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Abstract

Recent experimental fatigue crack growth studies have concluded an apparent anoma-
lous behavior of short cracks. To investigate the reasons for this unexpected behavior,
the present paper focuses on identifying the crack length circumstances under which the
requirements for a single parameter (K; or AK7 if cyclic loading is considered) character-
ization are violated. Furthermore, an additional quantity, the T stress, as introduced by
Rice, and the related biaxiality ratio, B, are calculated for several crack lengths and two
configurations, the single-edge-cracked and the centrally-cracked specimen. It is postu-
lated that a two-parameter characterization by K and T (or B) is needed for the adequate
description of the stress and strain field around a short crack. To further verify the validity
of this postulate, the influence of the third term of the Williams series on the stress, strain
and displacement fields around the crack tip and in particular on the B parameter is also
examined. It is found that the biaxiality ratio would be more negative if the third term
effects are included in both geometries. The study is conducted using the finite element
method with linearly elastic material and isoparametric elements and axial (mode I) load-
ing. Moreover, it is clearly shown that it is not proper to postulate the crack size limits
for “short crack” behavior as a normalized ratio with the specimen width, a/w; it should
instead be stated as an absolute, or normalized with respect to a small characteristic di-
mension such as the grain size. Finally, implications regarding the prediction of cyclic
(fatigue) growth of short cracks are discussed.

Introduction

The short fatigue crack problem consists essentially of defining an alternative formu-
lation that accounts for the observation that small cracks can propagate at rates different
from the corresponding ones for long cracks at the same nominal stress intensity factors.

In general, short cracks under cyclic load are observed to grow at stress intensities below

threshold; some extend with decaying growth rate until arrest, while others propagate
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quite rapi.dly to merge with long crack behavior as shown'in Figure 1. A resolution of
the problem therefore has practical significance. First, it could enhance the present dam-
age tolerance procedures. Furthermore, as overall life is mostly taken up by short crack
growth, predicting the éccelerated and sub-threshold extension of small flaws can lead to
alternative, more accurate methods for assessing fatigue life.

Linear Elastic Fracture Mechanics (LEFM) theory is applied when the radius of the
plastic zone is small compared to the critical dimensions of the body, as codified in both
British and Americaﬁ Standards. If oy is the yield stress, a is the crack length, w is the
width, w — a is the ligament and t is the thickness, these standards require:

2
w, w—a, t 22;5(—I£) , (1)

oy

where K is the stress intensity factor.
To describe the basis for the above premise, let r, § be polar coordinates centered at
the tip of a crack in a body under plane strain deformation. The small strain linear elastic

solution results in stresses of the form
o0ij =K p1/2 f:;(6) + non — singular terms (2)

near the crack tip, where the set of functions f;; is normalized so that the singular part of
the stress acting ahead of the tip, normal to the plane of the crack, is K (27r7')_1/ 2. The
small scale yielding approximation then incorporates the notion that, even though Equation
(2) is inaccurate within and near a small crack tip yield zone, its dominant singular term
should still govern the deforrhation state within that zone. Hence, the actual elastic-plastic
problem is replaced by a problem formulated in boundary layer style. As is often said,
the small yield zone is “surrounded” by the dominant elastic singularity, and the applied
loadings and geometric dimensions and shape of the body influence conditions within the
plastic region only insofar as they enter the formula for K, as computed elastically.

A consequence of this formulation is that the plastic zone dimension, 7, and the crack




tip opening displacement &, are given by formulae of the type
rp=aK?/of , & =pK?/Eqy (3)

where E is the elastic tensile modulus, oy is the yield strength, and «, 3 are dimensionless
factors which may, for example, depend on Poisson’s ratio, strain-hardening exponent, etc.,
but are independent of the applied load and specimen geometry.

‘The plastic zone size from Equation (3) establishes a geometric dimension indicating
the region over which deviations from elastic behavior occur. Rice [1] was the first to
recognize that, since the crack length is a characteristic geometric dimension associated
with the elastic stress field, a correction to Equation (3) is required when the length
predicted by Equation (3) is comparable to or greater than the crack length, i.e. the stress
intensity factor may no longer be expected to control the plasticity.

When the size of the plastic zone becomes large compared to the crack length, which
is one of the characteristic dimensions, the requirements of LEFM may be invalidated. A
similar question obviously exists for J-dominance. In other words, there are conditions
under which a single parameter characterization of the crack tip field cannot be claimed.
Indeed, it is known that for full plasticity the asymptotic plastic field is not unique but
is instead a function of the geometry, loading mode and strain hardening rate and single-
parameter characterization models cannot account for the differences in propagation rates
from fully plastic crack growth tests (Kardomateas and McClintock,,[2]).

To further examine this notion, consider keeping the ‘non-singular’ terms of Equation
(2). Recéntly, Carlson and Saxena [3] have calculated the stresses due to the second term.
In another work, using the analyses of Williams [4], Rice [5] defined the T-stress from the

second term of the expansion of Equation (2) as follows:

Ozz Toy | _ K [ for(8) Sfzy(6) T 0 terms which vanish 4
VL F0) £u®)] T 0 0] T at crack tip (4)

Here (z,y) is the plane of straining and the crack coincides with the z— axis, so it is seen

Tyz Oyy
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that the portion of the non-singular stress field which does not vanish at the tip amounts
to a uniform stress o, = T acting parallel to the crack plane.

The above representation raises the issue of a two-parameter boundary layer formula-
tion for short cracks, in which Equation (2) is replaced by the requirement of an asymptotic
approach to the field given by the two leading terms of Equation (4).

In the séme context, Leevers and Radon [6] introdﬁced a biaxiality parameter B that

relates the magnitude of the T-stress:

T7a
B==YT. (5)

In terms of B, the displacement field can be written in the form:

Uy = %(1 + u)\/;fm(a) 41— ug)E\];ﬁKr cosf | (6a)
Uyy = %(1 + u)\/;i;fyy(a) —v(l+ V)E%Kr sinf . (6b)

The biaxiality parameter B must be calculated for each particular specimen geometries
to correlate the full field solutions with the two term representations. The displacements
given above or the stress field expressions (4) can serve in that purpose. Concerning the
displacements, it should be noted that on the crack flanks ¢ = m, the angular functions
fi(¢) are zero, allowing the biaxiality parameter to be calculated by direct inspection of
the asymptotic displacements given by Equation (6) and stress fields given by Equation
(4). Such methods have already been used by Betegon and Hancock [7].

The above discussion summarizes the work-to-date on extending the applicability of
LEFM to include cases that necessitate the inclusion of correction terms such as the present
case of short cracks.

Elastic-plastic fracture mechanics, on the other hand, is based on the HRR singularity,
named after Hutchinson(8], Rice and Rosengren [9], which describes the asymptotic stress

and strain fields in terms of the strain hardening exponent n within the plastic zone under
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small-scale yielding conditions as follows:

J 1/(n+1)
oi; =Y [W] Gij(¢ym) , » (7a)

gij (¢) n) ’ (7b)

oo Ya[ g Qe
Y E |eYal,r

where G;;(¢,n) and €:;(¢,n) and I, are tabulated functions. In this context the stresses
and strains are uniquely characterized by the J quantity. Elastic-plastic asymptotic crack
tip fields, being single parameter characterizations, would naturally have to be investigated
regarding their extent of validity in the same context as the LEFM, i.e. the question of
J-dominance or, in other words, that of a single parameter characterization of crack tip
fields for short cracks. l

Achieving crack growth prediction capabilities for short cracks can lead to formulations
for predicting fatigue crack growth. Indeed, fatigue, crack nucleation and growth pass
through distinct regimes which can be characterized by crack length. The relation of the
fatigue failure loading boundary to crack length can be very nicely illustrated by use of
the Kitagawa diagram [10] shown in Figure 1. In the plot of stress range versus crack
length, the boundary is divided into three regimes which are depicted as two straight
lines in regimes I and IIT and a curve in regime II. Stress range values below the boundary
correspond to cases in which cracks are arrested. Above the boundary, crack growth occurs.

The ordinate value of the boundary in regime I corresponds to the enduranée limit.
The line in regime III represents the value of stress range, Ao, corresponding to the

threshold value of the stress intensity range, Ao, in the relation
AK =YAoc+/ra . (8)

Y is constant for the given crack configuation and a is the crack length.
If the dashed lines were extended and used as the boundary in regime II, predictions

would be nonconservative because cracks are observed to grow below these lines. The
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boundary.in regime II is, therefore, represented by the solid curve connecting the two
straight lines. Short crack behavior is characterized in Figure 1 in regime II; hence the
primary erﬁphasis here will be on regime II.

The main objective of this work is to (a) determine the crack lengths at which the K
singularity cannot predict the asymptotic behavior, (b) determine the T' or B parameter
for these short cracks and (c¢) examine the influence of the third term of the asymptotic
expansion of the stress field oﬁ the calculated B values. The Center-Cracked (CC) and
Sihgle Edge-Cracked (SEC) specimens are used for this purpose. They are subjected
to monotonic tension stress. The finite element program, MSC/Nastran, is used for this

computation.

Formulation of Non-Singular Parameters
Prediction methodologies in fracture mechanics are mainly based on the proper char-
acterization of the crack-tip stress and strain field. Expanding the stress field in cylindrical

coordinates (r, §) about the crack tip, following the work of Williams [4],

A
oij = 71.,,3-1,»(9) +AofE + AT+ )

gives the first term singular at the crack tip and the remaining terms being finite and
bounded. In classical linear elastic fracture mechanics, the characterization is centered
around the stress intensity factor K, i.e. the first term. Elastic fracture mechanics is thus
based on the premise that fracture processes which occur close to the crack tip are only
determined by the first term in the expansion, allowing the asymptotic elastic stress field

of a symmetrically loaded mode I crack to be expressed in the form

K;

oij = mfij (9) . (10)

Proposals have been made to provide a correction to plastic zone size estimates by
extending elastic solutions to include non-singular terms of the Williams series [4]. In

Equations (4), Rice [5] defined the T stress for the second term of the series; this equation



raiseé the issue of a two parameter boundary layer formulation for short cracks in which
“stresses are determined by an asymptotic approach to the field given by the two leading
terms of K and T.

In the same context, Leevers and Radon [6] introduced a biaxiality parameter B that
relates the magnitude of the T stress as in Equation (5). In terms of B the stress and

displacement field can be written in the form:

K

rr = ——=| = C0S = — = COS — —=B 0, 11
o %(4c0s2 4cosz)+\/ﬁ cos (11a)
_ 3 0 1 36 K .2
oo = oy (4 cosE—chos 2)+ﬁBsm g, (11d)
Kr r1 .6 1 30 K ,
Org = > (Z sin 5 + 750 E—) — \/7r—aB sinf cosé , (11¢)
K\ 2nr 7] 36 Ki(r— a) 9
rr Y T -1 5 —-~——B - ’ 1
s [(2& ) cos 5 ~cos 2] BTN (cos®d — v) (12a)
K 2mr g 36 KI r 1
Ugy = " 8mn [ (26 + 1) sin — 5 Tsin 5 ] e ( sin 29) (12b)

where y is the shear modulus and x = 3 — 4 for plane strain and & = (3 — v)/(1 + v)
for plane stress. Furthermore, a model for plane strain yielding by Rice [5] results in the

following expressions for plastic zone size and crack opening displacement:

rp:% (_\/}%;)2 [1_%1\/%(7;:;) +.3,,.] , (13a)
5, = 3(2(“\;’252 [1-%@(%)+1 , (13b)

where 7y is the shear yield stress. The second terms inside the brackets represent the
deviation from the small scale yielding approximation. Note that & and T are directly
proportional to the applied loading.

The stress intensity factor, K, which was introduced in Equation (2), defines the

magnitude of the local stresses near the crack tip. This factor depends on loading, crack
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size, crack shape, and geometric boundaries. Closed-form solutions for K have been derived
for a number of simple configurations. For more complex situations, the stress intensity
factor can be estimated by experiment or numerical analysis. The Stress Intensity Factor
solutions for a single edge-cracked (SEC) and a center-cracked (CC) configuration under

mode I loading, which are the object of our investigation, are [11]:

Kigpo = [1.12 — 0.23a/w + 10.6(a/w)? — 21.7(a/w)® + 30.4(a/w)4] Gou/Ta

(14a)
and
_ |1-0.5a/w + 0.326(a/w)?
KICC - lr \/m ] 0-00\/7—'(6 ’ (14b)

where w is the specimen width.

. Numerical Analysis and Finite Element Models. Single-edge-cracked (SEC) and center-

cracked (CC) bars with (a/w) ratios of 0.02 through 0.1, where a is the crack length or half

crack length, respectively, and w the width of the specimen, were considered. Concerning

the other geometric dimensions, the specimens had a thickness, ¢ and height, h, character-

ized by the dimensionless parameters t/w= 0.08, and h/w= 2.0 for the CC specimen and
,4.0 for the SEC specimen, respectively:

The models were meshed with eight-noded quadrilateral and six-noded triangular
plane strain elements provided by the finite element code MSC-Nastran [12]. These 2-D
finite element grids are indicated in Figure 2. The models were force loaded on the remote
boundary by a uniform tensile stress in the y-direction . The crack tip was modeled
by a focused mesh with initially coincident but independent crack tip nodes. Angular
spacings of 15 degrees and minimum radial spacings -of 0.05 mm for every sector were
used. Linear elastic material with Young’é modulus F = 72 GPa and Poisson’s ratio,
v= 0.3 was assumed; the yield stress, oy, is taken to be such that E/oy= 176.0. The

mesh configuration for each specimen consists of a total of 235 elements. Furthermore,
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force balance studies were also conducted to check the applied and reaction forces on each

specimen in order to ensure that the mesh is performing in a satisfactory manner.

Results and Discussion

In order to correlate with the results of Leever and Radon [6] we shall give both the
ratio a/p and a/w in presenting the results. Denote by p the typical grain size, p= 0.05
mm. The stress fields ahead of the crack are shown in Figﬁres 3 ancl 4 for a/p ratios
of 10, 20, 50 and 200 (a/w= 0.02, 0.04, 0.1, 0.4, respectively) where they are comﬁaled
with the theoretical LEFM field, calculated from Equation (10). The stresses are non-
dimensionalized with the remote stress oo, while the original distance, r of a point ahead
of the crack is non-dim'ensionalized with the grain size p. It is seen thzlt for these crack
lengths the stresses are above the LEFM values, the dlScrepancy increasing with the smaller
crack lengths. Beyond a/p= 50 (a/w = 0.1), the stresses.begin to coriverge to the LEFM
predictions. Notice that Leever and Radon [6] results were for a/w values above 0.2;
therefore, the present work, among others, complements the latter one. |

In order to elucidate the size issue, three center-cracked specimens which have the
same a/w ratio of 0.02 but different absolute sizes have been examined' they consist of a
short crack (a/ p— 6) and long cracks (a/p= 60 and 300) in respecmvely smaller and larger
specimens that preselve the ratios of crack length to other dimensions. From Figure 5 it
is clearly seen that the stresses follow the LEFM prediction for the long cracks, but there
is a distinct discrepancy for the short crack, i.e. the LEFM_ prediction is no longer valid.
This example shows that a/w is not the prbper quantity to express the size requirements
for “short crack” behavior.

Let us require that the stress ahead the crack tip must be within 10% of the LEFM
field at a chosen distance from the tip for LEFM dominance criteria. It can be seen that
at a distance of r/p = 2 ahead the crack tip, Figures 3a,b show that the crack tip stress
field ogg for the center-cracked specimens differs significant from the results of Equation

(10) for short crack lengths; but for a longer crack, the stresses from FEM and Equation
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(10) have a tendency to match, as shown in these same Figures. A similar situation also
occurs in the SEC specimens, but the distance ahead the crack tip is shorter (r/p = 1.5);
they are presented in Figure 4.

The biaxiality parameter B (or alternatively, the T-stress) was calculated for each of
the geometries studied. The simplest and most direct method of calculating the T-stress
involves inspection of the stress or displacement fields associated with the crack. Leevers
and Radon [6] have introduced a more refined method for calculating B for the center-
cracked specimens; they essentially adjusted the centerline traction individually according
to the deviat.ion of the calculated displacement. In this work the stress field of Equation
(4) was used to calculate B from o,. |

Figures 6a,b show that the center-cracked specimens consistently have higher negative
B values than the single-edge-cracked ones. The implied compressive T stresses are induced
by the constraint against in-plane bending on the centerline; they are responsible for the
excellent directional stability of internal cracks [6]. By using a linear aprroximation, for

values of crack length less than 0.1w or 50p, B can be expressed by:
B = —[1+0.082(a/w)] , (15a)

or

B=—[1+1.6510"%@a/p)]. (15b)

The finite-width effect does not drastically modify B values, which remain about -1 as
2a/w goes to zero. Equation (15a) is slightly different than the one in Reference [6] (where
there was a factor of 0.085 instead of the 0.082 here). In Ref. 6 a linear approximation was
used to determine B values for crack-lengths a/w greater than 0.2, but in this research we
have considered crack-lengths less than 0.2 (a/p < 100).

B values for the single-edge-cracked specimens are quite different than those of the

center-cracked specimens. By using a curve fitting of polynomial third order, the B values



for the SEC specimens can be expressed by:
B = —0.52 - 1.50(a/w) + 12.70(a/w)? — 20.70(a/w)? | (16a)
or in term of a/p, it also can be written as
B = —0.52 - 4.17 107%(a/p) + 8.91 10~5(a/p)? — 6.25 107" (a/p)® . (16b)

Figure 6b shows that the B values for the single-edge-cracked case are almost one-half
those of the center-cracked specimen (as the crack length goes to ZEro).

Figure 7 shows the sensitivity with respect to number of elements of the stress biaxiality
ratio, B, for both specimens. It can be seen that B has a stable value when the number
of elements is above 225. Also Reference (6] has indicated that small values of the height,
h/w can have an influence on determining B; an example for the center-cracked specimen
showed that B has the tendency to be constant for values of Ie/w= 1.2 to 2.0 for 2a/w=
0.5.

Figure 8 shows that the crack tip displacement field in the §-direction for the single-
- edge-cracked specimens does not fit with the displacement field given by the K -singularity
at the distance between 0 and 20 grains size behind the crack tip when the crack is short,
but for longer cracks the displacement field gradually fits. Similar situations also occur in
the center-cracked specimens, as shown in Figure 9. This confirms again the breakdbwn

of the LEFM singularity for short cracks.

The Effect of the Third Term. An evaluation of including the effect of the third term

on the biaxiality ratio, B, can be conducted by examining the stress distribution, g (r,0)
on the plane in front of the crack tip. Specifically, the Williams series can be written up
to the third term:

K
UOO(T) 0) = \/27‘_% + 3CBT1/2 y

i.e. 0 includes the third term, C3, but not the second, (or B) term.

(17)
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On the other hand, up to the third term,

1 B -
ore(r,0) = K7 (\/_27{7: + \/ﬁ) 4 3CsrY/? | (18)

i.e. o, includes the second, (or B) term as well as the third (C3) term.

Therefore, eq (17) can be used to calculate Cs (from the finite element data on ogg)
and then the calculated value of C3 can be used in eq (18) to find the biaxiality ratio B
with the third term effects now included.

Fig. 10 shows the effect of the third term on the biaxiality ratio for the center-cracked
geometry and Fig. 11 for the single-edge-cracked geometry. It seems that the third term
requires a larger correction to the biaxiality ratio for short crack length and has a relatively
small effect for long crack length. The biaxiality ratio would be more negative (higher in
absolute value) if the third term eﬁécts are included in both geometries. Fig. 12 shows
the percentage increase, AB = (Binet — Bunot incl) /Bno; incl, which is seen to increase
rapidly as a/p — 0 (for a typical short crack a/ p = 10 in the center-cracked case this is
moderate, about 15%). However, it should be noted that what constitutes a significant
contribution of a neglected term to the fracture behavior may depend on factors other than
the percentage error. For example, although the percentage error due to the third term
may appear to be moderate for typical short crack sizes, the fatigue crack growth rate in
the near threshold region is drastically affected by very small changes in the value of AK.

By using curve fittings from the results of Figs. 10 and 11, the stress biaxiality ratio

equations with the third term effects included can be presented as
B = —[1+ 1.65 10~*(a/p) + 0.49(a/p)"*°] , (19a)
for CC specimens and

B = —0.72 — 1.85 10~3(a/p) + 1.05 10~%(a/p)? — 8.96 107°(a/p)’ . (19b)

for SEC specimens. These can be compared with the equations (15b) and (16b), respec-

tively, where the third term effects are not included.




Implications for Short Fatigue Crack Growth. As has been already stated, an ex-

tended representation of fatigue crack growth behavior may be developed by considering
the Kitagawa diagram (Fig. 1) for the case in which the minimum stress is zero. Then the
stress range is equal to the maximum stress, and an upper bound boundary corresponding
to the fracture toughness can be included as depicted by the upper, dashed curve. The map
between the boundaries may, in turn, be divided into two regions corresponding to a linear
elastic fracture mechanics [LEFM] response and a nonlinear inelastic fracture mechanics

response [NIFM].

Short crack behavior is characterized in Figure 1 in regime II. Serious consideration of

the behavior of short fatigue cracks began with results published in 1975 by Pearson [13].
It should, however, be noted that Rice (1] had predicted earlier that the stress intensity
factor may no longer be expected to control the local field for crack lengths comparable to
the plastic zone size.

The behavior observed has been described as “anomalous”, because crack growth for
short cracks was observed to occur at values of stress intensity factor range below the
threshold value.

The results of this paper indicate that the anomalous designation may be inappropri-
ate, and it may indeed be a consequence of the use of correlation procedures which are not
valid. In fact, a clarification of short fatigue crack growth behavior appears to require that
two mechanisms must be considered. The first one, which was considered in this paper,
involves the fact that the requirement of small scale yielding for the use of stress intensity
factor range as a correlation parameter is not satisfied for short cracks (i.e. LEFM is not
valid). The other, which needs to be considered in the future, concerns the role of obstruc-
tion to closure upon unloading. For a given range of stress intensity factor, obstruction to
closure is generally less for short cracks than for long cracks.

Although most attention has been directed toward consideration of these two mecha-

nisms, a third potentially important'mechanism should be mentioned. It has been found
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that short fatigue cracks in steels subjected to chemically active environments grow faster
than long cracks for the same AK [14,15]. Since corrosion fatigue failures are often ob-
served in service, this behavior should not be ignored.

A review of the literature on the growth of short fatigue cracks indicates that the
research studies that have been reported have usually been motivated by one of two distinct
goals. The primary goal of material scientists has been to use the results of their studies
to contribute to an understanding of the fundamental mechanisms of short crack growth.
Mechanics specialists have been motivated primarily by the need to develop design codes.
There is a need for more collaboration between researchers from these two groups. The
paper by Blom, et al [16] examines both mechanics and metallurgical issues and it provides

valuable insight into the interacting aspects of the short crack growth problem.
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Fig. 4. The stress field oy directly alhiead of the crack tip for a/p = 20, 50 in the single-edge-

cracked specimen.
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a/p= 6, and two long cracks, a/p= 60 and 300).
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Fig. 6. The biaxiality ratio, B as a function of crack length a for (a) the center-cracked and

(b) the single-edge-cracked specimens.
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cracked specimen.
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specimen.
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Fig. 11. The effect of the third term on the biaxiality ratio for the single-edge-cracked geometry.
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case.
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