through the operational LANs and computer systems
integration of three division-level at GSFC (figure 2).
networks: the MOD&DSD Network
(MNET), Mission Operations Division The LAN technology used by
(MOD) Local Area Network MODNET is HYPERchannel.

Figure 2. MODNET

HYPERchannel, a registered trademark, entities within Nascom to handle the data
is a generic name for the various network requirements each with their own control
components and protocols developed by capabilities. The MSS is the original
Network Systems Corporation (NSC) to Nascom block star network hub (figure
provide networking capabilities between 3). The MSS provides packet switching

Figure 3. The MSS

networked computers. The fastest
alternative protocol at the time MODNET
was formed was the 10 Mbps Ethernet.

XTermlnal A

XTerminal B

T
E
C
H

C
0
N
T
R
0
L

The NOLAN will expand upon
MODNET's capabilities using a Fiber
Distributed Data Interface (FDDI)
backbone with a larger distribution area.
MODNETmOLAN will be managed by
Nascom operations using Hewlett-
Packard's HP Openview network
management system with ISICAD for
automated trouble ticketing.

The final network is the 4800-bit block
network that distributes data throughout
the world with data rates ranging from 50
baud to 2 Mbps. There are two network

Combined
Operator

Workstation A

Combined
Operator

Workstation B

High-Speed (HS) Data
Message
Switching

capabilities for hundreds of 4800-bit
block users with data requirements
ranging from 9600 bps to 1.544 Mbps.
The management control consists of
custom developed software operating on
a Sun workstation.

+

The TDRSS network portion of Nascom
c o n s i s t s o f c u s t o m b u i l t
Multiplexer/Demultiplexers (MDMs) and
controllers located at the Johnson Space
Center (JSC), NASA Ground Terminal
(NOT), MSFC, and GSFC, a custom
Digital Matrix Switch (DMS) and
controller at GSFC, and custom Data
Link Monitoring Systems (DLMS)
located at GSFC, JSC, and NGT. This
network equipment is being constantly

System A

HS Transfer
Switch

Message
m Switching

System B e-

reconfigured according to the network
schedule supplied by the Network
Control Center at GSFC. In order to
meet the reconfiguration requirements of
the network, the Control and Status
System (CSS) was a custom
development to provide automated
network management (figure 4). The
CSS uses the Nascom 1200-bit block to
send commands and receive status from
the network equipment.

and engineer an efficient network
management architecture using new
technology and standards. Computer
workstations today can process the same
data that required mainframes ten years
ago. Standard protocols can send data at
higher rates and provide interconnectivity
between different hardware platforms.
COTS software packages can be found to
meet almost every need. Custom
systems are not an effective application of
limited resources any more.

Figure 4. The CSS

MORE WITH LESS

Do more with less is the motto of the
world today. Every year, the demand
increases and the budget decreases. In
order to maintain communication
services for the Agency, Nascom has
begun a project to re-engineer its network
management architecture.

The Facility and Resource Manager
(FARM) is an attempt to step back,
analyze Nascom's management
requirements, with an eye to the hture,

The basic goal of the FARM is to meet
today's motto, more with less. More
network operational demands with less
budget cause additional capabilities and
requirements to be engineered into the
systems with less engineering budget.
Standards, COTS, reuse, and new
technology are the FARM'S tools.

Operational Costs

The biggest cost to Nascom operations is
the large number of personnel required to
run the networks. The 4800-bit block

network is very manually intensive and
operates in a reactive mode for
troubleshooting. MODNET, NOLAN,
and the X.25 networks are a little more
automated, less personnel dependent; but
being separate networks, they still require
additional operations personnel. In the
near future, Nascom will implement and
operate the Federal Telecommunications
System (FTS)-2000 network and the
EOS Communications (Ecom) ATM
network. Although these are both highly
automated networks, they also have their
own network management systems that
have to be operated, requiring additional
personnel.

from text menus to windowed graphical
interfaces. Comprehensive operator
training for each system has to be
developed, which is time consuming and
expensive.

THE FARM ARCHITECTURE

The FARM is developing the functional
requirements of all the management
systems and designing a workstation-
based distributed network management
architecture using SNMP between the
systems. By down-sizing from
mainframes, using COTS products, and
Object Oriented (0 0) development
methodologies for software reuse, the

Figure 5. The FARM
Engineering Costs FARM will reduce engineering costs and

development time. By consolidating
Nascom engineering costs largely come multiple network management systems
from developing and maintaining into a consolidated environment, the
specialized hardware and software. Until FARM will provide a consistent operator
recently, to perform real-time processing interface into the different networks,
of large amounts of data required the use reducing training time and the need for
of mainframes in conjunction with mini- separate operators for each system
computers and large amounts of (figure 5).
assembly code. Add to that a unique
protocol, requiring specialized hardware, The FARM has five functions: operator
and you have a recipe for a marching interface, data management, resource
army of software and hardware engineers scheduling, system automation, and a
to keep Nascom operational. non-SNMP gateway (figure 6). The

operator interface will be designed using
Another cost is training personnel on X-window and Motif standards to
every new system or network. Every provide a comprehensive graphical user
one of the management systems operated interface. COTS development tools, such
by Nascom has a different user interface, as TAE+, will be used to provide rapid

screen prototyping. This will allow the project is evaluating several vendor
FARM the capability to provide the most packages for most comprehensive
efficient user interface in the shortest adherence to requirements.
amount of time.

System automation will be provided by
The data management function will using expert systems. Several of the
provide storage and retrieval of network COTS management systems also provide
configuration, management, and expert system development tools. The

NCC

SNMP & TCPIIP

Figure 6. The FARM Functions

statistical information for the FARM.
This functional will be performed using a
Structured Query Language (SQL)-based
database management system, such as
Oracle or Sybase.

The resource scheduling function
provides the FARM with the ability to
configure TDRSS network equipment
according to the network event schedule
supplied by the Network Control Center.
A large portion of this function can be
performed by COTS network
management software. The FARM

expert systems will analyze alarms and
passive circuit monitoring equipment to
perform pro-active troubleshooting for
the network.

The Nascom networks have equipment
and interfaces with specialized protocols.
These non-SNMP interfaces will require
gateways to convert between protocols.
Again, several of the COTS management
systems provide the capability to define
unique interfaces.

DEVELOPMENT
METHODOLOGY

Development costs will also be reduced
by applying some of the ideas from
Object-Oriented (0 0) methodologies to
enhance reuse of already developed
components and COTS products.

The FARM will not use an 00
implementation language, as the project's
short schedule, the long learning curve
for 00 methodologies, and the
questionable success of 00 projects are
incompatible. Instead, the ideas within
00 development that have been designed
to enhance reuse are being employed.

The first of these 00 development ideas
is to perform a problem domain analysis.
A domain is a problem area defined by
the user interface, external interfaces and
interaction of a proposed system. Its
extent depends, in large, on the definition
of what a user is. In the case of the
FARM, users are operations personnel
and developers. However, the developer
is a user only to the extent necessary to
safeguard reuse.

The problem domain analysis concludes
with the specification of a development
framework. The framework consists of
the components identified in the problem
domain analysis that appear to be
candidates for reuse or COTS products in
the system.

TESTING METHODOLOGY

COTS and reusable components are
integrated into system development
following System Engineering and
Analysis Support (SEAS) System
Development Methodology (SSDM).
There are different levels of development
testing required for COTS and reusable
components depending on their level of
reusability. The basic idea is that the

supplied component is assumed to be
fully tested and working. The task of
development testing is to ensure it works
within the system, that the interfaces are
functioning as stated. System testing
remains the same: the system is still
tested to ensure requirements are met.

The level of testing, and when testing
begins, depends on the component's
position in the hierarchy of system
components. When an entire function is
reusable or COTS, the lowest level of
testing required is module testing to
ensure that the interface matches
expectations. If the supplied function is
more-or-less a clientlserver function, then
integration testing is required to ensure
that the clientlserver interface is correct.

Using the definition of a process as the
smallest stand-alone system entity;
testing should start at the level of testing
in the following table:

Table 1. Testing Requirements

IMPLEMENTATION PLAN

Level of
ReuseICOTS
One or more
processes
Complete
function
One or more
units
Modified unit

The integration of management systems
will be done in a phased approach,
attacking the manually intensive legacy
systems first, then moving to the more
automated standards-based networks in
later phases. This will allow Nascom to
replace the expensive custom control
systems, reducing the software
maintenance costs.

Testing Required

Integration testing

Integration testing or
Module testing
Module testing

Unit testing

The CSS and its associated control
systems in the TDRSS network will be
re-engineered to provide the framework
for the consolidated network operations
center. These systems are the most
manually intensive, least automated
systems. By consolidating these systems
and implementing expert systems
technology, operational costs will be
greatly reduced.

Future phases of the FARM will integrate
the remaining COTS management
systems through SNMP interfaces and
increasing operational automation.

A FARM lab is being developed which
will be used to evaluate and test different
hardware platforms and software
packages, perform network performance
analysis, and prototype new technologies
and configurations for use in the FARM.
By performing rapid prototyping and
evaluation on every aspect of the FARM
development, road blocks and design
flaws will be identified early in the project
life cycle.

CONCLUSION

The Nascom networks have evolved over
the last thirty years into what they are
today. Each system and network were
developed to meet a specific set of
requirements to support NASA's
communications needs. Today,
technology and standards have matured
to the point that it makes engineering
sense, as well as budgetary sense to start
over from the beginning and re-engineer
Nascom's network management
architecture.

REENGINEERING
NASA's SPACE COMMUNICATIONS

TO REMAIN VIABLE
IN A CONSTRAINED FISCAL ENVIRONMENT

Rhoda Shaller Hornstein
Office of Space Communications

National Aeronautics and Space Administration (NASA)
- Washington, DC 20546

Donald J: Hei, Jr., Angelita C. Kelly, and Patricia C. Lightfoot _
NASA Goddard Space Flight Center (GSFC)

Greenbelt, Maryland 2077 1

Holland T. Bell
NASA GSFC Wallops Fiight Facility

Wallops Island, Virginia 23337

Izeller E. Cureton-Snead and William J. Hurd
NASA Jet Propulsion Laboratory

Pasadena, California 9 1 109

Charles H. Scales
NASA Marshall Space Flight Center

Marshall Space Flight Center, Alabama 358 12

ABSTRACT

Along with the Red and Blue Teams
commissioned by the NASA Administrator
in 1992, NASA's Associate Administrator
for Space Communications commissioned a
Blue Team to review the Office of Space
Communications (Code 0) Core Program
and determine how the program could be
conducted faster, better, and cheaper.
Since there was no corresponding Red
Team for the Code 0 Blue Team, the Blue
Team assumed a Red Team independent
attitude and challenged the status quo,
including current work processes,
functional distinctions, interfaces, and
information flow, as well as traditional
management and system development
practices. The Blue Team's unconstrained,
non-parochial, and imaginative look at
NASA's space communications program
produced a simplified representation of the

space communications infrastructure that
transcends organizational and functional
boundaries, in additioh to existing systems
and facilities. Further, the Blue Team
adapted the '@ster, better, cheaper" charter
to be relevant to the multi-mission,
continuous nature of the space
communications program and to serve as a
gauge for improving customer services
concurrent with achieving more efficient
operations and infrastructure life cycle
economies. This simplified representation,
together with the adapted metrics, offers a
future view and process model for
r e e n g i n e e r i n g N A S A ' s s p a c e
communications to remain viable in a
constrqined fiscal environment.

Code 0 remains firm in its commitment to
improve productivity, 'effectiveness, and
efficiency. In October 1992, the Associate
Administrator reconstituted the Blue Team

as the Code 0 Success Team (COST) to
serve as a catalyst for change. In this
paper, the COST presents the chronicle and
significance of the simplified representation
and adapted metrics, and their application
during the FY 1993- 1994 activities.

Key Words: Blue Teams, Complexity
Reduction, Economies of Scale, "Faster,
Better, Cheaper, " Life Cycle Effectiveness,
Mission Operations, Operations Concepts,
Operations Technology, Process
Improvement, Reengineering, Reusability,
Reuse, Simplicity, Space Communications,
Systems Engineering

1. INTRODUCTION

In addition to but separate from the Red and
Blue Teams commissioned by the NASA
Administrator, NASA's Associate
Administrator for Space Communications
commissioned a Blue Team to review the
Office of Space Communications (Code 0)
core program and advise, within six weeks,
how the program could be conducted
faster, better, and cheaper. With no
corresponding Red Team for the Code 0
Blue Team, the Blue Team was empowered
to take an unconstrained, non-parochial,
and imaginative look at the program and to
explore strategic options for change. The
Blue Team met during June-July 1992 and
filed its report on July 15, 1992. The
r e p o r t c o n t a i n e d f i n d i n g s ,
recommendations, and initiatives in three
areas: (1) People, (2) Technical, and (3)
Financial. (Hornstein et al., 1993)

At the heart of the technical initiative is a
s impl i f ied representat ion and
characterization of the space
communications infrastructure that
transcends organizational and functional
boundaries, as well as existing systems and
facilities. This simplified representation
results from the Blue Team's discovery that
the numerous and seemingly diverse
infrastructure systems and facilities can be
represented by only two functional
categories.

These categories are (1) Information
Handling and (2) R e s o u r c e
Management and Control. Information
Handling is the universe of activities
associated with datdinformation receipt,
processing (RF and digital), storage,
retrieval, formatting, distribution, and
transmission, including sensing of nominal
and fault conditions. Resource
Management and Control is the process of
making decisions about which resources
will be used for which activities at which
times; control of operations; and assuring
the allocation decisions are executed
properly through all life cycle phases,
including execution of recovery from
unplanned events and circumstances, to
satisfy operations goals and objectives.

The fulcrum of the simplified representation
is the set of "jkster, better, cheaper" metrics
as adapted to fit the multi-mission,
continuous nature of the space
communications program. The non-
conventional adapted metrics are realistic,
credible, responsive ("faster. and
c h e u p e r "), simpler and smaller
("better") and are to be employed over both
customer and infrastructure life cycles,
rather than optimizing, for example, over
the development phase to constrain initial
development costs at the expense of the
operations and maintenance phase.

The technical initiative is designed to
reverse the trend of planning, designing,
developing, maintaining, and operating
costly one-of-a-kind systems and facilities.
The initiative, as submitted on July 15,
1992, reads as follows: Create, evaluate,
and select a wholly integrated operations
concept, leading to an end-to-end systems
architecture, with full participation of Code
0 service providers and customers. The
concept is to be applicable across
organizational and functional boundaries,
and not limited to the in place infrastructure
or configuration of existing systems and
facilities. The evaluation factors and
selection criteria will focus on customer
satisfaction, life cycle effectiveness, and the
adaptation of the "jkster, better, cheaper. "

The simplified space communications engineering systems to systems
representation and adapted metrics are engineering. The focus of this paper is on
shown in Figure 1. In October 1992, the laying the groundwork for process change,
Code 0 Blue Team was reconstituted as the promoting the teamwork to accomplish
Code 0 Success Team (COST) to serve as change, and highlights of the FY 1993-
a catalyst for changing the process from 1994 activities.

Figure - 1: Space Communications Representation and Metrics

2. LAYING THE GROUNDWORK e n g a g e d in p rov id ing s p a c e
FOR INNOVATION communications services to space

communications customers, some of whom
In less than six weeks during June-July are now labeled NASA Strategic
1992, the Code 0 Blue Team examined a Enterprises. The systems and facilities
plethora of unique systems and facilities, all were unique in their names and titles,

organizations and architectures, technical
components, and budget line items. To
facilitate the examination of what appeared
to be vastly distinct and divergent entities,
the Blue Team diagrammed the systems and
facilities to seek and formulate comparative
relationships. However, substantive
progress did not occur until the team
stopped scrutinizing how the systems and
facilities were engineered and started to
question their purpose(s). A simplified
representation of the space communications
infrastructure then began to emerge.
Through repeated examination of
similarities in purpose vice diflereizces in
engineering, the Blue Team was able to
group the space communications
infrastructure systems and facilities into
five functional categories at first, and
finally to collapse them into only two
functional categories: (1) Information
H a n d l i n g and (2) R e s o u r c e
Management and Control.

This discovery by the Blue Team (i.e., that
the numerous and seemingly diverse
infrastructure systems and facilities can be
represented by only two functional
categories) led to the recognition that there
are considerable economies of scale to be
gained and problems to overcome. We,
organizationally, have become shaped by
our emphasis on uniqueness. We tend to
engineer systems rather than conduct
systems engineering. This practice
produces locally optimized, narrowly
focused, and somewhat short-sighted
solutions that contribute to overall
infrastructure complexity through the
accumulation of these many special
solutions for similar purposes. Our
heritage of unique solutions (i.e., systems
and facilities) has fragmented our
perspective and created barriers. One
clearly visible barrier is language or
vocabulary. Heretofore, when defining
requirements for space communications
services, the requirements have been
described in terms of an implemented, or to
be augmented, system or facility. This
approach tends to limit the field of potential
and available solution sets, and continues to
perpetuate the proliferation of unique

solutions. This entrenchment is adversely
impacting mission operations through
ineffective analysis of trade space
alternatives. This entrenchment is not
restricted to the space communications
program, but occurs throughout NASA's
strategic enterprises and functions.

A second key Blue Team finding or 'eureka'
'deals with the adaptation of the "faster,
better, cheaper" charter to reflect the multi-
mission, continuous nature of the space
communications program. Further, this
adaptation may be used to guide the
improvement of customer services while
accomplishing more efficient operations and
infrastructure life cycle economies. The
derivation of realistic, credible,
responsive, simpler and smaller from
"faster, better, cheaper" is as follows: The
Blue Team began its examination with
"faster" and "cheaper." Both concepts
seemed obvious, i.e., do whatever in less
time and with less money. Without giving it
a second thought, 'doing whatever in less
time' was related to accelerating system
delivery schedules or receiving data more
rapidly at higher rates. On second thought,
"faster" was less obvious. "Faster" was
meaningful only in the context of being
responsive to customer needs. Delivering a
system capability two years prior to need
(e.g., launch or encounter) may not be
advantageous if the implementation of that
capability creates restrictions in current
operations or introduces additional costs in
maintaining and operating the capability.
"Cheaper" was looked at in terms of the
agency flight program model and the multi-
mission, continuous nature of an
infrastructure model. Using the flight
program model, costs are tracked, on a per
mission or spacecraft basis, from beginning
to end or womb to tomb. However, an
infrastructure (now labeled as strategic
functions in the NASA Strategic Plan) spans
multiple missions and spacecraft. Economies
are achieved by leveraging the needs of
multiple customers and accommodating these
needs through modifications to the
infrastructure. The Blue Team probed and
found that emphasis was placed on
engineering systems, on a mission by

mission basis, with restrained and controlled
implementation costs. Although economies
were gained, the results were sub-optimal
when one considers that the majority of a
system's life cycle is spent in the maintenance
and operations phase, not in the design and
development phase. Investigating the
meaning of "better" proved to be both
enlightening and revealing. In the minds of
many good engineers, "better" readily
translates to more whiz bang, e.g., state of
the art, advanced technology, enhanced
performance, and inevitably more
complexity. However, complexity often
translates into cost and schedule risk
throughout a system's life cycle.

From these deliberations and non-
conventional exchanges of views, it became
evident that "aster, better, cheaper" was
being discussed in terms of their units of
measure. Traditional units of measure (i.e.,
time and dollars) were being used for "faster"
and "cheaper, " but non-traditional units of
measure (i.e., complexity and size) had
surfaced for "better. " In all cases, value had
to be measured across life cycles, both
customers and service providers alike. Value
for "aster and cheaperJ' became realistic,
credible, responsive. Value for "better"
became simpler and smaller.

The two Blue Team discoveries described in
this section -- (1) that the numerous and
seemingly diverse infrastructure systems and
facilities can be represented by only two
functional categories and (2) that 'Ifuster,
better, cheaper" is more appropriately
portrayed as realistic, credible,
responsive, simpler and smaller,
across life cycles -- constitute a new working
paradigm for preparing and delivering space
communications services. This new
paradigm strongly suggests that we depart
from our legacy of engineering systems to
establish the practice of true systems
engineering. Additionally, it must be
acknowledged that focusing on similarities,
rather than on differences, expands the
solution set for achieving economies of scale,
while creating opportunities for reducing
infrastructure complexity.

3. PROMOTING TEAMWORK
TO ACCOMPLISH CHANGE

FY 1993

In October 1992, the Code 0 Blue Team
was reconstituted as the Code 0 Success
Team (COST) to serve as a catalyst for
change. The COST role was further
clarified to include complementing line
management and fostering cooperation (not
competition) across the Code 0 Family. In
addition, the COST accepted the challenge
to include a tactical emphasis in its planning
and to maintain a balance between this
tactical emphasis and the strategic (1)
People, (2) Technical, and (3) Financial
Blue Team initiatives. Consistent with this
clarified role, the COST set out to:

. Promote cooperation and collaboration
across traditional boundaries

. Nu~lure innovation by seeking ideas for
nea r te rm ac ross - the -board
opportunities for savings

. Advocate realistic, credible,
responsive, simpler and smaller
solutions 7

Actively solicit customer participation

. Encourage use of the simplified space
communications representation and
adapted metrics in evaluating system
implementation projects

The COST entered into dialogues within the
Code 0 Family of service providers and
customers at Headquarters and the field
centers. These dialogues disclosed that
many of us were in violent agreement on
the need to change. While we recognized
that we shared a heritage of success, we
also acknowledged that the challenge was
to reduce the cost of success. This
challenge, "to reduce the cost of success"
became the hallmark of the FY 1993
activities.

The FY 1993 activities included strategic
and tactical elements. Formulation of the
Code 0 Family vision was a strategic
endeavor to integrate the simplified space
communications representation, the adapted
metrics, the Blue Team initiatives, and the
challenge "to reduce the cost of success."
The one-page statement and illustration was
signed by the Associate Administrator for
Space Communications in June 1993. The
Code 0 Family vision statement is to
reduce the cost of success through (1)
increased cooperation, (2) improved service
to and partnership with customers, and (3)
decreased cost and complexity of the space
communications infrastructure.

Two tactical activities were conducted
during FY 1993. They centered on
remaining viable in a constrained fiscal
environment, while pursuing the vision.
The COST organized and hosted the first
Space Communications Programmatic and
Tactical Planning Workshop. Attendees
included space communications service
providers and their customers. There were
two key objectives:

. Develop a technical foundation and
teamwork base to facilitate work on
operations concepts

. Develop an investment strategy that
included areas for near term savings

The workshop teams presented their results
and recommendations to Code 0 Senior
Management, including the Associate
Administrator. The recommendations were
synthesized into six areas for tactical
savings and incorporated in the budget
guidelines. In retrospect, the workshop set
the stage for teaming across organizational
boundaries and for testing the value of
proposed infrastructure modifications in
terms of customer benefit.

Also incorporated in the budget guidelines,
was the announcement of the Code 0
Investment Program. This program
provided an open channel for the field
centers to submit proposals that reduced
costs, improved services to customers, or
otherwise contributed to making the Code

0 infrastructure of systems and operational
services simpler, cheaper, or more
customer friendly. The proposal selection
criteria were based on (1) Contribution to
the Code 0 Family vision and (2) Rapid
Investment Payback - within three years.
The Code 0 Investment Program was
intended to build on the teaming started at
the workshop and create near term across-
the-board opportunities for savings. In
retrospect, it was difficult to shed local
institutional perspectives. Only ten tactical
winners were selected from sixty-three
proposal abstracts and twenty full
proposals.

4. REDUCING
THE COST OF SUCCESS FOR

NASA's MISSION OPERATIONS
FY 1994

Early in the year, the COST determined that
going after strategic and tactical results
concurrently was not leading to the desired
state. Line managepent was proceeding
with business as usual, i.e., working
within organizational boundaries and
motivating their employees to do the same.
Meanwhile, circumstances had overtaken
the tactical program.

Process changes to realize substantive
economies of scale would have to be
strategic, and technical innovation to reduce
cost and complexity would have to be
strategically motivated. Further, "reducing
the cost of success" actually meant reducing
the cost of success for mission operations
for NASA's strategic enterprises and
strategic functions. With active and intense
involvement by the Associate Administrator
for Space Communications, the COST role
was broadened to encompass agency
mission operations.

The COST organized and hosted a mission
operations workshop. Participants were a
non-parochial cross section of mission
operations experience from NASA, industry,
academia, and another government
organization. They had been selected using
the same criteria used to select members of
the initial Code 0 Blue Team:

. Independent Thinkers, yet Team Players

. Recognized for Technical Expertise and
Professional Integrity

. Prepared to Challenge the Status Quo

. Able to Resist Engineering the Solution
Before Understanding the Problem

. Experience in engineering systems and
Systems Engineering; able to distinguish

. Willing to be Unconstrained, Non-
parochial, and Imaginative

. Empowered to Explore Strategic Options
rather than Producing a Quick Fix

. Perseverance and Commitment Post-
Workshop (1 -year continued teaming)

The workshop theme was NASA Teaming
Across Organizational Boundaries to Reduce
the Cost of Success for End-to-End Mission
Operations. The workshop goal was to
expressly begin work on changing the culture
to stimulate innovation and promote
cooperation and collaboration across
traditional boundaries for the good of NASA.
The workshop was to be considered as the
kick-off meeting for building relationships
and creating teaming at-rangements to step up
to the challenge of reducing life cycle costs
for NASA mission operations. The principal
workshop objective was to articulate a
common baseline for services and functions
necessary to conduct end-to-end mission
operations. In order to emphasize similrrrities
in purpose vice differences in engineering,
the descriptions of these services and
functions were to be independent of existing
sys tems, fac i l i t ies , technologies ,
organizations, and personalities.

The workshop announcement stated that
many of us believe the big payoff will come
from reversing the trend of engineering
special solutions for similar problems,
through the identification, development, and
deployment of reusable components that

simplify engineering (building and
maintaining) and operating systems for end-
to-end mission operations. Achieving an
agreed to baseline of services and functions
was seen as a mandatory first step on the
road to payoff.

The opening session of the workshop was a
dialogue between the participants and the
NASA Administrator. His presence
reinforced the priority of cooperating and
collaborating across organizational
boundaries. At the conclusion of the session,
he invited workshop representatives to
continue the dialogue at the next Senior
Management Meeting to be held June 9,
1994. The invitation was accepted.

Preparation for the Senior Management
Meeting energized the representatives to form
a non-standard alliance of Code 0 Success
TeamILifecycle Effectiveness for Strategic
Success (COST LESS) for Mission
Operations. This alliance established the
following goals, technical approach, and
people process:

Goals
Redefine Success in a Constrained Fiscal
Environment
Reduce the Cost of Success for End-to-End
Mission Operations

Technical A ~ ~ r o a c h
Reverse the Trend of Engineering Special
Solutions for Similar Problems

People Process
Break Down Barriers and Team Across
Traditional Boundaries

The alliance presented to NASA Senior
Management that the goals would be met, and
significant savings could be realized by
improving processes and incorporating them
into the line organizations. The COST LESS
for Mission Operations alliance also reported
that "across traditional boundaries" included
life cycles, functions, programs and projects,
as well as organizations. The effort
envisioned would be multi-dimensional and
multi-disciplinary in order to achieve example

results such as (1) Common Vocabulary, (2)
Reusable Solutions to Simplify Engineering
and Operations, and (3) Operations Concepts
to Maximize Value.

5. NEXT STEPS FOR FY 1995

In the NASA Senior Management Meeting of
June 9, 1994, the Administrator noted that
the key to success is the cross-cutting nature
of the COST LESS team for Mission
Operations. It allowed the group to review
NASA objectively versus as individual
organizations. With this endorsement, the
team is reconvening during Augugt-
September 1994 to prepare for the next steps
between NASA's strategic enterprises and
functions.

6. REFERENCE

Hornstein, R.S. et al. (October 1993). A
Systems Engineering Initiative for
NASA's Space Communications.
Proceedings of AIAA Computing in
Aerospace 9 Conference (AIAA-93-4696)
(pp. 1282- 1289). San Diego, CA.

A System Study for Satellite Operation and Control
in Next Generation 7

K Nakayama, T. Shigeta, / Tracking and Data Acquisition department,
National Space Development Agency of Japan

T. Gotanda, K Yamamoto, Y; Yokokawa / LTCB Systems Co.,Ltd

1. Abstract
Ever since the first satellite,

ETS-1, in 1975, 28 NASDA satellites
in total have been launched.
With regards to satellite operations,
NASDA has developed realtime
TLM/CMD processing systems which -
could be commonly used for different
types of satellite. Presently the third
generation system is operational.
Meanwhile, the recent trend of satellite
operations is becoming more compli-
cated, for example, CCSDS-adapted
Satellites are emerging and computer
technology is developing quite rapidly.
Moreover, NASDA's role in satellite
operations is changing from mainly
Satellite Bus operations to experimen-
tallwhole satellite mission operations.
Considering these circumstances,
NASDA has initiated a study for the
next generation system which is suit-
able for operations of future satellites
keeping in mind the following view-
points.

Demands from mission support
* Trend of satellite design
* Progress of computer environment

This is an interim report of the study.

2. NASDA's Present system

2.1 Tracking and Control System
The present Tracking and Control

System is shown in Fig.-1. It consists
of the followings:

Network system(tracking stations,
network control, etc)
Satellite Operation and Control
system(TLM and CMD operation)
Support system(orbit determi-
nation,planning of operation,etc)
Space Network system(network via
Data Relay Satellite; experimental)

2.2 System Configuration of Satellite
Operation and Control system

NASDA's Satellite Operation and
Control system, based upon the "system
applying to all satellites", consists of
the following elements.

Satellite system
The realtime on-line subsystem

and off-line subsystem which are
composed of satellite functions and
satellite unique functions.

* Database Manager
Single system, common to all

satellites, to manage database for
parameters.

Fig.-1 NASDA Tracking and Control System

1151

3. Objectives of the Study
In this section, necessity of the next

generation system (named "SOC-X") is
introduced, addressing the following
viewpoints:

* Demands from mission support
* Trend of satellite design
* Progress of computer environ-

ment

3.1 Demands from mission support
* Supporting mission

The present system is made up
and used for satellite operations without
making clear distinction of housekeep-
ing operation or activity of supporting
missions.
Hence, NASDA needs a new concept
for SOC-X, which is "Providing inter-
face to support mission" on user's side.

I

Variety of missions
The present systems, based upon

the "concept applying to all satellites",
have difficulty supporting various
missions entirely, because of a shortage
of mission support functions.

A variety of support functions as
well as further study on how to
implement the functions on the
common system are required.

3.2 Trend of Satellite design
Accommodation to CCSDS

NASDA satellites are adapting
the CCSDS recommendation. Therefore,
SOC-X is requested to support the
corresponding CCSDS communication
environments. SOC-X will deal with
both conventional and CCSDS satellites.

Satellite autonomy and autonomous
operation

High performance and autonomy
of onboard equipments will change the
tasks of satellite operations on ground
as follows.

- Simplification of Command data
generation scheme

- Monitoring equipments through
onboard autonomous supervision
function in parallel with the
conventional monitoring of all
telemetry information

In addition, operating procedures will
change over to the new way from
ground-based actions to onboard auto-
nomous control.
NASDA is in now a transition phase,
and it is necessary to cooperate with
satellite design.

3.3 Progress of computer 'environ-
ment

Computer environment is rapidly
advancing more than the time the
present system was designed.

Progress in computer technology
includes:

- Enabling more complicated
process

- Minimizing the cost of
computer

- Displaying high value added
information to the operator

- Improving man-machine
interface

Progress in network environment
- Network technology of LAN
- Use of common resources and

distributed function via LAN
- High speed WAN, which is

suitable for LAN
- Standardization of LAN

environment

4. Consideration of SOC-X

4.1 Concept for satellite operation
Cooperative operation with the

mission users becomes more important
in the future satellite operations.
Moreover, satellite operation not only
housekeeps the satellite, but also
provides functions to utilize satellite
payloads to the mission users.
Apparently, it is required to be more
"mission " and "end-user" oriented.

4.1.1 Definition of SOC-X
SOC-X directly interfaces with

satellite according to the concept of
"mission" and "end-user oriented".
It could be defined as a "Provider of
data between satellite and mission
users". SOC-X provides mission
support functions as described below
and in Fig.-2.

Providing operation environment to
users for housekeeping of payload
and mission execution
Controlling the satellite safety

4.1.2 Providing mission environ-
ment

The mission operating environment
provided by SOC-X is for the house-
keeping of satellite resources, including
mission equipments, and for the real-
time mission data interface between the
satellite and users.

Housekeeping the satellite resources
There are many items of resource

to be managed on satellite. These
resources are controlled by SOC-X
while mission users would operate their
equipment under this controlled
environment.
In this configuration, mission users
are allowed to control only each
mission part individually.

* Data interface with satellite
Data interface function provided

by SOC-X is the real-time data
transfer of TLM and CMD including
transparent data interface, engineering
data conversion of TLM, and genera- '

tion of CMD.
However, it is undesirable for SOC-X
to have direct interface with the user,
in terms of system security and satellite
safety. Accordingly, it becomes
important to provide a system which
satisfies the users' requirements and
protects the Satellite Operation and
Control system.
NASDA is considering a method for
user interfaces taking into account the
above aspects, which also include non-
realtime data interface.

(Satellite) (Mission)
M~SSION
OPERATING
ENVIRONMENT *....END USER-ORIENTED

ENVIRONME

.
.) '.....>.'... ??.;<,:?$*.& < ,>>,........ 1: .::::1.!:::1.:::.: I'.:::.::.:::l;ll:'I:~::j."i'.

. SOC-X . L 1::; ,.,< ;...;.:.: ;:,: <,,. ;,; .. ;;:...;.;;:::;.;;; :.,,;.,;.:;,,; :.:.:,,.i:<i'::: .::..::;::::.::;.::: .::,,. ..::. \
Tracking and Control Sy st-s , %

Fig.-:! Environment provided by SOC-X

4.1.3 Satellite Safety Operation
SOC-X must provide protection

to satellite resources.

* Supervising satellite status
The present operation takes

necessary recovery action after detect-
ing of anomaly by monitoring TLM.
However, "prediction of anomaly by
inference" might be the goal. This
requires the satellite operation planning
information in order to know how the
resources will be used.

Command control of satellite
Here, the validity of command

and timing of its transmission are
verified. This process also takes into
account the conditions of satellite
resources. However, to what extent and
method of these checking should be
used by SOC-X needs further study.

4.2 Satellite design trend

4.2.1 Approach to Mission-oriented
and Commonality

The important aspect of this study
is to overcome the contradiction
between diversification of mission and
commonality of satellite operation.
Needless to say, these studies must be
made with a close cooperation with
satellite design and development.

4.2.2 Adaptation to CCSDS
CCSDS causes no big impact on

Satellite Operation and Control system,
however, it brings about some new
concept of communication protocol
between the satellite and ground.
In NASDA cases, the responsibilities of
the following two subsystems in terms
of CCSDS environment are unclear;
- Network system is responsible for

the control of all equipments on
ground and all systems of
tracking station.

- Satellite Operation and Control
system is responsible for the
control of the satellite system.

Since it is still new for NASDA to
develop the CCSDS equipments for
onboard and ground, an issue on how
to design s system most suitable for
CCSDS environment was brought up.

A conclusion has not been reached,
but the scope of new Satellite Opera-
tion and Control system must conform
to the concept of the CCSDS standards.

4.2.3 Automatic and autonomous
Onboard subsystems will be more

automatic and autonomous for high
level mission operation, which result in
reduction of operational load. These
will cause a change in operation
leadership on the ground so it is
important to assign responsibilities to
both onboard and ground systems
respectively.
The operational load will be reduced
by automatic and autonomous satellite
operations, but the task of SOC-X
increases because of the followings;

Analysis on the cause of anomaly
and countermeasure actions
executed by autonomous onboard
programs
Verification of pre-arranged
actions in automatic and autono-
mous onboard programs, prior to
its execution
Control of automatic and auto-
nomous programs and supervision
of the operating status

* Backup for onboard CPU failure

4.3 Utilization of new technology

4.3.1 LAN-based system
A use of new technologies, which

were not available at the time of the
present system design, is one of the
key issues of this study. A LAN-based
system is one of the concepts for
SOC-X, which supports activities as
follows.

Common use of resources
* Distributed processing

Reduction of duplicated functions

4.3.2 Reduction of operator's load
One of the subjects for reducing

operational load is the telemetry
monitoring. Currently the operator
needs plenty of information to judge
satellite conditions, thus it is quite
important to develop a method where
the system can predict anomaly.
Artificial Intelligence(Al1) technology
may help reduce this task.

4.3.3 Upgrading the operational
environment
It is most desirable to provide

more practical and condensed informa-
tion to the operators. One of them is to
utilize the latest computer technologies.
It would provide a suitable operation
environment to support NASDA1s
mission by:

Visual information
* Multi Role terminal
* Unified man-machine interface

5. Summary of the study result
This section is an interim report

about the concept of SOC-X.

5.1 Concept of SOC-X
NASDA1s Tracking and Control

system, now functioning only as the
operator of a satellite, would also
become a provider of satellite mission
support environment.
In this concept, SOC-X would provide
the following environment to mission
users:

* Mission-oriented operational
environment

* User-oriented interface
environment
Satellite configuration management

5.2 Element of SOC-X

5.2.1 Concept
The satellite operations consist of

housekeeping and mission operations. .
Hence, the Satellite Operation and
Control system is provided with Bus- '

control and Mission-control functions.

5.2.2 Bus-controller and Mission-
controller.
Bus-controller(B-ctrl), which is a

system applying to all satellites, is for
the operation of whole satellite and bus
equipment. B-ctrl is a front-end
system to manage the whole satellite.

Meanwhile,Mission-controller
(M-ctrl) is a customer-made system
for each mission operation. M-ctrl has
TLM and CMD functions for specific
missions, and a back-end system which
performs the housekeeping for mission
equipment and control of mission
equipments.

5.2.3 Interface between B-ctrl and
M-ctrl

Telemetry data
In case of copious telemetry fiom

a conventional satellite, B-ctrl delivers
necessary telemetry to M-ctrl. With
regards to the CCSDS cases, its
telemetry is distributed to B-ctrl and
M-ctrl individually fiom the CCSDS
telemetry handling systems, but
exchange of information between them
would be done as follows:
- B-ctrl provides information needed

to proceed the mission.
- M-ctrl provides information needed

to manage the whole satellite
system.

Command data
Mission commands from users are

generated and checked by each M-ctrl
for payload safety. At this point,
satellite safety is managed between
B-ctrl and M-ctrl by exchanging
information.
In case of conventional satellite,
commands generated by each M-ctrl
would be transmitted through B-ctrl. In
other cases, for example, the distributed
commanding of CCSDS, B-ctrl and
each M-ctrl generate and transmit their
individual commands under planned
conditions.

5.3 Mission Support

5.3.1 Service environment
SOC-X provides the management

function of satellite configuration.
This configuration is independent of
other missions and bus operation, and
it assures the mission users with
operation safety.
Furthermore, operations including the
housekeeping of onboard mission
equipment by B-ctrl is also possible.

5.3.2 End-user oriented service
Further services are considered:

* Data transfer
Realtime communication with
satellite(e.g.:TLM,CMD)

* Value added Data transfer
- Delivery of TLM, which is

converted to engineering data
- Generation of CMD, which is

converted fiom a descriptive
information to actual command
data

Rental terminal

5.3.3 Interface Configuration
For the interface configuration

provided to the users, are there three
types as follows and also shown in
Fig.-3:

Fig.-3 Interface configuration (CCSDS type satellite, for example)

1156

* Utilization of NASDA supplied
tool

This tool supplied by NASDA, is
provided with functions necessary
to perform the mission operations
for the users.

* Access to Data GW system
This Data GW system supplied by

NASDA, functions as a data gate-
way for the satellite and user's
system, and links these two to
perform mission operation.
The system provides the basic
functions to relay the processed
telemetry data to user's system and
convert a descriptive information
from the user to actual command
data.

* Development of User Own System
A mission user develops each

system by utilizing the functional
tools supplied by NASDA.
As the user integrates these tools in
his system, he is able to perform a
mission control on his own.

6. Future subject

6.1 Future Study
This paper introduced an interim

study result.
So far, several issues have been
identified. We, for example, have some
study items with the network system,
and a certain extent of responsibility
for SOC-X in terms of "Basic concept
of NASDA satellite operation in
futurett.
Indeed, the key element in developing
system is to keep in mind conformity
of satellite design and ground systems.
We hope to write a final report after
having the major problems examined.

6.2 Development schedule
The current schedule is not yet

approved. So far, the following
schedule is being considered.

FY
1994 Conceptual Study
1995 System Study
1996 Preliminary Design
1997 Detail Design
1998 Development
1999 Integration Test

2. Reusable Systems Page 1159

SE.2.a Transportable Payload Operations Control Center Reusable 1161-1169 - -5k~
Software: Building Blocks for Quality Ground Data Systems

Ron Mahmot, John T. Koslosky, Edward Beach, Barbara
Schwarz

SE.2.b Customizing the JPL Multimission Ground Data System: 1171-1175 r7
Lessons Learned

Susan C. Murphy, John J . Louie, Ana Maria Guerrero,
Daniel Hurley, Dana Flora-Adams e-4:

SE.2.c Configurable Technology Development for Reusable Control 1177-1184 &T!J "5
and Monitor Ground Systems

David R. Uhrlaub

':: Presented in Poster Session

TRANSPORTABLE PAYLOAD OPERATIONS CONTROL CENTER REUSABLE SOFTWARE:
BUILDING BLOCKS FOR QUALITY GROUND DATA SYSTEMS 1 4
Ron Mahmotl , John T. Kosloskyl , Edward Beach2 , Barbara Schwarz3

NASNGoddard Space Flight Center, Computer Sciences Corporation (CSC), 3 Integral Systems Inc.

ABSTRACT

The Mission Operations Division (MOD) at
Goddard Space Flight Center builds Mission
Operations Centers which are used by Flight
Operations Teams to monitor and control
satellites. Reducing system life cycle costs
through software reuse has always been a
priority of the MOD. The MOD's
Transportable Payload Operations Control
Center development team established an
extensive library of 14 subsystems with over
100,000 delivered source instructions of
reusable, generic software components. Nine
TPOCC-based control centers to date support
11 satellites and achieved an average software
reuse level of more than 75%. This paper
shares experiences of how the TPOCC
building blocks .were developed and how
building block developer's, mission
development teams, and users are all part of
the process.

1. INTRODUCTION

The TPOCC is a control center architecture
which takes advantage of workstation based
technology to improve mission operations and
reduce development costs for Payload
Operations Control Center's and Mission
Operations Center's in GSFC's MOD. The
TPOCC architecture is characterized by it's
distributed processing, industry standards,
commercial off-the-shelf (COTS) hardware
and software products, and reusable custom
software. The reusable TPOCC software is
integrated with mission applications to provide

the health and safety monitoring, and
commanding capabilities for various NASA
satellites. This includes the capability to
process and display telemetry, build and send
'commands, and perform special processing. In
addition, TPOCC provides a graphical user
interface and a procedural command language
that automates ground system and spacecraft
control.

The TPOCC development team established an
extensive library of 14 subsystems with over
100,000 delivered source instructions of
reusable, generic software components. By
encapsulating the basic control ' ceizter
hnctionality into reusable building blocks, the
control center design and implementation
becomes a much easier task. The nine
TPOCC-based control centers to date support
11 satellites and achieved an average software
reuse level of more than 75% (see Table 1).
The challenges involved in establishing and
maintaining a cost-effective library of software
components for ground system development
include: making the initial investment, getting
mission teams to adapt a reuse paradigm,
configuration control, and staying current with
technology.

This paper describes the MOD's approach to
establishing and maintaining the TPOCC
reusable software.

2. BACKGROUND

NASA's Goddard Space Flight Center (GSFC)
Mission Operations Division (MOD) provides

Ground Support Systems for a variety of achieved a maximum software reuse level of
scientific satellites. The MOD designs, about 40%. -

implements, tests, and delivers control centers
- both traditional Payload Operations Control
Centers(P0CCs) and the newer, hnctionally
expanded Mission Operations Centers (MOCs)
- that provide command management and
mission planning functions. Using an
operations control center, the Flight
Operations Team (FOT) provides around-the-
clock support to its spacecraft, typically
establishing communications contact every few
hours for a period of about 20 minutes.
During these brief contacts, the control center
system fbnctionality allows the FOT to quickly
evaluate the current condition of the spacecraft
and transmit the commands necessary to
maintain its health and control the spacecraft
and its science instruments.

Recognizing the many similarities among
missions, the MOD always has made software
reuse a priority. Prior to TPOCC, the most
successfbl reuse effort was the Multisatellite
Operations Control Center (MSOCC)
Applications Executive (MAE), which

The TPOCC project began in 1985 as a
Control Center System Branch research and
development effort examining the new
workstation based technology to hrther
reduce mission development cost and improve
operations support. The ICE I IMP Control
Center was successfblly prototyped using a
TPOCC system in little more than six months.
Following this proof of concept POCC
software was developed for the SAMPEX,
WIND 1 POLAR, and ICE 1 IMP missions
simultaneously with the implementation of the
TPOCC core reusable software. The TPOCC
core reusable control center software was
completed with the delivery of TPOCC release
6.3, in July 1992, and successfblly supported
the SAMPEX launch. In addition to the
numerous MOD control center applications
which TPOCC now supports other.non-control
center applications utilize TPOCC software to
reduce their development costs (see Table 1).
TPOCC software continues to evolve based on
mission needs and new technology
opportunities.

TABLE 1 - APPLICATIONS INCORPORATING TPOCC

1 Monitoring Platform (IMP) Payload Operations Control I
Center (POCC), Interplanetary Physics Laboratory
(WIND) POCC , Polar Plasma Laboratory (POLAR)
POCC. Solar and Helios~heric Observatorv (SOHO)

1 POCC, Solar Anamalous & Magnetospheric Particle I
Explorer (SAMPEX) POCC, Fast Auroral Snapshot
Explorer (FAST) POCC, Submillimeter Wave Astronomy
Satellite (S WAS) POCC, X-Ray Timing Experiment (XTE)
Mission Operations Center (MOC), Tropical Rainfall
Measuring Mission (TRMM) MOC, Advanced
Composition Explorer (ACE) MOC

1 Alenia S~azio Control Center: X-SAR Mission Planning O~erations Svstem I
I NASAJGSFC Spacecraft Operations Tools: Shuttle Payload Interface Facility (SPIF), I

1162

3. BASELINING THE BUILDING BLOCKS

Prior to baseling TPOCC software and
committing to mission deadlines an investment
was made in a system development concept,
technology evaluation, and prototyping POCC
subsystems. The System development concept
resulted in a series of mandates for both the
architecture and the management approach for
mission's which will use the TPOCC
architecture.

The management approach taken on TPOCC
was to institutionally find and manage the
TPOCC reusable software development and
architecture. Each mission would then find an
effort to build a dedicated control center based
on TPOCC building blocks integrated with
mission specific software. Enhancements to
the core reusable software would be evaluated
on a case by case basis using project finding
when necessary.

There were four key TPOCC architecture
mandates: distributed processing; widely
accepted industry standards; reusable software

with clearly defined interfaces; and commercial
off-the-shelf (COTS) products.

TPOCC adapted distributed processing as a
means to scale hardware and software to the
requirements and complexity of a specific
mission. Implemented through a clientlserver
method, finctional data processing capabilities
are developed as independently executing
software tasks distributed across a group of
networked inexpensive heterogeneous
computers.

Although all TPOCC software components can
execute on a single workstation, the current
generation of TPOCC based control centers
are hosted on a heterogeneous set of
processors to meet mission data throughput
needs. The main hardware components are a
front end processor PEP) and multiple UNIX
workstations connected to an Ethernet-based
local area network (LAN). The FEP, a VME
chassis containing one or more single-board
computers using a real-time UNIX-like
operating system, performs the time-critical
control center functions. The VME bus

provides high data throughput between the
processes hosted within the FEP, while
reducing data volume on the external LAN.
The FEP also contains mass data storage, as
well as additional NASA communications
(NASCOM) interface hardware for receiving
spacecraft telemetry data and for sending
commands and data to the spacecraft.

Another major contributor not only to
software reuse across control centers but also
to the extendibility of TPOCC to other non-
control center applications is its clearly defined
and tightly controlled interfaces. Because all
TPOCC based systems produce software that
complies with these interfaces, capabilities
developed by mission development teams can
be easily shared, either by subsuming the new
capability into the T P O C ~ reusable software
base (if the capability is truly generic) or
directly into other applications that require the
specific capability. These well defined
interfaces also make it possible for TPOCC
compliant applications to share data. TPOCCs
defined data service protocol allows a loosely
coupled application to link into a TPOCC
based system, access its telemetry stream,
receive updated parameter values in real-time,
act on that data in its own software, and return
data to the TPOCC based system for display.

Adhering to widely accepted industry
standards was seen as an essential part of
TPOCCs approach to building a software
library of components which could be
compatible with advances in hardware
technology. The standards used for TPOCC
hardware components include VME, Ethernet,
RS 232, RS422, and SCSI. TPOCC software
standards adheres to open systems
communications standards such as the
Transmission Control ProtocoVInternet
Protocol (TCPAP), external data
representation (XDR), and network file system
O\JFS). TPOCCs user interface standards

include the X-Window System and the Open
Software Foundation(OSF)/MOTIF software.

Following widely accepted industry standards
also puts TPOCC in a position to maximize the
use of COTS products wherever possible.
Graphical User Interface, database,
development tools, and network management
are a few of the areas where TPOCC has
utilized COTS products in lieu of costly in
house development efforts. As a result,
system enhancements -have become more
dependent on COTS vendors, making vendor
reliability an important aspect of technical
evaluations.

A significant amount of time was spent on
doing technical evaluations and prototyping in
the early phases of the TPOCC project. High
risk requirements were prototyped and
workstation based hardware and software
components were evaluated for its application
to the control center environment.
Prototyping continues to play an important
role in evolving the TPOCC reusable software
base with technology.

4. ESTABLISHING A REUSE PARADIGM
AMONG MISSION TEAMS

System development based on TPOCC
software building blocks and TPOCC
architecture introduced technical and
management challenges. Initially, TPOCC
development was localized within a research
group and focused primarily on developing
concepts, identieing applicable technology,
and prototyping high risk areas. Mission
POCC development teams were accustomed to
developing, implementing, and testing each
POCC individually using FORTRAN on a IBM
or DEC like minicomputers. Both the TPOCC
development group and mission development
teams needed to change their perspective.
Mission developers could no longer view
themselves as developers of separate and

unique control centers but rather as
contributors to the larger body of common
control center software.

The first step toward this paradigm shift was
to introduce the mission development teams
to the principles and mindset necessary to
make large-scale subsystem reusability a
reality. The TPOCC development group
conducted classes on the TPOCC development
methodology, system design, and system
capabilities. Also development teams attended
vendor training classes on the new technology
and software implementation environment.
The third method of training was having the
mission teams build prototype POCC systems
utilizing configured TPOCC generic
subsystems and adding their mission specific
code. The complete telemetry processing
path was prototyped for SAMPEX &
WINDPOLAR in approximately two months .

Communication and feedback between the
TPOCC staff and mission development teams
becomes increasingly important as the number
of TPOCC-provided capabilities and the
number of TPOCC-based applications
increase. A Cohfiguration Review Board
(CRB) and working group, with a variety of
representatives including mission development
teams(contractors and GSFC personnel for
each mission), the TPOCC staff, users, and
representatives of other (i.e. non-control
center) TPOCC based systems was established.
The working group ensures that everyone is
kept abreast of the efforts, needs and schedule
of the collective group. As mission
development teams identify candidate
capabilities for generic implementation, the
CRB determines which candidate capabilities
are truly generic, schedules their
implementation, and provides configuration
control.

As the number of missions increase,
requirements for new capabilities grew but the

TPOCC budget has remained constant. In
order to make this effort successfbl while
controlling cost, temporary teams with
members from the TPOCC group and mission
development teams are formed to design and
implement new generic software. In addition
to providing additional staff to implement
generic capabilities, TPOCC staff gets insight
into what portions of a capability are generic,
and help identify likely differences among
missions. For the missions, these teams
provide insight into designing software for
reusability and experience in differentiating the
mission-unique elements of a problem from the
generic.

Using TPOCC software and architecture
framework, mission development teams have
also been able to support unique needs of
individual spacecraft requirements. The
WINDPOLAR POCC, supporting two
spacecraft scheduled to launched within a year,
handles two physical channels of time division
multiplexed (TDM) telemetry, while other
TPOCC missions use the CCSDS standard.
The SOH0 POCC, scheduled to launch in
mid-1995, must handle a unique combined
TDM and CCSDS telemetry format.

To date, six TPOCC-based applications
systems have been configured to support eight
different spacecraft. The first three POCCs
developed for the SmaU Explorer (SMEX)
program, SAMPEX, FAST, and SWAS, also
serve as a case study in determining the levels
of reuse that can be attained with the TPOCC
architecture within a series of missions. The
SAMPEX POCC consists of COTS products,
67% TPOCC-generic software and 33%
mission-specific software (see Table 2). By
reusing both SAMPEX mission-specific
software and the expanded TPOCC-generic
software, the FAST POCC achieved an 8 1%
reuse level. The SWAS POCC, expanding this

reuse base to include FAST mission specific much of the mission specific code in XTE will
software, achieved a reuse level of 92%. be reusable in TRMM.

Two latter missions, XTE and TRMM chose a
TPOCC-based-MOC approach, integrating the
traditional POCC, mission planning, and
command management functions together into
one system by sharing functionality and
reusable software which had previously been
implemented separately. Since the TRMM and
XTE spacecraft have significant similarities,

Another indicator of TPOCC reuse across
missions is the number of new generic
capabilities asked for by mission development
teams and users. Totals by mission of new
generic capability requests, documented as
Internal Configuration Changes Requests
(ICCRs), are listed in Table 2.

TABLE 2 - NASAIGSFC Control Center TPOCC Reuse Data
Mission Total Total***

Project Name Specific Reused System Percent Generic Change
DSI* DSI DSI Reuse Requests(1CCRs)

ICE/IMP* * 25407 72552 97959 74% 17
ISTP series: WIND 43372 8 1895 125267 65% 23

I POLAR 7414 124934 132348 94% 0 I
SOH0 43 690 94840 138530 68% 8

SMEX series: SAMPEX 38308 77 125 115433 67% 16'
FAST 22707 96534 119241 81% 11 .

I SWAS 9800 114434 124234 92% 1 I

*DSI = Delivered Source Instructions
**Following its initial prototype, ICE/IMP was completely rehosted
***Number of approved ICCRs from TPOCC Release 2 through Release 12

5. CONFIGURATION CONTROL and that TPOCC applications be given

The TPOCC CRB oversees the reusable
software configuration management as defined
in the TPOCC Project Support Plan. Because
the TPOCC Reusable Software forms the core
of several control centers, configuration
control is necessary across development efforts
and it is essential that:

the opportunity to analyze the proposed
changes and assess the impact to the
TPOCC applications

- Proposed changes [i.e., configuration
change requests (CCRs)] to mission
software be visible to the TPOCC project
and other application teams for analysis,
and possible reusable implementation
recommendations.

- Proposed changes [i.e., internal - Problems detected during testing of the
configuration change requests(ICCRs)] TPOCC release be documented as
to the TPOCC software be visible to TPOCC internal discrepancy reports
TPOCC missions before implementation

(IDRs) and made visible to all TPOCC
applications

- Problems detected during testing of
TPOCC applications be documented as
discrepancy reports (DRs) and made
visible to all TPOCC applications

- DRs written against TPOCC applications
are analyzed; assigned to either generic
TPOCC or a mission development team
based on the results of that analysis; and
if assigned to the generic TPOCC, made
visible to all TPOCC applications.

- The reusable TPOCC capabilities are
accurately incorporated in the TPOCC
Capabilities Document

5.1 Configuration Baselines

Two levels of software baselines are
established for TPOCC reusable software. The
TPOCC Capabilities Document, analogous to
a typical system requirements document,
contains a structured list of TPOCC
capabilities. A build release plan maps the
capabilities to specific releases. This
permanent baseline will be updated only in
response to ICCRs written against TPOCC
software or CCRs written against a TPOCC
application but implemented as a generic
TPOCC capability.

The second configuration baseline documents
the as built TPOCC release. This release
product baseline consists of the software
release, design documentation, the TPOCC
implementation guide, generic user's guide
sections, test procedures, data, and results.

The TPOCC Detailed Design Specification
describes the current design of each generic
TPOCC subsystem and includes a summary of
each subsystems functions, a subsystem
architecture diagram, high level descriptions of
each task, unit prologs, a calling hierarchy
within each task, network interface

specifications, file definitions, and data
structure specifications.

The TPOCC Implementation Guide is the
programmers manual for using and maintaining
TPOCC generic software subsystem. It
includes a description of the hndamental
UNIX concepts that are used in building a
TPOCC application system, a description of
the fbnctions available in the TPOCC software
library, and a description of how to build and
use each generic TPOCC subsystem.

The generic user's guide sections describe
operational aspects of the TPOCC reusable
software which are incorporated into the
system user's guides of each TPOCC mission.
Also the TPOCC Display Page User's Guide is
provided which describes the methods of
creating display pages with each release.

5.2 Software Support Policy

The TPOCC approach used in - software
support is similar to that of many operating
system vendors. The development team makes
each release of reusable software available to
application development teams for
incorporation into their deliverable. If an
application group elects not to incorporate the
new TPOCC release then software support
from the TPOCC development team will not
be guaranteed. Any reusable software changes
made by the application teams without
following the CRB standard procedures for
configuration control will nullifL TPOCC's
support agreement with that application.

New capabilities are scheduled in TPOCC
releases based on mission need dates, with an
average of two software releases a year.
Frequently the TPOCC development team is
over booked with new capabilities and
something has to give. Based on priority and
the required expertise, some ICCRs get

delegated to application development teams.
ICCRs that can wait get deferred. An
applications implementation of a generic
capability is initially delivered as part of its
mission specific software and then folded into
the TPOCC release at a latter time. Larger
subsystems such as the NASCOM interface,
packet processing, or Network Control Center
(NCC) Interface has been implemented with
TPOCC and mission support staff

New TPOCC releases are tested in a mission
independent testbed environment and then
made available to mission development teams
for integration with mission specific software.
A test cycle is completed when an independent
acceptance test team tests the complete
application system delivery. Problems
identified in the applicatidn may, after analysis,
be found to reside in either the application
software or in TPOCC. The CRB reporting
mechanism makes generic problems known to
all applications.

Changes to generic TPOCC get initiated as an
Internal CCR on TPOCC reusable software
itself or as a CCR written against the missions
requirements document and presented to the
Configuration Control Board. Generic TPOCC
ICCRs are reviewed by both the generic
TPOCC project and the application groups for
technical feasibility, cost, and schedule impact.
Having the user's who initiate the requirements
attend the CRB has been an important part of
the success enjoyed thus far.

6. TECHNOLOGY INFUSION

New technology advances are incorporated
into the TPOCC architecture by: integrating
newlupgraded COTS products, integrating
new ground system toolslcomponents
developed by NASA organizations external to
the MOD, and enhancing TPOCC software.
An institutional prototyping and technical

evaluation group looks at various products
from each area for it's applicability to the
TPOCC architecture based on mission
requirements and industry trends. As members
of the TPOCC Working Group, users and
mission development teams provide signifcant
input into the prototyping and technical
evaluation activities. New systems for trend
analysis, s/c subsystem monitoring, and s/c
visualizing have been integrated in TPOCC's
loosely coupled architecture. The TPOCC
User Interface continues to be enhanced by
taking advantage of new MOTIF GUI
capabilities.

The workstation era has accelerated the
obsolesce of computer systems. A
characteristic of the mainframe &
minicomputer era was to replace systems every
five years which effectively reduced any
reusable s o b a r e base to zero due to software
dependencies on the hardware, TPOCC
software has transitioned between two
generations of FEP computers and ports to
Sun, HP, IBM, and VAX workstations.

7. CONCLUSION

Averaging 75% of a missions control center
deliverable, TPOCC software has reduced cost
and shortened the control center development
life cycle. Established standards both in
industry and spac.ecraft development have
increased the reuse factor to well over 90%. A
successfbl process for evolving the TPOCC
software with new capabilities and new
technology is in place. As projects "Re-
Engineer" the development life cycle by relying
more on the TPOCC software maturity
schedules will continue to be shortened and
cost reduced.

REFERENCES

NASAIGSFC, MOD, CCSB, 5 1 1-lPSPl0190,
CSC and ISI, TPOCC Project Support Plan
(Revision 4),
December 1993
--, 511-4SSDl0393, CSC and ISI, TPOCC
Implementation Guide for Release 1 1, July
1994
--, 51 1-4DDSl0193, CSC and ISI, TPOCC
Detailed Design Specification for Release 10,
February 1994
--, 51 1-4SUGl0594, CSC and ISI, TPOCC
Display Page Users Guide for Release 1 1, June
1994
--, 51 1-4SUGl0494, CSC and ISI, TPOCC
Generic User's Guide Sections for Release 1 1,
July 1994

--, 51 1-4SSDl0290, CSC and ISI, TPOCC
Reusable Subsystem Capabilities (Revision 4),
April 1994
--, CSC and ISI, "TPOCC: A Satellite Control
Center System Kernel That Fosters High
Reuse and Lower Cost"
--, CSC, "TPOCC Task Labor Projections
Through FY95"

ACKNOWLEDGMENTS

We wish to extend special thanks to Carroll
Dudley, Dolly Perkins, Judy Bruner, Dan
Mandl, Mike Rackley, Jack Lauderdale, Dave
Johnson, and Bill Stratton for their ideas which
went into this paper.

CUSTOMIZING THE JPL MULTIMISSION GROUND DATA SYSTEM:
LESSONS LEARNED

5'

SUSAN C. MURPHY
JOHN J. LOUIE

ANA MARZA GUERRERO
DANIEL HURLEY

DANA EORA-ADAMS

Operation Engineering Lab
Jet Propulsion Laboratory

California Institute of Technology
MS 301-345

Pasadena, California 9 1 109-8099

ABSTRACT

The Multimission Ground Data System
(M G D S) at NASA's Jet Propulsion
Laboratory has brought improvements and
new technologies to mission operations. It
was designed as a generic data system to
meet the needs of multiple missions and
avoid re-inventing capabilities for each new
mission and thus reduce costs. It is based on
adaptable tools that can be customized to
support different missions and operations
scenarios. The MGDS is based on a
distributed clientlserver architecture, with
powerful Unix workstations, incorporating
standards and open system architectures. The
distributed architecture allows remote
operations and user science data exchange,
while also providing capabilities for
centralized ground system monitor and
control. The MGDS has proved its
capabilities in supporting multiple large-class
missions simultaneously, including the
Voyager, Galileo, Magellan, Ulysses, and
Mars Observer missions.

The Operations Engineering Lab (OEL) at
JPL has been leading Customer Adaptation
Training (CAT) teams for adapting and
customizing MGDS for the various
operations and engineering teams. These
CAT teams have typically consisted of only a
few engineers who are familiar with
operations and with the MGDS software and
architecture. Our experience has provided a
unique opportunity to work directly with the
spacecraft and instrument operations teams
and understand their requirements and how

the MGDS can be adapted and customized to
minimize their operations costs. As part of
this work, we have developed workstation
configurations, automation tools, and
integrated user interfaces at minimal cost that
have significantly improved productivity. We
have also proved that these customized data
systems are most successful if they are
focused on the people and the tasks they
perform and if they are based upon user
confidence in the development team resulting
from daily interactions.

This paper will describe lessons learned in
adapting JPL's MGDS to fly the Voyager,
Galileo, and Mars Observer missions. We
will explain how powerful, existing ground
data systems can be adapted and packaged in
a cost effective way for operations of small
and large planetary missions. We will also
describe how the MGDS was adapted to
support operations within the Galileo
Spacecraft Testbed. The Galileo testbed
provided a unique opportunity to adapt
MGDS to support command and control
operations for a small autonomous operations
team of a handful of engineers flying the
Galileo Spacecraft flight system model.

INTRODUCTION

The Multimission Ground Data System
(M G D S) at NASA's Jet Propulsion
Laboratory has brought improvements and
new technologies to mission operations. The
development of a generic data system to meet
the needs of multiple missions was intended

to avoid re-inventing capabilities for each
new mission and thus reduce costs. The
traditional mainframe-based data systems of
the past were expensive to modify and their
proprietary architectures did not facilitate
incorporation of new technologies. The
MGDS is based on a distributed clientlserver
architecture, with powerful UNIX
workstations, incorporating standards and
open system architectures.

The MGDS system provides a mature,
relatively stable set of software for real-time
command and control operations and for off-
line engineering analysis. The system is
based on a table-driven approach with simple
user-oriented languages for specifying
processing and display functions that allows
the addition of new missions without
extensive reprogramming. The standard
Sun/HP/UNIX end-user workstations are
part of a distributed operations system that
places a powerful, flexible, and extensible set
of operational capabilities at an analyst's
fingertips. When properly configured, these
workstations greatly increase the efficiency of
spacecraft operations.

ADAPTABLE SYSTEMS

The Multimission Operations System Office's
(MOSO) understanding of the MGDS design
was that multimission capabilities would be
delivered to allow the users to customize,
adapt, and tailor the system for their
individual use. MOSO was responsible for
developing, installing, and maintaining the
multimission hardware and software for the
operations teams, but customizing its
multimission software was up to the project.
However, the system has become so
powerful with over 1.5 million lines of code
that its 'configurability' and 'extensibility'
can potentially overwhelm users rather than
benefit them. The MGDS user guides
currently stand over one foot high on end. In
addition, the users don't often refer to the
user's guides because they don't want to
know how to use a tool, they want to know
how to accomplish their operations task
within the MGDS environment.

The MGDS Workstation Training Group had
been frustrated for several years trying to

train users on workstations which bore little
resemblance to the configuration the users
would find in their operations environment.
Often, there was no standard project
configuration in the end-user environment
and users were on their own to transform
their blank screens into a mission operations
system. Each user worked individually and
project-specific files needed for telemetry
processing and display were passed in an ad-
hoc manner among team members. However,
how well a system is tailored for end users is
often the most important factor in determining
the degree of system operability and
efficiency improvements that come from new
technologies.

It has become clear that the MGDS system
and its documentation cannot simply be
delivered to a project for them to adapt far
their needs. Adapting the MGDS software
has become a complex task with a high
learning curve. This makes adaptation an
expensive task for individual projects,
especially since operators within the same
project will have different needs and
interfaces with the system. The adaptation of
MGDS for a power subsystem engineer may
benefit more from knowing how a power
subsystem engineer on another project
customized the multimission system rather
than how an instrument engineer on the same
project would do it. Thus, the learning curve
can be made cost-effective if it can be re-
applied to several projects, with an adaptation
team supporting multiple missions
simultaneously. As an additional benefit, a
multimission adaptation team will bring
knowledge and improvement ideas to bear on
future development and customization of
MGDS for new projects.

OPERATIONS ENGINEERING LAB

Automation and advanced user interfaces can
help reduce costs only if they are focused on
the people and the tasks they perform. New
technologies may only bring minimal cost
savings if the new system functions much
like the old one. This often happens since the
users who write the requirements aren't
always familiar with the capabilities of new
technologies and simply use their existing

system as a model. For example, the JPL
mission controllers asked for a scrolling
screen that displayed telemetry values
representing the latest value of the spacecraft
clock. This was the way the old system
allowed them to determine whether there
were any data outages. The developers gave
them their scrolling display and operators
continued to stare at these displays watching
for outages. An important opportunity was
lost to automate this process and improve the
efficiency of operations.

To solve these types of communications
problems, the Operations Engineering Lab
(OEL) was created four years ago to merge
operations and development activities for the
Space Flight Operations Section. The OEL
builds scheduling, command, control, and
analysis software and currently delivers over
500,000 lines of code. The development
philosophy is characterized by iterative
development with active participation of the
end-users. Our approach has been successful
because we involve users and trainers
throughout development, focus on
automating essential, time-consuming
operations tasks, and get implementations in
the hands of users early. We also have
operators work in the OEL and developers
work in operations in order to maintain close
contact with our users and understand the
problems that need to be solved. By working
closely with users, we have learned how to
use new technology to change the way they
do business, not just automate the old way of
doing business. For example, we have built a
smart alarm tool to automatically perform the
data outage task described earlier and
improved mission controller efficiency by
over 30%.

CUSTOMER ADAPTATION TEAM (CAT)

At the request of the trainers and project
teams, the OEL developers began to work
closely with mission controllers and
spacecraft engineers to adapt and configure
the workstation and MGDS software to meet
the individual user needs. The project
configurations were then transferred to the
trainer workstations to allow more
meaningful training. This adaptation task,
started as a grass-roots effort, has evolved

into a more formal Customer Adaptation
Team (CAT). A small team of OEL
developers and operators have supported the
adaptation of MGDS for the Voyager, Mars
Observer, and Galileo Spacecraft and
Instrument Operations Teams. The OEL CAT
provides direct project support in developing
workstation configurations, customized
processing and display tables, automation
and analysis tools, and a common user
interface for the project.

The workstation configuration and user
interface is designed to provide an integrated
system view from which a project team can
operate a mission. The approach was to
provide the flexibility for both advanced and
novice operators to run the system to meet
their individual needs without their having to
know how to integrate across multiple tools
and interfaces. We knew that different
operators would use the system in unique
ways. For example, 24-hour mission
controllers want a system that is oriented to
an analyst monitoring real-time data,
working interactively at their workstation. On
the other hand, the spacecraft engineers
seldom need to view real-time data. They
typically want hard copy plots and tabular
printouts of telemetry parameters available
overnight.

When the CAT team first started customizing
the ground system for the spacecraft team, it
became obvious that the system design forced
the user to learn many tools and software
interfaces to perform their analysis task. For
example, to plot telemetry data, they had to
use database query tools to retrieve their
telemetry files, process the data through the
telemetry processing software, export a
processed telemetry parameter file and import
it into a graphical plotting tool, set the axis
correctly, and print the hard copy plot. The
operator needed a single, integrated user
interface that minimized operator interaction
with the workstation and allowed each
subsystem engineer to automate their analysis
tasks.

The CAT team built a non-real-time telemetry
toolkit and user interface that integrated the
existing generic tools in the MGDS. The
interface design was based on providing

graphical and command-line interfaces that
freed the users from knowing the intricacies
of querying, retrieving, accessing, and
processing telemetry parameters and
eliminated the need to know the intermediate
file interfaces across various tools. With one
simple command line, a user can ask to plot a
telemetry parameter for a given time period
without any knowledge of the tools needed to
perform that task. Command line interfaces
are especially important for users who prefer
to have their processing done off-line.
Graphical interfaces are provided for users
who prefer interactive tools. The spacecraft
engineers would set up overnight queries that
would produce plots automatically for their
review when they arrived each morning. The
cost to implement this system was minimal
since it was built on top of existing
multimission capabilities. The interface was
built using a GUI-building tool
(OELSHELL) and a powerful scripting
language (PERL) developed at JPL. There
are no licensing costs and no compilation of
C code is required for the graphical or
command line interfaces.

A new MGDS subsystem was designed by
the OEL to deliver these types of end-user
tools and interface shells. It provides tools to
fill in the gaps in missing capabilities that are
discovered after MGDS is delivered,
including project-specific adaptations and
unique processing requirements. As a result,
it is a subsystem that is continually evolving
and has grown to be one of the largest
MGDS subsystems.

This effort has been very successful because
the CAT team works in the operator's own
environment, configuring the workstations
on their desks, building scripts to automate
their tasks, and .designing interfaces to
integrate and organize the many software
tools. In addition, OEL developers do not
have the significant learning curve facing
analysts getting familiar with the use of
workstations, Unix, and MGDS software.
We also provide hot-line and on-site support
services for end-users, emphasizing quick
response time in order to meet the real-time
operations needs. Our multimission
experiences mean the lessons learned from
one project will be transferred to benefit

another. Also, if we find a missing capability
in the system, we know who to contact to
modifj existing software or we will build and
deliver a new MGDS capability ourselves.

LESSONS LEARNED

We have learned many lessons in adapting
and customizing the MGDS system for end-
users. The coordination between the OEL,
the mission operations engineers, training
personnel, and system administrators greatly
improved system operability for the users.
The following are some lessons learned in
our adaptation activities.

Distributed systems are essential to provide
the flexibility needed for incorporating new
technologies and capabilities required for
missions of the future. Compared to the
mainframe-based centralized systems of the
past, the distributed nature of modern
systems require a more disciplined approach
to configuration procedures to ensure
consistency among all system nodes. End-
users have control of their own workstations
and can easily modify processing and display
parameters. However, this flexibility can
cause traditionally-structured organizations to
adopt strong, centralized configuration
management tools and procedures to prevent
any potential problems. Often this leads to
software deliveries that are monolithic,
irreversible installations with too much
bureaucratic overhead involved in making
even small changes. The software delivery
process needs to be amenable to simple
improvements and fixes in non-critical
software. Configuration control of end-user
tables, scripts, configuration files, and simple
tools for specific project use need to be .

handled separately from the core system. It
must be flexible and be controlled by the
operations teams.

The MGDS design recognizes that every user
has a unique need and the system should
allow for individual customization of tools.
However, there was a lack of management
understanding of the need to staff a CAT
team for the extensive work required to
customize a distributed system for users.
Initially, there was no official follow-on
support after a system was delivered to

operations and hence MGDS operability was
rated poor by users. After the CAT team
work began, the users' perception of
operability was dramatically improved even
though the core system was unchanged. We
are viewed by projects as the group that
makes the MGDS system work for users.
There are big payoffs in providing project-
specific customization, tools, and interfaces,
supplemented with on-site support.
Distributed systems require extensive
customization to meet the specific needs of
users and this should not be left to the device
of each individual user or project.

been shown in improving system operability
and reducing cost in operations for individual
projects.

ACKNOWLEDGMENTS

This work was done at the Jet Propulsion
Laboratory, California Institute of
Technology, under a contract from the
National Aeronautics and Space
Administration. We would like to
acknowledge the work of the technical staff
in the OEL and the JPL Mission Operations
Teams for their enthusiasm and support.

Once a system is customized and automated
for the end user, the usage of the system can
significantly increase. For example, because
we had made the off-line telemetry query and
analysis process so easy, a much greater
number of operators than originally estimated
began to use the system extensively. This
created serious network loading and disk
storage problems.

Automation must be focused on changing the
way we fly spacecraft, not just automating
the old way of doing business. The greatest
cost reductions can be realized if more
attention is paid to the operators and the tasks
they perform in order to eliminate tedious,
labor-intensive processes and to assist in
improving the reliability of critical tasks.

The users also want training geared to their
work in the operations environment. The
trainers need to know how the users might
actually use the system in operations. In
addition to providing standardized
configurations on training and on project
operations workstations, the CAT team
developed specialized follow-on training
classes focused on the project-specific
configuration and use of MGDS capabilities.

CONCLUSION

JPL's Multimission Ground Data System has
provided a powerful, adaptable and
extensible set of operational capabilities at an
analyst's fingertips. With more emphasis on
a Multimission Customer Adaptation Team
providing integrated systems with customized
configurations and ,interfaces, success has

CONFIGURABLE TECHNOLOGY DEVELOPMENT FOR REUSABLE CONTROL AND p-
MONITOR GROUND SYSTEMS

David R. Uhrlaub
McDonnelI Douglas Space and Defense Systems

Dept. F166, PO Box 21233
/

Kennedy Space Center, Florida 32815
Internet: dru@grumpy.ksc.nasa.gov

ABSTRACT further customized and extended by using the
The control monitor unit (C m) uses CMU kernel programming interface (KPI) and
configurable software technology for real-time C.
mission command and control, telemetry
processing, simulation, data acquisition, data CMU technology can operate on UNX-based
archiving, and ground operations automation. notebook computers, desktop computers, single-
The base technology is currently planned for the board VME computers, symmetric
following control and monitor systems: portable multiprocessor systems, aid distributed systems
Space Station checkout system; ecological life using real-time shared memory networks,
support system; Space Station logistics carrier ethernet, or FDDI-based networks. Fault tolerant
sy&n and the ground system of the Delta configurations are possible with minor software
Clipper (SX-2) in the Single-Stage Rocket enhancements. Configuring CMU system-level
Technology program. software is similar to configuring operating

systems by editing text files. Multiple
The CMU makes extensive use of commercial
technology to increase capability and reduce
development and life-cycle costs. The concepts
and technology are being developed by
McDonnell Douglas Space and Defense Systems
for the Real-Time Systems Laboratory at NASA's
Kennedy Space Center under the Payload Ground
Operations Contract. A second function of the
Real-Time Systems Laboratory is development
and utilization of advanced software development
practices.

INTRODUCTION
The control monitor unit (CMU) automates a
wide variety of ground operations at moderate
cost utilizing standard software components and
appropriate hardware. Users can further
automate and customize the CMU through
programming languages such as C, UNIX shell
scripts, defining measurement triggered logic,
defining derived measurements, and creating
custom graphical displays. The system can be

configurations are defined for a multipurpose
system or a single configuration for a special
purpose system.

CMU software technology is being developed on
Digital Equipment's Alpha AXP computers
running OSF/1 that conforms to IEEE POSIX
standard and real-time application programming
interfaces 1003.1 and 1003.4. The OSF11 user
interface supports the X/Motif standard.
Application-specific displays are created with
SL-GMS, an X windoys-based graphical display
editor that provides dyriamic real-time graphics
driven by measurement values. Mission and test
data definitions are stared in an Oracle database
that supports red-.time additions and
modifications of meastirement definitions.

All data is archived and may be retrieved and
analyzed in real-time uiing DADiSP, a graphical
spreadsheet for scientific data analysis. All
operation and user guide information is

maintained in an integrated on-line
documentation system with graphics and
hypertext facilities provided by the Interleaf
Worldview environment.

Performance testing of CMU shows that
configurations supporting 10,000 to several
million measurements per second (mps) are
practical. A two processor DEC Alpha AXP
21001500 has benchmarked at 170,000 mps.
Data acquisition interfaces planned include MIL-
STD-1553B, PCM telemetry, IEEE-488, analog,
discrete, and serial 110.

SYSTEM CONFIGURATIONS
A CMU system may be configured in a variety
of ways. Two main types of configurations are
off-line and real-time. The off-line
configurations are ' standard office-based
computers that can define a database, simulate
data acquisition, retrieve, display, and analyze
data and print it. Simulated data acquisition
substitutes for actual hardware data acquisition to
provide an environment for developing custom
software without utilizing actual end-item
hardware. An off-line configuration is a DEC
Alpha AXP notebook or desktop workstation, as
shown in Figure 1.

Kernel
Utility Software
Software Component
Component /

NotebookIDesktop
Computer

Real-time configurations support data
acquisition, end-item commands, and data
processing. These configurations may be as
small as a single-board computer or portable or
desktop computers supporting only a few
telemetry or MIL-STD- 1553B interfaces. Larger
configurations with symmetric multiprocessors
and large archive storage devices are configured
for handling significant amounts of data for
extended periods of time from multiple data
acquisition interfaces. Commercial equipment is
used to configure fault-tolerant systems. An
embedded system using single-board computer
technology is another possible configuration, as
shown in Figure 2. For large systems where data
input and output must be physically distributed,
the CMU is configured with ethernet, FDDI, or
shared memory networks, as shown in Figure 3.
Other configurations currently being developed
include portable and mobile weather-proof
systems for field use. System configuration is
accomplished by modifying one or more ASCII
files. Changes to the hardware configuration
does not require corresponding software changes.

Utility
Software

Component

SCSI
' Bus

End-
Item

Kernel

/
Software
Component

-

- Single
Board .

Computer

- VME or PC1
Bus

Figure 1. Off-line Configuration Figure 2. Embedded Configuration

Utility Kernel
Software Software

Compon\ent Cpmponent

Figure 3. Large Distributed Configuration

SOFTWARE CONFIGURATION
The CMU software architecture has four main
elements: the kernel, utilities, kernel
programming interface (KPI), and channels as
shown in Figure 4. The kernel contains most of
the common system-independent functions,
while utility software components are more
system-specific. The kernel is composed of
several UNIX processes. Utilities are generally a

single UNIX process. Hardware utilities are
unique hardware data acquisition interfaces; user
interface utilities provide common and custom
graphical displays; and data processing utilities
interface to external systems and custom
processing functions. The KPI is a high-level
interface for developing utilities that
communicate with the kernel. All
communication between the kernel and utilities

1 External 1

Data Processing Utilities r\

Utilities {q

Figure 4. Software Architecture

occur through channels. The four CMU used in static environments where changes in
architectural elements combine to provide measurements are rare omits the database system
software functional, architectural, and and uses a simple ASCII table for storing
performance configuration capability.

Shared
Memory
Network KPI

Channel

Utility Kernel
Software Software
Component Component

X Terminals

TCP/IP Network

Figure 5. Distributed Kernel

FUNCTIONAL CONFIGURATION
Functional configuration incorporates only the
required functionality, conserving system
resources and reducing complexity. A system is
composed of only the kernel and utility
components needed to accomplish a specific
task. A system that requires frequent changes in
use and measurement definitions is configured to
include a commercial relational database system
such as Oracle, whereas an embedded system

measurement definitions. An off-line
configuration for data analysis such as a
notebook computer could omit the commercial
database and eliminate the memory and storage
requirements. A system used only for monitor
and display would not require the CMU archival,
retrieval, command, and control components.

ARCHITECTURAL CONFIGURATION
Channels are the primary mechanism for
supporting a wide range of hardware and
software architectures. Channels provide three
key benefits: (1) hardware configurations do not
affect the software, (2) a single portable software
application programming interface is used for all
channel types, and (3) data transfers have very
little operating system or application overhead.

Each channel is a connection between two or
more software components. A configuration file
is used during system startup to configure
channels for a specific hardware implementation.
Current channel implementations completed or
planned are: shared virtual memory, VME bus
physical memory, and shared memory
networkslreflective memory. Channel support
for TCPIIP networks is a simple extension.
Kernel components communicate among
themselves via channels. Figure 5 illustrates
kernel components distributed across two
separate computers.

Channels follow the UNIX
open/closelread/write/ioctl model. Functions
included are: CClose(), CCntl(), Chit(),
COpen(), CRead(), Wrapup(), and CWrite().
Benchmarks of a channel configured for shared
memory exceeded 2 million mps transfer rates,
which would normally consume 120 MBIsecond,
or about 75% of a 160 MBIsecond system bus
bandwidth. Channels have been ported from a
32-bit UNIX System V-based operating system
to DEC's 64-bit OSFII with minor modifications.

PERFORMANCE CONFIGURATION are time stamped to the nearest microsecond.
A primary design philosophy of CMU software Nominal automated control delays are on the
is support for single processor and order of a millisecond. Specialized
multiprocessor computers. ~ u l t i ~ l e computers
are combined for higher performance levels.
Kernel and utility software components are
configured to provide the required performance
by taking advantage of additional CPUs. Figure
6 shows actual measured data processing rates
for four different CPU configurations and
projections for two additional configurations.
These configurations use commercial symmetric
multiprocessor (SMP) computers. Performance
increases of 70% and 100% have been
benchmarked for two different CMU software
configurations. These increases occur when
utilizing a second CPU on a DEC Alpha AXP
21001500 system. Two 400 MHz 21001500
computers with four CPUs each connected by
shared memory networks alone would support
almost 1.4 million mps of data processing.
Higher rate systems are configured by using
additional SMP and single-board computers
linked by shared memory networks and 110
buses.

@I90 MHz* E.70
1@200 MHz*

1@ 190 MHz* j I O 0

-

configurations using multiple single-board
computers in addition to the host computer can
support automated control delays in the tens and
hundreds of microseconds.

REUSABILITY
The CMU promotes reuse in several ways.
Portable software based on POSIX application
programming interfaces supports code reuse.
The kernel/utility/channel software architecture
provides the ability to configure widely varying
systems from a single set of software.
Reconfigurability allows reuse of CMU software
at the component level.

In addition to software reuse, CMU is defining
reuse techniques for all products created during
development. This would allow custom high-
performance real-time systems to be developed
quickly and reliably at low cost. Reusability has
been extended to modular testing software
developed and maintained with the production
software for all levels of testing. Methods for "
reuse of requirements, requirements traceability,
and on-line user documentation are also being
developed and implemented. Analysis and
design models from Cadre Teamwork/Ensemble
CASE tools are structured to promote maximum
reusability across systems. Hardware design
and documentation follow this same reuse
philosophy.

o 200 400 600 800 SOFTWARE DEVELOPMENT
Measurements/sec (1,000s) An evolutionary life-cycle is being used to

Figure 6. Data Processing Rates rapidly improve products and processes in
* Actual Measured Rates support of McDonnell Douglas' and NASA's

TQM initiatives. Process-based methods such as

Archival and retrieval rates are scaled to match
system requirements by combinations of
magnetic, optical, and tape devices. RAID
arrays of storage devices are used to achieve the
required storage capacity and data rates. All data

the Software Engineering Institute's (SEI)
Capability Maturity Model have been used over
the past two years for software process
improvement. With development cycles being
reduced to four months between requirements
and final verification testing, the opportunity for

process analysis and improvement is much
greater than that of a conventional two or three-
year development cycle of a large real-time
system. As with financial investments, the
compounding interest effect is already producing
significant benefits in cost and quality in CMU
software development. Early evaluation by users
has already resulted in several improvements
over the original requirements. These
improvements can be incorporated with little or
no impact on cost and schedule since they were
identified early in development.

Development techniques incorporated include
formal inspections of requirements, system
designs, detail designs, code, test plans, test
code, and user documentation. Other practices
implemented are process and product metrics,
nearly 100% path coverage during software
unit/component testing, 100% automated testing
from unit through system verification, and
extensive use of CASE tools. The first two alpha
releases of CMU software, AO.l and A0.3, have
had a delivered defect density of 0.06 defects per
1,000 source lines of code (KSLOC). This is
compared to industry results [SEI, 19931 in
Figure 7.

Best p0.0, Example

Industry
Best 0.20

CMU A0.3

0.00 0.05 0.10 0.15 0.20 0.25

Defect Density (DefectsKSLOC)

Figure 7. Delivered Defect Density

Only light operational usage via demonstrations
and evaluation by the developers and users has
been experienced since this is pre-delivery
software. The current software is operational
two years before its first delivery date, so
significant random use and testing naturally
occurs during development. This provides
further opportunity for defect removal before
final delivery to the customer.

Testing was found to remove 3% of all defects
detected while inspections removed 97%. On a
per defect basis, inspections are 40 times more
effective than testing although the testing effort
is significantly higher than the inspection effort.
Inspections and testing combined for a total
defect removal efficiency of 99.87%.

Figure 8 shows the detected and remaining
defect densities during each phase of software
release A0.3. At the conclusion of code
inspections, the remaining defect density was
1.53. The remaining defects were removed
during component and integration testing,
resulting in a delivered defect density of 0.06.
The total potential defect density was 49.9. The
detected defect severity during inspection phases
averaged 4, or trivial. Average defect severity
during testing phases was 3, or minor. Only 2%
of all defects detected were of severity 1 or 2,
critical or major defects.

Net project software development productivity
improved 60% compared to initial releases of
earlier projects and is much greater than
published for similar projects [Jones, 199 11.
Software size is estimated using feature points
and bottom-up detailed estimates. Software
product quantity average within 10% of the
estimates. Software development schedule
compliance has improved in the first two releases
from 14% to 6% without using overtime. Release
A0.3 slipped one week during a six month
development schedule.

Remaining

Operations

Verification Test
L

Integration Test 3
Component Test

Unit Test

unit ~mp. I
Detail Design

System Design

Requirements , , . , 1 , , , , , , , , , , , , , , , ,

Defect Density (defects/KSLOC)

Figure 8. Development Defect Densities

CONCLUSIONS Acknowledgments
Configurable software and hardware technology 'I+he author would like to thank the CMU team

for demanding ground control and monitor members for their invaluabIe contributions: ~eZKUlhe
systems has been demonsmted The technology Baker, Rick Bad, Sam Coniglio, Jim Gain% Ray Ho,

is reusable across small and Iarge systems. Ho Pham, Lawrence Robinson, Bill Snoddy, and

Evolutionary development combined with Maria Thomas.
continuous process improvement is an effective
approach for developing real-time systems
within budget and schedule constraints.
Comprehensive inspection and testing contribute
to world-class quality levels for software
development.

REFERENCES

Jones, Capers (1991). Applied Software
Measurement. New York, NY: McGraw Hill, Inc.

Gilb,Thomas (1988). Frinciples of Software
Engineering Management. New York, NY: Addison-
Wesley.

Software Engineering Institute (SEI) - Camegie
Mellon University (1993). 1993 Software
Engineering Symposium Conference Notes.
Pittsburgh, PA: Camegie MelIon University.

3. Standards

A New Communication Protocol Family for a Distributed
Spacecraft Control System

Andrea Baldi, Marco Pace
Standardizing the Information Architecture for Spacecraft
Operations

C. R. Easton
A Standard Satellite Control Reference Model

Constance Golden
Standard Protocol Stack for Mission Control

Adrian J. Hooke
The Space Communications Protocol Standards Program

Alan Jeffries, Adrian J. Hooke
The ESA Standard for Telemetry & Telecommand Packet
Utilisation P.U.S.

J.-F. Kaufeler
Packet Utilisation Definitions for the ESA XMM Mission

H. R. Nye
Use of Data Description Languages in the Interchange of Data

M. PignBde, B. Real-Planells, S . R. Smith

'i
Cross Support Overview and Operations Concept for Future
Space Missions

William Stallkngs, Jean-Francois Kaufeler
The CCSDS Return All Frames Space Link Extension Service

Hans Uhrig, John Pietras, Michael Stoloff

Proposal for Implementation of CCSDS Standards for Use With
Spacecraft EngineeringlHousekeeping Data

Dave Welch

Page 1185
1187-1195E--; f

* Presented in Poster Session

3 s v s s g
A New Communication Protocol Family for a Distributed P-?

Spacecraft Control System

Andrea Baldi, ESAIESOCIFCSD

Marco Pace, Vitrociset Space Division

Abstract sion mechanism based on a sequence number-
ing scheme. Such a scheme allows to have

In this paper we describe the 'Oncepts cost-effective performances compared to the
behind and architecture of a communication traditional protocols, because reaansmission is
P~~~~~~~ which was designed to triggered by applications which explicitly
the communication requirements of ESOC's need reliability. This flexibility enables appli-
new distributed 'pacecraft 'ystern cations with different profiles to take advantage
SCOS 11. of the available protocols, so that the best rate

A distributed 'pacecraft between speed and reliability can be achieved
needs a data delivery subsystem to be used for case by case.
telemetry (TLM) distribution, telecommand
(TLC) dispatch and inter-application commu-
nication, characterised by the following prop-
erties: reliability, so that any operational
workstation is guaranteed to receive the data it
needs to accomplish its role; efficiency, so that
the telemetry distribution, even for missions
with high telemetry rates, does not cause a deg-
radation of the overall control system perform-
ance; scalability, so that the network is not the
bottleneck both in terms of bandwidth and
reconfiguration; flexibility, so that it can be effi-
ciently used in many different situations.

The new protocol family which satisfies the
above requirements is built on top of widely
used communication protocols (UDP and
TCP), provides reliable point-to-point and
broadcast communication (UDP+) and is
implemented in C++.

Reliability is achieved using a retransmis-

Andrea Baldi (abaldi@esoc.bitnet) works within the Flight Con-
trol Systems Department at the European Space Operations
Centre (ESOC), Robert Bosch Strasse 5, D-64293 Darmstadt,
Germany. Marco Pace (mpace@esoc.bitnet) works for Vitrociset
Space Division, Via Salaria 1027, 1-00138 Rome, Italy. The work

Introduction and Context
SCOS 11 is a generic mission control sys-

tem, providing a collection of buildings blocks
upon which a custom control system can be
implemented with moderate effort (ref. [I]).
Basic services are provided by the Distributed
Access Service layer (DAS) responsible for
distribution, local caching, and retrieval of
mission information (e.g. TLM and TLC) over
the network. An Application layer (APP) pro-
vides basic building blocks for implementing
mission applications.

A SCOS II system is distributed and is com-
posed by several Unix workstations connected
on a local area network. Each workstation or
node has a role with associated communication
requirements determined by the mission con-
figuration. The role of a node and consequently
its , communication requirements are deter-
mined by the applications running on it. The
following classification is useful to understand
the different roles a node might play:

sewer: a node that provides services, usu-
described in this article was carried out at ESOC under a con-
tract with the European Space Agency.

ally data to be consumed by clients.

1187
CAM wv fllbMm

E
I - a ? . <I,

replica: a node that provides services, like a IPC. TLC are dispatched using the IPC to a
server, but is only available when the pri- central node for uplink.
mary server is down.
client: a node that makes use of the services
provided by servers or replicas, usually data
to be consumed.

Servers, replicas and clients can be classified as
Reliable; in case of a server or replica Reliable
means that the node supports reliable delivery
of data; in case of a client it means that it
requires reliable delivery of data.

A workstation may play more than one role
at the same time (e.g. server and client, replica
and client), therefore the communication
requirements may change over time. Commu-
nication and information distribution is
achieved using the services provided by the
Inter Process Communication layer (PC)
which is part of the DAS. Figure-2 A Typical SCOS II Configuration

Ground Station
Database Server

The IPC services are used by the DAS when
communication is required, but also by the In a such context, where applications have

APP layer directly as shown in Figure-1 . different communication requirements, classi-
cal protocols like UDP and TCP are not able to

Figure-1 SCOSll Software Layering

The IPC layer has an important role because
it supports the bulk of the information
exchange among the different system compo-
nents.

A typical SCOS 11 configuration (See Fig-
ure-2) will be composed by a number of serv-
ers, clients and replica nodes. The number of
nodes may change dynamically according to
the mission phase and configuration, to contin-
gency conditions, and to the number of interac-

cope efficiently with all the possible situations.
The IPC tries to fill in the gap existing between
UDP, a fast but not reliable protocol, and TCP,
a reliable but not eficient protocol, defining
the UDP+ protocol.

The protocol family available to SCOS 11
users extends the IP family and provides:
1. a reliable broadcast service (UDP+), with

performance not too far from UDP.
2. an integrated environment where applica-

tions with different communication require-
ments can coexist without imposing
overhead to each other.

3. the possibility to select the protocol that best
fits the application's communication
requirements.

4. compatibility with the already existing IP
protocols.

5. support for fast local communication
(FIFO).

tive users connected to the system. Requirements
TLM data is received at a central node and

distributed to all the nodes by means of the As introduced before, the IPC layer has to
cops with many different situations and it is

1188
.i .. 9

, > ..<, r ' . . p ' c ?', .* k f : b i f . -_ -13.- -. r. 4 ,. $. **$Y< .;

clear that no unique protocol can be designed
to fulfil all the application requirements sirnul-
taneously. A protocol family in fact best satis-
fies multiple and sometimes conflicting needs.
The following considerations describe the
trade-offs made in order to satisfy as many
requirements as possible.

Communication Schemes
Allowing different communication schemes

to coexist in an integrated environment is fun-
damental for achieving flexibility so that appli-
cations can use different approaches to data
distribution such as point-to-point and broad-
cast.

The IPC layer supports all these schemes
providing a single unified abstraction called
Channel available for any supported protocol.
A Channel can be seen as an endpoint for com-
munication which an application can use to
send or receive data.

Protocol Scalability
Scalability is another key requirement and

the IPC layer fully scales with respect to the
communication data volume by means of the
broadcast communication schema. Moreover it
tries to avoid situations where the unreliability
of the used IP services, which triggers packet
retransmission requests, might cause a network
congestion.

The retransmission algorithm already tries
to optimize the policy of lost packets retrans-
mission using the most appropriate communi-
cation scheme; broadcast is used for instance in
the case it is detected that a lost packet is
requested by several applications. The algo-
rithm is tunable and it is driven by application
Hints and information piggy-backed into
retransmission requests.

Hints are used to instruct a server about the
application reliability requirements. They can
be used to avoid or force retransmission of data
case by case as well as determine the number
of attempts the IPC layer carries out before giv-
ing up the retransmission.

Protocol Reliability and Speed
The reliability of the protocol together with

the speed necessary to cope with a high TLM
delivery rate is a primary issue for SCOS I1
applications. Reliability and speed are tightly
related and an effort to meet both the require-
ments is made.

Within the IP family, TCP is a fully reliable
protocol where the speed is inversely propor-
tional to the network load, while UDP is a fast
one with a reliability inversely proportional to
the network load.

UDP+ stays in between, is highly tunable
and tries to fill in the gap existing between TCP
and UDP (See Figure-3).

Figure-3 Speed vs Reliability Diagram

T G ~ ~ ~ ~

Transparent Reliable Data Delivery
Giving the user the responsibility of retrans-

mitting or receiving data lost due to a network
problem is not acceptable for client applica-
tions. The recovery of lost data is managed
automatically by the IPC, without forcing the .

application to use any recovery policy.

a
4

Asynchronous Communication

I

When applications are data driven an asyn-
chronous communication mechanism is very
useful.

The P C layer provides the concept of a
Notijj Channel: a channel marked as Notijj
does not require the attention of the applica-
tion; the application only needs to define the
handler to be called on data arrivals.

The P C automatically gives control to the

SPEED
MAX

application handler when data is received on
the Channel.

Client - Server Model
The client-server model is a fundamental

assumption of the SCOS 11 system, and the P C
layer supports this paradigm. Servers and cli-
ents can synchronize using IPC services
according to any convention whose definition
is left to the application.

Data Q p e and Size

It is not possible to foresee in advance the
size of data to be carried by the IPC and even
the type of data.

The IPC uses a fragmentation algorithm to
split a user block of data in many small frag-
ments and to rebuild it at destination upon
reception of the complete set of fragments. If
some fragments are lost due to a network prob-
lems, the P C is able to rebuild the original
block requesting only the missing fragments.

Data Compression and Encryption
The P C layer provides hooks for data com-

pression and encryption to support external
data distribution. Once the application has pro-
vided the algorithm, the responsibility to do
compression-decompression and encryption-
decryption is left to the IPC layer, before any
send and receive operation.

Dynamic Routing

The applications operating in a SCOS I1
system will be clients, sewers and replicas,
communicating using the different available
schemes. Therefore, a traditional static service
location mechanism is not flexible enough to
deal with dynamic relocation of services.
SCOS I1 uses a network routing system which
allows such a management scheme, and the
IPC layer defines virtual services to access
such facilities when required.

Applications have the freedom to resolve
logical service names using the routing system
or to use directly the physical IP address when
they initialise a Channel.

Extensibility and Portability

The IPC layer is designed to be easily exten-
sible should the need for the implementation of
other protocols arise in the future. The extensi-
bility is made easy by its Object Oriented
approach, which allows the specialisation of
any of its classes. This is not limited to IP-
based classes, but any other protocol can be
easily integrated into the IPC hierarchy.

Portability issues are addressed basing the
P C software implementation on consolidated
standards like TCPIUDP on the protocol side
and POSIX, Unix System V Release 4 for the
system interface.

Conceptual Protocol Layering
The conceptual protocol layering is one of

the first issues addressed during the analysis
phase. The Unix environment offers the IP
family (ref. [4] and ref. [5]) as a baseline upon
which broadcast protocols can be imple-
mented. In this scenario two alternatives are
possible: either to implement the reliable
broadcast directly on top of IP or to use both
UDP and IP, redefining some of their services.
This latter is considered a good compromise
between implementation cost and duration.
Figure4 shows the conceptual protocol layer-
ing, and the role of the IPC in giving the appli-
cation writers an homogeneous interface.

Figure4 Conceptual Protocol Layering

IPC Application Interface

TCP

Retransmission versus Acknowledge
Many papers address the problem of defin-

Internet (IP)

Network Interface

Existing
Layers

ing and implementing a reliable broadcast pro-
tocol, and the possible solutions are based
either on acknowledge techniques or retrans-
mission mechanisms (ref. [3]).

Acknowledge based protocols require an
extra packet to be sent over the network to
acknowledge the reception of any packet (or
range of packets). As the acknowledge is
received by the originator the packet is consid-
ered delivered. TCPIIP uses these techniques to
achieve the full reliability of the protocol.

Protocols based on retransmission (ref. [2])
assign a unique sequential number to any trans-
mitted packet so that it can be requested again
when a gap is detected by the client side of the
protocol.

When broadcast needs to be supported an
acknowledge based protocol has high over-
head, because the network traffic due to the
acknowledge packets grows proportionally
with the number of clients.

Moreover, clients need to register them-
selves with the broadcast protocol to make the
acknowledge algorithm aware of the number of
messages it should get back, before assuming
that a packet is successfully delivered.

Both the approaches have advantages and
disadvantages:

speed: a retransmission based protocol is on
average faster, because it does not require
any acknowledge overhead.
reliability: a retransmission based protocol
might not be fully reliable depending on the
algorithm used for the generation of the
sequence number.
scalability: in an environment where the
number of clients changes dynamically and
cannot be foreseen completely in advance
performance must be stable over the time.
Scalability with an acknowledge based pro-
tocol is more penalised.
support for broadcast: it will be the basic
interface for applications which don't know
in advance how many clients are on the net-
work at a certain time. Broadcast can in
practise be supported by both protocol
types, (ref. [3]) but in an acknowledge based

protocol the design and implementation are
more complex. The reason is that a sender
should know at any time how many clients
are currently receiving its packets, and han-
dle the packet acknowledge consistently.

Since it was required to provide a tunable
range of values, both for speed and reliability,
we selected a retransmission based mechanism,
which is much more flexible, allowing fine tun-
ing of both the parameters. Had we selected an
acknowledge based mechanism, we would
have had a fixed value for the reliability with
the speed bound to the network load.

Moreover the retransmission approach
offers a solution which fully supports the
broadcast, making the implementation simple
enough to be layered on top of existing proto-
cols with a consequent saving in development
costs and duration.

Protocol Behaviour
The description of the protocol operations

which follows assumes for simplicity the case
of one server and one client, but it may be gen-
eralised to the case of multiple servers and cli-
ents. The server will be responsible for sending
data, the client will be responsible for receiving
data.

The server keeps sent packets in an internal
history bufer so that it can satisfy a retransmis-
sion request from its client. It assigns sequence
numbers so that a client can identify any prob-
lems due to the delivery.

The client part of the protocol uses an inter-
nal client bufSer to store packets which cannot
be yet delivered to the application layer, when
a delivery problem is detected.

Under normal operation the server broad-
casts a packet and the protocol stores the
packet in the history buffer. When the server
receives a retransmission request it accesses its
history buffer, looks for the requested packets
and transmits them again. Once a while the his-
tory buffer is purged to remove packets which
will not be required any more, taking care to
avoid the potential risk of removing still
requestable packets.

To keep this risk at a minimum a piggy-
backed acknowledgement of the already
received packets is used in the retransmission
requests. It is important to note that for broad-
cast communication the piggy-backed informa-
tion provides just an indication and there is no
guarantee that a packet will not be requested in
the future.

Under normal operation, when a packet is
received the client protocol verifies that its
sequence number is correct and then it delivers
it to the application. The following anomalous
situations are recognised and handled by the
client side of the protocol:

loss ofpackets: when a gap in the sequence
is detected the retransmission of the missing
packets is requested. In the meantime out of
order packets can be received; they are dis-
carded or stored in the client buffer accord-
ing to their sequence number.
duplication of packets: duplicated packet
are always discarded.
delay in packet delivery: if a delayed packet
is received before the retransmitted one, it is
returned immediately to the application,
otherwise it is discarded.

Protocol Family Design
This section provides the description of the

architecture of the IPC layer. The architecture
described is a simplified one showing the main
classes relevant to the problem domain. Some
implementation classes have been omitted for
the sake of simplicity and clarity.

The description uses a Rumbaugh Object
Diagram (ref. [6]) where classes have been
grouped into 3 subjects (Data Handling, Trans-
port Mechanism and Statistics) according to
the responsibilities they fulfil in the problem
domain, as shown in Figure-5.

Data Handling Subject
Data handling groups together the classes

dealing with the SCOS II transfer unit (STU).
They implement respectively the header and
the data part of an STU, the fragmentation and
reassembly of STUs and the storage of STUs
for the client and server side of the reliable pro-
tocol.

The StuHeader class specifies the informa-
tion needed by the IPC layer to perform the
transport of the packets on the network, the
sequence number used by the UDP+ protocol,

Figure-5 IPC Object Oriented Model

1192

the fragmentation information and client hints.
Services for getting and setting the value of the
header fields are used by the IPC internally, but
can also be used by applications to manipulate
fields containing application-defined values.
Those fields allow the STU to be tagged as
belonging to a specified category.

The StuData class contains the application
data, of whatever type. Such data are appended
to the header and sent over the network when a
send operation is performed.

The fragmentation layer (Frags2Stu and
Stu2Frags) takes care of the splitting of large
packets into smaller ones and of their reassem-
bly at the destination. In this way the P C layer
is able to support the transmission of packets of
virtually any size.

The HistoryBufSer and ClientBufSer classes
implement data structures used by the UDP+
transport classes for the storage and retrieval of
STUs. In particular, ClientBufSer is used to
temporary store packets which cannot be deliv-
ered to the application because the retransmis-
sion of a lost packet is in progress; the
HistoryBufSer is used to store transmitted pack-
ets which might be requested when a packet is
lost.

Transport Mechanism Subject
Transport mechanism groups together the

classes which deal with data delivery for the
IPC layer protocol family. With the exception
of the Fifo class introduced for fast local com-
munication all the classes support remote com-
munication.

The Channel class defines attributes and
services which are common to all the sup-
ported communication schemes in the IP
domain. Channel specializes into two branches
respectively responsible for a TCP-based and
an UDP-based communication. New IP based
protocols can be derived from the Channel
class specialising it at the most suitable level of
the hierarchy.

Inheriting from the TcpChan class, two spe-
cific classes are defined to model the client and
server side of a connection based communica-

tion. Both of them provide services for sending
and receiving STUs and byte streams: the Tcp-
Client adds connection establishment capabil-
ity and the TcpServer adds connection
acceptance capability.

Also inheriting from Channel, the class
UdpChan provides services for receiving and
sending STUs, both with point-to-point and
broadcast connectionless transmission.

Classes UdpPlusServChan and UdpPlusCli-
entChan, reliable components of the P C layer,
are derived from the UdpChan class. In princi-
ple, they could have been grouped together in a
single UdpPlusChan class because they pro-
vide the same interface as UdpChan. The rea-
sons for such separation are:

typically applications behave either as cli-
ents or as servers, not as both.
the resulting implementation is less com-
plex and easier to maintain.
the resulting application overhead is
reduced because applications will only
include the minimal amount of data struc-
tures instantiated by the relevant classes,
being such data structures different in the
two cases.

Class Fifo, at last, supports fast local communi-
cation of STUs through a UNIX FIFO, main-
taining a similar interface to the one provided
by the remote communication classes.

Statistics Subject
Statistics groups the classes responsible for

gathering information on volume of data sent
and received on any UDP based channel. They
have been introduced to tune and debug the
internals of the IPC layer, since they provide a
complete snapshot of the behaviour of the pro-
tocol including all the information on lost and
retransmitted STUs.

Moreover, the Statistics classes have been
used to implement a performance monitoring
tool which reports on data and packet rate. Sta-
tistics are also available to an application for
any possible usage it envisages.

Building Applications Conclusion
The IPC layer offers application writers a

flexible solution for the exchange of data.
Applications can in fact exchange STUs using
the protocol that best fits their communication
requirements. Moreover applications using one
of the UDP based protocols can select the relia-
bility level as they like. It is important to notice
that applications can be configured to use any
of the available UDP based protocols, and still
be able to communicate with each other.

Data transmitted by an application using a
reliable server channel (UdpPlusSewChan)
can be received by an application using a non
reliable channel (UdpChan) with the only dif-
ference that lost packets will not be detected
and consequently not requested.

Reliable clients (UdpPlusClientChan) can
also receive data sent over a non reliable chan-
nel, but in this case the protocol does not per-
form any check on the sequence number, and
just delivers the data it receives to the applica-
tion.

The following list shows some of the SCOS
I1 applications or system components together
with their communication requirements (see
also Figure-2):

TLM Receiver and Broadcaster: it receives
the telemetry from the ground station and
broadcasts it to the system. It is a reliable
server and satisfies retransmission requests
coming from reliable clients.
History File Archiver (HFA): it archives the
received telemetry and retrieves it on appli-
cation demand. As a consequence that all
the telemetry coming from the ground sta-
tion need to be archived, the HFA is a relia-
ble client. At the same time, it satisfies
retrieval requests on the network, so it is a
reliable server.
TLM Cache: it receives real time telemetry
and makes it locally available to the applica-
tions. It can be configured either as a relia-
ble or a non reliable client according to the
role the node has in the system.

The use of the IPC layer for more than one
year in the SCOSII system has shown that the
initial objectives have been achieved:
* the retransmission approach together with

the almost full reliability of the network
hardware make the degree of reliability high
enough to guarantee that any node receives
the data it needs to accomplish its role.
UDP+ efficiency compares favourably with
UDP and definitely well with TCP. The
overhead introduced by the retransmission
mechanism is a fraction of the benefits
obtained, especially when considering relia-
ble broadcast. The results collected using
the IPC statistics are summarized in Figure-
6 where the data rates achieved are shown.
Such figures may vary, however, depending
on the dynamic tuning the applications per-
form on the IPC using hints.

Figure-6 Protocols Statistics for a Typical
Mission Configuration Consisting
of 20 Nodes.

the protocol scalability guarantees that add-
ing new client workstations does not require
any reconfiguration and does not impose
unacceptable network overhead.
the protocol family has shown to be flexible
enough to satisfy different communication
requirements for a wide range of applica-
tions that need to exchange the same data

using different protocols. This is achieved
by the IPC layer through the introduction of
a common exchange data unit (the STU)
together with a continuous range of per-
formances both for point-to-point and
broadcast communication. It is important to
note that SCOS I1 applications can commu-
nicate even with already existing software
not supporting a STU based data exchange.

The IPC layer is now complete and stable in
the interfaces, although its implementation
evolves as a result of a continuous life cycle
which includes analysis of statistics, tuning and
test.

New generations of Unix already support
multiprocessor hardware and the time to make
the IPC layer fully reentrant is mature as multi-
threaded SCOS 11 applications are under devel-
opment. To have a full coverage of commonly
used protocols the IPC layer will be augmented
in the future to support non IP based protocols,
like Unix datagram, streams and X25.

References
[I] K.Keyte: SCOS I1 - A distributed Architecture for

Ground System Control - International Symposium
on Spacecraft Ground Control and Flight Dynam-
ics SCDl. - Feb. 94 - Sao Jose dos Campos - Brazil.

[2] M.Frans Kaashoek et al. - An Eficient Reliable
Broadcast Protocol - Operating System Review-
Volune 23 Num. 4, October 1989.

[3] T.A. Joseph and K.B. Birman - Reliable broadcast
protocols - Lecture Notes of Artic 88, Tromso,
Norway, July 1988.

[4] Douglas E.Comer - Internetworking with TCPlIP -
Vol.1 - Prentice Hall.

[S] W.Richard Stevens - UNIX Network Programming-
Prentice Hall - 1990.

[6] Rumbaugh et al. - Object Oriented Modelling and
Design - Prentice Hall - 1991.

STANDARDIZING THE INFORMATION
ssv&g[

d? x
ARCHITECTURE FOR SPACECRAFT OPERATIONS

C. R. Easton
McDonnell Douglas Aerospace

Space Station Division, MS 17-4
5301 Bolsa Avenue

Huntington Beach, CA 92647

ABSTRACT
This paper presents an information architecture
developed for the Space Station Freedom as a
model from which to derive an information
architecture standard for advanced spacecraft.
The information architecture provides a way of
making information available across a program,
and among programs, assuming that the
information will be in a variety of local formats,
structures and representations. It provides a
format that can be expanded to define all of the
physical and logical klements that make up a
program, add definitions as required, and import
definitions from prior programs to a new
program. It allows a spacecraft and its control
center to work in different representations and
formats, with the potential for sbpporting existing
spacecraft from new control centers. It supports a
common view of data and control of all
spacecraft, regardless of their own internal view
of their data and control characteristics, and of
their communications standards, protocols and
formats. This information architecture is central
to standardizing spacecraft operations, in that it
provides a basis for information transfer and
translation, such that diverse spacecraft can be
monitored and controlled in a common way.

ACKNOWLEDGMENT
The Space Station Freedom Program (SSFP)
funded the development of the information system
standard, "Data and Object Standards" (DAOS),
SSP 30552, which forms the basis of the
standard recommended for spacecraft control.
The SSFP adopted only the naming portion of the
standard. The remainder was under consideration
when SSFP transitioned to the International Space
Station Alpha (ISSA) Program.

The concepts presented in this paper are not part
of ISSA. Funding constraints and the newness of
the technology led to a more conventional
approach for initial operations. The concepts in

this paper may be appropriate for inclusion in a
program growth phase to simplify information
management and rdqce operating costs.

Several people contributed to the development of
the SSFP DAOS standard. The author would like
to especially acknowledge Virgil~Enos (formerly
with McDonnell Douglas Aerospace in Houston,
Texas) and Lee Neitzel (with CTA in Houston,
Texas) for their leadership in developing and
prototyping the SSFP standard which forms the
basis for this recommended s~lacecraft standard.

a

The concepts from DAOS have been incorporated
into the Instrument Society of America, Fieldbus
Application Layer Specification as a draft
international standard.

INTRODUCTION - *
The operation and control of spacecraft requires
data exchange between the spacecraft and its
control center. Ground control centers must also
communicate with payload specialists and
technical support teams in off-site locations. With
an ever increasing number of spacecraft, and with
limited resources, multi-program control centers
are likely to become common. It will be essential
to standardize many aspects of the spacecraft and
their control centers. An integrated information
architecture standard will support this goal by
providing a common view and understanding of
data regardless of source.

The IEEE Standard Dictionary of Electrical and
Electronic Terms defines data as, "any
representation such as characters or analog
quantities to which meaning may be assigned."
An information architecture provides a formal
mechanism for assigning meaning, as well as
defining data in its various representations.

The purpose of an information architecture is to
provide a standardized way of identifying,
formatting, transporting and storing program
data. Ideally, an information architecture would

be in place at the beginning of a program, and
would encompass all program data in a
compatible format. But the reality of spacecraft
programs is that such an approach does not
happen. Designers develop data in various
formats in many different repositories. A
program approved information architecture is not
available at the start if the program. Even if it
were, it might not be compatible with all of the
Computer Aided Design (CAD) and Computer
Aided Software Engineering (CASE) tools to be
used. In addition, all of the program team would
have to be trained in the use of the architecture
from the beginning of the program. Finally, there
is a need for new, multi-program control centers
to be backward compatible with existing
spacecraft designs and data.

From the above, it becomes clear that an
information architecture must take into account the
practical realities of spacecraft programs. It must
permit local representations of data in local, user
defined data bases and spreadsheets. It must
support data exchange among local, user defined
representations. It must support data collection,
integration, and validation throughout the design,
development, test and evaluation (DDT&E)
phases of the program. It must support the
promotion of DDT&E data to the operations phase
of the program, its integration with operations
data and the eventual post-mission evaluation of
the program. It must support the operation of
multiple, dissimilar spacecraft from the same
control center, including the retrofit for operation
of existing spacecraft missions.

DESIRED FEATURES
A standardized information architecture would
provide for a basic set features which standardize
information formats, access to and exchange of
data. Among these features are the following:

A common way of naming data - Data names
control the access to, transport of and utilization
of the data. No single naming standard will
suffice for all of these purposes. The standard
must define a common way of naming data which
allows for various short form names for various
purposes. Ideally, all of the short form names
would be related to the standard by definitive
rules and program specific data. All such names
need to be defined in a program dictionary. The
common way of naming data provides the user
with a way of locating the data in the dictionary.

A common wav of accessi- - Data will tend
to reside in user defined repositories. Access may
be locally controlled, and access procedures are
also user defined. To make data readily available,
the information architecture needs to include a
directory indicating where data are located and
how to access the data. Ideally, the architecture
should support access in the requester's local
representation. The dictionaryfdirectory would
then also support conversion of local syntax,
format and storage between local representations.

A common way of transportin? data between
different local remesentations - Data accessible
over a network may be imported into other data
bases on demand or automatically imported via
linkages. When the local representations differ,
the import routines must be customized to make
the necessary conversions. With many different
local representations, conversion can become
unmanageable. The information architecture
should define a common transport representation
which allows each local representation to map to
and from a single, common representation for
data exchange.
A common way o f viewi n g sormatioq - The
architecture must support user oriented views of
information. These views are normally organized
around the spacecraft design, subsystem function
and mission operations. The same data may be
important to all such views in differing contexts.

A common wav of understanding: information -
Human users and computers need to understand
the data. The understanding usually comes from
defined relationships. A human operator sees a
number displayed next to an icon labeled, "Pump
1 Inlet Temperature", and understands the data.
Behind the display, the computer "understands"
that a particular data item is the inlet temperatrire
attribute of Pump 1. Thus, humans and
computers have different needs for data and ways
of understanding data. Both must be supported
by the information architecture.

latin? information A common wav of re - The
same data may be used in a variety of contexts.
For example, system architects are interested in
device connectivity to assure failure tolerance.
Hardware designers are interested in the same
information for wiring harness design. Software
developers need connectivity to relate VO ports to
commands and data. Test personnel need to
verify connectivity and 110 function. The

information architecture must support these
various relations of information to context.

TOP LEVEL REQUIREMENTS
The information architecture must meet a set of
top level requirements in order to be able to
support a wide variety of spacecraft applications.
Some of these requirements are stated below as
mission goals.

Be robust enough to describe complex macecraft
and suacecraft constellations - There is a trend
toward designing simple spacecraft for limited
missions and using multiple spacecraft for more
complex missions. While this trend may make it
seem that the information architecture need only
deal with simple spacecraft, the architecture
should not preclude more complex spacecraft
which may be developed in the future.

Support a common view of all spacecraft and
pavloads - The goal is to provide an operator
control interface such that all spacecraft can be
viewed in the same way. Note that this does not
mean that all spacecraft views are identical.
Rather, it means that the logical approach to
accessing and working with spacecraft capabilities
and functions is the same for all spacecraft.
Spacecraft will not be designed with the all of the
same capabilities and functions. Those which are
the same may be implemented differently. As a
result, the information architecture will take on a
portion of the responsibility for providing the
common view of the spacecraft and its operation.

Be transaction oriented to support remote
operation and access - Spacecraft control is not
limited to working with data local to the control
center. It involves message exchange with the
spacecraft, with payload specialists at various
locations, and consultation with spacecraft
designers and other specialists. It may involve
access to remote data bases. The transaction
orientation separates the action of the operator (or
software) to access data from the Drocess of
accessing the data.

1

Provide global definitions of information and
relationship5 - There are two aspects to this
requirement. First, a program will often develop
differing definitions of data to serve the design,
test and operations phases of the program.
Second, data and definitions will usually vary
from one program to another. The global
definitions serve to integrate data throughout the

phases of a program and to make common data
definitions available to new programs. Thus,
once "Control Moment Gyro", "Greenwich Mean
Time" and "CCSDS Packet" have been defined,
those definitions can integrate data across a
program. The definitions are portable from one
program to another.

~ u o r t a vanetv of local remesentations and
formats - People develop local representations to
meet local needs. Some of the data in local
repositories need to be made available to outside
access. Most of the data can be readily converted
and transferred. But then the system has multiple
copies of the same data, with the attendant
configuration management problems. The
information architecture needs to support the
exchange of data among local representations.
This will not solve the configuration management
problems, but will make them more tractable.

Provide for definitions to be transferred with data
- Many information exchanges will be made with
the definitions of the information already known.
As systems become more open, there will be an
increasing need to transfer the definitions of the
data with the data. This will be especially
important in the sharing of payload and spacecraft
data with outside investigators. One major
limitation on the ability of investigators to access
such data is that the definitions are not available
and may be permanently lost. The information
architecture should support standardized
definitions and the ability to store and transfer the
definitions with the data.

Be well grounded in proven standards -
Grounding in existing standards is desirable for
two reasons. First, it is far more efficient to use
or modify an existing standard than it is to
develop a new standard. Second, the
development and consensus building that have
gone into forming an existing standard will make
it easier to form a consensus on an extension to a
new application of the standard.

Have the uotential to suugort growth and
~ e c h n o l o ~ g r a d e - There are three reasons for
supporting growth and technology upgrade.
First, individual programs experience growth and
upgrade. Upgrade may come from on orbit
refurbishment, or from new generations of the
same satellite. Second, a control center may be
tasked to host controls for an entirely new
spacecraft or constellation. Third, both the types
of satellite technologies used and the technologies

for hosting the information, itself, will change
over time. Since the information architecture is to
grow from one program to another, it must
support the technology upgrade and growth.

OVERVIEW OF THE STANDARD
The Space Station Freedom Program developed
an information architecture standard having the
features and meeting the requirements noted
above. Subsequently, the Instrument Society of
America incorporated this standard into its Field
Bus standard. It is being considered as a draft
international standard for field buses. The same
standard is also under review by the Spacecraft
Control Working Group of the AIAA Space-
Based Observing Systems Committee on
Standards as its information architecture standard.

SSFP used the terminology, "Data and Object
Standards" (DAOS) to describe the information
standard. It includes standards for an integrated
Data DictionaryDirectory, Object Definition, Data
Modeling, and MessageData Structure Definition.
This paper will continue to use the term "DAOS"
to refer to the several individual standards which
make up the information architecture standard.

DictionaryIDirectory Standard
DAOS uses the term "Encyclopedia" to mean an
integrated Dictionary and Directory. The
encyclopedia provides for a single source for
definitions, contextual references and access
information.

The dictionary part of the encyclopedia is based
on the Information Resource Dictionary System
(IRDS), (ANSI X3.138 and FIPS PUB 156). It
defines classes of objects (or families of
spacecraft devices) as determined by the common
characteristics of real devices.

The directory portion of the encyclopedia is based
on the IS01 IEC Directory Standard (IS0 9594).
ISOmEC provides rules for naming objects and
protocols for querying remote directories and
receiving replies. In the DAOS encyclopedia
standard, the directory provides information used
to locate object instances. This includes object
names, descriptions, and object specific attributes
(such as location).

organizing information intermixes the dictionary
and directory within object descriptions.

The encyclopedia is comprised of four layers, as
shown in Figure 1 and recommended by IRDS.
The top layer defines the schema for the second
layer, and is not to be altered by the users.

Defines components in
Layer 2 4

Encyclopedia Schema Definition V
I

/ Provides ibject instance/
device information A

(DictionaryJDirectory Databases I/

Contains "real world" / obje tsidevices /
"Real World" ObjectslDevices C/

Figure 1 Encyclopedia layering
This top layer specifies such how objects are to be
defined, how relationships are to be specified,
what data modeling is assumed, etc. Thus, the
top layer defines all of the tools to be used for
defining object classes/device families.

The top layer can be expanded as needs for new
definitions arise. Existing definitions will not
normally be modified. If modifications are
required, they will normally be included by
creating new definitions. The definitions are not
to be modified or extended by the users.

The second layer provides the object class/device
family definitions. While there are differences
between "object class" and "device family", there
are no differences which are important to this
paper. An encyclopedia may be developed using
either or both.

The directory part of Layer 2 contains rules for The encyclopedia is fully integrated, in that all naming data, syntax rules for storing and information is organized about objects or devices,
their classes and their relationships. This way of transporting data, and attribute or data types for

common definitions of data.

Object classes will be discussed below. An object
instance or device exhibits the characteristics
specified for the object class or device family to
which it belongs. The information about the
object instances or devices is carried in layer three
of the encyclopedia.

Layer four holds the actual objects or devices. As
such, it is not directly a part of the encyclopedia,
but is a part of the model for the encyclopedia.
Layer 3 of the encyclopedia does contain the
description of these real world devices.

From the above, it can be seen that each layer of
the encyclopedia contains the information
necessary to understand the successive layer.

ObjectIDevice Model
The standard is Object Oriented, in that all
information is categorized as either exchanged
between objects or describing an object. Objects
exchange actions, responses and other message
types. They are defined by attributes, functions,
events and behavior. The object class structure
standardizes information definitions.

An object is anything that is accessible and of
interest to a user. It may be a representation of a
physical device, a software function, a message,
or other. The generic model allows an object to
be tailored to include just those portions necessary
to describe it.

The object model for DAOS is shown in Figure 2.
Beginning with the upper left hand side, an object
communicates with other objects via messages.
(Note that devices are not necessarily constrained
to communicate by messages.)

Figure 2 Generic object model
An action is a specific message type which acts as
a command. Commands may result in responses

such as the ability of the object to perform the
indicated action. Other messages may be defined
to provide more general information.

Messages require an interface syntax to define the
structure and content of the message.

Attributes are data about an object. For a pump,
the attributes might include its pressure, speed
and temperature. Attributes might also specify the
working fluid, capacity, manufacturer and serial
number. In general, attributes may be variable
data about a device, such as its present state,
status, use, location, etc. They may also be
invariant data about the device design or
construction, etc. Some of the invariant data is
the same for all devices of a class, and is carried
as object class data.

Objects will usually perform one or more
functions. The functions are described as though
the "real world" object were performing them.

Objects may exhibit one or more behaviors.
Behaviors may describe the way an object
performs its functions, such as a telescope
slewing in such a way as to avoid pointing at the
earth or sun. They may describe the response 'tp
detected failures. They may describe the
characteristics of action processing and the
conditions for action responses.

Objects may contain sub-objects. A sub-object is
an object which is wholly contained within or
dedicated to another object. A coolant loop
contains a circulation pump. The pump contains a
bearing. The bearing has a temperature sensor.
Each is an object, and has its own class, function
attributes, etc.

Objects may also interface with other objects. For
example, software is configured with an operating
system. It may be configured with certain
application software. The same drive motor may
be configured with or without a brake.

An object may detect its own events, such as
failures and off-nominal conditions. But it is
more common for an object to be monitored by
another object to prevent a possibly failed device
from providing incorrect data about itself,
resulting in an inappropriate failure response.

Eqch object must have an object class which
defines the template for the object. The object
class identifies each attribute, describes the
functions and behaviors, defines the syntax and

format of messages, and identifies sub-object and
interfacing object classes.

Messages, attributes, actions, functions and
behaviors all have class definitions or types. The
type definitions allow for complex data types to
contain other data types. Thus a quaternion is
defined to contain a three component vector and a
scalar, each of which may defined by units, valid
ranges, precision, etc.

Data Model
The standard uses entity-relationship data
modeling. An entity is anything someone wants
to know something about. An entity may
represent an object or a spacecraft device.

Attributes describe an entity. In this context,
attributes include everything which describes an
entity in isolation from other entities. The
features of an object, other than its relationships,
are attributes in this modeling.

Relationships describe information about an
object as it is associated with other objects.
Relationships include information exchanged, or
messages, as well as many other types of
relationships. Some of the useful relationships
are shown in the figures that follow.

Figure 3 shows a "contains" relationship. In the
figure, an assembly can contain one or more
subassemblies. Hardware trees, indentured parts
lists, bills of materials and logistics data bases
will use this relationship.

I
contains

Figure 3 "Contains" relationship
Figure 4 shows the "connects to" relationship.
This relationship is used to describe such things
as wiring harnesses and assembly sequences.

Figure 5 shows the "communicates with"
relationship. This relationship can be used to
associate instrumentation with pin-outs on control
devices. It can also show logical processor
hierarchies and logical interfaces among software.

I
connects to

Figure 4 "Connects to" relationship

~ommunicates
with

I
Figm 5 "Qmnwni* with" ~lations hip
The similar "provides value for" relationship
connects the source of a data value with the
process that uses the data value. A temperature
sensor may provide the value for the bearing
temperature attribute of a pump device. A square
root library routine may provide an input to a
computation.

Figure 6 shows the logical decomposition of a
system. Requirements will also follow a logical
decomposition, and may be allocated to the
decomposition products of a system. In the
figure, the functional decomposition is cariied out
to a point that allows functions to be allocated to
physical objects such as assemblies, components,
devices, software objects, etc.

con

y has --I L contains 7

I object /-
Is

allocated
to

Figure 6 Decomposition relationships

The above examples show just a few of the
relationships defined for spacecraft. The
encyclopedia allows additional relationships to be
defined as needed. The relationships may be
defined on line by the users, as can the object
classes, data types, and object instances.

Procedures for configuration management have The SSFP construct for names needs a significant been defined for a sing1e Program, but have Yet to amount of work to be adapted to the more general be defined for multiple programs, usage of spacecraft control across multiple
Data Naming
The standard uses attribute based naming. A
name is comprised of a verb (if the name is that of
an action), an administrative name expression to
identify the "owner", and a technical name
expression to identify what is named.

No single construct of names appears to meet all
of a program's needs. Descriptive name forms
with logical, hierarchical structure are preferred
for browsing through a dictionary or directory.
The logical structure allows a user to locate items
in the encyclopedia without prior knowledge of
the actual name.

Descriptive names, by their nature, are long and
syntactically precise. Software developers and
data bases will not usually devote memory to
support full descriptive names. Various aliases
are not only required, but become the "official"
names for a program by virtue of their usage.

The alias names should be constructed to meet
two conditions. First, they need to be able to be
related to a descriptive name form. The
descriptive name form does not need to be
actually stored in an encyclopedia if it is derivable
from an alias name, the encyclopedia information
and a rules set. The encyclopedia can include
logic to permit user browsing without having the
descriptive name form actually present.

The second condition for an alias name form is
that it should be meaningful to the system users.
An object instance name should include all of the
parts of the attribute name, but may encode these
parts and allow portions to be understood from
the context. If the name is not meaningful to the
users, it will not be used.

The exact construction of names must also take
into account the fact that some names are inherited
from one program to another. This is true of
object class names, and the associated attribute,
action, function, and behavior names. These
names must not contain an administrative name
expression that limits them to a single program.
Program specific administrative name expressions
are proper for object instances, but may be
understood from the context of the object.

programs.

Data Format, Syntax and Semantics
The standard provides a means for defining the
format and syntax of messages, data stores and
data structures. Figure 7 illustrates the means for
defining messages, using entity-relationship
modeling. A message "contains" one or more
fields. Each field contains a single data item. The
data item is defined by its data type, as was
previously described in the data model.

t contains

contains

Data Item I
fined by

Figure 7 Message definition
Similarly, a data base contains files, which
contain records, which contain fields, each of
which contains a data item which is defined by a
data type.

Data structures are da'ta items which contain sub-
elements which are meaningful data items. A 16 .
bit integer might be constructed such that
individual bits represent the state of individual
switches in a power control box. Each bit is a
defined data item, and the integer may also be
defined as a field in a message, or in processing
to determine whether the measured switch state
matches the currently commanded switch state.
In this case, the integer would be defined as a data
item with it data type definition, and the type
definition would include that each bit is a state
variable. In general, data structures are defined
by their data types. The data type definitions
include parsing rules for the structure, similar to
those of a message. The data types for the

individual data items in the structure are also
defined by the data structure data type.
The information standard provides data type
definitions for all of the program data. The data
type definitions are standardized across programs.
These type definitions provide the semantics
(meaning) of the data. Data types may be added
as needed.

DATA TRANSFER
Because there is a global set of data type
definitions, it becomes possible to automate data
transfers among different local representations.
Each local representation needs to map its data to
a common transfer syntax and format. Automatic
code generators can then be used to for export and
import conversions. The export conversion puts
local data into the transfer syntax and format. The
import conversion transforms the data from the
transfer syntax and format to the destination local
syntax and format. Thus, each local
representation need map only to the common
transfer representation to make data globally
available.

CONCLUSIONS
Use of an information architecture standard will
help reduce the cost of developing and operating
spacecraft by providing a common view of all
information. o i s will allow reuse of displays
and controls and facilitate adapting control centers
to the control of multiple spacecraft.

The proposed information architecture allows
different spacecraft with different views of their
data to interface with a control center using either
a common view of the data for all spacecraft, or
separate views specialized to each spacecraft.

The proposed information architecture standard
also supports exchange of data between different
local representations. It does this by defining a
mapping between each individual local
representation and a common data transfer
representation. Only the common data transfer
representation needs to conform to the standard.

REFERENCES

American National Standard for Information
Systems - Information Resource Dictionary
System (IRDS). (ANSI X3.138). New York,
NY: American National Standards Institute, Inc,

Information Resource Dictionary System (IRDS).
(FIPS PUB 156). Gaithersburg, MD: National
Computer Systems Laboratory, National Institute
of Standards and Technology

Information Processing Systems - Open System
Interconnection - The Directory. (ISOPEC 9594,
Parts 1-8, (CCITT X.500 0 X,521)). Geneva,
Switzerland: International Organization for
Standardization

LApril 30, 1992). Fieldbus Application Layer
Specification. Instrument, Society of America
Draft International Standard

(April 2, 1991). Flight Software Data and Object
Standards. (Report SSP 30552). Space Station
Freedom Program Office

A STANDARD SATELLITE CONTROL REFERENCE MODEL
3 S"fL8g

B - Y
Constance old en*

Abstract - This paper describes a Satellite Control Reference Model that provides the basis for an
approach to identify where standards would be beneficial in supporting space operations functions. The
background and context for the development of the model and the approach are described. A process for
using this reference model to trace top level interoperability directives to specific sets of engineering
interface standards that must be implemented to meet these directives is discussed. Issues in developing
a "universal" reference model are also identified.

INTRODUCTION

The need for a standard approach to identify where standards would be beneficial in supporting space
operations functions has been expressed by many people in the field.

* To show a link between the selected standard and the desired benefits of applying the standard.
To broaden understanding and acceptance of recommended standards.

* To permit benefits of standardization to be spread across several networks.

This "standard approach to selecting standards", based on a functional satellite control reference model,
should not be "benefit dependent"; that is, it should permit identification of standards needed to support
any specific benefit such as interoperability, cost reduction, etc. Ideally this standard approach would
apply to all space operations networks and would allow each standard to be easily tied to its supporting
operational function and therefore the benefits could be evaluated.

The Air Force has funded the development of such a standard approach that is based on an extension of
the approach in Vol. 7 of the DoD Technical Architecture for Information Management (TAFIM)
developed by the Defense Information Systems Agency (DISA). The approach is being applied to the
Air Force Satellite Control Network (AFSCN). Representatives from other Government agencies and
the commercial space operations community have expressed interest in extending the initial approach by
developing a more universal reference model as its basis. Benefits from standardization in one satellite
control network can then be evaluated for use in another network using the same functional and interface
definitions.

BASIS OF REFERENCE MODEL

Satellite Control Systems can be defined as "A configuration of communications and data processing
subsystems that collectively provide the capability to control satellites". Implicit in this definition is the
fact that these systems are used in all phases of satellite control, including prelaunch, launch and early
orbit checkout, on-orbit operations, and mission completion. Missions include weather forecasting,
missile warning, navigation, and communications. Mission execution and mission data processing
systems are not included in this definition, although the capability to perform these mission functions can
reside on the same subsystems as the ones used for satellite control. Process control systems are an

Loral Space & Range Systems, 1260 Crossman Ave. S80, Sunnyvale, CA. 94089-1198.
The ideas presented in this paper were originally developed under contract with the Air Force
Space and Missile Center/CWl.

important subset of satellite control systems because their real-time characteristics drive many of the
system performance requirements. Based on this definition of a satellite control system, it would be
logical to use already accepted frameworks to tie standards to satellite control functions. In this paper the
word "standard" refers to an engineering or product standard (physical/electrical interfaces, formats,
protocols, etc.), not an operations standard (procedural or administrative).

Information Systems Reference Model.
The Defense Information Systems AgencylCenter for Information Management has derived a TAFIM
from the NIST Application Portability Profile and the IEEE P1003.0 OSE models (begun in 1986). This
architecture defines a target common conceptual framework or reference model for an information
system infrastructure and the specific applications that the information system must support. It also
subsumes the widely accepted Open Systems Interface (OSI) reference model within the network
services and communications area. This architecture, and associated model, is not a specific system
design. Rather, it establishes a common vocabulary and defines a set of services and interfaces common
to information systems. DISA's Information Technology Standards Guidance (ITSG) and Adopted
Information Technology Standards (AITS) documents describe and support this architecture. The
associated AITS identifies standards and guidelines in terms of the architecture services and interfaces.
The architecture serves to facilitate the development of plans that will lead to interoperability between
mission area applications, portability across mission areas and cost reductions through the use of
common services.

Satellite Control Reference Model.
Operations that are unique to satellite control need to be addressed in the Mission Area Applications
Section of the TAFIM. Therefore specific satellite control services, such as Timing (those aspects
unique to satellite control), Tracking and Data Relay, Telemetry Processing, Command, Resource
Control, Contact Execution, and Management were added to those in the generic information systems
model. Network Services were also broadened in scope to include eartNspace and spacelspace services.
By moving the major service areas into an OSI-like reference structure, it is possible to establish a
hierarchical "standard" framework for understanding the relationships between satellite control
functions. Figure 1 illustrates this framework or Satellite Control Reference Model (SCRM). The
hierarchy is based on levels of functional abstraction, from management services, down to control
services, further down to basic computer services and finally down to network and point-to-point
communications (layers 1 to 6). All of these unique satellite control services would operate at OSI
Application Layer 7. Functions in layers 7b and above in the hierarchy would relate to the Mission Area
Applications area in the TAFIM. Functions in layers 7a and below relate to information management
systems. Note that all services are not used at each location and that these services are not dependent on.
location nor are they necessarily automated.

STANDARDS IDENTIFICATION APPROACH

Since the unique satellite control services are not part of core information management systems, they
may require standards unique to the satellite control domain that are not covered in the AITS. An
approach, based on the SCRM, is needed to accomplish this standards identification. Of special interest
is identification of those standards that are most appropriate to reap the benefits of interoperability.

The approach is based on describing the functional flows between each of the satellite control service
areas in enough detail so areas where standards would be beneficial can be easily identified and existing
standards evaluated to see if modifications/replacements are necessary to achieve the benefit desired. To

this end, a baseline set of functional diagrams for every satellite control service area has been developed.
These simple functional diagrams show input, output, and the basic functions provided by each service
area. In the future we will generalize the functional descriptions related to levels 7b and above, remove
operational procedures inherent in the functional descriptions and move as many currently "unique"
satellite control functions into the information management category (black background) as possible.

Figure 1 STANDARD FRAMEWORK FOR SATELLITE CONTROL
-Defines functions and interfaces for all services provided-

Overview of Aporoach,
The specific approach, which facilitates identification of the relevant standards to apply to development
and implementation of the satellite control functions, is outlined in the following steps:

Step 1: Describe the desired benefit of standardization for the relevant program. For each major
satellite control service area in the SCRM, review the baseline functional diagrams to ensure they
match the functional flow for the relevant program. If they need to be modified, do so.
Step 2: Based on the functional diagrams, the desired benefit, and expertise about how various
services are provided, identify areas where use of standards would be beneficial, (are needed),
and list these areas so they are tied directly to a relevant function and service area.
Step 3: For each of the beneficial standardization areas identified in Step 2, identify what
standards are currently being used and which emerging standards, if any, might be applied to that
area to achieve the desired benefit. Coordinate with other satellite control organizations for
review and feedback, and to ensure commonality among interested groups. List these standards
under the appropriate "standard needed" heading on the form used in Step 2.
Step 4: From the compiled information, identify what relationships exist among the standards.
Where multiple standards are used for the same satellite control functions, investigate the
feasibility of joint adoption of a future common standard and devise an evolutionary path to it.

For functions where standards are needed but none exist or are emerging, describe how such a
standard might be developed for the benefit of all networks.

m ~ l e of &&cation of Ao~roach to Identify . . in^ Standard&
Figure 2 illustrates a functional diagram for the Contact Planning Services function. The primary inputs,
subfunctions, and outputs are shown, along with a short description of how the services are to be
accomplished to provide a context for understanding where standards might be appropriate. To increase
interoperability, the input-output external interfaces are of primary interest.

INPUT

P - Twenty four hour schedule

Pavload -
- Status and contact requirements

-
Prepare resource schedule request for

the seven day schedule {PAP)
Coordinate the 24 hour schedule
Develop Contact Support Plans for

contacts on the 24 how schedule

OUTPUT

P - Resource schedule request for
contact support (PAP) - - - - Contact Support Plans

0escription:Contact Planning Services involves the analysis of status and requirements to determine what needs to bt.
done for the SV. These SV needs are then expressed in a contact support plan (CSP) that results in an agenda for a
scheduled contact with the SV. The CSP is then provided to Command services where it is executed under the control d
Contact Execution Services. The resources needed for the contact are requested by Contact Planning Services through the
PAP input to the seven day schedule prepared by Resource Management Services.

Figure 2 CONTACT PLANNlNG SERVICES FUNCTIONAL DIAGRAM

Figure 3 portrays a form used to assess where standards would be beneficial for the Contact Planning
Services function. The form provides space for indicating what service(s) are interfaced with, the
interfacing function, and the context (input, output, HCI) and type (Protocol/Format,
ElectricaVMechanicaVPhysical) of that interface. In addition, there is space for indicating the areas where
standards are needed and a column for indicating the current standard status, as defined in the lower part
of the Figure. This assessment approach can then be used for each function within the Satellite Control
Service areas to assure a level of consistency and completeness in the eventual results.

Once areas of needed standards are identified, the status of any applicable standards can be more readily
assessed. The assessment occurs for three time periods: currently, near term and long term. It is
effective to record this assessment on the same form shown in Figure 3. For the Contact Planning
function, it was noted that there is no standard format for requesting use of network resources by an
external user. Standardization on an interface format would facilitate interoperability in scheduling and
allocation of the network assets.

SATELLITE CONTROL TECHNICAL REFERENCE MODEL
ASSESSMENT OF STANDARDS NEEDED AND AVAILABILITY

available within 6 months.

FUTURE: Standard is emerging and may be subject to change but is generally headed toward

GAP: Standard is available as temporary gap-filler. It is recommended for use only if the
organization is willing to take a moderate investment risk because the final standard
for the area may or may not be compatable with the gap-filler.

VOID: No standards in the area and no known emerging one. The absence of a standard here
may translate into significant risk for long-term planning or investment.

UNSTABLE: Standards are emerging and rapidly evolving.

NIA: No standard is needed in this area. This code will be reserved for areas where at first
glance it would appear that a standard might be useful, but further analysis shows that

Figure 3 EXAMPLE ASSESSMENT OF STANDARDS NEEDED
AND AVAILABILITY

FUNCTIONAL INTEROPERABILITY APPLICATION

There have been several published definitions for "interoperability" including those in JCS Pub 1-02 and
MIL-STB-973. According to the JCS Pub 1-02, interoperability is "The ability of systems, units or
forces to provide services to and accept services from other systems, units or forces, and to use the
services so exchanged to enable them to operate effectively together". While this definition provides
overall guidance, more specific information is needed to tie high level (ORB and CON OPS)
interoperability requirements to specific engineering and operational consequences/benefits. One
approach is to have overall requirement documents address "how much interoperability" is needed
between specified programs or domains. That is, to specify the "degree" of interoperability needed.

Degrees of Intero-perability
Figure 4 portrays the breakdown of the "Services" to be exchanged, to achieve general interoperability,
into more specific functions as the domain of application becomes narrower.

JCS DEFlNlTlO C3 DEFINITION
Eng. Standards/.
processes

Services Exchange DO = Communication Exchange - Ground Network Comm Exchange 0 Ops. Procedures - SpaceIGround Comm Exchange
Space Network Comm Exchange

D l - Command & Control PlatformIResource Control & Contact Processing
Payload Control

D2 Management Planning - Management & Planning analysis

Figure 4 SPECIFIC DEFINITIONS FOR INTEROPERABILITY

Moving from the General Domain to the C3 Domain, "Services" can be broken into Communication
Exchange, Command & Control and Management and Planning Services. Moving further into the
Satellite Control domain, Communication Exchange can be broken into 3 subsets, (Ground Network,
Space/Ground and Space Network), because of the differences in their application environment. Each of
these can be specified as a "degree of interoperability" in the satellite control operational environment.
Command and Control Services can be broken down into Platform/Resource Control & Contact
Processing and Payload Control for the Satellite Control Domain. Each of these can be specified as a
degree of interoperability. The Platform/Resource Control & Contact Processing Degree of
Interoperability was purposely constrained to routine processing functions and resolution of Level 1 and
some Level 2 anomalies because these can be most readily automated and there is high likelihood that
many programs will find it beneficial to be interoperable to this degree. The benefits of implementing
this degree of interoperability are high, but are dependent on basic Ground Network Communication
Exchange being available. Management and Planning Analysis services in the Satellite Control Domain
include resolving Level 3 anomalies and require operators to be cross trained on mission and payload
information. The benefits of this degree of interoperability are dependent on the "lower" degrees of
interoperability being implemented first. Four of these degrees of Satellite Control interoperability are
pictured in Figure 5.

GROUND NETWORK COMMUNICATION EXCHANGE INTEROPERABILITY CONTROL 6 CONTACT PROCESSING INTEROPERABILITY

Operations Control Oper

SPACEIGROUND COMMUNICATION EXCHANGE INTEROPERABILITY MANAGEMENT 6 PLANNING ANALYSIS INTEROPERABILITY

Figure 5 SATELLITE CONTROL DEGREES OF INTEROPERABILITY

Mapping Degrees of Interoperability to Set of Standard Interfaces,
As the degree of interoperability increases from D l to D3, so too does the emphasis on higher levels of
functional abstraction represented in the SCRM. As shown in Figure 6, Ground Network
Communication Exchange Interoperability (Dl-a) is accommodated almost entirely within the lower six
OSI layers, Platform/Resource Control and Contact Processing Interoperability (D2-a) is accommodated
almost entirely within OSI layers 7b and 7c, while Management and Planning Analysis Interoperability
(D3) is accommodated almost entirely within OSI layers 7d and 7e. Using this correspondence the
SCRM can be used to determine the set of interfaces that need to be standardized to support the various
degrees of interoperability. Determination of which specific set of standards to select for standardizing
these interfaces can then be performed for the environment of interest. The mapping from definition of
degree of interoperability to a specific set of standards to be applied is then complete.

CONCLUSION

The standard framework and approach described above is still in the process of being developed. It has
the advantage of being based on the already established OSI and TAFIM reference architectures.
However, the question of whether the functional interfaces can be defined in enough detail and

generically enough to be able to produce a baseline model that su&orts all satellite control networks has
still to be answered.

DEGREE OF RELATED DlSA SERVICE AREAS SET OF SPECIFIC SETS
INTEROPERABILITY (Functions & Interfaces) INTERFACES THAT OF STANDARDS

D3 NEED TO BE
MANAGEMENT 6 8 sTANDA"""ED
PLANNING ANALYSIS INTERPROCESS
INTEROPERABKITY UJ STANDARDS

;;:;;;;::; ;;;;;;;;;;

M INTERPRETATION
STANDARDS

CONTROL 6 CONTACT
PROCESSING

111,11,11,,11 ;:;;;:;::::;
INTEROPERABILIN

SPACEIGROUND AND
SPACE NETWORK
COMMUNICATION
EXCHANGE
INTEROPERABILITY

D1-a
GROUND NETWORK
COMMUNICATION
EXCHANGE
INTEROPERABILITY

SpwdEarth Link
-051 inyen iu INTERPRETATION,

- OSI Layan 3-7 PATH 6 LINK
WNR STANDARDS

Carrier Charactwbtics
upldown fnqwnc i r
*curacy SGLS
-stability SDLS

E larirslion TBD
ndwidth

-signal mInngth
Mo9YD.mod Twhniques

INTERPRETATION,

:,:AT

Flgure 6 MAPPING DEGREE OF INTEROPERABILITY TO SET OF STANDARD INTERFACES

In the six months that this model has been applied to various situations, it has become apparent that some
of the originally identified satellite control unique functions may be able to be defined as generic
information systems functions in the future. On the other hand, some of the functions that were initially
allocated to information systems are really process control functions and may have to use different
standards than those selected for general information systems to meet the real-time response
requirements needed. There are several related efforts ongoing and in each a satellite control reference
model with standard terms and functional flows has proven to facilitate the analysis.

REFERENCES

1. Defense Information Systems AgencyJCenter for Architecture, Department of Defense Technical
Mhitecture Framework for Information Management: Technical Reference Model and Standards Profile
Summarv. (Final Draftl, Version 2.0, 1 Nov. 1993

2. Air Force Space & Missile Systems Center, CUE-TR-93-179, Standards for Interoperability, 30
Nov. 93

Adrian J. Hooke

Jet Propulsion Laboratory
California Institute of Technology

Pasadena, California 91 109

ABSTRACT

It is proposed to create a fully "open" architectural specification for standardized space
mission command and control. By being open, i.e., independent of any particular
implementation, diversity and competition will be encouraged among future commercial
suppliers of space equipment and systems. Customers of the new standard capability are
expected to include:

o The civil space community (e.g., NASA, NOAA, international Agencies).
o The military space community (e.g., Air Force, Navy, intelligence).
o The emerging commercial space community (e.g., mobile satellite service providers).

INTRODUCTION

In response to declining space budgets, the U.S. civil and military space communities both
have a critical need to significantly reduce the cost of operating spacecraft, while
simultaneously accommodating requirements for increased mission flexibility and
capability. The emerging commercial space community has a similar need for low-cost "off
the shelf" command and control systems that reduce the need for capital and operating
investment.

Standardization has emerged as a key weapon in the conflict between new demands for
space mission complexity and increasingly limited space mission budgets. The command
and control of space mission systems is an area that is ripe for standardization. For lack of
standards or guidance, space mission command and control is (by and large) re-invented
for each mission; this drives up cost because a constant cycle of system redesign results in
customized, non-automated operations that are highly labor intensive.

There is a pressing need to develop and emplace new standard user services that allow
many different types of spacecraft, and their supporting ground networks, to appear
basically harmonious from the perspective of ground controllers. With such capabilities,
the spiral of constant redesign can be broken, automation may be deployed, and operations
and maintenance budgets can be contained.

The new services should:

o exploit rapid ongoing improvements in onboard data processing, storage and autonomy
capabilities by encouraging the spacecraft designers to present simpler, more consistent
and more mission-independent interfaces to ground operators;

o import off-the-shelf technologies by integrating a wide range of emerging commercial
data processing and data communications capabilities into cohesive systems that
support high performance space mission command and control;

o enable the mission-independent operation of spacecraft and their supporting ground
networks by small teams of multidisciplinary personnel whose productivity is leveraged
by the the widespread deployment of automation;

o be backwards-compatible with existing space systems so that a smooth transition from
the present to the future may be observed.

Many off-the-shelf capabilities currently exist; the primary challenge is to import these
diverse technologies and to system engineer them into an integrated solution which satisfies
the unique requirements of space mission operations.

It is therefore proposed to develop and functionally specify a Space Project Mission
Operations Control Architecture - "SUPERMOCA" - which will provide the open systems
framework around which the integration and demonstration of multi-vendor
implementations of the new approach may occur.

TECHNICAL CONTEXT

To control a remote spacecraft, the user formulates command directives, transmits them,
monitors their execution, and takes corrective action in case of anomalous behavior. The
spacecraft executes the command directives using various levels of onboard autonomy.
The control center and the spacecraft exchange information via a space communications
system that includes both ground and space/ground networks.

Users in the control center also perform a similar set of actions to configure, monitor and
control the remote ground data acquisition stations which are supporting the spacecraft.
To facilitate automation and to reduce human staffing needs, the SUPERMOCA should
promote a unified approach towards the command and control of the spacecraft and its
supporting ground systems.

In the terminology of Open Systems Interconnection (OSI), the SUPERMOCA resides
within the Application layer and draws upon underlying lower layer space communications
services.

Figure- 1 shows the SUPERMOCA operating over a space data network containing:

o Standardized spacelground data channels, as defined for the civil mission community
by the Radio Frequency and Modulation standards defined by the Consultative
Committee for Space Data Systems (CCSDS).

o Standardized spacelground networks and data links, as defined by the CCSDS
Recommendations for Packet Telemetry, Telecommand and Advanced Orbiting
Systems.

o Standardized upper layer protocols, operating efficiently in a "skinny stack"
configuration that is currently being defined by the joint NASAIDoD "Space
Communications Protocol Standards" (SCPS) development program. The SCPS stack
provides fully secure and reliable file and message transfer services in support of the
SUPERMOCA layer.

CONTROL CENTER
A SPACE SYSTEM

f \
r--------- I I r---------

SPACE PROJECT

I CONTROL ARCHITECTURE ,
('ISUPERMOCAI1)

SPACEIGROUND

4

GROUND
b

SPACE

Figure 1. Context of Space Mission Control and Command

ELEMENTS OF THE SUPERMOCA

The SUPERMOCA provides an "upwards" mission control service interface to the mission
planning systems which are used to construct the broad profile of desired mission
activities. "Downwards" it draws upon a space communications service provided by a
stack of underlying standard protocols. Figure 2 shows these service relationships, and
postulates a possible internal organization of the layer.

The potential to achieve "backwards compatibility" with existing spacecraft is fundarnentaI
to the SUPERMOCA concept: this may be accomplished by locatihg all of the new
SUPERMOCA architectural elements in the control center, and interfacing with the
existing communications services that are possibly unique to that spacecraft. By
retrofitting existing spacecraft into the SUPERMOCA, a smooth and rapid transition to the
future is facilitated.

As currently envisaged, the SUPERMOCA contains five elements. Three of these
elements (the Control Interface, the Decision Support Logic and the Space Messaging
System) form the heart of the actual process control system. The remaining two elements
(the Data Architecture and the System Management Architecture) supply the framework
within which the other elements operate. Because they have great significance throughout
entire mission lifecycle, the Data Architecture and the System Management Architecture
also frame the Mission Planning System.

o Control Interface

The Control Interface provides a human-oriented mechanism whereby a flight controller
can specify and monitor the desired sequence of operations to be conducted in a remote
system. It also provides the translation between high-level human directives and actual
atomic-level commanded actions at the remote end.

o Decision Support Logic

The Decision Support Logic provides the capability whereby rules for command
execution may be programmed into a distributed inference engine, which may be
located wholly on the ground, wholly in space, or partitioned in varying degrees
between the two. Commands may only be issued to end effectors in space when they
conform to the flight rules that are programmed into the engine. Responses from end
effectors will be compared against rule-based expectations, and the Decision Support
Logic may take further preprogrammed command actions based on the observed
performance.

o Space Messaging System

The Space Messaging System translates the machine-readable command calls from the
user's Control Interface into standard-syntax messages which invoke the desired
actions and responses in the remote space system. At the receiving end, generic device
manipulations are translated back into concrete, atomic-level actions via the Control
Interface.

o Data Architecture

The Data Architecture provides the mechanism whereby the precise characteristics of a
concrete spacecraft system can be captured and described in abstract terms. It allows
specific spacecraft devices to be described in standardized ways and for this
information to be compiled into data dictionaries and encyclopedias. These data
descriptions can be gathered starting at the earliest point in the project design lifecyle,
thus supporting the progressive and seamless refinement, extension and translation of
information from conceptual mission planning, tlirough operations, and into post
mission evaluation.

o System Management Architecture

Space mission process control fundamentally boils down to a problem of meeting
mission success and safety-related criteria. The SUPERMOCA accomplishes this
through the allocation and control of shared onboard resources, and by managing the
relationships which describe how individual systems interact with the operating
environment. To achieve this, "operations envelopes" are assigned to individual users,
granting them certain "environmental rights" to conduct their operations and consume
an allocated share of system resources, and certain "environmental privileges" to
perturb the overall system environment. Providing users stay within their assigned
envelopes, they are free to operate without detailed supervision. Potentially dangerous
activities are precluded via a combination of software controls on command execution,
plus hardware inhibits and interlocks which preclude unsafe or undesirable operations
from occurring unless the system is prepared for them.

DEVICE MODEL OR OPERATIONS

The SUPERMOCA is conceptually founded in terms of a powerful "device model" of
space mission command and control, which is illustrated in Figure 3. Within this model,
all of the functions of the space mission are allocated to devices. A device may be physical
hardware, a software module which serves as a control interface for hardware, a pure
software function, or a combination of these. Each device has a function or functions
which it performs: a pump circulates its working fluid; a motor rotates a solar panel; a
software module calculates the pointing vector to the sun to guide the solar panel drive
motor.

Devices exist at many levels; normally, low-level devices will be aggregated into higher
level devices, such that the operator can issue high level commands to the higher level
devices, which will themselves orchestrate the function of the low-level devices to
accomplish a complex function. A complete spacecraft (and, for that matter, its supporting
ground system) is thus composed of many concrete low-level "space devices" which are
assembled into complex subsystems that are integrated into an operating mission system.

A space device has a standardized input/output interface through which the external world
can know about it, or can control its behavior. This interface can be accessed by sending
commands and receiving data or status messages. Attributes describe the device: they
include information about the current operation of the device (such as temperature, mode;
state, etc.) and descriptors of the device itself (such as serial number, date of manufacture,
capacity, operating limits, etc.). Attributes can also include information about the intended
use of the device, such as its redlined operational limits.

A device may exhibit one or more behaviors: an oven heats at a rate of 50 degrees per
minute; software sends a particular response to an invalid command; an instrument will
slew from one pointing direction to another without pointing at the sun. A device may
issue messages indicating that specific events have occurred: a parameter may be out of
limits, a function may have failed, or a hazardous condition might be noted.

Relationships describe the context for a device. A device may be a part of a higher level
assembly, connected to a particular data bus, communicating with another device over the
data bus, powered by a a specific power supply, outputting a signal which becomes an
attribute of another device, and configured with certain software to perform its functions.

Device types are abstractions which provide a single definition for a family of related
"virtual devices" (e.g., all valves, or all pumps, or all pointing actuators, or all voltage
regulators, or all transponders share common features; which means that within a family,
the same device interface exists for all of them). Therefore the general interface for a
device type may be stored in dictionaries and encyclopedias that can be re-used and
inheiited across multiple space missions.

By masking the uniqueness of a particular space system from its human operator, while
providing the tools to progressively capture and exploit knowledge across multiple
systems, the device model for space operations will enable the widespread and progressive
standardization of the way in which human beings interact with complex, concrete
systems in simple, abstracted ways. In particular, adoption of the device model will inject
the discipline of standardized system description throughout all phases of space project
design: this provides a powerful mechanism for creating a "design to operate" philosophy
early in the project lifecycle. From the embryonic stages of mission planning, through
operation and post mission evaluation, a seamless flow of data capture is created.

CONCLUSION

It is suggested that a completely standardized mechanism for space mission control is
within Our reach. By importing and marrying many diverse off-the-shelf technologies,
powerful new capabilities may be emplaced that contribute significantly to reducing the
cost of operating space systems. Since the needed capabilities will be functionally defined
in the form of an "open" specification, the SUPERMOCA will encourage a diverse set of
compatible implementations to be placed on-the-shelf by the private sector, for shared use
across the entire space mission community.

ACKNOWLEDGMENTS

The work described in this paper was carried out at the Jet Propulsion
Laboratorylcalifornia Institute of Technology under a contract with the National
Aeronautics and Space Administration. The SUPERMOCA concept was developed by
many talented individuals affiliated with the AIAA Spacecraft Control Working Group:
special thanks go to Bob Easton of McDonnell Douglas; Randy Heuser and Gael Squibb
of JPL; Chuck Fuechsel of NASA Headquarters; Connie Golden of LORAL; Brian
Buckley of Interface and Control Systems; Captain Vern Veglia of the United States Space
Command; and Randy Davis, Elaine Hansen and Sam Siewert of the University of
Colorado.

The Space Communications Protocol Standards Program f, ;I
Alan Jeffries

Science Applications International Gporation
8301 Greensboro Drive

Mclean, VA 22102

Adrian J. Hooke
Jet Propulsion Laboratory, California Institute of Technology

4800 Oak &;rove Dr.
Pasadena, CA 9 1 109-8099

ABSTRACT

In the fall of 1992 NASA and the
Department of Defense chartered a
technical team to explore the possibility
of developing a common set of space
data communications standards for
potential dual-use across the U.S.
national space mission support
infrastructure. The team focused on the
data communications needs of those
activities associated with on-line control
of civil and military spacecraft. A two-
pronged approach was adopted: a top-
down s w e y of representative civil and
military space data communications
requirements was conducted; and a
bottom-up analysis of available standard
data communications protocols was
performed.

A striking intersection of civil and
military space mission requirements
emerged, and an equally striking
consensus on the approach towards joint
civil and military space protocol
development was reached. The team
concluded that wide segments of the
U.S. civil and military space

nities have common needs for:

An efficient file transfer protocol
Various flavors of underlying data
transport service
An optional data protection
mechanism to assure end-to-end
security of message exchange
An efficient internetworking protocol

These recommendations led to initiating
a program to develop a suite of protocols

based on these findings. This paper
describes the current status of this

The U.S. civil and military space
programs are in a state of rapid and
turbulent change. Both share the
overarching need to more rapidly
integrate and deploy space assets, while
satisfying expanding mission
requirements in an era of extreme cost
constraints. Standardization and system
interoperability are widely agreed to be
the cornerstones towards achieving these
goals. Recognizing that both
communities share the same industrial
contractor base the joint development of
common standards and approaches may
be expected to reap large benefits in
terms of this nation's overall
effectiveness in space.

For many years, space agencies have
focused on solving the Physical (Layer
1) and Data Link (Layer 2) problems of
data transfer through special purpose
(noisy, bandwidth constrained, very long
time delay) space channels that connect
ground users with robotic or piloted
space vehicles.

As space missions become more highly
networked, requirements are emerging to
provide capabilities at the Network layer
(Layer 3) and above. Organizations such
as the Consultative Committee for Space
Data Systems (CCSDS) have begun to
address these new needs. At Layer 3,
CCSDS currently provides an "Internet

Service" which allows the option to run
the full stack of commercially-supported
HSOIOSH services (Transport, Session,
Presentation and Application) between
space and ground. The CCSDS Internet
service is the same as the IS0 8473
Connectionless Network Protocol
(CMLP). The Internet Service is paired
with a special purpose "Path service"
(using a low-overhead CCSDS Packet)
which functions as a connection oriented
network protocol.

There is mounting opinion that neither of
these upper layer options can meet all
future mission requirements. Concerns
have been voiced about the
communications overhead and onboard
processing resource implications of
operating the fu1.l ISOIOSI protocol stack
in space, particularly with respect to the
large amount of on-line protocol
associated with the IS0 CNLP, the time
delay sensitivity of the early
implementations of the IS0 Class 4
Transport protocol, and the
comprehensive but "heavyweight" nature
of the IS0 Layer 617 protocols. The
CCSDS Path Service is very limited in
terms of addressing capability, and
presently has no support of needed upper
layer functions such as flow control,
end-to-end ARQ, and file transfer.

The strong need to provide a more robust
and efficient set of end-to-end

unications protocols prompted the
initiation of the joint NASAlDoD Space
Communications Protocol Standards
Technical Working Group (SCPS-TWG)
to develop more flexible upper layer
protocol options for space missions.

The SCPS-WG effort detedned that
many space missions share a common
need for an efficient and reliable data
delivery service to transfer individual
messages, or files of messages, from
their source end system to their
destination end system error-free and
with their sequence preserved. Many
missions will also require that these
transfers be secure.

Such a service should be standardized,
easy to use and able to support a wide
range of mission configurations. The
protocols which implement the service
must conserve onboard resources such as
memory, processing power and
(especially) co unications capacity.
They must be capable of supporting
rapid, reliable on-line data exchange
during brief contact sessions through
unique space data channels with a wide
range of significant propagation delays.

The development of these standud
communication data protocols are being
performed by the SCPS-WG in three
phases: Exploratory Analysis (FY93),
Standards Development (FY94/95), and
Validation (FY95196). The Exploratory
Analysis Phase has been completed and
a report is available outlining the
analysis efforts and their conclusions.

The remainder of this paper discusses
the scope of the SCPS-TWG program, a
overview of the Exploratory Phase
activities and results, a review of efforts
to date on the Development Phase
activities and a summary.

SCPS-WG SCOPE

The primary focus of the SCPS-WG is
to examine standardization of the data
communications systems which support
on-line spacecraft control. It therefore
embraces the end-to-end aspects of the
control center processes which are
associated with commanding and
monitoring the spacecraft and its
payload, and returning mission results
via a flow of telemetry, during periods
when the end systems in space and on
the ground are connected and are
exchanging data.

Dialog between control centers and
remote spacecraft requires frequent (and
often two-way) interchange of &gital
command and response messages
through space data links. Such
interchange must routinely cope with a
data transmission environment that has
unique characteristics that are not

encountered in commercial data
networking.

The current efforts embrace data
communications functions at the
Network, Transport and File Transfer
(3,4,7) layers. Services of existing (and
usually different) underlying civil and
military physical and data links layers
were assumed.

EXPLORATORY PHASE

The SCPS-TWG Exploratory Phase was
performed during the period of October
1992 through December 1993 and
culminated in a report on activities and
recommendations for initiating the
development program. The purpose of
this phase was to assess whether there
was a common need for data
communications protocols between the
civil and military space communities,
and if there was, what were the common
functional requirements. Additionally
the Exploratory Phase was to assess the
feasibility of adapting existing data
communications protocols to meet these
common requirements and to define a
recommended program of development.

The SCPS-WG employed an approach
of simultaneous top-down and bottom-
up analysis. The top-down activity
involved a surveying representative, civil
and military missions to gather a broad
set of functional and performance
requirements, and to pinpoint technical
constraints intrinsic to space based
communications which must be factored
into the development of standards. The
captured requirements and constraints
were allocated to specific protocol layers
and fed into the bottom-up activity.

The bottom-up analysis activity involved
evaluating the capability of existing off-

the-shelf data communications protocols
to perform needed space mission
functions at each of the layers. As a
matter of policy, IS0 protocols were the
first choice for evaluation to maintain as
much conformance as possible with
GOSIP and to ensure a high degree of
interoperability with ground-based
systems. The selection of commercially
supported protocols allows the space
community to leverage the years of
effort that went into engineering their
development, and to avoid expensive
and duplicative re-invention of
capabilities.

The missions surveyed during the
Exploratory Phase were as follows:

DoD
- BMD/Brilliant Eyes
- Global Positioning System
- Defense Met Sat Program

NASA
- Space Station
- Earth Observing System (EOS)
- Solar Anomalous and Magneto-

sphere Particle Explorer (SAMPEX)
- Tropical Rainfall Measurement

Mission (TRMM)
- X-ray Timing Explorer (
- Advanced Composition Explorer

(ACE)
- Discovery Series

The mission survey documented specific
functional services by protocol layer
(based on the ISO/OSI layered model)
which were common between the civil
and military projects. These services
form the functional data c
requirements that are being supported in
the SCPS-TWG protocol stack
development, and are listed below in
Table 1.

Table 1: Functional Hiequirements for SCPS Protocols by ISOIOSP Layer

The bottom-up review of candidate off-
thedielf protocols evaluated potential
protocols by asking the following
questions:

Is the functionality provided by the
protocol necessary for space use, and
if not can the protocol be easily

c ted functionality
provide complete support for space
use (i.e., is the protocol sufficient in
its off-the-shelf state or are
additional capabilities required)?
Does the selected functionality
operate efficiently and within the
cons the space environment,
or ar ations needed?
Can the selected space functionality
be achieved with minor change (i.e.,
is the protocol still commercially
supportable after modification) or
does it have to be discarded?

If the initial IS0 protocol was not able to
meet the space application needs, then
other commercially available and
broadly implemented protocols were
assessed (such as those used within the

Internet community). Only once all
reasonable, off-the-shelf options were
discarded, was a solution unique to space
use considered. Results of this review
are as follows:

File Transfer - OSI FTAM was
determined to be too large and couldn't
be slimmed down through tailoring. The
Development Phase activity is doing a
detailed analysis comparing the Internet
MTP and Space Station File Transfer
protocols to determine which will form
the basis for the SCPS-mG fie trmsfer
protocol

Transport - Initially the OSI TP4
protocol was selected, but it too is larger
than its Internet counterpart and is
expensive to procure. Subsequently a
combination of the Internet UDP and
TCP protocols are being used to develop
the SCPS-TWG transport protocol.

Data Security - the SP3 protocol, based
on the OSI NLSP protocol, is being
adopted as one option to use with
existing or soon to be completed
systems. A skinny version of SP3

(called SP3-prime) is being developed to
reduce the bit overhead associated with
SP3 as an option for fume missions.

Network - No existing protocol provided
the functionality required with the
minimal bit overhead required to
optimize use of the spacelink resources.
Therefore a custom protocol with
elements derived from OSI 8473 and I.P
is being developed for space
applications.

The final suite of protocol services is
depicted in Figure 1. As illustrated the
SCPS protocol suite can be run over the
existing CCSDS protocols used by
NASA or the DoD SGLS protocols
which achieves the expected
interoperability.

DEVELOPMENT PHASE

The SCPS-'DVG Development Phase
was officially begun in January, 1994
and is planned to nm for 33 - 36 months.
The first 18 months of this phase are
focused on developing protocol

specifications for broad community
review (equivalent to CCSDS redbooks).
The remaining 15- 18 months involve
two or three rounds of distribution and
comment by the US space community
culminating in final protocol
specifications ready for NASA and DoD
adoption.

During the first 18 months the
development teams for each of the
protocol layers are working in
conjunction with a systems engineering
group to develop, analyze, and validate
the protocol specifications.

The basic approach to this phase is
illustrated in Figure 2. Each
development team will employ a three
pronged development effort consisting
of protocol specification development,
prototype development, and simulation
analysis. The purpose of this approach
is to ensure that the specifications
developed during this phase have been
properly assessed under the broad range
of mission architectures represented by
DoD and NASA missions.

Figure 1: SCPS-TWG Exploratory Phase Recommended Suite of Protocol Services

Figure 2: SCPS-TWG Protocol Development Approach

Most of the analysis will be performed
via simulation using the MIT NETSIM
modeling tool. Each of the protocols
will be modeled using NETSIM and then
assessed under at least five mission
architectures and various scenarios:

- Single earth orbiting satellite
communicating through relay
satellites

- Single earth orbiting satellite
communicating through ground
stations

- Single deep space satellite
communicating through ground
stations

- Multiple deep space satellites
communicating through relay
satellites

- Multiple earth orbiting satellites
communicating through ground
stations

Operational prototypes of the protocols
will initially be used to benchmark the
simulation models to ensure the models
accurately represent actual implement-
ations. Once analysis and design of the
protocols is complete, the prototypes
will be modified to represent the
recommended protocols defined 'in the
final specifications. they will then be
used in a series of proof-of-concept
demonstration tests. These demon-

strations are planned to include the use
of flight equivalent testbeds such as the
GSFC AOS Testbed, "bent-pipe" testing
using DoD and NASA on-orbit
platforms, and the hosting of the
protocols on a spacecraft which has
completed its mission phase and is
available for the evaluation of new
technology concepts.

The detailed schedule of activities which
lead to the first set of protocol
specifications available for broad
comrmunity review in Septemkr of 1995
is presented in figure 3. Note that at this
time not only will draft specifications be
available, but some level of functiondl
prototypes and a sophisticated
simulation capability will have also k n
developed.

In order to ensure cormmunay involve-
ment in the protocol development
efforts, the SCPS-WG holds quarterly
"Users Forums" identified in the
schedule as SCPS-WG -XX meetings.
These meetings are designed to provide
community insight into the protocol
development and analysis activities.
Participation from government, industry
and commercial space ventures is
welcomed.

2 SCPSTWGS
Kickoff, Stahls Review

4. Develop Protorol Spocs
I n f d specs (#I)

5. SCPSTWG9r

6. Slm. olProtoeols in Mission
Environment
Individual Rotocofs (#I)

8. Develop Protocol Specs
h f d Specs (a)

10. SCPSTWG 12
Infomld specs a Q

11. Slm. of Protoroh in Mlsslon
Environment
Indiv. RotocoIs (a) full Rot.

14. Verillcatlon in Flight
Environment
FuU Rotocol Stock

(P) =Partial Review (F) = Full Review *NOTE: ssft 1st edition spec Bt simulation reviews lag 1 TWG behind As of: 13 July 94

Figure 3: SCPS Working Group Schedule

To date initial draft specifications have FTP already completed. Additionally,
been completed and circulated for efforts to develop models of the three
review for the file transfer, transport and current protocols are also in
network layer protocols. These drafts development as is the simulation
are the first in a series of three SCPS- environment which will model the
TWG internal drafts which will be various mission architectures and data
developed prior to full community communications scenarios.
review in September of 1995. Work is
proceeding on developing initial
prototypes for these three layers with a
prototype file transfer protocol based on

SUMMARY

The S63PS-WG efforts has been highly
successful to date in identifying common
data communications requirements
across U.S. civil and military space
missions and defining a program that
consists primarily of adapting existing
communication protocols to meet the
rigors and unique characteristics of space

As one indicator of its success the
Defense Infomation Systems Agency
(DBSA) has designated the SCPS-WG
activity as its lead effort for developing
"thin stack" data communications
protocols applicable to a wide range of
applications, including airborne,
shipboard and in-field communications.

Another indicator is the recent interest in
SCPS efforts shown by the commercial
satellite venture called Teledesic, which
plans to deploy a constellation of 840+
satellites to create a full data
communications system equivalent to
ground based systems on-orbit.

At the last SCPS-TWG Users Forum,
held in June, 1994; DoD representatives
working on an existing experimental
communications satellite initiated
discussions on how to perform "bent-
pipe" testing of the SCPS protocol.

Recently, even representatives of the
British and French national space
complexes have begun discussions on
how to become participating members of
the SCPS-TWG User Forum.
Additionally, the SCPS-WG team has
been coordinating its activities with
CCSDS members to facilitate the
acceptance of the final protocol by that
international body which has shown
great interest also.

The importance of this work in NASA
can be illustrated by current efforts on
the GSFC Mission Operations Control
Architecture (MOCA) initiative which
has stated that in order to achieve
standardized and autonomous operations

of GSFC spacecraft communications
services of the type now being
developed by the SCPS-WG are
paramount. Interest from the NASA
missions surveyed in having these
protocols was universal.

Continued success of this program is
dependent on continued interaction and
review by the space community at large.
These inputs can have their most
positive influence during the cumnt
initial 18 month activities of the SCPS
Development Phase while preliminary
design and analysis are being perlfomd.
Critical insights and lessons learned need
to be provided by government and
industry representatives who have years
of space mission experience to share.

THE ESA STANDARD FOR
TELEMETRY & TELECOMMAND

PACKET UTlLlSATlON
P.U.S.

J.-F. Kaufeler ESAIESOC, D-64293 Darmstadt, Germany

ABSTRACT

ESA has developed standards for packet
telemetry (Ref.2) and telecommand (Ref.3),
which are derived from the recommendations
of the Inter-Agency Consultative Committee for
Space Data Systems (CCSDS). These
standards are now mandatory for future ESA
programmes as well as for many programmes
currently under development. However, whilst
these packet standards address the end-to-end
transfer of telemetry and telecommand data
between applications on the ground and
Application Processes on- board, they leave
open the internal structure or content of the
packets.

This paper presents the ESA Packet
Utilisation Standard (PUS) (Ref. I) which
addresses this very subject and, as such,
serves to extend and complement the ESA
packet standards. The goal of the PUS is to
be applicable to future ESA missions in all
application areas (Telecommunications,
Science, Earth Resources, microgravity etc.).
The production of the PUS falls under the
responsibility of the ESA Committee for
Operations and EGSE Standards (COES).

Keywords: Packet Utilisation, Packet
Structure, COES.

1. INTRODUCTION

basic instructions for loading on-board
registers or for enablingldisabling switches.

Moreover, the associated - space-ground
communications techniques guaranteed
neither a reliable nor a complete transmission
of telemetry and telecommand data.

Through the 1980s, there was a progressive
increase in the use of on-board software to
implement functions which should logically be
performed on-board the satellite rather than on
the ground e.g. control loops with short
response times, data compression prior to
downlink etc. However, this software had to
be remotely monitored and controlled using
the traditional hardware-oriented techniques.

This imposed significant constraints on the on-
board software implementation, limiting its
flexibility and consequently hampering the
trend towards more on-board intelligence and
autonomy.

In order to overcome these problems, the
CCSDS recommended the use of telemetry
and telecommand packets (Refs. 4 & 5) which
provide a high quality space-ground
communication technique enabling a flexible
exchange of data between an on-board
Application Process and a ground system.
An Application Process is a logical on-board
entity capable of generating telemetry packets
and receiving telecommand packets for the
purposes of monitoring and control. It is

In the past, the monitoring and control of uniquely identified by an Application ID, which
satellites was largely achieved at the is used to establish an end-to-end connection
"hardware" level. Telemetry parameters between the Application Process and the
consisted of digitised read-outs of analogue Ground. Many different mappings can be
channels and status information sampled from envisaged between Application Processes and
registers or relays. These parameters were on-board hardware. At one extreme, each
sampled according to a regular pattern and platform subsystem or payload (or part of
appeared at fixed positions in a telemetry thereof) could contain its own Application
format. Process. In a more modest design, a single

Application Process, say within ihe OBDH,
Similarly, control was performed using fixed- could serve many, or even all the on-board
length telecommand frames which contained subsystems and payloads.

The door was now open to implement a
"message-type" interface between ground and
space-based applications and thus to move
towards the realisation of "process control"
techniques.

In 1987 ESA set up the Committee for
Operation and EGSE Standards (COES). The
primary objective of this group was to define
those functions which are common between a
satellite checkout system (EGSE) and a
satellite control system. Even though these
systems are used for different objectives and
in different project phases, the logical interface
to the satellite is identical and many of the
functions are similar. Therefore, a common
system could be used for the pre-launch
checkout and post-launch mission operations
both within a given project and also across
different projects (see Fig.1).

CONTROL \ I CENTRE I

Fig.1 Check-out I Operations Commonality

COES decided to define such a common
system for missions using the newly defined
ESA Telemetry and Telecommand packets.
However, the flexibility introduced by the use
of packets leads to the possibility of
implementing a given control function in many
different ways. It soon became clear to COES
that its task was only feasible if a clear
satellite-ground interface existed, based on the
use of packets.

Consequently, the first task of the COES was
to produce a standard which defined precisely
how telemetry and telecommand packets
should be used.

The term "Utilisation" is used in the title of the
standard, since the intention is that the PUS
should address all aspects relating to the use
of packets i.e. the circumstances under which
they are generated and the rules for their
exchange, as well as their structure, format
and content.

The PUS can therefore be seen as an
interface document defining the relationship
between space and ground.

The PUS contains the following elements:

C3 operational requirements relating to
satellite monitoring and control
functions and to testability;

* standards for the secondary data
header of telemetry and telecommand
packets;

C3 the definition of a set of PUS Services
which respond to the operational
requirements. A Service specification
includes the corresponding on-board
Service model and a full definition of
all the Service Data Units (SDUs)
supported by the Service i.e. the
telemetry and telecommand packets;

C3 standards for the data structures and
parameter encoding types allowable
within packets.

The Operational Requirements cover all
aspects of Nominal and Contingency
Operations for the full spectrum of mission
types and classes. They include generic
requirements for:

the different classes of telemetry data
to be transmitted to the ground and
the circumstances under which the
data shall be generated; * the provision of different levels of
telecommand access to the satellite to
ensure the maximum degree of
controllability; * telecommand verification; * the control of on-board software;

2. SCOPE OF THE PUS * the loading and dumping of on-board

memories.

In addition, requirements are identified for a
number of "advanced" on-board
functionalities, which may only be required for
particular classes of mission:

on-board scheduling of commands for
later automatic release;

on-board parameter monitoring;

on-board storage and retrieval of data;

@ transfer of large data units (e.g. files)
between space and ground and vice-
versa.

The requirements for Contingency operations
cover the setting up of a "diagnostic" mode,
wherein the ground can oversample selected
telemetry parameters for ground evaluation
purposes. Also, it should be possible to by-
pass on-board functions by ground command
and to operate a function in an off-line mode in
order to isolate hardware faults.

The Packet Data Field Header (PDFH) is left
undefined within the ESA packet standards.
However, the PUS identifies a fixed structure
for this header for both telemetry
telecommand packets, which is shown in
Figure 2 below

of the data field header and possibly of other
aspects defined by the PUS. For example, a
new version could be defined for packets
containing multiple Service Data Units, as
proposed by NASAIJPL for deepspace
missions.

The two most important fields in the PDFH
identify the Service Type and the Service
Subtype to which the packet relates. The
specification of the "standard" Services
provided by the PUS constitutes the bulk of
the standard and these Services are covered
in more detail in the next section.

In principle, 256 Services and, for each
Service, 256 Service Subtypes can be
defined. The range from 0 to 127 is reserved
for the PUS, in both cases, whilst the range
from 128 to 255 is denoted as "mission-
specific". The PUS thus has considerable
growth capability for the later introduction of
new Services or new Service Subtypes within
an existing Service.

Telecornrnand Packet Data Header

IC Mission
Telemetry Packet Data Header optionat*

Version
Number

3 bits

Fig. 2 : Packet Data Field Headers

The PDFH for telemetry and telecommand
packets is identical, with the exception that'a
telemetry packet may (optionally) contain a
time field for datation purposes.

Checksum
Type

1 bit

The version number allows for future versions

3. PUS SERVICES

Spare

4 bits

At present, 17 PUS Services have . been
defined and these are listed in Table 1 below.

Sawice
Type

8 bits

S B ~ i c e
Sub-type

8 bits Variable

Telecommand Verification Service

Whilst none of the PUS Services is
mandatory, it is expected that all Application
Processes would implement this particular
Service. Depending on the operational
requirements and the on-board capabilities,
commands can be verified at all stages:
acceptance, start of execution, intermediate
stages of execution and completion of
execution. The selection of verification stages
and whether positive as well as negative
acknowledgement packets shall be generated
can be done at the level of each individual
command which is uplinked.

Device Command Distribution Service

There are 3 sub-services for the distribution of
hardware-level commands:

@ distribution at Telecommand Segment
level; these commands require no
software for their execution and
would be used e.g. for unblocking or
resetting the on-board Packet
Assembly Controller (PAC);

@ distribution by the CPDU (Command
Pulse Distribution Unit) within the
decoder. These are high priority
onloff commands which are
distributed directly (hardwired) to on-
board devices;

@ distribution by other Application
Processes to devices, for example
over an internal bus. Such
commands may be used for normal
operations or in a contingency
situation e.g. where the normal higher-
level control of the device is not to be,
or cannot be, used.

Housekeepina and Diaqnostic Data
Reportina Service

The housekeeping sub-service covers the
reporting of engineering data to the ground for
monitoring and evaluation purposes. In order
to adapt to changing operational conditions,
the capability exists to define new
housekeeping packets (or to re-define the
contents of existing packets). Also, instead of
systematically transmitting the housekeeping

data to the ground, an optional "event-driven"
mode is available. Event-driven means that
the housekeeping packet is only generated if
the value of a parameter within it varies by
more than a prescribed threshold.

The diagnostic sub-service is used to support
ground-based troubleshooting, where high
sampling rates may be required for selected
parameters

Statistical Data Reportina Service

In addition to the direct reporting of
engineering data to the ground, summary
statistical data may also be provided,
consisting of the reporting of maximum,
minimum and mean values of specified
parameters over a time interval.

Event Reportina Service

This Service covers reports of varying severity
from "normal" reports (e.g. progress of
operations) to the reporting of serious on-
board anomalies. This provides the
mechanism for on-board functions to report to
the ground autonomous actions they have
taken or events they have detected.

Memorv Manaaement Service

This covers all aspects of loading and
dumping of on-board memory blocks, as well
as performing checksums on specified
memory areas on ground request.

Task Manaaement Service

This Service allows the ground to exercise
control (e.g. start, stop, suspend etc.) over on-
board software tasks managed by an
Application Process. For many missions, this
level of control may only be exercised in
contingencies.

Function Manaqement Service

This Service provides the "normal"
mechanism for control of the functions
executed by an Application Process (e.g.
activate, deactivate, pass parameters etc.)

Time Manaaement Service

This service permits control over the on-board

generation rate of the Time Packet. In the
future, this may be extended to cover the use
of GPS.

Time Packet Service

This service is constituted solely of the Time
Packet which is defined at the higher level of
the ESA Packet Telemetry Standard (Ref.2).

On-Board Schedulina Service

For many missions, it will be necessaly to load
telecommands from the ground in advance of
execution, for release on-board at a later time.
For example, LEO missions, where operations
must be conducted whilst outside of the limited
ground passes.

This Service provides the capability for
loading, deleting, reporting and controlling the
release-status of telecommands in an On-
board Schedule. Telecommands may also be
time-shifted, without the necessity of deleting
and re-loading them with new times.

A telecommand may also be "interlocked" to
another telecommand, released earlier in time
from the Schedule. That is to say, the release
of the telecommand will be dependent on the
success (or, alternatively, the failure) of the
earlier command.

On-Board Monitorina Service

This Service provides some of the basic
telemetry monitoring functions which are
normally implemented on the ground i.e.
mode-dependent limit, trend and fixed-status
checking. Out-of-limit conditions are
automatically reported to the ground.

Larqe Data Transfer Service

For many mission, it is anticipated that the
largest desirable packet size may be much
bigger than the maximum allowed by the ESA
standards. This Service provides for the
reliable transfer of a large Service Data Unit of
any Type (e.g. a file. a large memory load
block or a large report) by means of a
sequence of smaller packets. The Service
may be invoked either for the uplink or the
downlink of a large Service Data Unit.

Packet Transmission Control Service

This Service permits the enabling and
disabling of the transmission of packets (of
specified TypelSub-type) from an Application
Process.

On-Board Storaae and Retrieval Service

This Service allows for the selective storage of
packets for downlink at a later time under
ground control.

In principle, a number of independent stores
may exist, which may be used for different
operational purposes. For example, for
missions with intermittent ground coverage.
packets of high operational significance (e.g.
anomaly packets) could be stored in a
dedicated packet store so that they may be
retrieved first during the next period of
coverage.

A "lost packet recovery" capability may also be
achieved by systematically storing all event-
driven packets on-board.

On-Board Traffic Manaqement Service .

This Service provides the capability to monitor
the on-board packet bus (e.g. its load, the
number of re-transmissions etc.) and to
exercise ground control over on-board traffic
and/or routing parameters or problems.

Test Service

This Service provides the capability to activate
test functions on-board and to report the
results of such tests in the telemetry. A
standard Link Test ("Are you alive?") Sub-
service is provided.

4. MISSION-TAILORING

An important aspect for the wider acceptance
of the PUS is that it should be easily to tailor it
to the specific requirements of a given
mission.

This consideration has been at the forefront
whilst developing the standard and is achieved
by the following measures:

@ a mission may choose to implement
only that sub-set of the PUS Services
(and/or Sub-services) which it deems

appropriate to its requirements;

L3 the structures defined for the Service
Data Units (the telecommand and
telemetry packets) identify "mission-
optional" fields. These correspond to
the "optional" capabilities within a
Service (the so-called Capability
Sets). If a capability set is not
implemented for a particular Service,
then the corresponding mission-
optional fields may be omitted;

@ for the data type of each field of the
Service Data Units, the PUS only
specifies the encoding type (e.g. real
or integer) with the encoding length
being specified at mission-level;

Thus, a mission may remain fully compliant
with the PUS whilst incurring no detrimental
impact on its packet overhead as a
consequence.

level during the course of 1993, the PUS in its
present version was approved by the ESA
Inspector General and thus is now an Agency
standard.

The PUS is expected to evolve in the future, in
an incremental manner, as new monitoring
and control Services become sufficiently
mature to be generalised and thus
standardised.

ESOC is currently undertaking a major
mission control Infrastructure development,
the so-called SCOS-II, which is a distributed
system based on SUN workstations. SCOS-II
will provide full application-level support to
missions conforming with the PUS.

COES is also specifying the functional
requirements for a generic system to be used
for checkout and operation across different
projects.

7. REFERENCES

5. VALIDATION 1.

Prior to approval of the PUS, and before
implementing supporting infrastructures, it was 2.
necessary to ensure the correctness,
practicability and operational usefulness of the
standard. This was achieved by means of a 3.
prototyping exercise completed in 1992, which
both validated the standard and, at the same
time, provided some indicators for possible 4.
implementation techniques.

The packet communication techniques were
not addressed in this prototype since these
have already been independently
demonstrated. Instead, the prototype
concentrated on the end-to-end application-
level aspects, emulating the on-board
behaviour in response to the Ground control
system.

This prototype (called PUSV) runs on one or
two SPARC workstations and at the same time
allows modelling of different on-board
Application architectures. A reference satellite
model (called PUSSAT) was implemented for
validation and demonstration purposes.

Packet Utilisation Standard (PUS),
ESA PSS-07-101 lssue 1, May 1994.

Packet Telemetry standard, ESA
PSS-04-106, lssue 1, January 1988.

Packet Telecommand Standard, ESA
PSS-04-107, lssue 2, April 1992.

(CCSDS) Packet Telemetry, 102.0-
8.2, Blue Book, January 1987.

5. (CCSDS) Telecommand: Part 3, Data
Routing Service, 203.0-8.1, Blue
Book, January 1987.

6. (ESA) EGSE & Mission Control
System EM^ Functional
Requirements Specification, -ESA
PSS-07-401, lssue 1, Draft 8
November 1992.

6. FUTURE PERSPECTIVE

Following an exhaustive review at Agency

35Y2.97
PACKET UTlLlSATlON DEFINIT~OI~S FOR THE ESA XMM MISSION

Mr. H. R. Nye
European Space Operations Centre,

Robert-Bosch-Str. 5, 64293 Darmstadt, Germany

ABSTRACT INTRODUCTION

XMM, ESA's X-Ray Multi-Mirror
satellite, due for launch at the end of
1999 will be the first ESA scientific
spacecraft to implement the ESA
packet telecommand and telemetry
standards and will be the first ESOC-
controlled science mission to take
advantage of the new flight control
system infrastructure development
(based on object-oriented design and
distributed-system architecture) due
for deployment in 1995.

The implementation of the packet
standards is well defined at packet
transport level. However, the standard
relevant to the application level (the
ESA Packet Utilisation Standard)
covers a wide range of on-board
"services" applicable in varying
degrees to the needs of XMM. In
defining which parts of the ESA PUS
to implement, the XMM project first
considered the mission objectives and
the derived operations concept and
went on to identify a minimum set of
packet definitions compatible with
these aspects.

This paper sets the scene as above
and then describes the services
needed f o r X M M and the
telecommand and telemetry packet
types necessary to support each
service.

The introduction of packet TM and TC
standards (Refs 1 and 2) has lead to a
high degree of transparency in the
operational interfaces between
satellite on-board systems and the
related ground systems, offering
designers the potential for liberal
definition of the data to be
transported within TM and TC
packets. The complexity of the
on-board and ground systems can be
greatly influenced by the

o the type of interaction (or
service) and

o the structure and content of
the packets used in this
interaction

Only by careful definition of the
packet structures and content can it
be ensured that the satellite is
provided with the information it needs
(within command packets) for its
operations functions and that the
ground is provided with the
information it needs (within telemetry
packets) for execution of its
operational tasks. This becomes even
more significant now that satellite
systems are increasingly implemented
using on-board software.

In preparing for the XMM satellite
development programme, it was

necessary to define the on-board
services that will be needed to allow
the XMM Flight Control System to
undertake all mission operations. The
services needed are driven by the
mission objectives and the associated
concept for conduct of the operations
needed to satisfy these objectives.

The ESA Packet Utilisation Standard
(ESA PUS) (Ref 3) was the reference
standard for this the application-level
interface and defines a wide range of
services considered necessary for all
future (unmanned) missions. The
process of selecting services from the
PUS and tailoring the packet related
packet structures to suit the particular
needs of any particular mission is
referred to as " missionisation".

XMM OPERATIONS CONCEPT

The X-ray Multi-Mirror satellite (XMM)
is an observatory- in the soft X-ray
region of the electromagnetic
spectrum and is due for launch on
Ariane 5 late in 1999. By virtue of the
large collecting area of its telescope
and the highly eccentric orbit, XMM
will be able to perform long
observations (upto 16 hours above
40,000 Km) of X-ray sources with an
unprecedented sensitivity.

The satellite and its X-ray instruments
will be controlled in real time from the
European Space Operations Centre in
Darmstadt, Germany, and employing
a single ground station, will benefit
from upto 22 hours of telemetry and
telecommand contact every day, All
science and housekeeping data will be

transmitted in real time to the control
centre for immediate processing (no
bulk storage on board). In view of the
on-line nature of satellite operations
and the nearly continuous visibility
from the ground and the desire to
minimise on-board complexity, it was
appropriate to identify straightforward
almost "classical" ways for ground
on-line control of the satellite while
making use of the advantages offered
by packets. The concept for safety
management during planned (and
unplanned) non-contact periods was
defined to involve the use of delayed
execution (time tagged) commands, a
low degree of on-board monitoring
and provision of a history of on-board
events. Further, it was necessary to
provide for operations maintenance in
the form of telemetry management
and definition and interaction with on
board software.

XMM FLIGHT CONTROL SYSTEMS

A further constraint on definition of
the groundlsatellite interactions and
hence the TMITC services needed,
relates to the Flight Control Systems
infrastructure foreseen for XMM.
Flight Control Systems for past
missions (not utilising packets)
involved handling of the individual
characteristics of the TMITC schemes
by mission-specific software modules
interacting with kernel systems
offering basic functions only. These
additional modules were needed to
convert the peculiarities of the
satellite data structures into a form
processable within the kernel systems

and understandable to the Flight
Operations Teams.

Recent advances in ground system
technology (for example in the use of
distributed workstation-based control
systems and object-oriented
techniques) now al low the
development of multi-mission control
systems offering a palette of services
to potential users (missions). By
defining data structure standards
across the board, commonality
between missions can be increased
leading to a corresponding reduction
in the need for mission-specific
elements. This is the ultimate goal of
the ESA PUS, a document now
entering the approval stage.

The PUS defines the various
operational requirements for on board
functions and services and goes on to
describe the TMITC packet types and
structures needed to support these
services. The PUS then defines the
format and content of the (variable)
"Packet Data Field" being the user-
defined part of the packet and
including the "Source Data" for
telemetry (Figure 1) and the
"Application Data" for commands
(Figure 3). The PUS further prescribes
how the "Data Field Header", within
the Packet Data Field is to be used
(Figures 2 and 4) : two fixed fields in
this header are reserved for
identification of the Packet Type and
Packet Subtype. In this way, every
packet in the ground or on-board
systems is clearly identifiable in terms
of its function and the processing
needed.

XMM however, with its classical
operations concept did not need to
take advantage of the wide range of
services available within the PUS :
using the PUS as a starting point, the
XMM project selected those services
and related data structures of use in
suppor t ing t he opera t iona l
requirements (as documented in Ref
4) for all foreseen XMM mission
scenarios .

XMM SERVICES

The services defined for XMM mission
operations can be considered to fall
into three major categories as follows
(as documented in Ref 5):

1) ON-LINE CONTROL

Periodic Housekee~ina Telemetrv (TM
T v ~ e 1) is required to permit. the
ground to derive and monitor the
status, health and performance of the
satellite systems and instruments.

Device Commands (TC T v ~ e 2) are
required to configure the on board
hardware using two subtypes :
- Pulse commands (Subtype 1)
- Register load commands

(Subtype 2).

Telecommand Verification Service
jTM T V D ~ 31 is required to allow the
ground to positively verify all uplinked
commands. Dedicated packets are
required for each uplinked command
indicating
- Successfu l Accep tance

(Subtype 1)

- Unsuccessful Acceptance
(Subtype 2)

- Successful Execution (Subtype
3

- Unsuccessfu l Execut ion
(Subtype 4)

Non-Periodic Telemetrv (TM T v ~ e 4)
is required to convey information
related to non-periodic events (not
contained in the periodic telemetry) to
the ground. The service must provide
for
- Event Reports (Subtype 1) for

even ts o f operat iona l
significance

- Exception Reports (Subtype 2)
for notification of non-fatal
errors

- Major Anomaly Reports

(Subtype 3) for notification of
major on-board anomalies

Task Manaaement Service (TC T v ~ e
3 is required to control and interact
with on-board software tasks. The
service must provide for
- Start task (Subtype 1)
- Stop task (Subtype 2)
- L o a d t a s k f u n c t i o n a l

parameters (Subtype 3)
- Mode Transition (Subtype 4)

Science Telemetrv (TM T v ~ e 15) is
required to transport data from the
XMM science instruments to the
ground.

2) SAFETY MANAGEMENT

Time Taa Commands (TC and TM
Tvpe 7) are required to effect
operations requiring well-defined
execution times or which need to be

executed in periods of non coverage
or to ensure that the satellite is
returned to its nominal state after any
critical operation. The service must
provide for
- Load a command into the

time-tag buffer (Subtype 1)
- Report a summary of the

contents of the time-tag buffer
(Subtype 2)

- Report all commands in the
time-tag buffer- in detail
(Subtype 3)

- Report a selected command in
the time-tag buffer in detail
(Subtype 4)

- Delete a selected command
from-the buffer (Subtype 5)

- Delete all commands in the
time-tag buffer (Subtype 6)

On-Board Monitorina Service (TC and
TM T v ~ e 8) is required to monitor a
maximum of 30 parameters during
periods when the ground does not
have visibility of the spacecraft and to
retain the results. The service must
provide for
- Enable and refresh monitoring

(Subtype 1)
- Disable monitoring (Subtype 2)
- Add to monitoring list (Subtype

3
- Delete monitoring list (Subtype

4)
- Report the monitoring list

contents (Subtype 5)
- Report the resul ts o f

limitlstatus checks (Subtype 6)
- Report the minimum and

maximum values over the
period enabled (Subtype 7)

Non-Periodic Packet Storaae Service
(TC T v ~ e 11) is required to store all
non-periodic packets (TC verifications
reports, event reports, exception
reports and major anomaly reports) in
a cyclic buffer to permit the ground
access to non-periodic packets
generated at times when the ground
has no contact with the satellite
(planned and unplanned). The service
must provide for
- Report stored packets (Subtype

1)
- Enable and refresh packet

storage (Subtype 2)
- Disable packet storage

(Subtype 3)

3) OPERATIONS MAINTENANCE

Memorv Maintenance Service (TC and
TM T v ~ e 6) is required to allow the
ground to maintain the on-board
software as needed to compensate
for hardware failures, to resolve
software non-compliance with design
requirements, to account for new
requirements or to enhance system
performance. The service must
provide for
- Load memory (Subtype 1)
- Dump memory (Subtype 2)
- Calculate Memory Checksum

(Subtype 3)

Telemetrv Manaaement Service (TC
and TM T v ~ e 9) is required to manage
generation of telemetry packets by
any particular application (on board
subsystem or instrument). The service
must provide for
- Report packet generation status

(Subtype 1)

- Enable generation of all TM
packets (Subtype 2)

- Disable generation of all TM
packets (Subtype 3)

- Enable generation of specific
TM packets (Subtype 4)

- Disable generation of specific
TM packets (Subtype 5)

Telemetrv Definition Service (TC and
TM T v ~ e 10) is required to allow the
ground to define new housekeeping
packets (for the satellite systems
only) if necessary for troubleshooting
or anomaly rectification. The service
must provide for
- Report new housekeeping

packet definitions (Subtype 1)
- Define new housekeeping

packet (Subtype 2)
- Delete new housekeeping

packet definition (Subtype 3)

Test Commands (TC T v ~ e 13). are
required to confirm that the on-board
link to any application is alive.

DATA STRUCTURES

The definition of packet types is only
completed when the data structures
needed for each of the identified
packets types and subtypes are
expanded down to field level as is
foreseen in the PUS. The purpose of
each field, its length and its format
must finally be agreed between
satellite system and ground system
developers. This final stage in the
missionisation process for XMM has
been initiated and is also documented
in Ref 5.

CONCLUSION REFERENCES

This paper has summarised the way in
which the XMM project has gone
about selecting the on board services
needed to fulfil the objectives of the
mission and has outlined the data
types defined in support of those
services. One can draw three distinct
conclusions from this process :

o Data required for the execution
of satellite mission operations
must comply with certain
standards i f it is to ensure that
such operations are conducted
in a safe and reliable manner.

o The structures defined for the
transport of the data must
follow established guidelines if
the full advantages of the
p a c k e t t e l e m e t r y a n d
telecommand standards are to
be realised.

o Compliance with the derived
packet structure requirements
must be established across the
whole satellite at system level
i f the benefits in common data
structure definitions are to be
f e l t i n ground system
development.

1 ESA Packet Telemetry Standard
(PSS-04- 106, lssue 1, January
1988)

2 ESA Packet Telecommand
Standard (PSS-04- 1 07, lssue
2, April 1992)

3 ESA Packet Utilisation Standard
(PSS-07-101 , n o t y e t
approved)

4 XMM Operations Interface
Requirements Document (XMM
Ref : RS-PX-0028, lssue 2a,
March 1994)

5 X M M Packet S t ruc ture
Definition (XMM Ref : RS-PX-
0032, lssue 2, 29 June 1994)

KEYWORDS

Packet Utilisation, Packet Structures,
Missionisation, TM Packets, TC
Packets, XMM

ACKNOWLEDGEMENTS

The author wishes to acknowledge
the efforts made in the establishment
of the XMM OlRD and the XMM PSD
by members of the XMM Project at
ESTEC and of the XMM team in
ESOC.

Figure 1. Telemetry Source Packet Fields (from Ref 1)

I I
I Optional I
I I

SOURCE PACKET HEADER (48 bits)

Figure 2. Telemetry Packet : Data Field Header (from Ref 5)

PACKET DATA FIELD
(VARIABLE)

DATA
FIELD

HEADER

Variable

PACKET ID

Version
Number

3

PACKET
LENGTH

16

SOURCE
DATA

Variable

PACKET
SEQUENCE
CONTROL

PACKET
ERROR

CONTROL
(Optional)

Variable 16

Type

1

Segment-
ation
Flags

2

Source
Sequence

Count

14

Data
Fie'd

Header
Flag

1

16

Application
Process

ID

11

Figure 3. Telecommand Packet Fields (From Ref 2)

Figure 4. Telecommand Packet : Data Field Header (from Ref 5)

PACKET HEADER (48 bits)
PACKET DATA FIELD

(VARIABLE)

PACKET
LENGTH

16

PACKET
ERROR

CONTROL
(Optional)

16

DATA
FIELD

HEADER

24

PACKET ID
APPLIC-
ATION
DATA

Variable

PACKET
SEQUENCE
CONTROL

Sequence
Flags

2

Application
Process

ID

1 1

Version
Number

3

Sequence
Count

14

16 16

Type

1

Data

Header
Flag

1

Use of Data Description Languages in the Intenhange of Data

Authors: M.Pign&de, B.Rea1-Planells; European Space Operations Centre (ESOC),
Robert Bosch Strasse 5, 64293 Darmstadt, Germany; Tel: +49 6151 902216

- S.R.Smith; Logica UK Ltd,
75 Hampstead Road, London NW1 2NT, England; Tel: +44 71 637 91 11

ABSTRACT

The Consultative Committee for Space Data Systems (CCSDS) is developing Standards for the interchange of information between systems,
including those operating under different environments. The objective is to perform the interchange automatically, i.e. in a computer
interpretable manner. One aspect of the concept developed by CCSDS is the use of a separate data description tospecify the data being
transferred. Using the description, data can then be automatically parsed by the receiving computer. With a suitably expressive Data
Description Language (DDL), data formats of arbitrary complexity can be handled.

The advantages of this approach are that (a) the description need only be written and distributed once to all users (b) new software does
not need to be written for each new format, provided generic tools are available to support writing and interpretation of descriptions and
the associated data instances. Consequently the effort of "hard coding" each new format is avoided and problems of integrating multiple
implementations of a given format by different users are avoided. The approach is applicable in any context where computer parsable
description of data could enhance efficiency (e.g. within a spacecraft control system, a data delivery system or an archive).

The CCSDS have identified several candidate DDLs: EAST (Extended Ada Subset), TSDN (Transfer Syntax Data Notation) and MADEL
(Modified ASN.1 as a Data Description Language -- a DDL based on the Abstract Syntax Notation One - ASN.l - specified in the ISOIIEC
8824).

This paper concentrates on ESA1s development of MADEL. ESA have also developed a "proof of concept" prototype of the required
support tools, implemented on a PC under MS-DOS, which has successfully demonstrated the feasibility of the approach, including the
capability within an application of retrieving and displaying particular data elements, given its MADEL description (i.e. a data description
written in MADEL).

This paper outlines the work done to date and assesses the applicability of this modified ASN.l as a DDL. The feasibility of the approach
is illustrated with several examples.

Kevwords: Heterogeneous Envimnments, Automated Interchange, Data Description, Modified ASN.1, Demonsbated
Feasibility

The Problems of Interchanging Data

The problems of data interchange are primarily those associated with providing the destination (potentially a
different computer environment) with all the information it needs to be able to interpret the received data. At
present, a typical data interchange system is dedicated to a particular flight mission or project. Data is acquired,
processed, shared to some level with other members of the investigating team and eventually archived. Further,
documentation of the data and its format may not be complete and up-to-date. This practice results in the need
for a different interchange data system for each mission and makes the reuse of data and software at some future
period difficult. .

Overview of the CCSDS Approach

The CCSDS approach is to provide standardised techniques for the automated interpreting of data products in a
heterogeneous computer environment. It puts no constraint on the format of the user data and can thus
accommodate formats developed by other organisations or user communities. It offers a data labelling scheme

which permits associating a data instance and its (in principle separate) complete and unambiguous description.
Further, it allows the development of generic software to support the retrieval, access, parsing and presentation
of data to satisfy particular application and user needs. Three major stages are identified in the data interchange
process and are explained in this paper.

The Data Interchange Requirements

To achieve the stated aims, the fundamental requirement that has to be fulfilled is the unambiguous description
of data that has to be interchanged between users separated by both time and space. When received, data have
to be understood fully. This means that the receiver has to not only be able to read the data from the transfer
media and understand the basic physical elements of the data (e.g. an integer), but also the receiver must be able
to understand the real world meaning of the data. For example, there is no point in the receiver knowing that the
loth and 1 lth bytes of the received data are an integer of value 145, if he also does not know that this conveys
the temperature of a spacecraft instrument in degrees Kelvin.

Further, it is desirable that data products be automatically transferable without requiring any conversion of their
contents. It is also desirable that transfers would be possible regardless of the source or destination computer
types. In other words,

e the data must remain in its original form, i.e. does not need to be converted in order to be interpreted at
the destination;

a the destination needs to know nothing about the source, regardless of how different the computer systems
may be.

Thus, the approach presented in this paper is to use a data description processable on any computer which will
allow the transmission of data in its native form, i.e. no data encoding will be required.

The Three Stages of the Data Interchange Model

In an attempt to establish a logical model of the whole data description process, an initial assumption was made,
that is that the description of data can be cleanly split between the physical description (called the syntax
description) and the meaning of those physical elements (called the semantic description). In fact, as the problem
domain was studied further, it was realised that the description should be split into 3 parts, the same physical
description as originally perceived, but the meaning component was really 2 separate components: the meaning
of the physical elements being exchanged and furthermore the methods of combining the physical elements or
relationships between these elements. Indeed, a generator of data products not only wishes to convey the physical
data and its meaning, but also how they are intended to be interpreted taking into account their context. Figure
1 shows the model defined by the CCSDS to represent the following stages of data description:

Stage 1: Data is initially perceived as a group of bits accessible from a physical medium and is read in
combination with its syntax description. This tells the user the physical layout of the data on the medium, which
bits are grouped with each other and how they should be read by common computer hardware (e.g. as integers,
reals, bit masks, etc). The syntax description must include all the physical bits, all the bits and groupings must
be named in some way. At this stage it is possible to manipulate the basic values, for example converting to
another physical representation, e.g. from VAX reals to IBM reals.

Stage 2: The next stage is when the physical data is read' in conjunction with its semantic description: this
only describes those parts of the data that the user is interested in fully understanding, i.e. the basic semantic

lasrend
advanced semantic

e process * jnterface

physical element, (rSbl possibly complex

semantic mask

Figure 1: Data Interchange Logical Model

description could be perceived as a filter that covers the physical layout of the data and only allows those elements
that are of interest to be seen. In this stage, the relevant information is typically: meaning, units, aliases, scaling
factor. The elements which are not called out in the basic semantic description are still physically present, but
not of interest to the user. Different users may use different semantic descriptions which will act as different
masks over the same physical data and therefore perceive the data product in a different manner. Interfacing to
the data at this level is the most common method within present day data processing systems.

Stage 3: The final stage in the understanding of the data is to add advanced semantics: these do not define the
static meaning of each piece of data, but the way different pieces of data are related to each other. This may be
specified in a natural language or as a mathematical algorithm or as a process defined in a programmable computer
language. The elements thus created are called conceptual elements, as they never actually physically exist: they
are pieces of information that are carried within an application domain. If they were ever written as a piece of
physical data to a physical media, then this whole process would start from the beginning, i.e. with applying their
syntax description. Figure 1 shows a 0 at the point where the advanced semantics are applied, this is to indicate
that some form of processing takes place. For example, the data may contain two integers, named mass and
volume and for these named physical elements the advanced semantic description may also have a definition of
density, as being a relationship between the two physical elements mass and volume.

Applicability of MADEL as a DDL

As the model shows, a mechanism must exist at each stage in order to link the data perceived so far to the syntax
or semantic information being added. This paper focuses on stage 1: MADEL has been developed to perform
the syntactic description of the physical data. Regarding stage 2, it is noted that CCSDS has developed a DDL

called PVL (Parameter Value Language) suited to handle the basic semantic description (see Reference-2).
Regarding stage 3, processing is in practice very much application specific. Stages 2 and 3 are not covered further
in this paper.

The reasons for selecting ASN.l (see Reference-1) as a starting point of the MADEL development are that ASN. 1
is an International Standard, is familiar to the CCSDS community and intuitive to understand, even by the non
expert users. It must be noted at this point that ASN.l is used as a separate DDL for describing data formats and
not as it was originally designed that is, embedding within the data to be transferred auxiliary information ("ASN.1
encoding"). Hence, in the process of deriving MADEL, limitations were made as were some extensions added
in order to fulfil the requirements as stated earlier. The most significant modifications to the IS0 8824 ASN.l
specification are detailed below:

Physical Representation of Base Types

Typical MADEL description statements are SpacecraftID : : = OCTET STRING or Width : r = REAL.
Since the intention is to keep the physical data in its native form and to have the MADEL description in
accordance with Reference-1, defaults must be adopted everywhere a complete description of the data is not
supplied directly by the MADEL description itself. For example how many octets are in SpacecraftID and
how many bits are used for the mantissa of width and where are these bits located within the real number layout?
These pieces of information must be provided in some manner, down to the bit level where necessary and are
catered for by MADEL.

For example, real numbers are described using the MADEL REAL type whose defaults describe ANSYIEEE 754
floating point numbers or using a generalised form of the REAL type: this type, to be used for any non
ANSYIEEE 754 real numbers, provides the capability to fully describe a real number physical layout in terms of
mantissa, exponent, base, etc; thereby allowing to compute at the destination the real number value from:

ValueOfRealNumber = -1''s" x Mantissa x Base EvoIK*-BhS

Real Time Data Selection

The purpose of this modification to ASN.l is to allow the description of situations where one possibility has to
be selected among several alternatives at the time the physical data is being received. Such situations are typical
in space related applications: for example the value of the first byte in the physical data could indicate the format
of satellite tracking measurement samples -- DopplerIRanginglMeteo --) or a layout word at the beginning of a
housekeeping telemetry frame would indicate whether commands acknowledgement or memory dumps
or attitude parameters are contained in that particular frame received on ground. -Tkus, the format of a
piece of data typically is dependent upon a value of another piece of data (called the discriminant) and it_ should
be possible to describe this aspect.

It has been felt that this ability is fundamental to existing space related data products and since at present ASN.1
does not have it, MADEL has been designed to support it: to this end, the SELECT type has been introduced.
Thus with MADEL, the discriminant conveyed within the physical data can be processed in order to dictate the
branch to be selected, without needing any encodingldecoding mechanism. Furthermore, the type of the
discriminant itself must also be specified, for example, INTEGER, REAL, IASString. The format of the
SELECT statement in a MADEL description would be:

Packet : : = SELECT PacketType { - - PacketType is the discriminant
WAX!l : AuxiliaryPacket,
WHKW : HouseKeepingPacket,

"NS" : NormalSciencePacket,
Il~slI : Burstsciencepacket

3

together with the following discriminant definition:

PacketType ::= IA5String(SIZE (2))

Implementation of the MADEL Interpreter

The task of interpreting a MADEL description together with an instance of the corresponding physical data is
achieved (and demonstrated) by prototype software called the MADEL Interpreter. An overview of the MADEL
Interpreter architecture is shown in Figure 2: this shows the main processes that are involved and the critical data
structures.

Figure 2: MADEL Interpmter Software Architecture

Running the MADEL Interpreter

The user feeds into the MADEL Interpreter a MADEL description of his data and the physical data file. The
MADEL description is verified for correctness by the MADEL Description Verifier module.

The verified MADEL description is then parsed by the Syntax Tree Generator and a syntax tree of the data
structure defined in the MADEL description is built internally. This internal tree represents the full syntax
description that is defined including all possible choices or selections. Figure 3 shows a schematic of such a tree
for a simple data structure: Element A is defined as a sequence of element B (an integer), followed by C (an
octet) followed by D (a selection) which is dependent upon the value at reception time of the integer B (the
discriminant). If B-1 then D will be P (an integer), if B-2 then D will be Q (a sequence) and if B=3 then D will
be R (a real). Finally if Q is selected then this will be a sequence of X (an integer) followed by Y (a real).
0 The Value Tree Generator then walks down the syntax tree reading the corresponding physical data driven by
the syntax tree. It sees at the top of the syntax tree that the first element is a sequence, this corresponds to no
actual physical data, so it creates the top node of the value tree with no data, just a flag indicating a sequence.
It then goes on to read the elements of the sequence; firstly an integer, so bits are read from the physical data

and the Value Tree Generator adds a node to the value
tree which it fills with the local representation of the
actual value. Following this, the octet corresponding to
C is read in the same manner. Again the select element
D corresponds to no physical data, but the selection is
dependent upon the value of B, so the value of B already
stored in the value tree is accessed and the relevant
branch of the syntax tree taken. Say B was 2, then
branch Q is selected, so this branch of the syntax tree is
followed and the corresponding branch of the value tree
created. The resultant value tree is shown schematically
in Figure 4. Eventually this tree will store the local
representation of all selected physical data, and the user's
application can proceed with stage 2 of the model (see
Figure 1) or access the data using conventional methods.

Figure 3: Schematic of the Syntax 'bee Generated This link to the local representation of the values

received in the physical data fulfils the task defined in
stage 1 of the model.

Implementation and Support Tools

The MADEL Interpreter was developed on an IBM PC
running MS-DOS, with Borland-C++ and MKS Lex &
Yacc as major development tools. It is written in the C
language.

Test data sets, along with -their corresponding MADEL ps-
descriptions must be generated for test purposes. To this $jFrn2

.:%> zp.-w.:.: (--JE%zs, . m.:.:.mg$@ . :x.:.:.:.: , :.:.:.
end support tbols have been developed. A MADEL

into the MADEL Interpreter in ASCII text form. The

b
description is created with a normal text editor and fed Figwe 4: Schematic of the Value Tree Generated

physical data can be created interactively and a user interface mechanism has been integrated so that the user be
provided with facilities to (i) select a MADEL description, then (ii) be guided in the production of associated
physical test data.

Conclusions

The study has shown the feasibility of the CCSDS concept and the analysis performed while developing MADEL
has shown that, if some simple defaults and extensions are adopted (as have been defined), ASN.l can be used
satisfactorily as the basis for a suitable DDL. In particular it can fulfil the fundamental need for real time selection
of data in the description of space related data. It should be noted that an important facet of the work was that
MADEL, in terms of its syntax, has been kept very close to ASN.l (as defined in the IS0 8824 standard).

Prototype software (the MADEL Interpreter) was developed which demonstrated that typical space related data
formats can be interchanged between heterogeneous computer environments and interpreted. In turn, this "proof
of concept" development and testing helped to improve the overall data interchange model and to identify possible
future additions to MADEL. User interface aspects were also studied.

The MADEL Interpreter could become the basis of a set of tools for supporting data interchanges. Data product
definitions or interface definitions written in MADEL could be generated and given to all users, thus avoiding the
need for paper Interface Control Documents or paper format definitions. This would ensure that all users have
a unique, correctly coded product description.

5 In the longer term, stage 3 of the data interchange model should be looked at with the objective of defining
standardised approaches and identifying common software services for the processing of advanced semantics.

EXAMPLES

- - Hexadecimal dumps of VAX real numbers were generated on a VAX/VMS computer.
- - The corresponding MADEL description was created (this file) and then processed - - by the MADEL Interpreter on an IBM PC to interpret the corresponding VAX data.
- - GFloatNumber structure on VAX - - Word-1 (Sign:l , Exp:ll , Mant:4}
- - Word-2 Word-3 Word-4 : all (Mant:16)
- - FFloatNumber structure on VAX - - Word-1 (Sign:l , Exp:8 , Mant:73
- - Word-2 (Mant:16}

- - Case 1
- - GFloatDump Value = -2.0000 Phys. Hex. = CO20 0000 0000 0000
- - FFloatDump Value = -2.0000 Phys. Hex. = Cleo 0000

- - Case 2
- - GFloatDump Value = -64071.5000 Phys. Hex. = ClOF 48F0 0000 0000
- - FFloatDump Value = -64071.5000 Phys. Hex. = C87A 4780

- - MADEL Definition starts here:

VaxVmsReals DEFINITIONS : : =
BEGIN

List-of-VaxNumbers : : = SEQUENCE SIZE(2) OF Numbers - - 2 cases in this example

Numbers : : = SEQUENCE (
GFloatNumber,
FFloatNumber

1

GFloatNumber : : = REAL (
BIAS (1025), - - bias value
COMPLEMENT(()), - - 0, 1 or 2's complement indicator
BASE(2), - - base value
MANTISSA-MODE(I), - - algorithm for mantissa evaluation
MANTISSA(12,63), - - mantissa bit positions
EXPONENT(1,ll) - - exponent bit positions

3

FFloatNumber : : = REAL { - - using ANSI/IEEE 754 defaults for REAL type
BIAS(129) - - except bias which is VAX specific

3

END

MADEL Interpreter Execution Report:

Symbol Name . . . : GFloatNumber
Size : 64 Type Name . . . : REAL
Exponent-bits = (1..11), Mantissa-bits = (12..63),

Complement = 0, Base = 2, Bias = 1025, Mantissa-Mode = 1
PHYSICAL REPRESENTATION . : 11OOOOOO OOlOOOOO 00000000 00000000

00000000 00000000 00000000 00000000
HOST REAL NUMBER = -2

Symbol Name . . . : FFloatNumber
Size : 32 Type Name . . . : REAL
Exponent-bits = (1..8), Mantissa-bits = (9..31),
Complement = 0, Base = 2, Bias = 129, Mantissa-Mode = 1
PHYSICAL REPRESENTATION . : 11OOOOO1 00000000 00000000 00000000
HOST REAL NUMBER = -2

Symbol Name . . . : GFloatNumber
Size : 64 Type Name . . . : REAL
Exponent-bits = (1..11), Mantissa-bits = (12..63),
Complement = 0, Base = 2, Bias = 1025, Mantissa- ode = 1
PHYSICAL REPRESENTATION . : 11OOOOO1 00001111 01001000 11110000

00000000 00000000 00000000 00000000
HOST REAL NUMBER = -64071.5

Symbol Name . . . : FFloatNumber
Size : 32 Type Name . . . : REAL
Exponent-bits = (1..8), Mantissa-bits = (9..31),
Complement = 0, Base = 2, Bias = 129, Mantissa-Mode = 1
PHYSICAL REPRESENTATION . : 11001000 O1111010 01000111 10000000
HOST REAL NUMBER = -64071.5

e 2: Real

- - This example is a special case of the data format discussed in Figure 3
- - and illustrates further the dynamics of data interpretation at the destination

- - MADEL Definition starts here:
Example-of-DataRealTimeSelection DEFINITIONS : : =
BEGIN

A : : = SEQUENCE { B, C, D]

B : : = INTEGER - - specification of the discriminant
C : : = OCTET STRING
D : := SELECT B { - - B is discriminant for selecting

1 : P,
2 : Q,
3 : R

1
P : : = INTEGER
Q : : = SEQUENCE { X, Y }
R : : = REAL
X : : = INTEGER - - description of the lowest level elements in
Y : : = REAL - - the data format A
END

MADEL Interpreter Execution Report:

. . . Symbol Name : B
Size : 16 Type Name . . . : INTEGER
PHYSICAL REPRESENTATION . : 00000000 OOOOOOlO
INTEGER VALUE = 2

- - -

. . . Symbol Name : C
Size : 1 Type Name . . . : OCTET
PHYSICAL REPRESENTATION . : OOlO1O1O
OCTET STRING VALUE = I * '

. . . Symbol Name : D
Size : 16 Type Name . . . : SELECT

1250

PHYSICAL REPRESENTATION . : see symbol B
SELECTED BRANCH = 2

. . . Symbol Name : X
. . . Size : 16 Type Name : INTEGER

PHYSICAL REPRESENTATION . : 00000000 10000001
INTEGER VALUE = 129

. . . Symbol Name : Y . . . Size : 32 Type Name : REAL
Exponent-bits = (1..8), Mantissa-bits = (9..31),
Complement = 0, Base = 2, Bias = 128, Mantissa-Mode = 1
PHYSICAL REPRESENTATION . : O1OOOOOO 01000000 00000000 00000000
HOST REAL NUMBER = 1.5

REFERENCES

[I] "Information technology - Open Systems Interconnection - Specification of Abstract Syntax Notation
(ASN.l)", IS0 8824, Second edition, ISOIIEC 8824:1990(E), International Organisation for
Standardisation, December 1990.

[Z] "Recommendation for Space Data System Standards: Parameter Value Language -- A Tutorial", CCSDS
641.0-G-1, Green Book, Consultative Committee for Space Data Systems, May 1992.

3 5usof
Gross Support Overview and Operations Concept

for Future Space Missions PL s
By William S tallings (NASNGSFC)

and Jean-Francois Kaufeler @SA/ESOC)

Supported by the CCSDS Panel 3 Core Group
CNES - Lionel Baize, Gerard Lapaian, Jean Yves Trebaol

CSA - Andrzej Kaminski (MPB)
DLR - Hubertus Wanke, John Dallat (CAM)

ESAESOC - Olivier Pujo, Klaus-Jiirgen Schulz, Gerhard Theis, Hans Uhrig
NASNGSFC - Fred Brosi (CTA), Norman Gundersen (CTA), Lionel Mitchell (CTA),

John Pietras (MITRE), Roland Weiss (CTA)
NASA/JPL - Edward Greenberg, Randy Heuser, Michael Stoloff

Abstract

Ground networks must respond to the
requirements of future missions, which
include smaller sizes, tighter budgets,
increased numbers, and shorter
development schedules. The
Consultative Committee for Space Data
Systems (CCSDS) is meeting these
challenges by developing a general cross
support concept, reference model, and
service specifications for Space Link
Extension services for space missions
involving cross support among Space
Agencies. This paper identifies and
bounds the problem, describes the need
to extend Space Link services, gives an
overview of the operations concept, and
introduces complimentary CCSDS work
on standardizing Space Link Extension
services.

Introduction

Future space missions will require the
support of ground networks operated by
multiple Space Agencies as well as
support by multiple Agency
organizations. Current missions are
supported on a case by case basis with
custom interfaces being developed each
time. This is a time consuming and
expensive process. CCSDS is
developing recommendations for
standards for interfaces and services in
missions involving multiple Space

Agencies. The objectives are to reduce
cost and development time while
increasing flexibility and efficient
utilization of resources.

Future ground systems must replace
custom interfaces with standard
interfaces and services to be cost
effect ive. Pr ior CCSDS
recommendations have focused on
standardizing the communication services
between spacecraft and ground stations
(i.e., the Space Link Subnet). The
CCSDS Recommendations for Advanced
Orbiting Systems (CCSDS, 1992a),
Packet Telemetry (CCSDS, 1992b), and
Telecommand (CCSDS, 1987a; CCSDS,
1992c; CCSDS, 1991; CCSDS, 1987b)
document these Space Link services and
protocols.

The proposed concept, documented in a
CCSDS Report (CCSDS, 1994a)
describes Space Link Extension (SLE)
services that extend the Space Link
services on the ground. Extension is
accomplished over distance, in time, and
by adding information. SLE services
may be distributed across multiple ground
facilities, such as ground stations,
mission-related control centers, and data
processing facilities. These facilities may
be grouped to provide the services
required by each mission. These SLE
Services are applicable between Agencies

as well as within Agencies with multiple
ground networks.

Cross Support Operations Concept

Cross Support occurs when one Agency
uses part of another Agency's data
system resources to complement its own
system in providing services.

Cross Support Environment

A space data system, for a particular
mission, contains onboard spacecraft
applications and ground applications.
Ground applications interact with
applications onboard the Spacecraft via
application associations between them.
The ground and onboard applications do
not necessarily belong to the same
Agency that is operating the spacecraft.
The associations between ground and
onboard applications are established and
maintained using telecommunication and
data transfer services built upon the Space

Link communication services defined by
CCSDS Recommendations.

CCSDS Recommendations are defined
for Space Link services for the real-time
transfer of data across the Space Link.
However, space data systems generally
require additional features in order to use
the Space Link services to support
mission application associations. These
additional features, provided by SLE
services, extend the application
associations beyond the _immediate
endpoints of the spacelground link. The
Space Link services are extended from
onboard applications, attached to onboard
local area networks, to ground
applications, attached to terrestrial wide
area networks. The SLE services provide
the ability to hold data at one or more
intermediate points between the peer
applications. The Space Link and Space
Link Extension domains are illustrated in
Figure 1.

Figure 1 - Domains of Space Link and Space Link Extension Services

t
Domain

of
Spacelink
Services

I

Domain
of

Spacelink
Extension
Services

The ground-resident Space Link
Extension Component (SLEC) and the
onboard data system coordinate to
provide SLE services. A particular
mission may use all or a subset of the
SLE services. In providing SLE
Services, the SLEC performs: (1) RF
modulation/demodulation at the ground
termination of the space-ground link, (2)
ground termination of the Space Link
protocols used by the mission; (3) value-
added annotation of the Space Link
service data; (4) terrestrial networking
among the ground elements that host the
ground applications; and (5) interface to
ground-side Space Link protocol
processing and ground-side RF
modulation/demodulation functions.

The SLEC has three types of interfaces
with other components: interfaces over
which mission data flow between the
SLEC and the Spacecraft; interfaces over
which space data flow between the SLEC
and the ground applications; and the
service management interface between the
SLEC and Mission Management. Unlike
the onboard data system service
interfaces, the SLE service interfaces are
intended to be standardized across all
missions.

The SLE-Spacecraft interface operates
over an RF medium and executes the
Space Link protocols specified in the
CCSDS Space Link Recommendations.
The ground applications exchange SEE
Protocol Data Units (SLE-PDUs) with
the SLEC. The SLEC and Mission
Management exchange service requests
and service management reports over the
service management interface. These
service requests and management reports
are used to: (1) configure/monitor the
ground side sf the RF link and Space
Link protocol processing associated with
the interface between the SLEC and the
Spacecraft; (2) configure/monitor data
handling within the SLEC; and (3)
configure/monitor service delivery
parameters for the interfaces between the
SLEC and ground applications.

In addition, the Mission Management
establishes an association with the
Onboard Management component of the
Spacecraft to configure and monitor the
spacecraft side of the interface. This
association uses the same set of
communication services that other
mission applications use. Figure 2
illustrates the associations and interfaces
involved in providing the SLE Services.

Figure 2 - SLE Associations and Interfaces

1255

Cross Support Concepts

SLE sewices provide access to the
ground ternination of Space Link
services from a remote ground-based
system. They extend the various Space
Link services as defined in CCSDS Space

ations. This "extension"
has thee aspects: diswnce, infomation,
and time, An SLE service may be
completed at a location geogaphically
sepmated from the place where the lR4F
signal is rmeived. Infomation is added
to the Space Link Service Data Units (Sk-

o compensate for the use of
 oma at ion over the Space Link

or infomation about conditions at the
time of receipt. Information may also be
added to ensure the data will be useful at
a later time. The added information is
called "annotation."

The systems performing an SLE service
may belong to different entities. These
entities may include a different
organization within the mission's own
Space Agency or an organization from a
different Space Agency. The supporting
organizations may be of varying size or

structure (e.g., Space Agency, space
flight center, facility). The notion of
cross support can be generalized to any
situation in which multiple organizations
are involved in supplying SkE Semices.

As illustrated in figure 3, the systems
performing an SLE service are grouped
into Service Complexes by the
organizations that implement them. Each
sewice complex has two components, a
Service Provision component and a
management component. The Service
Provision component contains the
processing functions implemented by that
Service Complex. The management
component manages the Service
Provision component. The management
of an SLE Service is distributed between
Service Complexes and the Mission. The
management component of a Service
Complex is called Complex Management.
The component of Mission Management
responsible for management of SLE
services is called Utilization Management.
Service Management is accomplished
through the manage'ment of the functions
performed by the individual Sewice
Complexes that provide the SEE services.

(Space Link Extension Component

Figure 3 - SLEC Complex Interfaces

1256

If a service is provided by multiple
Service Complexes, Utilization
Management coordinates with Complex
Management in the multiple Service
Complexes to provide the services
required by a mission. Utilization
Management must also coordinate and
resolve conflict among multiple service
users. Complex Management represents
the: functions performed within the
Service Complex in a standard way, in

s of the SHgE services provided by the
complex (not in terms of the equipment
used to provide those services), and
without Service Complex-internal details.
Complex Management provides the
"firewall" that hides the complexity of the
Service Complex.

Cross Support Services

Cross support may occur between ground
applications and the SLEC. It may also
occur between Service Complexes within
the SLEC. The SEEC builds on the
Space Link Services by standardizing the
SLE and Service Management protocols
and services. Such standardization
allows a mission to interface with the
SLEC, concatenating SLE services by
interconnecting Service Complexes
within the SLEC, no matter how or
where the services are implemented. The
SLE Services support both the Advanced
Orbiting Systems (AOS) and
Conventional Systems, Packet Telemetry
(PT) and Telecommand (TC). The
following list identifies the SEE services:

Return All Frames (AOS and PT)
Return Insert (AOS)

* Master Channel Frames (AOS and
PT)
Master Channel Frame Secondary
Header (PT)

* Master Channel Operations Control
Field (PT)

* Virtual Channel Frame Secondary
Header (PT)
Virtual Channel Operations Control
Field (AOS and PT)
Return Virtual Channel Access (AOS
and PT)
Return Bitstream (AOS)

Return Space Packet (AOS and PT)
Data Set Processing (A m and PT)
Return Internet (AOS)

* Forward Virtual Channel Access
(AQS)
Frame Data Routing (TC)
Forward Bitstream (AOS)
Forward Space Packet (AOS and TC)

0 Forward Primary Header plus VCDU
(AOS and TC)
Telecommand F m e flC)
Forward coded \rea>i~ (AOS)
CETU (TC)
Forward Internet (AOS) -
Forward Insert (AOS)

Cross Support Scenario

An example of cross support is illustrated
in Figure 4. In this example, Agency A
sends data from its spacecraft to multiple
ground stations, which perform all data
processing functions through the
extraction of Frame Data. However, not
all these ground stations belong to
Agency A. The data is also transmitted to
a ground station owned by Agency B
which processes the data in two separate
complexes. Essentially, the first complex
performs the Space Link processing and
delivers all frames to the second. Both
Agencies deliver space Packets to Agency
A's Data Processing Complex. While
this does not affect the service interface, it
may affect the management interfaces
between the Agencies.

Ground Station 1

Ground Station 2

Figure 4 - Cross Support Example

Gross Support Lifecycle

Cross support of a mission involves a
Support Contract between Agencies. A
Support Contract is an agreement
between a mission and one or more
Agencies providing cross support. The
Support Contract life cycle is divided
into four phases: Agreement,
Negotiation, Implementation, and
Utilization.

The Agreement phase consists of the
early interactions that set the stage for
the technical definition of the cross
support. The Agencies agree on
objectives of Service Management
interface and legal and financial
responsibilities.

During the Negotiation phase, in the
Support Contract is negotiated by the
Agencies. It defines the services to be
supported by the Service Complex over
the lifetime of the Support Contract.
The contract establishes the outer
bounds of resources accessible by, and
privileges extended to, the mission.

The Implementation phase is the time
allowed for the Service Complexes to
acquire, develop, and configure the
resources necessary to satisfy the
Support Contract. The Service
Complexes perform testing to ensure
conformance with CCSDS standards
and compatibility with peer processes.

During the Utilization phase, a Service
Complex provides one or more Service
Packages to the mission. A Service
Package consists of the service
instances and channels in a single
service complex that provide all or part
of a service to a user. A Service
Package duration corresponds to a
Space Link session, or a "Pass."

Each Service Package has four phases:
Preparation, Setup, Execution, and
Debrief. Different Service Packages
may be in different phases
concurrently. For each Service
Package the following actions occur:

Preparation phase - Parameter
values are selected for all
parameters within bounds of service
specified during the Negotiation
phase including any schedule
information applicable to a
particular upcoming Execution
phase.

Setup phase - Initiation of a
service, testing of service
interfaces, and refinement of service
parameters are perfomed by the
Service Complex to ensure that the
service selected during the
Preparation phase can actually be
provided during the upcoming
Execution phase.

Execution phase - Exchange of
space data or the delivery of event,
alarm, and status reports may take
place between Service Complexes
and between a Service Complex and
a user.

Debrief phase - Accounting and
performance information about the
Service Package Execution Phase is
delivered to Service Management
and/or the service user

Complementary CCSDS Work

A CCSDS Report, S t a n d a r d
Terminology, Conventions, and
Methodology (TCM) (CCSDS, 1994c),
provides terminology and conventions
appropriate to the development of
CCSDS Space Link Extension
Services.

The TCM establishes a common
vocabulary based on internationally
standard terms and conventions for
describing systems and their
interactions, from conceptual level
through the level at which specific
technologies, protocols, and
applications are applied to the
d e v e l o p m e n t of CCSDS
recommendations. It specifies the use
of Abstract Service Definition

Conventions (ASDC) (ISO/IEC,
1992), a standard set of conventions
that complement the better-known
International Organization for
Standardization (ISO) Open System
Interconnection (OSI) service definition
conventions. This common vocabulary
and methodology can be used as a
foundation for expressing concepts of
operation and architectural
specifications, leading to the definition
of specific SLE Services and protocol
specifications. All SLE Cross Support
documents adhere to the TCM.

A Reference Model is also being
developed by CCSDS for use in defining
SLE services. The SLE Reference Model
(CCSDS, 1994b) provides a common
basis for the development of SLE Service
recommendations. It provides the
reference for maintaining consistency
between all SLE Services. It provides
descriptions as well as the provision of
multiple SLE Services. The Reference
Model also shows the relationships
among the SLE services, the Space Link
services that they extend, and the ground
communication services on which they
depend.

The Reference Model defines the
common functionality, and provides the
descriptive tools to specify service-
specific functionality for a Service
Complex. Examples of Service Complex
functionality include: extensions to
communication functions (e.g.,
annotation, addressing); data handling
functions (e.g., data capture, post-pass
retrieval); and management functions
(e.g., Pass set-up, fault isolation).

CCSDS is currently working on the
service specification for a single SLE
Service. The Return All Frames service
specification (CCSDS, 1994d) describes
the most basic SLE service in the return
(space-to-ground) direction. The Return
All Frames service acquires,
demodulates, frame-synchronizes, and
decodes all CCSDS link layer frames
(Packet Telemetry Transfer Frames or
Virtual Channel Data Units) of a physical

channel and delivers those frames to the
users of the service. The service
provides both on-line (i.e., near real time)
and off-line (i.e., delayed or buffered)
data transfer modes to accommodate the
variety of access methods typical of actual
space mission operations scenarios. The
Return All Frames service is summarized
in a companion SpaceOps '94 paper
(Uhrig et al., 1994).

Future Work

CCSDS will publish Green Bdoks for the
Standard Terminology, Conventions, and
Methodology and Cross Support Concept
documents and Blue Books for the
Reference Model and Return All Frames
Service Specification documents.
CCSDS Panel 3 also expects to develop
service specification Blue Books for all
Space Link Extension cross support
services.

References

CCSDS. (1987a, January). Recommen-
dation for Space Data System
Standards. Telecommand, Part 1 -
Channel Service: Architectural
Specification. CCSDS 20 1 .O-B- 1,
CCSDS Secretariat, National
Aeronautics and Space Administration,
Washington, DC.

. (1987b, January). Recommen-
dation for Space Data System
Standard. Telecomrnand, Part 3 - Data
Management Service: Architectural
Specification. CCSDS 203.0-B- 1.
CCSDS Secretariat, National
Aeronautics and Space Administration,
Washington, DC.

. (1991, October). Recommen-
dation for Space Data System
Standards. Telecommand, Part 2.1 -
Command Operation Procedures.
CCSDS 202.1-B-1. CCSDS
Secretariat, National Aeronautics and
Space Administration, Washington,
nn

. (1992a, November). Recom-
mendation for Space Data System
Standards. Advanced Orbiting
Systems, Network and Data Links:
Architectural Specification. CCSDS
701 .O-B-2. CCSDS Secretariat,
National Aeronautics and Space
Administration, Washington, DC.

. (1992b, November). Recom-
mendation for Space Data System
Standarh. Packet Telemetry, CCSDS
102.0-B-3, CCSDS Secretariat,
National Aeronautics and Space
Administration, Washington, DC.

. (1992c, November). Recom-
mendation for Space Data System
Standards. Telecomrnand, Part 2 - Data
Routing Service: Architectural
Specification. CCSDS 202.0-B-2.
CCSDS Secretariat, National
Aeronautics and Space Administration,
Washington, DC.

. (1994a, November). Report
Concerning Space Data System
Standards. Cross Support Concept,
Part I: Space Link Extension Services.
CCSDS 910.3-G-1. CCSDS Panel 3
plenary meeting, Goddard Space Flight
Center, Greenbelt, MD.

. (1994b, November). Recom-
mendation for Space Data System
Standards. Space Link Extension
Reference Model. CCSDS 9 10.4-W-
0.i. CCSDS Panel 3 plenary meeting,
Goddard Space Flight Center,
Greenbelt, MD.

. (1994c, November). Report
Concerning Space Data System
Standards. Standard Terminology,
Conventions, and Methodology
(TCM). CCSDS 910.2-G- 1. CCSDS
Panel 3 plenary meeting, Goddard
Space Flight Center, Greenbelt, MD.

CCSDS Panel 3 plenary meeting,
Goddard Space Flight Center,
Greenbelt, MD.

ISO/IEC. (1992, March). Information
technology - Text communication -
Message-Oriented Text Interchange
Systems (MOTIS) - Part 3: Abstract
Service Definition Conventions,
Technical Corrigendum I. ISO/IEC
10021-3.

Uhrig, H., Pietras, J., & Stoloff, M.
(1994, July). The CCSDS Return All
Frames Space Link Extension Service.
Proceedings of the Third International
Symposium on Space Mission
Operations and Ground Data Systems.
Goddard Space Flight Center,
Greenbelt, MD.

. (1994d, November). Recom-
mendation for Space Data System
Standards. Return All Frames Space
Link Extension Service Specification
CCSDS CCSDS 91 1.1-W-0.1.

THE CCSDS RETURN ALL FRAMES SPACE LINK EXTENSION SERVICE
/

Dr. Hans Uhrig
European Space Operations Centre

Darmstadt, Germany

John Pietras
The MITRE Corporation

Greenbelt, Maryland, USA

Michael Stoloff
Jet Propulsion Laboratory
Pasadena, California, USA

ABSTRACT

Existing Consultative Committee for Space
Data Systems (CCSDS) Recommendations
for Telemetry Channel Coding, Packet
Telemetry, Advanced Orbiting Systems, and
Telecommand have facilitated cross-support
between Agencies by standardizing the link
between spacecraft and ground terminal.
CCSDS is currently defining a set of Space
Link Extension (SLE) services that will
enable remote science and mission
operations facilities to access the ground
termination of the Space Link services in a
standard manner. The first SLE service to
be defined.is the Return All Frames (RAF)
service. The RAF service delivers all
CCSDS link-layer frames received on a
single space link physical channel. The
service provides both on-line and off-line
data transfer modes to accommodate the
variety of access methods typical of space
mission operations. This paper describes the
RAF service as of the Summer of 1994. It
characterizes the behavior of the service as
seen across the interface between the user
and the service and gives an overview of the
interactions involved in setting up and
operating the service in a cross-support
environment.

INTRODUCTION

Widespread acceptance of existing CCSDS
Recommendations on Telemetry Channel
Coding (CCSDS, 1992a), Packet Telemetry
(CCSDS, 1992c), Advanced Orbiting

Systems (CCSDS, 1992d), and Tele-
command (CCSDS, 1987a; CCSDS, 1992b;
CCSDS, 1991; CCSDS, 1987b) has
facilitated cross-support between Agencies
by standardizing the link between a
spacecraft and a ground terminal. However,
significant impediments to cross-support
remain because the scope of those
Recommendations does not include the link
between the ground terminal and other
elements of the ground data system.
CCSDS is addressing that lack through the
definition of a set of Space Link Extension
(SLE) services that will enable remote
science and mission operations facilities to
access the ground termination of the Space
Link services in a standard way.

The most basic SLE service in the return
(space-to-ground) direction is the Return All
Frames (RAF) service. Provision of the
RAF service involves the acquisition,
demodulation, frame synchronization, and
error detection/correction of all CCSDS
link-layer frames of a physical channel, and
the delivery of those frames across terrestrial
networks to the users of the service. Frame
is the term used in this paper as a common
name for the various CCSDS data link
protocol data units.1 The users of the RAF
service split the all-frames data stream into

l ~ h e Version 1 return link frame is formally
known as the Packet Telemetry Transfer
Frame, and the Version 2 frame is formally
known as the (Coded) Virtual Channel Data
Unit.

subsets based on master channels and virtual
channels, and extract various data products
from those channels, as defined in (CCSDS,
1992c; CCSDS, 1992d) and forthcoming
Recommendations for other return SLE
services.

The RAF service provides both on-line and
off-line data transfer modes to accommodate
the variety of access methods typical of
space mission operations. An online service
is one that delivers its service data to the
user at (nearly) the same time that the data
are received from the space link. An offline
service is one in which the service data are
delivered at some time after that at which
the data crossed the space link.

CCSDS is in the process of defining the
RAF service in detail. The RAF service is
the first of the SLE services for which a
draft Recommendation is being developed.
CCSDS expects to submit the resulting
Recommendation for review and approval
by its member space agencies in 1995.
Recommendations for the other SLE
services will follow.

This paper describes the CCSDS Return All
Frames SLE service as it is defined as of the
Summer of 1994. First, the RAF service
environment is presented. The environment
identifies the various participants in the
provision of the RAF service. Next, the
behavior of the RAF service is described, in
terms of the interactions between the user
and provider of the service. Finally, the
paper briefly introduces the formal
techniques being used to describe the RAF
and other SLE services.

RAF SERVICE ENVIRONMENT

As defined in the SLE cross-support concept
Green Book (CCSDS, 1994a) and presented
in the companion SpaceOps '94 paper
(Stallings et al., 1994), all SLE services are
defined within the context of a s p a c e
mission and an SLE Component that s u p
ports that mission. Figure 1 illustrates the
Return All Frames service environment,
which is a specific case of the general SLE
service environment. In the terminology of
the SLE reference model (CCSDS, 1994b),
the various entities illustrated in Figure 1 are
different types of SLE objects. The RAF
Service User, the Mission Spacecraft, and
the mission's Space Link Extension
Utilization Management (SLE-UM - that
part of mission management responsible for
managing the acquisition and use of SLE
services on behalf of the mission) are objects
of the space mission. The SLE Component
comprises those functions and systems that
provide standard SLE services to the
mission.

In the general case, the SLE component
may consist of multiple SLE complexes,
where an SLE complex is a collection of
SLE service capabilities operating in an
integrated management domain (as seen by
the SLE-UM). However, the RAF service,
being the most basic SLE service, will be
provided by a single SLE complex, referred
to in this paper as the RAF Service Provider.
Although the SLE service concept permits
an SLE complex to be geographically-
distributed, it is most convenient to think of
the RAF Service Provider as being
completely located at a ground station.

f RAF Service Provider]

Figure 1. RAF Service Environment

The RAF Service Provider has an RF
interface with the mission spacecraft, service
control and data interfaces with the service
user, and a management interface with the
SLE-UM. The functions of the RAF Service
Provider are formally modeled as two
functional unit (FU) objects: the RF
Demodulation (RFD) FU and the Acquire
Frames FU. The RFD FU comprises the
functions of acquiring the return RF signal
from the mission spacecraft, and
demodulating the signal to recover a stream
of digital symbols. The Acquire Frames FU
processes the symbol stream to synchronize
upon and capture CCSDS frames, performs
error detection and correction, and transfers
the frames to the RAF Service ~se r (s) .2
Frame synchronization and error detection
and correction are performed in accordance
with provisions of the Telemetry Channel
Coding Blue Book (CCSDS, 1992a). The
SLE complex management function of the
RAF Service Provider coordinates the
operation of the RFD FU and the Acquire
Frames FU.

BEHAVIOR OF THE RAF SERVICE

The CCSDS RAF service delivers all frames
from a single space link channel, including
fill frames (which by definition have no data
content and exist only to maintain
synchronization on the link). A space link
channel is a physical channel carrying a
synchronous stream of frames, separated by
attached sync markers.

The wide variety of mission needs and
Agency capabilities requires flexibility in
the delivery of the RAF service. This
flexibility manifests itself through different
requirementsfcapabilities in the areas of:

Received data quality: what constitutes
data that are usable bylacceptable to
the user of the service

2 ~ l t h o u g h only one RAF Service User is
illustrated in Figure 1, there may be multiple
users of RAF service receiving the same
stream of data.

Data delivery: the combination of
reliability, timeliness, and complete-
ness that best fits the user's needs
Service session initiation: whether the
service session (i.e., the connection
between the service user and service
provider for the purpose of transferring
service data) is initiated by the
provider or the user
Service status information: how much
information about the progress of the
service is needed/wanted by the user,
and the mechanism for delivering that
information

The following sections describes the options
available in these areas.

Received Data Quality Options

This area contains the options for service
delivery that are affected by the quality of
the frames acquired by the RAF Service
Provider. These options are offered to meet
the varying needs of the user community,
and to match their ability to deal with
errored data. Because this is the all frames
service, each of these options deals with
entities that have been frame synchronized
and thus identified as frames.3 The RAF
service supports two options for received
data quality: Correct Frames Only, and
Correct and Errored Frames.

31n particular, the RAF Service Recommen-
dation does not provide for the delivery of
data symbols or bits which cannot be frame
synchronized. It is recognized that, in cer-
tain rare cases, anomalies in flight or ground
systems may lead to conditions under which
the RAF service can not deliver any data at
all because the acquired data stream does not
contain properly-formed frames. Implemen-
tors of the RAF service are well-advised to
provide an 'escape mechanism' for the cap-
ture and possible delivery of such anoma-
lous data to support troubleshooting and/or
extraordinary data recovery methods. How-
ever, the handling of such anomalous situa-
tions is outside the scope of the RAF Service
Recommendation.

The Correct Frames Only option causes only
frames that have no detected errors to be
delivered. This option is available only
when it is known beforehand (either due to
long-term service agreements or by
schedule) that the frames on the channel are
either all Reed-Solomon (R-S) -encoded or
all cyclic redundancy code (CRC) -protected
frames. R-S-encoded frames that
successfully R-S decode are transferred,
without the R-S check symbols, to the user.
R-S-encoded frames that do not R-S decode
are discarded. CRC-protected frames that
show no CRC errors are transferred to the
user as complete frames. CRC-protected
frames that register CRC errors are
discarded.

The Correct and Errored Frames option
causes frames to be delivered, regardless
of received quality. This option exists for:

Space link channels whose frames
carry data which contains sufficient
"internal coding" that the user is able
to reconstruct (through mission-unique
methods) the data content, or
Space link channels that carry a mix of
R-S- and CRC-encoded frames.

The Correct and Errored Frames option
might also be useful in helping missions to
identify flight system and ground system
problems.

For space link channels that are known
beforehand to carry only R-S encoded
frames, frames that successfully R-S decode
are transferred (without the R-S check
symbols) to the user with the indication
R-S-good, and frames that do not
successfully R-S decode are transferred as
complete, pre-decoded frames with the
indication R-S-bad.

For space link channels that are known
beforehand to carry only CRC encoded
frames, frames that have no CRC errors are
transferred to the user with the indication
CRC-good, and frames that have CRC
errors are transferred with the indication
CRC-bad.

For space link channels that may be carrying
mixed R-S and CRC encoded frames, frames
that are successfully R-S decoded are
transferred (without the R-S check symbols)
to the user with the indication W-S-good.
Frames that are not successfully R-S
decoded are checked for CRC errors, using
the as-received (pre-R-S-decoded) complete
frames. Frames that have no CRC errors are
transferred to the user with the indication
CRC-good, and frames that have CRC
errors are transferred with the indication
CRC-bad.

CCSDS recommendations for processing
RAF service into higher-strata services (such
as SLE packet services) are predicated on
the use of the Correct Frames Only option.
Since processing of errored frames requires
mission-unique methods, the ability to
process such frames is by definition not a
part of the standard SLE service suite.

Data Delivery Options

The data delivery options reflect different
levels of reliability, completeness, and
timeliness. When complete, the RAF
service specification will define online and
offline data delivery options. As of this
writing, only two online options, Complete
delivery and Timely delivery, have been
defined.4

An RAF service instance with the Complete
delivery option delivers the frames in the
sequence received, with no ground-induced
errors, with no frames omitted, and with
possible large delays. The RAF Service
Provider buffers the data to compensate for
data rate mismatch and/or retransmissions.
The user can specify a maximum delay,
Tmax. If Tmax is exceeded, the service
informs the user that Tmax has been

~ C C S D S has developed recommendations
for the use of isochronous virtual channels
(CCSDS, 1992d). As of this writing,
CCSDS is determining if these recommen-
dations result in a requirement for an
isochronous delivery option for the RAF
service. If so, it will be added to the online
delivery options.

exceeded. When the delay drops below
Tmax, the service informs the user that the
delay has been recovered.

An RAF service instance with the Timely
delivery option delivers the frames in the
sequence received, with no ground-induced
errors, possibly with frames omitted, and
with an upper bound on maximum delay,
T-. Due to the nature of the RAF service,
the data rate of delivery of the RAF service
is normally a steady-state rate equal to the
rate of the underlying space link channel
plus some SLE overhead increment. As
long as the rate of the RAF service can be
kept at or below this steady-state rate,
frames will be forwarded without buffering
in the RAF Service Provider. However, if
frames begin to be buffered in the RAF
Service Provider (for example, because of
excessive retransmissions to the service
user), their delivery latency will grow. If
this latency exceeds the maximum delay
parameter Tmax, the RAF service drops an
appropriate number of frames to drop below
T,, delay and informs the user that frames
have been dropped.

Service Session Initiation Options

Service session initiation options describe
the different options by which user and
provider connect to support the provision of
RAF service. When complete, the RAF
service specification will define options for
initiating online and offline service sessions.
As of this writing, only the online options
have been defined, which are Online
Provider-Initiated and Online User-
Initiated.

The Online Provider-Initiated option allows
the RAF Service Provider to set up the
connection to the user, based on the
schedule for the activation of the space link.
The preconditions for providing an instance
of RAF service using this option are: (1) that
the RAF Service Provider has in its
configuration data base the identification,
addressing information, startup data quality
options, and startup data delivery options for
the user(s) of the RAF service, (2) that the
RAF Service Provider has been scheduled to
receive the space link channel associated

with the RAF service instance, and (3) that
the RAF Service Provider has been
scheduled to provide an RAF provider-
initiated service instance to the particular
user(s).

As controlled by the scheduled start time of
the service instance, the RAF Service
Provider connects to the service user(s) and
verifies the user's ability to receive the
service. Once the service session has been
initiated, either user or provider can
terminate the session, but the nominal
responsibility for closing the session lies
with the service provider, which it does after
the space link channel has been deactivated
and all received data has been delivered to
the user.

The Online User-Initiated option allows the
RAF Service User to set up the connection
to the RAF Service Provider within a time
window previously scheduled with respect
to the scheduled activation of the space link.
The preconditions for providing an instance
of RAF service using this option are (1) that
the RAF Service Provider has in its
configuration database the identity of' users
permitted to receive the RAF service, (2)
that the RAF Service Provider has been
scheduled to receive the space link channel
associated with the RAF service instance,
and (3) that the RAF service provider has
been scheduled to provide an RAF user-
initiated service instance to the user. The
user-initiated service instance can be
scheduled to begin at any time after some
specified time prior to the start of the space
link session (the start time of the schedule
window is determined on an agencylmission
basis). The end time of the scheduled
service instance can be scheduled at any
time from the scheduled start of the service
instance up until some specified time after
the scheduled end of the space link session.

To initiate RAF service using the Online
User-Initiated option, the service user
connects to the Service Provider, in the
process identifying and authenticating itself
as a legitimate user of the RAF service
associated with a particular space link
channel. Service session requests associated
with a specific space link session are valid

only during the scheduled service instance.
If a service user attempts to initiate the
service session before the start time of the
service instance, the service session
initiation attempt will be denied by the RAF
Service Provider. A service user may
initiate a service session at any time during
the scheduled service instance. This
includes service sessions that are initiated
after the start of the associated space link
session. Service sessions may be suspended
and resumed during the scheduled service
instance. Figure 2 illustrates the
relationships among the space link session,
scheduled service instance, a possible
service session, and the resulting period of
data transfer for the Online User-Initiated
option. According to the figure, the service
session is initiated after the start of the
scheduled service instance, but before the
actual start of the space link session. In this
example, the service instance is scheduled to
go some time beyond the end of the space
link session to allow for a long buffer
drawdown when a Complete delivery option
is selected. The actual service session
extends beyond the end of the space link
session, but terminates before the scheduled
end of the service instance. The resulting
period of data transfer begins at the start of
the space link session and ends at the end of
the service session.

Once the user-initiated service session has
been initiated, either user or provider can
terminate the session, but the nominal
responsibility for closing the user-initiated

session lies with the service user. However,
if the service session extends until the end of
the scheduled service instance, the service
session is terminated by the RAF Service
Provider.

Service Instance Status Information.
Service instance status information is
provided to the SLE-UM and the user of the
service during the execution of the service
instance. Service instance status informa-
tion is conveyed to the RAF service user for
the purpase of providing information
necessary for the proper interpretation and
processing of the RAF service data units.
Service instance status information is
conveyed to the SLE-UM for the purpose of
correlating the performance of the RAF
service with the performance of the
underlying RF link and the performance of
multiple higher-strata services that are
derived from the data contained in the
frames delivered by the RAF service.

When complete, the RAF service
Recommendation will define .status
information associated with both online and
offline service instances. As of this writing,
only the online service instance status
information has been addressed.

Service instance status information falls into
three categories:

Annotation data, which are appended
to the frames themselves

r scheduled service instance starVstop

r service session startlstop I 1
space link session starVstop

Time

period of data transfer 4
Figure 2 Relationships among Space Link Session, Scheduled Service Instance, Service

Session, and Period of Data Transfer for the Online User-Initiated Mode

Frame-sequence-dependent status data
which conveys information about
events of interest occurring between
specific frames
Frame-sequence-independent status
data which conveys information about
trends that transcend individual frames

Annotation and frame-sequence-dependent
data are conveyed to the service user so that
the user may correctly interpret and process
the sequence of frames received. Frame-
sequence-independent data are of interest to
both the user of the service and to the
SLE-UM: to the user, they serve as a means
of accounting for the service received; to the
SLE-UM, they are a source of information
that can be correlated with status
information about related services and RF
links.

The core annotation data to be appended to
every frame consists of:

The ground receipt time of the frame
The sequence quality of the frame (i.e.,
the indication of whether the frame is
the direct successor of the previous
frame on the space link channel)
The quality of the frame (e.g., R-S bad,
CRC good)

In addition to the above core annotation
data, CCSDS is investigating methods to
allow service providers to flexibly add
annotation data that may be required on a
mission or Agency basis.

The frame-sequence-dependent information
that has been thus far identified consists of:

Loss-of-synchronization notifications
that inform the user in a timely fashion
that frames are missing because of loss
of synchronization (and not, for
instance, because of failure of ground
processing or communications)
Data delivery threshold notifications:
- When the Complete data delivery

option is in effect, the service
informs the user when a user-
specified delay threshold has been

exceeded, and again (if and) when
the delay has been recovered.
When the Timely data delivery
option is in effect, the service
informs the user when a user-
specified data latency threshold has
been exceeded, and the number of
frames that have been discarded in
order to ensure the delivery of
"fresh" data.

As of this writing, frame-sequence-
independent status information is still being
defined in the categories of periodic reports,
event notifications, post-pass debriefing
reports, and journals.

FORMAL SPECIFICATION OF THE
RAF SERVICE

The SLE services, including the RAF
service, are formally defined within a
framework based on the International
Organization for Standardization's (ISO)
Abstract Service Definition Conventions
(ASDC) (ISO/IEC, 1992). ASDC provides
a conceptual model for constructing systems
of abstract-objects which interact with each
other via abstract-ports. The interactions
are defined in terms of abstract-operations,
and abstract-services are defined in terms of
groupings of abstract-operations over one or
more abstract-ports. ASDC provides a rich
set of concepts and conventions for defining
the various roles that the components of the
SLE architecture may play, such as
user/provider, initiator/responder, invoker/
performer, and consumer/supplier. ASDC
also provides a formal specification
methodology using Abstract Syntax
Notation #1 (ASN.l) macros, which serve as
templates for the definition of the various
elements of the model.

CCSDS has adapted the ASDC to the SLE
environment, defining special subtypes of
abstract-objects such as SLE complexes and
functional units. CCSDS has also adapted
the ASDC ASN.l macros to include
parameters peculiar to the SLE environment.
The SLE reference model (CCSDS, 1994b)
documents the SLE adaptation of ASDC.

Among other things, the reference model
defines the set of ASN.1 macros that must
be populated for each of the SLE service
specifications. Thus, the CCSDS RAF
Recommendation will contain ASN. 1
macro-based specifications that complement
the "plain English" definition of the RAF
service.

SUMMARY

CCSDS is currently defining the Return All
Frames service, one of a family of Space
Link Extension services that will enable
remote science and mission operations
facilities to access the ground termination of
the CCSDS Space Link services in a
standard way. The RAF service provides all
CCSDS frames received on a single space
link channel. Provisions in the current draft
of the RAF service specification include
different service options to allow users to
tailor the service to individual processing
capabilities and operational philosophies.
Several forms of service status information
are provided to report on the status of
individual frames, time-critical events, and
long-term service trends. Current plans are
for the CCSDS Return All Frames Service
Specification Recommendation to be
submitted for CCSDS member Agency
approval in 1995.

REFERENCES

CCSDS. (1987a, January). Recornmendation
for Space Data System Standards.
Telecommand, Part I - Cha111ze1 Service:
Architectural Specification. CCSDS
201.0-B-1, CCSDS Secretariat, National
Aeronautics and Space Administration,
Washington, DC.

. (1987b, January). Recommendation
for Space Data System Standards.
Telecommand, Part 3 - Data Management
Service: Architectural Specification.
CCSDS 203.0-B-1. CCSDS Secretariat,
National Aeronautics and Space
Administration, Washington, DC.

- . (199 1, October). Recommendation for
Space Data System Standards. Tele-
command, Part 2.1 - Command Operation
Procedures. CCSDS 202.1-B- 1. CCSDS
Secretariat, National Aeronautics and
Space Administration, Washington, DC.

. (1992a, May). Recommendation for
Space Data System Standards. Telemetry
Channel Coding. CCSDS 101.0-B-3.
CCSDS Secretariat, National Aeronautics
and Space Administration, Washington,
DC.

- . (1 992b, November). Recommendation
for Space Data System Standards.
Telecommand, Part 2 - Data Routing
Service: Architectural Specification.
CCSDS 202.0-B-2. CCSDS Secretariat,
National Aeronautics and Space
Administration, Washington, DC.

- . (1992c, November). Recommendation
for Space Data System Standards. Packet
Telemetry, CCSDS 102.0-B-3, CCSDS
Secretariat, National Aeronautics and
Space Administration, Washington, DC.

. (1992d, November). Recommendation
for Space Data System Standards.
Advanced Orbiting Systems, Network and
Data Links: Architectural Specification.
CCSDS 701 .O-B-2. CCSDS Secretariat,
National Aeronautics and Space
Administration, Washington, DC.

-- . (1994a, November). Report Con-
cerning Space Data System Standards.
Cross Support Concept, Part 1: Space
Link Extension Services. CCSDS xxx-W -
1. CCSDS Panel 3 plenary meeting,
Goddard Space Flight Center, Greenbelt,
MD.

. (1994b, November). Recommendation
for Space Data System Standards. Space
Link Extension Reference Model. CCSDS
xxx-W-1. CCSDS Panel 3 plenary
meeting, Goddard Space Flight Center,
Greenbelt, MD.

ISOIIEC. (1992, March). Information
technology - Text communication -
Message-Oriented Text Interchange

Systems (MOTIS) - Part 3: Abstract
Service Definition Conventions, Technical
Corrigendum 1 . ISO/IEC 1002 1-3.

Stallings, W. & Kaufeler, J.-F. (1994,
November). Cross Support Overview and
Operations Concept for Future Space
Missions. Proceedings of the Third
International Symposium on Space
Mission Operations and Ground Data
System. Goddard Space Flight Center,
Greenbelt, MD.

ACKNOWLEDGMENT

The draft RAF service Recommendation,
upon which this paper is based, is being
developed by the CCSDS Panel 3 Core
Group. The authors wish to thank the
members of the Core Group for their
collaboration in the development of the SLE
service concept and SLE service reference
model, and their contributions to definition
of the RAF service itself.

35.9 J / 3
PROPOSAL FOR IMPLEMENTATION OF CCSDS STANDARDS

FOR USE WITH SPACECRAFT 6 2 .. b
ENGINEERINGIHOUSEKEEPING DATA

by Dave Welch
Senior Operations Engineer

AlliedSignal Technical Services Corporation
Flight Operations Department

Goddard Corporate Park
75 15 Mission Drive
Lanharn, MD 20706

(301) 805-3638
Fax: (301) 805-3130

E-mail: WelchD @ess-mail.atsc.allied.com

Abstract

Many of today's low earth orbiting spacecraft are using the Consultative Committee
for Space Data Systems (CCSDS) protocol for better optimization of down link RF bandwidth
and onboard storage space. However, most of the associated housekeeping data has
continued to be generated and down linked in a synchronous, Time Division Multiplexed
(TDM) fashion. There are many economies that the CCSDS protocol will allow to better
utilize the available bandwidth and storage space in order to optimize the housekeeping data .
for use in operational trending and analysis work. By only outputting what is currently
important or of interest, finer resolution of critical items can be obtained. This can be
accomplished by better utilizing the normally allocated housekeeping data down link and
storage areas rather than taking space reserved for science.

Background

This proposal began as a study to optimize the archival of spacecraft housekeeping
data from the SAMPEX Small Explorer mission for use in long term data analysis and
performance trending needs. As the study progressed, it became apparent that many of these
optimization techniques could be put into the spacecraft itself by taking advantage of new
advances in flight certified microprocessors and the options provided by the CCSDS protocol.
Future missions could be programmed to detect most of the problems that the ground data
systems currently look for and provide for higher resolution data to help in troubleshooting
when a problem arises, filtering out unnecessary data when the spacecraft health is nominal.

When health and safety data is processed and analyzed, some data that is stored
onboard in the recorder is filtered out on the ground and discarded. As long as parameters
remain constant and configurations don't change, this information is redundant and
unnecessary. Other data is output synchronously at to slow a rate to be of any use for
anomaly analysis. This data may give indications of a problem, but not enough information to
know exactly what is going on, or it may mask a problem for weeks or months, even years
due too periodic sampling of the data that may be asynchronous to brief anomalous events.

It should be noted that attitude determination was not addressed in this study even
though attitude data is usually considered a subset of the housekeeping data. Attitude data

packetization algorithms should be specified so as to meet science data processing
requirements rather than performance analysis requirements that are usually less stringent.

Types of housekeeping data

The housekeeping data for SAMPEX fell into one of six different general categories:
discrete counters, digital status data, analog data, flight software memory dumps, flight
software memory dwell data and science quicklook packets. Time was not included in this
study as a separate category as it is a parameter in every CCSDS packet header and therefore
usually is not a part of the application data field. Obviously, time must be transmitted in such
a fashion as to know when each telemetered data value was sampled.

The first category, discrete counters, is the primary means to monitor and diagnose the
performance of flight software andlor the command and data handling unit. This data falls
into two general subcategories. These are counters that infrequently increment and those
which constantly increment. The counters that infrequently increment include command
execution counters, command execution error counters and miscellaneous error counters.
These types of counters are of interest only when they change value. The counters that
constantly increment include time, task execution counters, and data storage accounting
statistics. Some of these counters are always of interest, some are only of interest during
flight software diagnostic testing, and some are only of interest during real-time.

The second category, digital status data, consists of configuration data (items that can
be modified by command), error flags, environmental flags (generally indicate some orbital
characteristic such as day or night delimiters) and informational data. This data is generally .
supplementary data that helps to determine when something happened and, like the
infrequently incrementing counters mentioned above, are of interest only when they change.
Examples of this type of data include spacecraft event messages, calculated onboard table
checksums, flight software load and dump information and error handler takeover reasons.

The third category, analog telemetry, is probably the most important data for
monitoring the health and safety of the spacecraft. What is key here is getting the right amount
of data to detect problems or degradation without monopolizing the onboard data storage space
or the down link bandwidth.

The next two categories, flight software memory dumps and flight software memory
dwell data, are generally used for flight software maintenance purposes and would probably
only be output on receipt of a spacecraft command. Handling of this data is an entire subject
in itself and is not specifically referenced in this paper.

The last category, quicklook data, is generally handled by onboard microcomputers
and, for SAMPEX, is only output on receipt of a command. It was only included in the
SAMPEX study since it is the only source of instrument housekeeping data available in the
control center. These data packets consist of a one orbit sample of various instrument rate
counters and housekeeping status.

Data Processing Functions for Data Analysis and Performance Trending

The data processing functions done for data analysis and performance trending are
very similar to the data processing steps for science data analysis. The first step involves a
quality and accounting assessment to ensure that an adequate amount of data is recovered for
data analysis and performance trending. The raw data is generally archived to provide a

backup in the event a data processing error is discovered in the future. Optional data merging
may be done to combine real-time and playback data or to replace bad quality data with a
better, retransmitted value. Finally, the data can be sorted by function or subsystem.

The next step generally involves ingesting the data values and affixed time-tags into a
database for later access by analysis tools. This step includes processing the data and
monitoring for high and low limit violations, verifying configuration and discrete state checks
and optionally performing engineering unit conversions (if the storage database does not
provide this function). At this point the data may also be processed to provide
maximum/mean/minimum values of analog values for long term performance trending. This
data may be processed for single orbits, daily or some other periodic unit of time.

After the data has been processed and stored in an on-line database, routine data
analysis can be performed. This routine analysis function can generally be automated and may
include creation of x/y plots for the thermal, communications or power subsystem as well as
special processing for power budget monitoring and analysis or for attitude determination and
control system verification.

Finally, some sort of orbit propagation may be done to provide a definitive history of
actual spacecraft position over time. This data can be used both in subsequent anomaly
investigation or for long term performance trending and is generally needed to isolate
spacecraft problems that may be due to an environmental factor. In most circumstances, orbit
accuracy requirements for science data processing are tighter than that required for
performance analysis and therefore a commercial off the shelf orbit propagator, or ephemeri
data provided for science data analysis, is sufficient. This data must be stored, or made
available, to any plotting packages that would have access to the on-line spacecraft database
and be used for analysis and trending.

Special data processing may then be required to further analyze any spacecraft
anomalies. Also, short and long term trending may be done. Short term trending may involve
comparing a sample orbit signature of a telemetry point with a comparable earlier orbit
signature to monitor for degradation or orbit patterns. Long term trending may involve such
things as plotting minimum, mean and maximum values of telemetq points (1 point per orbit
or day, etc.) over a longer time span to monitor seasonal or longer term trends. Long term
earth projection plots niay be used to monitor single event upsets or other environmental
effects on spacecraft performance.

Onboard packetization strategies

For the data that is only of interest when it changes, such as command execution
counters, command execution error counters, other error counters and digital status data,
onboard storage space could be saved if this data were stored only when something changes.
Depending on how many telemetry points fall into this category, one or two packet formats
(more if large amounts of these points exist or if separation by subsystem is desired) should
be specified. To save storage space if there are more than a few of these points, two packets
should be defined separating data that is expected to periodically change and data that should
never, or very rarely, change.

This data could then be sampled synchronously onboard, formatted into a packet and
compared to the previous sample. If the comparison showed a difference, the old and new (or
just the new) packets could be stored. Else, the old packet could be discarded and the new
packet saved for comparison with the next sample. The sampling rate should be frequent
enough to provide the time of the change to within a few seconds and should also be frequent

enough to catch every state transition. If a relay can be powered on and back off between
samples, the ground operations team may never know that a transition occurred. If there is a
concern of scheduling reads to quickly, the individual subsystem could maintain a history of
the last few settings of the discrete and the associated times or just keep track of all transitions
between readings and set a flag if more than one transition occurred since the last sampling.

Finally, this data could also always come down in real-time, if there is enough down
link bandwidth, or could be stored or down linked on command. This would provide the
ground operations team a sanity check on the data to ensure that a change does not go
undetected due to a lost packet. Another possibility is to treat some or all of these items as
spacecraft events and issue an event message containing the telemetry mnemonic, the previous
and current values and the time of the transition rather than store the full data packet that
contains a sampling of all of the discrete, infrequently changing values. The configuration and
counter packet(s) could then be available for storage or real-time down link on command in
order to provide sanity checks.

The next type of data is the frequently or constantly changing data. This category
includes analog data, flight software task execution counters and data storage accounting
statistics. Analog data, when synchronously stored, is generally compromised. By this, I
mean that this data is usually stored at a rate that is to frequent when the spacecraft health is
nominal and not frequent enough for analysis purposes when there is a spacecraft anomaly to
investigate.

One way to improve upon this is to take advantage of current flight certified onboard
computer capabilities (usually required to take full advantage of the CCSDS protocol anyway)
to move analog and discrete monitoring functions (limit, state and configuration checking) -
from the ground data system to the spacecraft. This would give the spacecraft the ability to
detect its own anomalies, take immediate command response to anticipated contingencies and
provide higher resolution data for use in ground analysis when a discrepancy occurs. Analog
data could be stored in a circular buffer onboard the spacecraft. This buffer would be sized to
hold approximately one orbit, or other suitable time increment, of high resolution analog data.
If a monitor violation is detected by the onboard computer, then the contents of the circular
buffer, or an appropriate subset of that data, can be transferred to the data storage recorder for
subsequent ground data analysis of the problem. During the rest of the time, this data could
be filtered before being recorded such that enough data is always available to do performance
trending, but higher resolution data is available for anomaly analysis. By allowing this
circular buffer to be stored or down linked on command, daily high resolution or "typical
orbit" plots could be maintained. Filtered data would then fill in the rest of the day.

With a more sophisticated onboard computer, the function of calculating and saving
the maximum, minimum and mean values for a given telemetry point, on a per orbit or other
incremental period, could also be migrated to the spacecraft. This could be particularly useful
for power system analysis, where it is often desired to identify when a current or voltage spike
may have occurred. Currently this is like looking for a needle in a haystack as the
synchronous data sampling either results in the spike not being recorded or in the inability to
determine exactly how long the event actually occurred. By combining min./mean/max. data
with high resolution data output when a monitor is violated, work on detecting, monitoring
and isolating power spikes could be greatly enhanced. Also, min./mean/max. data could give
a good, quick view of the spacecraft thermal performance.

If the min./mean/max. data was sampled directly from the analog source, or the high
resolution buffer, a better data set could be obtained onboard than could be calculated on the
ground from the lower resolution, filtered data that would be stored onboard when spacecraft
functions were nominal. This would result in better long term trending data.

Flight software task execution counters are primarily used for diagnostic purposes.
Since these counters have a possibility of rolling over multiple times each second, this data
needs to be output at a high rate to be of any use. An output of delta values or messages per
second, vice absolute counts, could be more useful. Also, since this data is really a diagnostic
tool, it should be filtered out and only stored or down linked on command, when necessary.
It is also possible to provide flags to indicate that software tasks are running and execution
counters are incrementing. Actual counts would only be needed if trying to study
environmental effects on task loading or to diagnose a new flight software patch. For
example, on SAMPEX we attempted to see if flight software tasks were running at a
significantly different load during ground contacts or when over the poles when science data
output increased due to increased particle events.

Data storage accounting statistics are generally only used during ground contacts to
verify that the data stored onboard was completely captured on the ground during a recorder
dump. Therefore, storage of this data is usually not necessary. However, it may be of
interest to do a study of how often and when data is stored based on environmental factors.
Therefore it may be desired to allow storage of this data in a fashion similar to the task
execution counters mentioned above.

Another way to save onboard storage space for constantly changing telemetry points is
to increase the efficiency of CCSDS packetization by increasing the packet size. Each packet
header requires 112 bits. Packet size can be increased by supercomming the data (multiple
samples assembled within the same packet), however this requires that the ground data system
have the capability to split the packet apart and extrapolate the time code. Another way to
increase packet size is to specify packet contents based on output frequency rather than by -

source. This allows fewer, larger packet types to be managed by the spacecraft, at a higher
storage efficiency, but at the expense of being able to sort data by spacecraft telemetry source
once on the ground.

The final types of data packets are those which are stored and/or down linked only on
command. This already implies that this data would only be generated when needed and,
other than combining data packets if possible, no other optimization techniques are necessary.

Implications to spacecraft data storage sizing

Since many of the proposals in this paper suggest event driven rather than
synchronous data output, it is now more difficult to optimally size the amount of storage space
needed for housekeeping data. Science data storage space is not optimized if housekeeping
data storage space is sized for the worst case.

Therefore it is recommended that housekeeping storage space be sized to hold the
expected amount of housekeeping data under nominal conditions, allowing for any additional
storage space that may be desired to allow two or more down link opportunities for any
particular data dump. Then some space could be reallocated from the science allotment, if
needed, in order to store higher packet output rates generated when spacecraft algorithm's
explained above increase the amount of housekeeping data saved. By sharing some science
storage allocation, science data output can be maximized when spacecraft operation is
nominal. This shared area could then be reallocated to housekeeping when spacecraft
problems cause higher packet output rates to be needed. It may even be possible to set this up
in a way that less valuable science data would be lost in the event of a problem. Even though
this could result in periodic losses of some of the science data, it should allow more science to
be recorded during nominal periods when the housekeeping data output is reduced to a

minimum and could allow for more expedient detection and correction of small problems
before they become big problems.

Summary

By taking advantage of the event driven nature of the CCSDS protocol and by
migrating some of the basis data checks from the ground to the spacecraft, the output of
spacecraft housekeeping data can be optimized to provide a more prudent balance with science
data. By monitoring discrete telemetry, only information on state transitions or counter
increments need be transmitted to the ground rather than synchronous output of redundant
data. On command discrete telemetry packets can provide the ground with a sanity check.
Also, by having the spacecraft monitor analog limits and subsystem configurations, analog
data output can be throttled to provide increased data output rates when potential problems
exist while filtering this output during nominal operations. By having the spacecraft calculate
max./mean/min. data, long term trending of spacecraft performance can be greatly enhanced.
Finally, by sharing recorder overflow space with science, optimum science output can be
achieved when spacecraft performance is nominal and finer resolution housekeeping data can
be output when there is an indication of a performance problem.

4. Systems Architectures

SE.4.a Ground Segment Strategies and Technologies in Support of
Cost Reductions

K. Debatin

SE.4.b Mission Operations Centers (MOCs): Integrating Key
Spacecraft Ground Data System Components

Randy Harbaugh, Donna Szakal

SE.4.c ATOS: Integration of Advanced Technology Software Within
Distributed Spacecraft Mission Operations Systems

M. Jones, J. Wheadon, W. O'Mullane, D. Whitgift, K.
Poulter, M. Nikzette, R. Timmermans, Ivan Rodriguez, R.
Romero

SE.4.d The NASA Mission Operations and Control Architecture
Program

Paul J. Ondrus, Richard D. Carper, Alan J. Jeffries

SE.4.e Renaissance Architecture for Ground Data Systems
Dorothy C. Perkins, Lawrence B. Zeigenfuss

SE.4.f Architecture of a Distributed Multimission Operations System
Takahiro Yamada

Page 1277

'!' Presented in Poster Session

GROUND SEGMENT STRATEGIES AND TECHNOLOGIES IN
SUPPORT OF COST REDUCTIONS

K. Debatin
ESOC

Paper Not Available

Mission Operations Centers (MOCs):
Integrating Key Spacecraft Ground Data System Components

Randy Harbaugh
National Aeronautics and Space Administration

Goddard Space Flight Center
Greenbelt, Maryland, U. S.A.

Donna Szakal
Computer Sciences Corporation

Laurel, Maryland, U. S. A.

ABSTRACT

In an environment characterized by decreasing
budgets, limited system development time, and
user needs for increased capabilities, the
Mission Operations Division (MOD) at the
National Aeronautics and Space Administration
Goddard Space Flight Center initiated a new,
cost-effective concept in developing its
spacecraft ground data systems: the Mission
Operations Center (MOC). In the MOC
approach, key components are integrated into a
comprehensive and cohesive spacecraft
planning, monitoring, command, and control
system with a single, state-of-the-art graphical
user interface. The. MOD is currently
implementing MOCs, which feature a common,
reusable, and extendable system architecture, to
support the X-Ray Timing Explorer (XTE),
Tropical Rainfall Measuring Mission (TRMM),
and Advanced Composition Explorer (ACE)
missions.

As a result of the MOC approach, mission
operations are integrated, and users can, with a
single system, perform real-time health and
safety monitoring, real-time command and
control, real-time attitude processing, real-time
and predictive graphical spacecraft monitoring,
trend analysis, mission planning and scheduling,
command generation and management, network
scheduling, guide star selection, and (using an
expert system) spacecraft monitoring and fault
isolation. The MOD is also implementing its
test and training simulators under the new
MOC management structure.

This paper describes the MOC concept, the
management approaches used in developing
MOC systems, the technologies employed and

the development process improvement
initiatives applied in implementing MOC
systems, and the expected benefits to both the
user and the mission project in using the MOC
approach.

INTRODUCTION

The National Aeronautics and Space
Administration (NASA) Goddard Space Flight
Center (GSFC) Mission Operations Division
(MOD), in partnership with the Computer
Sciences Corporation (CSC) Control Systems
Technology Group (CSTG), developed the
Mission Operations Center (MOC) concept to
improve the MOD'S spacecraft ground data
systems. The focus of this effort was to
enhance system operability and increase
functionality while lowering development and
operational costs and shortening development
time.

Four key advances within and outside the MOD
arena contributed to the development and
refinement of the MOC concept: reengineering
of the MOD mission operations concept,
restructuring of management to a mission-
oriented structure, industry development of
enabling technologies, and application of
improvements in system development
processes.

Reengineering of the MOD mission operations
concept provided the framework for developing
the MOC concept. Restructuring from a
multimission to a mission-oriented management
organization provided the vehicle for efficiently
and effectively implementing the concept.
Enabling technologies such as powerhl
workstations and industry standards

contributed to the feasibility of the concept.
Improved system development processes in all
life-cycle phases contributed to the cost-
effectiveness of the concept.

DEFINING THE MOC CONCEPT

Driven by user demands for mission-unique
systems with improved operability and
increased functionality, mission profiles with
accelerated spacecraft schedules, and NASA
budgets in steady decline, the MOD
reengineered its overall mission operations
concept. This activity viewed mission
operations from an MOD-wide level, with the
goals of maximizing the operations that a single
user can perform while minimizing system
development time and reducing operational and
development costs. The MOC concept makes
significant strides toward achieving these goals.

Before the MOC, the MOD developed ground
data systems and conducted mission operations
in host-based, multimission environments
supported by separate, independent branch
organizations. For example, the Control Center
Systems Branch (CCSB) (GSFC Code 51 1)
developed Payload Operations Control Centers
and the Spacecraft Control Programs Branch
(GSFC Code 514) developed mission planning
and command management systems. As a result
of the reengineering activity, which
encompassed the operational fbnctionality of all
of the MOD's independent systems, the MOC
system was defined as an integrated,
comprehensive, mission-unique system with a
single user interface and the capabilities
necessary to support the MOD's mission
operations.

With a MOC system, the user can, from a single
workstation, perform traditional mission
operations including real-time spacecraft health
and safety monitoring, real-time spacecraft
command and control, trend analysis, mission
planning, command generation and
management, and network scheduling as well as
newly added operations such as mission
operations planning and scheduling, real-time
and predictive graphical spacecraft monitoring,
real-time attitude processing, guide star
selection, and spacecraft subsystem monitoring
and fault isolation .

The broadened view of the MOD's mission
operations, free from the past organizationally
induced partitions of fbnctionality, enables
comprehensive system engineering that
considers only the technical aspects of the
MOC system definition. The resulting MOC
system eliminates redundant capabilities within
the MOD; eliminates or simplifies interfaces to
and within the MOD; and allows for cost-
effective, systemwide solutions. Because of
these improvements, a MOC system can be
developed in less time and at lower cost than
the traditional, independent ground data system
implementations.

MANAGING MOC DEVELOPMENT

The concept of developing an integrated MOC
ground data system naturally led to the concept
of an integrated, mission-oriented management
structure. To provide the vehicle for efficiently
and effectively implementing each MOC
system, both the MOD and CSC restructured
their management organizations to create a
single, mission-oriented MOC management
team. Recognizing the potential for improving
coordination and communication between the
mission's MOC system and the mission's
standalone test and training simulator
[traditionally developed under the Simulations
and Compatibility Test Branch (GSFC Code
515)], the MOD and CSC placed development
of the simulator under the MOC management
structure.

The resulting mission-oriented MOC
organization is headed by a system manager and
is supported by a MOC system engineer;
managers of the major MOC components and
the simulator; and knowledgeable, technical
component experts. This approach retains the
expertise of the traditional organizations and,
for the first time, combines the functionality of
the MOD ground data systems previously
developed by independent organizations under
a single MOD-level system manager.

The major advantages of this management
approach over the traditional approach include
consolidation of mission budgets; closer
coordination of system capabilities and
schedules; integration of a major portion of the
mission ground system earlier in the ground

system life cycle; provision for a single point of
contact to the mission projects and users; and
improvements in communication, coordination,
and cooperation among the experts from the
various ground data systems. Clearly, these
advantages could only be realized when the
management authority, responsibility, and
control rested in the hands of a single, system
manager whose primary focus was to manage
development of the MOC system and the
simulator.

Consolidating mission budgets under a single
manager with the requisite responsibility and
authority simplifies the planning of projected
budgets and the reporting of actual spending on
a per-mission basis. Further, single-manager
responsibility for most of the MOC components
results in increased flexibility in assigning
resources among the components that need it.
With the MOC approach, timely, system- and
component-level budget decisions can be made
within the MOC organization from a balanced
and informed viewpoint.

Closely coordinating component development
schedules and the capabilities to be
implemented according to the consolidated
MOC master schedule significantly improves
the readiness of a major portion of the mission's
total ground system. In the traditional
approach, one ground data system's capabilities
and schedules were usually developed with
limited insight into the needs of the other
ground data systems. This lack of close
coordination sometimes resulted in the need for
additional temporary software to simulate
missing capabilities and delayed mission ground
system testing of these capabilities. In the MOC
approach, simulator and component schedules
and capabilities are closely coordinated so that
each MOC component fully supports the others
and the MOC and simulator systems fi l ly
support each other at the scheduled time. This
level of coordination significantly reduces time
spent waiting for independent ground data
systems to get synchronized in support of
mission ground system testing. Although
planning a MOC development schedule is
slightly more time consuming and complex than
in the traditional approach, monitoring
projected and actual schedules is much quicker
and easier because there is one composite
schedule.

Integrating major portions of the mission's
ground system during the development phase of
the life cycle, rather than during the integration
and test phase, significantly reduces mission
ground system interface, integration, and end-
to-end test time. The schedules and capabilities
of the MOC system components are not only
coordinated, but the major efforts of integrating
and testing them and also testing the integrated
MOC system with the simulator are
accomplished by the development team before
delivery of either system to GSFC. In the
traditional approach, this integration and testing
occurred after delivery of each of the
independent ground data systems, when
interface problems are difficult to isolate and
repair quickly. The extensive, advanced
planning of the MOC master schedule, which
considers the project's test needs, coupled with
the development team's expertise in integrating
and testing the MOC system, improves the
overall quality and readiness of the ground
system earlier than previously possible.

Because the MOC organization provides a
single point of contact, the MOD speaks with a
unified voice to the mission project and MOC
system users. Traditionally, a mission 'project
had to communicate with each of the MOD
branch organizations, an inefficient and time-
consuming process. Also, users had to
communicate with the developers from each of
the MOD independent ground data systems to
convey and receive information. The MOC
approach ensures a direct, timely, and
consistent flow of information from the MOC
team to the mission project and the users. For
example, with a MOC system, there is a single
set of comprehensive, formal reviews (e.g., a
single system requirements review, preliminary
design review, and critical design review) to
attend and critique; there are fewer documents
to review and approve than with the traditional
approach (e.g., a single comprehensive require-
ments specification rather than multiple ones);
and, as an added benefit, the resources needed
to prepare, present, and maintain these formal
reviews and documents are reduced.

Improved communication, coordination, and
cooperation among the technical experts from
the various ground data systems ensures the
timely development of robust, cost-effective
MOC systems. The single, cohesive MOC team

shares a common focus and a common goal: the
successfbl implementation of the MOC system.
The team makes decisions to support this goal,
relinquishing conflicting demands and diverse
approaches from the originating organizations
in favor of a unified management and technical
approach.

The MOC system engineer and component
experts regularly share their expertise and
insight with each other. Cross-checks of
understandings highlight discrepancies early,
allowing them to be solved when resolution is
less costly. For example, on the X-Ray Timing
Explorer (XTE) MOC, discrepancies existed in
early mission documentation describing the
telecommand packet checksum calculation.
Because the simulator experts on the team
knew how the flight software performed this
calculation, they were able to resolve the
problem quickly and with no cost impact.
Typically, with the limited cross-check of
understandings between simulator and control
center system experts in the past, a problem
such as this would not have been found until
actual ground system integration testing with
the spacecraft or the simulator, when problem
repair is more costly.

The MOC team has also used their broadened
view of the system to identifjl and implement
more robust technical solutions. For example,
the traditional simulator, control center, and
command management systems each used
different approaches and different data base
software to process the mission's project data
base. For the single, integrated MOC system,
the team has identified and implemented a more
rigorous relational data base solution with
increased hnctionality over any of the
traditional systems.

Working as a cooperative team, the MOC
component experts have identified and
eliminated redundancy among the components,
reducing the amount of software that must be
developed, tested, and maintained. Traditional
capabilities, as well as new fbnctional
capabilities, are available earlier. For example,
the selection of a single user interface means
that the time traditionally spent developing and
maintaining multiple user interfaces can be
spent enhancing the fbnctionality of the selected
user interface. For the integrated MOC system,

the team has also eliminated the formal
interface between the control center and
command management systems. Significant
savings have been realized in eliminating the
formal definition, negotiation, control,
integration, and testing of this interface because
these efforts are now performed within the
MOC organization. Traditionally, several
separate MOD and mission project
organizations needed to be involved.

The most important challenges in defining the
MOC management approach were to develop a
mission-oriented organization that retained the
expertise of the various components of the
MOC system and to minimize the risks to the
success of the mission while implementing the
new technical and management approaches.

The MOC management approach capitalizes on
the use of technical and management expertise
from each of the ground data systems. The
depth of knowledge provided by these
component experts, coupled with the breadth of
knowledge of the system engineer, is essential
to the success of any MOC implementation.
Management risks are minimized because
component experts are part of the MOC team
and because the best practices from the
originating MOD branch organizations have
been selected and implemented. Techniques
such as the use of multimission working groups
and matrices of expertise have been expanded
to encompass the fbll MOC fbnctionality. These
techniques, successfblly demonstrated in the
traditional organizations, make possible high
levels of software reuse across and within
mission implementations. In the control center
area, for example, software reuse levels of over
70 percent are regularly achieved. Technical
risks are minimized because the selected MOC
architecture is a natural extension of the in-
place, highly successfbl system architecture
described below. Use of these management and
technical strategies minimizes the risk of the
overall MOC concept.

To fbrther reduce the risks, the MOD initiated a
pilot project in October 1992, selecting the
XTE mission as the first MOC system imple-
mentation. The MOD, CSC, and the mission
project have closely monitored the progress of
this MOC via various technical reviews and
regular management reviews. By June 1993, the

XTE MOC pilot project showed such early
promise and enthusiastic user support that the
MOD reassigned the TRMM mission, which
started development as separate control center,
command management, and simulator ground
data systems, as an integrated MOC system
implementation and a standalone simulator
under the new MOC management structure.

IMPLEMENTING THE MOC

MOC Architecture

The availability of enabling technologies such as
powerfbl workstations and networks,
distributed processing, commercial off-the-shelf
(COTS) products, and industry standards
contributed to the feasibility of the MOC
concept. The effectiveness of their use was
successfblly demonstrated in the MOD'S CCSB-
developed Transportable Payload Operations
Control Center (TPOCC) system philosophy
and architecture. The MOC concept extends
the use of TPOCC to cover broader
fhnctionality.

The TPOCC architecture is based on the use of
industry standards, COTS components, custom
reusable components, and distributed
processing using clientlserver technology. It
features interconnected hardware that provides
systemwide access to data and distributed
processing that is flexible and transparent to the
user. It supports the dedicated use of a
workstation for isolated functions or the use of
a single workstation for multiple functions. It
also allows single functions to be spread across
multiple processors to provide needed levels of
processing and data throughput. The state-of-
the-art graphical user interface, which features
a windowing environment, significantly
increases system operability.

The TPOCC architecture is designed to be
evolutionary in that new technology can be
inserted into the basic system framework
without disrupting the overall architectural
approach. This extendable architecture easily
supports integration of independently
developed components that follow its
fbndamental precepts.

Each MOC system, which uses TPOCC's
hardware architecture approach, is sized to

meet its mission's data and operational needs
and consists of a network of inexpensive,
heterogeneous COTS workstations, X-
terminals, and front-end processors (i.e., single-
board computers). The architecture reflects a
commitment to industry standards such as
VME, Ethernet, RS-232, RS-422, and SCSI.
For the MOC, a RAID array, optical disk, CD
ROM, and 3-D graphics devices are added to
the basic TPOCC architecture to support the
broader fhnctionality of a MOC.

The MOC software architecture approach, like
TPOCC's, consists of distributed processing
using clientlserver technology, adherence to
open system communications standards,
extensive use of COTS products, and
implementation of reusable custom code. Most
of the MOC software is written in C or C++
and is designed to be independent of the
hardware, thus making it easily portable to
other platforms.

All MOC software components are
implemented following open system
communications standards such as the Trans-
mission Control Protocol/Internet Prdtocol
(TCPIIP), external data representation. (XDR),
and network file system (NFS). The commer-
cial standards for the MOC's graphical user
interface include X-window and Open Software
Foundation's Motif software. The use of
industry standards facilitates incorporation of
COTS products, generic systems, and
independently built components without
impacting the overall software architecture.

The MOC system is flexible and extendable. It
supports, from a single workstation, the
hnctionality previously dispersed among many
minicomputers and mainframe systems, thus
increasing the number of operations that a
single user can perform. The MOC system
reduces operational costs because multiple,
independent systems are consolidated; work-
stations replace more expensive minicomputers
and mainframe systems, and computer
operators are no longer needed to support
multimission computer facilities.

Process Improvements

Application of improved processes in the
requirements, design, implementation, integra-

tion, and test phases of system development
contributed to the cost-effectiveness of the
MOC concept. In an atmosphere of continuous
process improvement, the MOC development
teams have applied several improvement
initiatives to the development of the MOC
systems.

The mission MOC teams have improved the
process of defining the MOC system require-
ments. During the requirements definition
phase, joint developer and user teams, some-
times referred to as Joint Application Develop-
ment (JAD) teams, define the requirements.
Using the JAD approach, users familiar with the
specific mission requirements and operational
needs and developers familiar with existing
software capabilities are able to quickly identi@
mission-unique needs. The JAD team uses an
existing set of requirements from other, similar
missions as a base for defining the new
mission's requirements. This approach results in
the timely definition of requirements because
the JAD team, rather than starting from scratch,
simply analyzes the baseline and makes
additions or deletions as appropriate. This
approach also maximizes the reuse of existing
software, limiting detailed requirements analysis
to mission-unique areas. The Advanced
Composition Explorer (ACE) MOC JAD team
is using this approach with the XTE MOC
requirements providing the basis for
requirements discussions.

The ACE MOC JAD team is also piloting the
concept of users and developers jointly docu-
menting requirements rather than each group
independently writing and cross-referencing
separate, configuration-controlled documents.
The team documents requirements on-line using
the Requirements Generation System (RGS)
data base tool. This approach is also expected
to save considerable time and effort.

The mission MOC teams have also
implemented improvements in the design
process. During the design phase, extensive
technical exchange meetings are held both
within a specific mission MOC (i.e., cross-
function) and across the MOCs of other
missions (i.e., cross-mission). Each MOC's
system engineer and component experts
regularly hold cross-function technical
exchange meetings to design portions of the

software so that they can be used by multiple
components, thus maximizing reuse within a
mission MOC. In addition, the MOC system
engineers and component experts regularly hold
cross-mission technical exchange meetings to
design specific components into generic and
mission-unique building blocks, thus
maximizing reuse across MOC missions (i.e.,
generic component software is designed with
mission-unique "hooks"). This MOC design
approach results in a comprehensive, cohesive
system design that eliminates organizationally
induced walls between functional components.

During the implementation phase, the mission
MOC teams' strict adherence to system
development standards and use of a standard
user interface permits multiple components
(i.e., multiple portions of the system) to be
developed concurrently. Although this is not a
new process, its implementation during MOC
system development is essential. The mission
MOC teams have also expanded the use of
advanced COTS software development tools
such as SoftBench, Branch Validator, and
PurifL to assist them in writing and debugging
software.

The implementation of these development
improvements allows the mission MOC teams
to capitalize on three aspects of software reuse:
reusing existing custom-built and generic
software components; designing custom
software with new functionality for future
reuse; and integrating existing, standalone
generic systems and COTS products. Each
MOC team works with users to define mission
requirements that maximize the reuse of
existing custom-built and generic components
(e.g., existing mission software, TPOCC
generic software) while still meeting each
mission's unique needs. Sharing requirements
expertise across each mission allows the MOC
teams to design custom code for future
reusability because generic components are
identified and developed to permit mission-
unique extensions. Each MOC's design also
integrates COTS products (e.g., ORACLE) and
standalone generic systems such as the Generic
Spacecraft Analyst Assistant (GenSAA) and the
Generic Trend Analysis System (GTAS). The
use of these techniques reduces the amount of
new code needed while increasing functionality.
For example, approximately 50 percent of the

first MOC's code and over 80 percent of the system reduces the amount of time necessary
second MOC's code consists of reusable for mission-level ground system interface and
components (not including the integrated integration testing because not only have some
generic systems or COTS products). This of the traditional interfaces been eliminated, but
percentage is expected to increase as additional also a major portion of the overall ground
MOC capabilities are implemented for hture system has been tested.
reuse and spacecraft standards continue to be
formulated and implemented. BENEFITS OF THE MOC APPROACH

The mission MOC teams have also instituted
improvements in the integration phase. One of
the major challenges for any MOC system is the
integration of the many components that it
comprises. Successfkl integration of a MOC
system is a special and complex problem. The
complexity of integrating "externally" de-
veloped components (i.e., components de-
veloped by other organizations), for example,
encouraged definition of a formal integration
procedure. This procedure includes require-
ments for extensive planning, preparation, and
monitoring of the integration activity. For
example, for components developed within the
MOC organization, the MOC system engineer
and component managers require demon-
strations of, and explicit documentation about,
each developer's software before that software
is integrated with the total MOC system. In
addition to these improvements, for the first
time, the mission's test and training simulator
has been collocated with the MOC system in
the development environment, substantially
improving the developers' ability to test the
integrated MOC system. The MOC and
simulator developers' ability to extensively
exercise their systems before they are delivered
to GSFC significantly improves the quality and
robustness of each system.

During the test phase, the test process has been
improved by combining traditionally separate
system, acceptance, and user test teams into a
single test team (independent of the
development team) and by moving this level of
testing from the traditional postdelivery
timeframe into the predelivery timeframe. The
combined, concurrent testing by this team
reduces overall MOC system test time while
increasing testing effectiveness. When the test
team finds problems that must be repaired
before the system is deemed ready for
operational use, the development team corrects
the problems. This extensive, independent,
predelivery testing of the integrated MOC

The MOC approach provides major benefits to
its users. Probably the most important of these
benefits is the integration of mission operations
with mission specialists collocated in the
MOC's ofice-like, workstation environment.
Traditional, host-based systems located in
various multimission computer rooms required
that users be able to operate several indepen-
dent systems. On each of these systems, a user
could perform only one operation from each
terminal, requiring that user to monitor up to
three or four terminals at a time, depending on
the number of simultaneous operations to be
performed. The MOC's mission-oriented,
integrated system, with a windowing environ-
ment and distributed processing, allows the user
to perform and monitor multiple operations
from a single workstation, a vast improvement
over traditional systems.

A second important benefit to the user is the
MOC's state-of-the-art, standardized graphical
user interface that provides the same "look and
feel" across all components of the MOC. In
addition to traditional tabular data displays, this
interface supports graphical data represen-
tations such as plots, bars, dials, pie charts, and
timelines, enabling users to rapidly distinguish
anomalous situations. Menus and input panels
are intuitive to operate, and, with only one
consistent user interface to learn, user system
training as well as cross-component training is
simplified. This improved system operability,
coupled with the increased hnctionality
provided by a MOC system, provides the user
with all the tools needed to perform operational
duties.

The MOC approach provides many benefits to
the mission project. The MOC management
structure provides the mission project with a
single point of contact for a major part of the
developing mission ground system. This
improves and simplifies communication both to
and from the mission project.

Another major benefit to the mission project is Carlton D., Vaules, Jr. D., Mandl, D.
that MOC systems, as opposed to traditional (November 1992). GSMS and Space Views:
implementations, are less costly and achieve Advanced Spacecraft Monitoring Tools,
operational readiness in a shorter period of Proceedings of SPACEOPS '92 (pp. 375-380).
time. With fewer system interfaces, operational
and system development complexity and
associated costs are reduced. MOC approaches
such as elimination of redundant code among
components, extensive software reuse,
integration of COTS products and existing
generic systems, and commitment to expanding
the library of reusable custom components by
designing for future reuse are recognized
approaches that reduce costs. The MOC
systems contain more capability and higher
stability early in the development cycle because
of the extensive reuse of existing, tested
software and COTS products.

SUMMARY

The MOC approach to ground systems
development makes great strides toward
integrating the MOD'S mission operations. This
approach significantly increases the number of
operations that a single user can perform
simultaneously, substantially improves system
capability and operability, and simplifies user
training, while reducing operations and
development costs and shortening development
time.

Only 2 years since its inception, the MOC
concept has realized its initial goals. As the
MOC approaches continue to mature, and as
more functionality is incorporated into its
systems, the benefits to mission projects and the
user community are expected to grow.

REFERENCES

Koslosky J., Mahmot R.., Mandl D., and
Stratton W. (June 1990). Transportable
Payload Operations Control Center,
Proceedings of European Space Agency
Symposium: Ground Data Systems for
Spacecraft Control (pp. 653-658).

Beach E., Giancola P., Gibson S., Mahmot R..
(November 1992). Customizing Graphical
User Inte~ace Technology for Spacecraft
Control Centers, Proceedings of SPACEOPS
'92 (pp. 485-490).

ATOS: Integration of Advanced Technology Software within Distributed Spacecraft
Mission Operations Systems.

M Jones, J Wheadon,
W O9Mu1lane

European Space Opemtions Center
Robert-Bosch Str. 5,
64293 Dannstadt,

Germany.

Abstract: The Advanced Technology Operations
System (ATOS) is a programme of studies into the
integration of advanced applications (including
knowledge based systems (KBS)) with ground systems
for the support of spacecraft mission operations.
Keywords: 00. ATOS, AAM. DARPA, KQML, KY,
Knowledgebase. Infrasaucture. Operations, Interface.

1 Introduction
The aim of ATOS is to allow data to be shared
by multiple knowledge based and traditional
applications.

At ESOC several studies have applied knowl-
edge based techniques to specific areas of mis-
sion 'operations, producing a number of
independent prototype KBSs. The studies
showed that a great deal of common informa-
tion was used in many of the applications.
However, the various prototypes used different
KB S tools and knowledge representations
which meant they could not be easily inte-
grated. The initial objective of ATOS is to find
a solution to this integration problem without
imposing a knowledge representation on all
applications.

Section 2 examines the problem domain of
ATOS. Section 3 outlines the ATOS architec-
ture and section 4 discusses a prototype of the
architecture and of applications which use it.

2 SMOS Integration Problem
A Spacecraft Mission Operations System
(SMOS) comprises the set of facilities needed
to carry out all the mission operations. Mission
operations can be split into four areas:

D Whitgift, K Poulter
- Logica UK Ltd, UK

M Niezette, R Timmermans
Space Applications Services, Belgium

Ivhn Rodriguez, R Romero
GMV, Spain

* Mission Preparation. The tasks for the
preparation and configuration of the
Mission Control System (MCS) prior to
the start of the mission, as well as the
maintenance and updating of the basic
reference mission knowledge of the MCS,
during the mission.
Mission Planning. The planning and
scheduling of mission operations
activities.

* Mission Operations. All tasks involved in
control monitoring, and reporting. of the
mission.
Training / retraining of operations staff.

In general, independently developed software,
possibly running on different platforms will
support each of these areas. The areas, how-
ever, are far from independent: mission prepa-
ration produces the database for operations,
mission planning produces the plan of opera-
tions to be executed by mission operations and
the progress of mission operations conditions
the plan. Furthermore, applications use com-
plex data and may use knowledge based tech-
niques.

There are a number of considerations with
such systems:
* Because such systems are large and

difficult to implement, re-use of many
applications is necessary to avoid loss of
investment.
The required capabilities change during
the system's working life, for example, for
new missions, as users' needs change, or
when new technology (platforms,
networks .. .) is introduced.

* The various applications making up the
whole system are frequently inflexible,
with rigid and restricted interfaces. For
example, replanning in the event of
failures can be cumbersome because of
the interface between the control and
planning systems.
The applications also make use of
knowledge about the spacecraft, the
ground systems and the operational
procedures. Parts of this knowledge are
held centrally, but a significant amount is
held locally by the applications, each of
which may use its own representations
and conventions. This leads to potential
duplication and inconsistency of
knowledge and related problems in system
maintenance.

eral user perspectives resulting in several spe-
cialist applications. To integrate these we need
a generic communication mechanism for soft-
ware components, analogous to what the SCSI
protocol does for hardware components.

ATOS is a federation-enabling technology.
Each application (of a federated MCS) has
only to provide an interface to the ATOS infra-
structure to allow it to use data (and have its
data used) by other applications. In effect this
extends the object-oriented ph_ilosophy to the
application level by providing a consistent
interface to a set of applications which a devel-
oper may use without knowing implementa-
tion details of the individual applications.

Although ATOS has been motivated by the
needs of mission operations, the concepts (and
possibly even the emerging tools) -are not

These problems demand solutions: budget reshicted to that discipline. me approach
restrictions no longer allow the luxury of reim- could be used in any area in which heteroge-
plementing large parts of systems for new neous applications, possibly originally
sions. designed to be "stand alone" (i.e. without

2.1 Solution: The ATOS Approach regard to eventual integration) must be made
to work together.

A combination of the following two
approaches helps to address the problems out- 3 The ATOS Architecture
lined above:

This section describes the architecture which
* Implementation of generic applications realises the approach to integration outlined

from which specialisations may be built. above. Section 4 describes ~rototvpes of this
* Use of principles of federation to integrate architecture and of applicatibns &ich use it,

heterogeneous applications into a single and illustrates how the architecture works in
system. practice.

2.1.1 Generic Systems

Individual parts of a mission operations system
can take the approach of developing generic
applications which can be specialised for par-
ticular missions. The new generation of ESA
Spacecraft Control Operations System (SCOS-
11) [6] is a good example of this. In SCOS-11,
the basic functions of spacecraft control and
monitoring are implemented as an object-ori-
ented class library, from which mission sys-
tems can be built. Specialisations to mission
needs can be provided using "Implementation
by Difference" [3].

2.1.2 Federation

Development from generic components is fine,
but a problem is usually approached from sev-

3.1 The Mission Information Base
Each application in the ATOS environment is
called an ATOS Application Module (AAM).
AAMs communicate with each other via the
ATOS infrastructure.

As shown in figure 1, each AAM has its own
knowledge base. The Mission Information
Base (MIB) is defined to be the union of the
knowledge bases of all the individual AAMs.
The scope of the MIB is thus very broad and
encompasses:

Flight Operation Plans (FOP), including
timelines (a scheme of mission operations
activities for a particular mission phase or
scenario) and Flight Control Procedures.
Documents, including text and graphics,
for example the spacecraft users manual.

* Design information, including the
behaviour of components of the
spacecraft.

* Traditional spacecraft databases, for
example parameter characteristics and
telecommand characteris tics.
Rules and operational constraints of the
mission; for example, if the spacecraft is
in eclipse then the payload is on standby.

Control Mission

J

. . . other AAMs

Model
u

Figure 1 AAMs and the ATOS Infrastructure

The AAMs which manage components of the
MIB may be physically distributed, may use
different approaches to structuring knowledge
(relational, object-oriented, rule based) and
may use different tools for storing knowledge.
The MIB is thus a federated database of
loosely coupled, heterogeneous components.

3.2 The Functions of the Infrastructure
The ATOS infrastructure is the glue which
integrates AAMs. The infrastructure "facig-
tates" (in the sense discussed in [I]) the inte-
gration of AAMs by:
* Routing a message to an AAM which

provides the information or service
required by the message.

Maintaining links between information
items in different components of the MIB.

. Detecting significant changes in the state
of the MIB and informing AAMs
accordingly.
Controlling access to the information and
services provided by AAMs .

* Maintaining a timetable that describes
which AAMs can use which services of
other AAMs and when. This timetable is
updated by a mission planning AAM.
Logging messages, as requested.
Buffering messages before they are read.

Clearly some of these services are more inno-
vative and interesting than others. Later sec-
tions of this paper concentrate on message
routing, link management and detection of
change in the MIB .

3.3 The Ontology of Shared Knowledge
AAMs must be able to share knowledge. For
example, the results of mission planning are
inputs to mission execution; details of a
detected anomaly are the basis of fault diagno-
sis. [3] includes a detailed discussion of the
importance of knowledge sharing in spacecraft
operations.

To share knowledge AAMs must have a com-
mon understanding of concepts and terms
which is provided by the ontology.

In ATOS, the ontology is written in a declara-
tive, formally defined language called Ontolin-
gua [2] which is:

Expressive, so that rules and behavioural
knowledge can be shared between &Ws.
Independent of any particular approach to
structuring knowledge.

Note that although Ontolingua allows terms
and concepts to be defined using rules, the
ATOS infrastructure does not infer knowledge
from these rules - that is the responsibility of
the AAMs which use the concepts.

The most basic use of the ontology is as a
paper standard to which AAMs comply. Thus
if there is a standard definition of the terms
"resource", "schedule" and "activity" then

AAMs which comply with the standard are which only knows about objects in its own
guaranteed to use these terms in the same way. component of the MIB.

A second use of the ontology is to derive an Link types are defined in the ontology and
AAM's knowledge structures. The ontology is have different properties. For example, a link
written in a formal language (rather than, for type might be defined to be many-to-one, or to
example, English); it can therefore be trans- be acyclic.
lated-into the tool-specific knowledge struc-,.,., ,
tures used by an AAM. This approach gives .:.:.:.:.:.:.:.:.:.:.:.:.:*.:..

Y,....................... ___._._.__ :.:.:.::::::::=*>::: =:,:.:,... . . .
greater assurance that the AAM complies with @ the ontology and it can also reduce the effort of
developing the AAM. re3
The next section discusses further uses of the
ontology, including that of routing a message
on the basis of its content.

As discussed in section 1.2, the MIB is distrib-
uted among AAMs, it is not held by the ATOS
infrastructure. The infrastructure does, how-
ever, record the types of information in the
MIB (as defined by the ontology) as well as
information about selected objects in the MIB .
The infrastructure does not actually store these
objects but records their existence, some of
their attributes and links between them. This
view of the MIB is called the metabase.

Figure 2 depicts three example AAMs which
each manage part of an MIB. One AAM uses a
relational database, one uses a hierarchical
database and one stores documents. The exist-
ence of certain MIB objects is recorded in the
metabase; this is shown in the figure by a
dashed line from the MIB object to its meta-
base image. The figure also shows links in the
metabase between objects which are managed
by different AAMs. For example, a tuple in the
relational database might be described by a
document to which it is linked.

The three major roles of the metabase in sup-
porting knowledge sharing are outlined in the
following three subsections. Each of these
roles is based upon the global view of the MIB
which the metabase provides.

3.4.1 Links between MIB components

The above discussion of touched on the first
of these roles: the metabase stores links
between objects in different components of the
MIB which allow AAMs to navigate the MIB.
Such links cannot be stored by any one AAM

Figure 2 The Infrastructure Metabase

3.4.2 Detecting change

The second role of the metabase is in detecting
significant changes in the state of the MIB.
One AAM can request a second AAM to per-
form a specified action when a specified con-
dition is triggered.

For example, an AAM may ask to be informed
when the voltage of a battery falls below a cer-
tain level. A condition is expressed in terms of
the state of the MIB; more precisely, a condi-
tion is a query over the MIB which evaluates
to true or false; the condition is triggered when
the value of the query changes from false to
true.

Unfortunately, this approach to detecting
change has two limitations. The first is that not
all AAMs will be sophisticated enough to
detect changes expressed as arbitrary condi-
tions. The second is that an AAM can only
monitor its own component of the MXl3 for
change; no single AAM can effectively moni-
tor a condition which involves two or more
components of the MIB .
The two limitations are addressed by the infra-
structure and its metabase: the infrastructure is
able to detect changes to the state of the meta-
base and, because the metabase is a global
view of the MIB, the scope of the condition is
not limited to one component of the MIB.

This role of the metabase allows dependencies
between components of the ME3 to be man-
aged. Imagine, for example, two AAMs one of
which plans a mission and the other of which
maintains information describing the design of
the spacecraft. The metabase holds an abstrac-
tion of the plan and the spacecraft design, as
well as links corresponding to dependencies of
the plan upon the design. The planning AAM
instructs the infrastructure to inform it when
there is a change or correction to the design
which reauires the mission to be re~lanned.
The AAM then obtains de t2s of the
change by querying the design AAM directly.

3.4.3 Content-based routing

When an AAM sends a message, it normally
specifies explicitly the AAM which is to
receive the message. Sometimes, however, an
AAM does not know to which AAM to send
the message. In this case the AAM instructs
the infrastructure to send the message to the
AAM which can best provide the required ser-
vice or information. This is called content-
based routing: AAMs first advertise their abili-
ties to process messages, then the infrastruc-
ture routes messages on the basis of these
advertisements.

As a simple example of content-based routing,
an AAM might advertise its ability to provide
the voltage all batteries. The infrastructure can
then route a message which asks the voltage of
a specified battery to this AAM.

The infrastructure can perform more sophisti-
cated content based routing. Suppose, for

example, an AAM advertises its ability to pro-
vide information about the power supply sub-
system. The infrastructure can then route to
this AAM a message which queries the current
from the solar array if it knows from its meta-
base that the solar array is part of the power
supply-

3.4.4 Managing the metabase

The metabase records the existence of some of
the objects in the MIB and contains some of
their attributes. Except for links, the metabase
is a partial copy of the MIB. Objects, attributes
and links should only be in the metabase if
they are required for one of the roles of the
metabase described above. The metabase is not
expected to be large. For example, an AAM
which manages documents might record in the
metabase the existence of each document and
the date of its most recent issue, but it would
not hold the text of the document.

The accuracy of the metabase is, of course, the
responsibility of the AAMs. For example, if
the metabase records the voltage of a'battery
then the AAM which manages the correspond-
ing part of the MIB must update the metabase
when the voltage of the battery changes.

Which parts of the MIB should an AAM copy
to the metabase? The simple answer is that this
is a question for the designers of the system
who decide how to integrate the AAMs. A
more sophisticated and dynamic approach is
that the AAM is sent a message which speci-
fies the knowledge which it must copy to the
metabase.

3.5 Messages and their Structure
In a spacecraft control system, AAMs and the
infrastructure share knowledge by sending
each other messages. The meaning of these
messages is defined at three levels:
* As discussed in section 3.3, the ontology

is a dictionary of the terms and concepts
of spacecraft operations and is expressed
in Ontolingua.
A language called Knowledge Interchange
Format (KIF) is used to express
knowledge using the terms and concepts
of the ontology.

* A protocol called Knowledge Query
Manipulation Language (KQML) which
AAMs use to communicate at run time.

This approach to knowledge sharing is based
upon the work of the DARPA Knowledge
Sharing Effort [5] .

KIF expresses first order predicate calculus in
a LISP-like syntax. It is not expected that
AAMs use KIF internally; indeed, it is impor-
tant that AAMs are not constrained to use a
particular representation format. AAMs must
therefore translate shared knowledge to and
from KZE

KQML provides performatives, i.e. message
types, which define the intent of a message.
Consider, for example, the following simple
KIF sentence:

(position sample lower-most)

This sentence could be the content of any of
the following three KQML performatives:
* ask, a query "Is the sample in its lower-

most position?" with answer yes or no.
* reply, an answer to a question such as

"What is the position of the sample?"
* assert, informing the receiving AAM

that the sample is in its lower-most
position.

The KQML performatives used by ATOS are
adapted from those described in the draft
KQML standard and include performatives in
the following areas:

Asking and replying to a question.
Multiple answers to a question can be sent
as one long reply or as a stream of replies
each containing one answer.
Asserting a fact to be added to the
receiver's knowledge base.

* Advertising the sender's capability to
perform a service.
Instructing the infrastructure to route a
message to the AAM best able to process
it.
Instructing the receiver to perform an
action when a condition arises.

Possible arguments of a message include:

* Content. This is the body of the message,
for example the actual query of an ask
message.

* Language. The language of the content.
Normally this is KIF but AAMs can
communicate using other languages such
as SQL and SGML. If they do so the
content is not understood by the ATOS
infrastructure.
Receiver. The AAM to which the
infrastructure should send-the message.

* Reply-with. Whether the sender of the
message expects a reply, and if so a tag for
the reply.

* Receipt. Whether the sender requires a
return receipt when the message is read.

* Log. Whether the message should be
logged by the infrastructure.

Most messages are from one AAM to another
(via the infrastructure, of course). Some mes-
sages are intended for the infrastructure alone;
for example, messages which advertise an
AAM's ability to perform a service, and mes-
sages which query or update the metabase.

All knowledge held by the infrastructure can
be queried using KIF and KQML. There are
two distinct parts of this knowledge:
* The metabase, the structure of which is

defined by the ontology of spacecraft
operations, as discussed in section 3.4.
The infrastructure database, which
contains the housekeeping data held by
the ATOS infrastructure. For example,
AAMs and their capabilities, message
logs ... The structure of this database is
defined by the infrastructure ontology.

4 Prototypes and Example AAMs

4.1 The Infrastructure Prototype
The ATOS infrastructure has been imple-
mented as a prototype which runs on Unix
workstations.

AAMs normally run on different workstations
which communicate with the infrastructure
using TCP/IP. At the time of writing AAMs
must also run on Unix workstations, however,
it would be straightforward to port to other

platforms the software which must be linked with telemetry from the spacecraft. If a signifi-
into the client AAMs . cant discrepancy is detected the Diagnostic

AAM performs -a rule-based diagnosis-of the
Two interesting aspects of the prototype are: fault and then corrects the model.

Storing persistent data. The metabase and
the infrastructure database are stored
using a relational database. This requires
that the ontology is translated to SQL data
definition language and that KJF queries
and assertions are translated to SQL data
manipulation language.
Translations must also be performed by
AAMs which do not use KIF internally.
An important difference is that each AAM
has its own specific knowledge structures;
it does not need to translate arbitrary KIF
queries unrelated to these structures.
Content-based routing. Advertised
capabilities, and messages to be routed on
the basis of their content, are both
expressed in KIF. Matching a message
with a capability involves conversion of
the two KTF expressions to a normal form
and then unifying them using the
knowledge in the metabase.

4.2 AAM Prototypes
[7] describes a prototype tool called AMFE-
SYS which maintains a model of a payload: a
microprocessor controlled remotely program-
mable Automatic Mirror Furnace (A m) for
growing crystals in zero gravity.

~~~y data \Discrepancy 

correction 

Figure 3 AAMs derived from AMFESYS, 

The AMFESYS tool has been decomposed 
into three AAMs as shown in Figure 3. The 
Modeling AAM maintains a model of the 
AMF which the Monitoring AAM compares 

The three AAMs use different approaches to 
structuring knowledge (Cu, CLOS and 
Kappa) and interact with each other via the 
ATOS infrastructure. The ontology defines the 
structure of the AMF. 

The following is a fragment of the AMF ontol- 
ogy which specifies a subcl&s of devices 
called Spindles and specifies that each spin- 
dle has a height. The fragment also identifies 
the instances of the class of spindles in the 
AMF: SampleConvSpindle (the sample con- 
veyance spindle) and LampDi s kspindle (the 
lamp disk spindle). 

(define-class Spindles (?x) 
:def (devices ?x)) 

(define-relation Height (?x ?y) 
:axiom-def (and(sing1e-valued Height) 

(range Height number) . 
(domain Height Spindles))) 

(def ine-instance 
SampleConvSpindle (Spindles)) 

(def ine-instance 
LampDiskSpindle (Spindles) ) 

With this ontology, the AAMs can converse 
about the height of spindles. For example, the 
Diagnostic AAM might send the following 
message to the Modeling AAM: 

(ask-one :receiver MODEL 
:content (Height LampDiskSpindle ?h) 
:reply-with rid) 

which might then reply 

(reply :receiver DIAGNOSTIC 
:content (Height LampDiskSpindle 70) 
:in-reply-to rid) 

In these messages ask-one and rep1 y are two 
KQML performatives; : receiver, : content, 
: reply-with and : in-reply-to label the 
message arguments. The language of the con- 
tent of each message'is KIF (the default lan- 
guage of all messages). The meaning of the 
terms in the content of each message is defined 
by the ontology. 



Following the approach discussed in section 
3.3, the AMP ontology has been automatically 
translated into the data structures used by the 
Diagnostic AAM. This kkM is written in 
CLOS, so the translation is from Ontolingua to 
CLOS. 

5 Conclusion 
The paper has discussed the problems of 
implementing complex mission operations 
systems and has described a two-fold approach 
to their solution: build generic applications and 
adopt a standard integration framework. 

We have not mentioned here the possible over- 
lap of with other integration technologies such 
as CORBA [4]. They could provide a basis for 
the more advanced ATOS features. 

Much has been achieved since the initiation of 
the ATOS programme in 1992. We also believe 
that the approach we have adopted may be 
effective not only for the space industry but for 
any industry which needs to integrate applica- 
tions to build complex systems. 

6 Acknowledgments 

This work was funded by ESA's Advanced 
Systems and Technology Programme (ASTP) 
which is managed by ESA's Directorate of 
Telecommunications. ASTP promotes the 
development of new technologies for the space 
domain, and supports European industry in 
implementing these in the form of marketable 
products. 

The authors also acknowledge the contribu- 
tions of Howard Smith (Logica UK) and Her- 
wig Laue (ESOC) to the ATOS programme. 

7 Bibliography 

[l] Genesereth M.; An Agent Based Framework for 
Software Interoperability, Software Technology 
Conference '92, Los Angeles, April 1992. 

[2] Gruber T., Ontolingua: A Mechanism to Support 
Portable Ontologies, Knowledge System Labora- 
tory Technical Report, Stanford University, June 
1992. 

[4] Object Management Group; The Common Object 
Request Broker: Architecture and Specification; 
OMG Document number 91.12.1 loDecember 
1991. 

[5] Patil R. et al; The DARPA Knowledge Sharing 
Effort: Progress Report. Proc. of the 3rd Int. Conf. 
on the Principles of Knowledge Representation, 
Cambridge MA, Morgan Kaufaan, 1992. 

[q Poultet K. J., Smith H. N.; ATOS-I: Designing the 
Itzj'i-astructure for an Advanced Spacecrafi Opera- 
tions; Proc. 2ndInt. Sym. Ground Data Systems 
for Space Mission Operations. SPACEOPS 1992 
Pasadena, California, USA. JPL publication 93-5. 

[A Wheadon J.;AMFESYS: Modelling and Diagnosis 
Functions for Operations Support.; Proc. 2nd Int. 
Sym. Ground Data Systems for Space Mission 
Operations. SPACEOPS 1992 Wsadena. Califor- 
nia, USA. EL Publication 93. 

[3] Laue H., Kaufeler J-F, Poulter K., Smith H.; The 
Advanced Technology Operations System ATOS; 
Proc. 2ndInt. Sym. Ground Data Systems for 
Space Mission Operations. SPACEOPS 1992 Pas- 
adena, California, USA. JPL Publication 93-5. 



The NASA Mission Operations and Control Architecture Program 
P J  7' 

Paul J. Ondrus 
Head, Missions Operations Systems Office 

Mission Operations Division 
Goddard Space Flight Center 

Richard D. Carper 
Senior Engineer 

Science Applications International, Inc. 

Alan J. Jeffries 
Systems Engineer 

Science Applications International, Inc. 

appropriate functions from the ground to 
the spacecraft. 

Abstract 

The conflict between increases in space 
mission complexity and rapidly declining 
space mission budgets has created strong 
pressures to radically reduce the costs of 
designing and operating spacecraft. A key 
approach to achieving such reductions is 
through reducing the development and 
operations costs of the supporting 
mission operations systems. 

One of the efforts which the 
Communications and Data Systems 
Division at NASA Headquarters is using 
to meet this challenge is the Mission 
Operations Control Architecture (MOCA) 
project. Technical direction of this effort 
has been delegated to the Mission 
Operations Division (MOD) of the 
Goddard Space Flight Center (GSFC). 

MOCA is to develop a mission control 
and data acquisition architecture, and 
supporting standards, to guide the 
development of future spacecraft and 
mission control facilities at GSFC. The 
architecture will reduce the need for 
around-the-clock operations staffing, 
obtain a high level of reuse of flight and 
ground software elements from mission 
to mission, and increase overall system 
flexibility by enabling the migration of 

The end results are to be an established 
way of designing the spacecraft-ground 
system interface for GSFC's in-house 
developed spacecraft, and a specification 
of the end to end spacecraft control 
process, including data structures, 
interfaces, and protocols, suitable for 
inclusion in solicitation documents for 
future flight spacecraft. A flight software 
kernel may be developed and maintained 
in a condition that it can be offered as 
Government Furnished Equipment in 
solicitations. 

This paper describes the MOCA project, 
its current status, and the results to date. 

Introduction 

Most current spacecraft are extensively 
supervised from the ground, and 
spacecraft command and control systems 
have been re-invented by almost every 
new flight mission. This seriously affects 
ground systems reusability, and therefore 
costs for systems development, training, 
software maintenance, and sharing of 
operators among projects. This traditional 
approach is in serious conflict with the 
realities of declining space mission 
budgets. 



The Communications and Data Systems 
Division at NASA Headquarters, through 
the Mission Operations Division (MOD) 
of the Goddard Space Flight Center 
(GSFC), is addressing this problem by 
sponsoring the Mission Operations 
Control Architecture (MOCA) project. 
The objective of this program is to 
develop a spacecraft control and data 
acquisition architecture which will guide 
the development of future spacecraft and 
mission control facilities. The architecture 
is intended to reduce the need for around- 
the-clock staffing of operations control 
centers (partly by increasing spacecraft 
autonomy), enable a high level of reuse 
of both flight and ground software from 
mission to mission, and allow the 
allocation and migration of functions 
between ground and spacecraft missions 
as is appropriate for a given mission 
requirements set. 

MOCA is using a three pronged 
approach: deep involvement of the 
ultimate implementing and operating 
community at GSFC; analysis of current 
mission operations systems, leading to a 
redefinition and standardization of 
architecture; and a survey and assessment 
of available technologies, subsystems, 
and commercially available products, 
with analysis of how to make it all fit 
together. 

Organization and Process 

In order to provide a broad base of 
knowledge and to enhance the ease of 
acceptance of results, the MOCA project 
is being conducted by the MOD as a 
cooperative effort among itself, the 
GSFC Flight Projects Directorate, and the 
GSFC Engineering Directorate. The latter 
is the GSFC's flight systems engineering 
organization. The organizational tools 
used to implement this cooperative 
structure are an ad hoc MOCA Steering 
Group, with members from management 
from NASA Headquarters and from each 
of the three directorates, and a MOCA 
Users Forum, which is  constituted 
primarily of selected, experienced, 

engineering level persons from each 
organization. 

MOCA is divided into two phases, the 
Exploratory Phase (which began in 
February, 1994) and the System Design 
Phase. Each phase will last from one year 
to eighteen months, as required. The 
Exploratory Phase is a rapid but in-depth 
survey of the complexity and scope of the 
problem and an examination of potential 
solutions. The System Design phase will 
both develop and deploy the new 
capabilities required for the system. 

When agreement on the architecture is 
achieved, one or more spacecraft will be 
selected to use as a prototype to finalize 
and prove the data structures, protocols, 
and interfaces between modules defined 
by the architecture. Ultimately, flight 
software elements and corresponding 
ground control modules will be  
d e v e l o p e d ,  m a i n t a i n e d ,  a n d  
configuration-controlled by an inter- 
directorate team. Therefore, the MOCA is 
an architecture, a set of interface 
definitions, supporting protocols and 
application layer languages, that enable 
the standardized commanding and 
supervision of remote space vehicles. 

As this work progresses, i t  will be 
presented to the American Institute of 
Aeronautics and Astronautics (AIAA) 
Spacecraft Control Working Group. It is 
hoped that a NASA or U. S. Government 
agreement on an architecture for 
spacecraft control and a suite of 
supporting standards will result through 
this channel. However, the MOCA 
project focuses on the needs of GSFC 
specifically. 

Approach 

The aim of MOCA is to substantially 
reduce the end-to-end life cycle cost of 
future flight programs by radically 
reducing ground operations costs, 
including development costs. 



MOCA disputes the contention that 
"cheap programs mean dumb spacecraft". 
Instead, MOCA asserts that when the 
end-to-end life cycle costs of a program 
are considered, "cheap programs need 
smart spacecraft". MOCA further 
contends that the technology is currently 
available to have smart spacecraft at very 
little increase in development cost, and 
that in fact most of the basic enabling 
technologies (for example, increased 
computational power, increased memory, 
large solid state data storage) are already 
in flight use. And that therefore what is 
required to achieve the mission operations 
cost reduction objectives are the 
development and implementation of the 
necessary  operat ions concepts ,  
architecture, and standards. 

Preliminary Functional Architecture 

The following is very preliminary, and 
will undoubtedly undergo major changes 
as the MOCA project matures. 

The context of MOCA is "Mission 
Operations Functions", as  shown in 
Figure 1. Therefore the figure shows the 
external interfaces to MOCA. There are 
two fundamental points made by the 
figure. First, it is important to note that 

mission operations functions are the 
domain, regardless of whether the 
functions are performed on the spacecraft 
or on the ground. Second, and equally 
important, flight subsystems and ground 
supporting subsystems are not in the 
MOCA domain, but the interfaces with 
them (and therefore the relevant functions 
performed by them) are. 

The primary driver of mission operations 
is the science planning entity which 
provides both strategic planning 
information (the science plan)-and part of 
the detailed or tactical planning inputs 
(instrument commands). These inputs 
are provided in cycles of various time 
intervals. 

The MOCA functions and processes use 
these inputs to plan and schedule 
resources, coordinate the execution of the 
plan across the resources, monitor and 
assess the status of the resources, and 
feedback lessons learned into the process 
for the next cycle. Since the MOCA. 
functions operate in this cyclic manner, 
the architecture described in this paper 
decomposes the MOCA functional 
architecture based on this planning- 
execution- assessment nature of mission 
operations. Figure 2 depicts the three 
functions which make up the first level of 

Offboard Systems1 Subsystems 
Terrestrial Communications 

Groundspace Communications 
Other 

Figure 1: MOCA External Interfaces 

1299 



the MOCA functional architecture. Also MOCA functions. This paper will not go 
shown in Figure 2 are two entities utilized into detail on these lower level 
by all three functions: the Mission Model representations except to note that the 
and the Mission Database. Scheduling and Planning and the 

System/Subsystem Analysis functions 
The Mission Model constitutes an have been further decomposed based on 
accurate representation of all the short term and long term processes. 
resources the MOCA functions have 
visibility into and interaction with. The 
Mission Database is a repository of actual Preliminary Target Characteristics 
data points either used or generated by the 
mission model and MOCA functions. AU A preliminary analysis of current mission 
three of the primary MOCA functions use operations has lead the MOCA to identify 
these resources but in unique and the following as highly desirable 
different ways. For instance, the characteristics which should be included 
Planning and Scheduling function uses in the MOCA concept of operations, and 
the Mission Model to predict the events enabled by the MOCA architecture. These 
and actions of resources for the next are very early ideas, and will undoubtedly 
cycle. The Mission Command and be subject to significant modifications, 
Control function uses the Mission Model expansions, and deletions as the project 
to compare the real time events and progresses. 
actions of resources against the predicted 
events and actions to ensure operations It appears highly desirable to minimize 
are proceeding as planned and within the number of contacts between a 

spacecraft and the 
ground, a s  i s  
feasible within the 

Mission Model Mission Database cons t ra in t s  of 
mission safety and 
mission 
performance. The 
planning, 
scheduling, 
initiation, conduct, 
and termination of a 
spacelground contact 
i s  expensive in 
itself, and the cost is 
much more sensitive 

Subsystem 
Gntr01 J to the number of 

contacts than to 
duration or data 

Figure 2: First Level MOCA Functions r a t e s .  T h i s  
minimization should 

tolerances. The System/Subsystem be accomplished by making spacecraft 
Analysis function uses the mission model more autonomous than at present. The 
to determine why events and actions did feasibility and acceptability of increased 
not perform as predicted and to provide autonomy should be realized by 
feedback into the model as resources designing the process of achieving 
degrade or change over the life of the autonomy to reduce risk, minimize life 
mission. cycle costs, and maintain flexible control 

of the process by project management. 
Figures 3 through 5 show the next level The process should include the 
of decomposition for the three primary development of ground based backup 



capability to onboard functions, and by 
achieving the autonomy via function 
migration from ground to space as 
operational experience is gained. 

Spacecraft should be made to look 
operationally as much alike as possible. 
Through the use of interface, format, and 
procedural standards to implement a 
"virtual spacecraft" concept, spacecraft 
should be made to appear to the ground 
systems as operationally identical as is 

example of such existing standards are 
the tailored communications standards 
that can be adopted from other non- 
MOCA sources (e-g. Consultative 
Committee for Space Data Systems 
(CCSDS), Space Communications 
Protocol Standards group (SCPS)). Other 
standards, such as for the operations 
functions (i-e. at the Application Layer) 
will be selected by or developed within 
MOCA. 

Figure 3: Functional Decomposition of the MOCA 
Planning and Scheduling Function 

feasible. This will eliminate large parts of 
development and training costs, allow 
operations crews to be shared among 
several spacecraft, and increase the 
reliability of operations. 
Standards should define all operational 
interfaces. Standards should be selected, 
adapted, or, as necessary, developed and 
emplaced at all operational interfaces. An 

The Standards should be used across 
different projects. To achieve the above 
targets, the same standards must be used 
for each flight project. This approach 
minimizes the non-recurring ground 
system development and modification 
costs as well as substantially reducing 
recurring mission operations costs. 



Implementation of the MOCA concepts, 
architecture, and standards should be 
accomplished to the maximum extent 
possible through the use of existing 
standards, existing technologies, work 
accomplished by other similar NASA and 
Department of Defense activities, 
commercial off-the-shelf products, and 
through use of existing testbeds and flight 
opportunities for proof of concept and 
validation. Major redesign efforts and all 
new development for control facilities at 
GSFC should be accomplished in 
conformance with the MOCA standards. 

The Future 

Although MOCA is still in an early phase, 
several key concepts are beginning to 
emerge which appear to be technically 
feasible and economically desirable. 
Among these are: communications 
between ground systems and spacecraft 
by an intermediate or high level process 
control language, rather than by 
commands and telemetry; on-demand 

Eifemal 
lnterfaces 

Command 

- - - - -  - - 
lnterfaces wifh 
ofher Mission 

p#".#---#----m---#*-*----I 
Operations Functions I 

Mission Database 

Figure 4: Functional Decomposition of the MOCA 
Mission Command and Control Function 

1302 



spacelground communications by  It appears at this time that there are no 
spacecraft demand; and eventually a insuperable technical or cost hurdles to 
reversal of current roles in that a achieving greatly decreased end-to-end 
spacecraft may view its supporting life-cycle mission operations costs 
ground systems as a collection of on-call through the techniques of increased 
resources to help it meet its mission spacecraft autonomy, appropriate 
objectives. standards for critical operations 

interfaces, and standard protocols, all 
structured by a common mission 
operations architecture. 

Figure 5: Functional Decomposition of the MOCA 
System/Subsystem Analysis Function 

External 
Interfaces 

Sysfem/Subsystem 
Analysis 
Functions 

(e.g., Fault Isolation) 

Interfaces with 

Operations Functions ;"""""""""----.--- 
1 

.*--.-..-----.-- ----..--.---- 
' Mission Model 

1 
I I 

I Mission & 
i 

I Command I 
I & Control 1 
1 :------,-.- -,..-,,,,-------: 

; Mission Database I 
'c.c-..ce.cccccccc.-~~eC-eJ 

.--CC-cCCCCC--CCC-.*--.-C-. 
I I 

I 1 
1 Planning and # 
I 

L: Scheduling 1 

# 
1 





Renaissance Architecture for Ground Data Systems 3 su3/ y 

Dorothy C. Perkins I 
Mission Operations Division 

Mission Operations and Data Systems Directorate 
NASAfGoddard Space Flight Center 

Lawrence B. Zeigenfuss 
Systems Engineering Office 

Mission Operations and Data Systems Dimtorate 
NASNGoddard Space Flight Center 

ABSTRACT 

The Mission Operations and Data Systems Directorate (MO&DSD) has embarked on a new 
approach for developing and operating Ground Data Systems (GDS) for flight mission support. 
This approach is driven by the goals of minimizing cost and maximizing customer satisfaction. 
Achievement of these goals is realized through the use of a standard set of capabilities which can be 
modified to meet specific user needs. This approach, which is called the Renaissance architecture, 
stresses the engineering of integrated systems, based upon workstationllocal area network 
(LAN)lfileserver technology and reusable hardware and sofiare components called "building 
blocks." These building blocks are integrated with mission specific capabilities to build the GDS 
for each individual mission. The building block approach is key to the reduction of development 
costs and schedules. Also, the Renaissance approach allows the integration of GDS functioni that 
were previously provided via separate multi-mission~acilisies. With the Renaissance architecture, 
the GDS can be developed and operated by the MO&DSD or all, or part, of the GDS can be 
operated by the user at their faciliv. Flexibility in operation conjigurntion allows both selection of 
a cost-efiective operations approach and the capability for customizing operations to user needs. 
Thus the focus of the MO&DSD is shifedfiom operating systems that we have built to building 
systems and, optionally, operations as separate services. 

Renaissance is actuully a continuous process. Both the building blocks and the system architecture 
will evolve as user needs and technology change. Providing GDS on a per user basis enables this 
continuous refinement of the development process and product and allows the MO&DSD to remain 
a customer-focused organization. This paper will present the activities and results of the 
MO&DSD initial eforts toward the establishment of the Renaissance approach for the development 
of GDS, with a particular focus on both the technical and process implications posed by 
Renaissance to the MO&DSD. 

INTRODUCTION 

The MO&DSD provides end-to-end mission support for National Aeronautics and Space 
Administration (NASA) low earth orbit scientific space flight projects. This support ranges from 
establishing the radio frequency (RF) link with the user spacecraft for data acquisition, tracking 
and spacecraft commanding to distribution of captured instrument data to scientific investigators. 
In meeting its charter over the last three decades, the MO&DSD developed significant expertise 
within its organizational elements in building and operating systems to meet requirements in these 
functional areas. As an example, flight dynamics support is provided by one MO&DSD Division. 
That =vision builds and operates institutional, multi-mission systems to support flight missions. 
Other Divisions are responsible for other areas of support. In general, Division systems were 



housed in multi-mission facilities and based on large mainframe computer architectures, to provide 
efficient and cost-effective ground support operations for missions. 

These MO&DSD systems and services reflect a technology environment where large computers 
provided the only viable system solutions, and a science environment that often advocated large 
and complex science objectives and correspondingly complex spacecraft. But now both the 
nature of the users and the technology environment have changed significantly. NASA science 
programs have embraced the "faster, better, cheaper" philosophy as a means of survival in the 
present fiscally constrained environment. Smaller spacecraft are being built with substantially 
reduced budgets and development schedules from those of their predecessors. At the same time, 
the modern computer technology trend is embodied in small, powerful workstations connected via 
a network in appropriate configurations to meet specific processing needs. This combination of 
smaller missions and flexible technology has created enormous opportunity for users and providers 
to find innovative ways of doing business. 

BACKGROUND 

Drivers for change within MO&DSD have come from numerous sources, both external and internal 
to the MO&DSD. Acknowledgment of these led the MO&DSD to actively and collectively seek 
new ways of serving its customers' needs. The drivers and initial analysis activities targeted at 
addressing the consequent challenges are discussed. 

External Drivers for Change 

The nature of the newer scientific missions and the prevailing technology have led to a desire and 
ability on the users part not just to receive data, but to actually operate all or part of the ground data 
system in order to meet the objectives of their missions. The MO&DSD past approach to mission 
operations with shared institutional systems does not possess the flexibility to meet such changes 
in customer needs. Chiefly, because this approach ties solutions for all users to a common 
technology, it also does not possess the resiliency to implement cheaper, streamlined systems for 
mission support where these are appropriate. In addition, customers have felt that dealing with 
several separate multi-mission facilities added complexity in dealing with MO&DSD for mission 
support. This is especially true for the smaller and simpler space flight projects that tended toward 
a more consolidated approach for mission and science planning and operations. Finally, with the 
dramatic reduction in the cost of computing power resulting from the evolution of data processing 
technology, the previous cost advantage of the multi-mission approach based upon mainframe 
computer architectures has evaporated. Flight project customers perceive the MO&DSD past 
approach to mission operations as not being the most cost-effective. 

Internal Drivers for Change 

Recent downsizings of mission budgets coupled with the availability of rapid technology 
advancements have led the organizational elements within MO&DSD to seek alternate solutions for 
development and operation of ground data systems within their functional areas. Utilization of 
workstation1LAN architectures, formalized software reuse, and adoption of commercial standards 
have all been successfully demonstrated within the Divisions for several years. For example, a 
paper published in the SPACEOPS 92 Proceedings ,entitled "SAMPEX Payload Operations 
Control Center Implementation" described the first development of a Payload Operations Control 
Center (POCC) based upon the Transportable POCC (TPOCC) architecture. These technology 
innovations have been beneficial and demonstrated significant cost savings. However, before 
Renaissance they remained generally localized within the various MO&DSD facilities. While there 
were benefits that accrued from collaboration across Division facilities, they had not yet gained 
supremacy as a standard way of accomplishing the MO&DSD mission. 



Architecture Analysis Activities 

Recognizing these drivers, the MO&DSD initiated activities to explore new, consolidated 
approaches for development and operation of GDS for flight mission support. The goals of 
minimizing cost, maximizing flexibility for meeting customer requirements, and reducing 
complexity were established for this effort. A study was commissioned to identify GDS 
architecture approaches that offer significant reductions in cost and development schedules as well 
as increased flexibility for meeting individual customer requirements in establishing mission 
support capabilities. The report recommended an architecture approach that addressed 
implementations from simple to complex missions through integration of support functions in a 
mission-specific instantiation. Implementations would employ reuse over multiple missions and 
incorporate effective standards for commercial product inclusion 

An Architectural Steering Group (ASG) was established to evaluate the recommendations from the 
architecture study report and to determine if the scope of the study should be expanded to address 
space-to-ground and ground-to-ground communications mission support functions. The ASG also 
chose to commission two additional studies: to look at current and future Directorate operations 
concepts to assure that operations as well as development improvements would be realized in the 
new architecture. The ASG activities ultimately led to the identification of an architecture approach 
that stressed the engineering of integrated systems that encompassed the MO&DSD mission 
support functions of flight dynamics, spacecraft command and control, and data capture and 
distribution. These systems would be based on workstation/LAN/fileserver technology and 
reusable hardware and software components called building blocks. The name "Renaissance" was 
applied to this architecture approach. ("Renaissance" is an acronym that stands for Reusable 
Network Architecture for Interoperable Space Science, Analysis, Navigation, and Control 
Environments.) The ASG also determined that the institutional nature of communication services 
should not be changed, though in fact the technology of implementing these services will be 
improved as Renaissance evolves. 

THE RENAISSANCE CONCEPT 

The MO&DSD has embraced change through Renaissance on two fronts. First, is willing to view 
itself as a provider of both systems and services, rather than primarily a provider of services. 
Secondly, is the espousal of particular objectives to facilitate achievement of Renaissance. 

MO&DSD Renaissance Services 

Renaissance divides the domain of MO&DSD mission support capabilities into three areas: mission 
operations, science operations, and centers of expertise (see Figure 1). 



I Ground Communications I 

I Science operations Center I I centers of Expertise I 

Figure 1. Renaissance Mission Support Domain 

Mission operations are those functions that are integrated to operate the spacecraft to meet the 
specific requirements for that mission. Similarly, science operations are integrated to achieve the 
science objectives of a specific mission. The functional elements associated with mission and 
science operations are physically embodied within a Mission Operations Center (MOC) and a 
Science Operations Center (SOC), respectively, for each flight mission. Under the Renaissance 
concept, the MOC and the SOC could be integrated into a single center, collocated in a shared 
facility, or geographically dispersed. There is no requirement that either be located at the Goddard 
Space Flight Center (GSFC). 

The third area of the MO&DSD domain, the Centers of Expertise (COE), comprise a permanent 
institutional infrastructure that contains the resources to support the set of flight missions over their 
entire life cycle. Obviously, the key resource within the COE is the personnel with the technical 
skills and experience in the development and operation of GDS. The balance of the COE resources 
include the tools, materials, and processes that are applied by the personnel to develop and operate 
the mission support functions. 

Renaissance Objectives 

The Renaissance architecture approach espouses three major objectives for achieving the goals of 
cost-effectiveness, flexibility, and simplicity for providing mission operations support to space 
flight project customers. Firstly, to assure that developed systems permit integrated operations in 
a stand-alone environment for unique mission support. Development and operation of mission- 



specific systems provides maximum flexibility for customizing the GDS to meet the user's 
particular requirements. The integration of mission support functions for command and control, 
flight dynamics and data processing also presents an opportuncty for reducing the cost of ground 
system development through the elimination of redundant functions that had been replicated within 
each of the multi-mission systems, (e.g., telemetry unpacking). Developments, however, would 
not preclude recombining of functions into multi-mission facilities if this should prove cost- 
effective. 

The second objective inherent with Renaissance is reuse of support capabilities. Here reuse means 
a systematic, planned approach for developing reusable components of ground data systems rather 
than reuse on an ad hoc basis. It implies well-defined interfaces and use of standards to implement 
systems, and an ability to insert new technology readily over time. The construction and use of 
these reusable components, or "building blocks", is the key to reducing the cost of ground system 
development. MO&DSD established a Renaissance Project Team to define -those "building 
blocks". 

The third significant objective associated with Renaissance is the projectized approach to GDS 
development and operation which is aimed at reducing the complexity associated with the present 
user interfaces. Previous mission support systems have of course been coordinated among 
MO&DSD Divisions, but subsystems were implemented in separate facilities and not functionally 
integrated. The new approach calls for completely integrated requirements and integrated testing. 
Establishment of a mission team, led by a Ground System Project Manager (GSPM), provides a 
focal point within the MO&DSD for matters relating to the development and operation of 
MO&DSD GDS. The team defines the mission system, and integrates reusable Renaissance 
"building blocks" with mission-unique building blocks that it develops. The team also assures that 
space flight project customer needs receive strong advocacy within the MO&DSD. 

APPROACH TO ACHIEVING RENAISSANCE 

The ASG selected the Advanced Composition Explorer (ACE) mission for the initial 
implementation of a Renaissance GDS. The mid-97 launch date was close enough to provide for a 
relatively quick demonstration of Renaissance without incurring the risks related to interruption of 
system developments that were already well under way [e.g., X-Ray Timing Explorer (XTE) and 
Tropical Rainfall Measuring Mission (TRMM)]. 

The challenge faced by the MO&DSD teams was to achieve the modular "building block" goals of 
Renaissance, while simultaneously meeting the near-term mission needs of the ACE Mission. 
Schedules, climate and budget would not allow for an extended period of time to prototype 
Renaissance concepts before instantiating them in a mission. Building blocks could not be created 
first, followed by mission-unique pieces. Parallel paths and integrated planning were required to 
achieve the ACE Mission. 

However, this challenge was not as daunting as it might appear. Two factors created a climate for 
success: tight integration of the Renaissance and ACE implementation teams; and extensive 
availability of predecessor systems that meet Renaissance goals. 

Implementat ion Teams 

The Renaissance Project Team, a core group of highly capable engineers, was charged with 
Renaissance building block definition. Their charter was as follows: 



Identify building blocks through examination of ACE and other system (e.g., XTE) 
requirements to determine generic functionality. 

Identify predecessor systems and Commercial Off-the-shelf (COTS) products that could 
meet the building block specifications. 

Identify standards and development processes useful in the Renaissance era. 

Develop plans for transitioning into the Renaissance approach. 

Work with the mission teams, initially the ACE team, to apply the Renaissance architecture. 

This core team was augmented by additional MO&DSD engineers who served to provide input to 
their efforts and to review and critique the outcomes. In particular, those engineers charged with 
implementing the ACE Mission were early and constant participants in the Renaissance effort. 

Predecessor Systems 

Despite the use of the Renaissance name to capture a system concept within the MO&DSD, many 
predecessor efforts on other missions were aligned with the Renaissance concepts, and influential 
in molding its goals and giving confidence that the architecture would be successful. The 
Renaissance concept, in fact, was merely an acceleration and consolidation of various efforts that 
were already occurring naturally within the Directorate. Reliance on these efforts gave credence to 
the possibility of meeting both ACE and Renaissance goals within the aggressive schedule. 
Examples of forerunner efforts include: 

The TPOCC UNIX-based software that supports real-time spacecraft command and control 
and that, prior to Renaissance, was in use or planned for use for the Small Explorer 
missions (SAMPEX, FAST, SWAS), ISTP WIND, POLAR and SOHO, XTE and 
TRMM. The TPOCC brings a legacy of substantial software reuse as well as workstation 
and LAN-based processing. 

The VLSI-based Level Zero Processor (LZP) employed on the FAST mission. This 
system captures spacecraft science data and removes transmission artifacts before 
forwarding it to science investigators. It is integrated into the mission command and 
control facility, and as such is a predecessor to the Renaissance operations approach. 

The Packet Processor (PACOR) I1 distributed system, a multi-mission data capture and 
level zero processing system planned for use by SWAS, TRMM, XTE, HST and GRO. 
PACOR illustrates both system (hardware and software) reuse and distributed processing. 

The Generic Support System (GSS), a reusable system for attitude determination. 

The Generic Spacecraft Analyst Assistant (GenSAA), a tool that allows spacecraft analysts 
to create graphics and ryle-based systems to assist in monitoring spacecraft health and 
safety, and other decision-based situations. 

The Generic Trend Analysis System (GTAS), a reusable spacecraft trending tool. 

All of these systems support in some measure the Renaissance objectives of reusability and 
integrated, stand-alone systems. Figures 2 and 3 capture the extent to which these goals are met in 
missions prior to ACE. 



missions 

Figure 2. Percent Reuse 

Figure 3. Percent Independent of Multi-Mission Facilities 

ACHIEVEMENTS TO DATE 

Early efforts have partitioned the ~enaissance GDS into four sets of services. A Renaissance 
Project Team working group is defining functionality and building blocks for each set. The 
groupings are as follows: 



Spacecraft Communication Services (reconstruction of telemetry packets, command 
transmission, packet annotation, time correlation, and archiving). 

* Spacecraft Data Distribution Services (real-time, quick-look and routine data delivery, data 
subsetting, output logging, and delivery validation). 

User Services (user interface, user tools and application builders, system configuration and 
monitoring, system security, system time synchronization, and data management). 

* Application Services (spacecraft services such as telemetry monitoring, trend analysis, 
attitude support, command verification; planning and scheduling applications for 
spacecraft, science and network activity planning; and uplink applications such as real-time 
commanding and load generation). 

Two additional working groups are assigned to issues that cross all Renaissance services: 

Architecture group, charged with defining the integrated architecture. 

Simulation and testing. 

Many of the promised innovations of Renaissance are being realized within the context of the ACE 
ground system, including largely integrated operations, consolidation of functionality, 
incorporation of new technology and standards, and reliance on the legacy of past systems. Figure 
4 illustrates the architecture proposed for ACE. 

Integrated Operations 

It is intended to incorporate real-time command and control, command and load generation, attitude 
determination and data capture and distribution within the ACE mission operations center. The 
only major MO&DSD ground system function that will still be treated within a separate facility for 
this mission is orbit determination and the ancillary production of maneuver planning aids. The 
ground station and SOC will remain separate from the MOC. (These facilities are not implemented 
by MO&DSD and are traditionally separated from MO&DSD facilities. Future directions will lead 
to the consolidation of MOC and SOC functions. See, for example, related paper in this 
conference, "A New Systems Engineering Approach to Streamlined Science and Mission 
Operations for the Far Ultraviolet Spectroscopic Explorer (FUSE)." 

Consolidation of Functionality 

In two significant arenas, functionality previously developed and performed within multiple 
facilities will be consolidated. Firstly, there will be a single front-end for frame synchronization, 
Reed-Solomon processing, virtual channel separation, and data quality annotation. This front-end 
will be located at the Deep Space Network (DSN) ground station (vs. former performance of 
portions of this function in three MO&DSD facilities). Data will be forwarded from there to the 
ACE MOC. This system will also allow data to be forwarded directly to the SOC for processing, 
if this proves desirable. 

Secondly, a consolidated simulator that will meet the testing needs of all ground system functions 
is planned for development 



block, frame, packet 

Retransmissions, RS 

Time Correlation 

Figure 4. Renaissance Architecture for ACE MOC 

Incorporation of Technology and Standards 

A particular innovation within the ACE ground system is the use of the commercially available 
Transmission Control Protocolfinternet protocol (TCP/IP) protocol to transmit data from the 
ground station to the MOC. This allows replacement or encapsulation of the traditional 4800-bit 
NASA Communications (Nascom) blocks, and eliminates the need for custom systems to handle 
these blocks. Use of this protocol paves the way to ultimately reduce institutional cost for 
providing ground communications because of wide commercial availability and ability to eliminate 
Nascom blocks in the future. 

The ACE ground data system will consist of a series of workstations supporting POSIX and 
communicating via a LAN. Software will be developed in ANSI C, C++ or Ada. While each 
workstation will have particular functionality assigned to it, the ability to move functions among 
workstations for load balancing or recovery from anomalies will be supported. 



The ground system will also use X-windows and MOTIF as interface standards. 

Predecessor Systems 

The ACE ground system will depend heavily on building blocks, either implemented particularly to 
support ACE as the first mission, or derived from predecessor systems within MO&DSD. Table 1 
lists ACE services and their derivation. 

CONCLUSION 

The consolidated Renaissance effort is less than a year old. Progress is substantial, however, due 
to an aggressive project team and integration of predecessor systems already aligned with 
Renaissance goals. Reliance on Renaissance products is allowing the MO&DSD to work with its 
customers in defining low-cost systems whose operations are tailored to the customers needs, for 
example, with the FUSE and the upcoming Small Explorer missions. Early results are promising, 
and the Directorate is committed to sustaining a management approach that will allow Renaissance 
goals to be achieved. 



Table 1. Derivations of Renaissance Services for ACE 

Application 
Services 

Data 
Services 

Space Comm 

*Mission 
Planning 
*Image 
Maintenance 
*RTADS 
Commanding 

.Off-line ADS 

*LZP Product 
Generation 
*LZP RT Proc 
*DSN Monitor 
Block Process 
.CMD Echo 

*Packet 
Services 
.Raw Data 
Logging 

* U P  Ops 
*LZP QA 

*Gen Equation 
Processor 
*Maneuver 
Planning 
*GMT Sync 
Contact 
Prediction 
*Config Monitor 
*State Manager 

*GMT Router 
Server 
*Event Logging 
*Telemetry 
Decom 
*Data Sewer 
*History 

*Load 
Generation 
*Clock 
Correlation 
*Eqn Processor 
*Recorder 
Mgmt 

.Load 
Database 

*Embedded. 
Frame Sync 

*File 
Server 
*DBMS 

Comm 
Software 
*Multicast 
Server 
.Time Server 



Nomenclature 

ACE 
ASG 
COE 
COTS 
DSN 
FAST 
FUSE 
GDS 
GenSAA 
GRO 
GSFC 
GSPM 
GSS 
GTAS 
HST 
ISTP 
LAN 
LZP 
MO&DSD 
MOC 
NASA 
Nascom 
PACOR 
POCC 
POLAR 
RENAISSANCE 
RF 
SAMPEX 
soc 
SOH0 
SWAS 
TCPIIP 
TPOCC 
TRMM 
WIND 
XTE 

Advanced Composition Explorer 
Architec tural steering ~ r o i p  
Centers of Ex~ertise 
Commercial off-the-shelf 
Deep Space Network 
Fast Auroral Snapshot Explorer 
Far Ultraviolet Spectroscopic Explorer 
Ground Data Systems 
Generic Spacecraft Analyst Assistant 
Gamma Ray Observatory 
Goddard Space Flight Center 
Ground System Project Manager 
Generic Support System 
Generic Trend Analysis System 
Hubble Space Telescope 
International Solar Tei~estrial Physics 
Local Area Network 
Level Zero Processor 
Mission Operations and Data Systems Directorate 
Mission Operations Center 
National Aeronautics and Space Administration 
NASA Communication 
Packet Processor 
Payload Operations Control Center 
Polar Plasma Laboratory 
Reusable Network Architecture for Interoperable Space Science 
Radio Frequency 
Solar Anomalous and Magnetospheric Explorer 
Science Operations Center 
Solar Oscillator Heliospheric Observatory 
Submillimeter Wave Astronomy Satellite 
Transmission Control ProtocoVInternet Protocol 
Transpoi-table Payload Operations Control Center 
Tropical Rainfall Measuring Mission 
International Physics Laboratory 
X-ray Timing Explorer 



Architecture of a Distributed Multimission Operations 
< dl 

System .." 

Takahiro Yamada 

The Institute of Space and Astronautical Science (ISAS) 
3 - 1 - 1 Yoshinodai 

Sagamihara 229, Japan 

ABSTRACT a standard structure, and the interfaces 
between functional blocks are defined with a 

This paper presents an architecture to set of standard protocols. 

develop a multimission operations system, 
which we call DIOSA. In this architecture, a 
component used as a building block is called 
a functional block. Each functional block has 
a standard structure, and the interface 
between functional blocks are defined with a 
set of standard protocols. This paper shows 
the structure of the database used by 
functional blocks, the structure of interfaces 
between functional blocks, and the structure 
of system management. Finally, examples of 
typical functional bloks and an  example of a 
system constructed with this architecture is 
shown. 

Key Words: System architecture, Mission 
operations, spacecraft control 

1. INTRODUCTION 

In order to reduce the cost of developing an 
operations system for a spacecraft, an  
approch of developing a system by 
integrating reusable components has been 
proposed (Holder et al., 1992; Mandl et  al., 
1992). In order for such an approach to be 
successful, the function of the components 
must be defined in a structured model of the 
entire system, and the interfaces between 
components must be standardized. 

This paper presents an  architecture to 
develop a multilission operations system, 
which we call DIOSA (Distributed Operations 
System Architecture). In this architecture, a 
component used as a building block is called 
a functional block. Each functional block has 

If the functions provided by a functional 
block can be customized by only changing 
parameters, the functional block can be 
utilized by many missions. The key to do this 
is the standardization of database. This paper 
shows an example of a structure of standard 
spacecraft database. To make a distributed 
system reliable, the interfaces between 
components mus t  be s imp le  a n d  
understandable. This paper presents a simple 
interface structure with which functional 
blocks can communicate with each other 
easily. Automating management activities is 
the key to reduce operational labor (Newsome 
et al., 1992). This paper proposes a scheme 
for managing a distributed operations system. 

Finally, examples of typical functional blocks 
and an example of a system constructed with 
this architecture is shown. 

2. SYSTEM ARCHITECTURE 

2.1 Overall Architecture 

To enable the definition of system 
components and interfaces of a distributed 
system, the architecture of the entire system 
needs to be defined. In this subsection, the 
definition of the concepts of system, complex, 
domain and functional block is given. 

A spacecraft operations system consists of 
some complexes (Fig.1). A complex is a n  
aggregated set of operations facilities located 
a t  one location. Typical examples of a 
complex are (1) a ground station, (2) a 



SYSTEM 

Fig. 1 DIOSA Overall Architecture 

spacecraft operations center, and (3) a science 
analysis center. 

A complex is divided into domains. A domain 
is a set of operations facilities managed as  a 
single system. The system configuration of a 
domain is controlled independently from that 
of other domains. I n  other words, a 
configuration change of a domain does not 
affect the configuration of other domains. 
Typical examples of a domain are (1) a set of 
enl1inrn~nt.s fnr one antenna nt a rrrnm~nrl -7--r---" ---- -" - ,,* V""" 

station, (2) a spacecraft control system for 
one spacecraft a t  a spacecraft operations 
center, and (3) a payload operations system 
for one payload a t  a science analysis center. 

The distinction between complex and domain 
may not be important in some cases. For 
example, if an  entire complex is managed as 
a single system, the notion of domain is 
useless. In what follows, however, we assume 
that the domain is the unit for management. 

A domain consists of functional blocks. 
Functional blocks are basic building blocks of 
DIOSA. Each functional block performs a set 
of functions to operate a spacecraft, and has 
a standard structure which will be defined in 
the next subsection. 

2.2 Structure of a Functional Block 

Each functional block has (1) data ports, (2) 
a management port, and (3) a local SIB (Fig. 
2). 

The data ports are used for receiving data to 
be processed by the functional block and for 
sending data which has been processed by 
the functional block. The communications 
protocols to be used for the data ports are 
rlic~iiccnrl i n  S ~ r t i n n  A Thn n k h ~ r  ~ n r l  nf a -*""-"""" ,.,"""-".. A. *.A" "V*."* "-a- "A .A 

data port is another functional block. 

The management port is used for receiving 
configuration control information and for 
sending status information (Newsome et  al., 
1992). The protocols to be used for the 
management port are discussed in Section 5. 
The other end of the management port is 
usually the Domain Management Functional 
Block. 

Fig. 2 Structure of Functional Block 

FUNCTIONAL BLOCK DATA PORTS 



The local SIB is a local copy of a subset of 
the Spacecraft Information Base (SIB) which 
will be discussed in  Section 3. Each 
functional block retains its own copy of SIB, 
which is downloaded from the Master SIB of 
a spacecraft. Most of the basic functional 
blocks can be used for several spacecraft by 
changing the local SIB and (maybe) replacing 
some of the software modules. 

3. SPACECRAFT INFORMATION BASE 

3.1 Structure of SIB 

The Spacecraft Information Base (SIB) is a 
database which stores all the information 
needed to operate a spacecraft. SIB consists of 
three parts, namely Data Definition Part, 
Behavior Definition Part, and Procedure 
Definition Part (Fig. 3). The Data Definition 
Part is equivalent to a traditional command 
and telemetry database found in most 
spacecraft operations systems. The Behavior 
Definition Part and Procedure Definition Part 
is an online version of the flight operations 
manual (Cipollone et al., 1992). In the future, 
higher-level knowledge on spacecraft should 
be further combined with SIB using a 
technique proposed by Kaufeler et al. (1992a). 

Each part of SIB is generated from the 
spacecraft specifications and the flight 
operations manual. It is important that SIB 

SPACECRAFT INFORMATION 
BASE (SIB) 

I Part 3 - Procedure Definitions 
(Com mand sequences) 

Part 2 - Behavior Definitions 
(Spacecraft behavior in terms 

mand and telem 

Part 1 - Data Definitions 
(PackeUFrame Structure and 

Format) 

should be used from the spacecraft 
integration and test phases by the spacecraft 
integration team and then handed to the 
flight operations team in an  electronic 
manner. 

In the operations system, SIB is maintained 
in the Master SIB Functional Block, and its 
appropriate portions a r e  occasionally 
distributed to other functional blocks (Fig. 4). 

3.2 Data Definition Part (SIB Part 1) 

The Data Definition Part of SIB defines the 
structure of binary data contained in  
telemetry and command packets (or frames). 
For each command item, any information 
needed to generate a command packet from 
its mnemonic expression is stored (Fig. 5). 
And for each telemetry item, any information 
needed to extract its value or status from a 
telemetry packet is stored (Fig. 5). The 
parameters of the RF links of the spacecraft 
are also stored in this part. 

A standard of packet formats like ESA's 
Packet Utilization Standard (Kaufeler et al., 
1992b) greatly facilitates standardizing this 
part of SIB, thus increasing portability of SIB 
from mission to mission. 

Flight Operations 
Manual (FOM), etc. 

MASTER R 

Fig. 3 Spacecraft Information Base (SIB) Fig. 4 Distribution of SIB 



3.3 Behavior Definition Pa r t  (SIB Part 2) 

This part defines the behavior of a spacecraft 
in terms of command and telemetry. This 
data is used to decide whether or not the 
spacecraft is acting normally, and to give the 
operator a message on what actions to be 
taken in case of an anomaly (Fig. 5). 

Examples of information stored in this part 
are: (1) How the spacecraft reacts to each 
command in terms of telemetry, (2) Actions 
to be taken (or commands to be sent) when 
the spacecraft does not reacts to the 
transmitted command properly, (3) Telemetry 
limit values, (4) Actions to be taken (or 
commands to be sent) if a telemetry limit 
value is exceeded. 

3.4 Procedure Definition Part (SIB Part 3) 

This part stores command procedures. A 
command procedure i s  a sequence of 
commands to accomplish an objective. Other 
command sequences can be called a s  
subprocedures i n  a command sequence. 
Information on resource requirements and 
operational constraints should be stored with 
each command sequence. 

Operations Masseges to 

I Definitions i ......................... ......................... 

Telemetry 
Sequences 

......................... ......................... 
SIB Part 1 : : 

i Definitions : i Definitions i ......................... ......................... 

Telemetry 
Packets Packets 

Fig. 5 Usage of SIB 

4. INTERFACE STRUCTURE 

Standard interfaces between functional blocks 
are obtained by standardizing data formats 
and communications protocols. In this section, 
standard formats and protocols to be used for 
the data ports of functional blocks are 
presented. 

4.1 Data Types 

Data formats to be used for the data ports of 
functional blocks are standardized in two 
categories, namely Raw D& Type and Text 
Data Type (Fig. 6). 

Examples of data of the Raw Data Type are 
command and telemetry packets (or frames) 
and radiometric data. To increase the 
portability of some software, any raw data 
used for spacecraft operations should be 
formatted in a data unit whose structure 
resembles that of CCSDS packets. In this 
way, for example, navigation data generated 
by a spacecraft and hppler  data obtained a t  
a ground station can be displayed .on the 
same screen easily. 

SEQUENTIAL TRANSFER 
Space Data Transfer 

DATA TYPES 

BATCH TRANSFER 
File Transfer Protocol 

- 

- 

Fig. 6 Data Types and Transfer Types 

RAW DATA 
CCSDS Packets1 Frames, 
Pseudopackets 

TEXT DATA 
Event Files, 
Parameter Files, 
Anomaly Messages 



To process raw packets, some ancillary 
information needs to be attached to each 
packets. The type of ancillary information 
depends on the application data.  For 
telemetry packets, for example, reception time 
at the ground station and data quality 
information should be attached to each 
packet as ancillary information. In DIOSA, 
this information is called Application Specific 
Ancillary Information (ASAI). 

Examples of data of the Text Data Type are 
event files (sequence of events and 
commands), parameter files (listing of 
parameters), anomaly messages (indicating 
the ocurrence of an anomaly), and state 
vectors. These kinds of data are transferred 
as text files with a standard format so that 
they can be processed with standard UNIX 
tools like AWK. 

4.2 Transfer Types 

Communications protocols to be used for the 
data  ports of functional blocks a r e  
standardized in two categories, namely 
Sequential Transfer Type and Batch Transfer 
Type (Fig. 6). 

The protocols of the Sequential Transfer Type 
are used for transferring data which needs to 
be transferred while it is being generated. 
These protocols can be used for delayed 
transfer as well (e.g. receiving telemetry data 
stored at a ground station) if the user wants 
to use the same software for both realtime 
and delayed data. 

A data delivery protocol, which is called the 
Space Data Transfer Protocol (SDTP), is the 
standard application layer protocol of DIOSA 
for sequential transfer. This protocol is used 
together with a standard transport protocol 
such as TCP/IP or X.25 (Fig. 7). Details of 
SDTP are described in the next subsection. 

The protocols of the Batch Transfer Type are 
used for transferring files. A standard file 
transfer protocol such as  FTP or FTAM can 
be used for batch transfer (Fig. 7). 

Most raw data will be transferred with the 
sequential transfer protocols. However, the 

RAW DATA TEXT DATA 

CCSDS Packets, 
Frames, etc. 

Appl. Specific 
Ancillary Info. 

Space Data FTP, FTAM, 1 Transfer 1 1 etc. 1 
Protocol (SDTP) 

TCPIIP, X.25, TCPIIP, X.25, I etc. I I etc. I 
SEQU ENTIAL BATCH 

TRANSFER TRANSFER 

Fig. 7 Protocol Stack Used for Data Ports 

batch transfer protocols can be used for 
transferring raw data which is already stored 
in a file. Most text data will be transferred 
with the batch transfer protocols. However, 
the sequential transfer protocols can be used 
for transferring text data if it has to be 
transferred immediately after its generation. 

4.3 Space Data Transfer Protocol (SDTP) 

The Space Data Transfer Protocol (SDTP) is 
a connection oriented protocol used for 
delivering sequential space da ta  (e.g. 
sequence of CCSDS packets) from a 
functional block to another functional block. 
SDTP has a capability of (1) requesting data 
transfer, (2) specifying Spacecraft ID (SCID), 
Application Process ID (APID) and other 
attributes of data, and (3) notifying of any 
events related to data delivery (e.g. loss of 
RF signal). The formats of the Protocol Data 
Units (PDUs) of SDTP is shown in Fig. 8. 

SDTP is used as follows. When Functional 
Block Tom wants to receive a sequential data 



DATA PDU FOR RAW DATA 

CONTROL PDU 

Fig. 8 Format of SDTP-PDU 

SDTP 
Header 

SDTP 
Header 

from Functional Block George, Tom opens a 
connection of SDTP with George saying "Hi, 
George. I want to receive packets with 
APID= 5 and SCID=32 in realtime" (Connect 
Request). Then George answers "OK, Tom" 
(Connect Response) and starts data delivery. 
When the data delevery is (or must be) 
terminated, either end of the connection can 
disconnect the connection. 

Standard Text File 

SDTP can be used together with a data 
distribution service as explained below as 
well as in a bilateral mode. 

DATA PDU FOR TEXT DATA 

ASAl 
Header 

In a distributed space operations system, a 
data stream often needs to be delivered to 
s e v e r a l  d e s t i n a t i o n s  s i m u l t a n e o u s l y  
(multicasting). For example, some telemetry 
d a t a  may be monitored by s e v e r a l  
workstations simultaneously. In DIOSA, data 
distribution and multicasting are performed 
by the Data Distribution Functional Block 
(DDFB). A DDFB is placed in every domain 
where i t  is needed. The DDFB of a domain 
acts as the data server of the domain. The 
DDFB receives sequential data from the 
DDFB of another domain or from another 
functional block in its own domain, and 
distributes the received data t.o functional 
blocks in its domain (Fig. 9). 

CCSDS Packet, 
Frame, etc. 

In such a situation, when a functional block 
wants to receive a sequential data, i t  opens a 
SDTP connection with the DDFB of that  
domain requesting transfer of that data. Then 
the DDFB checks whether or not it i s  

11 DOMAIN 11 
Dist FB ,O 

Dist FB Block 

L1 LI 

Fig. 9 Data Distribution With Data 
Distribution Functional Block (DDFB) 

receiving that data, and if it is not, i t  sends 
a request for that data to another DDFB. 
Therefore, the requesting functional block 
does not have to know where the data 
originally comes from. I t  always sends 
requests to the DDFB of its domain. 

5. MANAGEMANT STRUCTURE 

Each domain has a functional block, called 
the Domain Managemet Functional Block 
(DMFB), which manages the functional blocks 
of the domain. Management within a domain 

sDTp 'Or T T Text file transfer 
realtime control for schedule 

and monitor exchange 

Domain 
Man FB 

Fig. 10 lntterdomain Management With 
Protocols of Fig. 7 



Table 1 Some Examples of Functional Blocks 

is performed with the management port of 
functional blocks and a standard network 
management protocol like SNMP. 

Functional 
Block Name 

Domain 
Management 

Data 
Distribution 

Command 
Transmission 

Telemetry 
Reception 

Radiometric 
Data Collection 

Spacecraft 
Control 

Timeline 
Generation 

Orbit 
Determination 

Data Archive 

Data Analysis 

Managinment between domains can be 
performed either with a network management 
protocol or with the protocol suit described in 
Section 4. In  the lat ter  case, schedule 
information is exchanged in Standard Text 
Files with the File Transfer Protocol, while 
configuration change messages and status 
information messages are  exchanged with 
SDTP in realtime (Fig. 10). 

6. EXAMPLES OF FUNCTIONAL 
BLOCKS 

Typical 
Location 

Every 
Domain 

Every 
Domain 

Ground 
Station 

Ground 
Station 

Ground 
Station 

OPS 
Center 

OPS 
Center 

OPS 
Center 

Science 
Center 

Science 
Center 

In Table 1, some examples of functional 
blocks are given. Please note that this is not 
a comprehensive list of functional blocks. An 
example of a n  operations system constructed 
with DIOSA is shown in Fig. 11. 

7. CONCLUSION 

Function 

Manage 
functional blocks 
o f  the domain 

Distribute data 

Transmit 
commands 

Receive and 
decode telemetry 

Collect range and 
doppler data 

Generate 
commands and 
verify results 

Generate 
timelines 

Determine orbit 

Archive data 

Analyze data 

This paper presented the concept of a 
distributed multimission operations system. 

Data Input 

Event fi le (Text Data, 
Batch Transf.), 
Config. change req. 
(Text Data, Seq. Tsf.) 

Various data (Raw 
Data, Seq. Transf.) 

Command data (Raw 
Data, Seq. Transf.) 

Telemetry signal 
(Analog) 

Radiometric signal 
(Analog) 

Event fi le (Text Data, 
Batch Transf.), 
Telemetry data (Raw 
Data, Seq. Transf.) 

Ops request (Text 
Data, Batch Transf.) 

Rangeldoppler (Raw 
Data, Seq. Transf.) 

Telemetry data (Raw 
Data, Seq. Transf.) 

Telemetry data (Raw 
Data, Batch Transf.) 

Data Output 

Status information 
(Text Data, Seq. 
Transf.) 

Various data (Raw 
Data, Seq. Transf.) 

Command signal 
(Analog) 

Telemetry data (Raw 
Data, Seq. Transf.) 

Rangeldoppler (Raw 
Data, Seq. Transf.) 

Command data (Raw 
Data, Seq. Transf.), 
Anomaly msg (Text 
Data, Seq. Transf.) 

Event fi le (Text Data, 
Batch Transf.) . 

State vector (Text 
Data, Batch Transf.) 

Telemetry data (Raw 
Data, Batch Transf.) 

Papers t o  be 
published in journals 



I GROUND STATION (COMPLEX) I 

SCIENCE DOMAIN 

I OPERATIONS CENTER (COMPLEX) I 
Fig. 1 I Example of Spacecraft Operations System 

We plan to develop a prototype in a few 
years to verify the validity of this concept. 

8. REFERENCES 

Cipollone, G., & McKay, M. (1992). An 
engineering database management system 
for spacecraft operations. Proc. of the 
Second Int. Symp. on Ground Data Systems 
for Space Mission Operations, 787-790. 

Holder, B., & Levesque, M. (1992). Making 
adaptable systems work for mission 
operations: A case study. ibid, 327-331. 

Kaufeler, J.-F. e t  al. (1992a). The advanced 

technology operations system ATOS. ibid, 
425-434. 

Kaufeler, J.-F. e t  al. (1992b). The European 
space agency standard for space packet 
utilization. ibid, 813-818 

Mandl, D. e t  al. (1992). SAMPEX payload 
operation control center implementation. 
ibid, 63-68. 

Newsome, P., & Otranto, J. (1992). The 
advanced orbiting systems testbed program: 
results to date. ibid, 501-506. 



5. Systems Engineering Tools Page1325 

SE.5.a Re-engineering the Mission Life Cycle With ABC & IDEF 1327-1334 - 7 
Daniel Mandl, Michael Rackley, Jay Karlin 

SE.5.b MO&DSD Online Information Server and Global Information 1335-1342 ~7~ 
Repository Access 

Diem Nguyen, Kam Ghaffarian, Keith Hogie, William 
Mackey . Lz 

f%-h4$: 

SE.5.c Orbital Mechanics Processing in a Distributed Computing 1343 '"' " 
Environment 

Randolph Nicklas 3 qP &/ 

SE.5.d The Requirements Generation System: A Tool for Managing 1345-1351"' P t 
Mission Requirements 

Sylvia B. Sheppard PC. - - -,, W 
SE .5.e An Opportunity Analysis System for Space Surveillance 1353-1360 " 4 

Experiments With the MSX 
Ramaswamy Sridharan, Gary Duff, Tony Hayes, Andy 
W i s e m a n  

Po 6 
SE.5.f Matrix Evaluation of Science Objectives 1361-1368 / / 

Randii R.  Wessen 

" Presented i n  Poster Session 





RE-ENGINEERING THE MISSION LIFE CYCLE WITH ABC & IDEF 
S f 4  

Daniel Mandl, Michael Rackley 
NASAIGSFC Code 5 1 1 

Greenbelt, MD 20771 

Jay Karlin 
Viable Systems Inc. 

12236 Stoney Bottom Rd. Germantown, MD 20874 

ABSTRACT 
The theory behind re-engineering a business process is to remove the non-value added activities 

thereby lowering the process cost. In order to achieve this, one must be able to identify where the non- 
value added elements are located which is not a trivial task This is because the non-value added 
elements are often hidden in the form of overhead andlor pooled resources. In order to be able to isolate 
these non-value added processes from among the other processes, one must first decompose the overall 
top level process into lower layers of sub-processes. In addition, costing data must be assigned to each 
sub-process along with the value the sub-process adds towards the final product. 

IDEFO is a Federal Information Processing Standard (FIPS) process-modeling tool that allows for 
this functional decomposition through structured analysis. In addition, it illustrates the relationship of 
the process and the value added to the product or service. The value added portion is further defined in 
IDEFlX which is an entity relationship diagramming tool. The entity relationship model is the blueprint 
of the product as it moves along the "assembly line" and therefore relates all of the parts to each other 
and the final product. It also relates the parts to the tools that produce the product and all of the paper 
work that is used in their acquisition. 

The use of IDEF therefore facilitates the use of Activity Based Costing (ABC). ABC is an essential 
method in a high variety, product-customizing environment, to facilitate rapid response to externally 
caused change. This paper describes the work being done in the Mission Operations Division to re- 
engineer the development and operation life cycle of Mission Operations Centers using these tools. 

1. Introduction 

With NASA budgets becoming tighter 
each year, the Mission Operations Division 
(MOD), which is part of the Mission 
Operations and Data Systems Directorate at 
Goddard Space Flight Center (GSFC), has 
been forced to reevaluate and change how it 
has traditionally built Ground Data Systems 
(GDS). The MOD, as an enterprise, could 
very simply not afford to continue doing 
"business as usual". 

The traditional GDS approach was to 
implement large facilities that supported 
multiple, simultaneous missions, with each 
facility providing a specific type of 
operational support function. The systems 
were also typically developed using the 
traditional development life cycle model, 
with formal reviews for requirements and 
design, and large amounts of formal 
documentation. This GDS architecture and 
development approach may have been 
appropriate given the technology and budgets 



available at that time, but the MOD could no 
longer afford this approach. The 
development cycle was proving to be too 
long and expensive, and the operations costs 
associated with the architecture were 
accounting for too much of the overall 
budget. The MOD enterprise thus set out to 
improve itself in these two areas. 

A new GDS approach has been adopted 
that takes advantage of the relatively recent 
advances in technology and industry 
standards. The new concept is to build a 
GDS that is tailored to a mission or family of 
missions. This required the development of 
an underlying architecture approach that was 
flexible, scalable and evolvable. 

As mentioned, the MOD also set out to 
reduce the development life cycle cost. 
Analysis showed that while operations costs 
could be reduced with the new architecture, 
development costs associated with that 
architecture were not experiencing 
comparable cost savings. This was surprising 
to many since the new architecture employs 
high levels of software reusability across 
missions. The MOD came to the conclusion 
that though reusability was an important 
factor in reducing costs, any further 
substantial savings could only be achieved by 
improving the development process itself. 

The remainder of this paper focuses 
in particular on the MOD's efforts thus far to 
improve the process for requirements 
analysis. Sections 2 through 4 introduce a 
costing method referred to as Activity Based 
Costing (ABC), and the Integration 
Definition for Modelling (IDEF) modelling 
used to support this method. The remaining 
sections describe how this method and tool 
were applied to the MOD's process 
improvement experiment. 

2. Process Engineering with ABC; 
Pricing a Requirement 

In order to manage processes effectively 
and to make appropriate decisions about 
changing them, a detailed and accurate set of 
metrics is essential. Pooled resources tend to 
distort the actual cost of a process. When a 
resource is shared, the traditional method for 
assigning cost to a project is to use the 
average cost of past missions, instead of 
assigning a cost that is tailored to the true 
needs of the project. With the new GDS 
approach of tailoring the system to each 
mission's needs, a comparable costing method 
was needed so that actual mission 
requirements could be individually costed, 
thus yielding a more accurate overall project 
cost estimate. 

ABC is a method devised to model the 
cost of any process which has first been 

. 

decomposed through modeling into primitive 
activities that serve as its building blocks. 
Once the primitive activities have been 
identified, costs can be assigned to those 
primitives. Then optimization of the general 
process can be performed in forums such as 
process improvement committees. 

IDEF is a Federal Information Processing 
Standard (FIPS) that can be used as a tool to 
perform ABC. IDEF actually consists of an 
integrated pair of tools: the activity modeler 
(IDEFO) and the data modeler (IDEF 1 X). 
IDEFO is used to model the activities that 
occur to produce a product or service and 
therefore shows the interrelationships of work 
being done in different groups. IDEFlX 
shows what is being passed between 
processes by defining a template (i.e. a data 
structure) for each item. This provides for 
more accurate, rapid and meaningful insight 
into interactions among groups. An example 



of this might be a form sent to request a 
service from another group. IDEF therefore 
acts as an intergroup coordination tool by 
providing the overall blueprint for the entire 
process. The best way to use this tool to 
coordinate different groups is to put IDEF on 
a distributed network that is accessible on- 
line to all participants in the process. 

3. The Power of IDEF & ABC 

IDEF with ABC allows one to 
continuously assess the implementation of an 
overall process and thereby determine the 
point at which the implementation needs to 
be changed in order to reduce costs. 

For example in figure 1, a conceptual 
process is depicted. The goal is to get from X 
to Z, however there is a constraint that 
regardless of what path is taken, it must cross 

Y as an intermediary point or constraint. For 
example, X might be the start of a project and 
Z might represent having a design. Before 
one can have a design, one must have the 
system requirements which is represented by 
Y. There are a variety of paths to get from 
X to Y, each costing a different amount. The 
cost to get from X to Y is the sum of the cost 
of each of the activities traversed to get from 
X to Y. In this case, path 2 happens to be the 
least expensive. 

But what happens when a technology 
comes along that causes the cost of activity 3 
to decrease from $3.00 to $0.50? This causes 
the least expensive path from X to Y to 
become path 1 instead of path 2. But what 
happens if there are thousands of activities 
performed by loosely coupled groups, with 
each injecting technology to perhaps 
automate an activity in their area? Thus what 

Injection of Technology 
may change cost of an activity 
thus changing optimum path 



looked relatively simple in this example is in 5. Experiment Approach 
reality very complex! 

What happens when the organization 
chooses to solve problems with the same 
processes without considering cost impacts of 
increasing complexity? Without examining 
the activities within processes and removing 
non-value added old activities , unneeded 
constraints are carried along like deadwood at 
extra expense. For example, it may be 
necessary to derive the system requirements, 
but it may not always be necessary to have a 
formal System Requirements Review (SRR) 
if there is a high degree of reusability. 

4. IDEF Nomenclature 

Of course, models created through the 
use of IDEF are more sophisticated than the 
conceptual drawing in figure 1. Figure 2 

mechanism attributes 

Figure 2 Nomenclature for IDEFO and 

depicts the key to reading an IDEFO drawing. 
Note the acronym ICOM helps to identify the 
key elements of an IDEF drawing where I 
represents Input, C represents Constraint, 0 
represents Output and M represents 
Mechanism. One of the key features of IDEF 
is its ability to link the drawings to an 
underlying database. Also, the drawings are 
hierarchical to allow one to reveal more and 
more detail as needed. 

The following steps were taken in 
conducting the MOD process improvement 
experiment: 

Identify target process for 
improvement. 
Gather baseline cost data. 
Define activities that comprise the 
process using IDEFO 
(referred to as AS-IS process). 
Identify potential problem areas. 
Identify the underlying business rules 
using IDEF 1 X 
Develop improved process (referred 
to as TO-BE process). 
Quantify potential cost improvement 
using ABC. 
(1) Show main cost driver activities. 
(2) Identify resource cost drivers, 
e.g., needing specialized skill only 
half-time but required to hire a full- 
time person. 
Measure the new process to verify 
improvement. 

6. Target Process Selection 

In order to define the target process for 
improvement, a typical mission life cycle 
was first defined as follows: 

- Develop System Requirements 
- Design System 
- Build and Test System 
- Operate System 
- Maintain System 

This top level process is illustrated in figure 
3. Although this figure applies specifically to 
the development and use of a Mission 
Operations Center (MOC), it was actually 
derived from a higher level diagram of the 



SRR In-House Capabilities 
& Methods C1 

C2 Budget IDEF KEY 
Limits 

I 
P r o j e c t s ~  
(MOM) Operators M4 Testers 

Figure 3 Top level "AS-IS" Life Cycle Model 

.* r .A -I t -5.- r r - - . a v - - c c  

typical life cycle for the entire GDS. processes are illustrated in figures 4 and 5 
respectively. Figure 6 shows the underlying 

The next step involved taking some gross cost spreadsheets and figure 7 is an example 
measurements of the different life cycle of the underlying entity relationship model. 
phases to see where the largest portion of the 
resources was spent. The build phase of the A cursory examination of figure 4 , 
life cycle was found to be an increasingly suggested the following problems: 
smaller portion of the total cost. This was 
due to the employment of reusable building a. Function A13 "Negotiate 
blocks. This meant that the major cost Exceptions" is a trigger on Functions A1 1 
drivers no longer resided in the generation of and A12. That is, A13 is required to feed 
software. They instead resided in the other certain previously identified exceptions back 
life cycle phases, primarily developing to their source for reconsideration. This 
system requirements and testing. Therefore reiteration (loop-back) multiplies the effort. 
the greatest remaining potential for cost 
savings was in these other phases. The b. Additionally, there is conflict 
requirements analysis phase was thus chosen between inputs into the "Analyze Mission 
as the target process for improvement. Req." from two different sources. This 

indicates that the changes resulting from the 
7. Process Analysis unresolved constraints and inputs 

(exceptions) perturb the on-going preparation 
The "AS-IS" and "TO-BE" requirements of other requirements, necessitating 



Accepted Mission 



coordination. Thus, management and 
developer resources, as well as operator and 
projects' personnel time, is consumed 
unnecessarily. 

8. Process Improvement 

The AS-IS process has been redesigned to 
largely eliminate feedback as shown in fig. 5, 
TO-BE, while retaining its basic 
functionality. This was accomplished by 
making the Developers, mechanism M3, and 
their personal knowledge of the constraint 
C2, "In-House Capabilities", available to 

A1 1, which is the initiating point in the 
requirements process. This early developer 
involvement has removed many of the 
information interfaces that used to require 
translation and documentation "at-a-distance" 
between A1 1, A12 and A13, and that had 
been burning up a sigmficant amount of 
manpower. To facilitate dynamic person-to- 
person interaction, the process designers 
specified there be a System Definition Team 
(SDT) in order to ensure "eyeball-to-eyeball" 
operator and developer physical proximity, 
which eliminated the shuttling of documents 
back and forth. The Requirements 

I Figure 6 Underlying cost spreadsheets 



IN-HOUSE-CAPABILITY /3 MISSION-SPECIFIC-RsgVIRmENT /4 - 
Provided by / 

GENERIC-KERNEL / 5  

Figure 7 E~tiimple of underlying 
entity realtionship model 

treated in this manner. Since technology 
changes so quickly, this analysis, including 
an activity cost breakdown, has to be 
constantly monitored. The next step, once 
these models are in place, would be to feed 
the results into a simulator such as Work 
Flow Analyzer to do probabilistic analysis 
on the feedback loops. 

11. Conclusion 

Generation System (RGS) replaced this 
physical function by recording the 
agreements in real time, thus furthering the 
cost reduction effect. 

9. Results 

Chart 1 shows the results that were 
achieved. Note that, in spite of the fact that 
they were favored by very high levels of 
reuse, previous missions still required 
significant developer effort to get through the 
requirements analysis process. The shaded 
area indicates the newly installed process . 

Together, IDEF and ABC allow large 
organizations to coordinate their processes 
and to create a living blueprint for changing 
and improving business practices. These 

tools also provide a forum for each individual 
to identify his or her viewpoint and to 
comment on these processes from such a 
perspective. For the business entity and its 
organization to remain viable, and since the 
primary cost savings potential is in the 
process and not the product or product 
architecture, these types of management 
methods must be instituted along with such 
items as product innovation. They in fact 
provide a means to achieve process 
innovation. Finally, without these type of 
tools, large organizations find themselves in 
the situation of making decisions without the 
necessary metrics. 

10. Future Efforts 
12. References 

The remainder of the life cycle can also be 

Chart 1 Results of experiment; OnIy 
developers' effort considered, no 
management or publications 

Kaplan, Robert S., Management Accountingfor 
Advanced Technological Environments, Articles, 
August 25,1989. 

Moravec, Robert D. & Yoemans, Micheal S., 
Using ABC to Support Business Re-Engineering in 
the Department of Defense, Journal of Cost 
Management, Vol6, No 2, Summer 1992. 

NIST, Integration De3nition for Function 
Modeling (IDEFO), FPS Publication, Dec 2 1, 1993. 



3 W ~ J S  
MO&DSD ONLINE INFORMATION SERVER AND 
GLOBAL INFORMATION REPOSITORY ACCESS 

Diem Nguyen and Kam Ghaffarian 
Loral AeroSys 

7375 Executive Place 
Seabrook, Maryland 20706 

Keith Hogie and William Mackey 
Computer Sciences Corporation 

7700 Hubble Drive 
Lanham, Maryland 20706 

ABSTRACT 

Often in the past, standards and new technology 
information have been available only in hardcopy 
form, with reproduction and mailing costs proving 
rather significant. In light of NASA's current budget 
constraints and in the interest of efficieAt communi- 
cations, the Mission Operations and Data Systems 
Directorate (MO&DSD) New Technology and Data 
Standards Office recognizes the need for an online 
information server (OLIS). This server would allow 

Dissemination of standards and new technol- 
ogy information throughout the Directorate more 
quickly and economically 
Online browsing and retrieval of documents 
that have been published for and by MO&DSD 
Searching for current and past study activities 
on related topics within NASA before issuing a 
task 

This paper explores a variety of available informa- 
tion servers and searching tools, their current capa- 
bilities and limitations, and the application of these 
tools to MO&DSD. Most importantly, the discus- 
sion focuses on the way this concept could be easily 
applied toward improving dissemination of stan- 
dards and new technologies and improving docu- 
mentation processes. 

including file transfer protocol (FTP), wide-area 
information server (WAIS), Gopher, and Mosaic. 
From their personal computer (PCs), users can elec- 
tronically retrieve standards information (e.g., Con- 
sultative Committee for Space Data Systems recom- 
mendations), new technology information (e.g., asyn- 
chronous transfer mode), or previous studies and 
results. This server also provides pointers to other 
public servers on the Internet. 

In support of this initiative, the Systems, Engineer- 
ing, and Analysis Support technical support group 
began looking into mechanisms for providing better 
access to standards and new-technology-related 
documentation. A standards database on CD-ROM 
was examined; however, it was found that a local 
PC-based retrieval mechanism is rather cumber- 
some and not easily accessible for the more than 
4,000 users of the MO&DSD community. 

Because Transmission Control ProtocoVInternet 
Protocol (TCP/IP)-based applications are widely 
available for any platform, the technical support 
group concentrated on an open systems approach 
using the Internet as the access mechanism. This 
approach provides maximum accessibility within 
Goddard Space Flight Center (GSFC), across NASA, 
and even to international users. 

INTRODUCTION GOAL 

The Mission Operations and Data Systems The key issue is giving users timely, reliable, and 
Directorate (MO&DSD) online information server relevant information. The overall goal of OLIS is to 
(OLIS) has been established to share the latest make information available, convenient, and easily 
trends, technologies, and standards information accessible to MO&DSD personnel. Users can 
among MO&DSD organizations. OLIS offers the access and share in minutes information that once 
same information via multiple retrieval methods, took weeks to disseminate. Most significantly, OLIS 



focuses on ways to improve awareness of standards, 
new technologies, and documentation processes. 
OLIS was established to show what can be done and 
to encourage other groups to set up similar servers. 

INTERNET SERVICES 

Many available services require only a basic con- 
nection to the Internet, where client applications are 
used to access information servers. More advanced 
clientlserver technologies can access the capabili- 
ties of more basic clients and servers (as shown in 
Figure 1). 

Figure 1 shows, on the left, the various types of client 
programs and, on the right, the various types of 
servers those programs access. These clientlserver 
communications can also occur with both elements 
on the same system so the same process can be used 
to access local files, as well remote files. 

Also shown are two major types of interfaces. One 
is a basic textual interface that can be supported on 

Representative Information 
End user Client applications Servers 

(daemons) 
Text Interlace GUl interface Suwort ADDllCatiOnS 

I /-\ internet 

Figure I .  Hierarchy of ClientlSewer 
Technologies 

full-screen text terminals, such as the VTlOO series. 
This type of interface can be supported by most 
computer vendors and can operate over dialup and 
Telnet connections. The textual interface works 
very well over low bandwidth connections as it only 
uses text and does not include any graphics. 

The other type of interface is the full graphical user 
interface (GUI), which normally provides a more 
user-friendly interface. However, this type of inter- 
face requires an end-user computer system with 
proper windowing capabilities and is not commonly 
supported over dialup links. - 

The support applications (shown at the top of Figure 
1) are used by Gopher- and Mosaic-type clients. 
These applications are activated when the client 
detects an action or file format that cannot be proc- 
essed by the client itself. These applications are 
normally activated after the client has transferred a 
special-format file to the user's disk drive. Support 
applications include Telnet applications or special 
file format processors such as graphics interchange 
format (GIF) or joint photographic expert group 
(JPEG) image viewers, QuickTime or MPEG movie 
viewers, audio file players, or word processor pack- 
ages. 

Domain Name Service 

Remote systems are normally identified by an 
Internet format hostname address such as 
"ddwilson.gsfc.nasa.gov." This name must first be 
converted into a standard four-number IP address 
such as 128.1 83.92.1 44, which can then be used to 
communicate with the remote system. 

A "directory assistance" service, referred to as 
Domain Name Service (DNS), is available that 
automatically looks up IP addresses for a given 
hostname and vice versa. This automated service is 
silently invoked every time an Internet hostname is 
given for connection. The lookup is performed by 
querying a host called a DNS name server. (The 
identity of this server should be provided at the time 
the user's computer is set up for Internet access.) In 
addition to letting user computers resolve IP ad- 
dresses automatically, the DNS maintains entries, 
listing the Internet hostname and IP address of the 
user's computer. This lets remote systems such as 
anonymous FTP sites determine if the computer is a 
registered Internet host. 



Telnet 

Telnet is the standard TCPIIP remote login protocol. 
To "Telnet9' to another system is to run a Telnet 
client program that establishes a connection to a 
Telnet server and then logs on to that system with 
some user ID. This cliendserver combination pro- 
vides a basic, text-only access mechanism but works 
internationally. Connecting to a system via Telnet 
normally looks exactly like connecting via a dialup 
line or direct connection. However, with Telnet, a 
user can support multiple connections to remote 
systems simultaneously. 

On an X-window system, a local window-based 
program such as xterm is used to provide a scrollable 
text window from which a Telnet session is then 
established. On a Macintosh or PC, a window-based 
application [such as the public domain program, 
National Center for Supercomputing Applications 
(NCSA) Mosaic], Telnet, or a commercial package 
can be used to provide the client end of the Telnet 
connection. 

The main limitation of Telnet access is that only one 
system can be accessed per session, and the user 
must know and use the appropriate commands to 
examine information there. Some systems support a 
"guest" login with no password, but most systems 
require individual user accounts and passwords. A 
problem with using Telnet for public information 
access is that it normally requires a user to execute 
too many commands on the remote system. The 
combination of user accounts and extensive com- 
mand capabilities make this is a very poor way to 
provide a large user community access to many 
information servers easily and transparently. 

File Transfer Protocol 

FTP is another information access mechanism that 
has been in existence since the time of the ARPANET 
in the mid-1 970s. To "FTP" to a system is to run an 
FTP server, examine file directories, and download 
or upload files of interest. FTP provides access to a 

thousands of FTP servers set up for "anonymous 
ftp" access. In anonymous ftp, the user can log in 
with a user name of "anonymous" and a password 
(generally the user's name andlor email address) 
and then download files or possibly upload files into 
a special directory set up for that purpose. An anony- 
mous ftp server was set up as the first information 
server for OLIS. 

FTP initially operated in a command line mode (as 
shown in Figure 2), where the user entered FTP 
commands to browse file directories and retrieve 
files. 

220 dd.i Ison FTP ISVS <knOS 4 . 0  w. 
b m a  < ~ i l s o n . ~ f c , n m a . p o v : ~ i e > :  armyraa 
331 Guest l w i n  o*. send i d a t  as ~asswcrd. 

I Pasarrd: 
- ,  

230 &st login o*, occess r a t r i c t i o m  w t y  
ftp, cd pub/CCSDS/tWt 
250 CU) cclland arr .SSf"l .  
ftp, d i r  
MO P a l l  - a r m s f u l .  
150 RSCII drtta comction for h i n / t r  (128.183.92.144.1087) (0  bytes). 
total 597 
rrc-r- 1 goph.r staff 6 4  .kt1 13 16:49 .each. 
rw--r- 1 goph.r staff  1883 b, 10 19:57 .coch.+ 
6 r X T x r - X  2 root 60cm 
rrr+rr 1 n ~ . n  staff  
r-rr l - staff 18868 Hag to 15:37 CcSDWoc. tx t  
YO- 1 n~yar  staff 
r-r 1- staff 
r w w r r  1 - staff 
rrr-r-- I n ~ . n  staff 
rmrr 1 n ~ n ,  staff 4- b, 9 I9:22 Tiu-Cod._B8.txt 
226 RSCl I T r a u f r  complete. 
728 bytms r .c* iud In 0.048 s d  (15 Kbyta/s) 

<: 

Figure 2 .  Command Line FTP Interface 

More user-friendly, point-and-click, or GUI FTP 
client programs have been developed in the last few 
years. These programs eliminate the need for learn- 
ing FTP commands, but they still provide only lists 
of filenames to choose from. On a Macintosh, Fetch 
is one public domain program that implements FTP. 
It simply asks for the name of the host to which the 
user wants to be connected and then provides a 
point-and-click interface to FTP versus the basic 
command line mode of operation. Users can browse 
file directories and, if the filename is descriptive 
enough, can figure out the content and select files for 
downloading (as shown in Figure 3). 

singe site at a time and requiresexplicit commands Although FTP provides a very widely used mech- 
to disconnect from one site and then connect to anism for access to file repositories, it still provides 
another. However, it does provide basic access to only simple lists from a single server at a time. Users 
anything that can be put into a file. Today, a wide need to know how to locate other servers and explic- 
range of information is digitized and stored in itly connect to them. Therefore, FTP does not really 
files. Users can log on to an FTP server if they provide the sort of easy access desired for wide use. 
have an account and password there. There are also Most FTP sites ask for some sort of password, even 



Figure 3 - GUZ FTP Interface 

if they don't care what it is. The password is a 
courtesy in the event the FTP site wants to record 
log-in access. Also, as a security measure, many 
FTP sites check to ensure that the DNS lists the 
user's P address as a registered host. 

Wide-Area Information Server 

WAIS clienvserver software began appearing in 
1992 and looked very promising for the MO&DSD 
goals of providing easy user access to documents, as 
well as full-text search capability on document 
repositories. A WAIS server was set up on OLIS 
in 1993. The popularity of WAIS increased rapidly 
once public domain implementations of the client/ 
server software became stable and available. This 
was the beginning of the deployment of more 
advanced clients and servers and associated proto- 
cols that allowed users to quickly and easily access 
more than one server site. 

The major feature of WAIS is its full-text search 
capability. When a document is loaded into a WAIS 
server, it passes through an indexing application that 
scans the document and builds a list of all the words 
in the document and their frequency of occurrence. 
This information and a pointer back to the original 
document file are then added to the master indexes 
on the server. An end user uses a WAIS client 
program to format a question to be asked of one 
or more WAIS servers. The question contains key- 
words of interest and pointers to the servers to 
be queried. The client program then establishes a 
temporary connection to a server, asks the question, 
receives the responses, and then drops that 

connection and connects to the next server. After 
querying all servers, the client displays the resulting 
filenames to the user. The user can then select any 
file of interest, and that file is transferred to the 
user's system. 

WAIS clients can be set up to easily query multiple 
servers with minimal user interaction. The user is 
not involved in the process of connecting to or 
disconnecting from each server to be polled. Once a 
question has been established with keywords and 
servers identified, the question can be saved for later 
use. The complete search of the same question can 
then be executed at a later date with a single user 
action. The results are returned in a single list indi- 
cating filenames, together with a score of how fre- 
quently the keywords occur in each file. With WAIS, 
users begin to see the Internet as a large information 
repository. 

An inherent limitation with WAIS is that the indexer 
supports only ASCII text as input format; i.e., graphi- 
cal content must be removed and only the text 
entered into a WAIS server. This presents aproblem 
in that, today, many documents are prepared in 
desktop publishing packages and contain tables and 
graphics, as well as text. To get around this problem, 
a WAIS server can be used to locate documents of 
interest, and then the fully formatted version can be 
retrieved separately. Another limitation is that the 
user is responsible for identifying all information 
sites to be queried. One of the files at a site can be a 
list of other WAIS servers that a user can add to the 
list of sites to be queried. But the user is still 
responsible for identifying each site to be used. 

With Gopher and WWW, pointers to other sites with 
information of interest can be followed more easily 
and transparently, as discussed in the following 
paragraphs. 

Gopher 

Gopher servers exploded on the Internet during 
1993, with thousands in existence today. Gopher is 
a popular menu-based information system that inte- 
grates access to Telnet, FTP, and WAIS in an easy- 
to-use interface. Gopher also provides easy access to 
multiple sites. Users move transparently from one 
server to another with the Gopher client knowing 
which protocol to use to access each server. Thus, 
users spend time searching for information rather 



than trying to determine how to use each service and 
navigate the network. 

TurboGopher (shown in Figure 4) is a Macintosh 
version of a Gopher client that allows users to 
retrieve the same information accessible via a typi- 
cal VTlOO Gopher client. TurboGopher, however, 
provides the following advantages: 

Point-and-click graphical interface 
* Files saved directly to local Macintosh 

User does not have to first log into UNIX host 
When an item is selected from a Gopher menu, one 
of three things happens: 

Lower-level menu on the same system appears 
Connection is initiated to another server and 
menu actually stored there appears 

* Action is initiated, such as a file transfer or 
Telnet session 

The first case is actually a special instance of the 
second. In the second case, for menus served by 
another system on the Internet, TurboGopher auto- 
matically connects to the new system and sends the 
proper low-level commands to retrieve the menu 
being invoked. As the user browses through the 
menu hierarchy, the program automatically switches 
from system to system as needed. In the third case, 
when a user invokes a menu item, some special 
action may be performed (e.g., automatically ini- 
tiate downloading a file). This is implemented 
essentially by FTP-like functionality built into 
TurboGopher, while a Telnet session is initiated by 
activating a support application. 

Worldwide Web 

The WWW project began at the European Particle 
Physics Laboratory (CERN). WWW seeks to build 
a distributed hypermedia system in which all infor- 
mation on the Internet can be accessed consistently 
and easily. Because WWW has the greatest flexibil- 
ity and most user-friendly interface, the OLIS effort 
focuses here. 

WWW is geared toward hypermedia that allows 
selected objects to be expanded at any time to 
provide additional information (i.e., selected objects 
are links to other objects, such as text, sounds, 
images, and animation). The basic building blocks 
of WWW are the HyperText Transfer Protocol 
(HTTP) and the HyperText Markup Language 

(HTML). HTTP describes the communication pro- 
tocol between clients and servers; HTML describes 
the format of the information pages transferred. 

WWW capabilities are comparable to Gopher in that 
WWW is a clientfserver information system running 
on the Internet that provides quick and easy access 
to a wide range of servers. WWW performs the 
functions of Gopher but also supports hypertext 
links that permit the creation of more descriptive 
information for the end user. WWW provides a full 
screen of textual and graphical information with 
individual words, phrases, or icons acting as links 
(shown in Figure 5). The page-formatting capabili- 
ties of HTML can be used to create a wide range of 
point-and-click user interfaces that operate across 
the network. 

I@ htcrnrt Gopher 81991-1993 L*liversIt~ of Mhncrota. I 

B Packet-Te IenctryBB. txt  

TcIe-ComandEB. t x t  

TP l ecolracnd925B. txt - 
Tine-CodeEB. txt 

Figure 4 - TurboGopher Interface 

Figure 5. WWW Interface 



The WWW model represents everything (docu- 
ment, menu, index, etc.) to the user as a hypertext or 
hypermedia object. Two navigation operations are 
available to the user: to follow a link or to send a 
query to a server. Two powerful features fall out of 
this hypertext model. One is that almost all other 
information systems can be represented in terms of 
WWW documents. The other is that the WWW 
system has an open but uniform addressing scheme 
that allows links to be made to any objects on 
WWW, WAIS, Gopher, FTP, Network File System, 
or Network News servers. A WWW user can inter- 
rogate WAIS indexes and Gopher servers. The hit 
list returned by a WAIS server (or any other query 
engine) is treated as a hypertext document with links 
to the documents found. Gopher menus (or any other 
hierarchical menu system) are represented as lists of 
items linked to other objects. The hypertext model 
also allows the user to put in a hypertext link, when 
needed, for background information. 

NCSA Mosaic 

Because WWW supports the functions of other 
types of clients and servers, this discussion focuses 
on WWW clients. One of the most popular WWW 
client applications is the free, public domain soft- 
ware, NCSA Mosaic, which is available for PCs, 
Macintoshes, and many UNIX workstations. It was 
developed at the University of Illinois Urbana- 
Champaign and can be picked up from most major 
anonymous FTP sites. With Mosaic and the proper 
support applications, users can explore WWW with 
full access to multimedia information, including 
formatted text, graphics, and sound. Through WWW, 
a user can access Telnet, FTP, WAIS, Gopher, and 
H'ITP systems. 

SpaceOps 94 hypertext link, Mosaic automatically 
retrieves information and displays the SpaceOps 
HomePage (shown in Figure 7). 

If a special file type is referenced on a hypertext link, 
for example GIF format, Mosaic tries to invoke a 
GIF viewer to display the file after downloading is 
completed. GIF viewer software must be installed 
on the local system, and Mosaic must be configured 
to use it. 

Mosaic displays the retrieved information in the 
large scrolling window, and links are followed by 

MO&DSD Online I n f o d o n  Server 

I I As ammwyof Um Dmr i l P . l d s  u d  Nsr TuL.oba Huqer'r Office, thit m r  
pmvhles a publiclyamsabb mum of infonwhan wardtng: 

11 
_d 

Figure 6. Mosaic Screen 

When a user starts Mosaic, the program attempts to 
connect to a preset known host; the initial host is at 
the NCSA, but each user can configure their own 
starting point. Once an initial page of information is 
downloaded, Mosaic operates in a true clientlserver 
fashion. The user sees on the screen a graphical 
point-and-click hypertext interface (shown in Fig- 
ure 6). As the user browses through the hypertext 
tree, Mosaic automatically switches from system to 
system and protocol to protocol as needed. 

Figure 6 shows the Mosaic interface and part of the 
MO&DSD Homepage. When the user clicks on the Figure 7. SpaceOps 94 HomePage 



clicking on the underlined hypertext items. One of 
the most important features of the Mosaic client is its 
ability to save "bookmark" or "hotlist" references to 
a user's favorite information locations. Thus, the 
user does not need to know exactly which links were 
followed to find a particular information site. The 
user can access these locations again with a single 
operation using the bookmark or hotlist entry. 

DOCUMENT FORMATS 

One problem with information servers is the wide 
variety of possible formats in which data can be 
available. The MO&DSD server stores all of its 
documents in ASCII format, as well as in the 
document's original format. Currently, there are not 
many bit-mapped images stored on the MO&DSD 
server. Any images placed there are stored in either 
GIF or JPEG format. 

Plain Text Document 

Because ASCII format can deliver textual informa- 
tion to any end user via a wide range of access 
mechanisms, documents are usually loaded onto 
information servers in an ASCII format. However, 
the main problem with this is that all graphics and 
figures in the original (fully formatted) document 
are lost. Furthermore, many documents are prepared 
using desktop publishing packages with paragraph 
wrap and proportional fonts. When converted to 
monospace font'with individual lines of text, these 
documents loose their enhanced appearance. 

All ASCII documents on the MO&DSD OLIS have 
been indexed to the WAIS server to facilitate key- 
word searches. This allows a user to perform key- 
word searches on located documents of interest, 
scan the ASCII versions online, and retrieve the 
original formatted document if desired. 

Fully Formatted Document 

Original document can be stored in a wide range of 
formats [e.g., Wordperfect for Windows, Word for 
Macintosh, Rich Text Format (RTF), or Postscript]. 
Each of these formats can be used to deliver a fully 
formatted document. These files are usually con- 
verted to a single flat file, with a package such as 
BinHex, prior to being loaded on the OLIS. When 
trying to read and process fully formatted docu- 
ments, the end user must have the proper application 

software to reconstruct an exact copy of the original 
document. Eventually, all fully formatted docu- 
ments will likely be stored on OLIS in the following 
three formats: 

* Plain ASCII text for searching and browsing 
(document may not look nice but all the text 
information will be there) 
Single Postscript file containing the whole 
fully formatted document including graphics 
Original word processor format 

MAKING A MACINTOSH 0-R PC 
INTERNET CAPABLE 

To use any of the Internet services described, a user 
must first gain access to the Internet. One way to 
access these services is through a connection to a 
computer that is a full host on the Internet. However, 
in this mode, the user needs to log in to that system 
and use the proper commands to access these ser- 
vices. 

The most powerful way to access these services is to 
have a direct connection to the Internet. This can be 
done from most UNIX workstations, Maciritoshes, 
or PCs. The connection may be via a local area 
network (LAN) or via a dialup phone line. The most 
powerful dialup access involves the use of Serial 
Line IP (SLIP) or Point-to-Point Protocol (PPP). 
These protocols operate between software on the 
user's computer and similar software on a SLIP or 
PPP server that the user can dial in to. The protocols 
then implement an IP connection over the dialup 
line, and the client applications then operate over 
TCPIIP, just like when the user is directly connected 
to a LAN. To get reasonable response with SLIP or 
PPP, a dialup connection of at least 9600 bits per 
second is required. 

For any system to be connected to the Internet, three 
basic things are required: 

Connectivity to some point on the Internet 
* Unique IP address for the user's computer 
* Appropriate TCPIIP software and associated 

application software 
A unique IP address for the user's system is provided 
by the administrator responsible for connectivity. 
A basic communication program with VT100 termi- 
nal emulation and download capabilities is also 
required on the computer. Some common packages 



are Zterm for Macintoshes and ProComm or 
CrossTalk for PCs. 

Macintosh Platform 

For Macintoshes, the major item software required 
is MacTCP to provide TCPIIP support. GSFC has a 
site license, so this is readily available to any NASA- 
owned Macintoshes. Other client and support appli- 
cations are available from Macintosh servers at 
GSFC or numerous anonymous FTP sites. 

PC Platform 

For PCs running Windows 3.1, the main software 
required is the Windows socket interface dynami- 
cally loadable library, "winsock.dll." This provides 
the interface between most applications and TCPIIP 
on the PC. The client and support applications are 
available from PC servers at GSFC or numerous 
anonymous FTP sites. 

SUMMARY 

With Internet access, modern information retrieval 
software, and connection to the MO&DSD OLIS, 
remote users can 

* Easily retrieve well-established standards at a 
local Macintosh or PC 

* Perform online browsing and retrieval of docu- 
ments published for and by MO&DSD 
Search for current and past study activities on 
related topics within NASA or other govern- 
ment agencies prior to issuing a task 
Improve standards and technology awareness 
among peers to ensure a design of interoperable 
systems for cross-support environments 

* Access information at thousands of sites world- 
wide, and make select information accessible 
by others 

Additional potential benefits could be achieved in 
areas such as: 

* Avoiding duplication of effort by being able to 
quickly and easily scan information of activi- 
ties being performed across MO&DSD and, 
eventually, all of NASA 
Faster development of standards documents 
via immediate access to huge reference librar- 
ies and capability for rapid-exchange of docu- 
ments 

* Significant reduction in travel costs through 
easy exchange of information and documenta- 
tion over the network rather than by attending 
meetings. 

REFERENCES 

[I] Frank Hecker, Personal Internet Access Using 
SLIP or PPP: How You Use It, How It Works 

[2] Ed Krol, O'Reilly &Associates, Inc., The Whole 
Internet Catalog and Users Guide ' 

[3] Paul Lindner, editor, Internet Gopher Users 
Guide , University of Minnesota 

[4] Adam Gaffin and Jorg Heitkotter, Big Dummy's 
Guide to the Internet 

ACKNOWLEDGMENTS 

The authors would like to acknowledge Dr. William 
Mackey, Mr. Steve Harris, and Ms. Sydney Buck for 
helpful comments on a draft version of this paper. 



[g$$:ys> 
ORBITAL MECHANICS PROCESSING IN A DISTRIBUTED 

COMPUTING ENVIRONMENT 

Randolph Nicklas 
INTELSAT 

Paper Not Available 





THE REQUIREMENTS GENERATION SYSTEM: 3 5  $43 2-4- 
A TOOL FOR MANAGING MISSION REQUIREMENTS 

Sylvia B. Sheppard [? 
NASA Goddard Space Flight Center 

Greenbelt, MD 20771 

ABSTRACT 

Historically, NASA's cost for developing mis- 
sion requirements has been a significant part of 
a mission's budget. Large amounts of time 
have been allocated in mission schedules for 
the development and review of requirements 
by the many groups who are associated with a 
mission. Additionally, tracing requirements 
from a current document to a parent document 
has been time-consuming and costly. The Re- 
quirements Generation System (RGS) is a 
computer-supported cooperative-work tool that 
assists mission developers in the online crea- 
tion, review, editing, tracing, and approval of 
mission requirements as well as in the pro- 
duction of requirements documents. This 
paper describes the RGS and discusses some 
lessons learned during its development. 

INTRODUCTION 

One of the most important, time-consuming 
and expensive tasks for any mission is the de- 
velopment of mission requirements. For ex- 
ample, consider the contractor time expended 
for development of requirements for the Pay- 
load Operations Control Center (POCC) and 
the Command Management System (CMS) 
portions of two Small Explorer missions. For 
the Fast Auroral Snapshot Explorer (FAST) 
and Submillimeter Wave Astronomy Satellite 
(SWAS), the contractor person-years expended 
were 10.7 and 8.0, respectively (Mandl, 6/91 
943. (The data do not include civil service 

time or time expended on requirements for 
other parts of these missions.) Similar ex- 
penditures for the Xray 'liming Explorer 
(XTE) were estimated at between 15 and 18 
person-years. 

The Requirements Generation System (RGS) 
was developed to help automate the re- 
quirements process. The goal was to reduce 
mission schedules and costs associated with 
the creation and use of mission requirements 
information. We hypothesized that we could 
meet this god by: 

increasing communication about all lev- 
els of mission requirements among the 
many individuals and groups of per- 
sonnel contributing to a mission, 

* providing automated assistance for the 
online development, editing, review, 
tracing and approval of requirements 
and the production of related documents 
and reports, and 

reusing sets of requirements across sim- 
ilar missions. 

RGS CAPABILITIES 

The RGS uses a distributed system archi- 
tecture to encourage online work. The RGS 
was designed for existing desk-top platforms 
(i.e., Macintoshes and PCs). The sections be- 
low present the operations concept. 



Single Mission Database as those found in the Detailed Mission Re- 
quirements (DMR) document, and lower-level 

The RGS uses a single mission database to requirements, such as those found in the Sys- 
maximize communication among mission tem Requirements Document (SRD), are in- 
personnel and to facilitate the online man- cluded. This eliminates the need for trace- 
agement of mission information. The mis- ability across separate documents andlor 
sion-specific database is made available to all databases and allows for the production of re- 
mission personnel from the beginning of a ports that contain requirements at varying lev- 
mission throughout its life cycle. els of detail. Additional documents (e.g., the 

Mission Requirements Request) are available 
Figure 1 shows the mission requirements online for reference and for the explicit trace- 
documents that are produced for a standard ability of DMR requirements to requirements 
mission. The letters above each box list the in parent documents. 
organization (or person) responsible for pro- 
ducing the document. All levels of re- Although working online with the RGS does 
quirements and all requirements documents, not eliminate the need for meetings to discuss 
commentary, and rationale are consolidated issues, it can reduce the time needed to agree 
in the RGS mission database, thus reducing on a set of requirements. Mission personnel 
the time to locate, review and disseminate in- no longer need to wait for the release of a 
formation. Higher-level requirements, such document to review requirements; they can be 

reviewed, and approved or rejected, 
HQ individually. Piecemeal review can 

result in schedule efficiencies. 

Online Entry and Editing - 

The RGS provides a form-based 
graphical user interface for entering 
and editing requirements on-line. 
Requirements may be entered in any 
order. They are numbered by the re- 
quirements developer as they are en- 
tered and may be hierarchical. In 
Figure 2 the first requirement is 
numbered 4 100- 1, the second, 4 100- 
1.1, etc. In this example the section 
of the requirements document (i.e., 
4100) is appended to the beginning 
of the requirement number. This ad- 
dition is optional. 

HQ - Headquarters 
MOM - Mission Operations Manager 

DSM - Data Systems Manager 
EL - Element Manager 
ENG - Engineering 

Figure 1. Requirements Document Hierarchy 



4100 Mission Operations System Requirements 

4200 Flight Software 

Figure 2 : Sample Requirements H 

Users may assign a "level" to each re- 
quirement. This number associates the re- 
quirement with a given degree of detail or a 
given document type (e.g., the requirements 
in the Mission Requirements Request might 
be designated Level 1, the Detailed Mission 
Requirements document Level 2, and the 
System Requirements Document Level 3). 
The requirement level is independent of the 
hierarchical number assigned to individual 
requirements. Mission personnel may de- 
termine the relationship between the levels 
and the hierarchy for their mission. Figure 2 
shows one possible assignment. 

A table of user privileges defines which users 
may enter and edit which sections and levels 
of the requirements. For example, the Mis- 
sion Operations Manager (MOM) might as- 
sign the privilege of enteringlediting the Lev- 
el 2 requirements of Section 4000 to one 
group of requirements developers; Level 3 
requirements for Section 4000 might be as- 
signed to a different group of requirements 
developers. 

On-line Approval/ 
Rejection 

The RGS provides on-line, 
form-based capabilities for 
appropriate mission per- 
sonnel to approve or reject 
a requirement and to at- 
tach associated rationale 
for their decisions. Ap- 
proval privileges for a spe- 
cific level of requirement 
may be assigned to any of 
the mission personnel. 
For example, for Level 2 
requirements, approval 
could be assigned to only 
the MOM; to the MOM 
and Data System Manager 
(DSM); to the MOM, 
DSM and Element Manag- 
er (EM); or to some other 
combination of mission 

'ierarchy personnel. Different EMS 
may be assigned approval 

privileges for different sections of re- 
quirements as appropriate. 

The RGS annotates each mission requirement 
in the database with a "status" that describes 
how far the requirement has progressed to- 
ward final approval. A clearly labeled status 
field distinguishes work-in-progress re- 
quirements from mission-approved re- 
quirements (Table 1). The instant availability 
of newly-developed requirements (i.e., draft or 
pending) provides access to the current think- 
ing on issues and allows for speedier review 
and response from interested parties. Further, 
approving requirements individually (as op- 
posed to waiting for the release of a set of re- 
quirements in a document) can speed up plan- 
ning and design. Finally, the overall view of 
the status of the requirements aids man- 
agement in their assessment of the progress 
that has been made at any point in time. In- 
adequate requirements in a certain mission 
area can be identified, and measures can be 
taken to correct any difficulties. 



Table 1. Status Classifications for Requirements 

Private A requirement that is work in progress, visible only to 
the author (or the working group to which the author 
belongs). 

Draft A requirement that is work in progress, visible to anyone 
with access to the mission. 

Pending A requirement that has been submitted for approval. 
This requirement is considered "finished" but not 
accepted. 

In Acceptance A requirement that has been accepted by one, but not all 
of the parties ~esponsible for approving the requirement. 

Accepted A requirement that has been accepted by each of the 
parties responsible for its approval. 

Rejected A requirement that has been rejected by at least one of 
the parties responsible for its approval. 

Accepted with A requirement that has been accepted by each of the 
Contingencies parties responsible for its approval, but to which the 

DSM has responded with exceptions. 

On-line or Paper-Based Review and 
Reporting 

Any requirement in the mission database 
may be reviewed by any mission user who 
has been granted privileges to access the da- 
tabase. An easy-to-use search mechanism 
allows users to filter the database and to se- 
lect reduced sets of requirements for review. 
The selected requirements may be reviewed 
on-line or printed. Report contents can be 
defined by users using a simple selection 
technique. 

Reviewers are also afforded an on-line 
"notes" capability for attaching commentary 
to individual requirements. The notes are 
then available for perusal by all database us- 
ers. 

HARDWARE AND SOFTWARE 
ENVIRONMENT 

The RGS has a client-server architecture. A 
client-server architecture uses client ma- 
chine(~) and server machine(s), along with 

the underlying operating system and inter- 
process communication systems, to form a 
composite system that allows the distributed 
access, management, analysis, and presenta- 
tion of information. 

The RGS supports both PC and Macintosh 
computers as client machines. Future plans 
include running on UNIX platforms. A Com- 
paq System ProILT comprises the server por- 
tion of the RGS hardware configuration. This 
server houses all the RGS databases, support 
documentation, and database software. 

The RGS server resides on the GSFC Center 
Network Environment (CNE). GSFC users 
access the RGS server from their workstations 
via this network. Local off-site users access 
the CNE via a T1 line, while off-site users not 
local to GSFC access the CNE via the Pro- 
gram Support Communications Network 
(PSCN) Internet. 

The RGS was developed using two Com- 
mercial Off The Shelf (COTS) software pack- 
ages, OMNIS 7 and SQL Server. OMNIS 7, 



manufactured by Blyth Software, is a graph- 
ical user interface package that was used to 
develop the front-end portion of the RGS. 
The front-end executes on the client ma- 
chines and provides the mechanism for users 
to interface with the RGS database. The 
front-end is responsible for soliciting queries 
or directions from the user for purposes of 
data update, analysis and retrieval and for 
presenting the results of queries and com- 
mands to the user. The front-end may also 
perform data analysis on the query results re- 
turned from the server. 

SQL Server, a relational database man- 
agement system marketed by Microsoft, Inc., 
was used to develop the RGS databases. The 
functions of this server component of the 
RGS custom software are to respond to user 
queries issued by the client machines and to 
manage the RGS requirements databases and 
document library. 

DISCUSSION 

The primary goal in developing the RGS was 
to produce a system that improves the de- 
velopment of mission operations. To date 
the RGS seems to be fulfilling that goal. The 
system is currently being used for five mis- 
sions, and there are plans to use it on another 
six missions. Estimates are that requirements 
costs will be cut at least 50%, with even larg- 
er savings for missions that are similar 
enough to reuse major portions of the mission 
databases (Mandl, 1994). 

A second reason for developing the RGS was 
to learn about client-server, computer- 
supported-cooperative-work (CSCW) sys- 
tems. This section discusses some lessons 
learned from development of the RGS. 

Lesson 1: Plan on Becoming a Full Service 
Organization 

dle in using an electronic meeting scheduler is 
that all participants must be able to read and 
respond or the scheduling activity is harn- 
pered (Grudin, 1990). Similarly, deployment 
of the RGS as a CSCW system would be use- 
less if mission personnel couldn't access re- 
quirements online. 

Providing physical access to the RGS for all 
mission personnel required more resources 
than originally anticipated. Originally, the 
RGS team had expected to supply the RGS 
application, the COTS packages (OMNIS and 
SQL Server), training, a user's guide, and an 
RGS hot line service for responding to ques- 
tions. Additionally, we planned to provide for 
maintenance of the server and the centralized 
database for each mission. We later de- 
tennined that we had to become a "Eull ser- 
vice" organization. Many of the end users, 
spread across the Center and beyond, did not 
have the expertise to acquire and install the 
software to run a client-server system. Client- 
server software is more difficult to install than 
software packages that reside on an individual 
workstation. Generally Macintosh in- 
stallations generally were done quickly, but 
PC installations often required extensive anal- 
ysis. Sometimes it took several hours to get 
the RGS installed. Conflicts with existing 
mail and other resident user packages were 
the rule as opposed to the exception. 

Additional chores included wiring offices to 
get users networked to the CNE, and sup- 
plying and installing communications soft- 
ware and Ethernet cards. In the case of off- 
site contractors who-did not access the RGS 
server through the Internet, we provided ex- 
pertise in dealing with the telephone company 
to obtain communication lines. 

The extra services were time-intensive and 
expensive. Had we not had resources to ex- 
pend for these tasks, the whole project might 
have failed. 

Computer-supported cooperative-work sys- 
tems are only useful when there is a critical 
mass of users. For example, the major hur- 



Lesson 2: Employ Users' Groups with Full 
Representation 

Working with users' groups is an integral part 
of the methodology of the client-server de- 
velopment team. We established an RGS Us- 
ers' Group at the beginning of the project and 
met monthly thereafter to determine the re- 
quirements for the system. The Users' Group 
discussed the types of users and the ca- 
pabilities each would need to do the mis- 
sion's work. In some cases we used detailed 
scenarios of the tasks to be done by the in- 
dividual types of users in order to determine 
that we correctly understood the re- 
quirements. 

The RGS Users' Group was very helpful in 
defining requirement and developing a de- 
sign. However, one type of user, the Data 
System Manager, was not represented in the 
beginning. Users who were present were not 
able to represent adequately the functions 
needed by the DSM. For a later release of the 
RGS we redesigned several features to in- 
clude those functions. We concluded that an 
efficient development methodology for 
CSCW projects absolutely requires the active 
involvement of every type of user, regardless 
of their amount or type of use. 

Lesson 3: Design for Flexibility 

One original'goal of the RGS was to design a 
system specifically tailored to handle the 
Goddard Mission Operation and Data System 
Directorate's method of developing and man- 
aging mission requirements. The reasoning 
was that mission personnel were accustomed 
to a largely paper-based process, and con- 
vincing them to adopt an automated system 
could be done best by making as many of the 
elements of the automated process as fa- 
miliar as possible. Other requirements sys- 
tems that were reviewed did not provide the 
specific kinds of functions that are needed to 
satisfy the Mission Operation and Data Sys- 
tem Directorate process. To this end the 
RGS developers and potential users worked 
together to define the user types and the 

functions each would perform. The RGS 
team incorporated those functions into the de- 
sign. 

The first two releases of the RGS were suc- 
cessful because of this approach. However, 
further discussions, often with the users' 
groups, highlighted the need for differences in 
capabilities from mission to mission. Ex- 
amples include the desire to change the priv- 
ileges of users and user types, to use the RGS 
for different types of documents (as opposed 
to the DMR for which it was originally de- 
signed), to tailor the approval processes for in- 
dividual missions, to create different docu- 
ment structures and formats, and to create 
traceability to a wider range of parent docu- 
ments. In short, the original description of 
RGS capabilities was well-defined and rather 
rigid. As more users became involved, they 
requested more flexible capabilities to suit 
their mission's style of operating. 

One approach to making the needed mod- 
ifications would be to hand-tailor the RGS 
software for each mission. This approach was 
rejected because of the inherent software 
maintenance costs, the problems of managing 
multiple versions of the same software, and 
the limitations of what can be changed in soft- 
ware with a short turnaround time. 

Instead we chose to design generic ca- 
pabilities. The latest version of the RGS has a 
flexible set of functions that can be tailored to 
a particular mission's need by the mission per- 
sonnel. Beginning with Release 3, mission 
personnel may configure the RGS, without 
assistance from the developers, to allow the 
definition of any of the following: 

* any number of mission-specific user 
types (e.g., a requirements developer, 
MOM, DSM, EM, read-only user, and 
other mission-defined users). 

a mission-specific structure for a re- 
quirements document (showing what 
sections are to be included). 



* mission-specific requirement levels, al- 
lowing for a greater level of detail beyond 
the standard three document levels (i.e., 
M R . ,  DMR and SRD). 

* mission-specific acceptance privileges 
(determining what approvals are nec- 
essary for what sections and levels of re- 
quirements). 

These flexible capabilities made the RGS a 
more general purpose tool. We also expect 
them to reduce the software maintenance re- 
quired for the RGS. 

Lesson 4: Plan to Deal with Changes in 
Work Flow 

In the past, mission personnel developed re- 
quirements in a sequential fashion, largely 
completing and approving higher-level re- 
quirements documents before lower-level re- 
quirements were defined. Often one group 
of requirements developers wrote higher- 
level requirements and another group lower- 
level ones. 

Use of an open database promotes changes to 
this traditional work flow. Requirements at 
any level can be entered at any time. Mis- 
sion personnel can add information as soon 
as it becomes available. One section of the 
requirements can be completed at the lowest 
level before another section is begun at a 
higher level. Additionally, documents per se 
become less important. Requirements can 
now be reviewed and approved individually, 
or in sections, as opposed to at the "docu- 
ment" level. While these changes can impact 

the schedule positively, this flexibility may be 
upsetting to team members who are used to a 
more structured process. Managers need to be 
prepared to establish procedures to deal with 
the changing work arrangements that ensue 
from automation of this type. 

REFERENCES 

Grudin, J. (1990). Groupware and coop- 
erative work: Problems and prospects. In B. 
Laurel (Ed.), The art of human-computer in- 
tegace design (pp. 17 1 - 185): Reading, MA: 
Addison-Wesley. 

Mandl, D. (1994, June 9). Cost (manyrs) to 
gather requirements for MOC's with and with- 
out RGS and SDT methodology. Inforrnal 
communication. 

ACKNOWLEDGMENTS 

The author would like to thank the many peo- 
ple who contributed to the development of the 
RGS. Mark Stephens is the RGS Project 
Manager; Lisa Dallas served in that capacity 
before the birth of the twins. The two soft- 
ware development teams are Linda' Cingel, 
Rachel Campbell, Lou Fenichel and Barbara 
Wrathall of Computer Based Technology In- 
corporated and Gary Chatters, Phillip Wolf 
and Teresa Bleser of Century Computing. 
Special thanks go to William Guion, Randy 
Harbaugh, Richard Harris and William Ma- 
coughtry for their encouragement and support. 





AN OPPORTUNITY ANALYSIS SYSTEM FOR SPACE SUR- 
VEILLANCE EXPERIMENTS WITH THE MSX 

Ramaswamy Sridharan, Gary Duff, Tony Hayes, and Andy Wiseman 
MIT Lincoln Laboratory 

Abstract - The Mid-Course Space Experiment consists of a set of payloads on a satellite being 
designed and built under the sponsorship of Ballistic Missile Defense Office. The MSX satellite 
will conduct a series of measurements on phenomenology of backgrounds, missile targets, plumes 
and resident space objects (RSOs); and will engage in functional demonstrations in support of 
detection, acquisition and tracking for ballistic missile defense and space-based space surveillance 
missions, A complex satellite like the MSX has several constraints imposed on its operation by 
the sensors, the supporting instrumentation, power resources, data recording capability, 
communications and the environment in which all these operate. This paper describes the 
implementation of an opportunity and feasibility analysis system, developed at Lincoln 
Laboratory, Massachusetts Institute of Technology, specifically to support the experiments of the 
Principal Investigator for space-based surveillance. 

1.0 INTRODUCTION 

The Mid-Course Space Experiment consists of a set of payloads on a satellite being 
designed and built under the sponsorship of Ballistic Missile Defense Office (formerly, Strategic 
Defense Initiative Office) of the Department of Defense. The major instruments are : 

1. A set of sensors being built by Utah State University, called SPIRIT 3, covering 
the spectral range from 4.2 p to 20 y in the long wave infra-red band. 

2. A set of sensors operating in the ultraviolet and visible wavelengths (0.1 y - 0 . 9 ~  ), 
called UVISI, being built by Johns Hopkins University's Applied Physics 
Laboratory. 

3. A broad-band visible wavelength sensor ( 0 . 4 ~  - 0.9p), called SBV, being designed 
and built by Lincoln Laboratory, Massachusetts Institute of Technology. 

4. A set of sensors for monitoring and measuring contamination of the mirrors and the 
space around the MSX. 

The satellite bus is being built by JHUIAPL who is also acting as the integrator for all the 
sensors and associated systems. The MSX satellite, shown in Fig. 1, is due for launch in late 94 
from the Vandenberg launch complex. It will be in a nearly sun -synchronous orbit with an orbital 
inclination of 990 and an orbital period of 103 minutes. 

The MSX satellite will conduct a series of 
measurements on phenomenology of backgrounds, 
missile targets, plumes and resident space objects 
(RSOs); and will also conduct functional demon- 
strations in support of detection, acquisition and 
tracking for ballistic missile defense and space- 

+z ,6J- based space surveillance missions. Eight Principal 

Investigators are associated with the MSX project. 
The area of interest in this paper is the surveillance 

Fig. 1. MSX spacecraft of resident space objects from a space-based 
platform. The Principal Investigator for Space 

Surveillance is located at Lincoln Laboratory, Massachusetts Institute of Technology. The SBV is 
the major instrument being used in space-based satellite surveillance experiments.The command 
and control center for the SBV, called SPOCC, is also at Lincoln Laboratory. All space surveil- 
lance experiments are conducted by the Surveillance PI using the resources of SPOCC. 



The conduct of experiments with the MSX has a long planning cycle, similar to NASA 
scientific satellites. A key aspect of experiment planning is the analysis of the opportunities 
available for conducting any experiment, taking into account geometric and spacecraft constraints. 
A software system has been built in SPOCC to support the opportunity analysis for space-based 
surveillance experiments. We describe, in this paper, the process of computing the opportunities 
for and analyzing the feasibility of space-based surveillance experiments with the MSX and 
illustrate it with an example. 

EXPERIMENT PLANS 
DATA ANALYSIS ,A, 

The SBV Processing, Operations and 
Control Center, located at Lincoln Laboratory, 

MSX Massachusetts Institute of Technology, 
generates the necessary commanding for the 
MSX and its sensors for all space-based space 

OPPORTUNITY ANAL 
surveillance experiments designed by the PI 

COMMANDING for Surveillance. SPOCC also converts and 
calibrates the returned science data fiom the 
SBV before turning them over to the SPI's 

SPACECRAFT CONTROL Surveillance Data Analysis Center. The data 
DATA DOWNLOAD flow is illustrated in Fig. 2. JHUIAPL's 

Fig. 2 : Data Flow for Surveillance Experiments 
Mission Operations ~eLter  is in overall charge 
of the spacecraft. 

2.0. MSX AND ITS INSTRUMENTS 

It is necessary to have a working knowledge of the MSX spacecraft, its sensors and their 
interaction to understand the functioning of the Opportunity Analysis System. 

Figure 1 shows the body reference axes defined for the MSX spacecraft. All major sensors 
on the MSX have their fields of view substantially co-aligned along the +X-axis. 

The MSX will be launched into a near-sun-synchronous, 99 deg. inclination orbit with an 
orbital period of 103 minutes. The satellite will have shadow periods as long as a third of the orbit 
due to the initial value of the right ascension of the ascending node. It carries a set of Nickel- 
Hydrogen batteries for powering the spacecraft operations during eclipse. The batteries are 
recharged by the solar panels. 

The MSX carries two redundant tape recorders for high bandwidth data recording. The tape 
recorders are operated singly (or in parallel for critical data). Each unit is capable of recording 36 
minutes of data at 25 Mbls or 180 minutes of data at 5 Mbls. 

The SPIRIT 3 infrared sensor has a dewar containing solid hydrogen to cool the focal 
planes to 10°K. The lifetime of the sensor is critically affected by the rate of dissipation of the 
Hydrogen. This sensor writes out its data almost entirely to the tape recorder.There is a set of ultra- 
violet and visible wavelength imagers and spectrometers on board, collectively called the UVISI. 
These instruments also use the tape recorder for storage of experiment data. 

The SBV is the third major sensor on board the MSX. This sensor is comprised of a 6-inch 
aperture off-axis rejection telescope, a camera with 4 CCD chips with a total field-of-view of -6Ox 
1.4', a Signal Processor for data compression and an Experiment Controller. The Experiment 
Controller controls SBV operations and has a large data buffer to store science data processed by 
the Signal Processor. Raw science data can be written out to the tape recorder. 



The MSX supplies power, data handling, telemetry, commanding and ointing capability B for all the sensors on board. Expected pointing accuracy is of the order of 0.1 on board around all 
axes. The attitude processor data can be further processed in the ground-based Attitude Processing 
Center to yield a pointinglattitude knowledge of a few arcseconds. 

The MSX weighs -6000 lbs. on the ground and is due to be launched on a Delta 2 launch 
system in Nov. 94. The launch will be from the Vandenberg Air Force Station. 

3.0. SPOCC SUPPORT OF SURVEILLANCE EXPERIMENTS 

SPOCC, as mentioned earlier, is the mission planning node for all experiments of the 
Principal Investigator for Surveillance. 

The major tasks of the mission planning system in SPOCC are: 
1) to permit a study of the opportunities available for an experiment; and 
2) to generate the necessary commands to the sensors and the spacecraft to execute the 

experiment. 

This report concentrates on the opportunity analysis.The major question answered by opportunity 
analysis system is: 

When can an experiment be conducted? 

The answer to this seemingly simple question is complicated by the following requirements: 
1. Opportunities have to be computed for a month, six weeks before the start of the. 

month, due to the long planning cycle for the YSX. 
2. A feasible opportunity implies that an experiment, as defined, can be conducted 

within the available time and without violating constraints on the spacecraft or the 
sensors. 

urces consumed ( both renewable and non-renewable ) 
by the experiment must be within 

limits allocated to the experiment. 

A software system has been built in SPOCC 
to conduct opportunity analysis for 
surveillance experiments. Figure 3 captures 
the essential components of the System. 

v sURVElLLAN=E This system is invoked by a file of 
OPpoRTUNrrlEs commands in a high level interface language 

u u 

called Surveillan& Language for Experiment 
SLED : SBV LANGUAGE FOR EXPERIMENT DESIGN ~~~i~~ ( ~ ~ f .  1). ~h~ SLED code can be 
IMT : INSTANTIATED MISSION TIMELINE 
SSIP : SPACE SURV. INTERFACE PROCESSOR written by a user, which is the predominant 

mode for most experiments involving the 
Fig. 3 : Opportunity Analysis Software System collection of data on a single resident space 

object (RSO). SLED code can also be 
generated automatically by the Space Surveillance Interface Processor (SSIP), whlch is the mode 
for multi-RSO experiments and for experiments which have to be conducted with short notice 
(called Quick Reaction Events). 

The components of the Opportunity Analysis System are described below. 



3.1. SLED 

The Surveillance (or SBV) Language for Experiment Design is a structured high-level 
language for describing space-based surveillance experiments with the SBV; and to a limited 
extent, with the SPIRIT 3 and the UVISI sensors. Principal characteristics of SLED are: 

1.  The language has a precise syntactic and logical structure. 
2. The language permits description of a space surveillance experiment independent of 

detailed timing information. 
3. The syntactic and logical structure is expandable to adapt to new requirements. 

The fundamental requirement in the design of the SLED is to free the experimenter from the 
details of timing and control of the MSX and instead let himher concentrate on the objectives and 
the logical design of the experiment. 

3.2. The Simulator 

The Simulator is the heart of the Opportunity Analysis System in SPOCC. 

The Simulator parses and compiles the SLED code into a detailed event timeline which 
models the temporal flow of the experiment as a set of 
timed events for the sensors and the spacecraft. Each (GwqMG) 
event implies a state change for the MSX andlor its 
instruments. The cost of each event is also accumulated 
by the Simulator. A block diagram of the Simulator 
functions with inputs and outputs is shown in Fig. 4. 

t 
(F) 

3.2.1. The Parser PARSING AND ERROR CHECKING . 

CONTROLLING SENSORS AND S I C 

All SLED code is parsed by the front end of the MODELLING GEOMETRICAL VARIABLES 

Simulator. The functions of the Parser are : MODELLING RESOURCE COSTS 

1. Check the SLED code for syntactic and Fig. 4 : Functions of the Simulator 
logical consistencv. 

2. ~ k e c k  the implied modes of operation of the sensors for logical 
consistency. 

3. Create ordered tables of the modes of operation of the sensors, and where 
applicable, their components. 

4. Create ordered tables of the mode of operations of the MSX. 

The tables built by the Parser are used by the entire Mission Planning System. 

3.2.2. Spacecraft and Sensor Modelling 

The Simulator has to create all the necessary events to render the MSX ready to collect data 
- including all turn-onloff of components and the attitude maneuvers necessary to re-orient the 
satellite before, during and after the experiment. The Simulator also creates events for commanding 
the sensors to collect, process and store the experiment data. Further, the Simulator concatenates 
all these events into an ordered timed set for further processing by the rest of the mission planning 
system. 

3.2.3. Geometrical Modelling 

The instruments on the MSX, and the MSX itself, impose several geometrical constraints 
on the pointing and orientation of the spacecraft. These constraints are divided into hard (potential 



for damage) and soft (high resource usage). Significant constraints are summarized below. 
Control of cryogen depletion on the SPEW 3 instrument is required to prolong its useful 

life. Hence the thermal input into the telescope axis from the sun and the earth must be kept low. 
This results in the following pointing constraints (see Fig. 1 for body reference axes): 

1) The X-axis (which is the common telescope axis) should be kept away (> 300) from 
the sun direction(hard) and > 63' from the nadir (hard) . 

2) The +Y-axis, which defines the open or exposed side of the dewar containing the 
cryogen, should be kept > 90' away from the sun (soft). 

3) The -Y-axis which defines the convex side of the SPIRIT 3 sunshade, should be 
kept < 90' from the nadir (soft). 

Other 
1) 

major pointing constraints are : 
The UVISI sensors require that the +X-axis be not pointed near the sun(had) or at 
the solar specula point on the earth(hard) when they are on. 
The SBV telescope field of view cannot be pointed at the sun for more than 15 
minutes (hard). The SBV should be pointed at least 25' away from the sun for good 
data (soft). 

3) The -X axis of the spacecraft cannot be pointed at the sun directly for fear of 
heating the battery (soft). 

The Simulator models all the angles relevant to these geometrical constraints during a data 
collection. The precise values for the constraints are yet to be refined. The MOCARH, referred to 
earlier, will be the formal document for operational constraints. 

The Simulator also propagates the orbit of the MSX and of any RSOs requested. Geomet- 
rical visibility of the RSOs and solar illumination of both the RSOs and the MSX are computed. 
Further various relevant phase and aspect angles are calculated. Finally, visibility from a set of' 
ground-based downlink contact stations is also computed. 

3.2.4. Resource Usage Constraints 

The Simulator has a detailed model for the power usage on board and the power generated 
by the solar panels. Knowing the initial state of the battery, the depth of discharge is computed. 

The tape recorder on the MSX and the data memory in the SBV are finite resources for 
recording science data. The Simulator monitors their usage and either terminates the experiment, in 
the case of the tape recorder, or requires a downlink contact, in the case of the SBV memory, when 
no more data can be written out. 

The SPIRIT 3 sensor has a finite quantity (-900 liters) of solid hydrogen for cooling its 
focal planes. A cryogen depletion model has been developed by the instrument manufacturers that 
predicts the quantity of hydrogen lost as a function of thermal input from the earth and the sun. The 
Simulator uses this model to compute cryogen depletion while simulating an experiment. 

The Simulator has a thermal model for key parts of the spacecraft, viz., the SPIRIT 3 
baffle, the tape recorder heads and the battery. The baffle temperature affects the sensitivity of the 
SPIRIT 3 sensor significantly. The other components have been identified by their manufacturers 
as being prone to damage due to large temperature excursions. Hence, the temperature rise of these 
components during an experiment is estimated by the Simulator. 

3.3. PROGRAPH Display System 

The Simulator creates a number of output products. Of relevance to the Opportunity 
Analysis, however, is the following. 



The Simulator writes out into a file all the resource usage and geometrical computations 
during the data collection event simulated. The PROGRAPH processor displays all of these 
variables in graphical form on a display. This enables the user to visualize the experiment cost and 
modify the SLED code appropriately to reduce the cost if necessary. 

PROGRAPH is implemented with a commercial software package called PVWAVE. All 
variables are plotted on the against elapsed time during the data collection. The user can select any 
graph(s) to be expanded and displayed. 

Visual analysis is aided by the following capabilities of PROGRAPH: 
1) Display of a selected graph. 
2) Display of selected variables in a graph. 
3) Re-scaling of x and y axes on the graph (time elapsed during the datacollection 

event is always the x-axis in the graph). 
Generally, the analyst uses the X-axis constraints on the MSX and the power usage graphs as key 
indicators of the feasibility of an experiment. 

3.4. GOOD-TIMES Process 

The final step in the Opportunity Analysis process is to examine the values of the various 
parameters displayed by PROGRAPH and pick intervals of time when the experiment can be 
conducted while observing all constraints and not exceeding allocated costs. 

The input data to PROGRAPH can be automatically analyzed by a process called 
GOOD-TIMES. Apart from the PROGRAPH data, a task file drives the GOOD-TIMES proces- 
sor. The task file specifies the range of values permitted for each parameter. When invoked, the' 
GOOD-TIMES process examines the entire PROGRAPH data and finds time intervals that satisfy 
all the constraints in the task file. The output is captured in a Surveillance Opportunities File which - 
is the major data product produced by the Opportunity Analysis System and sent to the Mission 
Operations Center at JHUIAPL. 

4.0. AN EXAMPLE 

A geosynchronous surveillance experiment will be taken as an example here. The 
requirement, as set by the Surveillance PI'S experiment plan, is to survey any part of the geosyn- 
chronous belt for 3 consecutive hours using the SBV and its on-board signal processor . 
The geosynchronous belt is quite heavily populated with resident space objects. A space-based 
optical sensor like the SBV has the ability to efficiently survey and collect data on all the RSOs in 
the belt, unlike a ground-based sensor, which is restricted in coverage by geographic location and 
inhibited in its operation by daylight and clouds. Hence a geosynchronous surveillance experiment 
is kev to demonstrating the utilitv of mace- " 
baseh surveillance. 

.I I 

In the present example, the search 
strategy chosen was to point at a location in 
right ascension in the geostationary belt and 
vary the declination in steps between +3S0 
and -3.5'. Fig. 5 depicts the search strategy. 

The MSX is due for launch in late Fig. 5. Geosynchronous Search 
'94. However, for the purpose of this study, 
the launch date was chosen to be Oct 93. Stare at fixed point in Geosynchronous Belt 
Orbital elements were specified by the MSX 



program. 

Two optional roll laws for the MSX are used in this example: 
1) the -Y axis is pointed as close as possible to the nadir (-Y-TO-EARTH) 

and 2) the -Y axis is pointed as close as possible to the sun (- Y-TO-SUN). 

Roll law refers to the rotation of the MSX about its common pointing or +X - axis. The first roll 
law minimizes the thermal input into the SPIRIT 3 telescope from the earth because the convex side 
of the earth(sun)shade (its bottom) faces the earth all the time as the MSX orbits the earth. Thus the 
cryogen is conserved. The second roll law enables the solar panel axis (the Z-axis) to be as close to 
perpendicular to the sun as possible because the MSX orbit is near-polar and near-normal to the 
earth-sun line. Thus the solar panels can be rotated about the Z-axis for maximum solar illurnina- 
tion and power generation. These are the type of soft constraints that an analyst examines to assess 
the resource usage of the experiment. The effects of the roll laws on the cost of the experiment are 

illustrated below. 
l3zEl 

$@B +@ Fig. 6 shows the orientation of the SBV focal 
plane, which is extended along the Z-axis, 
under the two roll laws. The focal plane 

- 7 consists of 4 CCDs, each with 420x420 
pixels, butted against each other. The 

mi3 m individual field-of-view is 1 . 4 ' ~  1.4'. The 

ROLL LAW -Y to EARTH ROLL LAW -Y to SUN 
total FOV is -6.6Ox1.4' because of distortion 
effects of the off-axis reimaging optical 

Fig. 6 : ROII Laws and SBV Focal Planes system. The figure shows that with the -Y- 
to - earth roll law, the focal plane is rolled as 

the MSX circumnavigates the earth in its orbit yith the -y - axis maintained pointing 
at earth center. Such an orientation reduces the thermal input from the earth into the SPIRIT 3 
aperture (+X - axis) thus helping to keep it cold. The focal plane, on the other hand, stays invariant 
in space under the -Y - to -sun roll law. Such an orientation allows the solar panels to be rotated 
about the Z-axis for maximum power production, but at the price of greater thermal input from the 
sun into the +X-axis with the consequence of higher cryogen depletion. 

80 
BATTERY W fw 

Figure 7 shows the estimated depth-of- '" 
discharge of the battery as a result of the 60 

u 

experiment being conducted for 24 hours with f = 40 

the two roll-laws. There is a periodic com- 2 3o OLL LAW -Y to SUN 

% ponent in battery depth of discharge that arises ,, 
from the orbital period of the satellite - recall 10 

that the MSX is in earth shadow for part of the o 
0 10000 20000 30000 4MMO 50000 600W 7000 80000 90000 orbit. There is a secular component, clearly TIME ( ascon& ) 

evident in the graph for the roll law "- Y-TO- Fig. 7 : Battery Depth of Discharge 
EARTH that is due to the inadequate re- 
charging of the battery in the illuminated part of the orbit. A requirement is that the battery be not 
depleted by more than 40% routinely with 60% as an extreme limit. It is evident that the experiment 
has to be cut short at -28000 seconds with the first roll law. However, when the "-Y-TO-SUN 
roll law is used, the solar panels can be rotated for maximum power production and hence the 
depth-of-discharge does not have a secular component. Therefore, the experiment can be continued 
indefinitely from a power perspective. 

The gain in power, and in the battery depth-of-discharge, however comes at a price. The 
temperature of the baffle of the SPIRIT 3 telescope (inside the sunshade shown in~Fig. 1) is 
affected by the thermal input into the aperture; and, further, the cryogen depletion is related to the 
thermal input and the baffle temperature. Also, the baffle temperature directly affects the noise 



SPIRIT 3 BAFFLE TEMPERATURE 
input into, and hence the quality of, the data 
from the focal plane of the SPllUT 3. Fig. 9 
shows that, while conserving battery power, the 
roll law "-Y-TO-SUN" causes a more rapid rise 
of the baffle temperature, and consequently, 
cryogen depletion. battery power, the roll law 
L'-Y-TO-SUN" causes a more rapid rise of the 

re, and consequently, cryogen 
, the baffle cools very slowly and 

Time (seconds) 
ty for any subsequent 

experiment using the SPIRIT 3 is degraded for a 
Fig. 8 : Baffle Temperature longer time than if the roll law "-Y-TO- 

EARTH were used. 

80 

The orbit of the MSX is not quite sun- 70 

synchronous. It precesses with respect to the sun 
slowly. Hence, the power balance between the I solar panels and the battery changes over a periodp 40 

of time. Figure 9 illustrates the effect of the time yr 30 

of instantiation of an experiment on the power '" 
balance. A 24 hour long geosynchronous 10 

experiment conducted in July 94 depletes the 
0 

0 ' 10000 20000 3WW 4MMO 5W00 60000 70000 BOOW SOW0 

TUE ( reon& ) battery more rapidly than if it were conducted in 
Jan. 95. The difference is entirely due to the fact Fig. 9 : Effect of Time of Instantiation 

that the periods the MSX is in earth shadow are 
much shorter on the latter date. 

5.0 SUMMARY 

A successful Opportunity Analysis System has been developed in SPOCC to facilitate the 
scheduling of the Surveillance Principal Investigator's experiments on the MSX. The system uses 
knowledge of relevant geometries and spacecraft and instruments constraints to model the cost of 
conducting an experiment. The system has been tested extensively and fully supports the long 
experiment planning process associated with the MSX. 

BIBLIOGRAPHY 

1. John D. Mill, et al: "The Midcourse Space Experiment: Introduction to the Spacecraft, 
Instruments and Scientific Objectives", JSR (accepted for publication). 
2. R. Sridharan, et al: "An Opportunity Analysis System for Space Surveillance Experiments 
with the MSX", Technical Report No. 101 1 (to be published). 



Matrix Evaluation of 
Science Objectives 

Randii R. Wessen 

Jet Propulsion Laboratory 
California Institute of Technology 

Pasadena, California U.S.A. 

Introduction 

The most fundamental objective of all 
robotic planetary spacecraft is to return 
science data. To accomplish this, a 
spacecraft is fabricated and built, soft- 
ware is planned and coded, and a ground 
system is designed and implemented. 
However, the quantitative analysis 
required to determine how the collection 
of science data drives ground system 
capabilities has received very little 
attention. 

This paper defines a process by which 
science objectives can be quantitatively 
evaluated. By applying it to the Cassini 
Mission to Saturn, this paper further 
illustrates the power of this technique. 
The results show which science objec- 
tives drive specific ground system 
capabilities. In addition, this process can 
assist system engineers and scientists in 
the selection of the science payload 
during pre-project mission planning; 
ground system designers during ground 
system development and implemen ta- 
tion; and operations personnel during 
mission operations. 

1. Approach 

The basic approach has both the science 
community and the ground system 
define a set of matrices. The science 
matrices define the main objectives of 
the mission, who will collect them and 
when. The ground system matrices 
define the characteristics that drive 
ground capabilities and an estimate of 
when each service can be provided. 
Together, the set of matrices represents a 
powerful analytic tool. 

To begin, the first matrix created (and 
the most fundamental) is the matrix that 
explicitly establishes which science 
objectives can be met by each 
investigation. This matrix h o w n  as the 
"Science Objectives vs. Investigation" 
matrix, ensures that the objectives of the 
missions can be met by the selected 
investigations. 

Once the "Science Objectives vs. Inves- 
tigation" matrix is completed, a second 
matrix, which establishes the times 
during the mission (i.e., epoch) where 
each objective is captured is created. 
This matrix identifies the importance of 
each epoch based on the acquisition of 
science objectives. Epochs Bre deter- 
mined either by orbital events (e.g., bow 
shock crossing, satellite closest 
approach, etc.) or by investigation 
characteristics (e.g., the time when the 
target body fills the narrow angle camera 
field-of-view). 

Next, the science community creates a 
matrix which defines "types of observa- 
tions" the spacecraft must perform to 
obtain the desired science. The obser- 
vation type only represent activity that is 
external to the science instruments. It is 
assumed that instrument internal 
commands can always be sent to the 
spacecraft when two-way communica- 
tions has been established. 

The last matrix generated by science 
defines which ground system resources 
are needed for each observation types. 
This matrix, known as the "Operations 
Characteristics vs. Observation Type" 
matrix, allows the science community to, 
independently from the Ground System 
(GS), evaluate which ground resources 
are needed by their investigation. 



During the development of these 
matrices, the GS defines its own tables. 
The first of these defines the mission 
operation characteristics (i-e., those 
characteristics that drive mission ops 
cost) and their associated dynamic range. 

Next the GS generates the "Operations 
Characteristics vs. Orbital Segment" 
matrix. This matrix is the GS's best 
estimate of how its ground resources will 
be used during the course of the mission. 
It show what level of resources are 
needed for each segment of the mission. 
Once generated, the observation types 
(based on the GS's characteristics) are 
compared to this table. The results 
show which science objectives are in 
jeopardy by the current allocation of GS 
resources. 

By identifying conflicts early, the GS 
and science community can negotiate 
how to reallocate resources to design a 
ground system that is within budget, 
consistent with mission plans and 
responsive to the needs of the science 
community. 

2. 1 Science Matrices: 
Science Objectives vs. Investigation 

The first set of matrices captures the 
mission's science objectives. These 
objectives usually fall into one of four 
categories: atmospheres, magneto- 
spheres, rings and satellites. In some 
cases, categories may need to be added, 
removed or modified. In the Cassini 
example, the addition of a Titan category 
is required. In each category there are 
approximately five to ten explicit science 
objectives. 

This set of matrices have one matrix for 
each category. Each matrix shows 
which objectives are captured by which 
investigation (see fig. 1 "Cassini Titan 
Science Objectives"). During pre- 
project development, the proposed 
generic instrument payload (i.e., 
imagers, spectrometers, radiometers, 
mass spectrometers, magnetometers, 

etc.) are evaluated against their corre- 
sponding science objectives. This 
ensures that the ~ r o ~ o s e d  instrument 
payload captures ah t6e science that the 
spacecraft is designed for, confirms that 
no proposed investigation is redundant 
with another and that no investigation 
exceeds the scope of the mission. 

During development the selected pay- 
load is again evaluated against the 
science objectives. This confirms that 
between pre-project design _and project 
start (and the selection of investigations) 
the desired set of science objectives are 
indeed captured by the spacecraft's pay- 
load. Once evaluated, these matrices are 
placed under project change control to 
ensure that the contributions from each 
investigation are explicitly stated and 
that their requirements do not continue 
to grow. 

2.2 Science Matrices: 
Science Objectives vs. Orbital Segment 

Once the science objective matrices have 
been developed, the times in the mission 
when the science objectives are acquired 
needs to be established. For a "swingby" 
mission, like Voyager, the encounter 
period may be divided into segments and 
geometric events (e.g., approach, far 
encounter, near encounter, planet closest 
approach (CIA), satellite CIA, post 
encounter). For an orbiter mission 
which studies temporal variations of a 
target for many years, orbital segments 
are created by the identification of 
geometric events. As an example, the 
Cassini mission starts with Saturn Orbit 
Insertion (SOI) and then has its 
associated geometric events: 

1. atmospheric (e.g., atmosphere 
occultations, phase angle, etc.) 

2. magnetospheric (e.g., bow 
shock crossings, satellite wake 
crossings, etc.) 

3. ring (e.g., ring plane crossing, 
ring occultations, etc.) 

4. satellite events (e.g., Titan 
encounters, targeted icy 
satellite encounters, nontar- 
geted icy satellite encounters) 



SCIENCE MATRICES 

CASSINI TITAN SCIENCE OB JECTNES 

CAPS ISS MAG KPWS UVIS VIM8 
ABUNDANCE a  a  a  
CHEMISTRY • • 
CIRCULATION e o o  
MAGNETOSPHERE l . @ a  

Fig. 1: This marix shows which investigations 
capture each science objective. 

CASSINI 
SCIENCE OBJECTIVES vs. ORBlTAL SEGMENT 

/ 1 - Major Observation Period 
2 - Minor Observation Period 
N - Not Applicable 

Fig. 2: This marix identifies the importance of each 
epech in the orbit based on science objectives. 

CASSINI 
SCIENCE OBJECTNES vs. OBSERVATION TYPE 

Science Objective Prime Obs Type C 
TITAN ' 

Abundances UVIS Mosaic Auroral Sc 

Fig. 3: mis  marix defines activities that the spacecraft - 
must perform to obtain the desired science. 

CASSINI 
OPS CHARACTEBISTICS vs. OBSERVATION TYPE 

Concurrent Activities 

Fig.4: This marix allows the science community to 
independently evaluate Ground System resources. 



Once segments are defined from the 
geometric events, a matrix of science 
objectives vs. orbital segments is  
developed (see fig. 2 "Cassini Science 
Objectives vs. Orbital Segments"). It is 
important to note that the sum of the 
segments defines the entire encounter or 
orbital tour. If it does not, then the 
addition of "place holders" may be 
necessary. "Saturn Orbital Ops" is an 
example of a Cassini orbital tour place 
holder. This place holder is needed 
because some high priority observations 
are bound to orbital characteristics and 
not just particular geometric events. 
These high priority events dictate that 
"Saturn Orbital ODS" be divided into 
high activity and low activity segments. 
Only high activity periods contain high 
priority events. The low activity 
segments are for the remainder of the 
orbital tour 

An example of an observation which 
requires a high activity period is a stellar 
ring occultation. This important 
observation is tied to both a geometric 
event and orbits with relatively high 
inclinations. For Cassini, these orbits 
occur early and late in the orbital tour. 
A low activity period may contain 
periodic fields, particles & wave 
measurements. These measurements are 
critical to the understanding of the 
magnetosphere but may be done 
anywhere in the orbit. The spacing of 
individual observations do not matter as 
long as complete coverage of the orbit is 
obtained. 

2.3 Science Matrices: 
Validation of Orbital Segments 

The "Science Objectives vs. Orbital 
Segment" matrix is used to determine the 
times in the mission when the science 
objectives are achieved. A "l", "2" or 
"N" is placed in each cell of the matrix 
to identify the degree in which the 
objective was captured during the 
particular orbital segment. A "1" indi- 
cates that the objective was met during 
the particular orbital segment. A "2" 

indicates that some portion of the 
objective was met; and an " N  indicates 
that the objective could not be obtained 
at this particular time. 

Once the entire matrix is finished, all 
cells with an "N" are shaded for 
readability. This matrix can now be 
used to validate that the set of orbital 
segments is complete. The validation 
process is first performed on the rows 
(i.e., science objectives). Each row must 
have at least one "1" or a "2" in it. If it 
does not, then the objective is not 
captured with the c k e n t  set of orbital 
segments. This implies that either the 
objective should be removed or a new 
orbital segment (which would capture 
the objective) be added. 

Next, the columns are checked for 
internal consistency. At least one "1" or 
"2" should be in every column. If it does 
not, then the .column (i.e., orbital 
segment) is unnecessary and should be 
removed from the matrix (In this case, 
some columns do not contain a "1" or a 
"2" because this figure is only a part of 
the complete matrix). It is desired for 
simplicity that the final matrix have the 
least number of columns. The end result 
is a table that explicitly defines when in 
the mission specific science objectives 
are obtained. 

2.4 Science Matrices: 
Define Observation Types 

Science investigators next define obser- 
vation types. An observation type is an 
activity needed by an investigation in 
order to capture a scientific objective. 
The investigator only needs to define 
those types of activities that impact 
ground system resources. Any activity 
that is performed internal to the 
instrument does not need to be consid- 
ered as it only drive the investigation's 
resources. 

The observation types are used to ensure 
that the GS has the correct resources in 
place as determined by the investigators. 
An example of an observation type is a 



"mosaic". The shuttering of a single 
image, a UV atmospheric occultation 
observation and a mass spectrometer 
sample of the atmosphere (by orienting 
the spacecraft into the ram direction) all 
fall under the same observation type 
(i.e., 1 x 1 Mosaic). In each case, the 
investigation needs to orient its field of 
view in only one specific direction. 

Observation types are determined by 
creating a table of science objectives, 
investigation that provide "notable 
contributions" (a.k.a prime investiga- 
tions) and then defining the proposed 
observation type (see fig. 3 "Cassini 
Science Objectives vs. Observation 
Type"). The first Titan science objec- 
tive, "Atmospheric Abundances", lists 
the investigations that were identified as 
prime in the "Science Objectives vs. 
Investigation" matrix (see fig. 1). For 
each investigation in a particular science 
objective, an observation type is 
identified. 

While identifying observation types, it is 
important to remember that the number 
of types be kept to a minimum. This is 
driven by the fact that the larger the 
number of types, the more resources 
have to be spent by the GS to capture 
them. Thus, if Titan spiral radiometry 
scans and Saturn limbtrack maneuvers 
can both be performed by the same 
spacecraft routine (i.e., "maneuver" 
observation type), than a cost savings 
will be realized. 

Once all the objectives have been 
assigned an observation type, a summary 
of the different types is compiled. In this 
case, Cassini has six basic observation 
types: 

1. Articulation - Mechanical 
Motion of Cassini Plasma 
Spectrometer, Cosmic Dust 
Analyzer & Magnetic Imaging 
Instrument 

2. Langmuir Probe Operations - 
Radio & Plasma Wave 
Science Experiment 

3. Maneuver - RADAR Radio- 
metry & Radio Science Limb- 

tracks 
4. Mosaics (m x n) - 

a. 1 x 1 (e.g., Imaging, 
Integration or Stare) 

b. 1 x m (i.e., Scan) 
c. n x m (i.e., Mosaic) 

5. Roll - Spacecraft Roll at 0.26 
deg/s for Fields, Particles & 
Waves 

6. Sounder Mode Operations - 
Radio & Plasma Wave Science 
Experiment 

This list contains all activities that the 
GS has complete or partial responsibility 
for in order for the investigations to 
achieve their science objectives. In 
addition, this list begins to define the 
fundamental activities that could be built 
into the ground system prior to the 
orbital tour. With good system engineer- 
ing, these activities should only require 
changes to their parameters in order to 
be used during the mission. 

2.5 Ground System Matrices: . 
Operations Characteristics vs. Dynamic 

Range 

The GS, in turn must define which 
characteristics during operations drive its 
resources. For each characteristic a 
range of values are defined to establish 
its dynamic range. As an example, the 
repetitiveness of a sequence directly 
drives the amount of resources (i.e., 
dollars) that must be utilized to develop 
command loads. The range extends 
from none, where each sequence is used 
only once (i-e., unique); to high, where 
each sequence is used many times. 
Obviously the more frequently a 
sequence can be used, the greater the 
cost savings during operations. 

For the Cassini mission, operational 
characteristics fall into five areas; 
sequencing, spacecraft, navigation, 
systems and real-time operations. In 
each area, characteristics which drive 
operation costs and their associated 
dynamic ranges are identified. It is im- 
portant to note that each mission has its 
own unique cost drivers. As such, 



operational characteristic tables must be 
generated for each mission. 

2.6 Ground System Matrices: 
Operations Characteristics vs. Orbital 

Segment 

Once the GS establishes its operations 
characteristics, an "Operations Charac- 
teristics vs. Orbital Segment" matrix is 
produced. This matrix allows the GS to 
scope where in the mission specific 
resources are necessary based on the 
relative importance of each orbital 
segment. The level of resources placed 
in each cell are done based on the 
mission plan and in accordance with the 
available GS resources. The final matrix 
represents the GS's best estimate of 
when specific capabilities must be in 
place in order to achieve the objectives 
of the mission. 

It must be mentioned that in actuality 
resources can not be added and 
subtracted as frequently as indicated by 
the change of orbital segments. Person- 
nel must be trained in advance of their 
need date and must remain at their task 
for at least a number of months. An 
employee can not be hired for a task for 
five days only to be removed for the next 
three weeks. However, the allocation of 
ground resources does identify the ebb 
and flow of resources and thus help 
determine the level of effort that must be 
applied at different times in the mission. 

2.7 Science Matrices: 
Operation Characteristics vs. 

Observation Type 

With the generation of the GS's 
operation characteristics. the science 
representatives (i.e., project Scientist, 
Principal Investigators, Experiment Rep- 
resentatives, Investigation Scientists, 
Science Coordinators, etc.,) produce the 
ops characteristics vs. observation type 
matrix (see fig. 4 "Cassini Operation 
Characteristics vs. Observation Type"). 
This matrix, endorsed by the science 
community (independent from the 

ground system), establishes what re- 
sources are needed by the investigations 
in order to capture a specific type of 
activity. It is this matrix that will be 
used against the GS's estimate of the 
availability and allocation of its 
resources. 

3.0 Application 

As an example of the application of 
these matrices, Cassini RADAR scans 
will be analyzed. First find which 
objectives require RADAR scans. To do 
this, look at fig. 5, "Cassini Science 
Objectives vs. Observation Type". 
Determine the obiective(s1 for which 
RADAR is the p r h e  investigation and 
the observation type is "scans". For this 
particular case, RADAR scans are only 
needed at Titan to determine the 
"State/Composition of Surface". 

With the science objective known, use 
the "Cassini Science Objectives vs. 
Orbital Segments" (see fig. 6 )  to deter- 
mine when the particular objective may 
be acquired. The table indicates (by the 
presence of "1s" or "2s") that scans are 
only needed during the "Probe" and 
"Titan" orbital segments. When we 
apply the fact that RADAR will not be 
used during the probe mission, then we 
realize that the GS only has to provide 
the capability for RADAR scans during 
Titan swingbys 

Next return to the "Cassini Ops 
Characteristics vs. Observation Type" 
matrix (see fig. 7). From this matrix 
remove the RADAR scan column and 
compare to the he "Titan" column from 
the "Cassini Ops Characteristics vs. 
Orbital Segment " matrix (see fig. 8)". 
For ease of review, the orbital segments 
not needed for RADAR scans have been 
shaded gray. 

The requirements of the RADAR scan is 
then compared with the capability pro- 
vided by the GS. For this example, areas 
in the RADAR column which require 
more capability then the ground has 
provided were shaded gray. In this 



RADAR SCAN EXAMPLE 

CASSIM 
SCIENCE OBJECTIVES vs. OBSERVATION TYPE 

I Science Objective I Prime I Obs c o m e 3  

CASSINI 

Fig. 5: First find which science objectives require SCIENCE OBJECTIVES vs. ORBlTAL SEGMENT 

RADAR scans. In this case, only 
"State/Comp. of Surface" of Titan. 

2 - Minor Observation Period . 

CASSINI N - Not Applicable 
OPS CHARACTERISTICS vs. OBSERVATION TYPE Fig. 6: T1h surface composition measured during Probe 

and Titan segments. However, during the probe 
mission, the main antenna will be used for data 
relay not RADAR. Thus, RADAR scans only 
needed during Titan passes. 

Dev. Tie/Execute Time 

v Y 

Fig. 7: Investigators, independent from the GS, generate 
the ground capability needed for each 
observation type. 

v \ CASSINI 

OPS C H A R A ~ S T I C S  vs. ORBITAL SEGMENT 

Fig. 8: Compares GS capability with the science requirements 
needed to capture science objectives. Identifies which 
activities need to be simplified, which 13s capabilities needs 
to be reallocated, or which activities may be at risk. 

1367 



example three areas (i-e., development 
timelexecute time, repetitiveness of 
sequence and simulation effort) are in 
conflict. If we look at the "Simulation 
Effort" row on this table, we see that the 
GS does not plan to simulate RADAR 
sequences. However, from a science 
point of view, RADAR sequences 
must be simulated. This apparent 
discrepancy results in one of the 
following: 

1. GS reallocates resources to 
simulate all RADAR scans, or 

2. The RADAR Team uses its 
own resources to simulate 
scans prior to submitting their 
sequences to the GS, or 

3. Nothing is changed and the 
projects excepts the greater 
risk of science data loss 
during RADAR scans 

4.0 Conclusion 

The use of these matrices by the science 
community and the project's ground 
system allows both groups to understand 
what and when types of observations can 
be performed. The results make the 
science community sensitive to the limits 
of the ground resources and thus, reduce 
the amount of "creeping" science 
requirements. In turn, the GS will be 
more responsive to the needs of the 
investigators in order to return the 
primary science objectives of the 
mission. 

Once the matrices have been developed 
and analyzed, potential misallocation of 
resources will become evident. The 
areas where investigator's requirements 
are greater than the available resources 
will drive the GS and science commu- 
nity to one of three possibilities: 

I. Reallocate GS capability to 
meet the observation, or 

2. Decrease the observation 
type's complexity by trans- 
ferring the responsibility to 
the investigator, or 

3. Leave resources as is and 
accept the greater risk of data 
loss 

The approach stated in this paper may be 
applied during advanced mission 
planning in order to select a spacecraft's 
science payload; during ground system 
design to ensure the ground system's 
compatibility with the investigations; 
and during operations to quantify where 
ground resources need to be applied to 
return the quality of science data 
demanded by a first rate planetary 
exploration program. 

5.0 References 

1. Cassini Project Policies & 
Requirements Document; JPL Internal 
Document; PD 699-004 Rev. B; 1992 
September 

2. Cassini Ground System Architecture 
Review; JPL Internal Document; 
Volume m, 1993 April 8; "Framework 
for the New Ground System Design"; R 
B. Morris; pages 526-527 

3. "OCMP Table and OCBYMP 
Matrices", IOM 380-92-0-004/JD, J, H. 
Duxbury, 1993 June 3 

4. Cassini Tour Cost Sensitivity 
Working Group Final Report; JPL 
Internal Document; 1993 September 24 

The research described in this paper was 
carried -out by the Jet Propulsion 
Laboratory, California Institute of 
Technology, under a contract with the 
National Aeronautics and Space 
Administration. 



6. Systems O~erations Page 1369 " A - 

SE.6.a A New Systems Engineering Approach to Streamlined Science 1371-1376~~83 
and Mission Operations for the Far Ultraviolet Spectroscopic 
Explorer (FUSE) 

Madeline J. Butler, George Sonneborn, Dorothy C. Perkins 
6E / 

SE.6.b * Risk Reduction Methodologies and Technologies for the Earth 1377-1381 
Observing System (EOS) Operations Center (EOC) 

Richard K. Hudson, Nelson V. Pingitore 
SE.6.c EDOS Operations Concept and Development Approach 1383-1390 -$& *Z 

Gordon Knoble, C. Garman, G. Alcott, C. Ramchandani, J. 
Silvers 

SE.6.d Concurrent Engineering: Spacecraft and Mission Operations 1391-1397. 8:% 
System Design 

J. A. Landshofj R. J. Harvey, M. H. Marshall 

Presented in  Poster Session 





A New Systems Engineering Approach to Streamlined Science and 
Mission Operations for the Far Ultraviolet Spectroscopic Explorer (FUSE) 

Madeline J. Butler 
Systems Engineering Office 

Mission Operations and Data Systems Directorate 

Dr. George Sonneborn 
Laboratory for Astronomy and Solar Physics 

Space Sciences Directorate 

Dorothy C. Perkins 
Missions Operations Division 

Mission Operations and Data Systems Directorate 

NASAIGoddard Space Flight Center 

ABSTRACT 

The Mission Operations and Data Systems Directorate (MO&DSD, Code 500), the Space 
Sciences Directorate (Code 600), and the Flight Projects Directorate (Code 400) have * 

developed a new approach to combine the science and miqion operations for the FUSE 
mission. FUSE, the last of the Delta-class Explorer missions, will obtain high resolution 
far ultraviolet spectra (910 - 1220A) of stellar and extragalactic sources to study the 
evolution of galaxies and conditions in the early universe. FUSE will be launched in 2000 
into a 24-hour highly eccentric orbit. Science operations will be conducted in real time for 
16- 18 hours per day, in a manner similar to the operations performed today for the 
International Ultraviolet Explorer. 

In a radical departure from previous missions, the operations concept combines spacecraft 
and science operations and data processing functions in a single facility to be housed in the 
Laboratory for Astronomy and Solar Physics (Code 680). A small mission operations 
team will provide the spacecraft control, telescope operations and data handling functions in 
a facility designated as the Science and Mission Operations Center (SMOC). This approach 
will utilize the Transportable Payload Operations Control Center (TPOCC) architecture for 
both spacecraft and instrument commanding. Other concepts of integrated operations being 
developed by the Code 500 Renaissance Project will also be employed for the FUSE 
SMOC. The primary objective of this approach is to reduce development and mission 
operations costs. 

The operations concept, integration of mission and science operations, and extensive use of 
existing hardware and software tools will decrease both development and operations costs 
extensively. This paper describes the FUSE operations concept, discusses the systems 
engineering approach used for its development, and the software, hardware and 
management tools that will make its implementation feasible. 



MISSION DESCRIPTION 

The FUSE science program will address fundamental problems in such diverse areas as 
composition and properties of interstellar gas and dust, stellar explosions and mass loss, 
galactic dynamics, active galactic nuclei, and planetary magnetospheres. Many of these 
problems require long exposures (15-50 hours) of faint objects. Among the most 
important and demanding FUSE science is the study-of trace species in interstellar and 
intergalactic gas using absorption spectroscopy of faint, distant sources, such as active 
galactic nuclei and quasars. The deuterium-to-hydrogen @/H) abundance ratio is a critical 
parameter for understanding the Big Bang and the chemical evolution of the universe. 
FUSE will address this problem by measuring the D/H ratio in a wide range of 
astrophysical conditions representing different evolutionary histories, degree of stellar 
development, and chemical mixing. These problems require high spectral resolution and 
instrument sensitivity in the wavelength range 910 to 1220 Angstroms. The mission 
design lifetime is three years to provide sufficient observation time to meet the science 
exposure time requirements; the mission goal is five years. 

The FUSE Principal Investigator at the Johns Hopkins University(JHU), Baltimore, 
Maryland, leads a university-government team which will build and test the FUSE 
instrument. The instrument team includes JHU, University of Colorado at Boulder, 
University of California at Berkeley, and the GSFC Engineering Directorate (Code 700). 
Canada and France are partners in the FUSE mission and are providing critical elements of 
the instrument to JHU. FUSE operations are the responsibility of the GSFC Laboratory 
for Astronomy and Solar Physics. 

Since the start of the Phase B there have been major changes in the FUSE mission concept 
in order to meet programmatic requirements while maintaining scientific performance. The 
result is a new, innovative normal-incidence optical design, a dedicated spacecraft to be . 
built at GSFC, a Delta TI launch, and a 24-hour highly-eccentric, geosynchronous orbit 
(600 km perigee, 71000 krn apogee) which provides about 18 continuous hours of 
unocculted, low radiation background science time per day (see Figure 1). This occurs 
when the spacecraft is at altitudes greater than about 30,000 to 40,000 kilometers. 

/ Perigee: 600 km \ 
I \ 

altitude 

Apogee: 70,972 km 

Figure 1 
FUSE Orbit Geometry 



FUSE OPERATIONS CONCEPT 

Through a series of trade studies involving the instrument, spacecraft, and ground system, 
a new operations concept was developed. In addition to lowering total mission costs, low- 
cost mission operations was a major objective of this process. 

The principal characteristics of the FUSE operations concept are summarized as follows: 

* Science operations take place 18 hours per day, and only when the spacecraft is at 
altitudes above 30,000 km. 

Spacecraft telemetry rate is 64 kbps, using one of two omni-directional antennas. 

* Two ground stations can provide coverage of 19-20 hours per day; only a 10m dish is 
required to provide adequate link margin (3db). This coverage requires one station in 
the Northern Hemisphere and one in the Southern. Wallops Island, VA, and Canberra, 
Australia, were used for analysis purposes. This wide geographical separation is 
required due to the high eccentricity of the orbit. 

Spacecraft and instrument command and control is generated and executed in real time. 

All ground system functions are located in the Science and Mission Operations Center 
(see Figure 2). 

- Data capture and level zero processing 
- Spacecraft and instrument command and control 
- Science/mission planning and scheduling 
- Orbit determination (flight dynamics function) 
- Trend and performance analysis (with support of instrument and spacecraft teams) 
- Science data processing, calibration, distribution, archiving 
- Science program management 
- Guest Observer proposal support 

* A number of functions and processes are automated in order to reduce the work 
complement of the ground operators. 

- Spacecraft and instrument health and safety functions in flight software 
- Health and safety monitoring in ground system 
- Data capture and data retransmission 
- Level Zero processing 

* Constraints imposed to simplify operations 
- No operations will take place during the lower portion of the orbit when FUSE 

traverses the trapped electron and proton belts. 
- No spacecraft maneuvers outside periods of direct contact. 
- No science operations required during shadow periods. 



ASTRONOMICAL 

Figure 2 
FUSE Science and Mission Operations Center 

Real time requirements include the ability to execute interactive, real-time control of the 
instrument and spacecraft. The daily real-time contact must occur when the spacecraft is at 
altitudes above 30,000 km to use the low radiation portion of the orbit. Health and safety, 
housekeeping and science data will be monitored autonomously in real-time to avoid 
possible data loss due to anomalies or improper operations. The target and guide star 
identification and acquisition process is interactive with the ground. Adjustments to the 
instrument fine alignment are required every two hours or less; commanding the spacecraft 
and instrument will occur on a frequent basis. 

FUSE Guest Observers and the Instrument Team will have electronic connections to the 
SMOC for proposal submission, observation planning and execution, and science data 
evaluation and retrieval. Level zero data will be available to scientists shortly after receipt 
in the SMOC and processed science data within 2 days. The mission data will be archived 
at the National Space Science Data Center (NSSDC). 



FUSE DEFINITION PROCESS 

Ground and flight segment engineers and scientists have been heavily involved throughout 
the FUSE definition process. This breadth of involvement has allowed mission-wide and 
life-cycle trade studies to be conducted and informed design decisions made based on study 
results. A team consisting of the Project Scientist, the Spacecraft Manager, Instrument 
System and Operations Engineers, Ground Data Systems Engineers, Operations Scientist, 
Mission Operations Manager, and Flight Dynamics Systems Engineer was established to 
create a flight and ground system concept that meets the mission requirements. The revised 
concept was reviewed periodically by the Principal Investigator and the FUSE Project. The 
ground system concept described above was ultimately one result of this process. Since 
operational considerations were an integral part of the mission and life cycle trade studies, 
the operations and ground system concept developed continuously with the restpf the 
mission concept. 

The orbit selection was the first major trade study. The 24-hour orbit described above 
provides several significant advantages over a low-earth orbit for the FUSE mission. This 
orbit decision minimizes the mission lifetime for the mission's science program, lowers 
mission complexity (operations, spacecraft, and instrument), maximizes time outside the 
radiation belts for low background science by providing 2 to 3 times the observing 
efficiency of LEO, provides a lOOX improvement in target visibility, radically simplifies 
science and mission scheduling, provides continuous observing periods for long 
observations, and simplifies faint-object target acquisition. 

These factors, combined with the utilization of real-time control of the instrument and 
spacecraft, reduce the number of functions and subsystems in the flight and ground 
segments. Such simplifications lower system complexity, lower development and testing 
costs, lower software maintenance costs, and reduce operalions support staff. Specifically, 
a high-rate data downlink, command management system, planning and scheduling 
system, and automated target and guide star acquisition system were either deleted from the 
FUSE mission concept or significantly simplified. Many other design trades were made to 
optimize the mission design concept and reduce cost. 

The fact that FUSE is operated in real time, has one instrument, one common destination 
for all data, and a low rate for data downlink made possible the consolidation of the 
spacecraft and science operations. A single Mission Operations Team will be trained to 
perform both science and spacecraft operations. The current concept plans to staff each 
operational shift with two console operators (one for the spacecraft, one for the instrument) 
and one resident astronomer. The operations staff will be assisted by autonomous 
functions in the ground system for health and safety monitoring, data capture and 
retransmission, and Level Zero processing. These are very significant, because by 
automating these activities the operations staff will have significant portions of their time 
freed for more intellectually challenging and critical work, such as calibration, planning and 
scheduling, preparing for the next science observation, and of course spacecraft and 
instrument commanding. 

The SMOC will be a joint development by Codes 600 and 500 and the FUSE instrument 
team. The objective is to reduce documentation (e.g., a single requirements document for 
the FUSE ground system), reduce and simplify interfaces, and reduce staffing and facility 
requirements. The SMOC will be one of the missions to be implemented utilizing services 
and products of the Code 500 Renaissance system. 



FUSE DEFINITION METHODOLOGY 

The FUSE Project has adopted a Functional Analysis methodology to achieve an end-to- 
end systems approach to mission concept development. FUSE is the first project at GSFC 
to employ this process across the entire mission starting in the definition phase. 
Functional analysis is the process of identifying, describing and relating the functions a 
system must perform in order to fulfill its goals and objectives. The primary analysis tool 
is the functional flow block diagram. These diagrams show the network of actions that lead 
to the completion of a function. It is part of the end to end flow of level one activities that 
leads to the system definition. The process starts with requirements, followed by 
functional analysis, and ends with system definition. 

The mission phases that were defined to be studied were development, prelaunch, launch, 
mission operations, and end of mission. Each mission phase was further broken into sub- 
phases, and sub-phases into functions. This allows the systems engineers to evaluate the 
functional relationships and dependencies across subsystems and between flight and 
ground segments. In addition, the interdependencies at the function level can be traced to 
higher levels. The functional flow diagrams will be used to allocate and validate 
requirements at the subsystem level. 

This process helped to identify major areas of the mission for further study, such as the 
critical topics for the FUSE End-to-End Data System Study. The main objectives of this 
study are: to characterize the space to ground link, the command and data handling 
memory sizing and the on board bus traffic; and to establish a baseline of the data rates and 
identify "tall poles" in the instrument, observatory and ground data systems. Among the 
important outcomes of this type of study are the identification of missing requirements, the . 
identification of the requirements that drive the complexity of the system in terms of data 
and the validation of the operations concept. In parallel, the FUSE Operations Concept 
Document was written. Through this process the mission operations concept is 
"engineered" like the other components of the mission. 

CONCLUSION 

Because of its need to dramatically reduce costs, and its success in achieving this goal, the 
FUSE mission is a pathfinder for NASA's low-cost mission operations objectives. A 
tightly integrated team and consideration of end-to-end operations issues in all phases of the 
FUSE mission contributed substantially to the development of this approach. 



Risk Reduction Methodologies and Technologies for the 3 3 ~ ~ 3 k ; l  
Earth Observing System (EOS) Operations Center (EOC) 

T '4 
j2;, 
i 

Richard K. Hudson and Nelson V. Pingitore 
Loral AeroSys 

16 16A McCormick Drive 
Landover, Maryland 20785 

ABSTRACT development cycle. 

This paper will discuss proposed Flight 
Operations methodologies and 
technologies for the Earth Observing 
System (EOS) Operations Center (EOC), 
to reduce risks associated with the 
operation of complex multi-instrument 
spacecraft in a multi-spacecraft 
environment. The EOC goals are to 
obtain 100% science data capture and 
maintain 100% spacecraft health, for each 
EOS spacecraft. Operations risks to the 
spacecraft and data loss due to operator 
command error, mission degradation due 
to rnis-identification of an anomalous 
trend in component performance or rnis- 
management of resources, and total 
mission loss due to improper subsystem 
configuration or mis-identification of an 
anomalous condition. This paper 
discusses automation of routine Flight 
Operations Team (FOT) responsibilities, 
Expert systems for real-time non-nominal 
condition decision support, and Telemetry 
analysis systems for in-depth playback 
data analysis and trending. 

INTRODUCTION 

The Flight Operations Segment (FOS) of 
the EOS Core System (ECS) is currently 
in early stages of the design process. The 
Preliminary Design Review (PDR) is 
scheduled for December 1994, and the 
concepts discussed in this paper will be 
refined as we progress with the 

The FOS will provide the command and 
control system for EOS instruments and 
spacecraft. The EOC will be located at 
NASA Goddard Space Flight Center 
(GSFC) to generate commands to the 
instruments and spacecraft of NASA 
within the International Earth Observing 
System (IEOS) as well as monitoring the 
health and performance of these flight 
elements. 

International partners flying instruments 
on NASA EOS spacecraft will be able to 
provide these functions for their 
instrument from their own center. 
Principal Investigators (PIS) and facility 
instrument teams will participate in 
monitoring their instruments and in 
resolving instrument anomalies from their 
home institutions through use of an 
Instrument Support Terminal (IST) 
Toolkit, a special set of software that will 
be run on a local computer workstation. 

AM-1 will be the first mission to be 
supported by the EOC FOT, it is 
scheduled for a June 1998 launch. Other 
missions currently scheduled to be 
supported from the EOC include: AERO- 
1 (9100); PM-1 (12100); ALT-1 (6102); 
CHEM- 1 (1 2/02), AM-2 (6103) ; AERO-2 
(9103); PM-1 (12105); AERO-3 (9106); 
ALT-2 (6107); CHEM-2 (12107); AM-3 
(6108); AERO-4 (9109); PM-3 (12110); 
ALT-3 (6112); AERO-5 (9112); and 



CHEM-3 (12112). At full capacity the 
EOC FOT will be required to support up 
to 7 missions (five on-orbit, one in pre- 
launch stage, and one mission in a 
"decommissioning" stage). 

Systems will be in place well before the 
launch of the first EOS satellite to provide 
the full functionality required to support 
it. The command and control functions 
will be brought on-line and fully tested 
with simulated EOS data in operational 
scenarios. 

After the EOS missions are on-orbit and 
providing high volumes of data, the EOC 
will continue to evolve and add 
capabilities in response to new 
requirements and lessons learned through 
its use. This evolution will be in the form 
of planned EOC upgrades. Continued 
prototyping will occur, and development 
of EOC will be actively sought. This 
continuing evolution will enable the EOC 
to incorporate advances in data system 
technologies, as well as adapt to changing 
user requirements. 

The FOT shall provide mission operations 
support with technical directives from the 
NASA Mission Operations Manager 
(MOM) and the EOS Project Scientist. 
Coordinated mission planning, 
scheduling, and commanding operations 
shall be performed by the FOT in 
accordance with the MOM'S policy 
guidelines and directives. Instrument 
science planning and scheduling 
operations, including conflict resolution, 
shall be performed under the general high 
level direction and guidance of the Project 
Scientist. The FOT shall perform 
operations necessary at the EOC to ensure 
that the ECS FOS achieves the functional 
and performance requirement of the ECS 

specification. These functions include the 
following services: operation planning and 
scheduling; command management; 
commanding; telemetry processing; 
observatory and instrument monitoring 
and analysis; data management; element 
management; and user interface services. 

With increased complexity of space and 
ground systems, and interactive science 
operations there will be an increase in the 
level of complexity of onboard resources 
and constraint management. Current tools 
for assessing the state of the system 
require that FOT members mentally 
convert alphanumeric data into a mental 
model and reason about the model. 
Automated logic checking is performed at 
the parameter level, leaving subsytem and 
system level assessment as a human task. 
Because of this FOT effectiveness is an 
issue that promises to grow in the future. . 

The ECS FOS will supply tools that 
reduce FOT sensory requirements. This 
will be accomplished through the 
development of automated routine FOT 
responsibilities. A Decision Support 
System, and the EOC Telemetry Analysis 
system will be the main tools used to 
automate these responsibilities. The goal 
of these systems is to aid in complex 
parameter checking, and system level 
reasoning checks for the FOT. These 
tools will also support real-time resource 
and constraint management. In the EOC 
these tools must effectively manage 
multiple payload sets in a dynamic 
resource allocation environment. 

Automation of expected versus actual 
state analysis process will greatly aid the 
FOT. FOT productivity gains will also be 
achieved by visualization tools for 
assessing system status. These 



visualization tools will support graphical 
representations of system level data with 
the capability of rapidly expanding the 
displayed information down to the 
parameter level. The promise of improved 
visualization techniques is that the FOT 
will be able to monitor systems by 
exception, rather than through 
surveillance. Each of these methods has 
the promise of improving FOT 
efficiencies and reducing mission critical 
risks. 

AUTOMATION OF ROUTINE FOT 
RESPONSIBILITIES 

In traditional control centers significant 
labor is expended for routine operations, 
such as monitoring subsystem displays, 
and supporting poorly engineered 
interfaces for the negotiation of external 
services (e.g., communications, flight 
dynamics). An ECS FOS goal is to 
automate and standardize these interfaces. 
This will result in increased operational 
efficiency, lower system life-cycle costs, 
and reduced operational risk. 

The FOT will depend heavily on the 
accuracy and quality of spacecraft 
manufacturer and FOS documentation and 
information. Deficiencies in either 
spacecraft or FOS documentation or 
ground system test results will increase 
the level of mission risk, reduced mission 
effectiveness, and result in higher life- 
cycle costs. These deficiencies will lessen 
the FOTs ability to provide accurate 
responses to anomalies. 

The amount of information required for 
operating a spacecraft is staggering. In a 
traditional control center this data is stored 
on paper in an ad hoc manner. This 
information is usually not organized in a 

way that allows quick access by the FOT 
for real time operations. Frequently this 
data is not kept on paper at all, but is 
retained in the minds of experienced FOT 
members. 

We have proposed an extensive on-line 
technical information database for the 
missions controlled from the EOC. This 
system would allow for rapid information 
access through keywords, such as: 
subsystem name, and telemetry or 
command mnemonics. The information 
stored within this database will be 
integrated to the system level. The 
database will also serve as a repository of 
system specification, drawings, simulation 
and test data, historical data, operations 
procedures, and contingency plans. 

Traditional control center operations 
involve a large number of alphanumeric 
displays monitored routinely by subsystem 
specialisk with relatively little automatic 
checking of data, except for simple limit 
checks. The EOC operations concepts for 
FOT real-time monitoring calls for most 
monitoring to be performed by exception 
when specified rules are violated, when 
telemetry does not match predictive 
models, or when telemetry behavior is 
similar to previously known anomalous 
patterns. 

The EOC telemetry displays will be at a 
system level, integrating pictures and 
hierarchical diagrams of spacecraft 
subsystems with detailed presentation of 
subsystem data. Both "idiot lights" and 
dense information displays will be 
provided and further integrated with 
analytic tools that provide data exploration 
capabilities. 

With the insertion of more powerful 



workstations and operating systems, 
complex analytic tasks will be performed 
in real time on a non interfering basis. 
This will result in lessening the 
traditional distinction between on-line and 
off-line systems. As an example, upon 
the detection of a major system event or 
anomaly, the FOS software might 
formulate a list of information relevant to 
the problem at hand and automatically 
provide pop-up windows displaying and 
organizing this information along with 
appropriate recommendations. 

EOC DECISION SUPPORT SYSTEM 
(DSS) 

The EOC FOT will utilize the proposed 
DSS to provide long-term analysis support 
and reduce mission critical risk factors. 

The EOC DSS should encapsulate 
knowledge from previous missions. 
Spacecraft knowledge is often lost from 
mission to mission. In the life of a single 
long duration mission key operations 
knowledge may be lost due to personnel 
attrition. The EOC DSS is envisioned to 
disseminate this knowledge across the 
missions supported by the EOC. 

The FOS DSS will have the following 
characteristics: 
a. Access to comprehensive detailed 
spacecraft and operations knowledge to 
provide a systems perspective. 
b. A library of extensive tools that are 
readily adaptable to a number of problem- 
solving activities. 
c. A robust pattern-matching capability for 
matching experience to new problems. 

The DSS will provide the following 
functions: 

a. Support in-depth spacecraft and ground 
system long-term analysis. This will use 
the DSS integrated knowledge base 
subsystem in a graphical nature. 
b. Assist in identifying and resolving 
space and ground system problems in a 
proactive manner. 
c. Assist in developing plans for 
correcting current and future problems 
through consistent application of domain 
knowledge. 

EOC TELEMETRY ANALYSIS 
SYSTEM 

An often neglected, but important aspect 
of risk reduction in FOT activities is off- 
line analysis. In traditional control centers 
this is principally supported through 
relatively primitive trending and data 
analysis tools. These primarily include 
paper listings of trend data that ai-e 
analyzed by subsystem engineers to 
determine potential degradation of 
components. 

Careful and continuous analyses of data 
can improve the lifetime of a spacecraft 
and reduce risks associated with 
catastrophic failures. The ECS FOS 
software will contain on-line and off-line 
support capabilities' tools that provide 
rapid analysis of real-time and post-pass 
spacecraft behavior, and more direct user 
management of spacecraft activities. 

Heritage and lessons learned from NASA, 
and NOAA missions will be utilized in 
developing the EOC Telemetry Analysis 
System. Specifically these missions 
include Landsat, EPIEUVE, GOES, and 
HST. 

The EOC Telemetry Analysis System, 



includes increased use of workstation- 
oriented interactive data analysis and 
visualization tools to support both 
spacecraft and subsystem analysis. It will 
scan for anomaly signatures derived from 
component histories. For example, 
changes in battery chargeldischarge ratios 
provide early warnings of battery failures. 
Such signatures would be stored in an 
operations knowledge base and used to 
predict component failures. 

Proposed specifics of the EOC Telemetry 
Analysis System include: 
a. Support of automatic searches for 
interesting data and couplings: Such as, 
problems caused by couplings between 
attitude and powerlthermal subsystems. 
Unusual iterations would be automatically 
detected and presented for further analysis 
in our proposed system. 
b. Comparison to recent trends and 
manufacturer's specifications: Sudden 
changes in trends or specification would 
be immediately presented for more detail 
analyses. 
c. Graphical presentation of knowledge 
in discipline-relevant formats: This 
includes the presentation of analyses in 
understandable formats, overlaid on 

spacecraft diagrams or in multi- 
dimensional presentation that facilitate 
data understanding and exploration. 

CONCLUSIONS 

The EOS FOT will benefit by having the 
proposed FOS architecture and tools. 
These benefits include: improved system 
performance since FOS is more 
responsive to user needs; reduced risk of 
spacecraft andfor data loss; lowered 
operations costs; reduced time and cost of 
supporting new missions by enhancing 
the design of the existing ECS FOS 
software; reduced operator training time 
and providing for retention of experienced 
operations personnel knowledge; 
increased job satisfaction among FOT 
personnel by automating performance of 
routine actions; provide for the capability 
to insert new technologies/products into 
EOC faster; and provide a more 
transparent, less obstructive interface 
between science users and the instrument 
and science data they use. 

BIBLIOGRAPHY 

Maurice Assaraf, Lessons Learned from the Transportable Payload Operations Control 
Center (TPOCC), NASA GSFC SEAS Central Engineering Board presentation, February 
17, 1993. Goddard Space Flight Center, Greenbelt, MD. 

Allan Jaworski, Gardiner Hall III, and David Zoch CC2005 An Architecture for Future 
Mission Operations Control Centers, Loral AeroSys, Seabrook, MD, October 1992. 

Paul Ondrus, and Michael Fatig, Operations Technology Working Group presentation, NASA 
Goddard Space Flight Center, Greenbelt, MD, December 1991. 

James R. Wertz and Wiley J. Larson (editors), Space Mission Analysis and Design, Kluwer 
Academic Publishers, Norwell, MA, 199 1. 





- 
EDOS Operations Concept and Development Approach 

G. Knoble, C. Garman, and G. Alcott, Goddard Space Flight Center p' 6 

and 
C. Ramchandani and J. Silvers, Computer Sciences Corporation 

Abstract 

The Earth Observing System (EOS) Data 
and Operations System (EDOS) is being 
developed by the National Aeronautics and 
Space Administration (NASA) Goddard 
Space might Center (GSFC) for the cap- 
ture, level zero processing, distribution, 
and backup archiving of high speed 
telemetry data received from EOS space- 
craft. All data received will conform to the 
Consultative Committee for Space Data 
Standards (CCSDS) recommendations. The 
major EDOS goals are to: 

Minimize EOS program costs to 
implement and operate EDOS 

* Respond effectively to EOS 
growth requirements 
Maintain compatibility with exist- 
ing and enhanced versions of 
NASA institutional systems re- 
quired to support EOS space- 
craft. 

In order to meet these goals, the following 
objectives have been defined for EDOS: 

Standardize EDOS interfaces to 
maximize utility for future re- 
quirements 
Emphasize life-cycle cost (LCC) 
considerations (rather than pro- 
curement costs) in making design 
decisions and meeting reliability, 
maintainability, availability 
(RMA) and upgradability re- 
quirements 

* Implement data-driven operations 
to the maximum extent possible 
to minimize staffing requirements 
and to maximize system respon- 
siveness 
Provide a system capable of si- 
multaneously supporting multiple 
spacecraft, each in different 
phases of their life-cycles 

1383 
P  PA^ ~ A W .  m T  mMm 

Provide for technology insertion 
features to accommodate growth 
and future LCC reductions dur- 
ing the operations phase 
Provide a system that is suffi- 
ciently robust to accommodate 
incremental performance up- 
grades while supporting opera- 
tions. 

Operations concept working group meet- 
ings were facilitated to help develop the 
EDOS operations concept. This provided a 
cohesive concept that met with approval of 
responsible personnel from the start. This 
approach not only speeded up the 
development process by reducing review 
cycles, it also provided a medium for 
generating good ideas that were immedi- 
ately molded into feasible concepts. The 
operations concept was then used as a basis 
for the EDOS specification. When it was 
felt that concept elements did not support 
detailed requirements, the facilitator process 
was used to resolve discrepancies or to add 
new concept elements to support the 
specification. This method provided an 
ongoing revisal of the operations concept 
and prevented large revisions at the end of 
the requirement analysis phase of system 
development. 

1.0 Introduction 

EDOS operations supports end-to-end data 
delivery for EOS spacecraft. The operations 
concept describes the strategic, tactical, ex- 
ecution and post-execution phases for EOS 
Ground System (EGS) elements, and de- 
scribes the role of EDOS in eacd phase. In 
support of these phases, the concept de- 
scribes EDOS operations in r~lation to cur- 
rent and future GSFC Mission Operations 
and Data System Directorate (MO&DSD) 
institutional systems and EOS systems. 
These include the Tracking and Data Relay 
Satellite System (TDRSS) Ground 



Terminals (TGTs), the Network Control 
Center (NCC), EOS Communications 
(Ecom), as well as EOS Core System 
(ECS) facilities, including the EOS 
Operations Center (EOC), Distributed 
Active Archive Centers (DAACs), and 
other EGS elements. 

The approach used for developing an op- 
erations concept is almost as important as 
the concept itself. In order to be an effective 
concept, it must be well thought out and in 
agreement with the interested parties 
(systems engineers, interface organizations, 
and management). The approach must also 
allow change. This includes a discussion of 
the development of alternative concepts, 
and the tradeoff and other engineering anal- 
yses performed in selecting and developing 
the baseline operations concept. The signif- 
icance of the operations concept in the de- 
velopment of the detailed EDOS functional 
and performance specification and interface 
requirements is described as the "proof of 
concept" of the development method. 

2.0 EDOS Operations Concept 

EDOS is the EOS data handling and 
delivery system maintained and operated by 
the MO&DSD. The development and 
implementation is being managed by the 
Information Processing Division (IPD), 
Code 560, of the MO&DSD at the GSFC. 
EDOS provides capabilities for handling 
data for EOS spacecraft that adhere to rec- 
ommendations established by the CCSDS. 
Specifically, EDOS provides capabilities 
for return link data capture, data handling, 
data distribution, backup archival data 
storage, and forward link data handling. 
EDOS supports ground to ground data 
communications for data delivery using a 
set of approved protocols. Reliance of 
EDOS on these spacelground and ground to 
ground standards facilitates mission 
interoperability and will result in lower 
life-cycle costs for NASA. EDOS supports 
all levels of MO&DSD and EOS end-to-end 
testing in preparation for EOS spacecraft 
launch readiness, by utilizing the 
operational system without interrupting on- 
going operations. Data delivery is provided 
by the SN, EDOS, and Ecom. SN provides 
spacelground data communications. The 

SN consists of the Tracking and Data Relay 
Satellite (TDRS) constellation, the TGTs, 
and the NCC. The TGTs include the White 
Sands Ground Terminal (WSGT) and the 
Second TDRSS Ground Terminal (STGT). 
Spacelground data communications for 
emergency operations are provided by the 
Ground Network (GN), Wallops Orbital 
Tracking Station (WOTS), and the Deep 
Space Network (DSN). Ecom includes the 
wide area network and the Ecom 
Management capability, which provide 
ground to ground data communications 
support for the SN, EDOS, and EGS 
elements. EGS elements include the EOS 
Operations Center (EOC), the Distributed 
Active Archive Centers (DAACs), or other 
associated data handling facilities, such as 
the National Oceanic and Atmospheric 
Administration (NOAA). 

There are three EDOS facilities. The Data 
Interface Facility (DIF) is located at the 
White Sands Complex (WSC) near Las 
Cruces, New Mexico. The Data Production 
Facility (DPF) is located in Fairrnont, West 
Virginia. The Sustaining Engineering 
Facility (SEF) is located in the Data 
Operations Facility (DOF), Building 28 at 
GSFC in Greenbelt, Maryland. 

The capabilities that EDOS provides are 
grouped into categories of services. These 
services are allocated to the three EDOS 
facilities. EDOS services include the data 
delivery services outlined in the previous 
section and the services that support EDOS 
operations. The service categories are des- 
ignated as return link processing, forward 
link processing, operations management, 
production data handling, data archive, 
system support, and engineering support. 
The DIF provides return and forward link 
processing services. The DIF also provides 
operations management services for DIF 
processing services and for the centralized 
EDOS operations management. The DPF 
provides production data handling, data 
archive, and DPF operations management 
services. Return link services are provided 
according to mission-specific requirements. 
The SEF provides sustaining engineering 
services, the EDOS system support coordi- 
nation services and operations monitoring. 
System support services are provided at 



GSFC 
Sustaining Engineering Facility 

White Sands EDOS SEF SERVICES 
Data Interface Facill 

Schedules, 1. ENGINEERING SUPPORT: 

1. RETURN LINK 
PROCESSING: 

2. OPERATIONS MANAGEMENT: 
SEF Operations Management ........ , 

0 EDOS System Support 
SEF IT&V 
SEF Maintenance 2. FORWARD LINK 

PROCESSING: 

. . . . . . . . . 
3. OPERATIONS 
MANAGEMENT: 

EDOS Service 

4. SYSTEM SUPPORT: 

Legend: . OPERATIONS MANAGEMENT: 

EDOS 
DPF Operations Management 

:s$qm: &$$&& Ecom 

- Mission Data . . . . . . . . . 
Data 

- System Support Data 

Note: The EGS elements 
select required return link 
services. 

EDOS Services and Interfaces 





each of the three facilities to support the op- minimized processing delay through 
erations at the respective facility. EDOS, as required. 

2.1 Return and Forward Link Plavback Processing. Playback processing 

Processing Operations restores "as recorded order" to spacecraft 
tape recorded data received by the frame 

The DIF return and forward link processing ~Gchronization function in r&erse order. 

services provide for the receipt, capture, Playback data received in forward order are 

processing, and transfer of digital data that processed and stored as received. Transfer 

conform to applicable CCSDS of playback data commences after the 

communication services recommendations. completion of the TDRSS Service Session 

EDOS acts as an interface between the EGS (TSS). 

and the SN. Return link processing 
removes communications artifacts and 
provides computer ready data sets to the 
EGS. Telecommand link and physical layer 
services are provided for forward link data 
received via Ecom from the EOC and 
delivered to the EOS spacecraft via the 
TDRSS. Data capture is provided for return 
link data received from spacecraft via the 
TDRSS. Return link services include real- 
time and rate buffered Path and VCDU 
services. Return link data can be delivered 
to any appropriate EGS destination. All 
data handling services, return and forward 
link, include data quality assurance and 
accounting. 

The DIF processing services are highly 
automated data-driven services using man- 
agement information provided by the DIF 
operations management service. The man- 
agement information represents service re- 
quirements for data processing and defines 
the parameters the DIF will use to process 
and deliver data. The DIF incorporates 
built-in test capabilities in support of on- 
line operations. 

The DIF provides the following capabilities 
for the processing and delivery of mission 
data: 

Data Capture. All return link data, including 
fill data, are captured and stored for 30 
days after receipt by EDOS for use in re- 
covery processing. 

Return Link Real-time Processing. 
Real-time processing receives and pro- 
cesses all return link data, and delivers 
CCSDS Service Data Units (SDUs) (e.g., 
Virtual Channel Data Units (VCDUs), 
CCSDS packets) to EGS elements with 

Rate Buffering. Rate buffering is the pro- 
cess in which data from an EOS spacecraft, 
transmitted to the ground during a TSS, are 
completely received by EDOS at one data 
rate and transmitted to destinations at 
negotiated reduced data rates. 

Forward Link Real-time Processing. The 
DIF provides the capability to process for- 
ward link data in support of CCSDS 
Telecornmand services. 

2.2 Production Data 
Processing Operations 

The DPF provides production data handling 
services for return link mission data re- 
ceived from the DIF. production data 
handling services annotate and remove, 
when possible, communications artifacts 
and data anomalies due to spacecraft 
operations. These services include 
production data processing and quick-look 
data processing. 

Production Data Processing. Production 
data processing of return link CCSDS 
pack6 data is th;: process in which packets 
from one or more TSSs are sorted by appli- 
cations process identifier (APID), forward 
ordered by packet sequence count and time, 
and quality-checked. A production data set 
(PDS) consists of production data 
processed packets, quality and accounting 
summary information. Production data sets 
have redundant and previously processed 
packets deleted, and may be delimited by 
time interval, number of packets, number 
of octets of data, or TSS boundary. 

Quick-look Data Processing. Quick-look 
data processing is similar to production data 



processing except redundant packets are not 
removed and the content of a quick-look 
data set (QDS) is limited to either all pack- 
ets received for a single APID during one 
TSS or all packets in one TSS in which the 
quick-look flag is set in the packet sec- 
ondary header. Quick-look data processing 
may be performed on up to five percent of 
return link data received over a 24-hour pe- 
riod. Quick-look data processing demands 
in excess of five percent will be detected 
and the EOS System Management Center 
(SMC) will be notified about possible 
degradation in EDOS support. The packets 
contained in a QDS are included in produc- 
tion data processing. Specific operational 
requirements for quick-look data process- 
ing will be contained in the Operations 
Agreement (OA) document between the 
EGS element and EDOS. 

2.3 Data Archive Operations 

The DPF data archive service vrovides a 
long-term storage capability as'a Level 0 
data backup to the DAACs. The PDSs cre- 
ated by EDOS are stored for the life of EOS 
plus 3 years. Retrieval of archived data is 
expected to occur infrequently. Retrieved 
PDSs together with quality and accounting 
information are delivered to the requesting 
DAAC as Archive Data Sets (ADSs). The 
data archive service can recover from lost 
or damaged PDSs by receiving and storing 
DAAC to EDOS Data Sets (DEDSs) from a 
DAAC. 

2.4 Operations Management 

EDOS operations management services 
provide the management capability for all 
EDOS resources and services. These ser- 
vices provide highly automated system 
monitoring and control capabilities and 
manage the operation of EDOS services. 

The DIF and DPF operations management 
(OM) capabilities monitor and control the 
systems that implement the services of the 
respective facility. These management ca- 
pabilities receive, consolidate, and analyze 
system performance data as well as respond 
to service requests received by the EDOS 
service management (SM) capability. The 
DIF and DPF OM capabilities transfer ser- 

vice status information to the EDOS SM 
capability for service reporting. 

2.5 System Support Operations 

System support services are provided at all 
three EDOS facilities. These services in- 
clude the capabilities for integration, test, 
and verification (IT&V), fault isolation 
support, and maintenance support for the 
processing services at each facility. 

The EDOS IT&V capability provides tools 
to support EDOS and external testing. 
Maintenance support capabilities at each 
facility provide tools for managing the 
maintenance of systems at the respective 
facility. The EDOS IT&V and maintenance 
activities are coordinated by the system 
support service at the SEF. 

2.6 Sustaining Engineering 
Operations 

The EDOS sustaining engineerin.g 
capability provides an environment for the 
development of system enhancements, 
trouble-shooting and hardware and 
software updates to the operational system. 
The environment supports tracking of the 
operational system performance and 
maintenance history, and the development 
and evaluation of system changes and the 
evaluation of new technologies and 
requirements. 

3.0 Operations Scenarios 

The EDOS operations concept includes 
several operations scenarios to clarify sys- 
tem and interface functional interactions. A 
typical scenario describes real-time return 
link operations during a TSS. 

3.1 Real-time Return Link 
Data Processing Scenario 

a. TGT transfers Channel Access Data 
Units (CADUs) from each TDRSS service 
channel to the designated DIF TGT ports. 
Data capture recognizes data are present and 
starts storing CADUs, including fill 
CADUs. (The following steps apply to 
each TDRSS service channel) 



b. VCDU service. The return link process- 
ing (RLP) service frame synchronizer rec- 
ognizes CADU frame sync pattern, per- 
forming bit inversion and CADU reversal 
as required. The frame sync is stripped off, 
status data is collected and sent to the D F  
OM, and the VCDU is passed to the Reed 
Solomon (R-S) decoder. The R-S decoder 
decodes the applicable portion of the 
VCDU (header and/or entire VCDU),and 
strips off the R-S code. The RLP deletes 
fill VCDUs, generates an EDOS Service 
Header (ESH), collects status data for the 
ESH and sends status data to the DIF OM. 
Time and date of CADU receipt by the DIF 
is added to the ESH and the ESH is ap- 
peni-led to the VCDU, creating a VCDU 
EDOS Data Unit (EDU). Services for the 
VCDU are determined in the RLP by 
checking the service requirements for the 
VCDU-ID [spacecraft ID (SCID) and vir- 
tual channel ID (VCID) located in the 
VCDU header]. Command Link Control 
Words (CLCWs) are extracted from 
VCDUs and transferred in real-time with 
the source VCDU ESH to the EOC. VCDU 
EDUs not requiring Path service are stored. 
VCDU EDUs requiring real-time service 
are transferred to the requesting EGS ele- 
ments. VCDU EDUs requiring Path service 
are sent to the Path service processor. 

c. Path service. VCDU EDUs are disas- 
sembled: packets are extracted and re- 
assembled. Packet fragments with headers 
are filled out with fill data. The source 
VCDU ESH is retained, packet quality and 
accounting data are added to the ESH and 
the ESH is appended to each related packet, 
creating packet EDUs. Packet EDUs are 
then stored. Packet EDUs requiring real- 
time service are concurrently transferred to 
the requesting EGS elements. 

e. The DIF OM collects service processing 
status data from each of the D F  processing 
services during processing activities. 
During a TSS, the EDOS SM collects these 
data from the DIF OM and also Ecom's 
service status data, compiles the data into a 
customer operations data accounting 
(CODA) Report, and sends the report to the 
EOC, nominally every 5 seconds, during 
the TSS. SN performance messages are 
received from the NCC and used at the DIF 
along with other status data and SN 
schedule data by the operators for fault 
isolation. The DIF OM also does 
quantitative and quality determination for 
DIF operators and for TSS summary re- 
porting. The EDOS SM also receives TGT 
performance data via the NCC. The EDOS 
SM operator compares TGT performance 
parameters with the RLP status data for 
fault isolation. 

4.0 Operations Concept 
Development Approach 

Traditionally, the responsibility for drafting 
an operations concept for a new system lies 
with one or two knowledgeable people who 
have had some experience in the past with 
such documentation and who have partici- 
pated in high level requirements meetings 
and discussions with the system project 
personnel. The concept is drafted and dis- 
tributed for review. After several draft re- 
visions, the concept eventually gets honed 
into an acceptable product. At best this 
method is a compromise of ideas (concept 
features) of how the system should operate. 
At worst, the concept may be lacking in 
support of key requirements. This could be 
caused by reviewers misinterpreting the 
concept or the writers misinterpreting the 
reviewers' intentions in their comments. 

d. VCDU EDUs and packet EDUs requir- There is more chance for this to happen if a 

ing TSS post-operations services are stored new system is different or more complex 

in a manner that facilitates rapid access, in than existing systems. Reviewers may not 

order to start transferring multiple EDU be persistent enough in their reviews to en- 

files to destinations within 5 minutes. sure compliance with their change requests. 

Stored files are identified for the type and The traditional method was initially tried in 

priority of post-TSS processing needed: developing the EDOS operations concept. 

quick-look data processing, playback pro- After several unsuccessful attempts to 

cessing, rate buffering, and production data satisfy reviewers, a facilitator approach to 

processing). the development was tried. 



The EDOS Project formed an operations 
concept working group (OCWG) consist- 
ing of EDOS systems engineering team 
(SET) members. The OCWG was 
composed of government and contractor 
project support personnel who had partici- 
pated in Phase B studies and were respon- 
sible for the requirements analyses for 
EDOS. The OCWG met regularly and rep- 
resentatives of systems with EDOS inter- 
faces were invited to participate in the con- 
cept discussions. Each member was 
allowed to express his or her ideas and 
critique the other members' ideas. Members 
shared facilitating of the meetings. This 
avoided over dependence of any one person 
and also avoided the "leader" instinct of 
some of the members. It also increased the 
homogeneity of the meetings. Agendas 
were followed at each meeting. A member 
was delegated to write the minutes 
(including concepts developed). These 
minutes were reviewed in detail at the next 
meeting prior to proceeding with new 
business/concepts. This gave the members 
an opportunity to correct or improve the 
concept as recorded and reach further 
agreement. An important feature of this 
method is that a consensus was reached 
among the responsible project personnel 
before a draft document was started. This 
meant that the critical part of the concept 
development was basically finished before 
documentation began. Another feature was 
that each member's technical knowledge 
and familiarity with the system require- 
ments were enhanced during the process. 
This was important during the next phase 
of system development which was the re- 
quirement analyses for the EDOS specifica- 
tion. During this phase, the operations con- 
cept was used to understand what require- 
ments were needed for the specification. If 
the concept was found lacking, the facilita- 
tor method was used to develop new or im- 
proved concept features. Since this method 
had been used previously and by the same 
personnel, it was easy to re-institute the 
process. 



CONCURRENT ENGINEERING: SPACECRAFT AND MISSION OPERATIONS 
SYSTEM DESIGN 

J. A. Landshoe, R. J. Harvey*, and M. H. Marshall** 

The Johns Hopkins University 
Applied Physics Laboratory 

Laurel, Maryland 20723-6099 

Abstract 
Despite our awareness of the mission 

design process, spacecraft historically have 
been designed and developed by one team 
and then turned over as a system to the 
Mission Operations organization to operate 
on-orbit. By applying concurrent engineer- 
ing techniques and envisioning operability 
as an essential characteristic of spacecraft 
design, tradeoffs can be made in the overall 
mission design to minimize mission lifetime 
cost. Lessons learned from previous space- 
craft missions will be described, as well as 
the implementation of concurrent mission 
operations and spacecraft engineering for the 
Near Earth Asteroid Rendezvous (NEAR) 
program. 

Jntroduct~oq 
The traditional approach of system de- 

velopment (requirement definition, specifi- 
cation development, preliminary and de- 
tailed design, fabrication, and test) is a long, 
cumbersome, and frequently costly process. 
Current system engineering techniques for 
system development such as concurrent en- 
gineering and rapid prototyping can be much 
faster, and, consequently, cheaper. There 
may be increased risk in this approach, how- 
ever, the benefits generally outweigh these 
risks. In cost and schedule constrained pro- 
grams such as Discovery programs, higher 
risk must be tolerated to achieve the goals of 
faster, better, and cheaper. 

Concurrent engineering is defined here as 
the simultaneous development of two or 
more interacting systems from the earliest 
stages of the system life cycle through the 
design and development process. System 
engineering includes in part the allocation of 

* Member, Senior Professional Staff 
** Member, Principal Professional Staff 

system requirements to subsystems, and 
when two or more subsystems' requirements 
overlap, or when a system-level requirement 
could be handled by two or more 
subsystems, concurrent engineering 
techniques can be used to arrive at an 
optimal solution. This paper will describe 
what is meant by concurrent engineering as 
it applies to the development of space 
systems, focussing on the concurrent design 
and development of a spacecraft and the 
mission operations system that will be used 
to operate it on orbit. The benefits and costs 
of concurrent engineering in this application 
will be discussed, and concurrent en- 
gineering methods will be presented. Then, 
specific examples of lessons learned from. 
past space system development programs at 
the Johns Hopkins University Applied 
Physics Laboratory (JHUIAPL, or APL) will 
be presented, along with a work-in-progress 
snapshot of concurrent engineering in 
practice on the Near Earth Asteroid 
Rendezvous (NEAR) mission . 

Concurrent Enpineering of Space Svstem~ 
A space system includes a spacecraft and 

the systems with which the spacecraft will 
be operated once it is in space (the mission 
operations system, or MOS). At the very 
start of a mission, requirements are allocated 
between the spacecraft and the MOS (e.g., 
existing MOS infrastructure may require a 
certain frequency for uplink and/or down- 
link, requiring the spacecraft telemetry sys- 
tem to be built in compliance thereof), ide- 
ally by a mission system engineer. After 
these top-level allocations are made, re- 
quirements in both systems are further allo- 
cated to subsystems within each, by the cog- 
nizant system engineers. Even when re- 
quirements are allocated along clear lines, 
simple decisions in one system can have 



great affects on the other. A mission system rectly to solve any anomaly that might arise 
engineer is crucial to resolve conflicts, and on the spacecraft. 
to Lake decisions as to what requirements 
should be done where. 

As the spacecraft and the MOS are being 
designed, constant communication between 
the two development activities is crucial in 
order to end with a space system that works 
well as a whole. Therefore, the communi- 
cations between spacecraft subsystem design 
efforts and MOS design efforts must include 
design decisions as they are being made. 
Communication must occur at the lowest 
possible level, between individual engineers 
responsible for subsystem design if possible. 
In some cases, relatively minor changes in 
spacecraft or instrument design can signifi- 
cantly save in operations costs. For exam- 
ple, thermal and power robustness may 
eliminate the need for complex analysis of 
every maneuver sequence, saving time and 
money in the development of sequence up- 
loads. 

A mission level system engineer should 
be designated at the start of a program by the 
program office, with the capability and re- 
sponsibility to perform requirement trade- 
offs at a high level. Too frequently, all 
flexibility and operability is pushed onto the 
ground system and mission operations func- 
tions to save development costs in the space- 
craft. This is often the correct approach 
(complexity bersus reliability tradeoffs in 
the spacecraft can be prohibitive), however, 
in the current budget environment, this is not 
always the optimal approach. 

Benefits 
There are many benefits to designing 

major elements of space systems concur- 
rently. Concurrent engineering allows opti- 
mal systems solutions across disciplinary 
boundaries, with the added bonus of often 
doing so in less time at a lower cost. One 
inevitable outcome is the education of engi- 
neers about each other's systems. In the case 
of spacecraft subsystems and mission opera- 
tions, the better mission operations under- 
stands the spacecraft, the more safe, effi- 
cient, and reliable mission operations is go- 
ing to be. The better trained and educated 
the mission operations team is the better 

In the development arena, concurrent 
engineering can allow for more flexible re- 
sponse to changes in requirements. If a re- 
quirements change is forced on the space- 
craft late in the design cycle, it is often very 
costly to modify flight designs. If the MOS 
is able to respond to the requirements 
change, costly delays in the spacecraft de- 
velopment program are often avoided, albeit 
at some potential expense to the MOS de- 
velopment effort. 

Finally, if a spacecraft is designed from 
the outset with operability in mind, fewer 
people may be required to operate it. Since 
personnel are usually the driver for mission 
operations post-launch costs, lowering the 
number of personnel required to operate a 
spacecraft can dramatically reduce mission 
operations', and thus the overall program's, 
costs. 

costs 
Concurrent engineering does not come 

without costs. There is often an increase-in 
the time required for communications be- 
tween detrelopment groups. This is espe- 
cially true early in the program, during con- 
ceptual and preliminary design phases when 
teams may be small and design time pre- 
cious. During the system development pe- 
riod, subsystem teams can not just build 
their box in isolation. They must continue to 
work with other elements as designs are so- 
lidified, to ensure a working system at the 
end. 

Finally, perhaps the most critical time 
consuming effort is in convincing all team 
members that concurrent engineering is a 
worthwhile effort. Concurrent engineering 
runs counter to traditional subsystem devel- 
opment processes. Often, concurrent engi- 
neering can seem to overstep 'turf,' when 
for instance a mission operations person re- 
quests changes in the command system de- 
sign. A strong mission systems engineer can 
smooth the turf battles, but it is time con- 
suming. Once everyone realizes that the 
true end product is the space system, not a 
subsystem, these concerns tend to go away. 

they will be able to respond quickly and cor- 

1392 



Methods 
Two methods are currently being used at 

APL by the mission operations organization 
in conjunction with spacecraft development 
programs to enable the concurrent engineer- 
ing process for space system development. 
These methods are the identification of a 
spacecraft specialist in the early prelaunch 
phase, and the development of the spacecraft 
ground system ICD. 

The Spacecraft Specialist 
The spacecraft specialist is responsible 

for providing the bridge between mission 
operations and the spacecraft development 
team. This person should ideally have both a 
spacecraft hardware and an operations back- 
ground. 

During the initial phases of the mission, 
the spacecraft specialist job is to work with 
the spacecraft system engineer, and subsys- 
tem designers, to ensure operability is a con- 
sideration in all design phases. It was found 
on previous programs that just asking sub- 
system designers to think about operations 
did not work -- someone was needed, paid 
for by mission operations, whose job was to 
look over the shoulders and comment on de- 
signs as they evolved. 

Early on, as mentioned above, some sub- 
system designers felt that mission operations 
was intruding into their territory. As time 
went on, though, almost all came to under- 
stand and appreciate, and in some cases even 
demand, the perspective brought to the table 
by the spacecraft specialist. Critical to this 
success, however, is the credibility of the 
spacecraft specialist. 

The SpacecraftlGround System PCD 
One of the primary products of the 

spacecraft specialist in the early program 
phases is the SpacecraftIGround System 
Interface Control Document (ICD). This 
document captures the interface between the 
ground, both the GSS and the MOS, and the 
spacecraft, and should be completed before 
the spacecraft Critical Design Review 
(CDR). For each spacecraft system, and 
subsystem, the ICD defines commands, 
telemetry, and operating rules, as they are 
known at that point in the program. With 
this document in hand, the ground system 

development team can proceed to build the 
command and telemetry processing system, 
and the spacecraftdevelopment team can 
proceed with the development, integration 
and test of their subsystems. 
Communication between the teams is still 
required, though; the ICD is the beginning 
of the process, not the end. 

Like most documents, the 
Spacecraft/Ground Systems ICD is most 
useful during its development, not by its use. 
Requiring that both mission operations and 
the spacecraft subsystem personnel think 
about command formats, telemetry, and op- 
erating rules very early, in order to develop 
the ICD, is the very essence of concurrent 
engineering. 

Space Svstem Development: Past 
Ex~erience 

Over the years, the Applied Physics 
Laboratory has built over fifty spacecraft. 
Virtually all of these were one-of-a-kind 
spacecraft built for a specific research pur- 
pose. With this history comes an institu- 
tional way of doing business. Programs 
have tended in the past to be very focused on 
the spacecraft. As current missions have re- 
quired more of a mission focus, the institu- 
tional ways of doing business are changing. 
On previous missions, there were a number 
of areas where concurrent engineering might 
have reduced the cost of mission operations 
development and implementation, helping to 
reduce overall mission costs. Areas of 
spacecraft design where mission operations' 
input early on might have proven beneficial 
include spacecraft commanding, telemetry, 
onboard memory management, onboard data 
processing, and the testing and testability of 
some subsystems. Examples are given below 
of specific lessons learned on recent APL 
space system development programs. In 
some cases these examples refer to the stan- 
dardization of designs throughout the space- 
craft, while others refer to particular design 
change recommendations to make opera- 
tions more efficient. 



Commanding 
Mission operations' sole connection to 

the spacecraft after launch is through the 
command and telemetry links. The only 
path for mission operations to affect any- 
thing on the spacecraft is via commands 
from the ground. In the early days of space, 
spacecraft were launched with fixed time- 
lines of activities; no changes from the 
ground could be made. Now, of course, 
spacecraft are built to respond to ground 
commands to carry out activities. The de- 
velopment of the commands to be sent to the 
spacecraft is, in fact, the primary focus of 
mission operations today. Therefore, de- 
signing the command interface to the space- 
craft with operability offers perhaps the best 
opportunities for a more easily operable 
spacecraft, which in turn can reduce the size 
of mission operations considerably. One 
particular area of interest is in the types and 
formats of the commands themselves. 

A standard command format being man- 
dated throughout the spacecraft would en- 
able the mission operations team to develop 
a standard mechanism for the automated 
generation of commands. Hard-coded work- 
arounds in flight software that require spe- 
cial command types not only escalate the 
cost of development, but reduce the speed of 
an automated command generation process. 
A standard command format should be ap- 
plied to serial data commands, which might 
include an "opcode" at the start of the data to 
indicate the command type or functionality. 
Mode change commands should not be of 
the type where each bit addresses some par- 
ticular function; to change a single element 
with such a system, each bit must be respec- 
ified to its current state. This is a nightmare 
for mission operations! As an example, one 
program had a command design where four 
bits of a serial data command represented 
the enabling and disabling of four different 
data formatters. Every time one particular 
formatter was to be enabled, the previous 
state of the others had to be known. If the 
wrong state had been assumed, the com- 
mand may have inadvertently disabled one 
formatter that should have remained en- 
abled. This could have caused something as 
critical as communication of spacecraft 
housekeeping data suddenly being lost when 

science data was enabled for on-board 
recording. If the function of controlling 
each formatter had been made a separate 
"opcode," each formatter could have been 
controlled individually without having 
known each other's previously commanded 
state. The creation of the command loads 
would have been easier, the checking of 
those commands loads more reliable, and 
mission operations workload reduced signif- 
icantly. 

Standard command formats also may re- 
duce mission operations development costs 
by making spacecraft state determination 
and tracking easier. Lower fidelity models 
of the onboard processor, its memory, and 
its state would still provide all necessary 
functions, but require less design, develop- 
ment, and maintenance, thereby reducing 
costs. Automated command generation 
schemes also can reduce personnel require- 
ments. 

Telemetry 
To assist in the area of spacecraft control 

and performance assessment, every com- 
mand, whether executed in real-time or de- 
layed, must have telemetry which allows for 
the verification of proper execution or rejec- 
tion. For serial data commands some means 
of verification are required (at a minimum 
the data should be reflected back into 
telemetry). This is essential in determining 
that a command was not only correctly re- 
ceived by the command system and trans- 
mitted from the command system to an on- 
board subsystem, but was in fact properly 
executed by the intended subsystem. 

Tracking what the spacecraft has done 
since the last contact with the ground is very 
important for mission operations. To support 
this requirement, the spacecraft should have 
a command history buffer. The size of this 
buffer should be changeable by uplink 
command. Stored commands and com- 
mands from macros should be logged, but 
not necessarily data loads. Downlink of the 
buffer may be by ground command, to con- 
serve downlink bandwidth. This history 
buffer capability allows for the assessment 
that a command was rejected for reasons 
other than not being properly transmitted 
from the command system. This allows 



mission operations to assess spacecraft sion progressed, certain parameters which 
health more easily and quickly, an important were "hard-coded" became invalid. In these 
factor especially on low earth orbiters with cases it would have been beneficial to re- 
short ground contact durations. place those with other critical parameters. 

Memory Management 
Other means of standardization include 

the uplinking and downlinking of on-board 
processor's memory locations or specifically, 
the use of data structures. Data structures 
allow the loading of a processor's memory 
without knowing the exact locations, which 
could change should the processor's code be 
re-linked. The functionality of the proces- 
sor's software should allow for the uploading 
and downloading of these data structures by 
a specific ID number. On a recent mission 
this capabiltity was not built into the flight 
software, requiring the downlinking all of 
the data structures at once as opposed to 
each data structure individually by ID. This 
created the requirement for additional 
ground software that would search through 
the entire downlink and find the particular 
one of interest. 

Onboard Data Processing 
On spacecraft where housekeeping data 

is not continuously recorded, there should be 
a capability for a buffer which allows the 
routine periodic sampling and storage of 
critical parameters. Most likely, throughout 
the life of a spacecraft's mission, different 
parameters will vary in their criticality. 
Therefore, the capability should exist for 
allowing ground commands to change which 
parameters are sampled and their periodic- 
ity. The buffer obviously must have a par- 
ticular size limitation, so in cases where data 
will be lost because it cannot be downlinked 
for long periods of time, it would be highly 
desirable from a mission operations assess- 
ment perspective to be able to download this 
data to the on-board recorder for later re- 
trieval. On a previous spacecraft a similar 
type buffer was limited to the sampling of 
certain unchangeable parameters and its ca- 
pacity allowed for up to 5 orbits of sampling 
at a rate of one sample per 200 seconds. The 
rate was changeable; however, as the sam- 
pling rate was increased, the amount of time 
between required downlinks was reduced. 
In these cases, it would have been advanta- 
geous to have the capability of transferring it 
to the on-board recorder. Also, as the mis- 

Such a capability would give mission 
operations insight into spacecraft state be- 
tween contacts and allow performance as- 
sessment and trending of critical parameters 
as they vary throughout a mission. 

Testing 
Also in the area of performance assessment, 
for any processor or recorder (either solid 
state or tape), there should be a method of 
loading a standard data test pattern in each 
processor or on each tape such that it may be 
downlinked through telemetry and run 
through a bit-by-bit comparison to a ground 
image of the same pattern to certify memory 
validity and periodically measure bit error 
rates. 

Summary of Lessons Learned 
In all of these cases, if the Mission 

Operations Team was involved in the speci- 
fication of spacecraft design requirements, 
the overall mission operations cost would 
have been reduced through both a lowering 
of system development costs and an increase 
in efficiency in the performance of mission 
planning, control, and assessment tasks. 

Use of Concurrent engineer in^ on the 
NEAR Mission 

The Near Earth Asteroid Rendezvous 
(NEAR) program was officially turned on in 
December of 1993. Prior to that, a small 
study team had been working on the concep- 
tual design of the mission and the spacecraft. 
In August of 1993, mission operations was 
asked to provide input as to spacecraft de- 
sign considerations for the NEAR mission 
which would enhance operability. Below, 
the input provided for spacecraft design 
features are listed, and the current status of 
each is described. Following that, other ac- 
tivities highlighting the use of concurrent 
engineering on NEAR are described. 

It must be strongly emphasized that the 
NEAR space system is still being designed; 
as of the writing of this paper (July 1994) 
both the spacecraft and the mission opera- 
tions system are in the design and develop- 



ment stages. What follows is a snapshot of 
work-in-progress; by the time of the 
SpaceOps '94 symposium, (November 
1994) the spacecraft will have passed its 
critical design review, and the presentation 
for this paper will update the following ma- 
terial. 

Mission Operations Inputs for NEAR 
Spacecraft Design 
The following items (numbered) were 

listed by mission operations in August of 
1993 as design considerations for the NEAR 
spacecraft, and can be seen to come from the 
experiences described above. They are 
listed in no particular order: 

1. "Spacecraft and RF system must 
have powerfthermal margin to transmit con- 
tinuously for 8-hour contact. If a contact is 
delayed, actual transmission time may be 
longeryy 

Current Status; The NEAR spacecraft 
can transmit continuously during all mission 
phases. 

2. "The spacecraft will have a data 
summary area in the command and data 
handling (C&DH)system computer. The 
'Data Summary' requirements include: 

- At least 5 data points for each impor- 
tant telemetry parameter (high, low, average, 
time of high, time of low) 

- A variable length 'Anomaly Data' area 
where data triggered written by the auton- 
omy system is stored." 

Current Status; The WEAR spacecraft 
C&DH software requirements specification 
includes all of the above requirements. 

3. "The NEAR Solid state recorder 
(SSR) memory must be non-volatile." 

Current Status; The NEAR spacecraft 
solid state recorder memory is volatile - 
shutting off the power causes the data to be 
lost. However, the power should never have 
to be turned off, so this is not a seen as a 
critical issue by mission operations. The 
SSR is a purchased component, with an ex- 
isting design, and designing a new recorder 
would have been cost and schedule pro- 
hibitive. 

4. "Realtime telemetry must be avail- 
able to the SSR and telemetry system simul- 
taneously." 

Current Status: The NEAR spacecraft 
can both record and downlink housekeeping 
('realtime') data simultaneously. This fea- 
ture can be used to prevent the loss of space- 
craft housekeeping data in the event of a 
transmission error. 

5. ."The SSR must have random access 
capability. Downlink of selected time peri- 
ods of selected parameters is required." 

Current Status: The NEAR solid state 
recorder has some capability for random ac- 
cess, but not by time and parameter. The 
ground will have to model data recording 
functions in order to know what particular 
SSR memory addresses to downlink for par- 
ticular data. The onboard data rates of all 
instruments and subsystems are controlled 
by ground command, so this is not seen as a 
problem. 

The following items concern the onboard 
spacecraft telemetry processing and anomaly 
detection and correction processes, collec- 
tively known as autonomy 

6. "Autonomy rules should include 
chaining (i. e. if A is true, then check if B is 
true, then take some action) and arithmetic 
(i.e. allow the multiplication of a voltage and 
current telemetry parameters to check on 
power consumption." 

Current Status: The onboard autonomy 
does not allow for arithmetical functions on 
telemetry, but it does allow for limited logi- 
cal checks (ANDs and ORs of particular 
telemetry values). Mission operations and 
the flight software team are still negotiating 
this requirement. 

7. "Autonomy should have access to 
SSR (to support onboard trending in case of 
fault detection)." 

Current Status: This has not been de- 
signed into the system. 

8. "Autonomy should be able to write 
data and conclusions to anLAnomaly Data' 
area of the 'Data Summary'." 

Current Status: The onboard processor 
will capture that information which caused a 



particular autonomy rule to be triggered. 
The data will be stored in a known location, 
and can be downlinked. 

9. "To minimize commanding, a data 
region accessible to commands is neces- 
sary." 

Current Status; The intent here was to 
reduce the amount of commanding required 
by allowing mission operations to uplink 
changes in data for previously transmitted 
commands. As the design matured, mission 
operations and the software team agreed on 
a scheme utilizing onboard sets of com- 
mands, called macros, invoked by a smaller 
set of uplinked commands. All macros are 
uploadable, changeable, etc., and can be 
used over and over again. A great deal of 
preparation will go into the design of the 
macros to ensure their reusability. 

Other NEAR Concurrent Engineering 
Activities 
Significant interaction between the 

spacecraft and mission operations systems 
design efforts is occurring in the areas of 
flight and ground software. Regular meet- 
ings are held, conducted by the flight soft- 
ware system engineer, the MOS software 
lead, the mission operations manager, and 
the cognizant technical leads for specific 
subsystems under discussion each meeting. 
Requirements are negotiated, specifications 
reviewed, and implementation issues aired 
and resolved among all the parties. 
Additionally, the mission operations man- 
ager has been asked to be on the review 
panel of the flight software preliminary de- 
sign review. 

Mission Operations and the spacecraft 
design team are working together shoulder 
to shoulder, in many other areas. Load 
management schemes, maneuver algorithm 
design, etc. are all being worked on together 
to mike sure the final space system design is 
a good one. All teams seem to recognize the 
importance of strong spacecraft/operations 
interaction at this important stage of the 
NEAR mission. 

Conclusions 
Concurrent engineering is a technique 

which can work to provide a better space 
system, in less time, while substantially re- 
ducing total progfam costs. Inherent advan- 
tages of teams working together are gained, 
at the cost of a little more communication 
and flexibility. Based on our belief in the 
benefits of concurrent engineerirg and 
lessons learned from previous space mis- 
sions, the NEAR mission operations team is 
taking an aggressive (but tactful!) approach 
to concurrent engineering of the spacecraft 
and the mission operations system. Lessons 
learned from past space systems develop- 
ment programs have given the NEAR pro- 
ject team a leg up, and we are using those 
lessons to our advantage. The NEAR pro- 
ject is using concurrent engineering as the 
basis for the system design, and both the 
spacecraft design team and mission opera- 
tions are profiting from the close working 
relationship. The payoff to date is evident; 
we are confident that future payoffs of this 
approach will enable NEAR post-launch 
costs ro be constrained to an optimal level. 





Abedini, Annadiana - 0P.2.a 

Aguilera, Christine - SD.2.f 

Alcott, G. - SE.6.c 

Alexander, Scott - SE.1.a 

Altunin, Valery I. - 0P.5.a 

Ames, Charles - SD.2.a 

Arquilla, Richard - 0P.3.f 

Aslam, a an weer - SD.4.a 

Auernheimer, Brent - SD.2.a 

Ayache, S. - OP.4.a, OP.4.c 

Baize, Lionel - 0P.3.a 

Baker, D.F. - "OP.5.d 

Baker, Paul L. - SD.5.a 

Baldi, Andrea - OP.4.b, SE.3.a 

Barro, E. - "SD.2.b 

Beach, Edward - SE.2.a 

Beckman, R. M. - 0P.l .c 

Bell, Holland T. - SE.1.c 

Benjamin, Ted - SD.1.d 

Bennett, Toby - DM.2.d, DM.3.a, 

DM.3.g 

Berry, Thomas - MM.2.i 

Beser, Eric - SD.5.b 

Bianco, Giuseppe - "0P.l.e 

Biesiadecki, Jeff - SE.1.a 

Boreham, Charles Thomas - 

0P. l .a  

Bote, Robert - MM.2.i 

Boyer, Jeffrey S. - SD.2.c 

Braun, Armin - *OP.l.f 

Brmot, Jean-Marc - OP. l.b, 

Brittinger, Peter - MM.2.a 

Bromberg, Daniel E. - DM.2.h 

Brooks, Jr., Robert N. - 0P.2.b 

Buckley, Brian - OP.2.c 

Butler, Madeline J. - SE.6.a 

Butler, Scott A. - "SD.3.g 

Buxbaum, K. L. - MM.1.b 

Byrne, Russell H. - DM.2.h 

Calanche, Bruno J. - DM.1.a 

Calvin, Richard - MM.2.i 

Cameron, G. E. - 0P.6.a 

Cardenas, Jeffery - DM.2.i 

Carper, Richard D. - SE.4.d 

Carraway, John - MM.1.a 

Carter, Leslie E. - "SD.2.d 

Cayrac, D. - OP.4.a, OP.4.c 

Challa, M.S. - "OP.5.d 

Chapman, K. B. - 0P.l.c 

Cheuvront, Allan R. - MM.2.b 

Choudhary, Abdur Rahim - 

SD.3.a 

Christ, Uwe - DM.1.b 

Clotworthy, Tim - DM.3.i 

Conaway, B. - DM.1.g 

Corrigan, J im - 0P.5.b 

Cox, C. M. - 0P.l .c 

Cox, Nagin - SE.1.a 

Crysel, William B. - MM.2.1 

Cuevas, 0. 0. - 0P.l .c 

Cureton-Snead, Izeller E. - SE.l .  

Davenport, William - SD.4.f 

Davis, Don - DM.3.a 

Davis, Randy - MM.3.e 

De Saint Vincent, A. - MM.3.a 

Debatin, K. - SE.4.a 

Del Bufalo, A. - "SD.2.b 

Demelenne, B. - "OP.3.b 

Desai, Vishal - DM.1.c 

Deutschmann, J. - "OP.5.d 

Dias, William C. - MM.2.n 

Diekmann, Frank J. - DM.2.a 

Douard, StBphane - 0P.l .d 

Dowling, Jason - DM.3.g 

Drake, Brian C. - SE.1.b 

Duff, Gary - SE.5.e 

Dunean, Elaine F. - MM.2.1 

Dunford, E. - 0P.6.b 

Durand, Jean-Claude - DM.2.j 

Easton, C. R. - SE.3.b 

El-Boushi, Mekki - SD.2.e 

El-Ghazawi, Tarek A. - DM.3.b 

Elgaard, Dennis - 0P.4.b 

Fatig, Michael - SD.3.b, "SD.3.c 

Ferri, Paolo - DM.3.j, OP.3.c 

Fishman, T. - MM.1.d 

Flora-Adams, Dana - SE.2.b 

MM - Mission Management, OP - Operations, DM - Data Management, SE - Systems 
Engineering, SD - Systems Development, * Presented in Poster Session 

A1 



Fogel, Alvin J .  - DM.3.c 

Folk, J. - DM.l.g 

Happell, Nadine - MM.2.f 

Harbaugh, Randy - SE.4.b 

Fong, W. - DM.1.g Harrell, Linda - *DM.l.d Jain, A. - 0P.4.e 

Forman, Michael L. - SD.1.a Harris, Jonathan C. - DM.2.d Jeffries, Alan J. - SE.3.e, SE.4.d 

Frogner, Bjorn - DM.2.m Harvey, Raymond J. - MM.Z.d, Jiang, Jianping - *SD.2.d 

Frye, Stuart - *DM.2.b SE.6.d Joe, Chester - SD.2.f 

Hayes, 

Haziza, M. - ( 
Gaasbeck. James Van - OP.2.c 

Joensson, Rolf_- MM.2.e 
, Tony - SE.5.e 

Joli, Jean-Pierre - "MM.3.c 
IP.4.a, OP.4.c 

Jones, M. - OP.3.d, SE.4.c 

Garcia-Pbrez, Raul - MM.2.c 

Garman, C. - SE.6.c 

Hazra, Tushar K. - SD.1.a 

Head, N. C. - 0P.3.d 

Hei, Jr., Donald J. - SE.1.c 
Gasquet, A. - MM.3.a Kan, Edwin P. - DM.3.e, 0P.2.d 

Hell, Wolfgang - DM.3.d 
Gershman, R. - MM.1.b Karlin, Jay - SE.5.a 

Heuser, Wm. Randy - SD.1.b 
Ghaffarian. Kam - SE.5.b Kasperovich, Leonid - *DM.2.f 

Hogie, Keith - SE.5.b 
Ghuman, Parminder - DM.3.g 

Holdaway, R. - 0P.6.b 
Giannini, F. - SD.3.e 

Golden, Constance - SE.3.c 

Good, Andrew - MM.1.g 

Gordon, Julie - SD.5.d 

Gotanda, T. - "SE.1.d 

Grebowsky, Gerald - DM.3.i 

Green, William B. - DM.2.c 

Gregg, Watson W. - 0P.2.i 

Grieser, William H. - 0P.4.i 

Guerrero, Ana Maria - SE.P.b, 

SD.2.f 

Hageman, Barbara H. - 

*SD.3.h, *SD.5.c 

Hagopian, Jeff - MM. 1.c 

Hall, Dana - SD.3.d 

Hooke, Adrian J. - SE.3.d, SE.3.e 

Hope, Sharon A. - SD.2.h 

Hornstein, Rhoda Shaller - 

SE.1.c 

Hosack, Beryl - DM.2.e 

Howard, P. - 0P.3.d 

Hiibner, H. - OP.3.c 

Hudson, Richard K. - *SE.6.b 

Hughes, Peter M. - 0P.4.d 

Hull, Larry - MM.3.e 

Hurd, Wlliam J. - SE.1.c 

Hurley, Daniel - SE.2.b 

Illmer, N. - 0P.4.e 

Incollingo, Marco - DM.1.b 

Ishihara, Kiyoomi - *DM.l.e 

Kaufeler, Jean-Francois - 
SE.3.f, SE.3.i 

Kaufeler, P. - 0P.4.f . 

Keehan, Lori - 0P.2.e 

Kelly, Angelita C. - SE.1.c 

Keyte, K. - 0P.3.d 

Knoble, Gordon - DM.3.b, 

SD.4.a, SE.6.c 

Koeberlein, 111, Ernest - DM.3.f 

Koslosky, John T. - *SD.3.h, 

*SD.S.c, SE.2.a 

Krall, Laura A. - SD.2.h 

Kruse, W. - DM.3.h 

Kuiper, Thomas B. - 0P.5.a 

Kuntz, Jon - *OP.4.g 

Kwadrat, Carl - MM.2.f 

Labbe, X. - MM.2.g 

MM - Mission Management, OP - Operations, DM - Data Management, SE - Systems 
Engineering, SD - Systems Development, * Presented in Poster Session 



Labezin, Christian - 0P.3.e Maxwell, Theresa - MM.1.c Nguyen, Diem - SD.5.d, SE.5.b 
1 

Labrune, .Yves - MM.2.g McCaleb, Frederick - SD.4.a Nicklas, Randolph - SE.5.c 

Landshof, J. A. - OP.6.a, SE.6.d McKinney, J. Franklin - Nickum, William G. - SD.1.a 

Larduinat, Eliane - SD.4.b MM.2-b NiBzette, M. - SE.4.c 

Larrson, Gus - SD.4.g 

Lee, Young H. - SD.2.a 

Lehtonen, Kenneth - DM.2.g 

Levine, Allen J .  - MM.1.f 

Levitt, D. S. - SD.3.f 

Lightfoot, Patricia C. - SE.1.c 

Linick, Susan H. - MM.2.m 

Liu, Simon - MM.3.e 

Loubeyre, Jean Philippe - 

"OP.2.f 

Louie, John J .  - SD.2.f, SE.2.b 

Luczak, Edward C. - 0P.4.d 

Ludwinski, J. M. - MM.1.b 

Lynenskjold, Steen - OP.3.d, 

OP.4.b, SD.3.i 

MacB, Guy - OP.6.c 

Mackey, William - SE.5.b 

Mahmot, Ron - SE.2.a 

Maldague, Pierre F. - SD.2.e 

Malina, Roger F. - 0P.2.a 

Mandl, Daniel - SE.5.a 

Manning, Evan - *DM.l.f 

Mao, Tony - DM.3.i 

Markley, Richard W. - DM.2.h 

Marshall, M. H. - SE.6.d 

Martelli, Andrea - 0P.6.d 

Masters, W. C. - "OP.5.c 

McLaughlin, Bruce A. - SD.4.c 

McOmber, Robert - DM.1.h 

McPherson, P. H. - 0P.6.b 

Message, Philip - SD.4.f 

Messent, David - SE.1.b 

Michael, K. - DM.1.g 

Mies, L. - 0P.4.e 

Miko, J. - DM.1.g 

Miller, Kevin J. - OP.4.h, SD.2.f 

Miller, W. H. - DM.1.g 

Mirchandani, Chandru - SD.5.d 

Moore, J. Michael - SD.5.a 

Mueller, Karl L. - MM.2.e 

Miiller, Christian - SD.3.i 

Murphy, Elizabeth D. - *SD.2.d 

Murphy, Susan C. - SD.2.f, 

SE.l.a, SE.2.b 

Myers, C. R. - SD.3.f 

Nakata, Albert Y. - MM.2.n 

Nakayama, K. - *SE.l.d 

Nanzetta, Kathy - DM.3.g 

Natanson, G. A. - *OP.5.d 

Nelson, Bill - 0P.2.g 

Nester, Paul - SD.4.a 

Neuman, James C. - MM.2.b 

Newhouse, M. - MM.3.b 

Newsome, Penny A. - SD.4.d 

Nilsen, Erik N. - SD.4.c 

Norcross, Scott - 0P.4.i 

Nye, H. R. - SE.3.g 

O'Mullane, W. - SE.4.c 

O'Reilly, John - DM.2.m 

Oberto, Jean-Michel - MM.2.h 

Odubiyi, JidB - SD.1.c 

Ondrus, Paul J. - SE.4.d 

Otranto. John F. - SD.4.d 

Pace, Marco - SE.3.a 

Paczkowski, B. G. - MM.1.b 

Pajerski, Rose - SD.3.d 

Panem, Chantal - SD.2.g 

Parrod, Y. - MM.3.a 

Patt, Frederick S. - 0P.2.i 

Pavloff, Michael S. - *OP.5.e 

Pecchioli, Mauro - OP.4.b, 0P.4.f 

Peccia, N. - OP.2.h, SD.3.e 

Pender, Shaw Exum - DM.3.f 

Pendley, R. D. - SD.3.f 

Perkins, Dorothy C. - SE.4.e, 

SE.6.a 

Pietras, John - SE.3.j 

PignBde, M. - SE.3.h 

Pingitore, Nelson V. - "SE.6.b 

Pitt, Karl J. - MM.1.f 

MM - Mission Management, OP - Operations, DM - Data Management, SE - Systems 
Engineering, SD - Systems Development, * Presented in Poster Session 

A3 



Pitts, Ronald E. - 0P.3.f 

Pollmeier, V. M. - "OP.5.c 

Potter, William - SD.4.b 

Poulter, K. - SE.4.c 

Powers, M. - DM.1.g 

Prettyman-Lukoschek, Jill - 

MM.2.i 

Pritchard, Jim - DM.3.b 

Pujo, Olivier - MM.3.d 

Rabenau, E. - DM.3.h 

Salcedo, Jose - 0P.4.j 

Sank, V. - DM.1.g 

Sary, Charisse - MM.3.e, 

"OP.4.k 

Scales. Charles H. - SE.1.c 

Scheidker, E. J. - SD.3.f 

Schlagheck, Ronald A. - MM.2.1 

Schon, A. - 0P.4.e 

Schulz, Klaus-Jiirgen - DM.1.b 

Schwarz, Barbara - SE.2.a 

Sridharan, Ramaswamy - 

MM.l.d, SE.5.e 

Stallings, William - SE.3.i 

Standley, Shaun - MM.1.e 

Starbird, Thomas J. - OP.4.j, 

Starkey, Paul - MM.3.d 

Stern, Daniel C. - MM.1.f 

Stoffel, A. William - 0P.4.1 

Stokes, Grant - MM.1.g 

Stoloff, Michael - SE.3.j 

Strobel, Guenter - MM.1.h 
Rackley, Michael - SE.5.a Sheppard, Sylvia B. - *SD.3.g, 

Sturms, Jr., Francis M. - 
Rahman, Hasan - DM.2.i SE.5.d 

Ramchandani, C. - SE.6.c 
MM.2.n 

Shi, Jeff - DM.2.d, DM.3.i, SD.5.d 
Rao, Gopalakrishna - MM.2.i Suard, Norbert - DM.2.j 

Shigeta, T. - "SE.1.d 
Real-Planells, B. - SE.3.h Sugawara, Masayuki - "DM.1.e 

Shirah, Gregory W. - 0P.4.d 
Reed, Tracey - MM.1.c Symonds, Martin - SD.3.i 

Short, Jr., Nicholas M. - DM.3.a 
Reese, Jay - 0P.2.e Szakal, Donna - SE.4.b 

Shurmer, I. - 0P.4.f 
Reeve, Tim - SE.1.a 

Sigman, Clayton B. - *SD.3.h, 
Reiss, Keith - 0P.6.e 

"SD.5.c 
Richmond, Eric - SD.4.e 

m 
Tai, Wallace S. - MM.2.n 

Rider, James W. - MM.2.1 

Robinson, E. - MM.1.d 

Rocco, David A. - MM.2.j 

Rodriguez, IvBn - SE.4.c 

Rohrer, Richard A. - MM.2.k 

Romero, R. - SE.4.c 

Rosenberg, Linda H. - "SD.3.g 

Rosenberger, John - SD.5.a 

Silvers, J. - SE.6.c 

Simons, Mark - SD.4.g 

Sinclair, Craig - SD.3.d 

Smith, Dan - 0P.3.g 

Smith, S. R. - SE.3.h 

Smith, Simon T. - MM.3.d 

Soderstrom, Tomas J. - SD.2.h 

Solomon, Jeff - DM.3.g 

Talabac, Steve - DM.3.k 

Thomas, C. W. - 0P.l .c 

Timmermans, R. - SE.4.c 

Toft, Mark - MM.2.i 

Torgerson, J. Leigh - 0P.2.b 

Troendly, Gregory M. - SD.1.a 

Truszkowski, Walter F. - 

SD.l.c, "SD.2.d 

Rossi, F. - "SD.2.b Sonneborn, George - SE.6.a 

Rouff, Christopher - SD.4.f S~rensen ,  Erik Mose - DM.3.j 

Roussel, A. - MM.2.g Speciale, Nick - DM.2.d 
a 

Uhrig, Hans - SE.3.j 
Rudd, Richard P. - MM.2.m Spradlin, Gary L. - MM.2.m 

MM - Mission Management, OP - Operations, DM - Data Management, SE - Systems 
Engineering, SD - Systems Development, * Presented in Poster Session 



Uhrlaub, David R. - SE.2.c 

Ulvestad, James S. - MM.1.i 

Vallone, Antonio - SD.4.e 

y a m a d d  Takahiro - SE.4.f 

Yamamoto, K. - "SE.1.d 

Yeh, P.-S. - DM.1.g 

Valvano, Joe - DM.1.i Yokokawa, Y. - "SE.1.d 

Varghese, Thomas - "0P.l.e Younger, Herbert - DM.2.m 

Vassallo, Enrico - SD.4.h Yven, Clet - "MM.3.c 

Vielcanet, Pierre - MM.2.g, 

0P.3.e 

Viggh, H. - MM.1.d 
Zaouche, GBrard - 0P.3.h 

Zawacki, Steven J. - SD.2.e 
VO, D.-P. - OP.4.c 

Zeigenfuss, Lawrence B. - SE.4.e 
Voglewede, Steven D. - DM.2.k 

Zillig, David J. - DM.l.h, 

DM.1.1, SD.1.d 

Weinberg, Aaron - DM.1.h Zupke, Brian S. - SD.2.h 

Welch, Dave - SE.3.k 

Welling, John - DM.3.g 

Werking, R. D. - SD.3.f 

Wessen, Randii R. - SE.5.f 

Wheadon, J. - SE.4.c 

Whitgift, D. - SE.4.c 

Whitworth, G. W. - 0P.6.a 

Wickler, Martin - *MM.3.f 

Wiercigroch, Alexandria B. - 

DM.2.1 

Wimmer, W. - OP.3.c 

Wiseman, Andy - MM.l.d, 

SE.5.e 

Wobbe, Hubertus - "0P.l.f 

Wolff, Thilo - MM.3.d 

Wolken, Pamela R. - 0P.5.a 

Woodward, Robert H. - 0P.2.i 

MM - Mission Management, OP - Operations, DM - Data Management, SE - Systems 
Engineering, SD - Systems Development, * Presented in Poster Session 



mposium on Space Mission Operations 

James L. Rash, Editor 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

Goddard Space Flight Center 
Greenbelt, Maryland 2077 1 

9. SPONSORlNGlMONlTORlNG AGENCY NAME(S) AND ADDRESS(ES) 

National Aeronautics and Space Administration 
Washington, D.C. 20546-0001 

11. SUPPLEMENTARY NOTES 

8. PERFORMING ORGANIZATION 
REPORT NUMBER 

94B00135 

10. SPONSORlNGhlONrrORlNG 
AGENCY REPORT NUMBER 

CP-328 1 

Part 2 

This Proceedings is composed of two volumes. 

12a. DlSTRlBUTlONlAVAlLABlLlTY STATEMENT 
Unclassified-Unlimited 
Subject Category 17 
Report available from the NASA Center for Aerospace Information, 800 Elkridge 
Landing Road, Linthicum Heights, MD 21090; (301) 621-0390. 

12b. DISTRIBUTION CODE 

13. ABSTRACT (Madmum 200 words) 
Under the theme of "Opportunities in Ground Data System for High Efficiency Operations of Space Missions," the SpaceOps 
'94 symposium included pmentations of more than 150 technical papers spanning five topic areas: Mission Management, 
Operations, Data Management, System Development, and Systems Engineerjng. 

As stated in the executive summary of the symposium proceedings, the papers "focus on improvements in the dciency, 
effectiveness, pductivity, and quality of data acquisition, ground systems, and mission operations. New technology, 
techniques, methods, and human systems are discussed. Accomplishments are also reported in the application of information 
systems to improve data retrieval, reporting, and archiving; the management of human factors; the use of telescience and 
teleoperations; and the design and implementation of logistics support for mission operations." 

15. NUMBER OF PAGES 

743 
16. PRICE CODE 

20. LIMITATION OF ABSTRACT 

Unlimited 

14. SUBJECT TERMS Data Handling, Telemetry Processing, Mission Planning, Orbit 
Determination, Standards, Modeling, Communications Networks, Communications Systems, 
Ground Based Data Acquisition Systems, Spacecraft Communications, Spacecraft Command, 
Spacecraft Tracking, Spacecraft Control (Communications), Expert Systems 

17. SECURITY CLASSIFIWON 
OF REPORT 

Unclassified 

18. SECURITY CLASSIFICATION 
OF THIS PAGE 

Unclassified 

19. SECURITY CLASSIFICATION 
OF ABSTRACT 

Unclassified 










