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Abstract

This final report presents new algorithms for target detection, feature extraction,
and image formation with the synthetic aperture radar (SAR) technology. For target
detection, we consider target detection with SAR and coherent subtraction. We also
study how the image false alarm rates are related to the target template false alarm
rates when target templates are used for target detection. For feature extraction from
SAR images, we present a computationally efficient eigenstructure-based 2D-MODE
algorithm for two-dimensional frequency estimation. For SAR image formation, we
present a robust parametric data model for estimating high resolution range signatures

of radar targets and for forming high resolution SAR images.



1. Introduction

This final report presents new algorithms for target detection, feature extraction,
and image formation with the synthetic aperture radar (SAR) technology.

In Chapter 2, we consider target detection with SAR and coherent subtraction.
We shall show with some limited experimental data that the coherent subtraction
technique may be used to suppress outliers aqgiw obtain approximate Gaussian distri-
butions for clutter and noise. We shall also derive generalized likelihood ratio (GLR)
detection algorithms that may be used with SAR images that have Gaussian distribu-
tions. We shall analytically compare the performance of a) a single pixel detector, b)
a detector using complete knowledge of the target signature information and known
orientation information, c) a detector using incomplete knowledge of the target sig-
nature information and known orientation information, d) a detector using unknown
target signature information and known orientation information, and e) a detector
using unknown target signature information and unknown orientation information.

In Chapter 3, we study how the image false alarm rates are related to the target
template false alarm rates when target templates are used for target detection. In
particular, we shall show a simple way of determining the probability of false alarm
of a target template when a low constant false alarm rate is desired for an image and
when the image size is much larger than the size of the target template.

In Chapter 4, we present a computationally efficient eigenstructure-based 2D-
MODE algorithm for two-dimensional frequency estimation or feature extraction from
SAR images. We derive the theoretical performance of the 2D-MODE estimator
and show that it is asymptotically statistically efficient under either the assumption
that the number of temporal snapshots is large or the signal-to-noise ratio is high.
Numerical examples showing the performance of this algorithm and comparing it with
the computationally efficient subspace rotation algorithms are also given. We show

that the statistical performance of the 2D-MODE algorithm is better than that of
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the subspace rotation methods, whereas the amount of computations required by the
former is usually no more than a few times of that needed by the latter.

In Chapter 5, we present a robust parametric data model for estimating high res-
olution range signatures of radar targets and for forming high resolution SAR images.
This paper also presents an estimation algorithm for the data model. The algorithm is
referred to as the APES (Amplitude and Phase Estimation of a Sinusoid in unknown
colored noise) algorithm. We shall describe how the APES algorithm can be used to
estimate range signatures and to form SAR images. We shall show, with both numer-
ical and experimental examples, that our modeling and estimation approach yields
better resolution and lower sidelobes than the conventional nonparametric FE'T (fast
Fourier transform) method. We shall also show that our approach is more robust
than modeling the radar data as a certain number of complex sinusoids in noise and
estimating the frequencies, amplitudes, and phases of the sinusoids with one of the
best sinusoidal parameter estimation methods.

Each of the afore-mentioned chapters is self-contained with its own introductions,
formulations of the problems of interests, approaches, conclusions, and references.

The results we present in this report are obtained with the partial support from
WL/AARA, Wright Laboratory, Wright Patterson Air Force Base as a subcontract
from the Ohio Aerospace Institute. Our work is also supported in part by the 1993
and 1994 AFOSR Summer Faculty Research Programs, by the National Science Foun-
dation, and by the Goran Gustafsson Foundation.

Those who contributed to this report include Dr. Jian Li, Mr. Syed M. Rahman,
Dr. Petre Stoica, Mr. Edmund G. Zelnio, and Mr. Dunmin Zheng. '



2. Target Detection with Synthetic Aperture Radar and Coherent
Subtraction

2.1 Introduction

Synthetic aperture radar (SAR) technology may be used to detect radar targets
of interest. High resolution SAR technology is especially useful for detecting small
radar targets embedded in strong ground clutter such as in foliage. In this paper,
we shall consider target detection algorithms that may be used with high resolution
SAR.

Target detection from SAR or optical images has been considered by many au-
thors. For example, Novak, Burl, and Irving [1] considered target detection with a
polarimetric SAR. The three output images of the polarimetric SAR are first processed
by a polarimetric whitening filter, which is derived by assuming a K-distribution for
clutter and noise. The output image of the filter is next used with a two-parameter
detector for target detection. The target detection in [1] is performed one pixel at a
time even though the target may occupy more than one pixel; i.e., even though the
target size may be larger than the resolution of the SAR image.

Reed and Yu [2] considered generalized likelihood ratio target detection from a
sequence of optical images, which are first preprocessed by removing local means so
that the clutter and noise will approximately have the Gaussian distribution. In [2],
each target in an image is described by a completely known template or signature
with an unknown gain, which is a scalar. The algorithm, however, may not work well
with SAR images. For example, for a target in foliage, the SAR target signature may
change due to the interaction between target and surrounding clutter.

Stotts [3] considered detecting several dim targets in an image simultaneously.
The image is also first preprocessed by removing Jocal means so that the clutter and

noise will approximately have the Gaussian distribution. Each dim target is described



by a known template or signature with an unknown gain, which is a scalar. Stotts
has shown that simultaneous detection of multiple targets may perform better than
separate detection of individual target. In this paper, we shall extend this idea of the
simultaneous detection of multiple targets to the detection of a target with multiple
pixels in a SAR image.

We shall derive generalized likelihood ratio (GLR) detection algorithms that may
be used with multiple SAR images that are obtained with coherent subtraction or
have Gaussian distributions. We shall show with some limited and well calibrated
experimental data that we may eliminate Gaussian outliers of the clutter and noise
through coherent subtraction between two complex SAR images of the same area of
interest. One of the two SAR images is assumed to be target free and the other is to
be sought for the presence of target. In each image obtained with coherent subtrac-
tion, the target of interest is modeled with a target template, which is large enough
to cover the entire target. The size of the target template and the number of complex
unknowns in it are determined by the knowledge of the target orientation informa-
tion and the amount of target signature information known to the detector. Using
this unifying framework, we shall analytically compare the performance of a) a single
pixel detector, b) a detector using complete knowledge of the target signature infor-
mation and known orientation information, c) a detector using incomplete knowledge
of the target signature information and known orientation information, d) a detector
using unknown target signature information and known orientation information, and
e) a detector using unknown target signature information and unknown orientation
information. We shall derive the probability of detection and the probability of false
alarm of each detector. To achieve a constant false alarm rate (CFAR), each detector
threshold is simply a function of the dimensional parameters of the detection problem
and the desired probability of false alarm.

In Section II. we discuss the effects of Gaussian assumption on target detection. In



Section II1, we formulate the target detection problem. In Section IV and Appendices
A, B, and C, we assume that the statistics of the clutter and noise are known and
derive a GLR detector under the assumption and discuss its performance. In Section
V and Appendices D and E, we assume that the statistics of the clutter and noise are
unknown and present a more practical GLR detector. In Section VI, we apply the
more practical detector to the experimental data. Finally, Section VII contains our

conclusions.

2.2 Gaussian Assumption

A key problem in radar target detection is the description of the statistical prop-
erties of radar clutter and noise. In general, radar clutter and noise do not satisfy
the conditions of a Gaussian distribution. Many statistical models, such as the well-
known log-normal, Weibull, and K-distributions, have been proposed to describe the
clutter and noise statistics. Although these distributions may provide better statis-
tical models for the clutter and noise than the Gaussian distribution, the detectors
that are derived based on these models may be very complicated and may involve
an expensive multidimensional search over the parameter space. It is also difficult
to analyze the performance of these detectors. It is difficult, if not impossible, to
derive the probability of detection and probability of false alarm for such a detector.
It is thus difficult to analytically determine the correct threshold for a prescribed
probability of false alarm.

Alternatively, the SAR images may be preprocessed so that the Gaussian assump-
tion for clutter and noise is approximately valid. For example, Hunt and Cannon
[4] and Reed and Yu [2] considered removing local means as such a preprocessing
technique. The detectors obtained from Gaussian assumptions may avoid the multi-
dimensional search over the parameter space. It is also quite tractable to analyze the

performance of such detectors and many Gaussian assumption based results exist in



the literature. Yet if the distribution of the preprocessed images is still non-Gaussian,
then the detectors obtained under the Gaussian assumption will suffer performance
degradation. The selection of a detector, therefore, must balance these tradeofls.

In this paper, we consider target detection by assuming the radar clutter and noise
in a SAR image have a Gaussian distribution. Such a SAR image may be obtained by
taking the difference between two SAR images of the same area, with one assumed to
be target free and the other is to be sought for the presence of target. We show below
that the coherent subtraction method can suppress Gaussian outliers when the SAR
images are obtained by moving the radar antenna along a fixed rail. These rail SAR
images can be used in many applications including monitoring the environmental
changes of a cetain area of interest. For an airborne SAR, however, we do not know
how the coherent subtraction method may perform. The presence of errors such as
the flight path errors and the existence of atmospheric turbulence can degrade the
performance of the coherent subtraction. '

The limited and well calibrated experimental data we have are obtained by ERIM
(Environmental Research Institute of Michigan) with a portable rail SAR that has
foliage penetration capabilities [5]. More speci_ﬁcally, a horizontal 36 feet long alu-
minum truss was used to support a rail and an antenna carriage. The data was
collected by moving an antenna along a fixed rail to obtain the synthetic aperture.
The rail SAR is an FM-CW radar system based on an HP-8501 network analyzer
[5]. Our results are, therefore, tentative and the effectiveness of coherent subtraction
needs to be further studied with more extensive experimental data obtained under
more operational conditions.

The data we shall use were obtained when both the transmitter and receiver
of the SAR are horizontally linearly polarized. Figures 2.1(a) and (b) show the 3-
dimensional (3-D) plots of the magnitudes of two complex SAR images obtained with

two identical synthetic apertures. The frequency band used for the image is between
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400 and 1300 MHz and the depression angle is 30°. We have downsampled the original
images presented in [5] by a factor of two in range and by a factor of six in cross range
since the original images are oversampled. The range and cross range resolutions in
the SAR images are 0.34 and 3 meters, respectively. Figure 2.1(a) shows the 3-D plot
with foliage only. The peaks in the figure correspond to the radar returns from tree
trunks. Figure 2.1(b) shows the 3-D plot of a target in foliage. The target is a pickup
truck rotated 24° counterclockwise from end-on. Figure 2.1(c) shows the 3-D plot
of the magnitude of the coherent subtraction between the two complex SAR images.
Figure 2.2 is similar to Figure 2.1 except that the truck is broadside. Thus the target
retufn in Figure 2.2 is much stronger than in Figure 2.1.

We note that coherent subtraction can effectively suppress the large clutter returns
due to tree trunks, which result in false alarms and causes CFAR detectors to fail.
The large returns left in Figures 2.1(c) and 2.2(c) are due to the target and its
surroundings. For example, the darkened peak to the left of the target in Figure
2.2(c) occurs in Figure 2.2(a) but not in Figure 2.2(b). This result occurs because the
main response of a tree comes when the radar energy bounces off the tree onto the
ground and returns to the radar or vice versa. The presence of the target interrupts
this path and results in no tree return in the image in Figure 2.2(b). Subtracting
the image in Figure 2.2(a), which contains the tree return, from the image in Figure
2.2(b), which does not contain the tree return, results in a tree return not canceled
by the subtraction process thus yielding the darkened peak. The presence of the
darkened peak in Figure 2.2(c) is additional information showing the presence of a
target because its presence is due to the interaction between the target and clutter.
This information may be especially useful when the target return is weak.

Figure 2.3 shows the magnitude of the correlation coefficient of the clutter and
noise (i.e., the target-free) pixels in Figure 2.1(c) as a function of the spatial distance

(as measured by the number of pixels) between two pixels. An unbiased autocorrela-
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tion estimator [6] was used to estimate the correlation coefficient. We note that the
clutter and noise pixels are approximately independent of each other.

Consider next the test of normality of the clutter and noise pixels before and after
coherent subtraction. Let x;, ¢ = 1,2,---,@Q, denote a 2 x 1 vector containing the

real and imaginary parts of the 7th pixel used for the test. Let

fi= gy (=957 (%), 1)

where (-)T denotes the transpose,

and 0

S=52(x-%) (i —%)" . (2.3)
For true Gaussian random vectors, the variance of 5 is approximately equal to 4/(Q —
1)2. Thus the test of normality of x; may be performed by comparing the sample
variance of B; with 4/(Q — 1) [7]; i.e., by comparing how close € is to 1, where ¢
denotes the ratio between the sample variance of §; and 4/(Q — 1)2. For the clutter
and noise pixels in Figure 2.1, the € is equal to 7.97 before coherent subtraction. This
large € is caused by the large tree trunk returns. After coherent subtraction, however,
the ¢ is equal 1.10 and is much closer to 1. The histogram of the clutter and noise
pixels after coherent subtraction can also be shown to match a zero-mean complex
Gaussian probability density function well.

Finally, since broadcast stations often occupyvlow frequency bands, SAR images
of the same area may be formed with two or more separate frequency bands instead
of one wide frequency band. The separate bands may be chosen to avoid the jamming
from the radio stations. The clutter and noise pixels in different images obtained with
different frequency bands can also be shown to be approximately independent of each

other.



The problem formulation below will take these results into account.

2.3 Formulation of the Target Detection Problem

Consider J high resolution SAR images obtained with coherent subtraction in
which a target may be present. The J images may be obtained from polarimetric
SAR, different frequency bands, and/or different aspect angles. For each image, the
target may be modeled with a template consisting of V; pixels, 7 = 1,2,--+,J. The
shape of the templates may be arbitrary and the templates may consist of areas that
‘are not connected. Among the N; pixels, K; (K; < Nj) pixels are assumed to be
deterministic and arbitrary unknown complex scalars that correspond to the bright
returns of target scatterers. The remaining N; — Kj; pixels are assumed to contain
clutter and noise only; i.e., they correspond to the a.reas'of'the target that does not
generate radar returns. |

The locations of the K; pixels may be assumed known, not completely known,
or unknown. If the locations of the unknown scalars are not known exactly, the
dimension K, (and N; correspondingly since N; > K;;) may be increased to include
all possible locations of the scalars. If the locations are unknown and we only know
the approximate size of a target, we may choose a template large enough to cover the
target and assume that all pixels in the template are unknown, i.e, K; = N;. Yet
increasing K; decreases the detection performance due to the increased number of
unknowns in the target template. This result will be shown in the following sections.

Let z denote an N x 1 vector consisting of the pixels of such templates in the
presence of clutter and noise, where N = Ny + Ny + -+ + Nj. Under hypothesis H;,

the target presence hypothesis, the z may be written
z = Sb + n. (2.4)

The b is the i x 1 vector consisting of the i deterministic unknown complex scalars
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in the target templates, where K = K1 + Ky + -+ + K. The b may be written
T
b=|bl bl - b?] : (25)

where b;, 7 = 1,2,---,J, is the K; x 1 vector consisting of the K; deterministic
unknown complex scalars in the target template of the jth image, or the 7th template.

The S is a full-rank N x K matrix describing the locations of the unknown scalars.
Only one element in each row and each column of S is one and the remaining of the

elements are zero. Thus we have
SHS = Iy, (2.6)

where (-)¥ denotes the complex conjugate transpose and Ix denotes the identity

matrix of dimension K. The S may be written

S 0
Sy
S = ‘ , (2.7)
L 0 SJ ]
where S;, j = 1,2,---,J, is a full-rank Nj x K; matrix describing the locations of

the unknown scalars of the jth target template and
sfs; =1k, (2.8)
The n denotes the N x 1 clutter and noise random vector and may be written
T
n=[n nf - 07|, (2.9)

where n; are N; x 1 clutter and noise vectors of the jth image and are assumed
- lex Gaussi ith ' trix o1 d istically in-
zero-mean complex Gaussian with covariance matrix ¢;Iy, and are statistically

dependent of each other. Under hypothesis Ho, the target absence hypothesis, the z
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may be written

z = n. (2.10)

The problem of interest is to develop a CFAR detector for the data model (2.4). We
shall consider the generalized likelihood ratio (GLR) target detection algorithms for
the purpose. We shall consider both a detector, where the clutter and noise variance
is assumed known, and a more practical detector, where the clutter and noise variance
is unknown. The effects of the dimensional parameters such as N, K, and J on the
performance of the detectors will also be considered through performance analysis of
the detectors.

We remark that the above detection problem is a generalized version of the ap-
proach of considering one pixel at a time and the approach of using the complete
knowledge of the target signature. When we consider detection by using one pixel
at a time, we have N; = K; =1, j = 1,2,---,J. When the complete knowledge
of the target signature is known except for a complex gain, the S; becomes the
signature vector §; whose elements are arbitrary except that its Euclidean norm is
constrained to be 1. Also, the b; becomes the unknown complex scalar gain ZJ- and
K;=1,j=1,2,---,J. The elements of §; describe the locations and relative return
strengths and phases of the scatterers of a target.

We next remark on the knowledge of S; and §;, which may be obtained through
experiments or simulations with software packages similar to XPATCH [8]. The target
signature vector §; may be easily altered by the surrounding environment of a target,
but the location matrix S; is more robust to the target surroundings. For a given
target, a set of signature vectors or location matrices may be obtained for different
orientation angles of the target relative to the radar. These vectors or matrices may
be used with GLR detectors to form a filter bank. |

For example, consider detecting the target shown in Figures 2.1 and 2.2. Since

J =1, for example. we drop the subscript j for simplicity. For this example, we may
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use four different S’s to form a filter bank: (i) when the target is oriented broadside
(or +180° due to symmetry), (ii) when the target is oriented end-on, (iii) when the
target is oriented head-on, and (iv) for the rest of the target orientations. We note
from Figure 2.1 that for Case (iv), the target return consists of only one bright pixel
and hence we should let S = 1, which results in a single pixel detector.

When a filter bank is used for target detection, the probability of false alarm
may be increased as compared with using a single filter; i.e., a single §; or S;, for
target detection. When a set of S;’s is used, for example, the increase will depend
on how similar the S;’s are. The more non-overlapping elements in S;’s, the larger
the increase of the probability of false alafm. Yet the increase is no more than the
number of filters times the probability of false alarm of using a single filter. It appears
that the exact probability of false alarm of using a filter bank for target detection
cannot be determined analytically in general and must be obtained with Monte-Carlo
simulations. In other words, although a constant false alarm rate can be achieved by
using a filter bank, we may not know exactly what the achieved false alarm rate is.

The design of a filter bank is more flexible using S; than using §;. We may increase
the template size N; and the number of unknown template pixels K to reduce the
number of filters in the filter bank. Increasing the number unknown template pixels
K; has the effect of decreasing the sensitivity of the target detector to target signature
information. Increasing the template size N; has the effect of decreasing the sensitivity
of the target detector to target aspect. By selecting appropriate K; and N; for each
image based on the amount of the a priori knowledge about the target, we may use
a single filter instead of a bank of filters for target detection. The next paragraph
illustrates these issues with several examples using different combinations of K; and
N;.

Assume that we have J = 1 image and we drop the subscript j for simplicity.

Consider, for example, the four scenarios shown in Figure 2.4. In Figure 2.4(a),
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we assume we have the complete knowledge of the target signature except for the
unknown gain. Also, the target orientation is assumed known. For this case, we have
K = 1 unknown in the target template and we should use 5b instead of Sb to model
the target return. In Figure 2.4(b), we assume that we have the incomplete knowledge
of the target signature; i.e., we assume that we know the locations of the unknown
scalars that represent the bright returns from the target scatterers. The number of
the unknown scalars in the target template is assumed to be A" = 10 for this case.
We also assume that the target orientation is known and the number of pixels in the
target template is, say, N = 100. For this case, then, S is a 100 x 10 matrix and b
is a 10 x 1 vector. In Figure 2.4(c), we assume that the target orientation and the
target approximate size are known. For this case, all pixels in the target template are
assumed unknown and we assume that there are K = 100 unknowns in the target
template. For this case, then, S is a 100 X 100 identity matrix and b is a 100 x 1
vector. In Figure 2.4(d), we assume that only the approximate size of the target is
known. Since the target orientation is unknown, we choose a target template that is
large enough to cover all possible target orientations and all pixels in the template
are assumed unknown. We assume that there are K = 1000 unknowns in the target
template. For this case, then, S is a 1000 X 1000 identity matrix and b is a 1000 x 1
vector. In the following sections, we shall show how the target detection performance

is affected by the use of these target templates.

2.4 A CFAR Detector Based on Known Clutter and Noise Variance and

Its Performance

We shall present below a generalized likelihood ratio (GLR) detector under the
assumption that the clutter and noise variance in each image; i.e., 012-, is known, and
also present its performance. This detector is referred to as Detector A below and its

performance is easy to analyze.
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It is shown in Appendix A that Detector A has the form

J 2HS; SHzJ 7

Z: 27 (2.11)

Ho

The threshold parameter v is determined according to a given probability of false
alarm and thus the detector is a CFAR detector.
It is shown in Appendix B that the probability of false alarm of Detector A is
K-1 K-1-k

Pr = 1;) (—K’y—_—lTk‘)—!eXP("’Y)- (2.12)

We note that the Pr depends only on K, the sum of the numbers of unknown param-
eters in the target templates, and the threshold parameter . The Pr is independent
of N;, the sizes of the templates. For a given probability of false alarm, the v in
the detector (2.11) is obtained with (2.12). It is also shown in Appendix B that the

probability of detection of Detector A is

e 5z +K-1 ,},i+K—1—k
Pp = —§ - 2.13
b = exp(—0 =7 ED kz% G+K-—1—Fk)Y (2.13)
where i
J bib;
_y b (2.14)
— a
=1

The & is the sum of the signal-to-clutter-and-noise ratios (SCNRs) of the templates.
Note that & is the sum of the signal-to-clutter-and-noise ratios of the non-zero pixels
in all templates. We also note that the Pp is also independent of the template sizes
N;. The Pp depends on K, SCNR 4, and the threshold 7.

Tn most of the following examples, we consider Pr = 107'° for the target templates.
This is because we intend to achieve a false alarm rate of 10™* per km?, where km
denotes the kilometer. (ARPA’s goal is to achieve a false alarm rate of 10~ per
km?.) For a SAR image with range and cross range resolutions of 0.34 and 3 meters,

respectively. the probability of false alarm of a single pixel detector is approximately
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10-1°. When the target template size is much smaller than the image covering the
one km? area, the template false alarm rate should also be approximately 1071¢ [9].

To compare the performance of using different target templates with the Detector
A, let us consider the effect of X on the performance of Detector A. Figure 2.5 shows
the probability of detection as a function of SCNR for different K when Pr = 10717,
When we have one image; i.e., J = 1, for example, the four performance curves shown
in Figure 2.5 could correspond to the four scenarios shown in Figure 2.4. It is shown
that for the given Pr and a fixed SCNR §, the Pp of the detector in (2.11) decreases
as K increases. We note from Figure 2.5 that the best performance occurs when we
use the complete kﬁoxﬂedge of the target signature except for the unknown gain and
when the target orientation is known. The worst performance occurs for the case of
unknown target signature and unknown target orientation. This result occurs due
to the non-coherent integration loss [10, p.71] since as may be seen from (2.43) in
Appendix B, the energies of the template pixels are summed up non-coherently.

Note also that for SCNR = 15 dB in Figure 2.5, the average SCNR per pizel is
15 dB for K = 1 and is 5 dB for K = 10. Thus Figure 2.5 also shows the effect of
smearing a given amount target energy among more pixels and hence lowering the
SCNR per pixel.

Figure 2.6 shows the extra SONR needed to achieve Pp = 0.5 for different proba-
bilities of false alarm Pr. We note that we have similar curves for different probabil-
ities of false alarm Pg. The extra SCNR needed decreases slightly as Pr decreases.
We also note that the extra SCNR needed increases slowly as K increases.

Although it is the best to use the complete knowledge of the target signature for
target detection, the target signature may not be completely known for SAR images
and even when known, the signature may change due to the interaction between the
target and clutter and other factors. The change of signature may result in severe

detector performance degradation. Let §; and §; be the assumed and true target
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signature vectors, respectively, where both §; and §; have Euclidean norm L. It is
shown in Appendix C that the probability of false alarm for this case is the same as
(2.12) with K = J. The probability of detection for this case has the form of (2.13)
with K = J and .

s=3 '_?— o, (2.15)

where p; (0 < p; < 1) are the SCNR loss factors as a result of the signature mismatch;

ie.,

= |875;/%. (2.16)

Figure 2.7 shows the SCNR loss as a function of p; when J = 1.

We now make the comparison between using the incomplete knowledge of the
target signature information and the approach of using the complete knowledge of the
target signature information except for the unknown gain. The comparison may be
made most easily with J = 1. For J = 1, we drop the subscript of p and K. Consider
the example where J = 1 and we use an incomplete target signature described by K’ =
90 unknown parameters. The extra SCNR needed to achieve the same probability of
detection as when using the complete target signature information (K =1)isabout 3
dB, as shown in Figure 2.6. If we know that the mismatch between the assumed and
true target signatures is small (possibly through experiments), or more specifically,
‘f the mismatch will not result in p < 0.5, then it is better to use the complete
knowledge of the target signature information in the detector. Otherwise, it is better
to use the incomplete signature information and assume K = 20 unknowns in the
target template for this example.

The comparison between considering one target template at a time and one pixel
at a time is also clear. As shown in Appendix C, for the same target SCNR, the
performance of assuming the complete knowledge of the target signature is the same
as K;=1,7=1,2,---,J,in our problem formulation. For J =1 and a template

with & = 20 unknown parameters, for example, the extra SCNR needed to achieve
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the same probability of detection as for K = 1 is about 3 dB, as shown in Figure
9.6. Then for the case where the target return is a single bright pixel, the net loss of
using the target template is about 3 dB, as compared with using one pixel at a time.
If the template SCNR § is at least 3 dB larger than the SCNR of the highest pixel
in the template, then, using the target template model is better than the single pixel
detector. For the best possible case where all K = 20 pixels in the target template
have equal magnitude, the template SCNR is about 13 dB more than the individual
pixel SCNR. Thus the net gain of using the target template for target detection is
about 10 dB because of the 3 dB loss due to the increased number of unknowns.

We now compare the performance of using a bank of target templates at a time
and using a single pixel at a time for target detection. Note that the maximum
probability of false alarm of using a filter bank for target detgction is the number of
target templates or filters times the probability of false alarm of using a single target
template or filter. Thus we may set the probability of false alarm of each target
template to be the desired probability false alarm divided by the number of filters.
The probability of false alarm of the single pixel detector, however, is the same as the
the desired probability false alarm. Thus we encounter an additional SCNR loss when
using a bank of target templates for target detection due to the decreased probability
of false alarm for each target template. Yet when the number of filters in a filter bank
is small, this SCNR loss is negligible. When the number of filters is 4, for example,
this SCNR loss is much less than 1 dB. (See Figure 2.10 for example.)

Finally, let us consider the advantages of using multiple SAR images for target
detection. Consider the example where J = 2 and K; = K, = 20. For the best case
where the target template SCNRs for both images are assumed the same, the net
gain of using both images for target detection is about 2 dB because of the 1 dB loss

due to doubling the number of unknowns, as shown in Figure 2.6.



2.5 A CFAR Detector Based on Unknown Clutter and Noise Variance

and Its Performance

In the previous section, we have studied the performance of a CFAR detector that
assumes that the clutter and noise Varianée in each image is known. In practice,
however, the clutter and noise variances are unknown. We present below a detector
for this practical situation. This CFAR detector is referred to as Detector B. Our
approach is similar to the one developed by Kelly [11] for target detection with a
phased array airborne surveillance radar.

The Detector B we shall present utilizes both primary and secondary data of a
SAR image for target detection. The data vector z;, from which the target presence
is sought, is referred to as the primary data. For the jth SAR image, the secondary
data vectors are denoted z;(1), z;(2), * -, Z;(L;). These vectors are assumed to be
target free; i.e., they represent the target free background of the jth SAR image.
They are assumed to have the same statistics as z;, the subvector of the primary
data vector z, under hypothesis Ho and are statistically independent of each other
and z. The secondary data are useful for estimating the clutter and noise variance in
Detector B.

It is shown in Appendix D that Detector B has the form

’ 2z, + T 2 (D2;() SR 17
i L2 (T, - S;SH) z; + w2 28 (1z;(0) mo B
The threshold parameter ¢ is determined according to a given probability of false
alarm and thus Detector B is a CFAR detector.
In general, we simply set the number of the secondary data vectors to be equal to

each other; i.e., we let

L1=L2="'=LJ=L0. (218)
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Taking the natural logarithm of the (Lo + 1)st root of (2.17) yields

zz; + T z; (1)z;(1) ;;17 (2.19)
29, 2.
z! (INJ - SjSJH) z; + T z; (z;(0)] #o

J

J
n= Zln
=1

where v = (In¢)/{(Lo + 1)NVj].
It is shown in Appendix E that except for J = 1, there are no closed form ex-
pressions for the probability of detection Pp and probability of false alarm Pg. It is

shown that under hypothesis Hg, 7 has the pdf

Fo(n|Ho) = fo,(n|Ho) * fr(n|Ho) * -+ - * fo,(n]Ho), (2.20)

where * denotes the convolution and for j =1,2,---,J,

lexp(n) — 1] 7" (M; + K; — 1)!

= 2.21
f», (nHo) (I — DY(M; — 1)texp[(M; + K; — 1)n]’ (2.21)
with
Under hypothesis H;, n has the pdf
Fo(nHy) = for (0| Hy) * fap(nlHy) % - % fo, (0] 1), (2.23)
where for j = 1,2,---,J,
©  Silexp(n) —NHTIM, + K +1 - 1)
(nlH,) = exp(—96; = 2.24
fay (nlH:) = exp(=4;) Z:O A, — DI(K; +i— 1)l exp[(M; + K; +i— 1]’ (2.24)
where §; is the SCNR of the jth template.
bib,
§; =~ (2.25)
0-'

J
The Pr and Pp may be obtained numerically from f,(n|Ho) and f;(n|H1), respec-

tively; i.e.,

Pr = / " fo(nlHo)dn, (2.26)
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and
PD = / fn(n‘Hl)dn' (227)
¥

The f,(n|Ho) given in (2.20) and fa(n|H1) given in (2.23) may be obtained more
efficiently by first calculating the characteristic functions of f,;(n]Ho) and fo, (nHy)
with FFT (Fast Fourier Transform). For a given probability of false alarm; i.e., to
achieve CFAR, the ~ in the detector (2.19) is obtained with (2.26).

We remark that the above analysis also holds when Lo is not an integer but a
rational number such that N;Lg, j = 1,2,:--,J, are integers since the number of
target free pixels in each image does not have to be the multiples of the size of the
corresponding target template. The detector (2.17) or (2.19) may be changed slightly
to accommodate the fact that Lo is not an integer.

Consider next J = 1, where we have the closed form expressions for Pp and Pp.
For this case, we drop the subscripts of z, z(l), §, M, K, and N. Taking the (L +1)st
root of (2.17) yields the detector for J = 1:

zHz + ZIL=1 ZH(I)Z(I) };1 (2 28)
27 (Iy — SSH) z + T, 2H(1)z(l) 7™ '

It is shown in Appendix E that the probability of false alarm of the above detector is

K-l (¢ —1)F-k1 [ M+ K —k—2
Pr = i1 . (229)
2, i ( K—k-1 )

We note that for J = 1, the Pr of Detector B depends on the dimensional parameters
M and K and the threshold parameter (. For a given probability of false alarm, the

¢ in the detector (2.17) is obtained with (2.29).
It is also shown in Appendix E that the probability of detection of the 'above

detector when J =1 1is

Pp =1—exp(—6/¢) . AT
par) go K+i-1 il (AR

M-1 M-k-1 ( M+K—-k-2 ) (5/C)i (¢ - 1)K+i (2.30)
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We note that for J = 1, Pp depends on the dimensional parameters M and K, the
SCNR 4, and the threshold .

We now examine how the different dimensional parameters affect the performance
of the detector in (2.17). These effects of the parameters may be most easily explained
with the case of J = 1. The effects are then generalized to the case of J > 1. Let
J = 1 and consider M = NL+ N — K, the total number of target free pixels in
the primary and secondary data vectors. The larger the number of target free pixels
M, the better the estimate of the clutter and noise variance, and hence the closer
the performance of Detector B to that of Detector A. This result may be observed
from Figure 2.8, which shows the probability of detection as a function of SCNR for
different M when J =1, K =2 and Pr = 10°1°,

Consider next the effect of K, the number of unknown parameters in the target
template, on the performance of Detector B. We first explain that the larger the K,
the more number of target free pixels M is needed by Detector B to achieve similar
performance as Detector A. We shall consider J = 1 and drop the subscript j for

convenience. As shown in Appendix B, we may rewrite Detector A in (2.11) as

1
p= AL 2y (2.31)

Under hypo‘éhesis Hy, Z4 has the complex Gaussian distribution with zero-mean and
covariance matrix Ix. Under hypothesis H, % 4 has the complex Gaussian distribution
with mean b/c and covariance matrix Ix. Thus under hypothesis Ho, the mean and
variance of 7’ are 1 and 1/K, respectively. Under hypothesis H,, the mean and
variance of / are 1 +6/K and 1/K + é/K, respectively, where & is the SCNR given
in (2.14). As shown in Appendix E, we may rewrite Detector B in (2.17) as
o= ZHz4/K f;: "
(275 + TE, 27 (Da(D] /M 7o

(2.32)
The statistical properties of the numerator of 7" is the same as the properties of n’ in
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(2.31). Since under both hypotheses, the Z() has the complex Gaussian distribution
with zero-mean and covariance matrix Iy, the mean and variance of the denominator
of 7} are 1 and 1/M, respectively. We note that for large K and small M, the
performance of (2.32) will be affected by the variance 1/M of the denominator of n7.
Thus for large K, M must also be large in order for Detector B in (2.32) to achieve
similar performance as Detector A in (2.31) that assumes that the clutter and noise
variance is known. We found through numerical examples that for 1 < K < 1000,
the performance differences between Detectors A and B are similar for different A’
when M is proportional to K?/3. Figure 2.9 shows the probability of detection as a
function of SCNR for different X when J =1, M = |48K?*3] and Pp = 10710, where
| x| denotes the integer part of x. The figure also shows the performance of Detector
A for comparison. Note that Detectors A and B have similar performances.

Figure 2.10 shows the probability of detection as a function of probability of
false alarm; i.e., the receiver operating characteristic of Detector B, for different X
and SCNR when J = 1, M = 118, and Pr = 1071°, We note that the 5 dB
change in SCNR or the change in the number of unknowns K from 1 to 10 has a
significant effect on the Pr for a given Pp. This significant change is due to the
exponentially decreasing tail associated with the assumed Gaussian model for the
clutter distribution.

The discussions for the case of a single image (J = 1) may be easily generalized to
the case of multiple images (J > 1). Consider J =2, for example. To achieve similar
performance as Detector A, the number of target free pixels in each image must be
large for Detector B. Figure 2.11 shows the probability of detection as a function of
SCNR for different M; = M, when J =2, K1 = Kz = 2 and Pr = 1071%. We note
that the larger the M, and M,, the closer the performance of Detector B to that of

Detector A, which is expected.



2.6 Target Detection with Experimental Data

We consider first the performance of Detector B when used with the experimental
data shown in Figure 2.1. Figure 2.12 shows the detection results before and after
coherent subtraction when M = 48, N = K = 1, and Pr = 107'°. Figure 2.12 shows
the generalized likelihood ratio (GLR) obtained with the left side of (2.28) when it
is above the detection threshold and zero when it is below the threshold. We note
that before coherent subtraction, although the presence of the target is detected, the
large tree trunk returns also result in a false alarm. Thus in the presence of large tree
trunk returns, Detector B is no longer a CFAR detector and its probability of false
alarm is also determined by the number of large tree trunk returns. With coherent
subtraction, however, the false alarm due to the large tree trunk return is eliminated
and Detector B is truly CFAR.

Consider next the experimental data shown in Figure 2.2. We note that the target
occupies more than one pixel. Let us assume that the target orientation is known
and use an incomplete target signature described by K = 20 unknowns. (Note that
the incomplete target signature may be determined by simulation softwares such as
XPATCH [8] or by experiments in a laboratory. They should not be determined from
images from which the target presence is sought. When the target SCNR is small,
determining target templates from such images is impossil;le:)' Then the template
SCNR for the target is approximately 35 dB for the data shown in Figure 2.2(c). The
largest pixel SCNR for the target is about 25 dB. Thus compared with using each
single pixel for target detection, using the template with & = 20 unknowns results
in a net gain of about 7 dB because of the 3 dB loss due to the increased number of
unknowns.

Finally, we could add noise to the data shown in Figure 2.1 to simulate a weak
target in clutter and noise. Assume that with the added noise, the template SCNR
for the target is approximately 20 dB and the largest pixel SCNR for the target is
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about 10 dB. Then from Figure 2.9, we note that the probability of detection of using
the target template is 1 while the probability of detection of using the single pixel

detector is approximately 0.

2.7 Conclusions

We have considered target detection with synthetic aperture radar. We have de-
rived generalized likelihood ratio (GLR) detection algorithms that may be used with
SAR images that are obtained with coherent subtraction or have Gaussian distri-
butions. Through performance analysis, we have ané.lytically compared the perfor-
mance of a) a single pixel detector, b) a detector using a complete knowledge of the
target signature information and known orientation information, c) a detector using
an incomplete knowledge of the target signature information and known orientation
information, d) a detector using unknown target signature information and known
orientation information, and e) a detector using unknown target signature information

and unknown orientation information.
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Appendix A: Derivation of Detector A

Under hypothesis H;, the probability density function (pdf) of the complex Gaus-

sian random vector z may be written

2
Nig g;

J S0V (2 — S.b
:1-:1 ‘ 2N e‘<p|i (z; — S;6;)" (2 SJbJ)]. (2.33)

Under hypothesis Hp, the pdf of the complex Gaussian random vector z may be

written o
J
_ 1 z} Z;
fO(Z) - E i g2N; exp I:‘ 0_? ] . (2.34)
The generalized likelihood ratio has the form maxp /1 . Maximizing f; with respect
0
to b; yields
b, = Sfz;, (2.35)
and . .
7z (In; = 8,872
max fi(z ,]:E 7('NJ0'2NJ exp [ - ) (2.36)

where we have used (2.8). Then the generalized likelihood ratio test becomes
z77S; SH )
H exp { J] 2 & (2.37)
Ho

Taking the natural logarithm of both sides of the above test yields the optimal detector

J HS SH Hy
AR Y, (2.38)

ij=1 Ho

where v = In¢.

Appendix B: Performance of Detector A

Consider the GLR test in (2.11). Let Z; = z;/o;. Then under hypothesis Ho,

Z, has the complex Gaussian distribution with zero-mean and covariance matrix Ly, .
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Under hypothesis Hi, Z; has the complex Gaussian distribution with mean S;b;/o;

and covariance matrix Iy;. The GLR test in (2.11) may now be written

J = = H
sz SjSJ- ZJ' Eo’)’. (239)
J=1 )

Since Sf{Sj = I,, there exists a unitary matrix U; such that

Ix.
U,S; = . (2.40)

0
Let Z; = U,Z;. Then under hypothesis Hy, Z; still has the complex Gaussian dis-
tribution with zero-mean and covariance matrix Iy,. Under hypothesis H;, Z; has

the complex Gaussian distribution with mean U;S;b;/c; and covariance matrix Ly,.

The GLR test in (2.39) may now be written

J Hy
=H =
> 7 U;S;SHufz; %7. (2.41)
=1
Let
7.
z=| |, (2.42)
Z;B

where Z;4 and Z;p are K; x 1 and (IV; — K;) x 1 vectors, respectively. By using (2.40)

and (2.42), (2.41) may be written

J oH < o,
Jj=1

Under hypothesis Hg, Z;4 has the complex Gaussian distribution with zero-mean
and covariance matrix Ix;. Under hypothesis Hi, Zj4 has the complex Gaussian
distribution with mean b;/o; and covariance matrix Ix,. Thus under hypothesis Ho,
27 has the central x? distribution with 2/ degrees of freedom since K = K; + K, +
-+ Ky i,

_ ¥ texp(—7) 5
fr(n|Ho) = TEo (2.44)
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Then the probability of false alarm is

[ falniHo)dn
K-1 o K-1-k
:‘;6 Sl exp(—7)- (2.45)
Under hypothesis Hj, 2n has the noncentral x? distribution with 2/ degrees of free-
dom and noncentrality parameter 6 = Jle bJHbj/a;‘-’; ie.,
©0 5;‘ ni+K—1
fo(n|Hy) =eXP(—5—Tl)§)‘ﬁm- (2.46)

Then the probability of detection is

[ sl
5 oo zt-}-I\ -1 7i+K—-l—k
= exp(= '”’)ZO ! k;) G+ K—1-k) (247)

Appendix C: Effect of Target Signature Mismatch

When the target signatures §; are used in the GLR test in (2.11), (2.11) becomes

245,85 2;
DD el S (2.48)

i=1 0

where §f §; = 1. Under hypothesis Ho, z; has the complex Gaussian distribution with
zero-mean and covariance matrix o?Iy;. Under hypothesis H,, z; has the complex
Gaussian distribution with mean 8;b; and covariance matrix oI, .

Through similar transformations as in Appendix A, the test (2.48) may be written

J Hy
= Z IEjA|2 E’)’ (249)
5=1 o

Under hypothesis Ho, Z;4 has the complex Gaussian distribution with zero-mean and
variance 1. Under hypothesis Hy, ;4 has the complex Gaussian distribution with

mean §JH§J~EJ-/JJ~ and variance 1. Thus under hypothesis Hg, 27 has the central x?
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distribution with 2 degrees of freedom. Under hypothesis Hy, 27 has the noncentral

x? distribution with 2 degrees of freedom and noncentrality parameter
4 | j| aHz 12
§ = —L-Is78;]% (2.50)
i

We note that in the absence of target signature mismatch; i.e., when §; = §;, the ¢

in (2.50) becomes

(2.51)

which is the SCNR for the case where the target signature is known completely.

Appendix D: Derivation of Detector B

The derivations below are both a specialization (due to the uncorrelated clutter
and noise pixels) and a generalization (due to multiple images) of [11]. Under hy-
pothesis Hy, the probability density function (pdf) of the complex Gaussian random
vectors z;, z;(1), - -+, z;(L;), § = 1,2, -, J, may be written

Ly+1
: ! 1 T\ |
fi(zj,2;(1), -, 2;(L;), ] = 1,2,---,J) = 11 l: ——7N; €XP (——121)} , (2.52)
wNig o’

1=1 7 J

where

1
nrlﬁlk — 8,b;)(z; sm+2zo%}. (2.53)

Under hypothesis Ho, the pdf of the complex Gaussian random vectors z;, Z;(1), - -

T Lj+1
I exp( %)} , (2.54)
g; J .

{z z; + Zz (Dz;(1) } (2.55)

z;(L;),j =1,2,---,J, may be written

J
fo(z5,2;(1),---,2;(L;),0 = I:I {




ma‘xa?,«-,aa,b fl

The generalized likelihood ratio has the form
maxaf,u-,aa fO

respect to o7 yields

1
52 = —Tp;.
J N_,- J
Thus J N (Lj+1)N;
_ J
A Jo= ,I=I1 (”TOJ') '

Maximizing f; with respect to ¢} yields

1
~2
= —1i;.
J Nj J
Thus (L;+1)N.
N, J J
max_ f; = ] .
02,03 67!'le

Minimizing T;; with respect to b; gives

and

1
Lj+1

T —
e T
Then the generalized likelihood ratio test becomes

27z, + T2y 27 (D7, (0)
27 (In, — S;87) z; + £ 27 (Dz,(0)

i

Appendix E: Performance of Detector B

L;
[Zf (INj - Sjsf) z; + l;z;q(l)

] (L +1)N;

. Maximizing fo with

(2.56)

(2.57)

(2.58)

(2.59)

(2.60)

z,-(z)} . (2.61)

H,
12 (2.62)

The derivations below are again both a specialization (due to the uncorrelated

clutter and noise pixels) and a generalization (due to multiple images) of [11].

=1:
Consider first J =1 and the GLR test in (2.28). Let

np=n -1
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Note that 7} is a monotonically increasing function of n'. Then (2.17) may be rewritten

zHSSHz H
= > —-1. 2.64
™= A Iy — 8S7) z + oL, 27 (1)z(]) ¢ (2.:64)
Let
_ Uz
7= — (2.65)
and
Uz(l
7(l) = (ZT(), 1=1,2,-,1, - . (2.66)

where U is a unitary matrix that satisfies (2.40). Then under hypothesis Hp, Z
has the complex Gaussian distribution with zero-mean and covariance matrix In.
Under hypothesis Hj, Z has the complex Gauésian distribution with mean USb/co
and covariance matrix Ix. Under both hypotheses, the Z(I) has the complex Gaussian
distribution with zero-mean and covariance matrix Iy. By using (2.65) and (2.66),

(2.64) becomes

-1, (2.67)

z= k" } , (2.68)

with Z4 and Zp denoting K x1 and (N —K) x1 vectors, respectively. Under hypothesis

where

Hy, Z4 has the complex Gaussian distribution with zero-mean and covariance matrix
I5;. Under hypothesis H), Z4 has the complex Gaussian distribution with mean b/o
and covariance matrix Ix. Under both hypotheses, Zp has the complex Gaussian

distribution with zero-mean and covariance matrix In_x. Let
t=2zl7,, (2.69)

and

r=1z07p + iz”(l)i(l). (2.70)



Then (2.67) becomes

¢ ;%:(g ~1)r. (2.71)
Under hypothesis Ho, 2t has the central x? distribution with 2K degrees of freedom.
Under hypothesis Hi, 2t has the noncentral y? distribution with 2K degrees of free-
dom and noncentrality parameter é = bHb/o?. Under both hypotheses, 27 has the
central x? distribution with 2(NL + N — K) = 2M degrees of freedom. The ¢ and 7
are independent of each other. Thus under hypothesis Ho, n}M/K = Mt/(K) has
the central F-distribution with 2K and 2M degrees of freedom. Under hypothesis
Hy, n'M/K = Mt/(KT) has the noncentral F-distribution with 2K and 2M degrees

of freedom and noncentrality parameter 6.

The probability of false alarm may now be calculated as

Pr = P(t> (¢~ 1)r|Ho)

= 0°° [/(:‘—’1) ft(t|H0)dt] fr(r)dr
Ko (MK ko 2)!
2 T VRRTET (K —k— DI(M — )’

0

(2.72)

where fi(t|H;) and fg,(7) denote the conditional probability density functions of ¢
and 7, respectively, under hypothesis H;, 1=1,2.
The probability of detection may be calculated as

1— /0°° [/t;_l) f,(r)dr] (2 Hy)dt

M1 ¢—1 —(M-k-1)
= 1—exp(—6) ), ( (M —) k—1)!

k=0 -
ié_‘(M-{—K+i—k—2)! ¢ =1\ MR
4 GrE-DN 0\ ¢ '

1=0
Using the finite sum expression derived by Kelly in [12], we have

M-1 M_Zk-l ( M+K—-k-2 ) (8/¢) (€ — 19 (2.74)

Pp

(2.73)

Pp=1- CXP(—(S/C) Z K4iol 7! Ct\1+1\'—k—1 :

k=0 1=0
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J > 1
Consider below J > 1 and the GLR test in (2.19). Let (2.19) be rewritten as

J Hy
n =72 In(gj+1) % In¢, (2.75)

=1

where
Ha QH., .
Z; SJSJ- Z;

q; = .
2t (I, — S,87) z; + £i&y 2] (D2;()
Note that the ¢; is similar to 71 in (2.64). Thus under hypothesis Hy, ¢;M;/K; has

the central F-distribution with 2K; and 2M; degrees of freedom; i.e.,

qf‘"l(klj + K; - 1)!

fo,(gi1Ho) = (& I, DL T 4575 (2.77)

Under hypothesis Hy, ¢;M;/K; has the noncentral F-distribution with 2K and 2M;

degrees of freedom and noncentrality parameter ;5 1.e.,

o0 SigT TN M 4+ K+ — 1)
H) = —6. ' 117 J ! —. 2.78
Jo, (g5l 1) = exp(=4;) ; O, — DIE; +1 — DL+ q;)MotFo 1)
Note also that qi, gz, - -+, ¢s are statistically independent of each other. Let
n; =In(g; +1), j=12,---,J. (2.79)
It is eagsy to show that
[exp(n;) — 1% 7" (M; + K; —1)!
(n;1Hgy) = — , 2.80
f; (731 Ho) (K; — 1)I(M; — 1)l exp[(M; + K; ~ 1)n;] (280)
and
i §tlexp(n;) — )8+ =Y M; + K +1 — 1)!
(n:1H,) = exp(—8§: J 4 J ! . (2.81
Fo i\ 1) = exp(=8) 3 (K, 71 = Dl engl (0 + K, # 1= Dl 0
The 11, 12, - - -, 77 are also statistically independent of each other. Thus
Fo(n|Ho) = for (7| Ho) * fra(nlHo) % - % fo, (n]Ho), (2.82)
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and

Fa(n|Hy) = fou (2l HL) * foy (I H) % - fr, (0l H2). (2.83)
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Figure 2.1: 3-dimensional plots of the magnitudes of complex SAR images when the
target is oriented 24° from end-on and frequency band between 400 and 1300 MHz.
(a) Foliage only. (b) Target in foliage. (c) After coherent subtraction.
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Figure 2.2: 3-dimensional plots of the magnitudes of complex SAR images when the
target is oriented broadside and frequency band between 400 and 1300 MHz. (a)
Foliage only. (b) Target in foliage. (c) After coherent subtraction.
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Figure 2.4: Target template examples for (a) complete knowledge of target signature
information except for the unknown complex gain and known orientation informa-
tion, (b) incomplete knowledge of target signature information and known orienta-
tion information, (c) unknown target signature information and known orientation
information, and (d) unknown target signature information and unknown orientation
information.
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Pp = 0.5 vs. K for different probabilities of false alarm Pp.



30

25F

SCNR Loss (dB)
& S

-
Q
T

Figure 2.7: Signal-to-clutter-and-noise ratio (SCNR) loss for Detector A as a result

0.2 0.4 0.6 0.8 1
Loss Factor

of target signature mismatch vs. SCNR loss factor when J=1

Q
)
T

Prababiiity of Detection
o © :
o ']

Opftimal —

0.3
L R R A
Of eorrmenes A A OOt SIS PP
0 1 H 1 1 1
6 a 10 12 14 16 18 20

Figure 2.8: Probability of detection of Detector B vs. signal-to-clutter-and-noise ratio

for different M when

Signal-to-Clutter-and-Noise Ratio (dB)

J=1, K =2 and Pr = 10719,

39



Probability of Datection
o o b ol o a o [
[N w & o ) ~ ® © —

o

05 10 15 20 25 30
Signal-to-Cluttar-and-Noise Ratio (dB}

Figure 2.9: Probability of detection vs. signal-to-clutter-and-noise ratio for different
K when J =1, M = |[48K?/3|, and Pr = 10719, The dashed and solid lines are for

Detectors A and B, respectively.

o
©

Probability of Detection

0.2

0 1
-12 -10 -8 104 10-2 100

o®
Probability of False Alarm

Figure 2.10: Receiver Operating Characteristic of Detector B for different K and
different signal-to-clutter-and-noise ratio when J =1, M =118, and Pr = 1071°.
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3. On Image and Template False Alarm Rates When Using Target
Templates for Target Detection

3.1 Introduction

Due to the availability of high resolution synthetic aperture radar (SAR) and
optical images, ground targets such as trucks and tanks are often described by target
templates with each template consisting of one or more pixels in an image. As a
result, target templates are used for target detection 1, 2]. It has been shown in [1]
that when a target is described by more than one bright pixel, using an appropriate
target template for target detection may give better performance than using one pixel
at a time.

For a given probability of false alarm of a target template, generalized likelihood
ratio detectors may be derived to achieve the constant false alarm rate (CFAR) [1, 2].
Yet achieving CFAR for each target template may not be what a radar designer is
asked to achieve. For example, a radar designer may be asked to achieve a constant
false alarm rate per kilometer squared. For this case, the size or dirﬁension of an image
that covers an area of one kilometer squared is determined by the image resolution.
Thus a CFAR detector should be derived to achieve CFAR for the image rather than
for the target template.

However, there does not appear to exist an analytical expression that shows how
the false alarm rate of a target template is related to the false alarm rate of an image
except for a couple of special cases. One of the spec1al cases is when the size of the
image is equal to the size of the target template. For this case, the two false alarm
rates are the same. The other special case is when the target template is a single
pixel and the pixel false alarm rate is small. For this case, the image false alarm rate
is approximately equal to the template or pixel false alarm rate multiplied by the

number of pixels in the image.



In this letter, we shall show with computer simulations how the false alarm rate
of a target template is related to the false alarm rate of an image when we wish to
achieve an image CFAR, which is much less than 1. We shall show that for the case
where the radar clutter and noise pixels are independently and identically distributed
and the image size is much larger than the target template size, the image false alarm
rate is also approximately equal to the template false alarm rate multiplied by the
number of pixels in the image. This case is often encountered in practice. For the
example where each image covers an area of one kilometer squared, the image size
is easily much larger than the target template size for most ground targets such as

trucks and tanks.

3.2 Simulations Results

The simulation results below are obtained for the following target detection prob-
lem [1]. Let z denote an N x1 vector consisting of the pixels of a target template in the
presence of clutter and noise. Under hypothesis H,, the target presence hypothesis,

the z may be written

z = Sb +n.

The b is the K x 1 vector consisting of K deterministic unknown complex scalars
in the target templates. The S is a full-rank N x K matrix describing the locations
of the unknown scalars. Only one element in each row and each column of S is one
and the remaining elements are zero. The n denotes the N x 1 clutter and noise
random vector and is assumed zero-mean complex Gaussian with covariance matrix
oI, where T denotes the identity matrix. Under hypothesis Hp, the target absence
hypothesis, the z may be written

zZ = 11.

It has been shown in [1] that the generalized likelihood ratio detector for the above
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target detection problem has the form

z7SSHz 4
2 <7
o Hyp

The threshold parameter v is determined according to a given probability of false

alarm of the target template Pp(Target Template), where

K-l K-1-k
Pr(Target Template) = — L —exp(—7)-
( ) kzz:o (K-1-k)

To detect the presence of a target from a SAR or optical image, the target tem-
plate, to which 3.2 is applied, is shifted both horizontally and vertically and one pixel
at a time across the entire image. Note that as the target template moves across the
entire image, the areas covered by the template may overlap. When more than one
detections occur over a group of overlapping areas of the image, all detections are
combined together as one detection since targets do not overlap.

In the simulation examples below, the images from which the presence of a target is
sought are assumed to be L x L square images. The target templates are also assumed
to be square templates with N = K. Both the image and the target template false
alarm rates are assumed to be much less than 1. Also, the template false alarm rate
is assumed to be so small that the probability of two or more false alarms occuring
over non-overlapping areas of an image 1s negligible as compared to the probability
of one false alarm per image. Thus in the simulation examples below, the image false
alarm rates are computed as the number of images that contain false alarms divided
by the total number of independent images used in the Monte-Carlo simulations.

Figure 3.1 shows the image false alarm rate as a function of log,o(L) when the
target is described by a 2 x 2 template (N =K =4). The threashold ~ is determined

from 3.2 when the target template false alarm rate! satisfies Pp(Target Template) =

1Note that if the target template were a single pixel, the image false alarm rate would be approxi-

mately 0.1 for all image sizes when Pp(Target Template) = 0.1/L%.
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0.1/L?. The results shown in Figure 3.1 are obtained with 10,000 Monte-Carlo simu-
lations. Note from Figure 3.1 that the image false alarm rate increases almost linearly
with log,o(L) and approaches 0.1 when L > 2, i.e., when the image size is much larger
than the template size.

Figure 3.2 is similar to Figure 3.1 except that Pr(Target Template) is ten times
smaller, i.e., Pr(Target Template) = 0.01/L*. The results shown in Figure 3.2 are
obtained with 100,000 Monte-Carlo simulations. Note that a similar relation exists
between the image false alarm rate and the target template false alarm rate.

Figure 3.3 is also similar to Figure 3.1 except that the target is described by a
3 x 3 template (N = K = 9). Nofe again that a similar relation exists between the
image false alarm rate and the target template false alarm rate.

The implication we obtain from the above three simple simulation examples is
that when the image size is much larger than the target template size and a constant
image false alarm rate Pr(Image) (Pr(Image) < 1) is desired, the target template
false alarm rate PF(Ta'rgét Template) may simply be chosen as Pr(Image) divided
by the number of pixels in the image. The so obtained image false alarm rate will
be approximately the same as or slightly smaller than the desired image false alarm

rate.
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4. An Efficient Algorithm for Two-Dimensional Frequency Estimation

4.1 Introduction

The two-dimensional (2-D) frequency/angle estimation algorithms, which have
been studied recently, include the minimum variance method [1], the linear prediction
methods [2, 3, 4, 5], the subspace rotation methods 6, 7, 8, 9, 10, 11, 12, 13, 14],
the nonlinear least squares fitting method [15], and the maximum likelihood (ML)
methods [16, 17]. These algorithms consider one of the following two data models.
The first data model assumes that the frequencies of the 2-D complex sinusoids occur

at arbitrary points of the 2-D frequency domain and the data model has the form

K—
Tmm(tn) = Z akej(w"‘mﬂ"‘m’ (4.1)
k=1

where {ay} denote the complex amplitudes and {wy} and {gy} denote the 2-D fre-
quencies. For this data model, the number of unknowns is 4KX. The second data
model assumes that the frequencies of the 2-D complex sinusoids occur at the inter-
sections of some unknown grid lines in the 2-D frequency domain and the data model

has the form _
K E

=30 aylta) e, (4.2)
k=1F—1

For this data model, the number of unknowns is K +K +2KK. Depending on the true
distribution of the frequencies of the 2-D complex sinusoids, one model may result
in fewer unknowns than the other, which, according to the parsimony principle [18],
makes one model yield more accurate frequency estimates than the other. Consider an
example where the frequency locations of the complex sinusoids are shown in Figure
4.1. The numbers of unknowns in the first data model for the cases in Figures 4.1(a)
- (g) are 12, 16, 20, 24, 28, 32, and 36, respectively. The numbers of unknowns in

the second data model for these cases are the same and are 24.
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Figure 4.1: Locations of sinusoids in the two-dimensional frequency domain.

This paper considers the second data model, which is also considered in [3, 5, 13,
17]. This data model may be used when a vertical 2-D rectangular uniform linear
array is used to estimate the incident angle of a signal arriving from a low angle
relative to a smooth reflecting surface [19]. For this case, the signals arriving at
the array consist of both the original incident signal and the signal reflected from
the smooth surface. The same data model may also be used in synthetic aperture
radar (SAR) or inverse SAR (ISAR) imaging [20, 21] to estimate the locations of the
scattering centers of an object being imaged [5, 13]. These two cases will be further
addressed in the paper.

Aniong the previously studied methods, the subspace rotation methods, which
include the state-space [6, 7, 9], ESPRIT [8, 10], and matrix pencil methods [11,
13, 14], are known to be computationally efficient and have high resolution. Yet
their estimation performances are usually not as good as that of the ML methods.
The ML methods are asymptotically statistically efficient [17], but they require a

computationally intensive multidimensional search over the parameter space.
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This paper presents a computationally efficient eigenstructure-based 2D-MODE
algorithm for estimating the frequencies of 2-D complex sinusoids. Unlike the sub-
space rotation methods, the algorithm is statistically efficient under either the as-
sumption that the number of temporal snapshots is large or the signal-to-noise ratio
(SNR) is high. The statistical performance of the 2D-MODE algorithm is better than
that of the computationally efficient subspace rotation methods, whereas the amount
of computations required by the 9D-MODE algorithm is usually no more than a few
times of that needed by the subspace rotation methods.

The remaining of this paper is organized as follows. In Section 2, we describe the
problem of interest. In Section 3, we present the computationally efficient 2D-MODE
estimator. In Section 4, we describe the properties and the applications of the 2D-
MODE estimator. In Section 5, we establish the asymptotic statistical performance
of the estimator under either the assumption that the number of temporal snapshots
is large or the SNR. is high. In Section 6, we provide several numerical examples
comparing the performance of the 2D-MODE algorithm with that of the subspace
rotation algorithms. To make the paper self-contained, the subspace rotation algo-
rithms we use are briefly described in the Appendix. Finally, Section 7 contains our

conclusions.

4.2 Problem Formulation

Consider the following model of 2-D complex sinusoids in additive noise:

K K
Yl Z Z t )eJ (wxmtugm) 4 o wlta ), (4.3)
k= 'E=

where m = 1,2,---, M, m = 1,2,---,M, and n = 1,2,---,N. We refer to M
(M > K) and M (M > &) as the numbers of spatial measurements, and to N as

the number of temporal snapshots. The additive noise emm(tn) is assumed to be a



complex Gaussian random process with zero-mean and

E{em,ﬁ(tnl)e;,h‘(tm)} = 026ﬂx,n2’ (4'4)

where (+)* denotes the complex conjugate and &, », denotes the Kronecker delta. The

emm(tn), m=1,2,--- M, m=1,2,-- , M, are assumed to be independent of each
other and the complex sinusoids. The complex amplitudes o, ¢(tn), k¥ = 1,2,---, I,
%k =1,2,---, K, may be modeled as zero-mean complex Gaussian random processes

that may or may not be correlated with each other. This model is referred to as the
stochastic (or unconditional) signal model [22, 23]. For the stochastic signal model,
the temporal signal snapshots ak,;(tn) at different sampling times t,, are assumed to be
independent of each other. The complex amplitudes ak';(tn) may also be modeled as
deterministic unknowns. This model is referred to as the deterministic (or conditional)

signal model [22, 23].

Let
Y(ta) = [ yra(ta) =+ yijaltn) - yma(ta) o Yprsa(tn) 1% (4.5)
e(tn) = [ ern(ta) -+ eym(ta) - ema(tn) - enrmr(tn) 7, (4-6)
s(ta) = [ ara(ta) -+ ayglta) oo aki(ts) - agr(ta) 5 (4.7)
A=[a(w) - alwk)], alwe)=[e ... M 7, k=1,2,---,K,
(4.8)
and
B:[ b(/‘l) b(#F) ]’ b(ﬂE)Z[ eiu;; ejﬁl;i‘- ]Tv E=1,2,---,F,
(4.9)
where ()7 denotes the transpose. Then ((4.3)) may be rewritten as
Y(ta) = (A @ B)s(tx) + e(tn), (4.10)
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where ® denotes the Kronecker product.

The problem of interest herein is to estimate wi, w2, =+, WK and gy, p2, "0
pz from y(ts), n = 1,2,---,N. Once the frequency estimates are obtained, the
complex amplitudes of the 2-D complex sinusoids can also be estimated with a simple

Jeast-squares method [3].

4.3 The Computationally Efficient 2D-MODE Estimator

The exact ML estimator of the 2-D frequencies requires a multidimensional search
over the parameter space [17]. Since the search over the parameter space is compu-
tationally prohibitive, computationally more efficient methods are attractive. We
describe below a computationally efficient eigenstructure-based technique, which 1is
an extension of a 1-D algorithm known as MODE (24] or, in a related form, WSF
[25]. This estimator is herein referred to as the 2D-MODE.

Let

R=

N
Z_: n)y (ta), (4.11)

where () denotes the complex conjugate transpose and R is the estimate of the

spatial covariance matrix R,

R = E{y(t.)y" (ta)}- (4.12)

It has been shown in [24, 25, 23, 26] that an asymptotically (for large N or high

SNR) statistically efficient estimator of the 2-D frequencies w = [wi, w2, ,wk]T
‘and p = [p1, g2, -, 5T can be obtained by minimizing the following function:
f(w, 1) = tr [PRon(w, m)BAIATE]] (4.13)

where, for some matrix X, the symbol Px stands for the orthogonal projector onto

the null space of X, and where the columns in E, are the signal subspace eigenvectors
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of R that correspond to the K largest eigenvalues of R, with I defined as
K = min[N, rank(S)]. (4.14)
Here S is the signal covariance matrix,

S = E{s(tn)s" (ta)}- (4.15)

We assume that K is known. (If K is unknown, it can be estimated from the data as
described, for example, in [27].) Note that if no components of the signal vector s(t)
are fully correlated to one another and if N is large enough, then K = KK. Further,
in ({4.13)) A is a diagonal matrix with diagonal elements % > N > 2 Ag, which

are the K largest eigenvalues of R, and
A, =A -5, (4.16)

with I denoting the identity matrix and
2 1 MA—/I' oy ]. A | I;— A
0° = ————= /\,’ = —= t R —_ A,’ . 417
T TMM-K :%H i E R X (.17

It is worth notiﬁg that the evaluation of Ej, A, and A, introduced above requires
only the computation of the K principal eigenpairs of R. Since usually K < MM,
the involved computational burden is of the order O(M 2—]\72) and hence much reduced
compared with what would be required for a full eigendecomposition. The orthogonal
projector P{op may be written as (see [28] for the properties of the Kronecker

product)
Pi.ps = I-(A®B) [(AH®BH)(A®B)] (A” @ BH)
= I-[A(A7A) 1AM ®[B(BHB)‘1BH]
= I-(I-Px)©(I-Ps)

= IoP4 +P5®I-Px®Ps. (4.18)
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Thus ((4.13)) may be rewritten as

f=tr[(TePs) BAAEY ]+ [(PE @) B,A2A'BF] -t [(P4 @ P§) B, AZATE]].
(4.19)
It is shown in Appendix A that the third term above is a higher-order term for

both the case of large N and the case of high SNR. Thus minimizing ((4.19)) is

asymptotically equivalent to minimizing
f=t[(IoPs) BAZAEF] 4t [(PR o) EAZATEY]. (4.20)

We show below how to avoid the search over the parameter space needed to

minimize ((4.20)). The projector P} above may be reparameterized in terms of the

coefficients c = [ ¢y ¢; --+ cx |° of a polynomial defined as
I\- d K’ -
Z ezt F =g H (z — e’“”‘) i ¢ #0. (4.21)
k=0 k=1
Let CF be the following (M — K) x M matrix
CK e €1 o 0
CH = . (4.22)
0 CK e a Co

Then P} = P, where P¢ denotes the orthogonal projector onto the range space of
C (see [24, 29]). By defining d and D for B similarly as ¢ and C for A, we obtain
P4 = Pp. Thus by using the reparameterization above, ((4.20)) may be rewritten

as

f=u{l® (D(DHD)-IDH)] B AZAT R Ltr {[(c(c"o)*c™) e 1] E,AZATER ).
(4.23)
Since E, is a consistent estimate of the true signal eigenvector matrix E; and

the columns of E, belong to the range space of A ® B, it can be shown [24] that
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minimizing ((4.23)) is asymptotically equivalent to minimizing

f=t{[1e (DW;'D¥)| E,AJATE] b+ {[(cwiic?) @ I EAJATEY 1

(4.24)
where W, and W are consistent estimates of CHC and D7D, respectively. The 2D-
MODE algorithm minimizes ((4.24)), in the following two steps. In the first step, let
W, = Tand W, = I in ((4.24)) and minimize ((4.24)) to obtain consistent estimates
¢ and d of c and d [29]. In the second step, let W, = CHC and W, = ﬁHﬁ,
where € and D are formed from the & and d obtained in the first step, and minimize
((4.24)) again. The € and d obtained in the second step are then used to compute

the 2-D frequency estimates by rooting the corresponding polynomials of the form of

((4.21)).

Let
Z1; Zyp
GoBAATE =] .. |, (4.25)
ZMI Zym
where Z,-j are M x M matrices. Then

tr(Zn) e tI‘(ZU\/[)
& = min tr{ (CW7'C¥) : £ min tr { (CW7'CH) Zw },
te(Zan) oo tr(Zarmr)

(4.26)

and
d=min tr { (DW;'DA) (né me)} 2 min to{(DW;'D¥) 2} (427)

As shown in Appendix B, as either V or SNR increases, Z,,,, approaches a matrix Zy
whose rank is no more than K. However, the rank of Zp, may be more than K. To
improve the accuracy of the estimates of p, we may replace y/ g with its nearest rank-

K approximation in the Frobenius norm metric [30]. Similarly, 7. may be replaced
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with its nearest rank-K approximation in the Frobenius norm metric since the rank
of the limiting matrix Z is no more than K (as also shown in Appendix B). For
detailed implementation procedures of minimizing the quadratic functions ((4.26))
and ((4.27)), see [29, 31].

The polynomial coefficients in ((4.26)) and ((4.27)) can be constrained by making

use of the so-called conjugate symmetry conditions [29, 31]
e =Ch_py k=0,1,--+,K, (4.28)

and

de=de g, k=0,1,---,F, (4.29)

These constraints, considered in detail in the cited works, leads to the most parsi-
monious parameterization of the estimation problem under discussion, and hence can
yield enhanced estimation performance [18]. In the simulation examples given in Sec-
tion 6, we present results obtained by imposing the conjugate symmetry constraints

on the polynomial coefficients in ((4.26)) and ((4.27)).

4.4 Applications and Properties of the 2D-MODE Estimator

We consider below the use and the properties of the 2D-MODE estimator in the
case where the number of temporal snapshots N is large and the case where the SNR
is high. Since in practical applications, particularly those involving sensor arrays, it

is less likely to have large M or M, we shall not consider such a case herein.

4.4.1 The Case of Large N

The case where the number of temporal snapshots N is “large” may occur when
estimating 2-D incident angles with a 2-D M x M rectangular uniform linear array. For
this application, the {wy} and {uz} are the phase factors from which we can calculate

the 2-D incident angles (i.e., the azimuth and elevation angles). Equation ((4.3))
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models certain special cases where the incident angles are related to each other. For
example, such a special case occurs when a vertical 2-D rectangular uniform linear
array is used to estimate the incident angles of a signal arriving from a low angle
relative to a smooth reflecting surface such as the calm sea [19]. For this case, the
signals arriving at the array consist of both the original incident signal and the signal
reflected from the surface, i.e., the specular path, as shown in Figure 4.2. The incident
angle and its reflected angle are related to each other and can be shown to fit into
the data model in ((4.3)). For this application, N denotes the number of independent

snapshots taken at the output of the array. Furthermore,

2wd
wi = T2 in Oy sin ¢, (4.30)
0
and
)
HE = 2mos COS 0?’ (431)

0

where Ao denotes the wavelength of the incident signals and 0, and ¢, denote the
elevation and azimuth angles, respectively. Since ¢y = ¢2and 02 = 180° — 6,, we have
K=1K=2,and py = —pi2 for this example.

We can also use the knowledge that p1 = —p2 to obtain improved estimates when
minimizing ((4.27)). With p; = —p2, We can constrain the polynomial coefficients d;
in ((4.27)) so that do = dz =1 and d; is real. Note that these conditions are more
strict than the conjugate symmetry condition in ((4.29)). Under these conditions, the
minimization of ((4.27)) may be carried out as follows. Let Z HZZ denote the rank-2
approximation of Zp,, where Zﬂ is an M x 2 matrix. Let 2# and i# be the first and

second columns of Z,L, respectively. Then for k=1,2,

B, M L
23,E+ zl,'E 22,75 “
Mo, M =H
piak = | BT RE NI blage| @], (4.32)
: : di d;
B, M Ny
| 2t A2 FM-1R
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2-D Array

Reflecting Surface

(b)

Figure 4.2: Direction-of-arrival estimation with a 2-D array.
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where éi’%, i=1,2,---,M, denotes the ith element of i# Let

Re{W;/“H{'}
b Re{W,"HE} | [ 4 .
= e | = 8] (4.33)
Im{W, “H; "}
| tm(w L) |

where gjp', 7 =1,2, denotes the jth column of GH. Then minimizing ((4.27)) becomes
2

~

equivalent to minimizing | GH _ where || - || denotes the Euclidean norm, and

the solution is
g = -] ()" et (4.34)

In the case where the number of temporal snapshots NV 1s large, similar to the
results obtained in [24, 23] for the 1-D angle/frequency estimation case, the compu-
tationally efficient 2D-MODE estimator can be shown to be statistically equivalent to
the stochastic maximum likelihood (ML) estimator (i.e., the ML estimator obtained
under the stochastic signal model). Since the stochastic ML estimator asymptotically
achieves the stochastic Cramer-Rao bound (CRB), it follows that the 2D-MODE es-
timator is an asymptotically (for large NV) statistically efficient estimator.

We remark that the assumption that the temporal signal snapshots oy z(t.) are
independent of each other is not a necessary condition for the application of the
9D-MODE algorithm. In particular, the asymptotic accuracy of the 2D-MODE algo-
rithm is the same for both temporally correlated and temporally uncorrelated signal
snapshots (see Remark 3 on p. 1787 of [22]). For the temporally correlated sig-
nals, however, more accurate estimators may be devised if the temporal correlation

function is known or if it is known to have some parameterized functional form.
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4.4.2 The Case of High SNR

The case where the SNR is “high” and N is small may occur in synthetic aperture
radar (SAR) or inverse SAR (ISAR) imaging [20, 21, 13, 5]. In this application, the
radar usually transmits linear frequency modulated (chirp) pulses. Upon receiving
each pulse returned by an object being imaged, the radar mixes the pulse with a
reference chirp signal and low-pass filter the mixed signal. As a result, the scattering
centers of the object at different ranges correspond to different frequencies of the
output of this operation. Since either the radar or the object is moving or rotating,
the pulses received at different angles between the radar and the object are used to
form a synthetic aperture. The scattering centers of the object at the same range but
different cross-ranges correspond to different (Doppler) frequencies over the synthetic
aperture. Thus for this application, the {ws} and {ug} describe the locations, i.e.,
the ranges and cross-ranges, of the scattering centers of the object being imaged.

Similar to the results obtained in [26] for the 1-D angle/frequency estimation case,
the computationally efficient 2D-MODE estimator can be shown to be asymptotically
(for high SNR) statistically equivalent to the deterministic ML estimator. It has
been shown in [26] that for high SNR, the deterministic ML estimator achieves the
deterministic CRB. Thus the 2D-MODE estimator is an asymptotically (for high
SNR) statistically efficient estimator in this case also.

We remark that in the case of high SNR, the N may take any value greater than or
equal to 1. The case of N = 1 has a particular relevance for the SAR/ISAR application
mentioned previously [20, 21]. In such a case, we have E, = y(t1)/|ly(t1)] and A,

and A are scalars. Thus for N = 1, minimizing ((4.13)) is equivalent to minimizing
f =y (t1)PLenY(t): (4.35)

We note that this function is exactly the one to be minimized by the deterministic

ML estimator given in [17]. Since the 2D-MODE algorithm determines an asymptotic

62



realization of the minimizer of ((4.13)), it readily follows that the 2D-MODE and the
deterministic ML estimators are asymptotically (for high SNR) equivalent. (We note

that showing this equivalence in the case of N > 1 is a more complicated operation

[26].)

4.4.3 Parameter Identifiability Conditions

We note that our previous results are valid if M and M are constrained by the
parameter identifiability requirements [23, 32, 33]. Let 17 denote a real-valued vector
containing all unknowns of the data model in ((4.3)). Then our problem is parameter
identifiable if

R=Ry <= n=r1, (4.36)

As shown in Appendix C, the inequalities

K '
M >2K - —= 4.37
and -
— - K
M >2K — X’ (4.38)

are sufficient conditions for parameter identifiability.
By rearranging the elements of y(t,), s(tn), and e(t,), we can rewrite ((4.10)) as
y(ts) = (B ® A)s(t,) + e(t.). We can then show similarly that

— - K
T - = .
M > 2K 7 (4.39)
and ~
K
oK — = 4.40
M > 2K = (4.40)

are also sufficient conditions for parameter identifiability.
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4.5 Statistical Performance Analysis

In this section, we establish the asymptotic statistical performance of the 2D-

MODE estimator for both the case of large N and the case of high SNR.

4.5.1 The Case of Large N

As argued in Appendix D, the asymptotic (for large V) statistical distribution
of & is Gaussian with mean w and covariance matrix equal to the corresponding
stochastic Cramer-Rao bound (CRB), CRB;,. The ijth element of (CRB,)™" is
given by

[(cRBL) Y, = ke (i {[(AFPLA) @ (B7B)]S (A" © BY) R (A 0 B)S}),

’ (4.41)
where A; = §A/w;. Similarly, the asymptotic (for large N) statistical distribution
of f1 is shown to be Gaussian with mean p and covariance matrix equal to the corre-
sponding stochastic CRB, CRBY,. The ijth element of (CRBY, )~1 is (see Appendix
D)

[(CRBL)“]U = %Re (r{[(aA"A) ® (BIP3B;)| S (A" @ B¥) R (A©B)S}),
(4.42)

where B; = dB/0u;.

4.5.2 The Case of High SNR

It is shown in Appendix D that the asymptotic (for high SNR) statistical distribu-
tion of & is Gaussian with mean w and covariance matrix equal to the deterministic

CRB given by

[(CRBﬁ,)— ] _ ——Re {tr ([(AZPAL) ® (B7B)] §)}, (4.43)

64



where
. 1 X
S=— Z (4.44)
V =
It is also shown in Appendix D that the asymptotic (for high SNR) statistical distribu-
tion of fi is Gaussian with mean g and covariance matrix equal to the corresponding
deterministic CRB given by

[(crBy) ] =2 (n{[(a74) o (8]P5BI|8}).  (449)

ij 0
4.6 Numerical Examples

In this section, we illustrate the performance achievable by the 2D-MODE algo-
rithm and compare it with the performance of the two-dimensional subspace rotation
methods (2D-SRMs). (The 2D-SRMs, both with and without spatial smoothing, are
briefly described in Appendix E.) The empirical performance of the algorithms is ob-
tained from 100 independent trials and it is compared with the theoretical statistical
performance given by the CRBs.

In the first three examples, we consider the case of large N. In particular, we
consider the scenario shown in Figure 4.2 where a vertical rectangular uniform linear
array with M = 8 and 7 = 10 is used to estimate the angles of arrival of an incident
signal arriving from (¢,8) and of its reflected signal arriving from (¢, 180° — 6). The
signal-to-noise ratio (SNR) of the direct signal used in the examples is assumed to be
—7 dB. The SNR of the reflected signal is assumed to be 3dB less than that of the
direct signal. The spacings 6, and 6, between two adjacent sensors in the array are
assumed to be a half wavelength. The CRBs of the estimates of ¢ and @ are readily
obtained from the CRBs of the estimates of wy and pg given in Section 5 and the
Equations ((4.30)) and ((4.31)) relating ¢ and 6 to wi and pr.

Figure 4.3 shows the root-mean-squared errors (RMSEs) of the angle estimates

as a function of the elevation angle § when ¢ = 45° and N = 60. The incident and
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reflected signals are assumed to be uncorrelated with each other, which may happen
when the rectangular array is well above the reflecting surface. For this example,
the 2D-SRM is used without spatial smoothing. We note that the performance of
the 2D-MODE is always better than that of the 2D-SRM. Figure 4.3 also shows the
asymptotic (large V) statistical performance, corresponding to the CR-bound (CRB).
We note that the 2D-MODE estimator performance is very close to its asymptotic
statistical performance, which is also the best achievable performance in the class of
(asymptotically) unbiased estimators.

Figure 4.4 shows the performance of the 2-D estimators as a function of the cor-
relation coefficient between the incident and reflected signals when ¢ = 45°, 8 = 85°,
and N = 500. For this example, the 2D-SRMs are used both with and without
spatial smoothing. We note that the 2D-MODE algorithm has the most significant
advantage over the 2D-SRM without spatial smoothing when the signals are highly
correlated or coherent. When the incident signals are completely correlated with
each other or coherent, the 2D-SRM without spatial smoothing fails. For this case,
the 2D-SRM must be used with spatial smoothing. For the 2D-SRM with spatial
smoothing, we set both dimensions of the subarrays to L = L = 5. Figure 4.4 shows
that the 2D-SRM with spatial smoothing is also outperformed by the 2D-MODE. In
our implementations, the amount of computations needed by the 2D-MODE is about
7.1 times of that needed by the 2D-SRM with or without spatial smoothing.

Figure 4.5 shows the RMSEs of the angle estimates as a function of NV when
é = 45°, = 85°, and the incident and reflected signals are 99% correlated. For
the 2D-SRM with spatial smoothing, both dimensions of the subarrays are set to
L =T = 5. We note again that the 2D-MODE algorithm performs better than the
9D-SRM both with and without spatial smoothing. We also note that the larger the
N, the closer the 2D-MODE estimator performance to its CRB. Note from Figures 4.3
and 4.5 that for the 2D-MODE estimator to achieve its CRB, a larger NV is needed for
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highly correlated signals than for uncorrelated signals. For N — 10,000, the amount
of computations needed by the 2D-MODE is about 4.0 times of that needed by the
2D-SRM with or without spatial smoothing.

In the next three examples, we consider the performance of the 2D-MODE fre-
quency estimator for the case of N = 1, which is the radar Imaging case. We shall
consider the case where there are two complex sinusoids in each of the two dimen-
sions, i.e., K = § — 2, and all 2-D complex sinusoids have the same SNR. We also
assume that M = 8 and 37 = 10. The performance of the 2D-MODE estimator is
compared with that of the 2D-SRM with spatial smoothing (with L = T = 5). Note
that as for the case of coherent incident signals and large N, the 2D-SRM must be
used with spatial smoothing for this N = ] case, no matter what the SNR is.

Figure 4.6 shows the RMSEs of the frequency estimates as 5 function of SNR
when (w,w,) = (27 x 0.28, 27 x 0.33) and (g1, p5) = (27 x 0.30, 27 x 0.35). We note
that the performance of the 2D-MODE algorithm is always better than that of the
2D-SRM with spatial smoothing, especially when the SNR is around 0 dB. Figure 4.6
also shows the asymptotic (high SNR) statistical performance, corresponding to the
CR-bound (CRB). We note that the 2D-MODE estimator performance is very close to
its asymptotic statistical performance, which is also the best achievable performance
in the class of (asyrnptotically) unbiased estimators, when the SNR 1s greater than
or equal to 5 dB.

Figure 4.7 shows the RMSEs of the frequency estimates as a function of the fre-
quency separation Aw/(2r) when (wi,w2) = (21 x 0.28,27 x 0.28 + Aw), (1, pp) =
(27 x 0.30, 27 x 0.35), and SNR = 10 (B, Figure 4.8 shows the frequency estimates
as a function of frequency separation Ap/(2r) when (wi,wp) = (27 x 0.28,27 x 0.33),
(1, 2) = (27 x 0.30,27 x 0.30 + Ap), and SNR = 10 dB. We note that the perfor-
mance of the 2D-MODE algorithm again is always better than that of the 2D-SRM

with spatial smoothing, especially when the frequency separation, either Aw/(27)
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or Ap/(2), is small. We also note that as the frequency separation increases, the
9D-MODE estimator performance becomes closer to its asymptotic statistical perfor-
mance.

Because the eigendecomposition of R is no longer needed for N = 1, the amount
of computations needed by the 2D-MODE for N =1 is reduced to 0.35% of the
amount required by the example in Figure 4.4. The amount of computations needed
by the 2D-SRM with spatial smoothing for N = 1 is also reduced to 0.80% of the
amount required by the example in Figure 4.4. For N=1,L=L=5 M=38,and
M = 10, the amount of computations needed by the 2D-MODE is about 3.1 times of
that needed by the 2D-SRM with spatial smoothing.

4.7 Conclusions

We have presented a computationally efficient eigenstructure-based 2D-MODE
algorithm for two-dimensional frequency estimation. We have shown that this esti-
mator is asymptotically statistically efficient under the assumption that either the
number of temporal snapshots is large or the signal-to-noise ratio is high. Numerical
examples showing the comparative performances of this algorithm and of the compu-
tétionally efficient subspace rotation algorithms have also been given in this paper.
We have shown that the performance of the 2D-MODE algorithm 1s better than that
of the subspace rotation methods, whereas the amount of computations required by
the 2D-MODE algorithm is usually no more than a few times of that needed by the

subspace rotation methods.

Appendix A — The Simplification of the 2D-MODE Cost Function

We show below that the third term of ((4.19)) is a higher-order term and may be
neglected for large .V or high SNR.
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The Case of Large NV

Consider first the case of N > 1. Let fi, f2, and f; denote the first, second, and
third terms, respectively, of the right side of ((4.19)). Let (-)’ denote the gradient of
(-) with respect to p. Since fi minimizes ((4.19)), we have for N > 1.

p—p=—(N7f ==+ BT+ ) (4.46)

" The sth element of f] is

= uf (1o [P5])) £AAEY ), (4.47)
where [25]
[ps)’ = -B'¥([BF);P§ — (B[B” ps)", (4.48)
with
B' = (B”B) B. (4.49)

Thus [f1]} may be rewritten as
[fli = —2Re(tr{[I® (BTH[BH]QPﬁﬂ E,AZATIERY). (4.50)

Since the columns of E, span the same signal subspace as the columns of A @ B and

P{B =0, we have (I ® PJ‘B) E, = 0. Thus
[fi)i= -2 Re(tr {[I® (BfH[B”]:.P,l.-_,,)] (E, - E,) A2ATE] 1- (4.51)

Since (Es — Es) = O(l/\/ﬁ) [34, 35], we have (Al = 0(1/\/T) The ith element of
f} may be written as ,

(ls = —2 Re (1 { [Px ® (BI71B#1PH)] (B, — B A4 (B, - E)"}),
(4.52)
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where we have used the fact that (Pf& ® I) E, = 0. Thus [f3], = O(1/N) is negligible
for N > 1 as compared with [fi].. It can be shown similarly that [fs]7; is also
negligible for N > 1 as compared with A5
Thus for N > 1,
= - (4.53)
which means that the third term of ((4.19)) is a higher-order term when estimating
p and may be neglected asymptotically (for N > 1). We can show similarly that

this result is also true when estimating w.

The Case of High SNR

Consider next the case of high SNR, i.e., ¢ < 1, where o is the standard deviation
of the additive noise. For o < 1, Equation ((4.46)) also holds. Since (I® Pfg) B, =
(I@ Pfg) (Es — Es) = O(c) and (Pf& ®I) k, = (Pf& ®I) (1:35 - Es) = 0(o), we
obtain [f1]i = O(c) from Equation ((4.51)) and [fs]l = O(c?) from Equation ((4.52)).
Thus [f3]} is negligible for o <« 1 as compared with [fi]i. It can be shown similarly
that [fs]f; is also negligible for o < 1 as compared with [fi]#;. Then the third
term of ((4.19)) is a higher-order term when estimating u and may be neglected

asymptotically (for o < 1). It can be shown similarly that this result is also true

when estimating w.

Appendix B — The Ranks of Zw and Zg.

To determine the ranks of Zw and Zy, let us consider

le e Zlﬂ/f
Z=EAATEf=| + ... 1 |, (4.54)

Zynn - Lum



where Z;; are M x M submatrices of Z. Note first that E, may be written as
E, = (A ®B)Q, (4.55)

where Q is some (KK) x K matrix of full rank K = min[N, rank(S)] with probability

1. Thus Z may be rewritten as
7 = (A ® B)QA’A1QY (A" @ B). (4.56)
Consider first the rank of Zy. Note that

Bay, -+ Bax
(A®B)= P ; (4.57)

Bayn -+ Bawmrk

where a;; denotes the ¢jth element of A. Thus Z;; has the form B(-- )B¥ and

Zy = % Zom = B(---)B. (4.58)

m=1
Then the rank of Zy is no more than the rank of B.
Consider next the rank of Zw. Using (A® B) = (A@L)(I® B), we get

Z=(A@DT(AY 1), . (4.59)
where
Ty - Tk
r = (I®B)QAATIQH(I@B)=| : .- 1 |, (4.60)
Txr - Trr

where I';; are M x M submatrices of I'. Thus
tr(T) - tr(T1x)
tI‘(Zij) = tr {(afr) R I) T [(agr))H ® I]} = agr) o (aﬁr))H,
tl’(P}\'l) v tr(r}\-']\')



where agr) denotes the ith row vector of A. Hence Ze has the form Zw = A(-- JAFE.

Then the rank of Z is no more than the rank of A.

Appendix C — A Sufficient Condition for Parameter Identifiability

We prove below the sufficiency of the parameter identifiability requirements ((4.37))
and ((4.38)). Our proof follows closely the one for 1-D angle/frequency estimation in
32, 33).

As in [32, 33], to prove the sufficiency of ((4.37)) and ((4.38)), we need to show
that ((4.37)) and ((4.38)) are sufficient conditions for A = Ag, B=Bg,and Q = Qo

to be the unique solution of
(A ®@B)Q = (Ao ® Bo)Qo, (4.62)

where Q is some (KK) x K matrix of full rank K. The Equation ((4.62)) may be
written as

(A @I)(I©B)Q = (A ® I)(I® Bo)Qo- (4.63)
Let .

I®B)Q=, and (I®Bo)Qo =l (4.64)
The € is of dimension (KM) x I and is of full rank K since M > K and B is a

Vandermonde matrix. Then ((4.63)) may be written as
(A @D)Q = (A @ I)Qo. (4.65)

Consider first a solution A and €2 of ((4.65)), which is such that the columuns i1,
iy, -+, 3. in A and A, coincide, where 0 < ¢ < K. Since ¢ < K, the solution A = Aq
and © = € is excluded. Let A, be the submatrix of Ay without the columns 2y, 2,
.+, i.. Then (Ag®T) is of dimension (MM) x (KM —cM). Let €2 be the submatrix

of €, without the rows that correspond to the columns of (A ® I) which are missing

-1
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in (Ag®I). Let Q be the same as 2 except that the rows of £ that are missing in

2o are subtracted from the corresponding rows of . Thus ((4.65)) can be written

[ (AQT) (Ac®T) ] j;o =0. (4.66)
Let
7y = dim {N ([ (AQT) (Ac®I) D} (4.67)

where dim{A(-)} denotes the dimension of the null space of a matrix. Since A is a
Vandermonde matrix, the vectors in A for any M different values of wy are linearly

independent. Thus

1 = 2K — ¢M — min [MM, (2KM — M) (4.68)
Let
, Q
7 = dim R . , (4.69)
-

where dim{R(-)} denotes the dimension of the range space of a matrix. Our goal is

to prove that ((4.66)) has no solution under ((4.37)), or equivalently
T <72 7 (4.70)

If MM > (2I(M— cT\Z), then 4, = 0 and ((4.70)) follows since v = 1. If MM <
(QKTW - c—IVI_), then v; = 2K M —cM — MM and from ((4.64)), we have y2 2 K—cM.
From ((4.37)), we have OKM — ¢M — MM < K — ¢cM. Thus under ((4.37)), the
unique solution to ((4.65)) is A = Ao and £ = .

Consider next the solution of

(1@ B)Q = (18 Bo)Qo. (4.71)

We can show similarly that under ((4.38)), the unique solution to ((4.71)) is B = Bo
and Q = Qq.



Thus the proof is finished.

Appendix D — Derivation of the Cramer-Rao Bounds

We present the derivations of the Cramer-Rao Bounds (CRBs) for both stochastic

and deterministic signal models.

Stochastic CRB

It follows from [22, 23, 24] that the asymptotic (for large V) statistical distribution
of the parameter estimates [ &7 A7 JT obtained with the 2D-MODE algorithm is
Gaussian with mean [ wT ”T ]T and covariance matrix equal to the stochastic CRB,

CRB°. Let
A=A®B. (4.72)
Using Equation (4.63) in [23], we obtain the jth element of (CRB*)™! as

(CRB*)™Y| = IV pelir (A7PLASAFRTIAS)] (4.73)
2 J

Y g

with A; denoting the derivative of A with respect to the ith element of [ wT pT |7
We first show that the CRBs for w and fi are decoupled. Let Ay denote the

derivative of A with respect to the kth element of w. Then
A= Ar®B, (4.74)

where A; = OA/Owy. Let Ag denote the derivative of A with respect to the kth

element of g. Then
Ar=AQ By, (4.75)

where By = 0B/8puz. Using ((4.18)), we obtain

AFPLA; = (AF ©BY) (1o Pg +PL©I-P4 ®P%) (A @By
(AfA)® (B"P§Bg) + (AY PxA) ® (B7By) — (AY P3A)® (B¥P§B;)

T4



= 0,

which shows that the CRB?* is block-diagonal.
Next note that

AEPL A, = (AR ®B7) (I®Pg +P5®I-P5®PH) (A, ®B)
= (AfPiA.) @ (BB). (4.77)

Hence the (k1, k;)th element of (CRB,) ™" is

(ORBL), , = e {ir ([(ALPRAL) @ (BB)| SATRTAS)}. (479)

Thus using ((4.72)), we complete the proof of ((4.41)). The proof of ((4.42)) is similar.

Deterministic CRB

It follows from [26] that for high SNR, the statistical distribution of the esti-
mate [ & 4T |7 obtained with the 2D-MODE algorithm is Gaussian with mean
[ wT pT |T and covariance matrix equal to the deterministic CRB, CRB?. Using
Equation (4.68) in [23], we obtain the ijth element of (CRB?)™?

[(CRBY)- ] {Z Re [s7 () AP Ais(t n)]} (4.79)
n=1
Using ((4.76)), we can show the CRBY is also block-diagonal. Thus the CRBs for w
and fu are decoupled for the deterministic signal model as well.

Using ((4.77)), we get the (ki, k;)th element of (CRBY,)™! as
[(CRBE,)" ] = {Z Re [s7(t) (AR PAAL) © (BB)) s(tn)]}
- _—Re{tr([(Ag P5AL) @ (BB)|S)}. (4.80)

Thus ((4.43)) is proven. The proof of ((4.43)) is similar.
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Appendix E — The 2D-SRM Algorithms

We briefly describe below the two-dimensional subspace rotation methods (2D-
SRMs) we used in the numerical examples. The methods are similar to the matrix

pencil method detailed in [13}, which was derived for N = 1.

The 2D-SRM without Spatial Smoothing

For uncorrelated or slightly correlated signals and large N, the following method,
which we refer to as the 2D-SRM without Spatial Smoothing, may be used to estimate
the 2-D frequencies.

Let Y(t,) be an M x M matrix whose (m,m)th element is ym,m(tn). To estimate
w, let

Y = [ yw J(v¥) ] , (4.81)
where J denotes the exchange matrix (with ones on the antidiagonal and zeros else-

where) and
Yw:[Y(tl) Y(t:) - Y(m)]- (4.82)

Let the columns of the M x K matrix U, be the left singular vectors of YW that
correspond to the largest singular values of Y%. Let U,; and U,, denote the (M —
1) x K submatrices of U, consisting of the first and last (M — 1) rows of U,. Then
the eigenvalues of (UﬁUsl)"lUﬁUsg are the estimates of e/, €2, « -, e/*¥_ From
these eigenvalues, we obtain the estimate of w.

The steps of estimating p are similar to those of estimating w. The main difference
is that the Y(tn), n = 1,2,-+-, N, in ((4.82)) above are replaced by Y7 (t,). The

parameters M and K are also changed to M and K, respectively.

76



The 2D-SRM with Spatial Smoothing

For highly correlated signals or small IV, the following method, which we refer to
as the 2D-SRM with Spatial Smoothing, may be used to estimate the 2-D frequencies.

To estimate w, let

YY = [ vY 3(v¥) ] : (4.83)
where
V= [ Ya(t) Yalta) - Yarlta) i (4.84)
with
Yos(ta) = [ Yooi(tn) Yesa(tn) - Yssu-r+1)(tn) ] 5 (4.85)

and Yei(tn), 1 =1,2,---, M — L+ 1, denoting the submatrix of Y(¢.) that consists
of the ith to (i + L — 1)th rows of Y(¢5). The remaining steps of the 2D-SRM with
Spatial Smoothing are similar to those of the 2D-SRM without Spatial Smoothing.
The steps of estimating p are again similar to those of estimating w. The main
difference is that the Yoi(tn), i =1,2,---,M —L+1,in ((4.85)) above are obtained
as submatrices of Y7 (t,). The parameters M, K, and L are also changed to M, K,

and L, respectively.
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Figure 4.3: Root-mean-squared errors of angle estimates as a function of the elevation
angle § when the direct and reflected signals arrive from (45°,8) and (45°,180° — 9),
respectively. The SNRs for the direct and incident signals are —7 dB and —10 dB,
respectively. The signals are assumed to be uncorrelated with each other. Further,
M =8, M =10, and N = 60. (a) For the estimates of the azimuth angle ¢. (b) For

the estimates of the elevation angle 6.
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Figure 4.4: Root-mean-squared errors of angle estimates as a function of the correla-
tion coefficient between the direct and reflected signals when the direct and reflected
signals arrive from (45°,85°) and (45°,95°), respectively. The SNRs for the direct
and incident signals are —7 dB and —10 dB, respectively. Further, M = §, M = 10,
L = L =5 (for 2D-SRM with spatial smoothing), and N = 500. (a) For the estimates
of the azimuth angle ¢. (b) For the estimates of the elevation angle 4.
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and —10 dB, respectively. The correlation coefficient between the direct and reflected
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smoothing). (a) For the estimates of the azimuth angle ¢. (b) For the estimates of

the elevation angle 0.
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Figure 4.6: Root-mean-squared errors of frequency estimates as a function of SNR
when (wi,ws) = (27 x 0.28,27 X 0.33), (u1,p2) = (27 x 0.30,27 X 0.35), M = 8,
M =10, L = L = 5 (for 2D-SRM with spatial smoothing), and N = 1. (a) For the
estimates of wy/(2x). (b) For the estimates of p1/(2x).
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frequency separation Aw/2r when (wq,w;)

(27 x 028,27 x 0.28 + Aw),
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(b) For the estimates of u;/(27).
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Figure 4.8:
of frequency separation Ag/2r when (w;,w;) =
(1, p2) = (27 x 0.30,27 x 0.30 + Ap), SNR =10dB, M =8, M =10, L=L =5
(for 2D-SRM with spatial smoothing), and N = 1. (a) For the estimates of wy /(27).

(b) For the estimates of p/(27).
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5. High Resolution Range Signature Estimation and Synthetic
Aperture Radar Imaging

5.1 Introduction

This paper proposes a robust parametric data model for estimating high resolution
range signatures of radar targets and for forming high resolution synthetic aperture
radar (SAR) images. For the range signature estimation, estimating the radar cross
section (RCS) of the scattering center of a radar target at a certain range is modeled
as estimating the amplitude and phase of a complex sinusoid with known frequency
in unknown colored Gaussian noise. For the SAR imaging application, estimating the
complex intensity of a pixel in an SAR image is modeled as estimating the amplitude
and phase of a two-dimensional complex sinusoid with known frequency in unknown
colored Gaussian noise. This new modeling approach models the thermal noise and
the interferences from other scattering centers of a radar target or other pixels in a
SAR image as unknown colored noise.

This paper also presents a parameter estimation algorithm for the data model.
" The algorithm is referred to as the APES (Amplitude and Phase Estimation of a
Sinusoid in unknown colored noise) algorithm. We shall describe how the APES
algorithm can be used to estimate the range signatures and to form SAR images.
The APES algorithm avoids the search over the parameter space and requires only
simple matrix multiplications and matrix inverses.

We will show that our modeling and estimation approach yields better resolution
and lower sidelobes than the conventional nonparametric FFT (fast Fourier trans-
form) method. We will also show that our approach is more robust than modeling
the radar data as a certain number of complex sinusoids in noise and estimating the
frequencies, amplitudes, and phases of the sinusoids with one of the best sinusoidal

parameter estimation methods. We will present both numerical and experimental
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examples comparing the performance of our approach with the two afore-mentioned
approaches.

In Section 2, we consider high resolution range signature estimation. We shall
formulate the problem of interest, present the APES algorithm, and demonstrate
the performance of our approach with both simulated and experimental data. (In
Appendix A, we derive a computationally and asymptotically statistically efficient
large sample maximum likelihood estimator for estimating the complex gain of a signal
with known waveform and known steering vector in unknown colored Gaussian noise,
which the APES estimator mimics.) In Section 3, we consider high resolution SAR
imaging with the APES method. We shall formulate the problem of interest, describe
how to use the APES method for SAR imaging, and demonstrate the performance
of our approach with XPATCH (a computational electromagnetics software) data.

Finally, Section 4 contains our conclusions.

5.2 High Resolution Range Signature Estimation

In this section, we propose a parametric data model and present an estimation
algorithm for estimating high resolution range signatures of a radar target. High reso-
lution range signatures are useful for many applications including the non—coopefative

target identification (NCTI).

5.2.1 Problem Formulation

The range resolution of a radar is determined by the radar bandwidth. To achieve
high resolution in range, the radar must transmit wideband pulses, which are often
linear frequency modulated (chirp) pulses. Upon receiving each pulse returned by a
radar target, the radar demodulates the pulse by mixing the pulse with a reference

chirp signal and low-pass filter the mixed signal. As a result, the scattering centers
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of a radar target at different ranges correspond to different frequencies of the output
of this demodulation operation.

Let z denote an M x 1 vector containing the samples of the output of this operation.
We assume that the radar bandwidth is moderate so that the radar cross sections
(RCSs) of the scattering centers of the radar target do not change with frequency.

Then z may be written as

%
Z = nykfk—{-no, (5.1)

k=1
where v, k = 1,2,---, K, denotes the RCS of the kth scattering center of the radar

target, no denotes the additive noise vector, and
T
f, = [ 1 etk ... e—i(M-1)tx ] : (5.2)

with (-)7 denoting the transpose and ¢ denoting the time delay proportional to the
range of the kth scattering center.

A simple nonparametric method of estimating 4% and # is to use FFT (Fast
Fourier Transform), which is both computationally efficient and robust to model
errors. However, FFT is known for its high sidelobes and poor resolution. Many
different types of windows may be applied to z to reduce the sidelobes. Yet using
windows with FFT further reduces the already poor resolution of FFT.

When the number of scattering centers K of a radar target is small, one may
use many existing frequency estimation methods, such as the computationally and
asymptotically (for high signal-to-noise ratio) statistically efficient MODE method
[1, 2, 3], to estimate the ¢;. Once ¢ are estimated, the straightforward least-squares
fitting method may be used to estimate the corresponding 7x.

However, there are two cases where the above parametric modeling approach may
result in poor performance. First, for a complicated radar target such as an airplane,
the number of scattering centers K may be very large and may even be larger than

the number of samples M in z. For this case, the frequency estimation methods
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cannot be used since to uniquely determine the time delays tx, even in the absence of
the additive noise no, the K must be less than (M —1)/2 [4, 5]. Second, when two
or more scattering centers are very closely spaced, the frequency estimation methods
may not be able to resolve all of the scattering centers. When this result occurs, the
least-squares fitting method yields poor RCS estimates. As a result, the estimated
range signature, i.e., yx versus tx, may be distorted.

We consider below a more robust parametAric data model. To estimate the RCS
4(t) of a scattering center whose range corresponds to a time delay ¢, we model the

received data z as

z = y(t)f(t) + n(t), (5.3)

where f(t) is defined in ((5.2)) with t; replaced by ¢ and n(t) denotes the additive
noise. The n(t) is assumed to be circularly symmetric complex Gaussian random
vector with zero-mean and unknown covariance matrix Q(t). The unknown Q%)
models both the thermal noise and the interferences from other scattering centers.
The Q(t) is assumed to be a positive definite and Toeplitz matrix.

The problem of interest herein is to determine the range signature (t) from z.
We remark that to compute a discrete range signature with M, samples, we set
t = 2x(m — 1)/M, for the mth sample. We shall show below that the M, RCS

estimates in the signature can be computed in parallel.

5.2.2 The APES Algorithm

We present below an algorithm that may be used to estimate the unknown ~(¢)
in model ((5.3)). We note that the amplitude and phase of (t) may be considered as
the amplitude and phase of the complex sinusoid with frequency ¢ described by f(t).
Thus we refer to our estimator below as the Amplitude and Phase Estimation of a

Sinusoid in unknown colored noise, or simply the APES, method.
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The APES algorithm is obtained by mimicking the computationally and asymp-
totically statistically efficient large sample maximum likelihood estimator obtained in
Appendix A for estimating the complex gain of a signal with known waveform and
known steering vector in unknown colored noise. To obtain the APES algorithm, we
first divide the measurement vector z into N overlapping subvectors Z(n) of dimen-
sion M x 1, where N = M — M + 1. The nth subvector Z(n) contains the nth to
the (n + M — 1)th element of z. Let fi(t,n) be formed from n(t) in the same way
#(n) are formed from z. The 1i(t,n) are assumed to be circularly symmetric complex
Gaussian random vectors with zero-mean and the same unknown covariance matrix

Q:(t), which is a submatrix of Q(t). Then z(n),n=1,2,---, N, may be written as
#(n) = 7(t)ao(t)y(t,n) + n(t, n), (5.4)
where ao(t) is referred to as the steering vector and has the form
. T
ao(t) = [ | et ... iti-1) ] , (5.5)

and

y(t,n) =V n=1,2,---,N. (5.6)

Let J be the M x M exchange matrix (with ones on the antidiagonal and zeros

elsewhere). Let

z(n) =Jz* (N —n+1), (5.7)
where (-)* denotes the complex conjugate. Let
fi(t,n) =Ja*(t, N —n+1), (5.8)

where fi(t,n) are assumed to have the same statistics as ii(t,n). Then 2(n) may be

written as

z(n) = 7" (t)B(tao(t)y(t,n) + n(t,n), (5.9)
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where

B(t) = eI N1, (5.10)

Let

L
7 ; zZ(n)y" (¢, n), (5.11)

where () denotes the complex conjugate transpose for matrices and complex con-

fiy(t) =

jugate for scalars. Let 7y, (%), R;3, Rz, and f2,(t) be defined similarly as #3,(¢).
Note from ((5.6)) that #,,(t) = 1. Note also that as may be seen from ((5.11)),
the mth element of t3,(t) is the discrete-time Fourier transform of the mth sequence
{Zm(1),- -+, 2m(V)} divided by N, where %,,(n) denotes the mth element of Z(n).
Thus to compute a discrete range signature with M, samples, where M; is a power of 2,
the #3,(t), and similarly the f3,(t), may be computed with the FF'T method and zero-
padding. The amount of computations required for each sequence is O[M, log,(M,)].
Since the 2nd through the Nth elements of the mth sequence are the 1st through the
(N — 1)th elements of the (m + 1)th sequence, the FFT of the (m + 1)th sequence
may be updated from the FFT of the mth sequence with O(M;) operations.

Let b(t) = ~(t)as(t). Applying the results in Appendix A to Z(n), we obtain the
estimate of b(t) as

b(t) = £2,(t). (5.12)

Similarly, let b(¢) = v*(t)8(t)ac(t). Applying the results in Appendix A to z(n), we

have

b

[ 24

(t) =

By applying the results in Appendix A to both #(n) and z(n), the covariance matrix

() (5.13)

Qi (t) may be estimated as

Q:(t) =



1>

[R+BHBH(2)]. (5.14)

Then the estimate of v(t) may be computed as (see Appendix A)

A
~

a?(H)Qr(t)b(t) + —1( )i; (1)QT (t)ao(?) . (5.15)
all (1) Q7 (t)ao(?)

Note that since only B(t) is a function of the range related time delay ¢, the Q1)

can be computed more efficiently with
(g =2 {R-l ~ROB() [BFORTB() -1 BH(t)R—l} . (5.16)

We note that computing R~! requires O(M?) computations. Once R-1 is obtained,
computing Q{l(t) for each t requires 0(]\7[2) computations. Computing %(t) for each
¢ also requires O(M?) computations.

Then the APES estimator for estimating ¥(¢) may be summarized as follows:

Step 1: Compute l:)(t), f)(t), and Q,(t) with ((5.12)), ((5.13)), and ((5.16)), respec-
tively.

Step 2: Determine 4(t) with ((5.15)).

We femark that the vectors fi(t,n) and fi(t,n) are not independent of each other
since they are formed as the overlapping subvectors of n(t). Yet since these vectors
are not completely correlated with each other, it can be shown that as N goes to
infinity, #3,(2), R;s, Rz, and #2,(t) are all consistent estimates. As a result, the
4(t), for all possible ¢, is also a consistent estimate of 7(2).

We also remark that the APES algorithm only requires simple matrix multiplica-
tions and matrix inverses. Moreover, many computations of the APES algorithﬁ can
be done in parallel. It is thus possible to achieve real-time range signature estima-
tion by implementing the APES algorithm with parallel processors and/or specially

designed hardwares.
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We note that for the special case of M = 1, the 4(t) in ((5.15)) can be shown to
be the Fourier transform of z. Thus the Fourier transform method is a special case
of the APES method.

Finally, the parameter M has the following effects on the APES performance.
Note first that the larger the M, the larger the dimension of Qi(?), and thus the
better the modeling of the interferences. We shall show in the following subsection
that the larger the M, the better the resolution of the APES method. On the other
hand, the larger the M, the smaller the N = M —M+1. Thus increasing M increases
the variance of Q(t) since £3,(t), Riz, Rz, and £5,(t) are poorer estimates for larger
M. We shall show in the following subsection that for very large M, the variance of
4(t) may increase. Also, increasing M increases the amount of computations needed

by the APES method.

5.2.3 Numerical and Experimental Results

We present below both numerical and experimental examples showing the perfor-
mance of the APES algorithm. In the simulated numerical examples, the root-mean-
squared errors (RMSEs) of the APES estimator are obtained with 100 independent
Monte-Carlo trials and are compared with the corresponding Cramer-Rao bounds
(CRBs) derived in Appendix A.

We first use simple numerical examples to illustrate the performance of the APES
estimator. Consider first an example where the true range signature is shown in
Figure 5.1(a). We assume that there are 66 scattering centers in the signature. The
number of data samples in the received data vector z in ((5.3)) is assumed to be
M = 128. The additive thermal noise in z is assumed to be a zero-mean white
Gaussian random process with variance 1. Figure 5.1(b) shows the estimated range
signature (amplitude only) with the FFT method, which is also equivalent to the
APES method with M = 1. Note that due to the large sidelobes of the FF'T method,
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the fourth scattering center is not discernible in Figure 5.1(b). Figure 5.1(c) shows the
estimated range signature with the APES method with M = 48. Comparing Figures
5.1(b) and (c), we note that using APES method with M = 48 yields a much better
range signature estimate, which has much reduced sidelobes and better resolution for
the large scattering centers, than using the FFT method. For the 62 very small and
very closely spaced scattering centers between 0.97 and 2.47, the APES method with
M = 48 tends to suppress them. Figure 5.1(d) shows the estimated range signature
obtained when using the MODE with the least-squares fitting (MODE-LSF) method
by assuming that there are 48 complex sinusoids plus white noise in the received data
vector z. We note that since the data model is incorrect for the MODE-LSF method
and some of the estimated scattering centers are very close to each other, using the
MODE-LSF method may yield very large false peaks. For this case, they occur near
t = 2.5. (Note that this type of large false peaks do not occur in every Monte-Carlo
simulation. They occur in about 20% of the Monte-Carlo simulations.) The presence
of these large false peaks makes the MODE-LSF method less preferable even than the
FFT method. Figure 5.1(e) shows the estimated range signature obtained by using
FFT with Kaiser window and shape parameter 4. Comparing Figures 5.1(b), (c), and
(e), we note that using FFT with Kaiser window can reduce the FF'T sidelobes, but
the already poor resolution of the FFT method is made poorer due to the windowing.

We now consider the effects of M on the performance of the APES estimator.
Figure 5.2 shows the RMSEs of 4(t = 0.2332) (the first scatterer in Figure 5.1(a))
obtained with the APES estimator as a function of M. We note from Figure 5.2
that the APES estimator with a proper M can givermuch more accurate estimates of
~(t = 0.2332) than the FFT method, which is equivalent to the APES method with
M = 1. With a proper M, the performance of the APES estimator can be close the
corresponding CRB, which is also the best unbiased performance that can be achieved

by an estimator. Note also that for very large M, the RMSE of (¢t = 0.2332)
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may increase due to the poor estimate of Q:(t). To achieve the best estimate of
~(t = 0.2332), the M should be within 20 < M < 64.

Figures 5.3(a) and (b) show the range signature estimates obtained with the APES
method when A = 28 and M = 64, respectively. We note from Figure 5.2(a) that
using the APES method with any M within 20 < M < 64 yields similar RMSEs for
4(t = 0.2332). Yet Figure 5.3 shows that the larger the M within 20 < M < 64, the
better the resolution of the estimated range signature. The larger the M, however,
the larger the amount of computations needed by the APES method.

Consider next an example where the true range signature is shown in Figure 5.4(a).
We assume that there are 75 scattering centers in the signature. The number of data
samples in the received data vector z in ((5.3)) is assumed to be M = 128. The
additive thermal noise in z is assumed to be a zero-mean white Gaussian random
process with variance 10. Figure 5.4(b) shows the estimated range signature with the.
FFT method. Note that due to the large sidelobes of the FF'T method, the two small
scattering centers that are to left and right of the first group of the large scattering
centers are not discernible in Figure 5.4(b). Figure 5.4(c) shows the estimated range
signature with the APES method with M = 48. We note that the two small scattering
centers that are to left and right of the first group of the large scattering centers are
resolved in Figure 5.4(c) since the sidelobes are very small for the APES method
with M = 48. Comparing Figures 5.4(b) and (c), we note that neither the FFT nor
the APES method with M = 48 can resolve the three groups of very closely spaced
scattering centers. Both methods tend to combine the RCSs of very closely spaced
scattering centers together to yield a large peak in the range signature since these
scattering centers have the same phase (see Figure 5.4(a)). Figure 5.4(d) shows the
estimated range signature with the MODE-LSF method by assuming that there are 438
complex sinusoids plus white noise in the received data vector z. We note that since

the data model is incorrect for the MODE-LSF method and some of the estimated
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scatterer locations are very close to each other, using the MODE-LSF method may
yield large false peaks. For this example, they occur near ¢ = 1.7. Figure 5.4(e) shows
the estimated range signature obtained by using FFT with Kaiser window and shape
parameter 4. Comparing Figures 5.4(b) and (e), we note that using FF'T with Kaiser
window further widens the large peaks in 5.4(b). ‘

Finally, we apply below the APES method to the experimental data measured by
a ground-to-air radar. (All other information about the radar and the radar target is
not available for public release.) The measured data consists of M = 128 samples and
is also degraded with the zero-mean white Gaussian noise with variance 0.1. Figure
5.5(a) shows the target range signature of an aircraft obtained with the FF'T method.
Figure 5.5(b) shows the target range signature of the aircraft obtained by using the
FFT method with the Kaiser window and shape parameter 4. Figure 5.5(c) shows the
target range signature obtained with the APES method with M = 48. Comparing
Figures 5.5(a) and (c), we note that using the APES method with M = 48 yields
much lower sidelobes than using the FFT method. Comparing Figures 5.5(b) and
(c), we note that using the APES method with M = 48 yields better resolution and
sharper peaks than using the windowed FFT. Figure 5.5(d) shows the target range
signature obtained when using the MODE-LSF method and assuming that there are
48 complex sinusoids plus white noise in the measured data. We note that using the
MODE-LSF method can yield poor target range signatures due to inaccurate data

models.

5.3 Using the APES Algorithm for SAR Imaging

In this section, we extend the parametric model we proposed in the previous
section to synthetic aperture radar (SAR) imaging. We also describe how the APES

algorithm presented in the previous section may be used for SAR imaging.
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5.3.1 Problem Formulation

In synthetic aperture radar (SAR) or inverse SAR (ISAR) imaging [6, 7], the
radar usually transmits linear frequency modulated (chirp) pulses. Upon receiving
each pulse returned by an object being imaged, the radar demodulates the pulse by
mixing the pulse with a reference chirp signal and low-pass filter the mixed signal.
As a result, the scattering centers of the object at different ranges correspond to
different frequencies of the output of this demodulation operation. Since either the
radar or the object is moving or rotating, the pulses received at different angles
between the radar and the object are used to form a synthetic aperture. After Polar-
to-Cartesian interpolation, the scattering centers of the object at the same range but
different cross-ranges correspond to different (Doppler) frequencies over the synthetic
aperture.

Let Z denote an My x M, matrix containing the samples of the demodulated and
Polar-to-Cartesian interpolated data, from which a SAR image is computed. A simple
nonparametric method of computing the SAR image is to use the two-dimensional
(2-D) FFT, which is again both computationally efficient and robust to model errors.
However, FFT is known for its high sidelobes and poor resolution. Many different
types of windows may be applied to Z to reduce the sidelobes. Yet using windows with
FFT further reduces the already poor resolution of FFT. Thus to use 2-D windowed
FFT to obtain high resolution SAR images, a large radar bandwidth and a large
synthetic aperture are needed. One of the disadvantages of this requirement is that it
makes it difficult to use synthetic aperture radar technology for wide-area surveillance.

To achieve high resolution with limited radar bandwidth and synthetic aperture,
many parametric and nonparametric spec-tral estimation methods have been used for
SAR imaging [8, 9, 10, 11, 12, 13, 14]. For example, the Z may be written as the
sum of 2-D complex sinusoids in additive noise. The 2-D frequencies of the sinusoids

may be estimated with computationally and asymptotically (for high signal-to-noise
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ratio) statistically efficient 2D-MODE method [14]. The complex amplitudes of the
sinusoids may then be estimated with the straightforward least-squares fitting [9].
However, similar to the case of the high resolution range estimation, this parametric
modeling approach may result in poor performance when the number of sinusoids is
too large to uniquely determine the parameters of the sinusoids [14] or when two or
more sinusoids are so closely spaced that 2-D frequency estimation methods cannot
resolve all of them.

We consider below a more robust parametric data model, which is similar to the
one proposed in the previous section. Let 7(1,?2) denote the complex intensity of the
(¢,7)th pixel of an M, x M;; SAR image we intend to form, where t; = 27(: —1)/Ms
and ty = 27(j — 1)/M,;;. To estimate v(t1,t2), we model the received data Z as

Z = "/(tl, tz)f(tl) ® fT(tz) + N(tl, tz), (517)

where ® denotes the Kronecker matrix product, f(t;), i = 1,2, is defined in ((5.2))
with t; replaced by t; and M replaced by M;, and N(¢1,2) denotes the additive
noise. The vec[N(t1,t;)], where vec(-) denotes stacking all columns of a matrix into a
single column vector, is assumed to be a circularly symmetric complex Gaussian ran-
dom vector with zero-mean and unknown covariance matrix Q(¢1,%2). The unknown
Q(t1,t;) models both the thermal noise and the interferences from other pixels of
the SAR image. The Q(t;,t2) is assumed to be a positive definite and block-Toeplitz
matrix whose blocks are also Toeplitz matrices.

The problem of interest herein is to determine the range signature v(t1,12) from
7.. We remark that the complex intensities y(t1,%2) of all pixels in 2 SAR image can

be computed in parallel.
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5.3.2 SAR Imaging with the APES Algorithm

The APES algorithm may be applied to the rows (columns) and then to the
columns (rows) of the data matrix Z to form the SAR image. We referred to this
approach as the one-dimensional APES or the 1-D APES algorithm. We also present
below a two-dimensional APES or the 2-D APES algorithm. We shall show in the
next subsection that the 2-D APES algorithm may be computationally more intensive
but may yield better SAR images than the 1-D APES algorithm.

To obtain the 2-D APES algorithm, we first divide the data matrix Z into N1N2
overlapping submatrices Z(n) of dimension M; x M, (in raster sequence), where
Ny = M; — M; +1 and Ny = My — M, + 1. Let N(tl,tg,n) be formed from N(¢1,t2)

in the same way Z(n) are formed from Z. Let
n(ty, iz, n) = vec [N(tl,tz, n)] . (5.18)

The fi(t,,%2,n) are assumed to be circularly symmetric complex Gaussian random
vectors with zero-mean and the same unknown covariance matrix Qi(t1,?2), which

has the same form as Q(t1,%2). Let
z(n) = vec [Z(n)] . (5.19)
Then z(n),n =1,2,--- , N1 N, may be written as
7(n) = v(t1, t2)ao(t1, t2)y(t, t2, n) + A(t1, t2,n), (5.20)
where ag(t;,%2) is referred to as the steering vector and has the form
ao(t1,t2) = a1(t1) @ ax(ts), (5.21)

where

. T
a;(t)=1|1 et .- ei(M-'—l)t-'] , 1=1,2, (5.22)
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and y(t1,tz,n) is the nth element of the vector yo(t1,t2),
yo(t1,t2) = y1(t1) ® ya(t2), (5.23)

with
T

Yi(ti) = [ 1 ejt:' - ej(ﬁ,‘—l)t,' , 'l = 1’2 (524)
Let J be the My M, x M; M, exchange matrix. Let
z(n) = Jz* (N1 N2 — n + 1), (5.25)
Let
ﬁ(tl,t2,n) = Jﬁ*(tl,tg,NlNQ —n+1), (526)
where fi(t;,t2,n) are assumed to have the same statistics as fi(t1,¢2,n). Then z(n)
may be written as

i(n) = 7*(t1,t2)5(t1,t2)ao(t1, tg)y(tl, tg, Tl) + ﬁ(tl, tg, Tl), (527)

where
Blts, 1) = e+, (5.28)

With these new notation definitions, the remaining steps of computing 4(t1,12) in
the 2-D APES algorithm are similar to those of computing ¥(t) in the APES algorithm
presented in the previous section. Let

1 14V2
N1N2 n=1

f‘Zy(tht?) = i(n)y(tl’tZ)v (529)

and f'zy(tl, t,) be defined similarly. Then similar to using FFT to compute £3,(t) and
£,(t) in the previous section, the 2-D FFT method can be used to compute £z, (%1, t2)
and t3,(#;,t2) more efficiently.

We remark that for the special case of M, = M, = 1, the 4(t1,12) obtained
with either the 1-D or the 2-D APES algorithm can be shown to be the 2-D Fourier
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transform of Z. Thus the Fourier transform method is again a special case of the
APES methods.

We also remark that both the 1-D and 2-D APES algorithms only require simple
matrix multiplications and matrix inverses. Moreover, many computations of the
APES algorithms can be done in parallel. It is thus possible to achieve real-time
SAR image formation by implementing the APES algorithm with parallel processors

and/or specially designed hardwares.

5.3.3 XPATCH Examples

We present below simulated examples showing the performance of the 1-D and
2-D APES algorithms for SAR imaging. The data we use are generated by XPATCH,
which is a computational electromagnetics software [15].

Figure 5.6(a) shows the SAR image (the logarithm of the amplitude) of a firetruck
obtained with the 2-D FFT method when M; = M, = 128. The firetruck is simulated
with the XPATCH software [15] and is added with the zero-mean white Gaussian
noise with variance 0.1. Figure 5.6(b) shows the SAR image obtained by using the
2-D FFT method with the circularly symmetric Kaiser window and shape parameter
6. Figure 5.6(c) shows the SAR image obtained by using the 1-D APES algorithm
with M = 48. Comparing Figures 5.6(a), (b), and (c), we note that using the 1-
D APES algorithm with M = 48 yields lower sidelobes and better resolution than
the 2-D FFT methods. Figure 5.6(d) shows the SAR image obtained by using the
9D-MODE algorithm with the least-squares fitting (2D-MODE-LSF) and assuming
that there are 121 two-dimensional complex sinusoids in additive white noise. We
note that the 2D-MODE-LSF algorithm performs poorly and many features that are
important for target identification, such as the target pixels to the upper right of the
brightest pixels in Figure 5.6(b), are left out in Figure 5.6(d) by the 2D-MODE-LSF

algorithm.



Figure 5.7 is similar to Figure 5.6 except that only 1/2 of the bandwidth and
1/2 of the synthetic aperture are used for SAR imaging. Further, Figure 5.7(c) is
obtained with the 1-D APES algorithm with M = 24. Figure 5.8 is also similar to
Figure 5.6 except that only 1/3 of the bandwidth and 1/3 of the synthetic aperture
are used for SAR imaging. Further, Figure 5.8(c) is obtained with the 1-D APES
algorithm with M = 16. Figure 5.8(d) is obtained with the 2-D APES algorithm with
M, = N, = 16. Figure 5.8(e) is obtained similarly as Figure 5.7(d). We again note
that using the APES algorithms yield lower sidelobes and better resolution than the
9-D FFT methods. The APES algorithm is also more robust than the 2D-MODE-LSF
method. Finally, we note from Figures 5.8(c) and (d) that the 2-D APES algorithm
gives better performance than the 1-D APES algorithm at the cost of much more

computations.

5.4 Conclusions

We have presented a robust parametric data model for estimating high resolution
range signatures of radar targets and for forming high resolution synthetic aperture
radar (SAR) images. We have described how the APES (Amplitude and Phase Es-
timation of a Sinusoid in unknown colored noise) algorithm can be used to estimate
the range signatures and to form SAR images; With both numerical and experi-
mental examples, we have shown that our modeling and estimation approach yields
better resolution and lower sidelobes than the conventional nonparametric FFT (fast
Fourier transform) method. We have also shown that our approach is more robust
than modeling the radar data as a certain number of complex sinusoids in noise and
estimating the frequencies, amplitudes, and phases of the sinusoids with one of the

best sinusoidal parameter estimation methods.
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Appendix A — Large Sample Maximum Likelihood Estimator and Cramer-
Rao Bound

We consider below the estimation of the complex gain of a signal with known
waveform and known steering vector in unknown colored Gaussian noise. Let x(n),
n =1,2,---,N, denote some received data vectors of dimensions M x 1. Let y(n),

n=1,2---,N, denote a known waveform. Assume that the received data vectors

x(n) can be written as

x(n) = vapy(n) + n(n), (5.30)

where 1 is the additive noise vector of dimensions M x 1 and ag is referred to as the
steering vector and is known. The noise vectors n(n) are assumed to be circularly
symmetric complex Gaussian random vectors with zero-mean and arbitrary covariance

matrix Q and are temporally white, i.e.,
Eln(:)n”(5)] = Qb (5.31)

where (-)¥ denotes the complex conjugate transpose and &; ; is the Kronecker delta.

We consider below a large sample (N > 1) maximum likelihood (ML) estimator
for estimating v from x(n), n = 1,2,---,N. It is easy to show that an exact ML
estimator requires a multidimensional search over the parameter space and is com-
putationally burdensome. We shall present below a large sample ML estimator that

is both computationally and asymptotically (for large N) statistically efficient. The
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approach we use to derive the large sample ML estimator is similar to the one in
[16, 17], which is devised for a different problem.
The log-likelihood function of the received vectors x(n), n =1,2,---, N, 1s pro-
portional to (within an additive constant):
tnja — {5 Sfxtn) — byetn) ~ by}

where | - | denotes the determinant of a matrix and
b = yaq. (5.32)

Consider first the estimate of Q and the unstructured estimate of b. It is easy to

show that

A

N
A= > lx(n) — by(mlfx(r) ~ By(n)) (5.33)

and b may be obtained by minimizing the following cost function

1 N

F=\5 E_:I[X(n) — by(n)][x(n) - by(n)]"|. (5.34)
Let
. 1 X H
Pyx = ﬁn;y(n)x (n), (5.35)
and
. 1 X "
Tyy = Nngl y(n)y” (n). (5.36)

Let Ryy be defined similarly as #y,. Then let [18]

1 N
G = = Llx(n) = by(n)lix(n) = by(m)]" (5.37)
n=1
= Rxx — by — £ b7 + bf, b7 (5.38)
-~ A — A -~ A n H al ~ A — ~
= [b - rg(ryyl] Ty [b - rg(ryyl] + Rxx — rgcryylryx. (5.39)



Since #,, is a positive number and the second and third terms in ((5.39)) do not

depend on b, it follows that

G>G| beb (5.40)
where
b =Rt (5.41)

Since the whole sample covariance matrix G is minimized, the unstructured estimate
b of b in ((5.41)) will minimize any nondecreasing function of G including the deter-
minant of G, which is°F in ((5.34)). It is easy to see that b is a consistent estimate
of b.

By using ((5.41)) with ((5.33)), the Q may be rewritten as

Q = Rux — Flufyy Bux- (5.42)

It is easy to see that Q is a consistent estimate of Q.

Let us now consider the structure of b. The cost function in ((5.34)) may be

rewritten as

F = |Ryx—bix — fib" + by, b | | (5.43)
= |Rox = By, b + (b — b)yy (b — b)H| (5.44)
= QI+ Q7 (b —b)fy(b - b)7|. (5.45)

The ML estimate of v may be obtained by minimizing F in ((5.45)) or equivalently
In F. In [16, 17], we have shown that minimizing In F’, with F defined in ((5.45)), is

asymptotically (for large N) equivalent to minimizing
Fy = tr [y (b = B)7Q7' (b — b)| . (5.46)

Using b = vyag and minimizing F} in ((5.46)) with respect to v yields

Lo 29D
alQ'ag

(5.47)
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The large sample ML estimator for estimating 4 may be summarized as follows:
Step 1: Compute b and Q with ((5.41)) and ((5.42)), respectively.
Step 2: Determine 4 with ((5.47)).

We remark that since 4 is a consistent and large sample realization of the ML esti-
mate, it follows that ¥ is asymptotically (for large V) statistically efficient according
to the general properties of ML estimators [19]. Using the results in [16, 17], we can
show that the asymptotic (for large N) distribution of 4 is complex Gaussian with

mean v and variance

1
S v (n)alf Q-tacy(n)’

Var[§] = (5.48)

which is also the CRB.
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Figure 5.1: Range signature estimates (solid lines in (b) - (e)) compared to the true
range signature (dashed lines in (b) — (e)) when the white noise variance is 1 and
M = 128. (a) True range signature. (b) FFT or APES with M = 1. (c) APES with
M = 48. (d) MODE-LSF by assuming 48 complex sinusoids. (e) FFT with Kaiser

window and shape parameter 4.
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range signature (dashed lines in (b) - (e)) when the white noise variance is 10 and
M =128. (a) True range signature. (b) FFT or APES with M = 1. (c) APES with
M = 48. (d) MODE-LSF by assuming 48 complex sinusoids. (e) FFT with Kaiser
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Figure 5.5: Range signature estimates of an airplane measured with a ground-to-air
radar. (a) FFT or APES with M = 1. (b) FFT with Kaiser window and shape
parameter 4. (c) APES with M = 48. (d) MODE-LSF by assuming 48 complex

~ sinusoids.
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R images of an XPATCH simulated firetruck when the additive white

noise variance is 0.1 and My = M, = 128, (a) 2-D FFT. (b) 2-D FFT with circularly

svmmetric Najser window and shape parameter 6. {¢) 1-D APES with M/ =48, (d)

2D-MODE-LST e assuming 121 complex sinusoids.

Figure 3.6: SA
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Iigure 3.7: SAR images of an NPATCH simulated dretruck when the additive white
noise variance is 0.1 and M = My = 128. Turther. 1,2 of the bandwidth and 1,2
ic aperture of that in Figure 5.6 are used. {a) 2-D FFT. (b) 2-D FTT
¢ Naiser window and shape narameter 6. ¢ L-D APES with

of the =vnthet
with circularic svmmerri

Mo=20 00 2D NMODE-LST b assuming 121 complex sinusoids.
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Figure 5.3: SAR images of an XPATCH simulated firerrick when the additive white
noise variance is 0.1 and My = 1, = 128. Further. |3 of the bandwidth and 1/3
of rhe synthetic aperture of that in Figure 5.6 are used. {a) 2-D FFT. (b, 2-D FFT
with cirenlarly svmmettvic Naiser window and shape parameter 6. iciy 1-D APES with
M o= i6. 6l 2-D APES with 1y = M, = 16. () 2D-MODE-LST by assuming 121

compley sinnsoids.
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Figure 8: (e)
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