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SUMMARY

Load separation is the representation of the load in the test records of geometries
containing cracks as a multiplication of two separate functions; a crack geometry function and a
material deformation function. In this paper, load separation is demonstrated in the test records
of several two-dimensional geometries such as: compact tension geometry, single edge notched
bend geometry, and center cracked tension geometry and three-dimensional geometries such as
semi-elliptical surface crack. The role of load separation in the evaluation of the fracture
parameter J-Integral and the associated factor n for two-dimensional geometries is discussed.
The paper also discusses the theoretical basis and the procedure for using load separation as a
simplified, yet accurate approach for plastic J evaluation in semi-elliptical surface crack which is
a three-dimensional geometry. The experimental evaluation of J, and particularly J,, for three-
dimensional geometries is very challenging. A few approaches have been developed in this
regard and they are either complex or very approximate. The paper also presents the load
separation as a mean to identify the blunting and crack growth regions in the experimental test
records of precracked specimens. Finally, load separation as a methodology in Elastic-Plastic

Fracture Mechanics is presented.
INTRODUCTION

The path independent J-integral was first introduced by Rice (1) as a crack tip parameter
for two-dimensional geometries made of linear or non-linear elastic materials. This line Integral
form can be written as:

[ (Wdy - Tgiids) [1]
r ox

where I" is a contour around the crack as shown in figure 1, W is the strain energy per unit
volume, T is the tension vector perpendicular to I,  is the displacement in the x-direction and ds
is an element of the contour. The experimental evaluation of J using the line integral can be
done by placing strain gauges on the outside surface of the specimen along a contour in a plane
perpendicular to the crack front. By defining the strain, external traction, and displacement in the
x-direction along this contour, J can be evaluated. However, this technique is usually inaccurate
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and impractical. An equivalent, yet more practical J expression was introduced by Rice (1) as:
1
B

U
da

[2] T

v

Crack

where U is the potential energy and can be r
measured as the area under the load-line
displacement record, a is the crack length, B is
the specimen thickness and v is the load-line Figure 1 The J-integral contour.
displacement. This J expression allowed Landes

and Begley (2) to develop their multispecimen technique to evaluate J. Their approach requires
the testing of many identical blunt notched specimens with different crack lengths in order to
develop the U versus a relationship, from which J can be evaluated. Despite the accuracy and
reliability of this technique, the high cost of specimens preparation and testing made it
impractical. A single specimen technique was later developed for special geometries and crack
ranges where the load can be represented in a particular form as will be discussed next.

ds

Rice reduced the energy rate interpretation J form given in eq [2], for deeply cracked
bend specimens (3), into:

v

2
J== 3
3 b 3]
where b is the uncracked ligament. This J expression was based on representing the applied
bending moment M versus the angle of rotation due to the crack presence 0 as:
6 = f(MIb?) (4]

The J expression in eq [3] can be obtained from the test record of a single bend specimen.
Merkle and Corten (4) also developed a single specimen J expression for compact specimen.
They represented the load using limit load analysis as:

P = [0,B(b/2)(20)]1g(8,) [5]

where o, is the yield strength, 0, is the plastic rotation due to the crack and « is a function of a

and b. Using this form, they developed J as:

2(1+a) U
1+¢2 Bb

J = (6]

This J expression can be also evaluated by testing a single compact tension specimen.

The load expressions in egs [4] and [5] can be described as separable forms. This means
that the load is represented as a multiplication of two separate functions: a crack geometry



function and a material deformation function and can be written as:

P or M = G(b or a). H(® or v) [7]

Also, the single specimen J form can be generally written as:

U
J=n—=
Bb 81

where the modification factor M is a function of the crack length and the geometry. Ernst and
Paris (5) proved that the single specimen J form and n-factor only exist if the load can be
represented by a separable form.

Further studies suggested representing J as the sum of two parts; Jo and J,,. The elastic
part, J,,, can be evaluated using Linear Elastic Fracture Mechanics as [K*E'] where K is the stress
intensity factor and E' is the effective Young's Modulus. The plastic part, J,;» can be written,
according to the ASTM standard test method (6), as:

A

= pl

A M [9]

where A , is the area under the load versus plastic displacement test record and the -factor is
'pl p p T] pl

considered as:

N, = 2 for bend specimenand

Ny = 2+ 0.522—1—,- Jfor compactspecimen [10]
W

The latter was the linear approximation of Merkle-Corten expression as shown in eq [6]. The
single specimen J, form in eq [9] is based on the load separable form given as:

P = GO/IW) H, /W) [11]

where W is the specimen width and G (b/W) and H( v,/W) are the geometry and deformation
functions.

J-integral was first considered as a stationary crack parameter because it is based on the
deformation theory of plasticity. However, it was later applied to extended cracks (7) if the crack
growth is of the order of the non-proportional plastic region at the crack tip. This allowed Ernst
et al (8) to develop a technique to evaluate a J-R curve for precracked specimen with J updated
for the crack growth. This technique is also based on the single specimen J form. Thus, load
separation must also exist during crack growth.

The available load separation expressions which are based on limit load analysis have
been mainly developed for two-dimensional bending geometries such as bend and compact
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tension specimens. This limited the single specimen J form to this geometry only. In this paper,
load separation will be demonstrated in bending as well as tension geometries, in stationary as
well as growing crack test records, and in two- as well as three-dimensional geometries. It will
be also presented as a mean to define crack blunting and growth regions. It will be also used in a
new 1, method and to develop a key curve that can provide predicted load-displacement records.
By extending load separation to three-dimensional geometries, an equivalent single specimen J
form can be developed. Very few techniques are currently available for the experimental
evaluation of J for these complex geometries and they are either impractical or inaccurate.
Finally, the load separation as a methodology in Elastic-Plastic Fracture Mechanics will be
presented.

) LOAD SEPARATION IN
TWO-DIMENSIONAL GEOMETRIES

Stationary Cracks

In order to study load separation in stationary crack test records, a separation parameter S;
is introduced. This separation parameter represents the ratio of the loads P(a;) and P(a;) in the
test records of two identical blunt notched specimens with crack lengths a; and q; at the same
plastic displacement v,,. Thus S; can be written as:

P(a,)
T P@) |y, [12]
If the load is separable, eq [12] can be rewritten as:
< G(b,/W) H(v,,/W) G(b,/W)
y = = —— 13
Gb,/W) H /W) |v | G(b,/W) .[ ]

For stationary cracks, S; should maintain a constant value over all of the plastic region. Figure 2
shows the test records of ten identical bend specimen made of HY 130 steel with different crack
lengths. The specimens are 0.9 inch thick and 2.0 inch wide and have span to width ratio of 4.0.
They were originally reported in Ref. (9). When the loads in the different test records were
divided by that of the specimen with a/W=0.75 at the same plastic displacement, the load ratios
maintained constant values over all of the plastic region except for a small part at the early
plastic behavior, see figure 3. Figure 4 shows the test records of ten HY 130 center cracked
tension specimens with different crack lengths and figure 5 shows the separation parameter for
this set of test records. These specimens (9) were also 0.9 inch thick and 2.0 inch wide. It is
clear that load separation exists in tension geometry such as the center cracked tension as well as
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bending geometry such as the bend specimen. Sharobeam and Landes (10,1 1) studied load
separation in 12 sets of test records and found that load separation is dominant in all of the
studied cases. Their study included different work hardening materials, different bending and
tension geometries and wide range of crack length and geometrical proportions.

Precracked Specimens

Initially, we will assume that load separation also exists in the precracked test records but
with different geometry and deformation functions than those for stationary cracks test records.
Thus, the load in precracked specimen and blunt notched specimen test records can be written as:

Pp = Gp(bp/W) Hp(vp,/W) Jor precrackedspecimenand [14]

P, = G(b,/W) Hb(vpllW) Sor blunt notched specimen [15]

where the subscript p denotes precracked specimen while b denotes blunt notched specimen. The.
separation parameter can be then written as:

P _ |G, W) H )

S =
Gylb, /W) Hy(v,, /W) |y | [16]

4

pb P
vV
b1"p

!

S, represents the ratio of the load in precracked specimen test record to the load in the test record
of an identical specimen but with a stationary crack. Since G,(b,/W) is constant because the
crack is stationary, S, can be rewritten as:

Sy = AG,(b,/W)h (v /W) [17]

where A is a constant and hy(v,/W) is the ratio between the two deformation functions at the
same plastic displacement. If several precracked test records are used with the same blunt
notched record, one gets S, for each precracked specimen test record as:

; .

Sy = AG,(b,/W)h,,

@,/ ) [18]

where i denotes the different precracked specimen test records. If the different S,»'s were plotted
together versus b,/W and collapsed into one record, then S,, would be independent of v, and all
the records would have the same geometry function G,(b,/W). Thus, S,, can be written as:

S, = AG,(b,/W) [19]

This would also indicate that the load is separable for precracked test records and can be
represented as a multiplication of geometry and deformation functions. Figure 6 shows the test
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records of three precracked specimens (E71, E75, E76) and a blunt notched specimen (E73). The
specimens are compact tension and made of A533B steel with 1.0 inch thickness, 2.0 inch width
and 20% side grooving. They were originally used in Ref. (12). The initial crack to width ratios
for the precracked specimens are 0.608, 0.607 and 0.607 and the final crack to width ratios are
0.656, 0.7115, and 0.794 respectively. Figure 7 shows S, versus b,/W for the different
precracked specimen test records on a log-log graph. All of the records collapsed together into
one which proves the assumption of load separation. Sharobeam and Landes (13) studied load
separation in four sets of precracked specimen test records of different materials and with large

crack growth. They indicated that load separation existed in all of the studied cases.

In precracked test records, load separation can be also used to define both the blunting
and growing crack regions. Figure 8 shows both b/W and S, versus v, for one of the A533B
precracked specimens. There are three regions for S, versus v,. The first region is very small at
the early plastic behavior and is usually called the non-separable region. Then there is a second
region where both S, and b/W almost maintain constant values. This is the blunting region. In
the third region, both S, and b,/W decrease indicating crack growth. The blunting and crack
growth regions can be also identified in figure 7. The blunting region looks like a vertical line
while the crack growth region looks like an inclined line.

Plastic 1 Development

Based on eqs [2] and [11], n,, can be written as:

bW  3G(IW)
N, = [20]
GIW) (bIW)

The geometry function G(b/W) can be obtained using the separation parameter S;; or Sy, The
stationary crack separation parameter S; maintains constant value over all of the plastic region
for specific a; and g, values. If S;is developed for different q; values with respect to a single a;
value, one can construct the relationship S; versus a/W (or b/W) as:

i [G(b,./W)

- - AG(®,/W)
G(b,/W) |vary b,

i

[21]

where A is a constant equal to the inverse of G(b/W). The S, expression in eq [21] can be then
used directly in eq [20] instead of G(b/W) to evaluate 1. Figures 9 and 10 show the variations
of §;; versus b/W on log-log graphs for both the bend and center cracked tension sets of test
records shown before in figures 2 and 4. The power law function fits well the S;-b/W
relationship in both cases. Thus, S; can be written as:

S, = A4, G/W)" [22]
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where A, is a constant and m is the power law exponent. From egs [20], [21] and [22], o118
equal to the power law exponent m. For the given set of bend specimens, M, has an average
value of 1.96 and for the center cracked specimens, it is equal to 0.96. The evaluation of Ny
using the load separation technique is discussed in detail in Ref. (13).

For the precracked specimens, the separation parameter Sy 18 equal to the geometry
function times a constant as shown in eq [19]. Thus by constructing the relationship S, versus
b,/W, the geometry function can be developed. Figure 7 shows the variation of S, with respect
to b,/W on a log-log graph for the A533B compact tension set. The relationship can be well
fitted by a power law function with a power law exponent of 2.12 which is also the value of Ny
for this set as discussed early. When identical A533B compact tension specimens but with
stationary cracks used to evaluate N, using the stationary crack separation parameter S, a value
of 2.17 was obtained which is very consistent with the precracked specimens results.

Thus, n » €an be obtained using either test records of a set of identical blunt notched
specimens with different crack sizes or a precracked specimen test record together with a test
record of an identical blunt notched specimen.

The Key Curve
As the geometry function is developed. an expression for the normalized load, P,, can be
written as:
P = = H(v_,/W) 23
Y Gemw) P (23]

The normalized load is a function of the plastic displacement only and is independent of the.
crack length. The P, versus vy, relationship is commonly called the key curve. Figures 11 and
12 show the key curves for both the bend and center cracked tension sets. Figure 13 shows the
key curve for the A533B precracked specimen test records together with three test records of
identical blunt notched specimens. Our studies showed that the geometry and deformation
functions are the same for both stationary and growing crack test records of same material and
geometry. The key curve can be used to construct the load-displacement test record of any
specimen of same material and geometry with any crack length within the range of the key curve.

713




10

CCT Specimen
HY130 Steel

Separation parameter S
! [N R S 1
; \\

Sy=A.(bi/ W)™ 00835833 8:382
L

10" T T T
10~ ) 1
Uncracked ligament, b,/W

Figure 10. The separation parameter S, versus b/W in the center cracked tension specimen test

records.
80
— 500
*7 — 400
~~ . ,**h***t**‘&*‘***" Lhd » e * »ox \ o
2 a 300 S
X 40- s
HY130 Steel _
o SENB Specimen [200 o
20
— 100
0 ! I I 0
Vp|/W

Figure 11. The key curve for the HY 130 bend specimens.

714




— 1500
200
150 s s it 8 i+ s 5
= " -1000 &
A 'E ~—
21004} I 'D_z
0. [ 500
50+ HY130 Steel ]
CCT Specimen
0 ' T T 1 T 0
0.000 0.005 - 0.010 0.015 0.020 0.025
Voi/ W |
Figure 12. The key curve for the HY 130 center cracked tension specimens.
CT Specimen 60
40071 A533B Steel
=300 - S s Beo ‘@
a WWWW‘W%?@ 40 X
= -fw '
200 -
= ' '
= 4
' 4 —20
100 - ©ooooo Blunt notched specs.: E74, E72, and E73
' *** * * Precracked specs.: E71, E75, and E76 B
0 T | ! I | 0
0.00 0.02 0.04 0.06 0.08 0.10 0.12

Voi/ W

Figure 13. The key curve for the A533 precracked and blunt notched compact tension specimens.

715



716

LOAD SEPARATION IN
THREE-DIMENSIONAL GEOMETRIES

The experimental evaluation of J in three-dimensional geometries is usually very
challenging. The single specimen J form given in eqgs [8] and [9] is not directly applicable to
three-dimensional geometries because of different reasons. The single specimen J form can be
used only for single valued J as in two-dimensional geometries. J in three-dimensional
geometries is not single valued but it varies along the crack front. The single specimen J form
requires load separation which is not fully studied yet in three-dimensional geometries. The area
under the test record in the single specimen J form is based on the Load-Line Displacement
(LLD). In some three-dimensional geometries such as surface cracks, the LLD is insensitive to
the crack size and the Crack Mouth Opening Displacement (CMOD) is the displacement that is
commonly measured. The crack in the single specimen J form is defined by one parameter, its
length, while in three-dimensional geometries, it is defined by two parameters, its depth and
width. Thus, in order to simplify J evaluation in three-dimensional geometries and develop a
form equivalent to the single specimen J form in two-dimensional geometries, these issues need
to be addressed. Load separation in three-dimensional geometries need to be studied. The
variable J needs to be replaced by an equivalent single-valued J. The two-parameter crack may
need to be represented by an equivalent single parameter crack. A factor equivalent to 1, in the
two-dimensional analysis needs to be developed. Finally, the relationship between the LLD and
CMOD needs to be studied.

We will focus our discussion here on semi-elliptical surface crack as an example of
three-dimensional geometries, see figure 14a. Both experimental and numerical data will be
analyzed. The experimental data are for panels made of 2219-T87 aluminum as a base metal
with tungsten arc-weld seam that is blunt notched with semi-elliptical surface crack. The panels
are 1.0 inch thick and 4.0 inch wide. These data were originally used by McCabe et al (15) in a
study on developing J-integral for surface cracks using the equivalent energy approach. The
numerical data were developed using a finite element model with 2927 nodes and 387 20-nodes
hybrid brick elements. The mesh in the crack vicinity includes several rings of focused elements
as shown in figure 14b. The crack tip sides of the first ring elements were collapsed to capture
the 1/r singularity and the mid-side nodes in the first three rings elements were moved to the
quarter point to capture the 1/F” singularity. The adequacy of the mesh and accuracy of the
model results were verified by comparing the results with Newman-Raju elastic solutions and
also some experimental test records, see Ref. (16). The model is used to provide load-LLD
records, load-CMOD records, and J-integral at different locations on the crack front for different
combinations of material, crack depth, crack width, and panel size. These numerical data
together with the experimental data will be used here to address the conditions listed above to
develop a single specimen J form for surface cracks equivalent to the single specimen J form in
two-dimensional geometries.



Load Separation

Figure 15 shows three experimental test records for different crack sizes and figure 16
shows the separation results for this set of records. Also, figure 17 shows several numerical
records for several combinations of crack depth and width and figure 18 shows the separation
results for this set. o in the numerical test records represents the remote tensile stress and is
equal to the load per unit area. Itis clear that load separation also exists in the test records of
semi-elliptical surface cracks and the load can be then written as:

o = Glac) H(v,) [24]

where a is the crack depth, c is the crack width and v,; here is the plastic CMOD.

Effective Crack Length

Sharobeam and Landes (16,17) studied several expressions for effective crack length and
concluded that the expression suggested by the R6 method works well for short surface cracks.
This expression can be written as:

Ta
a =

oo
alt .

where q, is the effective crack length and ¢ is the specimen thickness. For deeper cracks, this
expression may need to be modified.

The Single Specimen Form

They also developed an energy rate interpretation form for surface crack as:

7 _ l aUp,
plav §|a, |y, [26]

where S is the crack front length and Jp1av 18 the average J,, over the crack front and can be
written as:

plav ~

< | JL)as [27]

where s is any point along the crack front. From load separation, eq [24], and the energy rate
interpretation form, eq [26], a single specimen J form can be written as:
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Jotay = "o ] O [28]

where G is the geometry function expressed as a function in a,. The plastic displacement, v,;, in
eq [28] could be either plastic LLD or plastic CMOD. It can be shown that the ratio between
both plastic displacements is independent of the amount of plasticity for the same crack size and
material. Figure 19 shows the ratio between plastic CMOD and plastic LLD at different stages
of loading represented by amount of plastic displacement, for different crack sizes. The ratios
maintained constant values over most of the plastic region. Thus, each type of plastic
displacement can be considered as a constant times the other. Equation [28] can be written in a
form similar to the single specimen J form in two-dimensional geometries as:

o = &y [odv, [29]

where:

,%) , geometry, material ] [30]

)|
The factor {,, is equivalent to the n,, factor in two-dimensional geometries. Full description of
¢, is given in ref. (16). J,,, in eq [29] can be obtained from the test record of a single specimen.
In some cases, the maximum value of J on the crack front and not the average value is required.
Sharobeam and Landes (16) developed a relationship between the maximum J and J,,,,. They
found that this relation is almost independent of the material and specimen size and it can be
represented as a function of a/f and a/c only.

o |a

THE LOAD SEPARATION METHODOLOGY
IN ELASTIC-PLASTIC FRACTURE MECHANICS

Figure 20 shows a schematic flow chart of the load separation methodology in Elastic-
Plastic Fracture Mechanics. By testing a set of blunt notched specimens or at least a single blunt
notched specimen together with one or more precracked specimens, 1, and the key curve can be
developed using load separation. Thus the calibration curves J(a,P) can be obtained. The J-R
curve can be developed using a precracked specimen test record and the value of n, obtained
using load separation. The calibration curves J(a, P) together with the J-R curve provide the full
elastic-plastic behavior of any structure of same geometry and material as the tested specimen
even if it has a different crack size.
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Figure 18. Load separation in the numerical test records of surface cracks.
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Figure 19. The ratio [plastic CMOD/plastic LLD] versus [plastic CMOD/thickness].
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Figure 20. The load separation methodology in Elastic-Plastic Fracture Mechanics.




CONCLUSIONS

Load separation is dominant in both tension and bending two-dimensional geometries. It
can be also extended to three-dimensional geometries such as surface cracks. This allows the
development of an equivalent single specimen J expression for surface cracks. Load separation
exists in both stationary and growing crack test records. It can be used to identify both the
blunting and growing crack regions. The n » factor can be developed using the separation
parameters obtained from load separation. Generally, load separation yielded a new simplified
approach in Elastic-Plastic Fracture. This approach can be applied to any geometry as long as its
test records are showing load separation.
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