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ABSTRACT

We have recently learned that the Zeldovich approximation can be successfully used for

a far wider range of gravitational instability scenarios than formerly proposed; we study here

how to extend this range. In previous work (Coles, Melott and Shandarin 1993, hereafter

CMS) we studied the accuracy of several analytic approximations to gravitational clustering

in the mildly nonlinear regime. We found that what we called the "truncated Zel'dovich

approximation" (TZA) was better than any other (except in one case the ordinary Zeldovich

approximation) over a wide range from linear to mildly nonlinear (o" _ 3) regimes. TZA was

specified by setting Fourier amplitudes equal to zero for all wavenumbers greater than kn_ ,

Where k_l marks the transition to the nonlinear regime. Here, we study the crosscorrelation

of generalized TZA with a group of n-body simulations for three shapes of window function:

sharp k-truncation (as in CMS), a tophat in coordinate space, or a Gaussian. We also study

the variation in the crosscorrelation as a function of initial truncation scale within each type.

_;e find that k-truncation, which was so much better than other things tried in CMS,

is the worst of these three window shapes. We find that a Gaussian window e-k_/2k_ ap-

plied to the intial Fourier amplitudes is the best choice. It produces a greatly improved

crosscorrelation in those cases which most needed improvement, e.g. those with more small-

scale power in the initial conditions. The optimum choice of ka for the Gaussian window

is (a somewhat spectrum-dependent) 1 to 1.5 times k,,_, where kn_ is defined by (3). Al-

though all three windows produce similar power spectra and density distribution functions

after application of the Zeldovich approximation, the agreement of the phases of the Fourier

components with the n-body simulation is better for the Gaussian window. We therefore

ascribe the success of the best-choice Gaussian window to its superior treatment of phases

in the nonlinear regime. We also report on the accuracy of particle positions and velocities

produced by TZA.
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1 INTRODUCTION

For nearly fifty years there has been interest in understanding the gravitational growth

of density perturbations in an expanding universe. For the latter half of this time, we have

seen increasingly sophisticated numerical simulations performed on increasingly powerful

computers in an attempt to model this process. There has been a fruitful interaction with

theory; much of the effort has gone into two directions: (a) does a particular scenario produce

something that looks like our universe? (b) what approximations can we develop to describe

the general properties of the clustering process? This paper lies in second of these traditions.

The Zel'dovich (1970) approximation is the focus of this paper. One of us (ALM)

suggests there are strong indications near the end of section 3 that he thought this approx-

imation might work for entropic perturbtions (hierarchical clustering). However, it quickly

was decided in a later paper (Zel'dovich 1973) that it would work only to describe Uni-

verses in which large wavelength perturbations dominate, which were associated with what

was then called the "adiabatic" picture or sometimes the "pancake" model, after the large

flattened structures that appeared in it.

During the 80's, evidence gradually accumulated that the approximation had wider

validity. Filamentary structure appeared in a variety of numerical simulations, beginning

with CDM when Melott et al. (1983) found that it had enhanced percolation.

Coles, Melott and Shandarin (1993) hereafter CMS, conducted a series of tests by

crosscorrelating n-body simulations with various approximate solutions to the same initial

conditions. They found the Zel'dovich approximation, particularly in a "truncated" form

implemented by smoothing the initial conditions to remove unwanted nonlinearity, was the

most successful. The idea of the truncation of the initial spectrum evolved from the very well

known linear theory to the comparison of N-body simulations having the same longwave

perturbations but different cutoffs as in Beacom et al. (1991) and Melott and Shandarin

(1993) then to the adhesion approximation as in Kofman et al. (1992), and of the truncated

Zeldovich approximation (CMS). In this paper we improve on that success by finding the

best way to do the initial smoothing. We will see that a considerable further improvement

is made.

We first define a dimensionless density contrast 5(x) for the matter density p in co-

moving coordinates x = r/a(t) by

5(x,t) _ p(x,t)- po (1)
P0
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a(t) is the cosmological scale factor and, assuming a flat Universe with fl0 = 1 and in the

absence of radiation and pressure terms, a(t) oct 2/3 and po(t) o¢ a -3 c< t -2. The evolution

of 6(f,t) is described by the standard set of equations (e.g. Peebles, 1980 Eq. (7.9) and

(9.1)).

Furthermore, we specify the following initial conditions. If 6k is the spatial Fourier

transform of the density contrast (1), then our scale-free initial perturbations are expressed

by a power spectrum of the form

P(k) =<1 k". (2)

In the following discussion we will take n = +1,0,-1,-2 for illustrative examples. At the

initial time when the density contrast is everywhere small we assume that phases of the

Fourier components are randomly distributed on the interval [0,27r]. In this case, 6(x) is a

Gaussian random field and all of its statistical properties are completely contained in the

power spectrum (2).

In Fourier space, components 6k for large magnitudes k correspond to structure on

small scales and similarly for small k and large structures. We define k-nonlinear, or k,_l, by

pknt

a2(t) Jo P(k)d3k = 1. (3)

With this definition of k,,l we can say that for k < knl we are considering structures

in the linear regime, that is, structures whose density contrasts have grown approximately

proportional to a(t). Clearly, knl decreases with time as larger scales become more nonlinear.

2 A GENERALIZED TRUNCATED ZELDOVICH APPROXIMATION

With the Zeldovich approximation (Zeldovich 1970) we simply assign to each material

particle (strictly to the particle's initial unperturbed Lagrangian co-ordinate q) a vector and

move the particle along that vector. The Eulerian (co-moving) coordinate x of a particle at

time t is given by

x(q,t) = q + a(t)V'I'i(q) (4)

where _i(q) is the initial velocity potential, related to the initial gravitational potential by

3 H2 a3'I'i(x) (5)¢i(x) =

so that V2_i o¢ _ and the approximation is readily obtained from the initial conditions (2).



The ansatz (4) leads to a catastrophe where trajectories cross, a phenomenon known as

shell crossing (e.g., Shandarin & Zeldovich 1989). However, until the catastrophe is reached,

the approximation performs well, but only for n _< -3, i.e., for spectra in which most of

the power is concentrated on large scales. This effect can be easily understood when one

considers that it is on small scales that the highly nonlinear effects occur. Thus, we can

expect to improve upon the approximation (4) by first damping out initial power for large

k, i.e., small scales. We call this the "truncated Zel'dovich" approximation, or TZA.

We investigate here the effect of three "windows" applied in Fourier space. That

is, for a window W(k) the initial conditions _ for the improved approximation are just

_. = W(k)_k where _k are the initial conditions as given before (2). Since the phases of the

coefficients are not changed, we will be able to test directly the agreement.

The window which we will refer to as k-truncated is simply

1, k _< ktr= o, > (6)

This has already been shown to be an improvement to the original approximation (CMS),

however, it was only investigated for ktr = knb Here we tested it for a range from ktr = 2k:f

to ktT= 20k/ where k I is the fundamental mode of the box at two stages: kn_ = 8k I and

kn_ = 4kl,.

The other two windows tested are a Gaussian window

Wa( k; I%) : (7)

and a top-hat window in real space which corresponds in Fourier space to

,'sinRthk cosRthk' 
= J (S)

We similarly tested these windows over a range of k a and Rth to find the parameters for the

best performance. The meaning of "best" will be clarified in section 4.

We investigated a fourth window defined by

1, k < k*W(k;k*) = e -k2/2k*', k > k* (9)

motivated by the need to suppress small scale power in a gradual fashion and the belief

that the Zeldovich approximation worked well for large scale power and so we should leave



those amplitudes unaffected. However, this window performed only slightly better than
k-truncated so we do not consider it further.

3 NUMERICAL SIMULATIONS

The model data to which we compare the TZA approximations is provided by a set of

N-body experiments that approximate the evolution of a cosmological density field with a

set of particles on a grid with periodic boundary conditions. The details are discussed much

more completely by CMS and in Melott and Shandarin (1993) hereafter MS; the essentials

of such a simulation are the following.

Each N-body simulation is evolved from a set of initial density fluctuations with

power spectra of the form (2) and random phases. At very low amplitude our use of the

Zeldovich approximation (4) for initial conditions generates not only particle displacements

but also velocities in accord with the growing mode of gravitational instability. The initial

low amplitude restriction was such that no particle could be displaced more than 1/2 the

cell width from homogeneity. We studied spectra corresponding to n = 1,0,-1,-2, all

generated from the same set of random phases, which explains the similar overall structures

of simulations with different spectra. The simulations were run for various expansion factors

a(t); we consider here only those stages corresponding to k,l = 8kf and knz = 4kf. These

two scales represent a good compromise between resolution in terms of particles which drives

one to large scales and the effect of our periodic boundary conditions which leads one to small

scales (Kauffmann & Melott 1992).

For all cases, N-body and various versions of TZA, we evolved 1283 particles, each on

a 1283 co-moving mesh with periodic boundary conditions. For the N-body results we used

the enhanced PM (particle-mesh) method of Melott (1986). This makes them resolution

equivalent to simulations with 1283 particles on a 2563 grid in traditional PM codes: see also

Park (1990, 1991) and Weinberg et al. (1993). Grey scale plots of thin slices through these

densities corresponding to knz = 8 are shown in Figures la, 2a, 3a, and 4a for the N-body

simulations.

4 CROSS CORRELATIONS

As in CMS we use here the usual cross-correlation coefficient to compare each grid-

point in the resulting TZA approximations to the corresponding grid-point in the N-body

simulation. This coefficient is given by

< >
s - (10)

o- 1 o- 2



where 81 and 82, represent the density contrasts in the TZA and N-body distributions,

respectively; o'i --< 8_ >1/2; and averages are over the entire distribution. Note ] S I_ 1 and

that S = +1 implies that 81 = C82, with C constant for every pixel.

We exploit our use of identical phases before n-body evolution or application of an

approximation to demand good agreement. Our crosscorrelation test would be impossible

without it.

CMS found that the cross correlations between TZA and N-body for different real-

izations of the random phases agreed to the order of 10 -3 . This allows us to make general

conclusions about the performance of an approximation from our investigation of only one

realization.

The cross-correlation technique applied to the "raw" density fields may be too strict

a test. If the relative position of the structure is very similar to the N-body results but is

slightly displaced from those of the N-body, a small cross-correlation can result. We can

overcome this by smoothing the resulting density fields by a convolution with a Gaussian:

i - x' ]2

8(x,R)- (V/___R)3 /8(x')exp( [x--2_R2 )d3x '.. (11)

Thus, the question becomes not how well do two density fields correlate, but how fast do the

correlations converge to unity with smoothing?

Fields evolved from different values of n will respond differently to a given smoothing

length R, so we find it more convenient to express S as a function of the rms density contrast

cr. This is somewhat more intuitive; _r goes to zero as the field is more smoothed and S goes

to unity.

We found when doing these crosscorrelations that there was no ambiguity in the or-

dering of windows; the rank-ordering of the crosscorrelations did not change with smoothing

lengths for a given window size. We were thus able to explore a wide variety of values for the

three window scales ktr, kG, and k,h. (Although the tophat window is more naturally repre-

sented by a smoothing radius R_h, for uniformity of notation we choose to use k_h = 1/R_h

to represent it.)

5 RESULTS AND DISCUSSION

All window functions had a single, fairly broad maximum crosscorrelation for a pre-

ferred value of k. We used the TZAs to generate a mass distribution for this choice of best



valuefor eachwindow, and madeplots of them in analogywith the n-body plots. These are

shown in Figures 2, 3, and 4. Each Figure contains one n-body simulation and the three

forms of TZA we compare with it.

All the pictures have a family resemblance, as expected. The arrangement of the

pictures in a square array allows the reader to easily compare appearance across approxima-

tions. As usual, more negative n leads to a more filamentary appearance in all cases and for

all indices the various versions TZA exaggerates the filamentarity. This is because the TZA

cannot follow in detail the highly nonlinear process of the breakup of filaments into sub-

clumps. The visual differences between the versions of TZA are more subtle. They resemble

each other more for more negative n; this is reasonable since they differ primarily in the

treatment of larger wavenumbers in the initial conditions and these are less important for

more negative n. Within a given index, the Gaussian window appears to produce a picture

which has a more "smooth" or "regular" appearance, whereas the others give an impression

of "choppiness" or "irregularity". Also in the Gaussian version both the dark condensations

and the grey filaments connecting them appear more compact.

In Figure 5 we demonstrate the best-choice scale k_ for each window in units of knl.

The first thing we notice is that the optimum window value kw is nearly the same for the two

nonlinear stages (open and filled symbols in Figure 5), reinforcing the fact that our results

are not limited by resolution or boundary conditions. Figures 2-4 show the stage knl = 8k/

which allows us to see more structure within one slice.

Figure 5 shows the range of best k_ for our three window functions. The small dis-

agreement seen between the two stages is an artifact of the fact that we only checked certain

discrete values of kw. The fact that the best value of k_ varies only a little for a given

window over the range of indices (the greatest being a factor of about 5/3 for k-truncation),

combined with the fact that we found that =i=20% error in k_ makes very little difference,

suggests that it will be possible to state a general prescription good for all kinds of spectra.

Figure 6 shows the crosscorretations between the n-body simulations and our best

choice k_ approximations for various spectra at both stages. Again all the dependence

on particulars of the simulation box are removed by plotting against o- of the smoothed

simulation. Each point is generated by crosscorrelating the n-body and the approximation

both smoothed by convolution with the same Gaussian windows. This smoothing of our

results should not be confused with the window function applied to the initial conditions.



We cannow comparethe bestresultsfor eachwindow againstoneanother. (The reader

may also refer to Figure 6 in CMS.) The readershould note that the crosscorrelationhas

no absolute meaning; the raw number dependson the pixellization sizerelative to the size

of structures after smoothing, and this is different at the two stages.But the relative order

shouldstay the same,and does.A valueof 1wouldmeanperfect agreementat the resolution

of onepixel, evenif masswererearrangedinsidepixels. CMS usedthe samepixels, sothat

canbe directly comparedto resultsherefor the samekni an spectral index.

For all eight panels in Figure 6, the Gaussian window produces the strongest cross-

correlation between the resulting TZA density and that from the n-body simulation. The

k-truncation method., which was so successful compared with other things tried by CMS, is

the worst here. The greatest amount of improvement found by CMS for TZA over straight-

forward use of the Zeldovich approximation (I'V = 1) was found for more positive indices.

We find here that the transition to a Gaussian window also makes the greatest increment in

S beyond the CMS result for more positive indices. For n = 1, cr = 1, the value found by

CMS was about 0.65; here it is about 0.85.

Returning to Figure 5 momentarily, we observe that the best value of ka/k_,, varies

rather slowly with spectral index, lying in the range 1 to 1.5. One may be concerned about

how to apply this to non-power law spectra such as Cold Dark Matter. We speculate that

the local slope at k,,, will determine this, and plan a check in the future. However, given the

fact that 4-20% in ka makes little difference, we can recommend generic use of k_ --_ 1.25k,_,

for non-power law spectra in which all of the quasilinear regime of the spectrum lies in the

range -2 _< n _< +1. This includes nearly all models of cosmological interest at this time.

Modes k << k,_z will be unaffected by our window, and modes k > 3kn, will be damped to

insignificance.

We can speculate based on the pictures why the Gaussian window works best. The first

crisis and failure of any Zeldovich approximation-based scheme happens when trajectories

cross. In real nonlinear gravity, the particles are slowed by the attraction of the stream

they have passed, which is ignored in the approximation. This forces us to take out highly

nonlinear modes. On the other hand, they can help to preserve detail. It appears that

the Gaussian window works to balance these, reducing the amplitude of the more nonlinear

modes gradually as they begin to lead mass elements further astray. This can account for

the more focused and crisp appearance of the Gaussian based pictures.
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The Zeldovich approximation does not conserve either the power spectrum or phases

of Fourier components; it definitely includes some nonlinear mode coupling. It is therefore

useful to examine the agreement with the n-body simulation. The power spectrum (or

autocorrelation) is the most widely used statistic in large-scale structure. We examine

tha.t first without additional smoothing after applying TZA, in Figure 7. I11 all cases, the

nonlinear power is too low in all approximate schemes. The other obvious point is that

the spectra of the nonlinear approximations for a given model are all very similar in spite

of the fact that their progenitors had different spectra. This is a reflection of the fact

that the nonlinear transfer of power from small to large wavenulnbers is dominant, as has

been observed before. More importantly for our purposes here, it shows us that the better

agreement of the Gaussian TZA cannot be a result of a spectrum closer to the n-body result.

In fact, for n = -1 initial conditions, its spectrum is one of the farthest from the n-body

result.

We therefore look to phase differences. Each Fourier coefficient in the sum that de-

scribes our density field has an amplitude and a phase angle a : 8k =1 6k I eia" We can

measure the angle 0 = O_N -- aZ between the phases in the n-body simulation and the ap-

proximation to it. Perfect agreement would imply cos 6 = 1; anticorrelation of phases cos

= -1; and for randomized phases cos _ would average 0. We expect the phase agreement

to deteriorate with increasing k; we thus average cos 0 within spherical shells of k and plot

< cos _ > as a function of k in Figure 8. The results are in agreement with our crosscorre-

lation study: the Gaussian based approximation has phases which agree the best with those

of the n-body simulation, and this agreement is weakly if at all spectrum dependent. The

k-truncation based approximation is the worst and the most spectrum dependent. This is

in perfect accordance with the fact that we have improved TZA and greatly reduced its

spectral dependence by using a Gaussian window, and reinforces the importance of phase

information as stressed by Scherrer et al. (1991), lZyden and Gramman (1991), and Howe

(1993).

We can understand the performance a little better by examining the density distri-

bution function. In Figure 9 we show the number of cells N found with mass density p

(in units of the mean). In all cases the approximations underestimate the number of high

density cells and overestimate the number of lower density cells. We can also see that there

is no systematic difference between the windows. Therefore the difference in crosscorelation

amplitude must depend primarily on producing the correct location of mass condensations,

rather than substantial differences in their density contrast.



It is worth commenting that our results do not imply that Gaussiansmoothing is the

best for restoring initial conditions from our nonlinearuniversewith the Zeldovichapprox-

imations; smoothing doesnot commutewith the approximation. Melott (1993) hasshown

that if one wishesto smooth an evolvedstate in preparationfor computing its linear precur-

sor, then k-truncation works best. This is probably because the sharp truncation effectively

removes nonlinearly generated modes which are of higher order than the Zeldovich approxi-

mation and would thus create a false signal when mapping back to the initial conditions; the

signal would be false regardless of their amplitude. When extrapolating forward, as we are

studying here, the effect of "sticking" in pancakes can apparently be mimicked by a gradual

reduction of amplitude with increasing k.

Although we have conducted a fairly broad search, there are an infinite number of

possible smoothing windows and we cannot exclude the possibility that some untried one

would be even better than Gaussian. But it seems that finding it would be difficult if not

impossible without a specific prediction based on theory.

A substantial improvement now exists as compared with linear theory, as one can see

by comparing the crosscorrelation amplitudes we get from Gaussian TZA with those derived

from linear theory. For the most challenging n = +1 spectra, we improve the correlation

from 0.6 to 0.85 at _rp = 1 and from about 0.4 to better than 0.75 at o'p = 2. For n = -1,

close to the slope on scales going nonlinear today, we see an improvement from 0.85 to about

0.95 for o-p = 1, and from 0.75 to 0.85 for c_p = 2. We have removed much of the spectrum

dependence found in the CMS version of TZA, and it is now much better than linear theory

for all spectral indices.

Much of the analytic theory of large-scale structure is based on the idea of smoothing

to linearity, then using linear perturbation theory or simple extensions of it. Our results

show that any calculations which can be based on TZA will be in much closer agreement

with reality.

After this paper was submitted, we completed similar analyses of the frozen-flow ap-

proximation (Melott et al. 1994a) and the adhesion approximation (Melott et al, 1994b).

Although these are considerably more complicated, they both crosscorrelated substantially

worse than TZA. The adhesion approximation was better for some statistical quantities such

as the mass density distribution function and the power spectrum, but worse dynamically

in the sense of moving mass to the right place.
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Second-orderLagrangianperturbation theory (ZA maybeconsideredasfirst order) has

recently beenfound by Melott et aI. (1994c) to constitute a slight improvement over TZA, if

the initial conditions are truncated by an optimal Gaussian smoothing. The improvements

over first-order TZA are rather small; it is a question of taste whether it is worth the

moderate complication.

We have not yet completed a similar analysis of the linear evolution of potential ap-

proximation (Brainerd et al. 1994; Bagla and Padmanaban 1994). This might do rather

well. However, we wish to point out that this is not really an analytic nonlinear approxima-

tion, but rather a different way of doing N-body simulations. It consists of moving particles

around over timesteps while assuming that the background potential is content, i.e., evolves

according to linear perturbation theory. In practice this is almost as expensive as doing

a full N-body simulation, and it cannot be done analytically. It is therefore not directly

comparable with TZA, which can be written analytically and executed in what is equivalent

to one timestep of an N-body simulation.

Since TZA works so well, at the request of a referee we have also examined the dis-

tribution of errors in particle positions and velocities as compared with N-body. We define

the position error

Am = ] X.Tz.4 -Xw-bl
(12)

where Ant is the nonlinearity wavelength. Figure 10 shows a histogram of Ax. A typical

position error is spectrum dependent: Ax -,_ 0.15A,_ for n = +1 and Ax --_ 0.075A_t for

n = -2, which is in a good qualitative agreement with all previous results.

The velocity field is a resolution - dependent quantity, and cannot be reported inde-

pendent of some assumed smoothing window. In most practical applications, approximations

like TZA are used in the quasi-linear regime, between the domain of validity of Eulerian

perturbation theory and the fully nonlinear regime best handled by N-body simulations.

We therefore choose to bin the velocities to define a center-of-mass velocity for our 1283

density pixels. This density field is then smoothed by a Gaussian (11) for which the resulting

RMS density contrast is unity. This is an extremely stable measure (about R = 4h -_ Mpc

for galaxy data). We report

= IVTza -<v-bl
HA., (13)

where H is the Hubble expansion parameter at the moment under analysis. In Figure 11

we show the distribution of Av, weighted by mass. The dependence on spectrum is much

11



weaker than in the position error. Since both position and velocity errors are given in

dimensionless(nautral) units they can be comparedwith each other. The velocity errors

are considerablysmaller, which probably can be related to the smoothing of the velocity
distribution. In passingwenote that the Zeldovichapproximation itself is more accuratein

terms of velocities than coordinates(Doroshkevich,Ryabenkii, and Shandarin(1973).

7 CONCLUSIONS

We have conducted a controlled study of the truncated Zeldovich approximation, which

CMS found worked in a spectrum-dependent fashion but always better than linear theory.

The TZA approximation consists of multiplying the linear Fourier coefficients by a window

function W(k/Ck,,i) where C is a constant to be determined and knt marks the transition

to the nonlinear regime. We explored three shapes for the function W: a step function, a

Gaussian, and the Fourier transform of a tophat (uniform sphere) and we varied C for each

I,V-.

We found that:

(a) A Gaussian Wi_idow e-k_/2k_ produces the best crosscorrelation with n-body sim-

ulations.

(b) The best choice for C for a Gaussian window is in the range 1 to 1.5, depending on

the spectral index of the initial conditions, but very little error will be introduced by using

1.25 for all cases in the range -2 < n < 1.

(c) Using this window dramatically improves the performance for the more challenging

positive-n case, removing much of the spectral dependence found in CMS.

(d) The reason for better performance of the Gaussian window is based on more nearly

correct phases of Fourier coefficients in the nonlinear regime, whereas the power spectrum

and the density distribution function produced are nearly the same for all windows. Visually

all windows produce quite similar distributions.

(e) The use of TZA still considerably underestimates the power at large k(k > k,_)

and the density counts at high densities (p _ 6).
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FIGURE CAPTIONS

Figure 1. A grayscaleplot of thin (L/128) slicesof the simulation cube,and the approx-

imations to it for index n = +1 initial conditions at stage knl = 8. (a) the n-body

simulation (b) the k-truncated TZA approximation (c) the tophat-truncated TZA

model (d) the Gaussian-truncated TZA model.

Figure 2. As in Figure 1, but for n = 0 initial conditions.

Figure 3. As in Figure 1, but for n = -1 initial conditions.

Figure 4. As in Figure 1, but for n = -2 initial conditions.

Figure 5. A plot of the value of k_/kni which gave the best crosscorrelation for each choice

of window function. The solid figures are for stage k_,z = 4kf the open for stage

k,_i = 8kf. The hexagons represent the value for the tophat window, the squares the

gaussian window, and the triangles the k-truncation window. Many open figures are

apparently missing because they coincide with the same figure filled.

Figure 6. A plot of the crosscorrelation S as defined in the text between the best TZA

generated density field (Figs. 2-4) and the full n-body simulations against the rms

density fluctuation in the simulation. Both are smoothed by the same Gaussian win-

dow. Solid line: Gaussian window. Dot-dashed line: tophat window. Dashed line:

k-truncation (a) for knt = 8kf (b)for k_,z = 4kf.

Figure 7. Power spectra for the various n-body simulations at knZ = 8kf (heavy solid line)

and for the best TZA with the k-truncation window (dashed line), tophat window

(clot-dashed line) and Gaussian window (solid line).

Figure 8. The average effective phase angle error for each of the three windows, as measured

by < cos _ > as described in the text, all at stage kn_ = 8kf. Simulation with n -- +1:

short-long dash line. n = 0: short dash. n = -1: long dash. n = -2: dot-short dash.

Figure 9. The mass density distribution in terms of the number of cells N with density p

in units of the mean density, with CIC binning of 1283 particles on our 643 mesh.

Figure 10. A histogram of the difference in position for identical particles as evolved by

TZA or by n-body, divided by A,,_.

Figure 11. A histogram of the difference in velocity for identical particles as evolved by

TZA Or by n-body, divided by H(z))_,,_.
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