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1571 ABSTR4CT 
A method and an apparatus for the rapid learning of 
nonlinear mappings and topological transformations 
using a dynamically reconfigurable artificial neural 
network is presented. This fully-recurrent Adaptive 
Neuron Model (ANM) network has been applied to the 
highly degenerative inverse kinematics problem in ro- 
botics, and its performance evaluation is bench-marked. 
Once trained, the resulting neuromorphic architecture 
was implemented in custom analog neural network 
hardware and the parameters capturing the functional 
transformation downloaded onto the system. This 
neuroprocessor, capable of 109 ops/sec, was interfaced 
directly to a three degree of freedom Heathkit robotic 
manipulator. Calculation of the hardware feed-forward 
pass for this mapping was benchmarked at ~ 1 0  psec. 
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the action that must be camed out to meet the task at 
ADAPTIVE NEURON MODEL-AN hand. Such systems are said to be redundant or degener- 

ARCHITECI'URE FOR THE RAPID LEARNING OF ate. This means that there can exist numerous if not an 
NONLINEAR TOPOLOGICAL infinite number of distinct solutions for the system vari- 

TRANSFORMATIONS 5 ables, whilst at the same time being entirely consistent 
with the desired task at hand. 

ORIGIN OF THE INVENTION Specifically, a problem that fits directly into this 
The invention described herein was made in the per- mold and has received much attention from the neural 

formance of work under a NASA contract, and is sub- network community is that of the inverse kinematic 
ject to the provisions of Public Law 96-517 (35 usc 10 problem for a robotic manipulator with excess degrees 
202) in which the contractor has elected not to retain of freedom. It should be observed that biological sys- 
title. tems handle such ill-defined or ill-structured problems 

such as sensorimotor control with remarkable ease and 
flexibility and reveal a spontaneous emergent ability BACKGROUND O F  THE INVENTION 

l5 that enables them to adapt their structure and function. 
This provides the motivation for recourse to biologi- 
cally inspired paradigms for such problems. The inverse 
kinematic problem has been selected to benchmark the 
performance of the ANM learning algorithm. The in- 

2. Background Art 2o ventor has previously addressed this same problem 
A problem that has remained consistently at the fore- from the perspective of a fed-foward network em- 

front of neural network for the Past several ploying the backpropagation algorithm, as disclosed in 
Y-, concerns the scalability of both neural networks U.S. patent application Qr.  No. 07/473,024 fded Jan. 
architectures and their associated learning algorithms. 31, 1990 by the present inventor and c s ~ ~ ~ a l  
Novel ideas for faSt 1eXllhg algorithms have Surfaced 25 Network with ~ ~ e ~ a l l ~  Adaptable N ~ ~ ~ ~ ~ ~ . * ~  ne 

1. Technical Field 
The invention relates to fully recurrent analog neural 

networks and in particular to apparatus and methods of 
training such networks by continuous updating of syn- 
apse weights and neuron temperatures. 

in the literature, and include such formalisms as net- 
works with non-Lipschitzian dynamics; terminal attrac- 

use of comectionist architectures is not limited to the 
inverse kinematic problem In fact neural networks 

tors; and locallY-tuned processing There have 
in the area Of dy- 

have been used for (a) unsupervised adaptive visual- 
motor coordination of a mdtijoint - where the sys- &' si@ificant 

namidly reconfigurable neural network topologies for 30 tem can learn sensory-motor control from experience, 
optimal use of processing assets. These include the re- 
source allocating neural network (RANN) and the cas- 
cade correlation neural network (CCNN). However, 

@) dynamic control of manipulators based on the 
CMAC approach of Albus, and (c) the neural learning 

the concern still remains that these approaches are 
geared toward 'small' problems that 

Of the mapping transformation trajec- 
move- be relatively 35 tory formation and the 

easily implemented and trained in software within finite ment. 
time On digid computers. H ~ ~ ~ ~ ~ ~ ,  In selecting a neural network architecture, thought 

must also be given to the method for lifting the degener- 

hardware solutions as they prove to be otherwise fie- 4 distinct ways exist for achieving this. It can be accom- 
quently inWactable computationally. Although plished with the introduction of constraints embedded a 
parallel hardware solutions me j u t  beginning to emerge priori within the training set. This is the method which 
commercially, the problem of fast parallel onchip or we pursue in this specification when forming the train- 
0ff-chip learning is still an issue. The fundamend prob- ing Set for the 3-link robotic manipulator. It may AS0 be 
lem in learning, therefore, is to further develop, refine 45 accomplished with the introduction of a penalty term 
and s p d - u p  present learning algorithms which are within the energy function. The neural network is then 
capable of either extracting or memorizing the fmc- trained to provide a solution that optimizes the penalty 
tiond relationship 1-g the inputdutput data pairs of function P(X) that meets the specified constraints. 
observations in a more rapid fashion. Of the In order to illustrate these points, we bonow an ex- 
desire is to consequently use this information to predict 50 ample from linear algebra- Consider the Problem of an 
the correct response to novel input patterns in real time. under cocstrained system of eguations qf the d a ~ O w n  

In this specification, our initial focus is to develop the wuhbk x of the form k = b .  Here, b is a constant 
necessary mathematical formalism for a new comet- vector quantity, and A is the matrix of constant coefici- 
tionkt learning architecture called the Adaptive Neu- ents. For an under-constrained system of equations, 
ron Model (ANM) which has been designed to rapidly 55 there is ,"O possible way for determining a unique soh- 
learn arbitrary, complex, nonlinear transformations tion to x and in fact there exist an infinite number of 
from example. As the name of the model implies, the solutions for it. Unique solutions can only be obtained 
architecture allows both the synaptic and neuronal pa- by the introduction of an adequate number of con- 
rameters to adapt. Training statistics indicate a consid- straints equation in the variable x so as to properly 
erable gain in training time is achievable. This model 60 constrain the system. 
has been applied to a broad class of problems and has In the last section of this specification, we report on 
been shown to achieve functional synthesis on the train- an electronic implementation of the resulting neural 
ing data. Of particular relevance to applications of the network architecture that was put together from cus- 
ANM model, is the class of problems commonly known tom analog 'building block' neural network chips devel- 
as inverse mapping problems. These inverse problems 65 oped at the Jet Propulsion Laboratory. This electronic 
are typically nonlinear, and are usually characterized by neuroprocessor has been interfaced with a commer- 
their one-to-many mapping operation. In other words, cially available Heathkit five degree of freedom robotic 
the specification of a goal does not uniquely determine arm. In this example, the arm was constrained to motion 

network architectures, which 
realistic problems, often require specialized parallel acy problem present in these inverse m P P k s -  Two 



3 
in the vertical plane using three degrees of freedom out 
of a total of five available degrees. The electronic 
neuroprocessor was shown to be capable of guiding the 
manipulator along arbitrary trajectories in real-time. 

SUMMARY O F  THE INVENTION 
The invention is a method an apparatus for the rapid 

learning of non-linear mappings and topological trans- 
formations using a dynamically reconfigurable artificial 
neural network is presented. This fully-recurrent 
Adaptive Neuron Model (ANM) network has been 
applied to the highly degenerate inverse kinematics 
problem in robotics, and its performance evaluation is 
benchmarked. Once trained, the resulting neuro- 
morphic architecture was implemented in custom ana- 
log neural network hardware and the parameters cap- 
turing the functional transformation downloaded onto 
the system. This neuroprocessor, capable of IO9 ops/- 
sec, was interfaced directly to a three degree of freedom 
Heathkit robotic manipulator. Calculation of the hard- 
ware feed-forward pass for this mapping was bench- 
marked at =: 10 psec. 

The invention trains an analog neural network of 
plural neurons connected together by respective synap- 
ses, the neurons having respective activity states and 
adjustable neuron temperatures, the synapses having 
adjustable synapse weights, by defining, relative to an 
error between activity states of output ones of the neu- 
rons and a predetermined trainiig vector, predeter- 
mined time-dependent behaviors of: (a) the activity 
states, (b) the neuron temperatures in accordance with a 
gradient descent of the error in temperature space and 
(c) the synapse weights in accordance with a gradient 
descent of the error in weight space. The behaviors are 
governed by (a) an activity state relaxation time, (b) a 
neuron temperature relaxation time and (c) a synapse 
weight relaxation time, reswctively. The invention 
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confinuously updates the neuron activity states, the 
neuron temperatures and the synapse weights of the 
analog neural network at respective rates correspond- 40 
ing to the relaxation times until the error is reduced 
below a predetermined threshold. The activity state 
relaxation time is shorter than the neuron temperature 
relaxation time and shorter than the synapse weight 
relaxation time, whereby for a given set of values of the 45 
neuron temperatures and synapse weights, the neuron 
activity states equilibrate before changes in the set of 
values occur. In the preferred embodiment of the inven- 
tion, each behavior is a corresponding differential equa- 
tion for each neuron. The behavior of the activity states 50 
is an activity state differential equation for each neuron 
defining the time derivative of the corresponding activ- 
ity state in terms of a product of the corresponding 
neuron temperature multiplied by the sum of products 
of correswnding ones of the synapse weights and cor- 55 
respond& onesof the activitystaks. Thecontinuously 
updating includes solving the activity state differential 
equation for the activity state repetitively at a rate cor- 
responding to the activity state relaxation time. The 
behavior of the neuron temperatures is a temperature 
differential equation for each neuron defining the time 
derivative of the corresponding neuron temperature as 
a product of an exponential function of the neuron tem- 
perature and the error transformed by a matrix of the 
synapse weights. The continuously updating further 
includes solving the temperature differential equation 
for the neuron temperature repetitively at a rate corre- 
sponding to the temperature relaxation time. The be- 

M) 

65 

1 

4 
havior of the synapse weights is a weight differential 
equation for each synapse defining the time derivative 
of the corresponding synapse weight as a product of an 
exponential function of the corresponding neuron tem- 
perature and a sum of products of the synapse weights. 
The continuously updating further includes solving the 
weight differential equation for the synapse weight 
repetitively at a rate corresponding to the weight relax- 
ation time. The differential equations are solved in an 
order of ascending relaxation times. The invention em- 
ploys the results of the solving of a previous differential 
equation in solving a next differential equation. 

BRIEF DESCRIPTION OF THE DRAWINGS 
FIG. 1 illustrates the network topology and connec- 

tivity of a fully recurrent neural network included in the 
invention. 

FIG. 2 illustrates a robotic arm employed in carrying 
out one application of the invention. 

FIG. 3 illustrates the degeneracy problem for a robot 
manipulator solved by the invention. 

FIG. 4 illustrates the smoothness criteria for a trans- 
formation employed in robotic kinematics emulated by 
the invention. 

FIG. 5 illustrates the reductions of a robotic system 
to a 3 link kinematic chain emulated by the invention. 

FIG. 6 illustrates a Cartesian end effector space se- 
lected for training the network in accordance with the 
invention. 

FIG. 7 illustrates the joint space spanned by three 
joint angles emulated by the invention. 

FIG. 8 is a graph illustrating the training statistics of 
a neural network embodying the invention. 

FIG. 9 is a graph illustrating the performance of a 
neural network embodying the invention on a training 
set. 

FIG. 10 is a graph illustrating the performance of a 
neural network embodying the invention on untrained 
examples. 

FIG. 11 illustrates planned versus actual paths using a 
trajectory generation method in carrying out the inven- 
tion. 

FIG. 12 is a block diagram of a feed forward neural 
network hardware implementation embodying the in- 
vention. 

FIG. 13 is a schematic diagram of a robotic controller 
emulated by the invention. 

FIG. 14 is a graph illustrating end effector position- 
ing accuracy as a function of weight quantization in 
carrying out the invention. 

FIG. 15 is a flow diagram illustrating the algorithm 
for continuously updating neuron temperatures and 
synapse weights in accordance with the invention. 

DETAILED DESCRIPTION OF THE 
INVENTION 

Adaptive Neuron Model 
The basic premise behind the Adaptive Neuron 

Model is that the neurons should be allowed to actively 
participate in the learning process. Prior neuromorphic 
models regarded the neuron as a strictly passive nonlin- 
ear element and the synapse as the primary source of 
knowledge capture and information retention. In this 
section, we develop the necessary mathematical formal- 
ism for the Adaptive Neuron Model. This is a fully 
recurrent extension of earlier work done by the inven- 
tor described in the above-referenced patent applica- 
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tion. The dynamics of a neural network consisting of a 
system of N interacting neurons is specified by the set of 
N coupled nonlinear differential equations. These are 
given by: 

space therefore uniquely specifies the state of the neu- 
rons. Fully-recurrent algorithms already exist that will 
adjust the synaptic weight matrix W 20 that a given 
initial2tate Giy and a given input vector I result in a fixed 

5 point xfwhose components have the desired set of tar- 
get values q, along the output units. This is accom- 
plished by minimizing a function E (the so-called en- 
ergy function) which measures the distance between the 
desired fixed point and the actual fixed point over the 

where X i  represents the activity of the irh neuron in a 10 entire training set. For M output units, this function is 
system of N interacting neurons and is bound on the given by: 
interval [OY1]; where wq is the inter-neuron coupling 
coefficient (or connection strength) and is direction 
sensitive in the sense that wy is directed from the jrh 
neuron to the irh neuron; where the constant Ii repre- 15 
sents the external stimulus received by the irh neuron; The function E depends on-the weight matrix w 
where Pi is the inverse of the temperature of the irh through the fixed points, i.e. d(w..). A learning dg0- 

T h e  function gX 1 is a nonlinear function, and the only the manifolds which xi=Tion the 
restriction in choosing this function is that it be differen- 20 output units. m i s  is accomplished dynamically by d- 

ever two used forms the logistic trajectories which are antiparallel to the gradient of E. 
function and the gaussian local response function. These In other words, 
are given by: 

(1) dxi 

M (3) E = 1 Z ( ~ i  - XI)’ 
i= 1 

and is a local parameter rithm mist therefore be capable of driving the fixed 

tiable. There are popular choices for gd 1, how- lowing the system to evolve in the weight space along 

25 
durn aE (4) 

7 w d i  = - a wrs (2) 
(I + e-Pq-1 logistic function 

ae-yu’ gaussian function where rw is a numerical constant which defines the 
30 relatively slow time scale for solving these differential 

and where a, fl ,  and y are constants that modify the for the weights. The r-n for to be long 
shape of these nonlinear response functions. In the fol- arises from the requirement that the dynamical system 
lowing derivation, we shall make reference to the popu- &’en by Equation 1 must always be at a steady state- In 
lar logistic function to illustrate the formalism. Exten- other words, if we let the numerical constant TX defines 
sion to other response functions is direct. The state of 35 the time scale on which the dynamical system relaxes, 
this dynamical system can be uniquely defined in the then Tx< <TU, and implies that the system of Equations 
following manner. For a system of N interacting neu- relax on a time scale where it would appear that the 
rons, the collective activity of the system Le., (Xi, all i weights are i-e. In the sec- 
e{ 1 , ~ ) )  defines a unique point, and hence state, in an N tion, a similar formalism is derived for the neuronal 
dimensional unit cube. The unit cube restriction comes 40 parameters- 
from the boundary conditions imposed on the variables O-* Neurodynamical formalism 
xi in Equation 1. F~~ the de of the argument, if we In this section, the general overview described above 
consider the adiabatic response of the system, i.e. where is a mathematical framework which 
both the synaptic weights and the neuronal tempera- fuses together into One fully recurrent formalism, both 
tures remain quasi-static, then the temporal evolution of 45 swaptic weight matrix learning (a p r o p o d  and devel- 
the system may then be viewed as a continuous path in oped by Pineda and neuronal learning. 
this ~ d h ~ ~ ~ i ~ ~ a l  unit ofactivity. ne dissipative Therefore, in addition to the system of differential equa- 
nature of the differential equation ensures that for-? tions given Equations l and our goal is to find a 
given set of initial_conditions, as given by the vector r~, local algorithm which adjusts the temperature -. Vector 3 
external W, the sys- 50 of the neurons so that for a given initial state XI, external 
tern will u12imately relax into a final state which we stimulus I, and weight matrix W, the system relaxes into 
denote by xf: In the following derivation, we use the the desired point attractor structure. The specific 
convention where vectors, vector components and ma- method selected by the inventor for accomplishing this 
tfix components are denoted by lower case letters with task is to allow the system to evolve in the temperature 
the appropriate number of indices, and matrices are 55 space along trajectories which are ati-paralle1 to the 
correspondingly denoted by upper case letters. ~~h~ gradient of the error function E given in Equation 3. In 
training, two other spaces are of relevance. First, there Other 

is the N X N dimensional space covering the real valued 

sional point in this space uniquely defines the weight 60 
state of the system. Furthermore, there is now an addi- 
tional N-dimensional positive real valued space (pi, all i where r p  is a numerical constant that defines the time 
e{l,N}) spanning all possible combinations of the neu- scale on which the neuronal temperatures d changes. 
ronal temperature parameters. Specific considerations Again, the time scale selected for ~p is relatively long, 
on physically meaningful or allowable values for neuro- 65 i.e. rx< <rp.  The reasons for this inequality is similar to 
nal parameters have to be made. For the logistic func- that described above for the weight updates. During the 
tion in Equation 1, it makes no sense considering nega- relaxation of the dynamical system into its attractor 
tive f l i  temperatures. A point in this N dimensional structure, (in accordance with Equation l), all parame- 

gXu) = 

~ 

I and the weights 

synaptic elements (wg, all i j  e{l,N}). An NXN-diien- dP, aE (5)  
7p = - dt = - - a& 
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ters including the synaptic weights and neuronal tem- 
peratures must be static. Therefore, the weights and 
temperature update time scales can be chosen to have 
similar time scales, i.e. T ~ T ~ .  Consider again the sys- 
tem of N interacting neurons. Of the various neurons in 5 
this network, there will exist three subsets: an input set, 
an output set, and a hidden set of neurons. The hidden 
set of neurons are those that are not connected to the 
outside world. A representation of this neural network 

As was stated earlier, the dynamics of the system of N 
topology is given in FIG. 1. 10 

interacting neurons is determined by Equation 6. 

Then Equation 12 can be rewritten as 

But since we want to solve for the partial derivative of 
xfwith respect to the temperature parameter fir, the 
matrix M in equation (14) must be inverted 

Substituting Equation 15 into Equation 8 results in the 
following expression Let us now find the lot$ algorithm which will adjust 

the temperature vector p. It was stated earlier that one 
way of accomplishing this was to let the neuron temper- 2o 
atures evolve in temperature space along trajectories 
which are anti-parallel to the gradient of the error func- 
tion given in Equation 3. In other words, 

Let us define the vector quantity to be a vector quan- 
tity whose component is equal to the expression con- 
tained within the brackets in Equation 16, i.e. 

(7) 25 

This choice of gradient descent has the simplest dynam- 
ics which minimizes E. On performing the differentia- 3o 
tion in Equation 7 one immediately obtains 

Then the differential equations governing the rate of 
change of the temperature Pr can be expressed as 

35 
The partial derivative of xfwith respect to Pr is ob- 
tained by noting that the fmed points of Equation 6 
satisfy the nonlinear algebraic equation 

dPr 
7 / 3 7  = vfuf 

The problem is that in Equation 15, the calculation of 
the matrix inverse is anon-local operation. Pineda 
showed a methodology for working around this prob- 
lem. Consider again Equation 17, and regroup the 
terms, i.e. 

Taking the partial derivative of this equation with re- 
spect to &results in the following expression, where the 45 
right hand term is simply the result of the chain rule, 

Equation 19 can be rearranged into the following ex- 
pression 

But the partial differential on the left hand side of Equa- 
tion 10 can be expressed as a summation over all neu- 
rons by using the Kronecker delta function, 

55 

ax/ g *..A ( 1 1 )  -- 
aPr - j=1  'J aPr 

Let us further define the vector quantity 
quantity in brackets in Equation 20. 

to be the 

zd= (-) Yd 
gk'(Uk5 

where a@= 1 iff i=j. Substituting Equation 11 into equa- 60 
tion 10 and regrouping terms, 

But Equation 21 is a stable solution of the following 
differential equation 

Let us define the matrix M whose components are given 
by 
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which can be easily solved. This leads to the following 
expression where we introduce timescales: 

often the repeated calculation of the transcendental 
functions. 
0.2 Inverse Kinematics 

A fundamental motion control task in the hierarchy 
(23) 5 of robotic tasks necessary to operate a robotic manipu- 

lator is the inverse kinematics problem. It is based on a 
non-linear inverse mapping that involves the geometri- 

and formulates all the necessary neuronal learning equa- cal structure of the robot manipulator. Let US consider a 
tioss. For the system to learn, it is necessary for the time robotic arm whose base is centered at the origin of some 
scales to be properly selected. The dynamical equations 10 Cartesian frame Of reference. In this specification mo- 
with explicit time scales are given as follows: tion is restricted to 2-D. 

Any point in this space is completely specified by 
three orthogonal translations from the origin. Conse- 

&I N (24) quently, a rigid body requires at least three coordinates 
15 to specify its position and orientation relative to this 

origin. The inverse kinematics problem is the transfor- 
dPr (25) mation between the Cartesian coordinate system and 

the coordinate system particular to the robot manipula- 
tor, i.e. the joint space. In other words, if we specify a 

(26) 20 Cartesian location for the robot's end-effector, we must dzr N 
k= 1 determine the set of joint angles required by the robot to 

(27) accomplish this task. The importance of this problem 
becomes clear when one considers that for the end- 
effector to achieve a desired trajectory in Cartesian 

(28) 25 space, one must determine how the joint angles vary 
with time along the entire trajectory. The transforma- 
tion between Cartesian space and the joint space de- 
pends on the manipulator's geometry, and most geome- 

The relaxation time scale for the forward propagation is tries lack a closed form solution to the inverse kinemat- 
Tx* 30 ics problem. Typically, an iterative search method must 

Equations 27 and 28 are taken from prior techniques be implemented to perform this transformation. Fur- 
based upon updating the synapse weights only. thermore, an added complication arises when redun- 

The relaxation timescale for the backward propaga- dant manipulators can reach the same end-effector posi- 
tion is TV. The weight adaptation time scale is given by tion and orientation via many possible configurations. 
TW. The adaptation time scale for the neuronal parame- 35 This poses the additional problem of selecting the opti- 
ters is ~ p .  It is straightforward to establish the relation- mal set of joint angles when a trajectory passes through 
ships which must be satisfied by the characteristic time a region of multiple solutions. 
scales of the system. Recall that an a-priori requirement In this specification we have considered a 3-degree of 
is that the system parameters w and I change adiabati- freedom manipulator moving in a 2-dimensional space, 
tally. This condition alone constrains the relative time 40 and have targeted both the inverse kinematics problem 
scales. and the closely associated problem of trajectory genera- 

tion as representative tasks for a connectionist approach 
and for a hardware based neural implementation. FIG. 

A robotic manipulator may be thought of as a set of 3 shows the degenerate 3-link robotic arm and FIG. 2 
interconnected chain elements called links. Links are 45 shows the arm and its workspace envelope. It is cen- 
connected to one other via joints, of which one such tered at (O,O), where its liiks are constrained to move in 
joint is the revolute joint. Joints are characterized by the x-y plane. Points within this planar workspace 
their having a single degree of freedom. Therefore, for bound by the first and fourth quadrant of the x-y plane, 
an n joint manipulator, the static state of system is en- constitute valid Cartesian coordinates for the end-effec- 
tirely specified by an n-element vector, whose compo- 50 tor. As stated above, the inverse kinematics problem 
nents provide a measure of the relative deflection of the deals with the transformation from the 2-dimensional 
two connecting linkages. Kinematics is the science of Cartesian space (x,y) describing the manipulators envi- 
motion that deals with the geometrical description of ronment to the 3-diiensional joint space (01,02,03) de- 
these linkages. It is not to be confused with dynamics in scribing the posture of the robotic manipulator. Points 
that no reference is made to the forces and torques 55 within the workspace, (XJ) can be reached by the arm 
required to cause these joint to move. Kinematics there- only by specifying the associated set of joint angles. The 
fore involves coordinate transformations between transformation f: (x,yt.(0&,03) defies the inverse 
frames attached to the joints, whose variables include kinematics problem. 
joint positions, velocities, accelerations, and all higher 0.3 Training Set Formation 
temporal and spatial derivatives of the joint variables. 60 Within the neuromorphic framework, the solution of 
For an n degree of freedom manipulator, the n dimen- the inverse kinematic problem involves two phases. 
sional space swept by all possible joint vectors is de- These are the training phase and the recall phase. It is 
fined as the joint space. The direct kinematics problem the purpose of the training phase to encode within the 
requires the computation of the Cartesian state descrip- network's synaptic weights and neuronal parameters 
tion of the end-effector from knowledge of the joint 65 the inverse mapping. Great care must be taken to gener- 
state description. The direct kinematics calculation for a ate an appropriate set of training samples that capture 
manipulator is a one-to-one transformation and conse- the essential characteristics of the mapping from the 
quently the major expense in calculating kinematics is task space of the end-effector to its joint space. The 

7 2 7  dzr = - ( 2 MrkZk)+  Jr 
k= 1 

T x T =  - x i + g i ( P i L . z  = I  w+l+I i ]>  

Vpdt = Y f U f  

7 - = -  2 Mrkzk + Jr ' dt ..* = v/ .J  

( ,=I  " 1  dvr 
7 - =  Y dt -Vr + g;(U/) ,E WirV, + Jr 

WORKING EXAMPLE 
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need for a careful selection of the training set becomes 
clear for the following reason. Consider a point well 
within the planar workspace. Since the problem for the 
three link uni-planar arm is degenerate, there is an infin- 
ity of valid arm configurations for each such training 
point we select in the workspace. Continuity condi- 
tions, however, require that in the absence of external 
conditions (such as obstacles) that the non-linear map- 
ping operation should reflect the nearness of Cartesian 
points (in task space) to a corresponding nearness in 
joint angles (in joint space). This functional nearness is 
shown in FIG. 4. If the training set is selected with this 
proviso in mind, then what the neural network captures 
is a smooth transformation linking the two spaces. This 
method allows us to imbed the constraints peculiar to 
the system via an appropriate choice of a training set 
and at the same time a priori lift the degeneracy inher- 
ent in the problem. 

There are numerous methods for generating a train- 
ing set consistent with the smoothness criteria which at 
the same time will lift the degeneracy. The method used 
in this specification is borrowed from the statics and 
dynamics of mechanical structures. It is based upon the 
observation that a catenary chain assumes a unique 
configuration in the presence of the gravitational field. 
A catenary chain is a continuous cable characterized by 
amass-per-unit-length term. For arbitrary positions of 
the two ends of the chain, the system always assumes a 
unique equilibrium configuration. In the discrete ap- 
proximation to the chain, we consider the 3-link robotic 
arm as a 3-link chain. Each link having a length term li 
and a mass term mi through which it couples with the 
external gravitational field g. Furthermore, to make the 
semblance to a robotic system more realistic, one end of 
the chain is attached to the origin of our system, while 
the other end is allowed to move freely about the first 
and fourth quadrants defining the workspace. The 3- 
link system is shown in FIG. 5. Each element is assigned 
both a length term liand a mass term mi. Coupling of the 
chain mass to the gravitational field lifts the degeneracy 
by uniquely specifying an arm configuration consistent 
with the extremum of the energy of the system. The 
above discussion allows us to formulate the problem. 
Referring to FIG. 5, the potential energy of the system 
composed of the three links is given by: 

V(81,82,83)=cl sin 81+q sin &+e3 sin 83 (29) 

where the constants c j a e  functions of the link mass and 
length terms, and are given by: 

CI =g11(0.5mi+m2+m3) (30) 

12 
multipliers is therefore required. Accordingly, we con- 
sider the augmented function given by 

J= V+Al+l+A2+2 (35) 
5 

For the function V to attain an extremum, a necessary 
and sufficient condition requires that 

This leads to the set of five simultaneous equations in 
five unknowns, Le. the three joint variables and the two 
Lagrange multipliers. 

15 
cl cos el-alil sin e I + ~ 2 ~ 1  cos el=o 

Q COS 82-A112sin 82+A212 cos 82=0 

(37) 

(38) 

20 c3 cos 83-hll3 sin 83fh213 cos 83=O (39) 

iI e l + i 2 ~ ~ ~  e2+r3 COS e3--x=o (40) 

11 sin O l + l 2  sin 82+13 sin 83--y=O (41) 

25 The Newton-Raphson iteration technique was utilized 
to find the roots of this system of nonlinear equations. A 
minor problem with this approach is that good starting 
values are required for the algorithm to converge. The 

3o technique we employed was to divide-up the reachable 
workspace into a cellular grid. A cell was selected for 
which the joint angles could easily be guessed/deter- 
mined, (i.e. extended arm along the x-axis), and the 
Newton-Raphson method was used to determine the 

35 Lagrange multipliers for that cell. Because of the conti- 
nuity condition we imposed earlier, we expect that the 
determination of these angles and multipliers for a given 
cell provide good starting values for contiguous neigh- 
boring cells. In this way, we can obtain the angles nec- 

40 essary to form the training set. A significant subspace of 
the manipulator’s total reachable workspace was 
chosen over which to train the neural network. Thirty 
Cartesian end-effector positions uniformly spanning this 
subspace were selected and are shown in FIG. 6. These 

45 serve as the input elements of the training pairs. Thirty 
points uniformly span this space. Points selected were 
chosen to lie on a polar grid. Both the abscissa and 
ordinate are normalized on [0,1]. The output space, 
spanned by (01,02,03), corresponding to the thirty 

50 points in FIG. 6 are shown in FIG. 7. It is important to 
note that the space spanned by the Cartesian coordi- 
nates maos onto a smooth manifold in ioint soace. This 

(31) guarantees that the continuity conditiLn is met and that 
the neural network will be capable of generalizing be- 

(32) 55 yond the training set. FIG. 7 illustrates the joint space 

Q=g12(0.5mz+m3) 

c3 =g13(0.5m3) 
~~ 

spanned by the t6ree joint angles (01,02,03). These thirty 
points to the transformation of the corre- 
sponding points in Cartesian (x,y) pairs in the previous 
figure. 

This system is subject to physical constraints which 
describe that the sum of the spatial Cartesian compo- 
nents must equal the end-effector position, i.e., 

+1(e1,e2,e3)=~1 ~ s ~ ~ + ~ ~ c o s ~ ~ + i ~ c o s e ~ - - x  

+p2(81,82,83)=11 sin 81+12sin 82+13 sin 83-y 

(33) 60 0.4 Network Architecture 
Once the training set is selected, the next task is to 

(3) apply the Adaptive Neuron Model formalism to the 
training data so as to capture the embedded inverse 

We must now determine the extremum of the function transformation of the 3-link inverse kinematic chain. 
V (01,02,03). Because of the nonlinearity of the equa- 65 The network is arranged into three sets of non-linear 
tions involved, substitution of the constraint equations processing units; an input set, a hidden set, and an out- 
into V (so as to reduce V to a function of a single inde- put set. Continuously variable synaptic weights wv 
pendent variable) is not possible. The use of Lagrangian connect units from layer to layer within the network 
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and positive real valued temperatures pi characterize 
the neurons. Since the inverse kinematic task for the 
3-link arm involves a mapping from RLR3, the input 
set consists of two input units representing the actual 
Cartesian (x,y) location of the endeffector. There are 5 
ten units on the hidden set. The output set consists of 
three units representing the desired joint angles. Since 
sigmoidal activation functions were chosen to have a 
dynamic range of [0,1], both the Cartesian coordinates 
and the joint angles used in the training set were prop- 10 
erly normalized. The results of training the neural net- 
work on the inverse kinematic problem are summarized 
in FIG. 8. The number of training iterations required to 
learn the problem to a given precision is shown plotted. 
Prior to training, the synaptic weights and neuronal 15 
parameters were randomized. As can be seen from FIG. 
8, the error decreases fairly rapidly after only a few 
hundred iterations. After training, the network was first 
tested on elements belonging to the training set. The 
network was prompted with uniformly distributed Car- 20 
tesian end-effector coordinates taken from the training 
set and the three joint angle values, as computed by the 
neural network, were compared with the correspond- 
ing target angles. These results are shown in FIG. 9 for 
nine desired endeffector Cartesian points uniformly 25 
covering a subspace of the total available workspace. 
The desired or expected placement of the endeffector 
are shown as open circles. The actual end-effector 
placement as given by the neurally calculated joint 
coordinates are shown as solid black circles. As can be 30 
seen, the solid circles overlap the open circles to a great 
degree of precision. Performance over the remaining 
available workspace was identical. Since we require 
that the network be able to generalize beyond the train- 
ing set and therefore learn the inverse kinematic trans- 35 
formation as opposed to memorizing the training set, 
the network was tested over uniformly distributed 
points covering the workspace that were not elements 
of the training set. These results are summarized in FIG. 
10. As before, 20 points from within the same work- 40 
space subspace as-tested in the previous figure were 
selected for clarity. Performance over the remaining 
region was identical. Again, desired endeffector place- 
ment are shown as open circles whereas actual end- 
effector placement are shown as solid circles. In this 
figure one observes some very minor discrepancies 
between the registering of the open and solid circles. 
However, it is evident that the neural network has cap- 
tured the underlying nonlinear inverse kinematic trans- 
formation, and that the network is performing some 
form of interpolation approximation for points that are 
not elements of the training set. For completeness, the 
network was prompted on points outside the training 
workspace boundary. In this instance, the positioning 
accuracy of the endeffector degraded gracefully but 
rapidly as one moved further and further from the 
boundary enveloping the training region. This indicates 

45 

14 
description of the manipulator relative to the origin of 
the frame of reference. This includes the location and 
orientation of each joint on the arm. The role of the 
trajectory planner, therefore, is to complete the specifi- 
cation of the path by smoothly linking these states while 
at all times not violating constraints imposed by either 
the existence of obstacles in the workspace or un-physi- 
cal arm configurations. Let us consider the motion of 
the end-effector. Again, we restrict the manipulator to 
motion in the plane. A trajectory specifies the path the 
end-effector is to follow in moving from an initial point, 
(Xj,yi), to some final (xjyn point. A direct method of 
achieving this is by smoothly linking the trajectory’s 
end-points by a path specified by some algebraic expres- 
sion. If there are no constraints in the path, a straight 
line linking the two end points suffices. In the presence 
of obstacles, a special path described by some smooth 
polynomial function might be required. The robotic 
manipulator would be moved in the following manner. 
Starting from some initial position, the Cartesian coor- 
dinates would be incremented along the selected path 
and the inverse kinematic transformation would then be 
used to determine the corresponding joint angles. The 
joint actuators would then take care of the actual physi- 
cal rotatiodtranslation of the various links on the ma- 
nipulator. This method relies upon repetitively solving 
the inverse kinematic equations along the whole path. 
Since these equations are very computationally expen- 
sive to solve by conventional approaches, the above 
method is not usually used. Conventional approaches 
rely on selectively solving the inverse kinematic equa- 
tions at both end points of the trajectory as well as a few 
via points on the trajectory. This constraint is non-exist- 
ent however in the neuromorphic approach outlined in 
the previous section, since there is no computational 
burden involved in obtaining solutions to the inverse 
kinematic equations in real time. Let the trajectory be 
specified by the function f, which is a function of the 
initial endeffector position and the time variable. This 
is given by 

(XY)  =v.xiYisJAwim (42) 

A trajectory is generated by incrementing the time 
variable t by an amount At. New x-y coordinates of the 
end-effector are obtained upon substitution in the above 
expression. These new Cartesian coordinates are then 
fed to the neural network which is trained on the in- 
verse kinematic Droblem. In this fashion, we can gener- 

50 ate the incremehtally changed joint angles. FIG. 11 
shows such a trajectory. The end-points for this trajec- 
tory are at (0.3, 0.2) and (0.5, 0.2). The trajectory that 
was selected to link these end-points was a sine wave. 
The figure compares the performance of the planned 

55 versus actual response of the neural network. The de- 
sired sine wave is shown as a solid line linking the end- 
mints. The xrformance of the robotic manipulator at 

a form of limited extrapolation capability on the part of 
the network. 
0.5 Trajectory Generation Problem 

The trajectory generation problem is a higher order 
task in motion control hierarchy, and relies in part upon 
the solution of the inverse kinematics. The role of the 
trajectory planner in a robotic system is to determine 
the entire path of the arm from an initial position to 65 
some final position. Conventional approaches involve 
specifying a finite set of states of the manipulator along 
the desired trajectory. A state is a time independent 

barious po&ts along the sine wave are shown as solid 
filled circles. The arm posture at these points is shown 

60 as a set of dotted linkages. There are very small discrep- 
ancies between the desired and actual endeffector posi- 
tioning. 

Hardware Implementation 
In this section, we describe the electronic implemen- 

tation of a feed-forward neuroprocessor using custom 
CMOS analog synaptic and neuronal chips developed 
at JPL. These chips were fabricated through MOSIS 
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with a 2 pm feature size. The synaptic chip is organized analog synaptic weight values, and since the synaptic 
as a 32x32 crossbar configuration of synaptic cells. hardware can only support limited quantization, the 
Each such synaptic cell has 7-bits of resolution, Le. 128 impact of finite synaptic weights on end-effector posi- 
levels of quantization split up into two groups of 64 tioning accuracy was assessed. On completion of train- 
levels-an excitatory and an inhibitory group. Techni- 5 ing, the synaptic weights wcon all layers were observed 
cal details of this chip may be found in A. Moopenn et to be bound. This range was given as - 4 . 5 S w ~ S  +4.5. 
a l . 9  ''Digital Analog Hybrid Neural Network Simulator: In FIG. 14, the end-effector positioning accuracy is 
A Design Aid for C ~ t o m  VLSI NeurochiPs:' PrO&?ecf- shown plotted as a function of the levels of quantization 

Of the SPIE conference On High speed COmPUtiW, of the synaptic weights. This data was generated by 
1989, Los Angeles, Calif. The neuron chip iS organized 10 discretizing the analog weights as a function ofthe n-bit 

these neural network building block chips, a feed-for- 
ward neuroprocessor was implemented in hardware. A 
feed-forward structure was utilized rather than a fully 

a x36 linear array of variable gain neurons. Using weight precision, where n ranged from 1 to 12. The 
positioning error, defined by: 

recurrent structure for ease of electronic implementa- 15 
tion. This feed-forward structure consisted of 2 input 

= - I N  z ((x - x,)2 + 01 - ,,,)z)i (43) 

N p = l  

units, two hidden layers of 5 units each, and an output 
layer of 3 units. FIG. 12 shows a block diagram of such is an average Over N Cartesian Points of the euclidian 
an electronic network. It uses a single variable gain distance between the end-effector position given by 
neuron chip wired up to a single synaptic chip to obtain 20 analog synapses (&Yo) and One as given by quantized 
the desired 2-5-5-3 layered neural network architecture. synapses (x, y). The minimum resolution required is 
This configuration allows layered structures to be im- application sensitive. This could range from 4 to 12 bit 
plemented by electronically carving out synaptic blocks resolution, depending on the end-effector positioning 
of the appropriate dimension. Neuronal outputs from a tolerances. In real world terms, an arm with a 1.0 m 
given layer are fed back onto unused synaptic elements 25 extension radius would reach it's target within 1 cm for 
on the chip. In FIG. 12, the input stage of the 2-5-5-3 7 bit resolution, or within 0.6 mm for 12 bit resolution. 
neuron architecture is shown on the upper left hand 
side. There are three inputs shown. The topmost input is Updating Algorithm 
the common input bias to neurons on all layers. Analog Referring to FIG. 15, the algorithm for updating the 
voltages representing the normalized X-y Cartesian CO- 30 neuron temperatures and synpase weights during train- 
ordinates are fed into the remaining two inputs. Neu- ing begins by solving Equation 28 for vr (block 10 of 
rons in the first hidden layer are shown in the lower left FIG. 15). Then, Quation 24 is solved for xi(block 20 of 
hand side ofthe Chip, and COnnect with the input signals FIG. 15). Next, Equation 26 is solved for z,(block 30 of 
via the upper left hand 3 x 5 bank of synaptic cells. The FIG. 15). Then, Equations 25 and 27 are solved for f i r  
output of the neurons folds back onto an unused 5 x 5  35 and wrs, respectively. These equations are solved in 

chip* The Ou@ut Of these the second quantities having the least relaxation times are solved 
layer of 5 hidden neurons. These neurons fold back in a for first and frequently than quantities having 
similar manner Onto an unused 5x3 bank Of from greater relaxation times. The results of the solution of 

the final layer of hidden neurons. The voltages appear- equation. 
The time constants are selected to optimize a particu- ing on the outputs of these three neurons represent the 

lar problem beiig solved by the neural network. For three scaled joint angles. It is these two inputs and three 
outputs that interface to the outside world. Overall, the hardware consisted of one synapse chip 45 example, if the problem is that of classification, then 7p 

is shorter than T,,,, while the reverse is true if the prob- and one neuron chip and support circuitry wire- wrapped onto a VME-bus card. is lem is one of a continuous mapping relation. 
shown schematically in FIG. 14. The downloader cir- Conclusions 
cuit comprised of a digital memory of weight values, a 

bank of synaptic cells, s h o w  in the central Part of the ascending order of their time constants 7, so that the 
feed 

which an Output is derived after Passing through the previous equation are employed in solving the next 

counter for accessing each memory location and each 50 
corresponding synapse in turn and Some control logic 

In this specification, we have develo@ the Adaptive 
for learning in fully recurrent neural Neuron 

for programming the selected synapse with its corre- network architectures- The fundamental idea behind 
spondhg weight. A ampaq computer pro- this model was to actively involve the neuron process- 
grammed with a master control routine, with which ing elements in the learning procedure. Prior ap- 
arbitrary feedforward network architectures could be 55 Proaches have regarded the as Passive nodin- 
mapped onto the hardware as described above. Boar& ear Processing &ments and the synapses as the only 
with 8 channel search of 12-bit digital-to-analog and source of information retention. In the ANM model, the 
analog-to-digital converters were used to program and functional nature of the neuron response function is 
r a d  network inputs and outputs, and a serial line with non-critical for the mathematical developments. How- 
an efficient transfer protocol was used to program the 60 ever, the O d Y  requirements of the nmdel is that the 
network by way of a 6800-based W E  bus controller. neuron response function be parametrized by a local 
Consequently, architectures with up to 8 inputs and parameter(s) (such as the temperature Pi in the deriva- 
outputs, and 22 hidden units distributed among up to 8 tion above) and be continuously differentiable in that 
hidden layers, could be implemented. A WE-based parameter(s). This formalism has been shown to be 
RS-232 controller card acted as the necessary interface 65 extremely effective in reducing the training times on a 
between the neuroprocessor and the microprocessor variety of learning problems. Because of the ANMs 
on-board the robotic arm. Since the computer simula- ability to rapidly learn complex nonlinear transforma- 
tions of the inverse kinematic problem made full use of tions, it was trained on the inverse kinematic problem. 
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The algorithm was benchmarked on this supervised 
learning task and demonstrated an order of magnitude 
faster training time than an identical algorithm with the 
adaptive neuron feature disabled. Specifically, the 
ANM model was applied and trained from examples on 5 
the degenerate inverse kinematic problem in robotic 
control. The model was shown to rapidly capture the 
inverse transformation embedded within the training 
set. 

network architecture for the inverse kinematic and 
trajectory generation problems in hardware. This con- 
sisted in interfacing custom VLSI synaptic chips with 
variable gain neuron chips developed at JPL so as to 
form a neuroprocessor. The synaptic chip is arranged in 15 

range or resolution. The simulated synaptic weights 
were down-loaded onto the hardware and the neuro- 
processor was used for the real time control of a manip- 
ulator. Results indicate that these problems can indeed 20 
be down-loaded from simulation to hardware at the cost 
of some loss in accuracy. For the robotic problem, there 
is a finite degradation in positioning accuracy over the 
simulation results. Improved positioning accuracy can 

downloaded with chip-in-the-loop learning. 
While the invention has been described with speciflc 

reference to preferred embodiments thereof, it is under- 
stood that variations and modifications may be made 

invention. 

sponding ones of said synapse weights and corre- 
sponding ones of said activity states; and 

said continuously updating comprises solving said 
activity state differential equation for said activity 
state repetitively at a rate corresponding to said 
activity state relaxation time. 

4. The method of claim 3 wherein: 
said behavior of said neuron temperatures is a temper- 

ature differential equation for each neuron defining 
a time derivative of a corresponding neuron tern- 
perature as a product of an exponential function of 
said neuron temperature and said error between 
activity states of the set of output neurons and the 
predetermined training vector transformed by a 
matrix of said synapse weights; and 

solving said temperature differential equation for 
said neuron temperature repetitively at a rate cor- 
responding to said temperature relaxation time. 

5. The method of claim wherein: 
said behavior of said synapse weigh& is a weight 

differential equation for each synapse defining a 
time derivative of a corresponding synapse weight 
as a product of an exponential function of the cor- 

ucts of said synapse weights; and 

solving said weight differential equation for said 

to said weight relaxation time. 

We have also implemented the feed forward neural 10 

a 32x32 cross-bar design and offers 7 bits of dynamic said cont~uous~y updating step further 

be achieved by tweeking the synaptic weights Once 25 responding temperature and a sum of prod- 

said step further 

without departing from the true spirit and scope of the 30 'mapse weight at a rate 

6. The method of claim 5 wherein said activity state 
differential equation, temperature differential equation, 
and weight differential equation are solved in an ascend- 

ation times, such that a result of a solving of a preceding 
differential equation in the ascending order is employed 
in solving a next differential equation in the ascending 

wherein said neural net- 

training vector, timedependent 8. The method of claim 1 wherein said predetermined 
behaviors of: (a) said activity states, (b) said training vector corresponds to a classification problem 
temperatures in accordance with a gradient de- and said temperature relaxation time is shorter than said 
scent of said error in temperature space and (c) said 45 weight relaxation time. 
synapse weights in accordance with a gradient 9. The method Of Claim 1 wherein said predetermined 
descent of said error in weight space, said behav- training Vector corresponds to a COntinUOUS mapping 
ion governed by (a) an activity state relaxation relation, and said weight relaxation time is shorter than 
time, (b) a neuron temperature relaxation time and said temperame relaxation time- 
(c) a synapse weight relaxation time, respectively; 50 10- Apparatus for training an analog neural network 

continuously updating said neuron activity states, comprising Plural neurons and wherein said 
said neuron temperatures and said synapse weights neUrOnS are COnnected together by respective synapses, 
of said d o g  neural network at respective rates said neurons comprising respective activity States and 
corresponding to said relaxation times until said adjustable neuron temperatures, said synapses compris- 
error is reduced below a predetermined threshold. 55 ing adjustable Synapse weights, said apparatus corn@- 

2. The method of claim 1 wherein said activity state ing: 
relaxation time is shorter than said neuron temperature for defining and storing, relative to an error 
relaxation time and shorter than said synapse weight between activity states of a set of output neurons 
relaxation time, whereby for a given set of values of said and a predetermined training vector, predeter- 
neuron temperatures and synapse weights, said neuron 60 mined timedependent behaviors of: (a) said activ- 
activity states equilibrate before changes in said set of ity states, (b) said neuron temperatures in accor- 
values occur. dance with a gradient descent of said error in tem- 

perature space and (c) said synapse weights in ac- 
cordance with a gradient descent of said error in 
weight space, said behaviors governed by (a) an 
activity state relaxation time, (b) a neuron tempera- 
ture relaxation time and (c) a synapse weight relax- 
ation time, respectively; 

We claim: 
1. A method of training an analog neural network 

comprising and synapses wherein said 
neurons are connected together by respective synapses, 35 ing Order associated with an Order Of ascending 
said neurom c o m p ~ s ~ g  respective activity states and 
adjustable temperatures, said synapses compris- 
ing adjutable synapse weights, said method comprising 
the steps of: order. 

defining, relative to an error between activity states 40 The method Of 

of a set of output neurons and a predetermined work is a fully recurrent neural network- 

3. The method of claim 2 wherein: 
said behavior of said activity states is an activity state 

differential equation for each neuron governing a 65 
time derivative of a corresponding activity state in 
terms of a product of a corresponding neuron tem- 
perature multiplied by a sum of products of corre- 
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means for continuously updating said neuron activity 

states, said neuron temperatures and said synapse 
weights of said analog neural network at respective 
rates corresponding to said relaxation times until 
said error is reduced below a predetermined 
threshold. 

11. The apparatus of claim 10 wherein said activity 
state relaxation time is shorter than said neuron temper- 
ature relaxation time and shorter than said synapse 
weight relaxation time, whereby for a given set of val- 
ues of said neuron temperatures and synapse weights, 
said neuron activity states equilibrate before changes in 
said set of values occur. 
12. The apparatus of claim 10 wherein: 
said behavior of said activity states is an activity state 

differential equation for each neuron governing a 
time derivative of a corresponding activity state in 
terms of a product of a corresponding neuron tem- 
perature multiplied by a sum of products of corre- 
sponding ones of said synapse weights and corre- 
sponding ones of said activity states; and 

20 
- I - -  - 

said means for continuously updating further com- 
prises means for solving said temperature differen- 
tial equation for said neuron temperature repeti- 
tively at a rate corresponding to said temperature 

5 relaxation time. 
14. The apparatus of claim 13 wherein: 
said behavior of said synapse weights is a weight 

differential equation for each synapse defining a 
time derivative of a corresponding synapse weight 
as a product of an exponential function of the cor- 
responding neuron temperature and a sum of prod- 
ucts of said synapse weights; and 

said means for continuously updating further com- 
prises means for solving said weight differential 
equation for said synapse weight repetitively at a 
rate corresponding to said weight relaxation time. 

15. The apparatus of claim 14 wherein said means for 
solving comprises means for solving said activity state 
differential equation, temperature differential equation, 

20 and weight differential equation in an ascending order 
associated with an order of ascending relaxation times, 

10 

15 

such that a result of a solving of a preceding differential 

a next differential equation in the mending order. 
said means for continuously ' 

equation in the mending order is employed in solving 
means for solving said activity state differential 
equation for said activity state repetitively at a rate 25 15 wherein said predeter- 
COrreSpOnding to said activity State relaxation time. mined training vector corresponds to a classification 

13. The apparatus of claim 12 wherein: problem and said temperature relaxation time is shorter 
said behavior of said neuron temperatures is a temper- than mid weight relaxation time. 

ature differential equation for each neuron govern- 17. The apparatus of claim 15 wherein said predeter- 
ing a time derivative of a corresponding neuron 30 mined training vector corresponds to a continuous map- 
temperature as a product of an exponential func- ping relation, and said weight relaxation time is shorter 
tion of said neuron temperature and said error be- than said temperature relaxation time. 
tween activity states of the set of output neurons 18. The method of claim 10 wherein said network is a 
and the predetermined training vector transformed fully recurrent neural network, 
by a matrix of said synapse weights; and 

16. ne apparatus of 
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