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Abstract. We consider the approximation of a class pseudodifferential operators by sequences of op-
erators which can be expressed as compositions of differential operators and their inverses. We show that
the error in such approximations can be bounded in terms of the L, error in approximating a convolution
kernel, and use this fact to develop convergence results. Our main result is a finite time convergence anal-
ysis of the Engquist-Majda [7] Padé approximants to the square root of the d’Alenibertian. We also show
that no spatially local approximation to this operator can be convergent uniformly in time. We propose
some temporally local but spatially nonlocal operators with better long time behavior. These are based on
Laguerre and exponential series.
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1. INTRODUCTION 2

1. Introduction. Pseudodifferential operators in time and /or space arise naturally in
the formulation of many wave propagation problems. Prime examples include the restriction
of unbounded domains via the introduction of artificial boundaries [7], the reduction of
scattering problems to boundary integral equations [13], the factorization of wave operators
into “one-way” equations [2], and the modeling of systems with memory [14]. Although there
have been advances in recent years in the efficient application of certain integral operators,
a typical approach to the numerical approximation of these problems is to replace the
pseudodifferential operator by a combination of differential operators and their inverses,
which can then be applied using standard numerical techniques. This is the approach
discussed in all the works cited above. :

In this note we examine the convergence of sequences of local approximations to a class
of pseudodifferential operators. Qur main example is the square root of the d’Alembertian,
which is important in the study of acoustic, elastic and electromagnetic waves. Although
many approximations to this operator have been proposed (e.g. [19]), error estimates of
the type considered here do not seem to have been derived. (For estimates based on high-
frequency asymptotics see [12].) Our estimates are important if the use of high order
conditions is considered, as in [5]. We express the operator as the sum of a differential
operator and a convolution operator with an L; kernel. Decomposing the local approxima-
tion in the same way, we estimate the error in terms of the difference between the exact
and approximate convolution kernels. We see that a sequence of local approximations is
convergent if its sequence of approximate kernels converges (in L;) to the exact kernel.

The main result we obtain in this framework is a finite time convergence theorem for
the Padé approximants to the square root of the d’Alembertian which were proposed by
Engquist and Majda [7]. We also show that this approximation (or any other which is
local in space as well as time) is not convergent in our sense for infinite time. We propose
some new approximations for infinite time which are spatially nonlocal. They are based on
Laguerre and exponential series. Although we have not proven convergence for these, we
do show that the error is reasonably small uniformly in time. The practical implementation
and testing of long-time approximations will be carried out elsewhere.

2. A Class of Pseudodifferential Operators and Local Approximations. We
consider first an operator, .4, acting on functions of £ € [0, c0) which vanish along with their
derivatives at ¢ = 0. We assume:

AssuMPTION 1.

P diu
Au = Ea_rat? + A5 % u, A.1€ Ll([O, OO)).

=0
Making a Laplace transformation we then obtain:
p
(2.0.1) A(s) =Y ajs? + a_y(s),
Jj=0

where a_; (s) is the Laplace transform of the function 4_, (t). Typically, we know .4 directly.
To verify that Assumption 1 holds we must check that the inverse transform of a_; is in
L. Necessary and sufficient conditions for this to hold are given in 20, Ch. 7).
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We give two examples, the first of which is relevant to problems involving the wave
equation and the second of which is relevant to problems involving the diffusion equation.
Example: Let

A 1
2.0.2 =vVs?+1= —_——
( ) A(s) s“+ s+ stvseil
Then [15]
_ du

(2.0.3) Au +8*u, S(t)= ifﬂ,

T oat
where Ji() is a first order Bessel function. It is easily verified that S € L;([0, c0)) so
Assumption 1 holds.

Example: Let

(2.0.4) A(s) = s+ 1.

Then A does not satisfy Assumption 1.
We remark that the second example might be studied by expressing A as the compo-
sition of a differential operator and a convolution. For example,

(2.0.5) VsFi= \/siﬁ(s +1),
implies ‘

du et
(2.0.6) Au =G * (E? + u) y G(t) = 7

2.1. Local Approximations. We now consider local approximations B to operators
A satisfying Assumption 1:

| 2 diu
(2.1.7) Bu = ,; aj—= + By,

where we assume that the differential operators in our standard decomposition of 4 and B
agree. So that B will be local, we restrict B_; (t) to the class R defined by:

DEFINITION 1. A function f is in class R if its Laplace transform, f(s), s a rational
Sfunction.

Alternatively, R may be described through the following elementary result. (See [15].)

LeEMMA 2.1. The class R consists of functions which are products of polynomials,
ezponential functions and trigonometric functions.

The error in approximating .4 by B is equivalent to the error in approximating convo-
lution by A_; by convolution by B_;. We therefore have:

THEOREM 1. Letu € L,y([0,7T]),0< T < co. Then

(A = Blullz, o1y < l4-1 = B-alz, o zplellz, (fo.zy)-
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Proof: Clearly
(2.1.8) (A = B)ullz,qo11) = II(4-1 — Bo1) * ullz,o.1y)-

The result then follows from the basic inequality ||  g| L, < | fllz,llgllz, <

By this result we see that the problem of constructing accurate/convergent local ap-
proximations is equivalent to approximating the L; function A_; by elements of R. We
therefore have:

CoOROLLARY 1. Let 0 < T < 0. For any € > 0 there ezists ¢ local operator B such
that:

4 = Bl o,y < €.

(Here we use the operator norm.)

Proof: We need only show that R is dense in L;. For finite T this follows from the density
of the polynomials. For T = oo we can use the density of certain exponential families, which
follows from logarithmic mappings of [0, c0) to finite intervals.o

In subsequent sections we will study the error for specific sequences of approximations.
It is nonetheless interesting to consider the possibility of optimal approximations where
the degree of the transform of B_; is fixed. For finite intervals and the more restricted
class of functions defined by products of polynomials and exponentials, the existence of
best approximations in L; has been established [4, Ch. 6]. Moreover, for monotone kernels
interpolants can be computed and the degree of approximation estimated. In [10], boundary
conditions based on time interpolation of J;(t)/t were proposed and shown to have good
L, approximation properties.

2.2. Operators in Higher Dimension. In most applications the operators to be
approximated act on functions defined on the product of a time interval with a spatial
region, . In the simplest case we take Q to be a hyperplane or torus and assume that 4
is a homogeneous function of s and [k| = (¥; k2)!/2, where the k;’s are Fourier variables.

For example, if 4 = O0!/2 js the square root of the d’Alembertian we have:

S

— k|
2.2.9 012 = /s + k2=s+—|——, = —.

The |k|-dependence of the operator complicates the approximation in a number of
ways. First of all, an approximation is local in space only if the coefficients of the rational
transform involve only even powers of |k|. In the example above, the rational function of z
whose inverse transform approximates § must have numerator and denominator of definite
and opposite parity in order to be spatially local.

Second, since |k| is not bounded, the approximations must be estimated uniformly in |&].
It is even possible that approximations can lead to ill-posed problems for some applications.
In [18] the well-posedness of local approximations to the square root of the d’Alembertian is
thoroughly studied. For general (spatially nonlocal) approximations such complete results
are unknown, but various special cases have been considered (6, 11].
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3. The Engquist-Majda Padé Approximants, The best known and most used
rational approximations to v/s2 + 1 are the Padé approximants suggested by Engquist and
Majda [7]. In our language they may be written as (see [19]):

1 N z.Un..l(is) —; sinnd
s+v1+s2 Un(is) sin(n +1)

where U,, denotes the Chebyshev polynomial of the second kind. Here we give a completely
different derivation of this approximation. We begin with the formula [1, Ch. 9}

1
Ji(t) _ }/ V1 — w2 cos wt dw.
TJ-1

e

(3.0.10) 5 cos 0 =is,

(3.0.11) S

For fixed ¢ we approximate the integral by the Gaussian quadrature rule appropriate for
the weight +/1 — w2, based on second kind Chebyshev polynomials [1, Ch. 25]:

(3.0.12) Jl‘(t) = Ka(t) = ;z_—-]lh—-l ;sinz (_ l ) cos ((COS nl-:l)t)
¥y
t oty cosél, ~1<E<1.

T
t n+1

Laplace transformation in time leads to the formula:

1 1 & Ix s
3.0.13 —— in? ( ) .
( ) . PR n+11=218m n+1) 5t cos? I
Remarkably we have:

THEOREM 2. Approzimations (3.0;10) and (3.0.13) are the same.

Proof: We first note that both expressions represent rational functions with denominators

of exact degree n and the same poles, s = icos ;’_;_'—1, I =1...n. Moreover, the numerators

are of degree n—1. To prove their equality we will multiply each expression by (s— cos ,—&!_’-'-1-
and take the limit s — i cos EJfT For (3.0.10) this yields:

(<10*  njzr . g _sinzn—L_:'l

nt+1 smn+1smn+1—- n+1 "

(3.0.14)

For (3.0.13) we note that cos n—L_l’_’l = — cos L'%'I—JE Therefore, the limit process eliminates
all but two terms in the sum:

1 (1., jx 1. (n+1-—j)7r)
3.0.15 Zsin? IT_ 4 Szl
( ) n+1(2‘°‘m e N

Expressions (3.0.14) and (3.0.15)are clearly equal. This, combined with the fact that the
numerators have degree n — 1, implies that the two functions are the same.o

Using the error formula for Gaussian quadrature we directly obtain an error estimate
for the approximation, K,(t), to S (¢):
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THEOREM 3. For0< T < o0:

. T 2n+1 1 1
15 = Kallz, o.ry) < min (7r (5) @Dy 2 T ”8”’"“"’“”) '

Proof: Noting that:

1 & I 1 /1 1
(3.0.16) IICn(t)l S m lzzl Sl.‘[l2 m = ; [-1 V1 - widw = 5,
we have:
(3.017)  |(A(8)/t) ~ Ka(t)| < min (g G) @ 2 I(Jl(t)/t)l) :

Integrating this expression yields the desired result.c We note that this result clearly implies
the rapid convergence of the approximation for fixed T as n is increased.

This result can be extended to approximation of the pseudodifferential operator 01/2
in higher space dimensions. Introduce the spaces Ly(H,,[0,T]) with norm;

T
2 _ I 2
(3.0.18) leliom= [ [ @+ kPPlack, e,
Writing:
- é N
(3.0.19) 02 = 2 4 (1), Ba= 2 4 Rullb) ),
‘we have:

THEOREM 4. For any 6,6 > 0,0 < T < oo, there ezists N such that for anyn > N
and u € Ly(H,,[0,T]):

(B2 = BaYullp—s- 0,17 < €l[[p,f0,T3-

Proof: We first estimate the error in Fourier space. Note that:

. Ji(lkl8) k2 &, I ( I )
= |p[2 LU =2 2 : .
(3.0.20) S(k,¢) = k| T Kalkst) = ~ +1z§;sm m 1 O ((cos —)Iklt
Then:
(3.0.21) (8 = Kn) * @llz,p0.17) < IS — Kallz, ol zago.17)-

The first term on the right can be estimated using the result of Theorem 3 and making the
change of variables z = |k|¢:

[*|T n
L /0- [(J1(2)/2) - n—}—_l > sin? n_l-%-r_f cos ((cos
=1

5% !
IS — Kollzy (o, al 1 )z) ldz

n+

(3.0.22)

IA

2n+4-1
wmin (wlkl G lklH(J1(')/('))Hm(lo,oo))) :
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Given €,§ > 0 we can clearly choose n sufficiently large that:

(3.0.23) (L+ [k[2)~CHEDYS — Rz, oy < e
Finally:

18~ Kallya-spom < [[ (L+ BEPL+ B2 S - Rl oyl oyt
(3.0.24) <l o

completing the proof.c

We are confident that this convergence result can be translated into a convergence
result for the artificial boundary problem for smooth solutions of the wave equation in
simple domains, using for example the stability results of Ha-Duong and Joly [9]. This,
along with some numerical experiments, will be the subject of future work.

4. Long Time Approximations. The error estimates discussed above are strongly
dependent on T and break down as 7 — oo, For some applications, for example the so-
called limiting amplitude problem [6, 11], or applications to viscoelasticity [14], long time
approximations are desired. Also, such approximations will have better large |k| behavior for
multidimensional problems. To achieve this we must approximate the convolution kernel in
L1([0, c0)) by functions in our class R. This greatly constrains the functions at our disposal
as seen in the following elementary result:

THEOREM 5. A functionr € R is an element of L1([0, 00)) if and only if all poles of 7
lie in the left half complex plane.

Proof: Simply note that the only functions in R which are in L,([0, o0)) take the form of
(sums of ) polynomials multiplying exponentials where the exponent has negative real part.
The transform of such a function has a pole in the left half plane.o

An immediate corollary of this result is:

COROLLARY 2. A function r € RN L1([0, 0)) cannot have o transform which may be
written as the ratio of polynomials of definite parity.

For the multidimensional operator associated with Vs + |k|?, our corollary implies that
long time approximate conditions, in the sense described here, cannot be local in space. For
the half-space problem they generally involve the operator whose symbol is |k|. This is the
so-called Dirichlet-to-Neumann map for the Laplace equation in the half space. The use
of this operator for long time solutions of the wave equation has been suggested in [6] and
[11]. A key practical issue is the efficient application of the nonlocal map. For progress in
this regard see [8, 16].

4.1. Laguerre Expansions. The kernels we wish to approximate, in particular S (2),
are generally in L,([0,0)). In L,, convergent approximating sequences are easily con-
structed via expansions in orthogonal functions. A complete set of orthogonal functions
whose elements are in R are the Laguerre functions:

t . - 2"
4.1.25 Lo(vt) = e F Lo(yt), £, = ﬁz“.
(4.1.25) (19 T
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L m || gm L E 9mLm = Slizyo,c0)) | 1Y gmLem — Sllza(o,00)) |

0 0.75 0.87 0.22
1 -0.15 0.79 0.19
2 -0.186 0.60 0.11
3 1.992 x 10—° 0.59 0.11
4 9.4512 x 10—2 0.48 7.2 x 102
5 2.08554 x 102 0.48 7.0 x 102
6 i| —4.94016 x 10—2 0.42 5.7 x 10~2
7 || =3.34492 x 102 0.41 5.0 x 102
8 1.96034 x 102 0.38 4.7x 1072
9 3.24971 x 102 0.35 3.9 x 102

10 3.04379 x 10—* 0.35 3.9 x 102

TABLE 1

Cocfficients and Ly errors for Laguerre approzimations te S, v = 3/2.

Here, L,(z) is the nth Laguerre polynomial and vy > 0 is a parameter which may be chosen.
to optimize the convergence rate. The expansion of a kernel G is given by:

m o
(4.1.26) G~ gnln(1t), gn=7 /O Ln(yt)G(t)dt.

n=0 *
We have written a program in Maple to compute these coefficients for arbitrary - and the
kernel J (¢)/t. We have numerically computed the L, errors in the resulting approximations.
We find v = 3/2 to be a convenient choice, both from the point of view of convergence of
the series and simplicity of expansion coefficients. The results are given in Table 1. For
reference we note that the L; norm of § is about 1.6 and the L, norm is about .65.

It is evident that the convergence rate of this series in L; is slow at best. Indeed,
Laguerre series are not generally convergent in L;. (See [17].) We do not even have a proof
in this particular case. We have not yet implemented boundary conditions based on these
expansions, but plan to do so in the future.

4.2. Exponential Expansions. Another convenient set of orthogonal functions in R
are exponential polynomials:

(4.2.27) Pa(71t) = =% Py(2e™ — 1),

where P,(z) is the nth Legendre polynomial and v > 0 is again a free parameter. The
orthogonality of these functions is easily established by mapping [0, 00) to [-1,1] by z =
2¢~7 — 1. We then expand a kernel G by:

(4.2.28) G~ Y 0aPalrt), gu =700 +1) [ Patrige.

n=0

The Laplace transform of P, takes the form:

~ _ aﬂj
(4.2.29) P = Z NI
J=0 2
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Lm> ” Im I |3 9mPm — S”Ln([o,oo)) l |3 9mPm - "S”l?z([q,oom

0] 1.80998 x 10-* 2.1 051
1 3.49884 x 101 1.2 0.24
2 1.49008 x 101 0.81 0.19
3 || —1.46339 x 10-1 0.76 0.14
4 || —1.24158 x 101 0.59 0.10
5 9.35578 x 10—2 0.52 8.1 x 10—2
6| 4.84350x 102 0.50 7.5 x 102
7| —8.60302 x 102 0.43 5.7x10°2
8 || 2.89748 x 102 0.41 5.4 x 10—2
9 3.50595 x 102 0.41 5.1 x 10~2

10 || —5.67689 x 102 0.38 4.3 x 102 7

TABLE 2 ‘

Coefficients and L, errors for ezponential Legendre approzimations to S, v = 1 /5.

where the coefficients a,; are easily tabulated. We have written a Maple |procedure to
compute the expansion coefficients for S, and have tabulated the results in Table 2. We found
that ¥ = 1/5 was a reasonable choice from the point of view of speed of convergence.

Again the convergence of the series is rather slow, particularly in L, and the errors are
generally larger than for the corresponding term in the Laguerre series. Moreover, we have
no convergence proof.

4.3. Other Approximations. Given the disappointing convergence behavior of the
series above, we are led to consider other means for constructing long time approximations.
One possibility is to consider the integral representation of S used in our analysis of the
Padé approximants (3.0.11). Setting z = iw and rewriting it as a contour integral along
the imaginary axis, we can then deform the contour into the left half plane. A quadrature
scheme will then produce approximations which decay exponentially in t. We plan to
investigate this procedure in future work.

REFERENCES

[1] M. Abramowitz and 1. Stegun, Handbook of Mathematical Functions, Dover ( 1972).

[2] A.Bamberger, B. Engquist, L. Halpern and P. Joly, Higher order paraxial wave equation approxima-
tions in heterogeneous media, SIAM J. Appl. Math., 48 (1988), 129-154.

{3] A. Barry, J. Bielak and R. MacCamy, On absorbing boundary conditions for wave propagation, J.
Comp. Phys., 79 (1988), 449-468.

{4] D. Braess, Nonlinear Approzimation Theory, Springer-Verlag (1986).

{5] F. Collino, Conditions d’ordre élevé pour des modgles de propagation d’ondes dans des domaines
rectangulaires, INRIA report 1790, (1993).

(6] B. Engquist and L. Halpern, Far field boundary conditions for computation over long time, Appl. Num.
Math., 4 (1988), 21-45.

[7] B. Engquist and A. Majda, Absorbing boundary conditions for the numerical simulation of waves,
Math. Comp., 31 (1977), 629-651.

[8] D. Givoli, Numerical Methods for Problems in Infinite Domains, Studies in Applied Mechanjcs 33,
Elsevier, (1992).

{8] T. Ha-Duong and P. Joly, On the stability analysis of boundary conditions for the wave equation by
energy methods. Part I: The homogeneous case, Math. Comp., 62 (1994), 539-564.




REFERENCES 10

[10] T.Hagstrom, Open boundary conditions for a parabolic system, Math. Comp. Mod., (1994), to appear.

[11] T.Hagstrom, S. Hariharan and R. MacCamy, On the accurate long-time solution of the wave equation
on exterior domains: Asymptotic expansions and corrected boundary conditions, Math. Comp.,
(1994), to appear.

{12] L. Halpern and J. Rauch, Error analysis for absorbing boundary conditions, Num. M ath., 51 (1987),
459-467.

[13] G. Kriegsmann, A. Taflove and K. Umashankar, A new formulation of clectromagnetic scattering using
an on-surface radiation boundary condition approach, IEEE Trans. Ant, Prop., 35 (1987), 153-161.

{14] R. MacCamy, Approximation of dissipative hereditary systems, J. Math. Anal. Appl., 179 (1993),
120-134.

[15] F. Oberhettinger and L. Badii, Tables of Laplace Transforms, Springer-Verlag, (1970).

[16] V. Ryaben’kii and S. Tsynkov, Artificial boundary conditions for the numerical solution of external
viscous flow problems, SIAM J. Num. Anal., (1994), to appear.

[17] S. Thangavelu, Lectures on Hermite and Laguerre Expansions, Mathematical Notes 42, Princeton
University Press, (1993).

[18] L. Trefethen and L. Halpern, Well-posedness of one-way wave equations and absorbing boundary
conditions, Math. Comp., 47 (1986), 421-435.

[19] L. Trefethen and L. Halpern, Wide-angle one-way wave cquations, J. Acoust. Soc. Am., 84 (1988),
1397-1404.

[20] D. Widder, The Laplace Transform, Princeton Unmiversity Press (1946).







Form Approved
REPORT DOCUMENTATION PAGE OMB No. 0704-0188

Pubiic reporting burden for this collection of information is estimated to average 1 hour per fesponse, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC  20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
November 1994 Technical Memorandum
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
On the Convergence of Local Approximations to Pseudodifferential Operators
With Applications
5. AUTHOR(S) WU-505-90-5K
Thomas Hagstrom
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER
National Aeronautics and Space Administration
Lewis Research Center E-9253
Cleveland, Ohio 44135-3191
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
; AGENCY REPORT NUMBER
?Vaugpal Aer?;lzéuugg ;2(61 Sggg(le Administration NASA TM_106792
asnington, D.C. - ICOMP-94-29

11. SUPPLEMENTARY NOTES
Thomas Hagstrom, Institute for Computational Mechanics in Propulsion, NASA Lewis Research Center (work funded
under NASA Cooperative Agreement NCC3-233 and supported in part by NSF Grant DMS-9304406). ICOMP Program
Director, Louis A. Povinelli, organization code 2600, (216) 433-5818.

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Unclassified - Unlimited
Subject Category 34

13, ABSTRACT (Maximum 200 words)

We consider the approximation of a class pseudodifferential operators by sequences of operators which can be expressed
as compositions of differential operators and their inverses. We show that the error in such approximations can be
bounded in terms of the L; error in approximating a convolution kernel, and use this fact to develop convergence results.
Our main result is a finite time convergence analysis of the Engquist-Majda [B. Engquist and A. Majda, Absorbing
boundary conditions for the numerical simulation of waves, Math. Comp., 31 (1977), 629-651.] Padé approximants to the
square root of the d'Alembertian. We also show that no spatially local approximation to this operator can be convergent
uniformly in time. We propose some temporally local but spatially nonlocal operators with better long time behavior.
These are based on Laguerre and exponential series.

14. SUBJECT TERMS 15. NUMBER OF PAGES
. . . . N 12
Wave equation; Boundary conditions, Pseudodifferential approximation 16, PRICE CODE
A03
17. SECURITY CLASSIFICATION {18. SECURITY CLASSIFICATION | 19. SECURITY CLASSIFICATION | 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
Unclassified Unclassified Unclassified
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102



