
NASA-CR-197516

UNIVERSITY OF CALIFORNIA

Los Angeles

//c( 2. -- ._7_"

£ IS8

f

The Accuracy of Parameter Estimation in

System Identification of Noisy Aircraft Load

Measurement

A dissertation submitted in partial satisfaction of the

' requirements for the degree

Doctor of Philosophy in Electrical Engineering

by

Jeffrey Kong

1994

\

(NASA-CR-197516) THE ACCURACY OF
PARAMFTFR ESTIMATION IN SYSTEM
IDENTIFICATICN OF NOISY AIRCRAFT

LOAO MEASUREMENT Ph.D. Thesis

(California Univ.) 138 p

63/05

N95-19130

Unclas

0033996



(_) Copyright by

Jeffrey Kong

1994



The dissertationof JeffreyKong is approved.

Nhan Levan -_

_Abeer Alwan

S.C.Huang /

K_ Com__'tt_ Chair

University of California, Los Angeles

1994

ii



DEDICATION

I would like to dedicate this dissertation to my late father and my

mother.

°,°

111



Contents

DEDICATION
Jlu

lll

List of Figures ix

ACKNOWLEDGEMENTS X

VITA xi

ABSTRACT xii

1 Introduction 1

2 Least-squares Estimation

2.1 Normal Equation Method ......................

2.2 QR Factorization Method ......................

2.3 Singular Value Decomposition Method ...............

6

7

7

8

3 Two Equivalent Approaches to Load Measurements

Approach 1 - Linear Dependency of Load Values on Gage Values.

Approach 2 - Linear Dependency of Gage Values on Load Values.

9

3.1 11

3.2 17

3.3 Limits on the Number of Strain Gages ............... 21

iv



4 A Bound for Noise Perturbed Systems 24

4.1 Distance Between Subspaces ..................... 24

4.2 A Bound for the Noise Perturbed Residual ............. 25

5 Noise Sensitivity Analysis for the Flight Stage Load Estimation 32

5.1 Effects of Errors on Load Prediction in Calibration and Flight Stage 32

5.2 Properties of Flight Stage Noise and Load Estimate Error .... 35

5.3 The Sensitivity Measure for Noise Perturbed Systems ....... 37

5.4 The Trade-off between Model Accuracy and Noise Sensitivity... 37

5.5 Single Coeifficient Noise Sensitivity Reduction(SCNR) ....... 38

5.5.1 Sub-optimal Single Coefficient Noise Reduction for practi-

cal applications ........................ 39

5.5.2 Performance Analysis of the SCNR procedure ....... 41

5.6 Generalized Method for Reduction of Noise Sensitivity(GNR) . . 46

5.6.1 Sub-optimal Generalized method for Noise Reduction . . . 47

5.6.2 Performance Analysis of the GNR procedure ........ 48

5.7 Conclusion and Remarks ........................ 49

6 Total Least Squares and Correspondence Analysis

6.1

50

6.0.1 Total Least Squares(TLS) .................. 51

6.0.2 Correspondence Analysis(CA) ................ 51

The Equivalence of TLS and CA .................. 56

6.1.1 Necessary and Sufficient Conditions for the Equivalence of

TLS and CA in 2 dimensional space ............. 56

6.1.2 TLS and CA Criterion for general dimensions of data matrix 59

V



7

8

9

Neural Networks and its applications

7.1 Introduction ..............................

7.2 An Overview of Neural Networks ..................

7.2.1

7.2.2

7.2.3

7.2.4

7.3

Basic Neural Units or Neurons ................

Basic Neural Networks ....................

Multiple Layer Perceptron (MLP) ..............

Training Techniques for Neural Networks ..........

Training by Back Propagation(BP) Technique ...........

7.3.1 Notations and Definitions ..................

7.3.2 Derivation ...........................

64

64

65

66

67

68

69

70

70

71

Load Estimation Problem-Linear and Non-linear Least Squares

Approach

8.1

8.2

8.3

8.4

8.5

8.6

75

Linear Approach ........................... 81

Non Linear Least Squares Approach ................. 82

8.2.1 Neural Network Approach .................. 82

Simulation Results and Observations ................ 84

Distributed Load Estimation Problem ................ 90

Pattern Recognition by Neural Network ............... 92

Results and Observation ....................... 95

Performance Analysis and Design Criteria of Neural Networks

9.0.1

9.0.2

98

Generalization and Training Accuracy ........... 101

SVD, CA and ColIinearity Method for Reducing Neurons

in a Layer ........................... 101

vi



10 Conclusions and Future Work 105

A Computer Codes for Neural Network Load Estimation 108

B Calibration Data from NASA F-111 Load Measurement 121

References 123

xdi



List of Figures

1.1

1.2

3.1

5.1

5.2

5.3

5.4

6.1

6.2

6.3

6.4

7.1

7.2

7.3

8.1

8.2

8.3

8.4

Parameter Estimation Process-Calibration Stage .......... 4

Parameter Estimation Process-Calibration Stage .......... 4

Residuals vs. number of gages used ................. 22

Combined Noise Effects in Calibration and In-flight Stage ..... 34

ASscNn vs. /XA for NASA Data .................. 40

Probabilty Distribution for load estimate Lo ............ 42

Probabilty vs AA for NASA data .................. 45

Correspondence Analysis of NASA HWTSS load data ....... 54

Two data vectors in 2 dimensional space .............. 56

Conditions for Equivalence of TLS and CA Criterion ....... 57

Mean translated data vectors .................... 58

A basic neuron ............................ 66

A sigmoid function .......................... 67

A Multiple Layer Perceptron Neural Network ........... 68

Wing Structure in Calibration Stage of Load Condition LC (q) . . . 77

Gage vs. Load measurement from F-111 Data in Calibration Stage 79

The Load Estimation Problem .................... 80

The Back Propagation Training Process .............. 83

VII1



8.5 The Load Prediction by a Trained Neural Network ........ 84

8.6 Relative Error vs. Test Load Samples for NN and LS approach(Load

Condition 1) .............................. 86

8.7 Relative Error vs. Test Load Samples for NN and LS approach(Load

Condition 2) .............................. 87

8.8 Relative Error vs. Test Load Samples for N and LS approach(Load

Condition 3) .............................. 88

8.9 Single Equivalent Load and Distributed Load on a Wing Surface . 91

8.10 Classifier in Nonlinear Separable Patterns ............. 93

8.11 Neural Network for Load Pattern Recognition ........... 96

8.12 Neural Network for Load Pattern Recognition ........... 97

9.1 Average Relative Error vs. number of neurons in the first hidden

layer .................................. 100

9.2 Correspondence Analysis of the weight matrix W ......... 103

9.3 Collinearly Index of the weight matrix W .............. 104

ix



ACKNOWLEDGMENTS

I would like to thank Professor Kung Yao for his kind support and encourage-

ment. I would like to thank Professor Abeer Alwan, Professor Nhan Levan, and

Professor S.C. Huang for serving on the committee. I would also like to express my

appreciation to Mr. Karl Anderson and Mr. Steve Thornton of NASA/Dryden

Flight Research Center for devoting their time on numerous discussions.

This work was partially supported by the NASA Grant under NCC 2-374.

X



June 1982 

June 1983 

K. Yao 
F. Lorenzelli 
J. Kong 

VITA 

Jeffrey Kong 

Born, 

Bachelor of Science in Electrical Engineering, magna 
cum laude 
University of Santa Clara 
Santa Clara, California 

Master of Science in Electrical Engineering 
California Institute of Technology 
Pasadena, California 

PUBLICATIONS 

"Comparison Between Correspondence Analysis and 
Total Least Squares", Proc. ICASSP '92, San Fmn-
cisco, USA. 

xi 



ABSTRACT OF THE DISSERTATION

The Accuracy of Parameter Estimation in

System Identification of Noisy Aircraft Load

Measurement

by

Jeffrey Kong

Doctor of Philosophy in Electrical Engineering

University of California, Los Angeles, 1994

Professor Kung Yao, Chair

This thesis focuses on the subject of the accuracy of parameter estimation

and system identification techniques. Motivated by a complicated load measure-

ment from NASA Dryden Flight Research Center, advanced system identification

techniques are needed. The objective of the problem is to accurately predict the

load experienced by the aircraft wing structure during flight determined from a

set of calibrated load and gage response relationship. We can then model the

problem as a black box input-output system identification from which the sys-

tem parameter has to be estimated. Traditional LS techniques and the issues of

noisy data and model accuracy are addressed. A statistical bound reflecting the

change in residual is derived in order to understand the effects of the perturba-

tions on the data. Due to the intrinsic nature of the LS problem, LS solution

faces the dilemma of the trade off between model accuracy and noise sensitiv-

ity. A method of relating the two conflicting performance indices is presented,



thus allowing us to improve the noisesensitivity while at the sametime confin-

ing the degradationof the model accuracy. SVD techniquesfor data reduction

are studied and the equivalenceof the CorrespondenceAnalysis(CA) and Total

LeastSquaresCriteria areproved. Wealsolookedat nonlinearLS problemswith

NASA F-111 data set as an example. Conventionalmethods are neither easily

applicablenor suitable for the specificload problem sincethe exact model of the

system is unknown. Neural Network(NN) doesnot requireprior information on

the model of the system. This robustnessmotivated us to apply the NN tech-

niqueson our load problem. Simulationresults for the NNmethodsusedin both

the singleload and the "warning signal" problemsareboth useful and encourag-

ing. The performanceof the NN(for single load estimate) is better than the LS

approach,whereasno conventionalapproachwastried for the "warning signals"

problem. The NN designmethodologyis also presented. The useof SVD, CA

and Collinearity Index methods are usedto reducethe number of neurons in a

layer.

w.w
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Chapter 1

Introduction

Parameter estimation and system identification are general analytical techniques

applicable to many engineering problems. The problem can generally be viewed

as a black box system identification process from which input and output relation-

ship is identified and determined. Once the system parameters are determined, it

can be used to estimated the output when a new set of input data are presented

to the system. As in most cases such as spectral estimation in signal processing,

statistical analysis and data reduction techniques, our problem reduces to finding

the solution of the linear system of equations represented by Ax ._ B, where A is

the input matrix and B is the output matrix. The parameter x relating A and B

is then determined using linear algebraic techniques. In the past, normal equa-

tions approach is mostly used until the development of newer techniques such

as Singular Value Decomposition, QB. factorization, etc. However, there are still

drawbacks in these methods which we need to understand and analyze. There

are factors affecting the accuracy of the system identification process which we

need to address and analyze. Problems that appeared in this process include the



redundanciesin the data matrices, the needfor subsetdata selection,the noise

in the data matrices, the selectionof systemparametersand the accuracyof the

linear model assumption. Someof theseconcernsare studied in [30] [9] suchas

using SVD to solvethe problemof data redundancies.In [3]and [9], Correspon-

denceAnalysis is usedin data reduction. In [7] [10] [11], the presenceof noisein

both the data matrix A and output matrix B are considered using Total Least

Squares. Also, we need to address the intrinsic problem of model accuracy and

its robustness to noise.

In practical situations the input-output relationship of the black box system

cannot be accurately modeled as a linear systems. As a result linear methods

may not be adequate for these situations. Techniques such as spline approxima-

tion and nonlinear optimization are widely used in solving nonlinear least square

problems. Spline approximation is relatively simple in dealing with only one or

two dimension problem but becomes increasingly complex in multivarite prob-

lems. On the other hand, the use of nonlinear optimization techniques is not

always straightforward and simple. Often, the assumption of the type of nonlin-

ear function is required for the model. Recently, much attention is given to the

use of Neural Network approach in applications arising from different areas of

interest. From pattern recognition, function approximation, linear and nonlinear

programming to singular value decomposition, Neural Network are used instead

of more traditional methods. In some cases when model assumption is not easily

obtainable, Neural Network will be most suitable since no model assumption is

required. This advantage of NN becomes more apparent when nonlinearities is

present in the data matrix A. Linear methods are no longer adequate in these

situations, as a results nonlinear least square techniques must be used. Since
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NN is basedon searchalgorithms suchas gradient descentalgorithm, the com-

putation effort required for the training of the NN is generallyvery intensive. In

addition there is no definite criteria for selectingwhich type of NN to beusedfor

the problem, theuse of NN sometimesbecomesheuristic and ad-hocin nature.

However,the easeof use,the lack of necessarymodel assumptionsand the ability

to handlewide variety of problemsmakesit a relatively popular method among

various areaof interest.

This thesi_i_ motivated by a real aircraft systemidentification problem en-

counteredat NASA Ames-DrydenFlight ResearchCenter. The physicalproblem

dealswith the wing surfaceof an aircraft which is constantly experiencingdif-

ferent loadingsduring the flight. The ability to estimate thesein-flight loadings

are essentialto>the understanding and designprocessesof the wing structure.

Strain gagesaremountedondifferentparts of the wing which aresensitiveto the

loads. In order to relate the gages'outputs to the loadingson the wing surface,

a pre-flight calibration procedureis performed. The calibration stage is simply

a procedure to_obtaia the gages'outputs when a set of known wing loads are

applied to the wing structure. In Figure 1.1, we apply a known load L on the

aircraft structure and obtain the strain gage measurements M. From these data,

we obtain a set of parameters that characterizes the structure. In Figure 1.2,

during the fiight_ measurement stage, from the in-flight gage measurements /_,

we can then estimate the in-flight loads L.

Some major issues in the parameter estimation problem are noises present

in the calibration_ an& the in-flight stages; the accuracy of the model(linear or

non-linear) used to_ establish the relationship between gages and loadings; and

the number of the _ available gages. We shall consider some of these matter. In

3
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Figure 1.2: Parameter Estimation Process-Calibration Stage

chapter 2, some known analytical techniques useful for least-squares solution

are summarized. In chapter 3, the equivalent approaches on the formulation

of the load measurement problem are considered. In chapter 4, a bound for

evaluating the effect of noise on the residual of the LS problem is derived. In

chapter 5, the statistical properties of noise in both the calibration and in-flight

stage are discussed. In this chapter the relationship between the noise sensitivity

and the model accuracy is presented, which leads to the development of a new

methodology for reducing the flight stage noise variance. It is also shown that

the reduction of noise variance in the flight stage depends on the amount of

deterioration of the model accuracy. In Chapter 6, the methodology of Total Least

Square (TLS) [7], technical results and studies are presented with reference to the

works by Golub in [7] [10] [11]. We will also discuss the method of Correspondence

Analysis (CA) studied by Greenacre in [9]. In the same chapter, we will show

the equivalence of TLS and CA as both methods require the minimization of the

energy of perturbation error imposed on the data matrix.
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Chapter 7 introduces the nonlinear least square problems together with a

practical example by the NASA F-111 gage data. The inadequacy of the lin-

ear methods leads to the use of nonlinear least square or nonlinear regression

techniques [2]. We also provide a background of the theory and applications of

Neural Networks (NN) [20] [17] [12]. Different types of Neural Networks are also

discussed and analyzed. One of the most useful type of NN is through the use of

the Back Propagation training approach [27]. Since NN is shown to be useful in

applications such as pattern recognition, function approximation, nonlinear pro-

gramming, etc., examples and studies relating to these topics are also presented.

In Chapter 8 we propose the use of NN in nonlinear least squares and pattern

recognition approaches in solving the system identification problem represented

by the NASA F-111 gage data. Other than estimating a single load on the wing

surface, we propose the estimation of a distributed load. A distributed load es-

timate consists not only of the information of the single load estimate but also

the individual loads experienced by different part of the wing. Pattern recog-

nition is used in an effort of separating different loading conditions. Using NN,

we showed that we could identify different loading conditions during flight stage

with reasonalbly amount of accuracy. A simulated examples is also presented.

In the same chapter, we also proposed a new method to estimate the single load

estimate using NN. Since NN is capable of solving nonlinear least square prob-

lems, we could apply the techniques to the NASA F-111 data when conventional

linear methods failed. Results using NN and linear methods are discussed and

compared. In the last chapter, the performance of the NN is discussed and a

design methodogly is presented with simulation results.



Chapter 2

Least-squares Estimation

Least-squares is a general numerical method that can be used for solving a linear

system of equations such that the sum of squares of the errors is minimized.

Suppose we have a system of equation

Ax "-' b, (2.1)

where A is a known m x n matrix, x is an unknown n x 1 solution vector ,and b is

a known m x 1 vector. For overdetermined system of equations, we have m _> m

and for underdetermined system, we have m _< n. We also assumed all the data

and solution are real-valued. The least-squares(LS) problem is equivalent to the

minimization problem of

min IIAx - bll = IIAk - bll, (2.2)

where & is the LS solution for equation (2.1). Three well known methods [7] for

solving _ are summarized below.

6



2.1 Normal Equation Method

By expanding (2.2), we have

[[Ax - b[[2 --- (Ax- b)' ( Ax - b) = x'A'Ax - xlAIb - b'Ax + b'b

= x'A'Ax - 2x_A'b + b'b. (2.3)

By taking the gradient of (2.3) with respect to x and set it to zero yields

2A'A_ - 2A'b = 0

and

&=(A'A)-'A'b. (2.4)

Thus the normal equation approach to the least-squares solution is given by (2.4).

This solution exists only if m > n and A is full rank. However this method does

not yield a numerically stable solution since it requires the inverse of the matrix

A'A whose condition number is the square of that of A. Thus this method is not

useable if A is already nearly singular.

2.2 Ql:t Factorization Method

Let A be a frill rank m × n matrix that can be factored into the form of A = QR,

where Q is a m x n matrix of orthonormal column vectors, and R is a n × n upper

triangular matrix [7"], Then from (2.1), _ can be solved by the equations

QP_ = b (2.s)

P_ = Q'b. (2.6)



Since R is a non-singular matrix, R -1 exists and (2.6) can be written as

= R-1Q'b. (2.7)

While the formal LS solution $: based on the QR method is given by (2.7), since R

is upper triangular, :_ in pratice can be obtained by using the back substitution

method once Q_b is determined. In general, the QR method approazh for the

solution of & is more stable than the normal equation approach.

2.3 Singular Value Decomposition Method

Let A be a m x n matrix of rank r < min(m, n). Then the SVD of A can be

expressed as A = UZV _, where U is a m × n matrix with orthogonal columns

(i.e., U'U = I); V is a n x n orthogonal matrix (i.e., VV r = V'V = I); and E is

a n × n diagonal matrix = diag[Al, ... ,A,_ ], with A1 _> A2 _> ... _> Ar > Ar+1 =

.... A,, = 0 [7]. Then from (2.1), :_ can be solved by

:_ = U'E+Vb, (2.8)

where E + = diag[A_ -_, ... ,A71,0,... ,0 ]. Thus the SVD solution of (2.8) is

numerically stable even when A is rank deficient. As a result, the SVD approach

toward the solution of k in (2.8) allows effective reduced rank of the system of

equations.



Chapter

Two Equivalent Approaches to

Load Measurements

There are two fundamental operations in the load measurement problem on an

aircraft" structure. In the calibration stage as shown in Fig. i. 1, we perform a

system identification by measuring the responses of the strain gages mounted on

different locations of the structure from a series of known applied load at various

specified load points on the structure during the calibration stage on the ground.

In the flight measurement stage, by using some characterization of the system

obtained in the first stage, we can predict the actual equivalent load value and

location from the gage measurements during the flight. Various known successful

approaches and results have been reported in the past on the load measurement

problem [14] - [26]. There are two fundamental and intuitively equally justifiable

linear approaches arbitrarily denoted as Approach 1 and Approach 2, that are

applicable to the load. measurement problem. In Approach 1, we model the load

value matrix L as dependen_ linearly on the influence coefficient value matrix M

9



measuredby the gages.In Approach2, wemodel M asdependentlinearly on L.

In general these matrices are rectangular, thus it is not immediately clear that

these two approaches are equivalent. Historically, all the work in [14] [26] were

based on that of Approach 1. Now, we shall show that these two approaches are

indeed equivalent in most cases, and can be proved by the use of the SVD method

of Section 2.3. On the other hand, if we only use the more conventional and

previously used normal equation method ([14] [26] also called the linear regression

technique) of Section 2.1, then the limitation of this analytical technique can only

show the validity of Approach 1 when the number of gages n is less or equal to the

number of loads m(m _< n). Through the use of the concept of"minimum energy"

solution, we can show that both approaches are equivalent. There are several

theoretical, practical, and computational consequences to these observations.

At the most basic level of understanding, of course, it is theoretically impor-

tant to know the equivalency of these two seemingly different approaches that

yield the desired result. At the practical algorithmic operational level, the inad-

missibility of having the number of gages n greater than the number of applied

loads m in the calibration stage in Approach 1 is generally not serious. However,

there are certain conditions in which we want to consider more gages than the

number of loads in the calibration stage. Conventional normal equation approach

(i.e., Approach 1) is not possible since AJA needed in the processing is singular.

When the data from the gages are quite linearly independent, then there is

no significant numerical difference between the use of the SVD technique or the

normal equation technique. However, for highly dependent data, there can be

significant advantages for the SVD technique. Detailed numerical computations

based on practical observed gage measurements and load values are necessary to

10



verify their differences.The crucial point is that in all cases,the SVD approach

is alwayscomputationally more costly as well as numerically more stable. For

typical dimensionsencounteredin the loadmeasurementproblems,the additional

computational cost of the SVD approachis not of significant concern,when we

perform only few LS computations. However,when we perform the LS com-

putations repeatedly(asweshall seein Section3.3 under the exhaustivesearch

method), then the higher SVD computational costmay be objectionable.

3.1 Approach 1- Linear Dependency of Load

Values on Gage Values

Load Matrix

Let L E IR ''x3 be a load matrix

L = [L,,L2,L3], (3.1)

where

L1 = Ls = [Sl,S2,...,Sza]', (3.2)

L2 = LB = [B1,B2,...,B,,,]',and (3.3)

L3 = LT= [Ti,...,T,,,]'. (3.4)

Alternatively, the shear, moment and torque of the i-th element can be ex-

pressed as

B_ = S_y_, i ----1,...,re, and (3.5)

T_ = S_x_, i=l,...,m, (3.6)

11



where (xi, y_) represents the relative position of the load vector.

Ga_;e Matrix

Let M E IR "×" be the gage matrix which is the response of the n gages to

the m loads in the calibration process, specifically let

MI.

M = Ira.l,... ,rn.,_] = i , (3.7)

Mm.

where each m._, i = 1,..., n, represents the normalized response of the i-th gages

to the m loads. Let the n x 3 dependency coeifficient matrix b consists of

b = [bol,bo2, b.3], (3.8)

Then the linear relationship between the load and the gage matrix can be

expressed as

L __ Mb (3.9)

L _- M[b°l,b°2,b°3] or (3.10)

L_ __ Mb°_ ,i=1,...,3. (3.11)

For i = 1, b.1 yields the dependency of L1 = Ls, the shear vector to the linear

combinations of the influence coefficient vectors m.l,..., m._ of M in (3.7). Simi-

larly, b°2 yields the dependency of L.2 = LB and M and bo3 yields the dependency

of Lo3 = LT and M.

For the cases of m > n, normal equation and Approach 1

In the calibration process, the matrix M as well as L1, L2, and L3 are available.

If we define the pseudo-inverse of M E IR "×'_ as a matrix from the normal

12



equation point of view, we have

M+= (M'M)-I M ', (3.12)

where m > n and all columns of M are linearly independent. Then the LS

solution b of the linear system L "_ Mb using the normal equation method is

given by

b._ = M+L_, i= 1,2,3, and (3.13)

= M+L. (3.14)

In the flight measurement stage, we observe one 1 x n dimensional gage mea-

surement vector hT/(corresponding to the first row vector of M in (3.7)). From

(3.9), the predicted 1 x 3 load vector L is given by

L = [5',/},T] =/Q'b= .ff/IM+n = ff4(M'M)-IM'L (3.15)

= IQM+[Lol,Lo2, Loa]. (3.16)

Then the first element of L yields the predicted shear ,_, the second element

yields the predicted moment/_, and the third element yields the predicted torque

as given by

= IVIM+L.1, (3.17)

/_ = S_ = h:/M+L.2, and (3.18)

_' = S_c = ff,lM+n.a. (3.19)

From (3.19), we can solve for _ and _ as

h:/M+L.2

IQM+L°I

_'I M+ L.a
5: =

MM+L.I"

and

(3.20)

13



Thus,(3.19) and (3.20) represent the predicted equivalent net shear, bend-

ing moment location, and torque location of the applied load that yielded the

measuredgagevector M using the normal equation approach.

For the cases of m < n, normal equation and Approach 1

For this case, we have an underdetermined linear system. Since m _< n, we

can solve the linear system Mb = L exactly. However, a unique LS solution

doesn't exist for the normal equation method. Therefore a "minimum energy"

solution can be chosen for this case.

Let f(b) be an energy function to be minimized with a constraint that Mb = L,

we can use Lagranian multiplier method such that

Ell

fk(b.k) = b'.kb.k + _ ._j(mi.b.k- L.k) (3.21)
j=l

= b'_b.,,+ _,'[Mb._- L.,,]= b'.kb.k+ [b'.kM'- L'.,,]_,, (3.22)

where k = 1,2, 3 ,A = [)_i,..., A,,]' is the vector of the lagranian multiplier. Now

setting the gradient to 0 yields

V fk(bok) = 2bok + M'A = 0 (3.23)

and

]

$._ = -2M'A (3.24)

= -2(MM')-IL.k, k= 1,2,3. (3.25)

As a result, the solution can be expressed in matrix form as

b= M'(MM')-IL = M+*L. (3.26)

14



SVD Method for Approach 1

Now consider the use of the SVD technique via Approach 1. Consider an

alternate form of the SVD of the matrix M with rank p < min(m, n) as given by

M = UM_MV/a , (3.27)

where

UM E IR 'nxp is a matrix with orthogonal columns,

VM E IR "×p is a matrix with orthogonal columns, and

_-']M E IPL pxp is a diagonal matrix with positive singular values (S.V.) denoted

by al _> a2_>... > _p >0.

Let the pseudo-inverse of the matrix M E IR. n×'_ be denoted by M ++, and

from the SVD point of view we can express

M++ + J= VMEMUIM, (3.28)

where E + is a n × m diagonal matrix with the inverse positive singular values

denoted by 1/al <_ 1/a2 _< ... <_ 1/ap > 0. Thus by using (3.28) in (3.9) , the

LS solution for b satisfying (3.9) via SVD is

[_= M++L. (3.29)

We note, (3.29) corresponds to (3.14) and (3.26) in the calibration stage of the

previously considered normal equation technique,

Then in the flight measurement sta_e, we have

L = 1Qb --- 1QM++L. (3.30)

It is most interesting to note, that the predicted load vector in (3.30) based on

the SVD technique has the same form as the predicted load vector in (3.16) based
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on the normal equationtechnique. Indeedwhenm >_n (i.e., the number of loads

is greater or equal to the number of gages) and when the gage measurements are

quite linearly independent, the pseudo-inverse given by M ++ in (3.29) is equal to

the pseudo-inverse given by M + in (3.9). Thus, in those cases, either the conven-

tional normal equation or the SVD methods will yield the same predicted load

values. Of course, when the measurement values are quite linearly dependent,

then the SVD approach will be better from the numerical stability point of view.

As mentioned earlier, when n > m, the normal equation method is not applicable

for Approach 1 since M + in (3.12) is not defined. Through the use of the concept

of "minimum energy" solution, we showed that normal equation approach can

be used for cases when n :> m. In addition, the results of (3.28)-(3.30) under the

SVD method for Approach 1 are valid in all cases including n > m.
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3.2 Approach 2- Linear Dependency of Gage

Values on Load Values

From a physical cause and effect point of view, it is reasonable to assume that

the response of the first gage to the m loads is given by

81 81Yl 81Xl I Cll ]

: : : [C121

Sm 8mYm 8mXm LCl3 J

L.1, L.2, L.3]c, = Lcl. (3.31)

In (3.31), we are describing the gage measurement as a linear combination of the

form

rrtl_ = S_Cll + s_yicl2 + six_cl3, (3.32)

which depends linearly on the shear, bending moment, and torque. In general,

for all n gages, we have

M = [m.1,...,rn.,_] __ L[c,,...,c_] = LC, (3.33)

where the 3 x n dependency matrix C is denoted by

c = [c,,...,_].

In the calibration process, M and L are available as before. In the flight measure-

ment process, we have an observed hT/given by (3.33) as

AT,/"= LC. (3.34)

17



For the cases of m _< n, normal equation and Approach 2

Let the psudo-inverse of L be denoted by

L +=l (L'L)-IL' form>3

L L(LLr) -1 for m_< 3.

By using (3.35) in (3.33), the LS solution satisfying (3.33) is

_' = L+M = (LrL)-ILrM.

(3.35)

(3.36)

In the flight stage, we have

= LC = LL + M. (3.37)

Since m < n, (MMr) -1 exists and we can multiply both sides of equation (3.37)

by M r and obtain

ll/IMr = LL+(MM ') (3.38)

._IM'(MM')-I = LL + (3.39)

it"IM'(MM')-IL = L L+L (3.40)

I3×3

L = I_i(MM')MrL. (3.41)
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For the case m > n, normal equation and Approach 2

Using the "minimum energy" solution of (/,L+) ' for the underdetermined

system we have in the flight stage from equation (3.36) and (3.37)

/Q = LC (3.42)

IQ = (LL+)M (3.43)

1Q' = M'(LL+) ' (3.44)

(LL+) ' = M(M'M) -IIQ' (3.45)

LL+= IQ[(M'M)-I]'M ' (3.46)

= tQ(M'M)-IM'L, (3.47)

where L+L -- I3×z.

SVD method for Approach 2

Now, consider solving for C' in (3.33) by using the pseudo-inverse of L based

on the SVD representation of L. Specifically, consider the SVD of L as given by

L = ULELVg, (3.48)

where

UL E IR "_×'' is an orthonormal matrix,

VL E /lt a×3 is an orthonormal matrix, and

EL E IR rex3 is a matrix of the form diag(aL1, aL_, aL3).

In particular; we note

_+_L = 13.

By using (3.48) in (3.34), we have

(3.49)

IQ = LVL_+U'LM. (3.50)
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Now, M can be expressed in its SVD form of

M = UM_2MV_. (3.51)

Then (3.50) can be written as

(3.52)

For m > n we look at the expression of

M ,_ LC.

The SVD solution C' = Uc_cV" of the above LS problem is

= L+M.

Since C E IR 3×'_ and CC+ = I3×3, we can write

_+ = L+M_ +

I3x3

_'+ = M++L.

that the two approaches is equivalent in this case.

For the cases of m _> n, SVD and Approach 2

Then equation (3.52) becomes

lf'I(VM_+U'M) = LL + (3.53)

L, L+L = iVI (VM_+U'M) L (3.54)

I3x3 M++

L = MM ++L. (3.55)

Since equation (3.55) in Approach 2 is the same as that of Approach 1, we showed

(3.56)

(3.57)

2O

L+

For the cases of m _< n, SVD and Approach 2

For m < n, _+ E IR '_x'_, UM E IR ''×'n, and VM E IR '_×'_. Then VMV_ =

Imx,.,, and UMU' M = U'MUM = I,,,x,.n since UM is orthonormal.



For the in-flight stagewehave

D= LO (3.58)

(3.59)

M++ L I3x3

L = IVIM++L. (3.60)

Since equation (3.60) in Approach 2 is the same as that of Approach 1, hence we

showed that the two approaches yield the same solution via SVD.

3.3 Limits on the Number of Strain Gages

Due to limitations of in-flight telemetry channels, the number of gages available

for the measurement of loads are less than that during the Calibration Stage.

Thus we need to find the best possible combination of smaller number of gages

for load estimation. Two heuristic approaches have been used to eliminate gages

in such a way that the resulting increase in estimation error is not very significant

[26].

T Value Method

For each gage, a T value is calculated as

T_ = [_,/e,, (3.61)

where b, is the i-th element of b and _ is the standard deviation error associated

with bi [23]. Then the gage with the smallest T value is eliminated. Repeat the

process until the desired number of gages is left.
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MT Value Method

Again, for each gage, a MT value is computed as

MT_ = #,A,D_...____, (3.62)

where p_ is the mean absolute response of i-th gage, A_ is the correlation coefficient

from i-th gage to all load conditions, and 7, is the correlation coefficient from i-th

gage to all other gages. The elimination procedure based on the MT value is the

same as that based on the T value.

Exhaustive Search Method

This method minimizes the residual by exhaustively computing all the combi-

nations of the desired number of gages. The combination which results in the

lowest residual will be chosen as the best gage combination for load estimation.
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A simulation using NASA HWTSS data is carried out to compare the dif-

ference in performance for different subset selection methods. In fig. 3.1, we

observed that although MT and T value methods are heuristic in nature, it pro-

vides a more accurate solution than the solution yielded by the "worst gage"

choice. Indeed, these methods perform quite close to that of the "best gage"

choice method. Since the choice of which gages to be eliminated depends on the

integrity of the gage data, the reduced gage choice set can be very sensitive to

noisy data. Thus a more robust procedure is preferred when data matrix are

corrupted with noise. Other methods that use collinearity index in trying to

eliminate redundant gages are also studied in works by [30].

23



Chapter 4

A Bound for Noise Perturbed

Systems

The performance of the estimation using least squares solution depends on the

accuracy of the underlying model and the integrity of the data. This chapter

will illustrate how a corrupted data matrix affects the accuracy of the model as

reflected by the change in the residual of the LS problem. The effect of noise on

the measurement matrix M will be shown by deriving a bound for the increase

in residual as a function of the noise. The following preliminary materials are

necessary for the derivation of the bound [7].

4.1 Distance Between Subspaces

Consider an over determined system where m > n. In specific we let A E II_'_xp

and B e IR "_×p be two given matrices. Let the domain of A and B be IR p, then

let _" E IR m and G E IR TM denote the ranges of A and B respectively. Then we
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candefine

cos0_ ---- max max u'v = u_v_, k = 1, ..., p (4.1)
uejrveg

Ilull2 = []vl[2 = 1

u_u_ = v_v_ = O,i = 1,...,k- 1,

where Uo and Vo are null vectors (i.e., for k = 1, the constraints ffuo = z/vo = 0

vanish). Then the set O_,k= 1,...,q satisfies 0 <_ 01 _< 02 <: ... < 0q < rr/2.

Furthermore, u,, v_ and 0_ are called the principal vectors and the principal angles

of the subspace pair of jr, _ [7]. In particular, 0p is the maximum angle between

two basis vectors in subspace Jr and G. Furthermore, the distance between jr

and _7 reduces to

IIQ_Q'_ - QoQ'_II= _/1 - cos2 0p = sin 0p, (4.2)

where the columns of Qy and Qg are the orthonormal bases for Jr and _ respec-

tively. It can be shown [7] that

cosek = a_(QryQg),k = 1,... ,p. (4.3)

where a_(Q'_Qa) is the kth largest singular value of the matrix Q_-Q0.

4.2 A Bound for the Noise Perturbed Resid-

ual

Let [ui, ..., up] be a set of orthonormal basis vectors in lR. m that spans the subspace

M of the strain gage measurements under the Calibration Stage and Iv1 _r r., up]
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be a set of orthonormal basis vectorsin IR" that spansthe subspaceh_/of the

gage measurement with noise. Specifically, the noise E is defined by

-- M + E. (4.4)

Furthermore, we denote QM = [u,,... ,up] and Q_q = [v,,... ,%]. Then QMQ'M

is a projection operator onto M and QKcQ_ is a projection operator onto AT/.

Under ideal (noise-free) condition, the ideal LS solution b associated with the

measurement matrix M and the calibration load L,_,b is obtained from

L _- Mb ' L (4.6)= QMQM ,_b.

Similarly, under noisy condition, the LS solution b associated with the noisy

measurement matrix h:/and the calibration load L_b is obtained from

min I[h:/b- L_bll 2 = II/tS/b- L_bj[ _. (4.7)
b

Similarly, L can be defined by

'L (4.8)L = MQMQ i c,_.

Thus the difference between L and L becomes

- ' LL- L = (QMQ_M Q_qQM) ,_b (4.9)

and its norm squared is bounded by

I[L _ LI] 2 = [I(QMQ_M - Q,qQ'M)L,_,b[[ 2 <_ [l/,_b[[ 2 sin 2 Op, (4.10)
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b



2 !
where [[(QMQ'M - QMQ'M)II_ = sin2 0p = 1 - a_(QMQM) from (4.2).

For simplicity, denote

_p(Q_Q_) = _, ,.

Also denote the noise-free and noisy residuals by

= Lc_b - L and

= L,,_-L.

(4.11)

(4.12)

Then (4.9) becomes

L - L = (L,_,b - L) - (L_,_ - L) = _- _ = (QMQ'M -- QMQ_)L,,_b. (4.13)

By applying Triangle Inequality, we obtain

II_ll__ II_ll_-+ ]lL.bl[ 2sin s 0p (4.14)

or

ii_[i_- [l_ll2_ iiL_bll2sin2 0p = ]lL_bll2(1_ _p.2). (4.15)

Thus (4.15) yields a bound on the noise perturbed residual.

The bound in (4.15) can further be expressed in a more useful form if ap. can

be expressed in terms of the perturbed matrix he and the noise matrix E. As a

result, the remaining section will be dedicated to this objective.

Suppose the matrix M and/_ have QR factorizations as

M = QMRM (4.16)

and

f/I = QMRM. (4.17)
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From (4.7) we haveAT/= M + E, after applying QR factorization to M and

h_/, we obtain

QMR_

QM

If we denote

= QMRM+E

= QMR ,R '+ ERTd
= QM + QMRMRMI(I -- RMR_) + ER_ 1.

(4.1s)

lap(I + E2)- _(I)1 _<al(E2)--IIE_II. (4.24)

E, = QMRMRM1(I -- RMRM 1) + ERM 1, (4.19)

then (4.19) becomes

QM = QM +El (4.20)

! !
QrMQM = Q_M(QM + El) = Q_MQM + QME1 = I + QME,.

Furthermore if we denote

E2 =- Q% Sl , (4.21)

then (4.21) can be expressed as

Q'MQ.'_ = I + E2. (4.22)

From properties of the theory of perturbed singular value(p.284 of [7]), we have

lak(D + F) -ak(D)] <_ al(F) = IIF]12, for k= 1,...,p. (4.23)

Combining (4.21) and (4.23), we have



From (4.21), wehave

E2 = Q_MQMRMRMI(I - RMRM 1) + Q'MERM 1

= RMRk'(I - RMRh') + Q_MERM 1

= RMR_ - I + Q'MERM I.

(4.25)

Taking the norm squared of E2 and invoking Triangular Inequality, we obtain

IlE_ll2 = IIRMRM' - I + Q'MERM'II2 (4.26)

<_ [IRMRM']I2 + 1 + IIQ_ERM'll2

= IIRMRT_'ll2 + 1 + I[En_'ll 2.

If we apply QR factorization to M and M in (4.19), we obtain

M

QMRM

QMRMRM 1

[]RM RMl ll2

= ]Q-E

= Q,_RM-E

= QMRMRM 1 -- ERM 1

= IIQ'MQM-Q'MERM'II2

_< I]Q_QM[[2 + [[ERM'[[ 2 _< 1 + [[ERM'[[ 2

(4.27)

since []Q_[I = [IQMll-- 1 and [IQ_QMll2 <_IIQ'Mll21[QM[12= 1.

Now RM is an upper triangular matrix, by defining p we have

-IIRM'll 2

= IIdiag(1/r,,..., 1/rp)ll 2

= maxl/r_,
i= ,,...,p

where r_ for i = 1,..., p are the diagonal element of the matrix RM.

(4.28)

(4.29)

(4.30)
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Then combining (4.27)and (4.28),wehave

[[E2[[2 _< 1+ []ERMI[[ 2 + 1 + [[ERMI[[ 2

= 2(1 4-I]ERM'[[ 2)

_< 2(1 4-#[[E[]2).

(4.31)

(4.32)

(4.33)

In summary, we have the following results

ii ll -ii ll ___

0"p*

IlE ll <

[jL_b][2(1 _%.2)

1-IIE_II, for %. < 1

V/2(1 + #]lE]12).

(4.34)

(4.35)

(4.36)

(4.37)

As a result, the bound can be expressed as

JJel[2- IJ_ll2 < IIL_[[2{1 -[1 - _/2(1 4- _IIEII_)12}. (4.38)

Thus, we have derived a bound for the change in residual due to the error matrix

E. It is interesting to see that the bound depends on the value of # (which

is the largest value of the diagonal elements of matrix RM found from the QR

factorization of the noisy data matrix/f'/) and the largest singular value of the

noise matrix E.

Now since II * 1[2 <- [] * [IF, equation (4.38) can be expressed as

II_[]2 - I]_[[2 < [IL_bl[2{1 --[1 -- _/2(1 +  IIEII )]2}. (4.39)

Thus we have related the norm of the noisy M residual _ to the norm of the
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noiseless M residual i? and the norrn of the matrix error E. This bound pro- 

vides an analytical relation between the norrn of the noiseless and noisy residu- 

ds(corresponding to M) thereby allowing us to estimate the norrn of the noise in 

the data matrix when the other two terms in (4.39) are determined or estimated. 

Although it is only an analytical bound whereas the actual behavior of the system 

is not accurately determined, it allows us to have an understanding of how these 

quantities are related. 



Chapter 5

Noise Sensitivity Analysis for

the Flight Stage Load

Estimation

5.1 Effects of Errors on Load Prediction in Cal-

ibration and Flight Stage

During the calibration process, the gage measurement observed can be repre-

sented as a matrix of

h:/c - Mc + Ec, (5.1)

where Mc E IP_'_×" is the true gage measurements and Ec e IR '_x" is a matrix

with its elements as the error associated with the gage measurement. In order

to estimate the flight load, the estimation parameter derived from the noisy
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calibration matrix Mc can be written as

- b + bE = (Mc + Ec)+Lc, (5.2)

where b e IR" is the noiseless estimation parameter, bE is the estimation param-

eter error and Lo E lR "_ is the calibration load vector. During the flight stage,

the observed noisy output gage measurement can be expressed as a matrix of

= Mo+ Eo, (5.3)

where Eo E IF{." is a matrix with its elements as the error associated with the

output gage measurement defined as Mo E IFt".

Thus the final noisy estimated load taking into consideration of the calibration

and flight stage can be expressed as

]VIo'b= (Mo + Eo)'(b + bE). (5.4)

The resulting estimated load can also be expressed as

[,o = (Mo + Eo)'(b + bE)= M'b + M'bE + E'b + E'b_

, E'o_ ,= Lo + M'obE + + EobE

- [o + ¢oc, (5.5)

where I]o is the noiseless load estimate and is the estimate that we wish to obtain.

Similarly coo is the corrupting error term which reduces the accuracy of the load

estimate.

If we examine the variance of coy,

reduce the effect of this noise on the L.

we could gain some insight orr how to

The variance of coo can be expressed as

var{Mobf. + E_ob+ E'obE}.var{eoo}= ' ' (5.6)
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Figure 5.1: Combined Noise Effects in Calibration and In-flight Stage
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If weassumethat the output error Eo and bE are uncorrelated, which is reasonable

since input and output noise are usually uncorrelated, then

var{E'ob_}=0. (5._)

As a result, (5.6) can be written as

var{coc} = var{M_bE} + var(E_b}. (5.8)

(5.6) indicated that if we want to minimize the var{coc}, we can minimize

the first and second term in (5.8) independently. In other words, we could reduce

the combined effects by independently reducing the noise variance during the

calibration and flight stage.

5.2 Properties of Flight Stage Noise and Load

Estimate Error

In the last section, we have shown that the overall noise variance can be reduced

by independently reducing the noise in the calibration and flight stage. For

simplicity, we now assume the noise in the calibration is zero( i.e. Ec -- 0). Then

we will study the effects of noise on the load estimation accuracy during the flight

stage. As mentioned before, the calibration load Lc and the gage measurement

M are related by the system of linear equations,

Lc "" M_b. (5.9)

The estimating parameter b = M+L¢ will then be used to predict the amount

of load during the flight stage. The flight stage noise, which can be modeled
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as an additive noise Eo = [el,..., e,]' as in (5.3) on the gage readings Mo =

[rex,..., mn], is generally present in the measurement system. As a result, the

noisy flight stage load estimate/_o can be expressed as

£o-  og,= (Mo+ Eo) ,-_-Z:o+ (5.ao)

where £o is the noiseless load estimate and eo = Eob is the excessive load estimate

error due to the noise Eo.

In order to study the corrupting effects of the load estimate error ¢o, we need

to examine some of its statistical properties.

If we assume that the mean of the flight stage noise Eo is zero, the expected

value of eo can be expressed as

^

E{eo} = E{E'ob} = O. (5.11)

Then the variance of eo is

Var{eo} = E{(eo- E{eo}) 2} = E{e=o} = E{(E'b) 2}

= E{b'EoE'ob } =b'E(EoE:}b= b_'EEEb,^

I elel
where EEE -- E{EoE'} = E !

L enel

• ., elen

• • • enen

(5.12)

It is often desirable to reduce the variance of eo since a small variance suggests

that the corrupting effect of noise on the load estimate will be less severe in the

flight stage. However the variance of eo depends only on the amount of noise in

the flight stage and the estimator b obtained from the calibration process, it is

impossible to reduce the variance of eo without making changes on the vector
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b. Nevertheless, the accuracy of the predicted load will also be affected when

changes are made on b. In other words, the reduction of the noise sensitivity of

the estimate is at the expense of the modeI accuracy. Therefore, it is important

to optimize the amount of tradeoff between noise sensitivity and model accuracy

when noise sensitivity reduction is absolutely necessary. The following sections

will examine two possible solutions to this problem.

5.3 The Sensitivity Measure for Noise Perturbed

Systems

Since the variance of eo is an indicator for the intensity of the noise, it can be

interpreted as an intensity index of noise sensitivity. If white gaussian noise is a

reasonable assumption(i.e var {co} = b'_)a_o = ]l_)ll2a_o) , the sensitivity index can

be defined as

S,o= _ = I1_11_, (5.1a)

where a 2 is the variance of the flight stage noise Eo and a 2 is the variance of co.
£o _o

5.4 The Trade-off between Model Accuracy and

Noise Sensitivity

In order to examine the effects of the reduction in noise sensitivity on the model

accuracy, we need to look at the noisy load estimate from (5.10) such as

Co = _Io'D = (Mo + Eo)'t)= Lo + eo. (5.14)
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5.5 Single Coeifficient Noise Sensitivity Reduc-

tion(SCNR)

In theory, we would like to have a small valued noise sensitivity index. As a result,

the reduction of 5',° = Ilbll 2 in (5.13) requires that the value of the norm of the

estimator vector _, = [b,,..., b,]' to be reduced. It can be achieved by changing

the values of one or more elements of the vector b. The SCNR method discussed

in this section only changes one element of/_, such that the new estimator vector

becomes

bsvNa = [bl, • • •, c_b,, • • •, bn]', (5.15)

where ci < 1. Then the decrease of the noise sensitivity AS can be defined as

AS=ll ll II scNall (1 =^=- = - ci)b , _> 0. (5.16)

Now, we define the noiseless new load estimate(when the output stage noise

Eo = 0) as

Lo.SCNR -- M'bscNR = re,b, +... + rr_c_bi +... + m,b, (5.17)

and the new load estimate obtained from the noisy measurement rho as

Lo,SCNR _- I_DSCNR = mlbl -1- .. • -1- 7"_icibi "1- • • • -1- _nbn. (5.18)

The change in load prediction accuracy AA with respect to the noiseless load

estimate Lo can then be expressed as

AA - Lo- Lo,scNa = (1 -ci)bim_. (5.19)

Combining (5.16) and (5.19), we have

AA = (b,- _/_- AS)m,
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and

(AA _ _),)_ = AA(2 $, AAz_s =/,,_- -_ -_ _). (5.2o)

From (5.20), if we fix the change in model accuracy AA, the decrease in the noise-

sensitivity AS can be maximized by scaling the i-th gage prediction vector b to-

c_b, such that b_ - (_A, _ _,)2 in (5.20) is the largest among gages i -- 1,..., n_

The maximum AS for a fixed AA = 6A attained can then be expressed as

O</<n T/2 i

AA = 6A

Figure 5.2 below shows a plot of the normalized AS__XGNR versus AA for the,

NASA Wing data, where the definitions of

ASscNn and (5.22:i
AS_scNR= I]bll

AA
aA = -_--. (5.23_

Lo

It indicates the amount of improvement in noise sensitivity ASSCNR at a given

level of accuracy deteriorating AA.

5.5.1 Sub-optimal Single Coefficient Noise Reduction for

practical applications

The SCNR described in the previous section requires the knowledge of rn_ irr

order to maximize AS with respect to all gages. However, only _ --- m_ + e_ is_

observable at the flight stage, the exact value of m_ is not known. As a result_

we can only use r_ in maximizing AS, such that (5.22) becomes

ASscNn = max AS = max b_ - (AA _ $,)2. (5.24)
O<i<n O<i<n Tr_ i

AA = 6A
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Since_ = rn, + eo_ =_ rn_ = rh_ -eoi, (5.25) becomes

ASscuR = max AS = max b_ - ( AA b,)2" (5.25)
0<i<n 0<i<n 7_ -- Co/

AA = 6A

A possible sub-optimal method can be used by restricting the amount of noise e_

to the ra_o criteria. The max-min criteria can then be expressed as

max[ min r {AS[ra_oCriteria}]. (5.26)
O<i<n --r_eo <¢oi< a_

The above equation (5.26) can be interpreted as the maximum of the minimum

of the AS under the ra_ criteria. By setting e_ = ra_, the max-rain condition

in (5.26) becomes

ASscNR-SO = max AS
O<i<n

= maxb_-( AA _,)2
0<i<n rvai -- roe o

AA /_)2.= - (5.2"r)

Thus we have proposed a sub-optimal method for the SCNR procedure(SCNR-

SO), which will not perform as good as the theoretical SCNR method. However,

the analysis of SCNR and the subsequent SCNR-SO methods gives us an under-

standing of how the model accuracy and the noise sensitivity are related. It also

provides an analytical bound for the region of operation in which SCNR-SO will

perform better the original method.

5.5.2 Performance Analysis of the SCNR procedure

In order to have a better understanding of the characteristic of the new proce-

dure, it is necessary to compare the performance of the proposed procedure and

the original method of load prediction. As stated before, the presence of normal
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Figure 5.3: Probabilty Distribution for load estimate Lo

gaussian noise at the flight stage is assumed. One way of comparing their per-

formance is by evaluating the probability that the noisy estimate Lo lies within

a specific range for the original and the new SCNR method. Using general sta-

tistical methods for establishing confidence interval in normally distributed noise

model, we can use the interval of =l:rao. (For example, a 99.73 % confidence inter-

val corresponds to r=3) Figure 5.3 shows the areas for evaluating the probabilities

for the two methods.
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Now, the probability that the noisy estimate Lo lies within the range using

the original method is

P{original} =- P{Lo - ra, o ^ l fL°+'"Oexp(__)d_,<Lo<Lo+ra,o}=_-_ Lo-,_o

(5.28)

where a_o is the standard deviation of the flight stage load error eo in (5.10) and r

is an integer depending on the level of confidence. Similarly, the probability that

the new SCNR method noisy estimate Lo,scNn lies within the same range is

^ 1 tr2* e x2 dx
P{SCNR}- P{no-ra,o < Lo,svNn < Loq-ra,o}= _-_ ],,. xp(- T) ,

(5.29)

where

and

rl* =
-ra,° - AA

O'eo,SCNR

Ilgll Am
IISsoNRII IISsoNRII_,°

(_.30)

ra,o - AA
T2* ----

O'eo,SCNR

_ tlbll _A (5.31)
Ilt'SCNRllIlbscNRll_o"

Then if the condition P{SCNR} > P{original} in (5.28) and (5.29) is satisfied,

the probability that the SCNR noisy estimate lies within the specified range is

higher than that of the original method. In these cases, the new method is much

superior than the old method. In other words, the noisy estimate is more likely to

be confined in the specified range when using the new method. Figure 5.4 below,

which is generated from NASA data, indicates that the SCNR method performs

better in a significantly large region of operation and especially when large flight
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stagenoise variance a_o is present. From (5.27) and (5.28), the probability for

the SCNR-sub-optimal method can be written as

1 fra** X 2
P{SCNR- SO} = 2"_ .rl** exp(--_-)dx,

(5.32)

where

IIg_ll AA (5.33)
rl'2** = :_:IIg'sCNR-soll IlbscNR-SOII_o

and

118SCNR-SOII2 = IIg_ll=- ASSCNR-SO

= II/,112-[b_- (m, AA• * --raeo
b,)2]. (5.34)
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In summary, the new procedure essentially generates a biased load estimate

with a reduced noise variance whereas the original method gives a non-biased

estimate and a larger variance. Since both of the two methods have desirable

characteristic in the load estimation, one has to decide how to make trade-off

between the noise sensitivity(variance) and the model accuracy(bias). Generally

if a large amount of noise is expected, the new SCNR could be used to reduce

the corrupting effects of the flight stage noise by confining the deviation of the

load estimate.
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5.6 Generalized Method for Reduction of Noise

Sensitivity(GNR)

In (5.15), the variance of the error eo is reduced by changing b_ to c_b_. Now we

will generalize the method by using the scaled vector bCNR such that

DGNR -: BC,

where S = diag(b,,...,bn) and c = [cl,...,c_]',c_ _< 1.

estimate using CNR is

Lo,GNR = M_obaNR = M'oSc.

From (5.16) and using (5.35), the decrease in noise sensitivity is

As = I15112- II$cNRII2= (1--c)'BB(1 - c).

(5.35)

Then the new load

(5.36)

(5.37)

Also from (5.19) and (5.36), the change in the noiseless load prediction accuracy

can be written as

AA = Lo- Lo,GNR = MoB. 1 - M'oBc= Mo'B(1 -c). (5.38)

In order to reduce the noise sensitivity by using the CNR method, we need

to maximize the change in noise sensitivity AS with respect to a fixed AA such

that

max AS = n'fin dBBc.
C C

M_oB(1 - c) = AA

(5.39) can be solved by the Lagrangian method with

G(c) = c'BBc + A[Mo_B(1 - c) - AA].
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Taking the gradient G(c) with respect to c and set it to zero gives

VG(c,) = 2BBc, +/VBMo(-1) = 0 (5.41)

and

c, = - B-2BMo = _B- Mo.

Putting c, into the constraint equation gives

(5.42)

M'oB(1 - c) = AA,

),

M'oB(1 + :_B-]Mo) = AA,

)_= 2(AA- M_oSl) = 2(AA- Lo)
M_oBB-1Mo J[Uoll 2

Then c, can be expressed as

(5.43)

(Lo - AA)B_,Mo. (5.44)
c,= IIM.II_

Therefore the change in the noise sensitivity ASGNR Can be written as

1 2 (Lo- AA) 2

As_,,,= _(_,._ _,_,_,,,)=jl_ll_- _-_ (5.45)

5.6.1 Sub-optimal Generalized method for Noise Reduc-

tion

As stated in the previous section, the value of Mo in (5.45) is not known. There-

fore, we need to tolerate a sub-optimal procedure in practical applications. The

change in noise sensitivity AS using GNR is

AS_NR= 15112- (Lo- AA) 2 (5.46)
IIMoll2
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Similarly from (5.45), the sub-optimalGNR usingthe "Maximum-minimum Cri-

teria" gives

ASaNR-SO = max min AS. (5.47)
C --tO'co <_o <_rO'eo

Applying the ra_ o Criteria, (5.47) becomes

AScNR-so = I[/,ll2- (Lo+ r_ollbll- Am) 2 (5.48)

I[_oll2- nr2a_o

5.6.2 Performance Analysis of the GNR procedure

The probability that the GNR method noisy estimate Lo,GN R Iies within the ra_ o

interval can be expressed as

1 fr2, x 2
P{GNR-SO} = P{Lo-ra,o < Lo < Lo+ra,o} = _ Jr,, exp-_-dx, (5.49)

where from (5.30)

and

IIbll AA
-- ^r,,2*= T IIbGNRII IlbcNRII_o (5.50)

^ (Lo-AA)
bGNR "--

IIMoll (5.51)

Similarily for suboptimal GNR method, the interval for the evaluation of the

probability in (5.49) can be expressed as

IIg,II AA
r,.2** = l=ll&oNRsoll II&cNR-soll_o' (5.52)

where

IIg_GNR-SOII= (Lo+ ra_ollbll- AA) 2
11_,o112_ ,_r_ L (5.53)
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5.7 Conclusion and Remarks

This section provided a study of how the trade-off between variance(or noise

sensitivity AS) and bias(or accuracy AA). We also presented the new methods

for an effective reduction of noise variance when a given amount of accuracy

deterioration AA is allowed. This problem is also studied in a different setting in

the field of statistical analysis. In Ridge Regression [7], the problem of constrained

LS is solved. It solves the LS problem of the minx []Ax - b[] with the constraint

that I]x]l _< a. However, in this problem the idea relating the prediction accuracy

and sensitivity is not explicitly used. Thus our study provided an alternate

approach for analyzing how variance and bias are related to each other.
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Chapter 6

Total Least Squares and

Correspondence Analysis

The Total Least Squares(TLS) method was popular in signal processing appli-

cations recently, while the correspondence analysis technique was created over

twenty years ago and used in applied statistical and data analysis. These two

seemingly distinct topics developed independently among their own researchers.

In this section, we provided the basic reformulation and analytical and geomet-

rical tools to prove the equivalency of these two basic and useful methods.

In this section, we consider the total least squares estimation method well

known in numerical analysis and modern signal processing as well as the corre-

spondence analysis technique encountered in applied data and clustering analysis.

Due to historical reasons of development, each of these two subjects have gen-

erally been formulated with its own notations and solutions. However, upon

more detailed consideration, both optimization problems reduce to the appli-

cation of SVD technique for the respective solution. Indeed, upon appropriate
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pre-processingoperation of translating the centroidsof the data matrices to the

origin, thesetwo methodsareequivalent.

6.0.1 Total Least Squares(TLS)

Least squares techniques based on the statistical assumption that only error is

present in the vector to be estimated. Total least squares, which is introduced by

Golub and Van Loan, attempts to generalize the solutions by allowing both ob-

servation matrix and estimator vector to be corrupted by errors. This assumption

allows us to have a more consistent solution since errors are usually presented in

all data. The problem of TLS can be stated as follows. For an overdetermined

system of equations of the form Ax _ B, errors occured in both A and B. The

TLS solutions for x solves the perturbed problem of

(A + AA)= B + AB,

with the constraint that the F norm [[AA, AB]IIF is minimized. It can be seen

that the classical LS problem solves the same problem above except that no error

is assumed in the matrix A(or AA = 0).

6.0.2 Correspondence Analysis(CA)

In statistical and data analysis, there are myraids of analytical, graphical, and

intuitive methods for performing data reduction, clustering and display of statis-

tical properties. The CA techniques was proposed by Benzecre [3] and studied by

Lebart [19], Greenacre [9] and others. This technique was clearly motivated by

several standard statistical multivarite techniques of principal component analy-

sis and discriminant analysis. It provides an analytical method of displaying of
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a large centeredmatrix in low dimensionalspacessuchas the two dimensional

space.

Graphical and Numerical Examples

For a given data matrix X e IR m×", a basic problem of data reduction is to

determine and eliminate the set of redundant columns(or rows). If two vectors

are strictly independent, one of the vectors can be eliminated. However, the

presence of noise will make the redundant vector strictly independent. The con-

cept of collinearity in [25] quantify the amount of linear dependencies for a given

column(or row) vector relative to all other columns(or row) vectors of X. The

collinearity index of matrix X can be defined as

= II  d   llll[X÷lj . 11, j = 1,...,n, (6.1)

where X + is the pseudo-inverse of X.
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We now look at a physical load problem when the 18 x 12 strain gage mea-

surement matrix X is given by X --

12.5 -13.8 11.6 4.2 11.8 11.9 11.3 23.4 36.9 50.3 89.4 128.7 _

21.4 -2.9 19.2 12.8 17.9 21.5 16.5 40.0 42.1 73.7 58.2 68.3

30.8 9.1 23.4 23.6 20.7 36.9 28.8 67.4 28.9 38.3 40.3 27.7

42.5 29.7 29.1 43.6 28.2 64.4 24.6 37.2 20.9 20.4 24.8 8.9

56.6 61.4 41.4 76.8 25.4 37.2 21.7 23.1 15.8 10.8 15.3 -2.7

77.8 126.3 41.0 54.7 24.4 21.5 19.8 12.3 8.2 2.2 3.5 -15.2

27.0 -19.2 26.3 8.5 29.2 15.3 23.6 25.8 64.1 29.6 132.8 82.1

45.4 -2.3 35.8 18.0 32.9 20.2 31.6 27.7 59.0 25.6 98.8 56.8

62.3 14.0 45.2 24.2 37.1 21.5 37.8 27.1 45.3 21.3 72.4 34.2

85.8 34.3 55.7 30.0 42.8 21.2 41.1 26.5 36.4 17.0 50.2 13.9

110.7 55.2 68.0 33.4 44.1 19.6 43.4 22.8 28.9 11.7 29.5 -3.0

131.4 82.0 66.6 44.2 39.4 21.2 37.3 19.1 13.9 6.5 5.4 -18.9

46.3 -22.6 41.9 11.9 38.1 14.7 40.1 16.6 83.4 0.9 160.6 63.0

64.6 -3.5 49.0 18.3 41.8 13.7 43.4 16.6 69.3 4.6 129.5 48.9

138.4 51.2 80.8 19.3 53.1 9.4 52.9 20.9 30.8 10.8 35.1 -2.7

163.3 62.6 82.7 30.7 49.4 19.0 49.1 21.9 20.0 6.8 8.7 -18.9

91.4 15.5 65.1 18.6 50.8 4.2 51.0 6.8 58.0 3.7 96.9 31.7

114.4 35.9 74.6 18.9 53.1 1.7 54.8 14.8 45.8 10.5 68.2 16.4

These data are obtained from a NASA/Ames hypersonic wing test structure

(HWTSS) load measurement experiment. The columns represent the output

responses of 12 strain gages located at the wing and fuselage region of the aircraft

when 18 known input load conditions are applied on different locations of the wing
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Figure 6.1: Correspondence Analysis of NASA HWTSS load data

structure in the calibration stage. In practice, the number of gages available

during a flight is usually much less than that available during the calibration.

Thus, from the data in matrix X, we are motivated to determine the redundant

gages that can be eliminated. Evaluations Collinearity indices are computed as

_; = (24, 4.3, 52, 7.8, 34, 6.2, 29, 7.5, 32, 8.3, 32, 9.5). Applying the CA

technique gives S = diag(.61, .31, .18, .18, .083, .067, .051, .031, .011, 6.6.

10 -3, 5.6 • 10 -3, 7.2 • 10-1T). The coefficients of expansion of the 12 column

vectors for the two dominant singular vectors are shown in Fig. 6.1.

From the collinearity index _, we observed that all the odd numbered column

data vectors are fairly collinear. From Fig. 6.1, we see that these vectors are

grouped closely together. However, the even-numbered column data vectors are
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P1

Z' / _ _,f Optimum straight line

d'/2 _'--_._._

[_'_'__... d'/2

P2

Figure 6.4: Mean translated data vectors

r (hi + a2)/2"

A = I ,b=
L(':'1+ a_)/2

is zero. In general, the above condition need not be satisfied for arbitrarily P1

and P2. Now, consider the column zero mean translated version of A and b.

(b,+_1/2], (6.s)
(b, + b2)/2J

(a,-a2)/2] b=b-b= [(b,-b2)/2-

(hi a2)/2J' L(51 b2)/2

(b, b2)/2 L (b2 bl)/2

and A= A-A=

(6.6)

After mean translation, /51 and /52 are anti-symmetric. That is, PI(1) =

-/52(1) and/51(2) = ,52(2). Clearly, the optimum straight line runs from /51 to

/52, with Z_ + Z_ = 0 and d = 211All_ = 2/522. For any other alternate straight
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line, Z_ + Z_ 2 > O, and

d '2 = (¢/2 + d/2) = v/(d/2) 2 - Zi 2 + v/(d/2) 2 - Z_ < d/2 + d/2 = d.

Thus, any alternate straight line yields inferior TLS and CA results.

(6.7)

6.1.2 TLS and CA Criterion for general dimensions of

data matrix

Correspondence analysis can be used to represent data collected in matrix form

in a more compact format by projecting the raw data onto a lower dimensional

subspace.

Let A = (ao) E IR "*×" with m > n the original data matrix. For simplifi-

cation purposes, which wil become clear later, let us assume that _,=--1 ao = 0

(i.e. A is "centered") and let the expression of A = UEV _ be its singular value

decomposition.

Now, let Q = [q(l)... ,q(_)] E IR "×a be a matrix with J _ n orthonormal

columns and H = AQ = (h_j), with h 0 = a_.q 0), the matrix with its elements as

the the projections of A onto Q.

In this context, Q represents the basis-matrix of a J-dimensional subspace.

For the purposes of correspondence analysis, it is reasonable to vary Q so that

the projection coefficients h o are as separated as possible, with respect to each

basis vector q0).

In order to satisfy this requirement, one can perform the maximization of the

following quantity over the space spanned by the columns of Q such that

d m m

D - EEE(h,J- hk_) 2
j=li=lk=l
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J m m

j=l i=l k=l

J m J m m m m

= _nEEh_ - 2_EE E h,,h_,+-_E E h_j
j=l i=l j=l i=1 k=l j=l k=l

J m J m m

= 2mEEh,_- 2EEh,,Eh_,
j=l i=l j=l i=1 i=1

_ _)= 2m_--_y'_(h_5 - _
j=l i=l k=l

J m

j=l i=l

where/-)5 = _1 ho/m. Since A is "centered", it can be shown that/-)5 = 0, Yj.

Therefore

maxD
J m

= 2m max E E h,_ (6.8)
j-----1 i=l

= 2mmax [[HII_., (6.9)

where [[ • liE is the Frobenius norm of a matrix.

The above maximization can be solved by the use of the singular value de-

composition of A. In fact,

IIHII_-= IIAQII_, = IIU_V'QII_

= IIU_V"II_-
J

= iiu_,[o_.,...,oj.]ll,_<_2.
i=l

The equality is obtained when Q = Vj = [va,..., v.j], hence

f/= Q'v = [5, oj×(._j)] (6.10)

and H = AQ = AVj = UEV'Vj = [O'lU.1,... , o'j?A.j]. This results are known in

the area of correspondence analysis.
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Now, let [Q,Q±] E IR "x" be

J

an orthonormal expansion of Q. Then we have

IIHli_ = _ qCi)'A'AqO)
j----I

n

= _-_qO)'A'AqO)_ __, qO)'A'Aq O)
i= I j=JTl

n

= _ q(_)'VF_?Y'q(_) - IImQXll_.
j=l

n n

= _ _ a_(q(_l'v.k) 2 -[IAQ±[[_
j=l k=l

= Ea_ -[[AQ±[[_.,
k=l

where E = diag(al,... ,a,) e IR "x". As a result, the maximization of D is

equivalent to the minimization of

min IIAQ±II_= min IIAU. - QQ')II_' = rain [IA - AII_. = rain IIAAII_, (6.11)

where A = HQ' and AA = A - A.

The maximization problem stated above(or minimizing D) is therefore min-

imizing the energy of the perturbation imposed on the original data matrix A.

Thiu perturbation reduces the rank of A to rank(A) <_ J when the vector X in

the orthoffonal subspaee spanned by Qz solves the equation AX = 0.

Case for/lj _ 0

Now consider the case when A is not "centered", /1j _ 0 or _=a a_j _ 0

(which is a more general case), then we can write

max D = 2m max IIH - 1 1,_HII_,
Q m

= 2mmax II(Im- ll.0HII_
fit

= 2mmaxllgoll_F
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= 2mmax IIPHII 

= 2mmaxllPAQll ,

1
where lm is a square matrix of all ones, P = I,_ - _l,n and Ho = PH. Thus we

can still carry out the same data reduction by using Ao = PA, a "centered" form

of A.

C_se for shifted H criteria

In order to justify the equivalence of TLS and CA, we need to look at a

shifted H criteria. Now we consider the shifted projection of A onto the subspace

spanned by columns of Q such that

g = AQ + S. (6.12)

Instead of maximizing D with H = AQ as before, we maximize the shifted

H = AQ + B as described above. Therefore we can write

max D
Q

J T'n

= 2mm_x ___ __,(hq - ft_) 2
j-----1 i=l

= 2mmax IIP(AQ + S)[[_.

q ]ll -- 2mmaxll(Ao, Bo) -h

= V mmaxll(Ao, go)Cdll F,

where ,4o and Bo are centered form of A and B and Q = :_7_(Q1', -Ij)' E IR ('+J) ×J

and Q'Q = Ij.

From the above, the form of the minimizing with the cases before is the same

as that of the shifted version which we are now minimizing the expression of

minll(Ao, Bo)(I.+j-d2_')ll_= rain IIA(.4o, Bo) I1_.. (6.13)

Thus the results can be summarized as:

62



Correspondence Analysis

For the shifted version of H = AQ+B, the minimizing problem is equivalent

to that of

min HA(AoBo) n_,

or finding the vector X in the orthogonal subspace spanned by Q = :_2(Q _, -Ij)'

which satisfies the equation (Ao,/}o)X = 0.

Total Least Squares

The total least squares problem AX _ B can be stated as follows: find the

minimum norm vector X -- IX',-2"] _ which solves exactly the perturbed equation

(A,/})X = 0, where (A,/_) = (A,B) - A(A,/}). The Frobenius norm of the

perturbation applied to the appended matrix (il,/_), namely ][&(A,/_)[]F, has

to be minimized. Therefore both TLS and CA approaches are equivalent in this

formulation.

Assumptions and Observations

For the TLS and CA equivalence to hold, we have the following assumptions.

• Both matrix A and B have to be centered as stated above.

• In Correspondence Analysis, the rank j of the subspace on which the matrix

A is projected can be chosen freely. However, the rank of the TLS problem

are usually reduced to the numerical rank of A itself.
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Chapter 7

Neural Networks and its

applications

7.1 Introduction

The development of neural networks are motivated by the theory of human neural

systems. The theory of human neural systems involves the study of the behavior

of the interconnected processing elements called neurons. Neurons are processing

or decision making units by which information are passed from one region to an-

other region. In human nervous system, a vast number of interconnected neurons

are responsible for processing and relaying information and commands from one

part of the human body to the other. This complex chain of commands and deci-

sion making process motivated the development of Artificial Neural Network(NN)

which mimic the behavior of the human nervous system. The basic elements in

neural networks called neurons is modeled as that of the human nervous system.

Signals processed by the neurons travels to adjacent neurons such that a specific
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commandor signal can be passedto the intendeddestination. In recent years,

thanks to the availability of high speedcomputers,muchattention hasbeengiven

to the developmentof Artificial Neural Network with applications ranging from

pattern recognition, function approximation, imageprocessing,system identifi-

cation to dynamicalsystemproblems. It is illustrated in [20] [12][21]that a large

number of problemscan be handled by someformsof neural networks without

prior assumptionof the systemmodel. This robust naturemakesneural networks

a goodmethologyfor solvingawide rangeof problems. Beforedemonstratingthe

usefulnessof neural networksin solvingour load measurementproblem, the fol-

lowing sectionwill givea brief overviewof the theory anddevelopmentof neural

networksby presentingsomepractical examplesandapplications.

7.2 An Overview of Neural Networks

Since the theory of neural networks is still not quite mature, there are still some

unsolved issues such as the type of architecture of the neural networks, the type

of training methods and the design procedures. Recently, much works have been

done on the applications of neural networks. There are two main categories in

neural networks. The first category is called the dynamic neural networks as the

system parameters is dependent on time or the network possess "memory". The

second category is called static neural networks since the system parameters are

static in time or "memoryless".
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Basic Neural Units or Neurons

Neural Networks consist of basic processing units called neurons. It can be viewed

as input/output devices where the output is determined by a specific rule or a

functional relation. The figure (7.1) shows a neuron withmultiple inputs x =

[xl,..., x,,]' E IR '_ and a single output y_. In addition, the neuron is defined by

its activation function f(.), the bias bj and the weights w_.

Thus, the output of the i-th neuron can be written as

n

y, = f(__, zjw,i + b,), (7.1)
j=l

where n is the total number of input to the i-th neuron.

The activation function f(-) is an important element of a neural network for

the nature of the function introduces nonlinearity into the NN. Such nonlinearites,

which we will explore later, allows the NN to handle nonlinear problems. The type

of activation function used is known as the sigmoid function which usually take
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the form of a step function, tangent, logarithm or sometimes even linear function.

An examples of such a function is shown in fig (7.2) where the functional relation

can be expressed as,

1

f(x)- 1 + e -_" (7.2)

Furthermore, the bias b_ and the parameter a determine the shape of the

sigmoid functiorf which we can select during the design phase of a neural network.

7.2.2 Basic Neural Networks

A typical neural network consists of interconnected neurons. Different types of

architecture are commonly used in NN. Neurons can be fully connected(i.e, each

neuron is connected to the other neurons via a weigh). However, most popular

NN requires only neurons to be connected to adjacent layers of neurons which we

will subsequently discuss in detail. Besides the architecture of the NN, NN can be
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Figure 7.3: A Multiple Layer Perceptron Neural Network

classified as the "feedforward static NN" and "feedback/recurrent/dynamic NN".

Feedforward NN allows signals to flow in one direction. One of the important

types of NN is called Multiple Layer Perceptron(MLP). The second class of NN is

characterized by the feedback network such as the famous Hopefield Network.J21]

[32] In chapter 8, NN will be used to solve the load measurement problem. The

type of NN to be used for this application will be in the form of a static NN or

MLP.

7.2.3 Multiple Layer Perceptron (MLP)

A neural network can be made up of several layers of neurons. In MLP, only

adjacent layers are connected to each other. Fig. (7.3) shows a fully connected

MLP Neural Network.
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A NN can be partitioned into the input layer, the hidden layers, and the

output layer. In fig (7.3), the numberof hidden layersshowncanbe selectedfor

somespecificproblems. However,the exactnumber of layersto be chosenfor a

specific problem is still quite arbitrary. It usually requiresexperimentationsor

trial-and-error methodsin determiningthe numberof layersfor possibleoptimal

solutions. Works in this area shownin [20] proved that two hidden layers NN

can approximate any types of function if enoughnumber of neuronsare being

used. However,additional layersmight reducethe number of required neurons

and thereby greatly reducesthe complexity of the problem. In chapter 9, wewill

discussthis aspectof the problemand suggesta procedureof designinga neural

network by selectingthe number of neuronsin a layer using our load estimation

problem as an example.

7:.2_4 Training Techniques for Neural Networks

In order for the Neural Network to act as a function approximation, system iden-

tification or pattern recognition network, we need to train the neural network

by adjusting the weights and bias iteratively until the desired objective or error

criterion is achieved. The training procedures can be classified into two types.

One type is called the supervised learning and the other type is called the un-

supervised learning. Supervised learning [12] involves the use of target values or

patterns. Targets and input pairs are presented to the neural network for training

at each step until an error criterion has been reached. For unsupervised learning,

the neural network is only presented with inputs without the aid of the targets.
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7.3 Training by Back Propagation(BP) Tech-

nique

Due to the relative ease of use and the stability in the solution, Back Propagation

became one of the most popular training techniques since its introduction [27].

For enhancing the convergence properties of the BP technique, modifications

had been made such as the addition of momentum terms in the direction of

update. BP is essentially based on the optimization theory using first order

gradient descent methods. The success of the convergence of the BP relies on the

direction of the search. In addition, the BP attempts to solve the optimization

problem which is equivalent to the search of the global minimum to an energy

or error function defined as E. As a result, BP sometimes give solution of local

minimum and may not always arrive at the global minimum. Other methods

using a momentum term (or a second order gradient method) such as conjugate

gradient method as studied in [17] attempts to avoid the solution to settle on a

local minimum.

7.3.1 Notations and Definitions

Here are some of the notations and definitions used in deriving the Back Propa-

gation method:

• E - Error or energy function for minimization.

• L - Last layer of the neural network.

• NL - Number of neurons in the L-th (last) layer.
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• Nl - Number of neurons in the/-th layer.

• m - m-th step of the iterative updating process.

• t_ - i-th element of the training vector.

• wij (1) - The weight connecting j-th neuron's output in (l - 1)-th layer to i

-th neurons in/-th layer.

• ai(l) - Output of the i-th neuron in the/-th layer.

• u_(l) - Input to the i-th neuron's activation function in the l layer.

• # - Learning rate for the back propagation training.

• b_(l) - Bias of the i-th neuron in the/-th layer.

7.3.2 Derivation

Using the notations defined previously, the input u_(l) and output a_(l) to the i

-th neuron in the l layer can be expressed as

Nl

u,(l) = __, w,j(l)aj(l - 1) + b,(l), and
j=l

a,(l) = f(u,(l)). (7.3)

In Back Propagation, the weights are updated according to the expression as

w ('_+1) w !.m)(l_ Aw {.m),j (Z) = ,j ,, + ,, (t), (7.4)

where m is the iteration step and Aw_'_)(l) is the change or updates in weights

for step m.
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The weight updating processis according to a first order gradient descent

method suchthat the updating direction is in the negativegradient of the energy

or error function E as expressed by

NLE = 1 _[t_ '_) - a_m)(L)] 2 (7.5)
2 m=l i=l

where Mp is the total number of training patterns and NL is the number of

neurons in the last layer(or the number of output elements).

Using chain rule, the updating step can be expressed as

OE (7.6)

OE Oa_"O(l) (7.7)

= -#oa?,o(Oo_?)(z)
(,,,) o,,_.,)(z)_ ..(,,,)aa, (t) (7.8)

- -"_' _ow_?)(O"

From equation (7.3) we have,

- f'(u_ '')(l)) and (7.9)

-(") (l 1). (7.10)----- U i

From equation (7.8) and (7.10), we have

A_?)(0 =#_'_)(0/'(_)(0)a_)(z- 1). (7.11)

For the last layer, the partial derivative _'_)(L) can be expressed as

OS = t_m) - a_m)(L). (7.12)
5}m)(L) = Oa_m)(L)

Again using chain rule the derivative can be expanded as
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OE

-- J=,_ Ou_m)(l + 1/ Oa_,_)(l ) (7.13)

w_')(l+l)

N,+I OE cOa_'_)(l + 1)w(,, 0
= - j=,_ Oa}m)(1 + 1)Ou_m)(l + 1/ 'j (l + 1 / (7.14)

Nl+_

= - _, 5_)(1 + 1)f'(u_m)(l + 1))w_?)(/+ 1),(7.15)
j----1

where l = L- 1,..., 1.

Then the weight updating can be written as

= w!._)Aw_'_+l)(l) ,, ÷ #6_'_)(l)f'(u}m)(l))a}'_)(l- 1) (7.16)

NOW

NL+I

_}_)(l) - Z aF)(z+ 1)/'(uJ_)(z+ 1))_}?)(L+ 1)
j----1

6_m)(L) = t_m)-a_m)(L).

(7.17)

(7.18)

Then we can evamate,

NL-1

5_'_)(L -- 1) = - _ 6)("0 (L)f''(_j<m)(L))w}_)(L)

6_'n)(L - 2) --

(7.19)

6J'n)(L - 1)f'(u_'n)(L - 1))w_)(L - 1) (7.20)
j=l

N1

5_m>(l) = - ES_m)(2)f'(uJ'_)(2))w_'_)(2).
j--I

(7.21)

Since 5_'n>(l) can be recursively computed starting from 5ffn)(L) = t_m)-

a_")(L) at the last layer, the term Back Propagation is used in the sense that the

error is propagated from the last layer.
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Update Frequency

In the last section, the update of the weights are done when each input target

pair or patterns are presented to the network. This type of update is suitable for

some on-line problems when real-time training is necessary. However, the update

can be done when all the patterns have been presented to the network. This type

of update is called Block Update and is known to be more robust because the

weights are updated when the training patterns are averaged. Thus for the load

estimation when real-time training is not necessary, Block Update method will be

used. The Block Update method can be generalized by the following modification

to the update equation in equation (7.16) as

Mp
A (k+l),,,, w_)(l) +# _ 5, (l)f ( , ) j (l- 1), (7.22)w 0 t,_) = (,n) _ u(m) a(,,O

rn=l

where k is the block update step and Mp is the total number of training patterns.
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Chapter 8

Loa& Estimation Problem -

Linear and Non-linear Least

Squmres Approach

In this chapter, we will discuss the use of nonlinear least square approach in

solving the load estimation problem. This problem is motivated by the NASA

F-111 data_ set. The objective is to use the calibrated data to predict the load

experienced by the wing structure during the in-flight stage.

Load Conditions

Here we will define the notion of loading conditions in the calibration and in-

flight stage of the load estimation problem. During calibration, loads are applied

on different parts of the wing while the corresponding set of n gages' readings

are recorded. If we assume that the number of different loading condition is m,

we can define the q-th loading condition as the set of all individual point loads

as f._(q), where 1 <_ q _< m.
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Now the individual load applied on the wing structure 1 = (l_q),... ,l_q)) ' E

IR J(_)xa can be written as

l_q)= [s,,s,x,,siy_], i= 1,...,J (q), (8.1)

where (xi,y,) is the relative position of the load on the wing structure and J(q)

is the total number of individual load points for the q-th load condition f-_z(g).

Single Equivalent Load

As discussed in chapter 2, the first, second and third elements of the load

vector l_ represents the shear, the moment and the torque. In order to simplify

the set up of the system of linear equations, the notion of equivalent single load

is used. Thus the equivalent single load L (q) E IR l×a corresponding to the q-th

load condition f-._(q) can be defined as

JCq)

L (q) = _l, (8.2)
i=1

J(q)

_-- Z [Si, SiXi, Syi]. (8.3)
i=l

For simplicity, we will concentrate on the shear s element of the load vector since

the use of the other elements will lead to similar procedures and results. Now

the shear load of f_.z(q) can be written as

J(q)

L (q) = __, s,. (8.4)
i=l

Then the calibration stage can be summarized by the following steps.

Calibration Stage Procedure

• Known loads, which are defined as a specific load condition f__£(q) = {/_q)[1 <

q <_ J(q)}, are placed on different parts of the wing structure as shown in
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Figure 8.1: Wing Structure in Calibration Stage of Load Condition £:C (q)

fig. (8.1). Usually, the specific choice of 1(q) are due to actual loading

conditions of interest(such as the loads on the leading edge of the wing is

more pronounced).

The magnitude of the known calibrated loads are simultaneously increased(we

denote L (q)__ as the equivalent load as described in equation (8.4) for 1 <

j < k where k is the total number of loads of varying magnitude) and the

corresponding gage readings are recorded(in the F111 Calibration data ex-

ample, an approximate k = 50 points are recorded). Fig 8.2 shows a typical

gage vs. load response curve obtained from a specific load condition Z:C(q).

• Loads are relocated so that a new set of data corresponding to a different

loading condition f__Z(q+l) can be recorded.

77



• For the F111 data case,there are m -- 9 load conditions while each sets

contains 50 data points.

As seen in fig. 8.2, high degree of nonlinearities are present in the data. As

a result, the conventional linear methods are inadequate for accurate estimation.

However, we will still discuss the linear approach in estimating the load as a

comparison to the neural network approach. In order to understand the load

problem, the load estimation procedure can be summarized in fig (8.3).
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8.1 Linear Approach

The conventional linear approach attempts to find a relationship between the

gage and load data (Mb _-L) in a linear least square sense. It solves for the

minimizer b of the system of linear equations such that

n_r_[[Mb- L[[ = liMb- L[[. (8.5)

Since the gage matrix M E IR ''k×" and the load vector L E lR'_k, the system of

equations can be written as

Mb_L

where

,_i_ ,_i_) ... ,_i_
: : ".. :

._i',) ._(:_)... m(£
: : ".. :

._7) .,17) ...._i:)
: : ". :

.m(_7) ._(_)...._:)

M !

L !

(m)

(m)_i_) ... mi_) ... m,_
. o • o •

• °

.,_i_ ... m(2... ,_i:)
• J •

m is the number of loading conditions,

,L_I) •

L (1)

L_ m)

•L (m)

•.. m(kl ) -

•.. m(_ )

•.. m_._ ) .

£c_m)

(8.6)

(8.7)
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k is the number of points per loading condition, and

n is the number of gages.

The solution b to the linear system can be expressed as

b= M+L, (8.8)

where M + is the Moore-Penrose pseudo inverse of M.

The corresponding load estimate L can then be computed as

L = _n'M+L, (8.9)

where rh is a n x 1 vector from the in-flight gage reading.

8.2 Non Linear Least Squares Approach

Since nonlinearities are present in the data set, the load problem of solving the

nonlinear system(f (M) _ L) can be written as

min [[f(M) - L[[, (8.10)
b

where f(M, b) is a nonlinear function of M and b.

8.2.1 Neural Network Approach

In solving the problem minb [If(M) - L[[ where f(.) is a nonlinear function, the

neural network approach can be used as an approximator of the function f(-).

First, the structure of the NN has to be chosen for this problem. Since there

is no definite approach in choosing the number of layers or the number of neurons

for the network, we need to use a trail-and-error approach to determine a possible
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optimal selection. In chapter 9, we will discuss some aspects of determining the

number of neurons in a hidden layer. In our simulations, two hidden layers are

used for it is found to be adequate in most cases. The Back Propagation(BP)

training procedure, which can be illustrated in fig. (8.4), is used in the learning

process.

Once the Network is properly trained(i.e, when an error criterion has been

reached), the NN can be used to estimate the wing load during the in-flight stage.

The prediction process is fast enough for real-time application since all the time

consuming computation or training can be done in the ground calibration phase.

Fig (8.5) shows that a load estimate can be obtained by passing the in-flight gage

data to the trained Neural Network.
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Figure 8.5: The Load Prediction by a Trained Neural Network

Simulation Results and Observations

In order to evaluate the performance of the trained Neural Network, the NN has

to be tested using existing calibration data. The sigmoid function used for this

example is defined in (7.2), where we set a = 1. Although we have m = 9 sets

of loading conditions, we only used m = 5 sets for calibration and training. The

remaining load conditions are used to validate and quantify the performance of

the network. After the training is completed, the NN is tested with three different

sets of loading conditions. In this simulation, the performance of the NN and the

linear methods are compared by computing the relative error which is denoted

by

_NN = [ILt"'e - LNN,estirnate[[ (8.11)
Ltrue

and similarly the relative error of the linear approach can be denoted as

where

eLS = IILt*'e -- LLs,est,,_t_ It, (8.12)
Lt,,,¢

Ltr,_ is the true calibrated load used as a verification,

LNN, estirnate is the estimated load using Neural Network approach, and

LLa,estimate is the estimated load using Neural Network approach.
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Three performanceanalysisplots in fig. 8.6, 8.7 and fig. 8.8 show_.NNand eLS

VS.load test samples.
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Asobservedin fig. 8.6,8.7,and fig. 8.8, the simulation results from the Neural

Network approaclvhave better performancein most samplecases. In addition

large errors occurredin using linear LS method for somespecificdata samples,

whereasthe errors_from the NN Approach are all relatively small. In general,

the relative error-o_NN are moreor lessconfinedin the range of 20 -.- 30% or

below. In additiorr_ fo_. the linear LS method, large error occured in some specific

examples. This seen_ to be a verification of the general superiority of the NN

to the LS method when nonlinearlities are present in the system. Moreover, NN

approach performance will not deteriorate even when the data is actually linear

for NN can handle both linear and nonlinear systems.
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8.4 Distributed Load Estimation Problem

In the past section 8.2.1, the solution for the single load estimate are presented.

Single load estimate is the equivalent load estimate which consists of a single

load point L -- (S, Sx, Sy), where S denote the equivalent shear load and (x_, y_)

denote the relative location of the equivalent load on the wing surface. It provides

only the location and the magnitude of the equivalent load(or equivalently the

shear, moment and torque components of the Load L). In real life situations,

loads are usually distributed on different locations of the wing structure. Thus

the knowledge of the single equivalent point load is not adequate in providing

information as how the load is distributed on the wing. This lack of information

might becomes undesirable in dangerous situations such as when a large load is

concentrated on a specific region of the wing structure. As a result, the estimate

of the distributed load is highly relevant and useful since it might provide an

"early warning signal" for the presence of structure overloading.

Fig. 8.9 shows the difference between the single load and the distributed load

representation. It also shows how the wing structure can be partitioned into

regions of interest.

Distributed load estimate not only provides the estimate of the single equiv-

alent load, but also provides the positions and magnitudes of all the forces in

specific regions of the wing.

Distributed Load Problem The distributed load problem selects the right pattern

q = q, or f_C (q*) = {/_q*)[1 _ j < J(q*)} from the set (LC(1),f_._(2),... ,f___('_))

which represents the pattern set of all possible flight conditions.

If we can solve this general problem, we will be able to identify the magnitude
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of the specificforceacting on a specificsmall regionof the wing. As a result, the

solution might provide valid information suchasearly warning signals for local

overloadingof the wing structure. However,sucha task seemsto be too ambi-

tious. Alternatively, a sub-optimal approachcan be adopted in order to retrieve

asmuch information aspossiblefor the in-flight data analysis.Sinceweonly have

a limited numberof load patterns obtained in the calibration stage,the best we

can do is to utilize those setsof data to achieveour goal. If each patterns in

the calibration stagearevalid in-flight characteristic loading conditions, we can

use them as the training patterns. Oncethe neural network hasbeen properly

trained, wecould(with somedegreeof accuracy)be ableto identify which previ-

ously trained load pattern(or loading condition) the wing is experiencingduring

the in-flight session.Sucha procedureseemsusefulsinceif we train the network

with somespecificconditions that representa dangerousoverloadingsituations,

"early warning signals"might be availableoncethis pattern is encounteredduring

flight. Beforeapply the neural networksapproachto the distributed load prob-

lem, the next section will discusssomebasicsof pattern recognition by neural

networks.

8.5 Pattern Recognition by Neural Network

Pattern recognition by neural networks can be described as using nonlinear clas-

sifter to separate classes or patterns by drawing partitions between classes in the

pattern space. Fig (8.10) shows a typical pattern space and how nonlinear sepa-

rable cases can be partitioned into decision regions using nonlinear classifier such

as NN.
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The training input matrix and target matrix for this neural network are the

gagematrix M and the target matrix T where

M !

T

•mi_)...
mll) ...

: °°°

_.C (1)

I ... I

0 --. 0

: ".. :

0 ... 0

f..CO)

m(:?... mi_)
_(2 "" _i_)

: ".. :

_(2 ... mi:)
J

• .-0 ... 0

• .-0 ... 0

• ., : ".. :

• .. 1 .-. 1

f..C(" )

•.. roll )

•.. mi_ )

°o.

•.. m (_ )

_:i(")

and (8.13)

(8.14)

The neural network approach in solving the problem of identifying the pat-

terns of loading can be summarized as follows:

• The structure of the neural network such as the number of layers and the

number of neurons are chosen by in some(ad-hoc) manner(chapter 9 will

discuss the issue of the selection of the number of neurons).

• M ! and T are presented to the neural network and trained by back propa-

gation(using block update frequency as described in the last chapter) until

the maximum number of steps has exceeded or the the error criteria eI is

is met as given by

E = lIT- T[[ _< e/, (8.15)

where T is the output of the neural network.

• A noisy version of the gage matrix which we define as /Q! and the target

T are presented to the Neural Network. Then the second phase of training
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continuesuntil the error criteria is met or the maximum number of steps

hasbeenexceeded.The noisy versionof the gagematrix canbe expressed

as

_t,= [M',9',, 9'_], (8.16)

/Q'I = [M'+ e_], and (8.17)

/_'2 = [M'+ el], (8.18)

where el and e2 are ink× n normal random noise matrix with two different

amount of noise variance.

• The Neural Networl¢ is again trained with the noiseless matrix M _ and T

to guarantee accurate prediction of the patterns for noiseless cases.

• Once the NN has beert trained, the in-flight gage data rh will be passed into

the NN. A "one" in the i-th position of the output target 7_ indicates the

presence of the i-th load pattern.

8.6 Results and. Observation

Results shown in fig. (8.11) and. (8.12) shows reasonably good recognition per-

formance even for noisy situations. For 10% noise level, a recognition error of

less than 1% is observed.
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Chapter 9

Performance Analysis and

Design Criteria of Neural

Networks

In this chapter, we will discuss the issue of design criteria and the performance

aspects of neural networks. There ar@ a number of parameters determining the

performance(accuracy) of the neural networks in estimating the targets(loads).

The parameters can be listed as follows.

• e = error criteria for stopping the training process.

• n = number of iteration required for convergence.

• p = number of steps or time needed per iteration n.

• a_ = the noise variance for the model.

• a _ the degree of nonlinearities in the sigmoid function.
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•nd = total numberof nodesin the neural network.

• nt - number of hidden layers in the neural network.

The two basic important terms which quantify the performance of the neural

network can be defined as the prediction accuracy PI and the time t required for

training.

• t = n • p = total time needed for the training process.

• PI - the load prediction accuracy.

The total time for training can be related as a function of the basic parameters

as

t= nd,n ).

Similarly, the performance of the neural network can also be related as

(9.a)

Pl = g(e, a,, a, nd, nt). (9.2)

Fig. 9.1 shows the simulation results of the F-111 data set(the gage and load

data are listed in Appendix B) in which the number of neurons in the first hidden

layer is varied. The number of neurons in the second layer are fixed at 2. Since

excessive neurons often causes overfitting of the model and insufficient neurons

causes underfitting of the model, we expect that the errors will be high in these

cases. Indeed from Fig. 9.1, we observed that the relative errors are both high in

these cases. Thus we can conclude from this example, the optimum choice seems

to lie in the vicinity of 14 neurons in the first hidden layer.

99



0.12

0.11

0.1

0.09

_0.08

0.07

............ ..., .......... , ............ • ............. .............. , ............

...., ................,., ........ , ....!.......................................

!

10 20
0.06

0 30 40 50 60

Number of neurons

Figure 9.1: Average Relative Error vs. number of neurons in the first hidden

layer

100



9.0.1 Generalization and Training Accuracy

The ability of the NN to estimate the targets with untrained data is sometimes

referred to the term generalization performance [17]. The error criteria e can also

be interpreted as the training accuracy of the NN. Thus the performance of the

NN depends more on the generalization performance rather than the training

accuracy of the network. The issue of generalization and training accuracy can

be viewed as an analogy to the issue of noise sensitivity and model accuracy as

discussed in chapter 5. Although a large number of neurons can increase the

training accuracy, the problem of overfitting might cause the network to have

a poor generalization performance. Thus we need to select the right number of

neurons such that the effects of overfitting can be avoided or reduced. In other

words, we need to increase the number of neurons only if it is necessary.

In order to quantify the generalization performance of the network, an ap-

proach called "Cross Validation", in which calibration data are separated into

two parts, can be used. One part of the data are used for training and the other

part are used for validation. Thus from the validation results, one can quantify

the generalization performance of the network.

9.0.2 SVD, CA and Collinearity Method for Reducing

Neurons in a Layer

Recently, Xue in [29] proposed the use of SVD in determining the number of

neurons in a hidden layer. By determining the effective rank of the weight matrix,

one can effectively determine the number ot_ neurons needed in a hidden layer.

Let the output of the i-th hidden layer be A __ IR TM, the input of the i-th layer
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be P E IR ", where m is total number of neurons in the i-th hidden layer, and n

is the total number of inputs from the i-th hidden layer, and W E ]R "_×'_ is the

weight matrix of the i-th hidden layer.

Thus the output of the i-th layer can be written as,

A = WP, (9.3)

where each row of W represent the weights of a neuron. If two rows of W are

nearly identical, the output vector A will have two identical elements. Thus if

two neurons give the same output for every input vector A, reducing one neuron

from these two will give the same results. Based on this observation, if two rows

of W are nearly linearly dependent, one can eliminate the extra neuron without

affecting the performance of the network.

However in practice, the determination of the effective rank of a matrix is

usually a sensitive issue. Xue in [29] proposed the use of an error criteria in

determining the effective rank of the weight matrix W. However, the use of this

method is not straightforward and clear. By using correspondence analysis(CA)

and collinearity index(CO), we can provide an alternate and simple method to

determine the rank of W and thus reduce the number of neurons in a layer.

Correspondence analysis and collinarity method are applied to our simulation

example as shown in fig.(9.1). From fig. (9.2) and fig. (9.3) we can group the

nearby point to form one single point. Using CA, the effective rank of the weight

matrix W is 15 while using CO gives an effective rank of 13. Thus this simple

example seems to agree with our simulation shown in fig. (9.1) that the vicinity

of 16 neurons is in the region of the optimum choice of neurons. Although the use

of the CA and CO is not straightforward as the grouping of points requires the

right criteria of closeness. Different criteria of closeness between points sometimes
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render different results. However we provided a practical and simple approach

of combining SVD, CA, and CO in determining the possible optimal number of

neurons in a layer.
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Chapter 10

Conclusions and Future Work

This thesis provided a study of parameter estimation using linear and nonlinear

LS approach. We have discussed the issue of model accuracy/noise sensitivity

and derived a bound for the change in the model accuracy(represented by its

residual) as a function of the noise. The problem of the trade-off between model

accuracy and noise sensitive is a major issue. This problem is also analogous

to the issue of generalization and training accuracy of the neural network. We

have also studied and derived the equivalency of TLg and CA. These two seem-

ingly different topics in the field of signal processing and statistical analysis are

shown to be equivalent with proper scaling and centering of the data matrix.

In practice, the data matrix are sometimes nonlinear in nature and the use of

linear LS methods is insufficient for accurate parameter estimations. Motivated

by the nonlinearities in the NASA F-111 data matrix, we studied the possible

use of nonlinear LS methods. Conventional nonlinear least square methods and

spline approximation require the exact modeling of the functional relationship.

The use of neural network provides a practical and robust approach in dealing
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with highly nonlinear data. Using the NASA data as the training data, wesim-

ulated the estimation procedureby usingneural network approaches.Although

the computational effort in usingneural networksis very high, the resultsweob-

tained areboth usefuland encouraging.Comparedto the conventionallinear LS

approach,the neural network approachyieldssignificantly better performancein

load estimation. Wealso showedthe ability of neural network in estimating the

load conditions. The recognitionof the trained load conditions during flight pro-

vided a possiblemethod to provide "early warning signal" for the wing structure

oncea dangerousoverloadingcondition is encountered.

We also studied the aspectsof designingneural networks. The selectionof

the number of neuronsin a hidden layer is crucial in designinga neural network

with good generalizationand estimation accuracy. Underfitting and overfitting

yields poor performing network if the number of neuronsis not correctly used.

Work doneby Xue in [29]proposedthe useof effectiverank of the weightmatrix

determined by SVD as a way to reducethe number of neurons in a layer. We

found that CorrespondenceAnalysis and Collinearity Index methods appeared

to be equally effectivein determiningthe effectiverank of the weight matrix and

thereby effectively reducesthe number of neuronsin a hidden layer.

Wehave studied both the linear and nonlinearmethodsfor solving LS prob-

lem. As we expected,the linear methods are more analytically tractable while

nonlinear methodsneedto be basedon heuristic techniques.Thusmoreworks is

neededto fully understand the nonlinearmethods including the neural network

approaches.

Someof the unsolvedproblemand possibleextensionto our work include:

• Other typesof NN other than MLP canbe usedfor the Load Problem.
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• Analytical analysis and design aspects of NN need to be considered.

• The use of a mix of NN types to recognize complex decision regions such

as the "exclusive or(XOR)" operation(disconnected pattern space) ,which is

not possible for MLP type NN.

• The use of basis function in defining the pressure distribution can be used

instead of point loads.

• Computer simulated structural analysis can simulate gage-load relation but

lack the ability to model the actual structure itself.

• A combination of computer analysis and structural testing(calibration) can

be used to design a better and more accurate flight load estimations system.
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Appendix A

Computer Codes for Neural

Network Load Estimation

This appendix lists the matlab [6] computer codes for the single load estimation

procedure. The procedures are summarized below:

1. datreduct.m- Reduces the number of points in a load condition;

2. datred.m -- Select the load conditions to be reduced;

3. datsetup.m -- Set up the gage/load data for training;

4. trainNW.m -- Train the NN with noise;

5. trainNNS.m -- Train the NN without noise;

6. testset.m -- Test the NN performance.
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datreduct .m

res = i;

while (res==l),

clg;

hold off;

Leff=b;

ir_--a;

ss=size (a) ;ss=ss (I) ; ss=ss/2-3; ss--round(ss) ;

Leff=Leff (1: ss) ;

mm=mm(l:ss, :) ;

plot (Leff,n_, '*' } ;

hold on;

plot (Leff,mm) ;

s=size (Leff) ; s=s (I) ;

step = (max (Leff)-min (Leff))/s (I) ;

%npoint=input ('please input number of points ');

disp('the maximum number of points you can input is ');

disp (s) ;

disp('please input the Leff value to be picked for your reduced

data ' ) ;

disp('e.g, input [-2000 -4000 -5000 -8000 -Ii000] for 5 points,

but more than 1 point ');

disp('or the name of the vector, e.g. v ');

Lin=input ('please enter now ') ;

np=size (Lin') ;

npoint=np (I) ;

mmr=zeros (npoint, 12) ;Leffr=zeros (npoint, I) ;

for k=l:npoint,

temp - I;

for i=l :ss,

templ= Leff(i) - Lin(k);

if sign (templ) -- -sign (temp),

mmr (k, : )=ram(i, : ) ;

Leffr (k) =Leff (i) ;

temp = Leff(i) - Lin(k);

% disp (temp) ;
else

temp = Leff(i) - Lin(k);

end;

end;

end;

plot(Leffr,mmr);

plot(Leffr,mmr,'o');

hold off;

gagemat=mmr;

gagemat=-gagemat';

% gagematrix normalization
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ram--max(max(gagemat)) ;

gagemat=gagemat/mm;
targets=Leff(i);
%targets normalization
targets=-targets';
tt=max(targets');
targets=targets/tt;

disp('enter 1 if you want to fit better ');
res=input('enter 0 if you are satified >>');

end,
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datred.m

disp('1oad condition 1.3 ......

disp('load condition 11.3 ......

disp('load condition 13.3 ......

disp('load condition 17.2

disp('load condition 21.4 ......

disp('load condition 24.8

disp('load condition 28.4

disp('load condition 9.3

LC 1 ')

LC 2 ')

LC 3 ')

LC 4 ')

LC 5 ')

...... LC 6 ')

...... LC 7 ')

...... LC8 ')

disp('load condition 91011 ...... LC 9 ')

t(1, :) ='dat01

t(2, :)='dat02

t(3, :)='dat03

t(4, :)='dat04

t (5, :)='dat05

t(6, :)='dat06

t(7, :)='dat07

t(8, :) ='dat08

; tr(1, :)-'rdat01

; tr(2, :)='rdat02

; tr(3, :)='rdat03

; tr(4, :)='rdat04

; tr(5, :)='rdat05

; tr(6, :)='rdat06

; tr(7, :)='rdat07

; tr(8, :)='rdat08

t(9,:)='dat09 ; tr(9,:)='rdat09 ;

disp('enter the load conditions to be used for training ');

disp('For example [1 2 3 4 5] for selecting LC1 to LC5 ');

kk=input('enter ');

s=size (kk) ;s=s (2) ;

for i=l:s,

J=kk(i);

eval(t(j,:));

datereduct;

c=setstr(['rdat',int2str(j)]);

if j==l,

save rdat01 mmr /ascii /double;

save rdat01 L Leffr /ascii /double;

elseif j==2,;

save rdat02 mmr /ascii /double;

save rdat02 L Leffr /ascii /double

elseif j==3,

save rdat03 mmr /ascii /double;

save rdat03 L Leffr /ascii /double

elseif j==4,
save rdat04 mmr /ascii /double;

save rdat04 L Leffr /ascii /double

elseif j==5,

save rdat05 mmr /ascii /double;

save rdat05 L Leffr /ascii /double

elseif j==6,

save rdat06 mmr /ascii /double;

save rdat06 L Leffr /ascii /double
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elseif j==7,

save rdat07 mmr /ascii /double;

save rdat07 L Leffr /ascii /double

elseif jm=8,

save rdat08 mmr /ascii /double;

save rdat08 L Leffr /ascii /double

elseif j==9,

save rdat09 mmr /ascii /double;

save rdat09 L Leffr /ascii /double

end;

end;

end.
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datsetup.m

disp('Enter the number Load conditions to be included for

training');

disp('For example, enter [1 2 3 4 5] --- LC1 to LC 5 is used for

training' ) ;

temp3=input ('enter>>' ) ;

temp4=size (temp3) ;

temp4-temp4 (2) ;

gmmr=[] ;

gLeffr=[];

for i = l:temp4,

ttt=temp3(i);

if ttt==l,

load rdatOl;

load rdatOl_L;

mmr=rdatOl; Leffr=rdatOl_L;

elseif ttt--2,;

load rdat02;

load rdatO2_L;

n_nr=rdat02; Leffr=rdatO2_L;

elseif ttt==3,

load rdat03;

load rdatO3_L;

mmr=rdat03; Leffr=rdatO3_L;
elseif ttt==4,

load rdat04;

load rdatO4_L;

mmr=rdat04; Leffr=rdatO4_L;

elseif ttt--5,

load rdat05;

load rdatOS_L;

_r=rdat05; Leffr=rdatO5_L;

elseif ttt==6,

load rdat06;

load rdat06 L;

mmr=rdat06; Leffr=rdatO6_L;

elseif ttts=7,

load rdat07;

load rdatO7_L;

mmr=rdat07; Leffr=rdatO7_L;

elseif ttt==8,

load rdat08;

load rdatO8_L;

mmr=rdat08; Leffr=rdatO8_L;

elseif ttt==9,

load rdat09;

load rdatO9_L;

mmr=rdat09; Leffr=rdatO9_L;
end;

gmmr= [gmmr ', mmr '] ';
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gLeffr = [gLeffr', Leffr' ] ';

end;
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trainNW, m

%

%

%

%

%

%

%

%

%

%

%

%

%

%

%

%

Train pattern recognition problem

load conditions are represented as patterns

TRAIN WITH NOISE

This file trains a two hidden layer log-sigmoid/log-sigmoid

network to classify loading conditions patterns

The network is first trained on noise free loads.

It is then trained on loads with noise.

the network is then again trained on noise free loads.

The result is a network which can properly estimate

noise free loads and does a good job of estimating

loads with noise.

% LOAD PROBLEM

%

% INITIALIZE NETWORK ARCHITECTURE

[R,Q] = size(gagemat) ;

Sl =20;

$2 =2;

disp('the number of 1 st hidden layer neurons is ');

disp(S1);

res=input('enter y if you want to change it, otherwise push enter

>> ','s');

if res=='y',

Sl=input('enter no of ist layer neurons >>');

end;

disp('the number of 2 nd hidden layer neurons is ');

disp(S2);

res=input('enter y if you want to change it, otherwise push enter

>>','s');

if res=='y ',

S2=input('enter no of 2nd layer neurons >>');

end;

[S3,Q] - size(targets) ;

[W1,B1] = nwlog(S1,R) ;

W2 = rands(S2,S1)*0.01;

B2 = rands(S2,1)*0.01;

W3=rands ($3, $2) *. 01;

B3=rands ($3, 1) * .01;

% TRAIN THE FUNCTION
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% PROBLEM

% Get gage data to be trained

P = gmmr';

T = gLeffr';
% Normalize the data

nmm--max (max (abs (P)) ) ;

ntt=max (abs (T)) ;

P---P./nmm;

T=-T/ntt;

% TRAINING PARAMETERS

disp_freq = 200;

max_epoch - 16000;

err_goal = 0.01;

ir - 0.05;

ir inc = 1.05;

ir dec = 0.7;

momentum = 0.95;

err ratio = 1.04;

% TRAINING WITHOUT NOISE

TP = [disp_freq max_epoch err_goal ir ir_inc Ir_dec momentum

err_ratio] ;

[W1,Bl,W2,B2,W3,B3,xx]=trainbpx(W1,Bl, 'logsig',W2,B2, ...

'logsig',W3, B3, 'logsig',P,T,TP) ;

% SAVE NETWORK TRAINED WITHOUT NOISE

save prl_wl W1 /ascii /double

save prl_bl B1 /ascii /double

save prl_w2 W2 /ascii /double

save prl_b2 B2 /ascii /double

save prl_w3 W3 /ascii /double

save prl_b3 B3 /ascii /double
% TRAINING PARAMETERS

max_epoch = 3000;

err_goal = 0.06;

rand('uniform');

TP = [disp_freq max_epoch err_goal ir ir_inc ir_dec momentum

err_ratio];
% TRAINING WITH NOISE

for pass = 1:5

fprintf('Pass = %.0f\n',pass);

[ddl,dd2]=size(gagemat);

%avegagval=norm(gagemat)/ddl/dd2;

P = [gagemat, gagemat, ...

(gagemat + gagemat.*rand(R,Q)*0.1), ...

(gagemat + gagemat.*rand(R,Q)*0.2)];

T = [targets targets targets targets];

%size(T);

[Wi,Bl,W2,B2,W3,B3,xx]=trainbpx(WI,Bl,'logsig',W2,B2, ---
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'logsig',W3,B3,'logsig',P,T, TP);

end

rand('uniform');

% PROBLEM

P - gagemat;

T - targets;
% TRAINING PARAMETERS

max_epoch - 16000;

err_goal = 0.05;

% TRAINING WITHOUT NOISE AGAIN

TP = [disp_freq max_epoch err_goal Ir ir_inc ir_dec momentum

err_ratio] ;

[Wl, BI,W2, B2,W3, B3, xx] =trainbpx (W1, BI, 'logsig', W2, B2, . . .

'logsig' ,W3,B3, 'logsig',P, T, TP) ;

% SAVE NETWORK TRAINED WITH NOISE

save pr2_wl W1 /ascii /double

save pr2bl B1 /ascii /double

save pr2_w2 W2 /ascii /double

save pr2_b2 B2 /ascii /double

save pr2_w3 W3 /ascii /double

save pr2_b3 B3 /ascii /double
% SUMMARIZE RESULTS

A - logsig(W3*logsig(W2*logsig(Wl*P,Bl),B2),B3);

SSE = sumsqr(A-T);

fprintf('Final sum squared error without noise: %g.\n',SSE);
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trainNN5.m

%

%

%

%

%

%

%

%

%

%

Train Neural Networks problem

load conditions are represented as patterns

Using gage matrix of datset
This file trains a two hidden layers log-sigmoid/log-sigmoid

network to classify loading conditions patterns

The network is first trained on noise free loads.

The result is a network which can properly classify

noise free loading conditions and does a good job of

classifying
% loads with noise.

% LOAD PROBLEM

%

% INITIALIZE NETWORK ARCHITECTURE

[R,Q] = size(gagemat) ;

S1 -20;

S2 _2;

disp('the number of 1 st hidden layer neurons is ');

disp(Sl);

res=input('enter y if you want to change it, otherwise push enter

>> ','s');

if res=='y ',

Sl=input('enter no of ist layer neurons >>');

end;

disp('the number of 2 nd hidden layer neurons is ');

disp(S2);

res=input('enter y if you want to change it, otherwise push enter

>>','s');

if res=='y ' ,

S2=input('enter no of 2nd layer neurons >>');

end;

[S3,Q] - size (targets) ;

[WI,BI] = nwlog(Sl,R) ;

W2 = rands ($2, SI) "0.01;

B2 = rands(S2,1)*0.01;

W3=rands ($3, $2) *. 01;

B3=rands ($3, i) *. 01;

% TRAIN THE FUNCTION

% PROBLEM

% Get gage data to be trained
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P = gmmr';

T = gLeffr';
% Normalize the data

nmm=max (max (abs (P)) ) ;

ntt--max (abs (T)) ;

P=-P./nmm;

T=-T/ntt;

% TRAINING PARAMETERS

disp_freq = i0;

max_epoch - 16000;

err_goal = 0.005;

lr - 0.05;

ir inc - 1.05;

ir dec = 0.7;

momentum = 0.95;

err ratio w 1.04;

% TRAINING WITHOUT NOISE

TP = [disp_freq max_epoch err_goal Ir ir_inc ir dec momenturm

err_ratio];

[Wi,BI,W2,B2,W3,B3,xx]=trainbpx(WI,Bl,'loqsig',W2,B2,...

'logsig',W3,B3,'logsig',P,T, TP);

% SAVE NETWORK TRAINED WITHOUT NOISE

save prl_wl W1 /ascii /double

save prl_bl B1 /ascii /double

save prl_w2 W2 /ascii /double

save prl_b2 B2 /ascii /double

save prl_w3 W3 /ascii /double

save prl_b3 B3 /ascii /double
% TRAINING PARAMETERS

% SUMMARIZE RESULTS

A _ logsig (W3*logsig (W2*logsig (WI*P, BI) ,B2), B3) ;

SSE = sumsqr (A-T) ;

fprintf('Final sum squared error without noise: %g.\n',SSE);
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testset .m

% This is to test the NN and Normal equation approach

% For load condition I to 9 the relative error is displayed

% The relative error is stored in errn=[error-Normal

Equation,error-NN, error-NN-trained with noise]

% error-NE .... relative error using normal equation approach

% error-NN .... relative error using NN and trained without noise

% error-NN-WN ---relative error using NN and trained with noise

disp('enter the Load condtion to be tested');

in=input('enter>>');

for k=l:9

if k==in,

eval(['dat0',int2str(in)]);

end;

end;

disp('enter 1 if the NN is trained with noise');

disp('enter 0 if the NN is trained without noise');

temp9=input ('enter>>' ) ;

% Test with no noise trained network

load prl_wl; Wl=prl__wl;

load prl__bl; Bl=prl_bl;

load prl_w2; W2=prl_w2;

load prlb2; B2=prl__b2;

load prl_w3; W3=prl_w3;

load prl_b3; B3=prl_b3;

if temp9 == I,

load pr2_wl;

load pr2__bl;

load pr2_w2;

load pr2_b2;

load pr2_w3;

load pr2_b3;

end;

% Linear solutions

AA=P';

x=pinv(AA)*T';

res=norm(AA*x-T');

res=res*res;

szl=size (b) ;

szl=szl(1) ;

szl=round(szl(1)/2) ;

a=a (l:szl, :) ;
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b=b(l:szl, :) ;

%a=a (i :50, :) ;

%b=b (1:50, :) ;

pt=-a '/nmm;

targetss=-b'/ntt ;

%P=n2gfll;

%targetss=n2Lll;

% A is the output of the NN network--or estimated load using NN

% P is the test gage values

% T is the targets or true load for testing

A = logsig(W3*logsig(W2*logsig(Wl*Pt,Bl),B2),B3);

if temp9 ==i,
A2 -

logsig(pr2_w3*logsig(pr2_w2*logsig(pr2_wl*Pt,pr2_bl),pr2_b2),pr2_b

end;

error=A-targetss;

YY=Pt'*x;

errorN=YY'-targetss;

errorNn=errorN./targetss;

errorn=error./targetss;

errn=[errorNn',errorn'];

if temp9==l,

error2=A2-targetss;

errorn2=error2./targetss;

errn=[errorNn',errorn',errorn2'];

end;

%plot (abs (error), '*' ) ;

plot(abs(errn),

grid;

end;

,*,);
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Appendix B

Calibration Data from NASA

F-111 Load Measurement

The reduced load vector L E IR 5° and the corresponding gage matrix M E

IR 5°×12 are listed below.
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t' --3, 571
--5, _,61 1

--4, 710

--?,010

--2,833

--3,544

-2, 087

--2,653

-3,554

--4,571

--1,727

--1,755

--2, 973

--4. 191

--5,314

- 7,019

-9, 795

--11,669

-- 1,704

--1,719

--4, 119

--5. 210

-5,952

--8,565

-11,199
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