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Abstract. We consider the approximation of a class pseudodifferentia] operators by sequences of op-
erators which can be expressed as compositions of differential operators and their inverses. We show that

the error in such approximations can be bounded in terms of the L_ error in approximating a convolution

kernel, and use this fact to develop convergence results. Our main result is a Fmlte time convergence anal-
ysls of the Engqulst-Majda [7] Pad_ approximants to the square root of the d'Alembertlan. We also show

that no spatial]), local approximation to this operator can be convergent uniformly in time. We propose
some temporally local but spatially noulocal operators with better long time behavior. These are based on
Laguerre and exponential series.

* Supported, in part, by NSF Grant No. DMS-9304406.
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1. INTRODUCTION 2

1. Introduction. Pseudodifferential operators in time and/or space arise naturally in

the formtdation of many wave propagation problems. Prime examples include the restriction

of unbounded domains via the introduction of artificial boundaries [7], the reduction of

scattering problems to boundary integral equations [13], the factorization of wave operators

into "one-way" equations [2], and the modeling of systems with memory [14].Although there

have been advances in recent years in the efficient application of certain integral operators,

a typical approach to the numerical approximation of these problems is to replace the

pseudodifferential operator by a combination of differential operators and their inverses,

which can then be applied using standard numerical techniques. This is the approach
discussed in all the works cited above.

In this note we examine the convergence of sequences of local approximations to a class

of pseudodhTerential operators. Our main example is the square root of the d'Alembertian,

which is important in the study of acoustic, elastic and electromagnetic waves. Although

many approximations to this operator have been proposed (e.g. [19]), error estimates of

the type considered here do not seem to have been derived. (For estimates based on high-

frequency asymptotics see [12].) Our estimates are important if the use of high order

conditions is considered, as in [5]. We express the operator as the sum of a differential

operator and a convolution operator with an L1 kernel. Decomposing the local approxima-
tion in the same way, we estimate the error in terms of the difference between the exact

and approximate convolution kernels. We see that a sequence of local approximations is

convergent if its sequence of approximate kernels converges (in L1) to the exact kernel

The main result we obtain in this framework is a finite time convergence theorem for

the Pad4 approximants to the square root of the d'Alembertian which were proposed by

Engquist and Majda [7]. We also show that this approximation (or any other which is

local in space as well as time) is not convergent in our sense for infinite time. We propose

some new approximations for infinite time which are spatially nonlocal. They are based on

Laguerre and exponential series. Although we have not proven convergence for these, we

do show that the error is reasonably small uniformly in time. The practical implementation
and testing of long-time approximations will be carried out elsewhere.

2. A Class of Pseudoditferential Operators and Local Approximations. We

consider first an operator, _t_ acting on functions of t 6 [0, oo) which vanish along with their
derivatives at t - 0. We assume:

ASSUMPTION 1.

P dJu

dta
d=0

Making a Laplace transformation we then obtain:

P

(2.o.1) = +
j=O

where a-1 (s) is the Laplace transform of the function A__ (t). Typically, we know ._ directly.
To verify that Assumption 1 holds we must check that the inverse transform of a-1 is in

L1. Necessary and sufficient conditions for this to hold are given in [20, Ch. 7].
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We give two examples, the first of which is relevant to problems involving the wave

equation and the second of which is relevant to problems involving the diffusion equation.
Example: Let

(2.0.2)

Then[15]

l(s)=VT_+I=,+
s+W+i

(2.0.3) Au = du + s ,,,, s(t) - ],(t)t '

where Jl(t) is a first order Besse] function. It is easily verified that ,9 E Lt([0, co)) so
Assumption 1 holds.

Example: Let

(2.o.5)

implies

(2.0.4) 2(,) = vq + 1.

Then `4 does not satisfy Assumption 1.

We remark that the second exanaple might be studied by expressing ,4 as the compo-
sition of a differential operator and a convolution. For example,

1

•¢7_-_ = _(, + i),

e-,(2.0.6) ,4" = g* _7 +" ' g(t) = _,

2.1. Local Approximations. We now consider local approximations B to operators
,4 satisfying Assumption 1:

(2.1.7) Bu = 2_, aj_-_ + B_I • u,
j=0

where we assume that the differential operators in our standard decomposition of A and B

agree. So that B will be local, we restrict B_I (t) to the class/_ defined by:

DEFINITION 1. A function f is in class 7_ if its Laplace transform, ](s), is a rational
function.

Alternatively, 7_ may be described through the following elementary result. (See [15].)

LEMMA 2.1. The class 7_ consists of functions which are products of polynomials,
e_Tonential 3%nctions and trigonometric fnnctions.

The error in approximating `4 by B is equivalent to the error in approximating convo-
lution by A__ by convolution by B_I. We therefore have:

Tr_EO_EM 1. Let u 6 Ln([0, T]), 0 < T < oo. Then

11(,4- B)ullL,(t0,Zl) _<llA-t - B-tll,,,(t0,m)ll=llr,(to,rD.
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Proof: Clearly

(2.1.8) H( t" = II(A-1- B_I) •  IIL,¢Io.rD.

The result then follows from the basic inequality Ill * gll/;_ -< HfIIL, IIgIIL_.¢

By this result we see that the problem of constructing accurate/convergent local ap-

proximations is equivalent to approximating the L1 function A__ by elements of _. We
therefore have:

COttOZLAKY 1. Let 0 < T < o_. For any e > 0 there e_ists a local operator B such
that:

IlA-  [[L (t0.TD <

(Here we use the operator norm.)

Proofi We need only show that 7_ is dense in L_. For finite T this follows from the density

of the polynomials. For T = oo we can use the density of certain exponential families, which

follows from logarithmic mappings of [0, co) to finite intervals.<>

In subsequent sections we will study the error for specific sequences of approximations.

It is nonetheless interesting to consider the possibility of optimal approximations where

the degree of the transform of B__ is fixed. For finite intervals and the more restricted

class of functions defined by products of polynomials and exponentials, the existence of

best approximations in L1 has been established [4, Ch. 6]. Moreover, for monotone kernels

interpolants can be computed and the degree of approximation estimated. In [10], boundary

conditions based on time interpolation of J_(t)/t were proposed and shown to have good
L1 approximation properties.

2.2. Operators in Higher Dimension. In most applications the operators to be

approximated act on functions defined on the product of a time interval with a spatial

region, f_. In the simplest case we take _ to be a hyperplane or torus and assume that .4

is a homogeneous function of s and Ikl = (_']_j k_)I/_, where the k/s are Fourier variables.

For example, if _ - nl/z is the square root of the d'Alembertian we have:

(2.2.9) = + = +

The Ik[-dependence of the operator complicates the approximation in a number of

ways. First of all, an approximation is local in space only if the coefficients of the rational

transform involve only even powers of Ik]. In the example above, the rational function of z

whose inverse transform approximates S must have numerator and denominator of definite

and opposite parity in order to be spatially local.

Second, since Ikl is not bounded, the approximations must be estimated uniformly in Ikl.

It is even possible that approximations can lead to ill-posed problems for some applications.
In [18] the well-posedness of local approximations to the square root of the d'Alembertian is

thoroughly studied. For general (spatially nonlocal) approximations such complete results

are unknown, but various special cases have been considered [6, 11].
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3. The Engquist-Majda Pad6 Approximants. The best known and most used

rational approximations to _ are the Pad6 approximants suggested by Engquist and

Majda [7]. In our language they may be written as (see [19]):

(3.o.lo) 1
s+ _ _ _tr,,__(_s)_ _ sin,-,0+ v,(is) sin(n + i)e' cos0 = is,

where Un denotes the Chebyshev polynomial of the second kind. Here we give a completely

different derivation of this approximation. We begin with the formula [1, Ch. 9]:

(3.0.11) 8 - Jz (*) 1 f_ V_ - w 2 cos wt dw.
t --_ 1

For fixed t we approximate the integral by the Gaussian quadrature rule appropriate for

the weight V_-- w 2, based on second kind Chebyshev polynomials [1, Ch. 25]:

(3.0.12) 7__c.(t ) -__-_sin _ t. t.
+ 1 ,-_ ;-_ cos (cos_)t

7r 2"cos_t, -1 < _ < 1.
4 (2n!)2_n+z t

Laplace transformation in time leads to the formula:

1%

+ n+lt=z s2+cos 2 t_ "
n+l

Remarkably we have:

TH_Olt_M 2. Approximations (3.0_10) and (3.0.13) are the same.

Proof: We first note that both expressions represent rational functions with denominators

of exact degree n and the same poles, s =/cos _, l = 1...n. Moreover, the numerators

are of degree n- 1. To prove their equality we will multiply each expression by (s -i cos ,_+z_)
and take the limit s --. i cos _ For (3.0.10) this yields:n+l "

(3.0.14) (-1)_+_ _ _. sin2_/r_,, sin _ sin _ n+z
n+l n+l n+l n+l

For (3.0.13) we note that cos -_- = (n+z-j)_ Therefore, the limit process eliminatesn+l -- COS n+l "
all but two terms in the sum:

n+l sin2-- _ sin2_+1 _ _q-i l"

Expressions (3.0.14) and (3.0.15)are dearly equal. This, combined with the fact that the
numerators have degree n - 1, implies that the two functions are the same.<>

Using the error formula for Gaussian quadrature we directly obtain an error estimate
for the approximation, ICn(t), to S(t):
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THEOREM 3. For 0 < T < oo:

Ils-/C-IIL,([0,rD< rain (gn+ 1)!' 1T H$[[1;,([0,oo))).+

Proofi Noting that:

n

(3.o.16) I,'C,.,(t)l < 1 E sin2 /rr 1 [I 1- _ = _j_lv_-_d_= _,n+l/= 1

we have:

(3.o.17) I(J_(t)/t) - K.(t)l _< rain (2n)----q' 2 + I(J_(t)/t)l "

Integrating this expression yields the desired result.o We note that this result clearly implies
the rapid convergence of the approximation for fixed T as n is increased.

This result can be extended to approximation of the pseudodifferential operator []x/9.

in higher space dimensions. Introduce the spaces L_(Hp, [0, T]) with norm:

(3.0.18)

Writing:

(3.0.19)

•we have:

I1_11_,[0._- _,(I+ Ikl2Fl_(k,t)l_dkdt.

Dz/2 0 O
= _ + _(Ikl,t), B, = _ + k,(Ikl, t),

THEOREM 4. For any e, $ > O, 0 < T < oo, there ezists N such that for any n > N
and u 6 Z,.(_, [0,_):

I1([]_/'- n_)_ll,-,-_,to,r__<,ll_l&to,rj.

Proof" We first estimate the error in Fourier space. Note that:

,=_ _--_)lkl •
Then:

(3.o.21) II(,S- g:,,)• allz_cto,rD_<I1,_- g:,,llz,c[o,TDIt'_ll_C[o.:V)-

The first term on the right can be estimated using the result of Theorem 3 and making the
change of variables z = [kit:

IIS K:-ll/;t ([0.T])Iklfo I/_IT 1" l_r (n__l)- = I(J_(z)#) n+ 1 _sin_-c°s (cos )z Idz
/=t n+ 1

(3.0.22) < =_ ,_I_1 (2--J4-i)-q'
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Given e, _ > 0 we can dearly choose n sufficiently large that:

(_.o._) (_+ I_I_)-(_+(_/'))II_- £,,ll_;,([o,rD_<_.

Finally:

ll,S' /¢
- - _:,,ll'.,([o,r])ll"llz_([o,_l)d_

(3.0._4) < _ _,II IIp,[0,_,

completing the proof.<>

We are confident that this convergence result can be translated into a convergence

result for the artificial boundary problem for smooth solutions of the wave equation in

simple domains, using for example the stability results of Ha-Duong and Joly [9]. This,
along with some numerical experiments, will be the subject of future work.

4. Long Time Approximations. The error estimates discussed above are strongly

dependent on T and break down as T --+ co. For some applications, for example the so-

called limiting amplitude problem [6, 11], or applications to viscoelasticity [14], long time

approximations are desired. Also, such approximations will have better large Ik] behavior for
multidimensional problems. To achieve this we must approximate the convolution kernel in

LI([0, co)) by functions in our class 7_. This greatly constrains the functions at our disposal
as seen in the following elementary result:

THEOP_EM 5. A function r 6 T_ is an element of L_([O, oo)) if and only if all poles of _
lie in the left half complex plane.

Proof: Simply note that the only functions in 7£ which are in £1([0, co)) take the form of

(sums of) polynomials multiplying exp6nentials where the exponent has negative real part.
The transform of such a function has a pole in the left half plane.<>

An immediate corollary of this result is:

COROLI_AIt¥ 2. A function r 6 _ [7/)1([0, co)) cannot have a transform which may be
written as the ratio of polynomials of definite parity.

For the multidimensional operator associated with _/s _-+ Ik]2, our corollary implies that

long time approximate conditions, in the sense described here, cannot be local in space. For

the half-space problem they generally involve the operator whose symbol is Ikl. This is the

so-called Dirichlet-to-Neumann map for the Laplace equation in the half space. The use

of this operator for long time solutions of the wave equation has been suggested in [6] and

[11]. A key practical issue is the efficient application of the nonlocal map. For progress in
this regard see [8, 16].

4.1. Lagnerre Expansions. The kernels we wish to approximate, in particular S(t),

are generally in L2([0, c_)). In /)2, convergent approximating sequences are easily con-
structed via expansions in orthogonal functions. A complete set of orthogonal functions
whose elements are in 7_ are the Laguerre functions:

(4.1.2s) £,,(7t) = _-_L,,(zt), _,_ - (_- })"
l_ n.{_1 •(s+ _._
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m ii
0

1

2

3

4

5

6

7

8

9

lO

g,_ I Il_g,_L,_-SllLl([o,oo)) II_gmL:,_ SIIL2(10,oo))
0.75 0.87 0.22

-0.15 0.79 0.19

-0.186 0.60 0.II

1.992 x 10 -2 0.59 0.11

9.4512 x 10 -2

2.08554 x 10 -_'

-4.94016 x 10 -2

-3.34492 × 10 -2

1.96034 x 10 -2
3.24971 x 10 -2

3.04379 x 10 -4

0.48 7.2 x 10 -2

0.48 7.0 x 10 -2

0.42 5.7 x 10 -2

0.41 5.0 x 10 -2

0.38 4.7 x 10 -2

0.35 3.9 x 10 -2

0.35 3.9 x 10 -2
TABLE 1

Coct_ciems ,,,d Z_ e,'ro,'s fo,- Z,,g_,e,','cappro='im,_Uo,_io S, "_= 3/2.

Here, L,(z) is the nth Laguerre polynomial and 7 > 0 is a parameter which may be chosen

to optimize the convergence rate. The expansion of a kernel _ is given by:

m

(4.1.26) ; g,£,(70,

We have written a program in Maple to compute these coefficients for arbitrary 7 and the

kernel J_ (t)/t. We have numerically computed the Lz errors in the resulting approximations.

We find 7 = 3/2 to be a convenient choice, both from the point of view of convergence of

the series and simplicity of-expansion coefficients. The results are given-in Table 1. For

reference we note that the L 1 norm of S is about 1.6 and the I-'2 norm is about .55.

It is evident that the convergence rate of this series in Lz is slow at best. Indeed,

Laguerre series are not generally convergent in Lz. (See [17].) We do not even have a proof

in this particular case. We have not yet implemented boundary conditions based on these
expansions, but plan to do so in the future.

4.2. Exponential Expansions. Another convenient set of orthogonal functions in 75

are exponential polynomials:

(4.2.27) 7_n(7t) = e-_ P_(2e -_- 1),

where Pn(z) is the nth Legendre polynomial and 7 > 0 is again a free parameter. The

orthogonality of these functions is easily established by mapping [0, oo) to [-1,1] by z =

2e-_ - 1. We then expand a kernel G by:

(4.2.28) G _ _ g,_7),(Tt),
r_----0

_0 °°
g,_ = 7(2n + 1) P,_(Tt)G(t)dt.

The Laplace transform of 7)_ takes the form:

(4.2.29)
n

75n__- _ an.i
./=o S + _3+_ '

2
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{roll
10

1

2

3

4

7

8¸

9

1.80998 x 10-I

3.49884 x i0-I

1.49008x 10-I

-1.46339 x 10-I

-1.24158 x 10-I

9.35578x 10-2

4.84350 x 10-2

II - SlIL,([O, r))II - Sll cro,oo )
2.1 0.51

1.2 0.24

0.81 0.19

0.76

0.59
0.14

0.10

0.52 8.1X 10-2

0.50 7.5X 10-2

--8.60302X 10-2 0.43 5.7× 10-2

2.89748X 10-2 0.41 5.4 X 10-2

3.50595 X 10-2 0.41 5.1X 10-2II0 -5.67689 x 10-2 0.38 4.3 x 10-2
TABLE 2

Coefficients and L_, errors for exponential Legendre appro_imationn to 5, "7 = 1/5.

where the coefficients anj are easily tabulated. We have written a Maple iprocedure to
icompute the expansion coefficients for S, and have tabulated the results in Table 2. We found

that 7 = 1/5 was a reasonable choice from the point of view of speed of convergence.

Again the convergence of the series is rather slow, particularly in ])z_ and the errors are

generally larger than for the corresponding term in the Laguerre series. Moreover, we have
no convergence proof.

4.3. O_her Approximations. Given the disappointing convergence behavior of the

series above, we are led to consider other means for constructing long time approximations.

One possibility is to consider the integral representation of ,9 used in our analysis of the

Pad_ approx_hnants (3.0.11). Setting z --- iw and rewriting it as a contour integral along

the imaginary axis, we can then deform the contour into the left half plane. A quadrature

scheme will then produce approximations which decay exponentially in t. We plan to
investigate this procedure in future work.
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