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SUMMARY

This paper develops improved stochastic models for the description of a large variety of fatigue
crack growth phenomena that occur in components of considerable importance to the functionality and
reliability of complex engineering structures. In essence, the models are based on the McGill-Markov and
Closure-Lognormal stochastic processes. Not only do these models have the capability of predicting the
statistical dispersion of crack growth rates, they also, by incorporating the concept of crack closure, haye

both the theory and the experimental technique are illustrated using a Ti-6Al-4V alloy. Finally, important
structural integrity, reliability, availability and maintainability concepts are developed and illustrated.

INTRODUCTION

While most industrial failures involve fatigue, the assessment of the fatigue reliability of structural
components being subjected to a variety of dynamic loading situations is still one of the most difficult
engineering problems that remains to be solved. This is because material property degradation processes
due to fatigue are extremely sensitive to material, component geometry, loading, and environmental
conditions. To control the failure of components and systems, within specified performance limits and for
a specified length of time, the concepts of Reliability, Availability and Maintainability (RAM) have been
brought into play.

The study of structural reliability and the scatter in mechanical failure data was placed on a sound
footing by Freudenthal (ref. 1) and Weibull (ref. 2). Lately, however, more research has been devoted to
the derivation of reliability models based on probabilistic interpretations of the fatigue process. Thus,
Birnbaum and Saunders (ref. 3) proposed a life distribution to characterize fatigue crack extension failures
and Freudenthal and Shinozuka (ref. 4) presented a similar law substantiated by several sets of fatigue data.
Subsequently, Payne (ref. 5) introduced a statistical reliability model for assessing the fatigue strength of
aircraft structures by evaluatin g the random variability in crack propagation rates and residual strengths of

applied to the fatigue failure of polycrystalline metals. Bogdanoff and Kozin (ref. 9) and Yang et al. (ref.
10) have investigated the stochastic fatigue crack growth process based on Markov and lognormal
processes, respectively, a view that is shared in the current investigation.
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Turning attention to the fatigue process itself, Elber (ref. 11) observed that fatigue-crack surfaces
contact each other even during tension-tension cyclic loading. This simple observation of the crack-closure
phenomenon immediately explained many crack growth characteristics that had been troubling researchers
during the '60s. Since then, several closure mechanisms have been identified, among them, "plasticity"
induced closure. These new closure mechanisms and the influence of the plastic wake on the local crack-tip
strain field have greatly advanced an understanding of the fatigue-crack growth and fracture behaviour of
metallic materials, under, for example, variable amplitude loading. Furthermore, the occurrence of crack-
closure significantly affects the local crack driving force stress-intensity factor and plays a crucial role in
quantifying the fatigue crack growth or arrest characteristics of the material in question. Thus, while the
qualitative interpretation of the closure phenomena justifies a large number of fatigue crack anomalies, a
quantitative knowledge of the crack closure stress intensity level is required to correlate fatigue crack
growth data.

Most fatigue design requirements based on damage tolerance concepts assume the existence of flaws
in the component either from the initial delivery or from some later stage during the service life. To assure
a high level of reliability and before these flaws grow to critical lengths, it is necessary to either repair or
replace the component. Thus, in-service inspections are required to detect various sizes and shapes of
cracks and other defects. For a reliability analysis of an in-service airframe, for example, fatigue,
environment and accidental events are three sources of damage that must be taken into consideration.

Hence, the importance of fatigue; the unifying nature attributed to closure; the need for a stochastic
process interpretation of the whole fatigue process, and the need for reliability analyses are clear. While
crack closure and stochastic processes are briefly detailed, this paper primarily concerns an investigation of
new methods of assessing the fatigue reliability of structures based upon probabilistic approaches. It
summarizes: i) the experimental determination of a statistically significant number of crack growth rates for
a Ti-6Al-4V titanium alloy; ii) the determination of the Closure-Lognormal, ¢, m, 62, & parameters for Ti-
6A1-4V; iii) the simulation of the crack propagation based upon these Closure-Lognormal parameters; iv)
the determination of the McGill-Markov A and & parameters for the Ti-6A1-4V alloy in question; and v) the
RAM assessment of Ti-4Al-6V.

Fatigue Crack Closure

An understanding of crack closure under cyclic tension was developed by Elber (ref. 11) who
showed that the occurrence of premature contact between the opposing crack faces during unloading was
due to the residual plastic stretch in the crack wake. During the loading portion of a cycle, the elastic
constraints acting on the residual material in the wake of an advancing crack, keep the crack tip closed until

these constraints are overcome by the externally applied load. The stress intensity factor associated with a
fully opened crack, K,,, based upon the crack opening load, P,,, is necessary for the quantitative

knowledge of the effective stress intensity range factor, AK ;, which is used in life prediction through
K =K, —K,, and the well known Paris-Erdogan relation da /dN = cAK ;™.

AK ; is an appropriate field parameter for correlating crack growth under constant-amplitude

loading conditions to the influence of a large number of variables, such as an actual load spectrum, load
ratio and/or a specific environment, that are known to affect the rate at which cracks grow in any practical
situation. As an example, fatigue crack closure effects at different load ratios have been extensively

investigated by Ritchie et al. (ref. 12), who initially showed a significant difference in the da / dN — AK
behaviour due to different load ratios over a wide range of AKs, but, when plotted as a function of AK ,

were able to eliminate this discrepancy and consolidate the curves into a narrow band.
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Stochastic Processes

Stochastic processes deal with statements that can be made concerning a random phenomenon, and a
random phenomenon has the property that under a particular set of conditions its observation leads to a
multitude of possible outcomes in such a way that statistical regularity can be observed.

The Lognormal Process. The aim of the present study of lognormal process is to consider fatigue
crack growth rates as random phenomena. A random variable x has a lognormal distribution if its
probability density function is given by:

_ 1 _(nx-—py
f(x)—amxexp{ 25 } (1)

where ¢ and 62 and the mean and variance of the associated normal distribution.

The validity of lognormal crack growth rate models, including the lognormal random process, white
noise, and random variable models along with the general lognormal random process model, have been
investigated using extensive fatigue crack growth data gathered from fastener hole specimens by Yang et al.
(ref. 10, 13, 14, 15). In order to account for the random nature of crack growth rate, use was made of the
following model for constant amplitude loading situations:

o = XOF(AK K,y R.5.0), @

where a(t) is the random crack size, and X(t) is a non-negative random process. Based on extensive
experimental data, Yang proposed X(t) as a non-negative, stationary lognormal random process. The
lognormal random process, X(1), is defined by the it's logarithm being a normal random process, i.e., Z(t)
is a normal random process, where Z(t) = log X(t). The stationary normal random process Z(t) is defined

by the mean value u, and the autocorrelation function R, (7) given by:
R, (7)= E[Z(DZ(t+ D)], (3
where E[ ] indicates the expected value.

The mean value, u_, of Z(t) is equal to the logarithm of the median value of X(t). Since the median

value of X(t) is equal to unity, the mean value M, is equal to zero. Hence Z(t) is a stationary normal
random process with zero mean, and is completely defined by the autocorrelation function given in eqn(3).

Yang, et al. (ref. 10) chose the autocorrelation function to be an exponentially decaying function of
time difference 7, as follows:

R (7) = 6" exp{-£&l i}, ‘ C))
where £ is the correlation parameter determined from a comparison with experimental test results. This

correlation parameter plays a significant role in describing the statistical fatigue crack growth rate and
propagation behaviour of materials.
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The McGill-Markov Process. In order to further evaluate the stochastic characteristics of fatigue
crack propagation processes, it is necessary to consider the concepts behind the McGill-Markov process.
Any Markov process is based upon the assumption that the prediction of the process that is going to occur
is influenced only by the properties of the current state which the process is in and not by the history that
led to its present state. According to Provan and Rodriguez (ref. 16) and the nature of fatigue crack
growth, the crack propagation process is a discrete-state continuous-parameter and nonhomogeneous
Markov process since the transition probability density is a variable which depends only on the time
difference 7. Furthermore, the crack size variable, a(t), can only be measured to within equipment and
operator limitations. By considering the observable zones, i, the crack size may be written as:

a; <a(t)<a; +Aa, S)

where i is the state number and Ag; is the width of a state. A discrete-state and continuous-parameter
stochastic process, {a(f),t € T}, may be described by a one step transition probability of the form:

Pla(®) = jla(t) =i} = p;(T,1), 07y, 6)

where i and j are integer states and 7 and t are times. This probability is called the transition probability
and is defined as the probability of a transition from state i to state j during the time interval 7 to t.

In order to solve the Kolmogorov differential equations which govern p;, an infinitesimal transition
scheme must be specified. After a review of the existing intensity functions, Provan and Rodriquez (ref.
16) developed a new intensity which gives a good description of the time evolution of material property
degradation processes. The intensity functions of the McGill-Markov process are:

Aj(1+ At) .
D=A = =12,... 7
q;)=2A,; TG for i=L2,.., )]
_AG=DU+AD .
g == qaar . Jor =ik ®)
0 otherwise.

A and K are empirical system parameters which are determined by a fit to experimental data. They are
positive empirical system parameters that describe all of the various effects that influence the process, such
as, temperature, material properties, experimental error, etc. When these parameters are found, the system
may be modeled. If the system is changed, new system parameters must be found. These intensity
functions are then used in the Kolmogorov forward differential equation, which becomes:

apij(lz",t)
o

¢ :_A’jpij('rst)+A'j_1p,-_j_l(r,t). (9)

Hence, by solving this Kolmogorov equation governing a linear nonhomogeneous birth process, the
transition probabilities p;(7,t) are determined.

Finally, in order to determine the entire history of the crack propagation distribution, the total
probability may be continuously monitored via the fundamental absolute probability relation:

P;(t) =Y, p;(T,0P,(T), (10)

i=1
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where P, (¢) is the probability of being in the j-th (later) state at time t; P,(7) is the probability of being in
the i-th (earlier) state at time 7; and p;(7,t) are the transition probabilities of a Markov process. Hence,

for any McGill-Markov process, it is necessary to specify the initial state and the transition probabilities in
termis of A and k in order to describe the evolution of the entire process.

Reliability Analyses

One of the main objectives of this paper is to introduce reliability maintenance and
inspection/correction procedures via the McGill-Markov interpretation of material property degradation.
Inspection/correction failure control systems play a significant role in a reliable repair policy which adheres

of a component for a specified period in a specified environment. Hence, the reliability can be found if the

critical crack size is known; it is the probability that the crack does not exceed this critical size. This
quantity can be obtained by summing up the probability of a crack being any sub-critical size, i.e.:

j=N/

Rty = 3 P(0), an

where N, is the identity of the state corresponding to the critical crack size.

Two specific uses of McGill-Markov model are as follows: the first use is for the prediction of repair
times in order to maintain a certain level of reliability, and the second is the determination of the optimum
time for an inspection/correction procedure.

Reliability Maintenance - Inspection/Correction Process. The operator of a structure will often
decide upon a desired level of reliability. Once this level has been determined, perhaps by company policy,
standard industry practices or other means, it becomes necessary to determine when to schedule the
maintenance procedures that correspond to the desired level of reliability. This may be accomplished by
employing the McGill-Markov model to predict when the probability of failure will reach the desired limit
and then calling for an inspection/correction procedure. Briefly, inspection/correction processes are
summarized as: stopping the degradation process; locating components that pose a risk to structural
integrity; and carrying out the necessary maintenance procedure.

Analytically, as a result of the removal and replacement of some components, there are two distinct
populations referred to as Population I, which consists of the remaining components from the initial group,
and Population II, which is the group of replacement components. For an inspection/correction at time

T, spece» the fatigue process continues for Population I while for Population I it starts at time T=0 and ends
attime T = Tt —Tippers- As long as the fatigue loading situation remains the same, the system parameters

inspect
A and K can be used for populations, I, II,... Following the development of Rodriguez and Provan (tef.
17), this total probability of failure is a combination of the probabilities of failure of Populations I and II.
This process can easily be extended to include as many inspection/correction procedures as desired.

Reliability Maintenance - nspection Optimization. Another useful form of reliability analysis which

can be carried out with the McGill-Markov model is the optimization of the inspection time. As an
example, suppose that it is desired to minimize the total probability of failure at a future time, and
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furthermore there will be only one inspection/correction process in a given interval time. Hence, the
question: "what is the optimum time for this procedure 7" is an appropriate one. In order to decrease the
probability of failure an inspection/correction procedure will be carried out at some time. An inspection too
early in the service life will, on the one hand, remove few components that may subsequently fail while a
Jater inspection may be too late to remove components that will have failed. The optimum time for
inspection will depend on several variables such as: critical crack size, repair size, inspection process, and
the quality of replacement components. Hence, the McGill-Markov model, used in conjunction with a
failure control methodology, can be a useful tool for obtaining valuable reliability information.

EXPERIMENTAL PROCEDURE AND BASIC RESULTS

Exerimental Procedure. A computer controlled, increasing stress intensity factor AK test method,
according to the American Standard Test Method ASTM E647 (ref. 18), was applied to eighteen standard
C(T) specimens manufactured from a forged Ti-6Al-4V jet engine, fan disk grade, titanium alloy. The
main objectives of carrying out these experiments were to examine the stochastic properties of crack growth
for Ti-6A1-4V, and then to analyze the results in an effort to establish the parameters associated with the
Closure-Lognormal and McGili-Markov stochastic processes and in the reliability assessment of .
components manufactured from this titanium alloy.

The fatigue tests were carried out under the control of the in-house "FATIG" computer program
based on a crack closure compliance method. For the compliance calculations, the CMOD measurement
was determined using a mechanical clip gage with a maximum resolution of 0.00025 mm, while that of the
load cell was 0.005 kN. The FATIG program utilizes three main loops and determines: i) the crack length
based on load vs. CMOD data (compliance); ii) the AK based upon the ASTM E647 standard; and iii) the
AK,, based upon AK and the closure load. During each "data acquisition” block, the load vs. CMOD

curve for 200 individual data points was obtained. The lower limit was a variable such that the nonlinearity
was distinguished by FATIG as the closure load. A linear curve fit was made through the remaining points
to obtain the normalized compliance, and the relationship between the compliance and crack length was
determined by that proposed by Mirzaei and Provan (ref. 19), namely:

EBv _ 3(a:rl)(a+2.3)+8(1+ V) a=£—. 12)
P a -2a+1 w

In eqn(12), « is the normalized crack length, E = 117,000 MPa is the elastic modulus of Ti-Al-4V, v is
the CMOD, B the specimen thickness, P the load and W the specimen width. From this information the

AK oy Was determined from the expression given in the ASTM E674 standard, except that AP=P__ — Pop ,
P, being the closure load.

When a specific test was completed, the stored data was analyzed with the second in-house "FADA™
program to obtain a da /dN vs. AK,, curve using the incremental polynomial method with n=3,ie.,7
successive data points. The FADA program plotted the crack length, a, vs. the number of cycles, N, and
the crack growth rate, da/dN vs. AK ;.

Experimental Test Results For Ti-6Al-4V. Results were obtained from eighteen standard C(T), Ti-
6Al-4V specimens prepared according to conventional procedures. The fatigue crack propagation for all
eighteen specimens are shown in fig. 1(a), while the associated da/dN vs. AK, curves are presented in
fig. 1(b). Examination of the data revealed a few surprising observations. The most unexpected

observation was the change in the growth rate which occurred in almost every test, indicating that fatigue
crack propagation is not a stable, smooth, well ordered process. A close observation of the fatigue crack

growth rates show two transition points, namely, at AK,_,ﬂ =8 —-9MPa and» at AK , =13-14MPa.
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Hence, the fatigue crack growth process is highly complex, especially in the Paris-Ergodan regime and it is
reasonable to have different Paris-Erdogan regimes correlated to these experimental results. However,
from the viewpoint of reliability analyses the first part of the fatigue crack growth rate curve, i.e., prior to
the first transition point, is more important than the second.

THE CLOSURE-LOGNORMAL CHARACTERISTICS OF Ti-6Al-4V.

As introduced above, a lognormal process is defined by the fact that its logarithm is a normal
random process. Also, the general form of fatigue crack propagation laws indicates that the crack growth
rate is a function of the stress intensity factor, maximum stress intensity factor, stress amplitude, load ratio,
and so on. Some commonly used crack growth rate functions, such as the Paris-Erdogan model (ref. 20)
are such that ¢ and m are functions of the load condition and environment.

A comprehensive assessment of the closure phenomena necessitates the evaluation of the state of
residual stress and strain in the neighbourhood of the crack tip and the extent of crack closure. Crack

closure effects are most pronounced at low AK levels. This can be seen in fig. 2 which shows the results
obtained from the eighteen specimens of Ti-6Al-4V tested as described above. Hence, P,, for Ti-6Al-4V
as a function of crack length, a, is found by a polynomial curve fit to be as follows:

P,, =2.90203 - 0140572a +0.0021723a%;, (kN smm). (13)

As detailed previously, the crack closure concept may be used to describe the influence of the actual
load spectrum, load ratio and/or environmental parameters and, therefore, the quantitative knowledge of the
crack closure stress intensity level is required to correlate fatigue crack growth rate data. Using the sense of
"closure", in the form of the effective stress intensity range factor for fatigue crack propagation, the
following equation, eqn(14), is adopted in such a manner that it is independent of component geometry,
loading spectrum or load ratio, environment, etc. In this way, the entire description of the statistical scatter
in fatigue crack growth data may be incorporated into the assessment of the reliability of any prospective
component prior to its manufacture.

Hence, in order to account for the random nature of the crack growth rate, the following model is
suggested:

d m
7‘; = X(t)c(AK )", (14

where a(t) is now the random crack size and X(t) is a non-negative random process. In this case, AK, isa

function of crack length and closure effects, and X(t) is a lognormal random process. By taking the
logarithm of both side of eqn(14), it follows that:

log(‘;—(tz) = logX(t)+logc+mlog(AKeﬁ). (15)

By substitution ¥ = log(%), Z(t)=logX(), C=loge, T =log(AK ; ), eqn(15) may be

rearranged into the form:

Y=ml'+C+Z@). (16)
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Z(t) describes the inherent scatter of a specific material. These parameters, as well as the variance 6~ and

the autocorrelation parameter, &, are obtained from the Ti-6A1-4V test results of the crack growth rate vs.
the effective stress intensity range in the logarithmic scale.

According to the stochastic model, eqn(14), and the sense of closure for fatigue crack propagation,

four important Closure-Lognormal parameters, namely m, ¢ 6 and £, may be interpreted as material
properties. Table 1 shows these Closure-Lognormal parameters for Ti-6Al1-4V. Hence, a complete
specification of a material's stochastic fatigue crack growth characteristics are found from the Closure-
Lognormal model. These parameters may be interpreted as material properties that are independent of
component geometry, loading spectrum or load ratio, environment, etc. In this way, the entire description
of the statistical scatter in actual test results or simulated fatigue crack growth data (see the next section),
may be incorporated into the assessment of component reliability. Since, by using these parameters and the
simulation procedure, a definitive reliability, availability and maintainability procedure may then be carried
out using the associated McGill-Markov parameters, a complete specification of a material's stochastic
crack growth characteristics based upon the Closure-Lognormal interpretation of scatter is of paramount
importance to the assessment of crack growth rates in any practical situation.

SIMULATION OF CRACK PROPAGATION -- Ti-6Al-4V

In order to remove the limitation of a specific crack geometry, loading, or environment, etc., and to
be in a position to use both the previous Closure-Lognormal and the following McGill-Markov procedures
of describing the statistics associated with the fatigue crack growth process, a simulation procedure plays a
crucial role in transferring information from data generated by a standardized Closure-Lognormal procedure
to real crack propagation processes as they occur in actual components and under any of a large number of
specified situations. The stationary Gaussian random process Z(t), may be simulated using the well-known

Fast Fourier Transform (FFT) technique to simulate the two parameters, £, and o’

As an example, the C(T) specimen geometry along with a knowledge of the P,, for the Ti-6A1-4V

was used to generate the simulated fatigue crack growth characteristics of this material. The results of these
analyses are shown in fig. 3, which clearly shows that the two sets of data, one experimentally obtained
and the other simulated, superimpose on each other.

AK ;, incorporating a quantitative knowledge of the crack opening stress level, now appears as an
appropriate field parameter for correlating knowledge of the constant-amplitude crack rates to practical
growth rate situations. Specifically, knowing in terms of m, ¢ 62 and &, the crack growth rate as a
function of AK‘,_,ﬁr for a specific material, such as Ti-6Al-4V, then the influence of an actual load spectrum,
load ratio and/or environment may be incorporated during the design stage into an estimate of the fatigue
reliability of a specific component. In this way, the simulation process plays an important role in removing
the dependency on actual experimental results obtained under specific loading and environmental
conditions. Hence, the closure behaviour, either experimentally determined or predicted by a model,
expressed in terms of the effective stress intensity factor range expressions found in handbooks and the

Closure-Lognormal parameters, constitute the only information required for analysing any particular
situation. '

THE MCGILL-MARKOV PARAMETERS FOR Ti-6Al-4V

The major objective of this section is the determination of the McGill-Markov stochastic fatigue
crack growth properties of Ti-6A1-4V. As was described in the introduction, the two constant parameters

A and K in the intensity functions g;and g, defined in eqns(7) and (8), are related to the stochastic
~ properties of the material system being investigated. Accordingly, the probability of the crack tip being in
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state i is increased, state by state, as the process progresses. Essentially, failure means a situation that, in a
finite time interval, there is a probability that the state goes past a prescribed limit, which causes a failure of
the structure. Hence, the McGill-Markov System parameters control the system failure and play a significant
role in both reliability assessment and in inspection/correction procedures. Applying the McGill-Markov
model to the Ti-6A1-4V data is an appropriate way to illustrate the capabilities of this approach.

These parameters are determined by a fit to the experimental or simulated data. Several steps,
however, must be taken before this iterative process is undertaken. The first step is the normalization of

data to an initial crack len gth of a, at time t=0. This is done to eliminate the crack initiation stage. In the

next step, the data is discritized into states of width Ag. Using the resulting A and «, the probability
histograms at future times are generated and the mean and variance. The System parameters, are thus
determined by an iterative process of fitting the model predictions to the simulated Ti-6Al-4V data. For this

case, a state size of 0.4mm along with a failure state of N + =40were chosen this was judged tobe a

sufficient number for the interval of time t=0 through t=2E+06 cycles. The values of A and i which give
a good fit to the simulated (or, in this case the experimental) data are:

A=014 , Kk=0.98 (17)

A comparison between the experimental, simulated and McGill-Markov model predictions, shown in
fig. 4, shows that the whole concept of treating fatigue crack growth as stochastic processes is a flexible
method of predicting crack propagation for industrially significant materials and situations. The fact that the
A and x parameters are applicable in reliability prediction and inspection/correction procedure
development, as detailed in the following section, again allude to the benefits of this approach.

RELIABILITY ANALYSIS OF Ti-6A1-4V

The combination of a failure control procedure with the McGill-Markov technique can be a very
powerful tool for practical engineeri g reliability calculations. Two specific uses of the McGill-Markov
approach are detailed. The first application is for the prediction of repair times in order to maintain a certain
level of reliability, while the second is the determination of the optimum time for a single
inspection/correction procedure. Before these are examined, however, a method that is central to both, the
method of predicting reliability at a future time, is presented.

Reliability of Ti-6Al1-4V. Reliability, as was discussed earlier, has been defined as the probability a
component will perform satisfactorily for a specified period of time. For determining reliability, the first
step is to use another in-house program, SOLVE, to generate probability histograms for crack sizes at given
future times. The reliability can then be found if the critical crack size is known; it is the probability that the

crack does not exceed this critical length. This is illustrated in fig. 5 as a function of time.

RAM for Ti-6Al-4V. By defining the replacement size (state), N,, to be 25 and the desired
reliability to be 0.9999, the total probability of failure for times 0.8E+06to 2.0E+06 cycles were obtained
as illustrated in fig. 6(a). The optimum times for the inspection/correction procedures are thus: i) the first
inspection time will be at 1.500E+06 cycles, ii) the second time at1.700E+06 and the third at 1.88E-+06.

Furthermore, the results for a change in acceptable reliability level from 0.9999 to 0.9995 are
presented in fig. 6(b). From a comparison with fig. 6(a), it is apparent that not only will the first
maintenance procedure be carried out at a later time but that one fewer procedure will be necessary.

‘The effect of varying the repair size while maintaining the desired level of reliability at 0.9995 is
illustrated in fig. 7. This figure shows how the inspection interval is affected by a change in repair size
(state) from N, =20, through N, =25,to N, =30 prior to 2.0E+06 cycles. There are a total of two
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inspection/corrections for N, =20, three for N, = 25 and four for N, =30. These figures illustrate the
type of information that can be obtained from this approach.

Inspection Optimization. Finally, in order to carry out an inspection optimization analysis, the
design engineer must control such variables as failure state, N PR repair size (state), N,, and the desired

level of reliability. By using N, =40 and N, = 30, the solid line in fig. 8 is obtained. From this figure it
is apparent that the optimum time for inspection/correction is at 1.700E+06 cycles and that the total
probability of failure is decrease by 88% over the no inspection case. By changing repair policy, such that
N, is varied from 30 to 20, different curves, also shown in fig. 8, are obtained. In this way, it is shown

that while the optimum inspection time is increased by increasing the repair crack size from 20 to 30, the
overall reliability of system is reduced.

CONCLUDING REMARKS

The conversion of AKinto AK,, through the inclusion of closure effects plays a significant role in

reliability analysis. By using AK ., it now becomes possible to transfer the stochastic properties of crack

growth rates, measured under ideal laboratory conditions, to practical situations. Incorporating the sense of
closure into both the fatigue crack growth rate description and the lognormal interpretation of the scatter has
led to the development of the Closure-Lognormal model which describes the statistical nature of crack
growth rates.

On the other hand, the McGill-Markov process, employing data generated by simulations of the
information contained in the Closure-Lognormal interpretation of the basic material's fatigue crack growth
characteristics, vary with respect to closure effects that describe the influence of variations in the loading,
environment, crack geometry, etc. With the crack propagation characteristics being predictable, the
reliability and inspection processes may then be evaluated.
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Figure 2: Closure Load vs Crack Length for Ti-6A1-4V

Table 1: Closure-Lognormal Parameters for Ti-6Al-4V
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Figure 3: The Simulated and Experimental Crack Propagation of Ti-6Al-4V
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