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SUMMARY

The influence of transverse shear stresses on the fatigue crack growth rate in thin 2024-T3
aluminum alloy sheets is investigated experimentally. The tests are performed on double-edge
cracked sheets in cyclic tensile and torsional loading. This loading generates crack tip stress in-
tensity factors in the same ratio as the values computed for a crack lying along a lap joint in a
pressurized aircraft fuselage. The relevant fracture mechanics of cracks in thin plates along with
the details of the geometrically nonlinear finite element analyses used for the test specimen cali-
bration are developed and discussed. Preliminary fatigue crack growth data correlated using the
fully coupled stress intensity factor calibration are presented and compared with fatigue crack
growth data from pure AK; fatigue tests.

INTRODUCTION

Recently the problem of a crack near a lap joint (see figure 1) in the pressurized fuselage
of an airplane was recognized as a situation in which material near the crack tip is subjected to
both tensile and transverse shear (i.e., out-of-plane tearing) stresses. Concern over the effect of
tearing stresses on the fatigue crack growth rate prompted researchers at NASA Langley to spon-
sor a program of analytical, numerical and experimental research at Cornell University aimed at
measuring fatigue crack growth rates in such situations and developing the theory and numerical
procedures necessary to interpret and to apply the experimental data.

The lap joint problem is illustrated in figure 1. Crack tip tensile stresses arise from the hoop
stress in the fuselage skin, while the out-of-plane tearing stresses arise from the pressure differ-
ence “pushing out” on the skin. As shown in figure 1, one side of the crack remains riveted to
the stringer and to the adjoining skin forming the lap joint. This side of the crack is much stiffer
than the other side which is only a single sheet thick. This less stiff side bulges out relative to
the stiff side, resulting in tearing stresses at the crack tip.

The stresses at the crack tip resulting from this loading can be described as a combination
of membrane stresses constant through the thickness and transverse shear or tearing stresses
that have a through the thickness variation. As defined in figure 2, for general loadings of thin,
cracked plates under membrane and out-of-plane loads, two fracture modes with corresponding
stress intensity factors K; and Kj; can be identified with the membrane loads, and two fracture
modes with stress intensity factors k; and ky can be identified with the out-of-plane loads.
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Assuming that the crack tip stresses are a superposition of the stresses from the membrane
and out-of-plane loads, and that the out-of-plane part can be described using Kirchhoff plate the-
ory, the stresses on a plane ahead of the crack (6 = 0 in the coordinate system of figure 3) are
[1-3]
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where v is the Poisson ratio and A is the plate thickness. The in-plane stress components, 012
and o042, each have a constant and linear thickness variation term resulting from membrane and
bending loads. The out-of-plane stress component, 023, varies parabolically through the thick-
ness of the plate and has an r—3/2 gingularity, a manifestation of the limitation of Kirchhoff plate
theory to satisfy completely the natural boundary conditions occurring at a free crack surface.
Note the absence of 1/+/7 in the ky, k2 terms. This makes the definitions of k; and ko correspond
to those introduced by Sih et al.[3] and is the form adopted by handbooks of stress intensity fac-
tors[4]. For more details and references on crack tip fields in plates loaded out-of-plane see [5,6].

Hui and Zehnder[6] argue that crack initiation and growth in thin plates under combined
membrane and out-of-plane loads can be correlated with the stress intensity factors Ky, Kir, k1
and ky (see eq. (1)). For the lap joint crack it appears that only K; and ko are significant. The
other two stress intensity factors are zero or nearly zero in this case. The relative importance of
the tension and tearing stresses can be assessed by computing the K and k; for a crack located
along the lap joint and comparing the values. Such a computation was performed by Britt[7] and
is summarized here in figure 4 where the geometry of the problem is shown, and the stress inten-
sity factor k is plotted against Ky for a variety of crack lengths. For the crack situated along
the stringer ks becomes comparable to K. A second scenario in which kg is relatively large oc-
curs for a curved crack in a fuselage as studied by Potyondy et al.[8]. In this problem, the growth
of a curving crack is simulated; high values of k2 with respect to K1 were found to occur.

In both cases, for longer cracks k2 becomes significant and thus may be an important fac-
tor in determining fatigue crack growth rate. Whether this is true or not is one of the principal
subjects of this research. An extensive literature search revealed no data on fatigue fracture un-
der such loadings, thus we are undertaking a series of fatigue crack growth rate experiments such
that the K and ko stress intensity factors are imposed.

NUMERICAL PROCEDURES

To correlate crack growth rate with Ky and ks, the capability to compute these stress in-
tensity factors for both the test specimen and for the aircraft fuselage structure is needed. Nu-
merical analyses are necessary for this computation since the stress intensity factor handbooks
do not contain ko solutions for finite dimensional plates that would be used for experimentation.
The procedure used here is to compute components of the energy release rate from finite element
analyses and then calculate Ky and k3 from the relations between stress intensity factors and
these components of the energy release rate.
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The energy released during crack growth is equal to the work done by the tractions acting
over the area of crack extension. For a linearly elastic plate of thickness h the energy release
rate, G, for self-similar extension of a through crack lying in the z1, z3 plane is[9,10]

1 AL p+h/2
G = AIIIJ%O MA [h/z 0’2,;(:1,‘1, 6= O)AUQ(AL - 1,0 = 7r)da:3dx1, (2)

where Au; are the components of relative crack tip displacement for a crack extension of AL,
and the repeated index i implies summation over j — 1,2,3.

From this statement of the energy release rate the relationship between G and the stress in-
- tensity factors can be found([6]. The stress and displacement fields from Williams(1,2] are sub-
stituted into eq. 2, and after some manipulation and grouping of the membrane terms and the
bending terms, the following relationships between the G components and the stress intensity
factors are found
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For a general loading the total energy release rate is the sum of the above, ie.,

G=G1+G2+G3+ G4+ Gs. (4)

The numbering of the components of G is arbitrary; the numbering convention chosen corre-
sponds to the numbering of the degrees of freedom in the finite element program used for the
stress intensity factor calculations. If the separate terms of the energy release rate in eq. 3 can
be found from a numerical analysis, then eq. 3 can be used to calculate all four stress intensity
factors.

To validate the method for the calculation of K 1, K11, k1 and k;, six test analyses of fi-
nite cracks in infinite plates were conducted. Figure 5 shows these sample problems along with
their theoretical solutions taken from refs. 3 and 6. Three of these test cases involve only a sin-
gle mode; thus, the virtual crack extension technique [11-14] is appropriate to compute the single
stress intensity factor in each of these problems. This technique gives only a total G value as its
result; consequently, it must be known a priori what single mode is present. The other three test
cases involve loadings which generate mixed modes at the crack tip. For these cases, the nodal
release method [15] is necessary to be able to compute the individual G;s and hence the relevant
stress intensity factors. The nodal release method computes the components of G on a nodal de-
gree of freedom basis such that each G; component is related to one of the four fracture modes
shown in figure 2.

The computations of figure 5 as well as the test specimen calibrations discussed later were
performed using the STAGS (STructural Analysis of General Shells) code[16]. The plate model
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had dimensions of 11.0 by 10.0 by 0.090 thick and contained a centrally located straight crack
of length 1.0 oriented parallel to the 11.0 dimension. No special crack tip elements were used.
Instead, the STAGS 410 element[17], a four-noded, six degree-of-freedom per node flat plate el-
ement, was used for the entire mesh All elements were square inside a near tip region of mesh

refinement that extends a distance % 5 above and below the crack line and L behind a.nd ahead

of the crack tip (L is the crack length). The standard element size in this reglon was 3%

The results of these sample computations are also given in figure 5. For the three single
mode cases the virtual crack extension results were all within 3.6% difference from the theoretical
solutions. For the three mixed mode cases the nodal release results were all within 1.3% differ-
ence from the theoretical solutions. Based on these results the applicability of these two methods
for the calculation of the four stress intensity factors is established.

However, for the stress intensity factor calculations needed for the calibration of the test
specimen both the virtual crack extension technique and the nodal release technique have sig-
nificant drawbacks. The virtual crack extension technique by its nature does not permit the com-
putation of the individual components of the energy release rate, rendering it useless for a mixed
mode situation such as our testing configuration. The nodal release method, although applica-
ble to any general mixed mode situation, has the disadvantage of requiring two full finite ele-
ment analyses to be performed per one G; computation. This would double the already large
number of required analyses. Consequently, a third method, the modified crack closure integral
method[18,19], was used. This method approximates the displacement field over a crack advance
of AL by using the displacement field behind the crack of length L, thus requiring only a single
analysis per stress intensity factor calculation. The results already given that relate components
of the energy release rate on a nodal degree of freedom basis to the four stress intensity factors
can be applied to the modified crack closure integral method.

EXPERIMENTAL METHOD

To determine the fatigue crack growth rate as a function of the two stress intensity factors
K and k,, double-edge cracked plates were tested under constant amplitude cyclic tensile and
torsional loadings. The test specimens were machined from 2.29mm thick 2024-T3 aluminum
plates provided by NASA Langley. This is the same batch of aluminum sheets used by Hud-
son[20] in his pure mode I fatigue crack growth study in 1969. The test specimen dimensions and
geometry are shown in figure 6. On each side of the test specimen a 6.35mm long, 0.18mm wide
starter notch was cut using a foil electric discharge machine. The samples were diamond polished
to a 3um finish to improve the optical crack length measurement.

Ideally, the sample loaded into the gripping fixtures is subjected to uniform vertical dis-
placements (in the y direction; see figure 6) and to a rigid rotation about the y axis at the bot-
tom boundary. Any deviation from this condition will change the stress distribution, and con-
sequently the stress intensity factors and rate of crack growth. To prevent any slipping of the
test specimen during a fatigue test, the gripping fixtures and face plates each had two channels
cut along their wide direction, into which were inserted 1.52mm diameter steel rods, as shown
in figure 6. Sandwiching the specimen between fixtures and face plates and tightening the bolts
pushes the steel rods into the specimen creating a slight indentation which then ensures a main-
- tainable grip line for the duration of the fatigue test.
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All of the tests were performed using an Instron 1321 tension-torsion servohydraulic test
frame operating in tension and torque control. The sample, fixtures and part of the testing ma-
chine are shown in figure 7. The testing conditions were monitored continuously with an oscillo-
scope as well as with a computer that digitized the load, stroke, torque and rotation signals. A
2.54mm long fatigue precrack was grown from each starter notch by cycling with a pure tension
load at 6Hz with AK; ~ 5.5MPay/m and R = 0.7, where R = P,,;, /Pmaz, P being the axial
tensile load. Typically 100,000 cycles were required for the fatigue precracking.

Testing was performed at R = 0.7 for both the tensile and torsional loads. The tensile loads
ranged from approximately 2kN to 45kN, and the torques ranged from approximately 11Nm to
110Nm. A thin plate has a relatively low torsional stiffness, thus the specimen experiences large
rotations (on the order of 20° for a torque of 110Nm) severely limiting the testing frequency com-
pared to a pure tension loading test. Above 1Hz the testing machine actuator could not maintain
the command signal, thus all of the tests were performed at 1Hz where the loads could be con-
trolled to better than 1.0%.

Crack lengths were measured approximately every 0.5mm of crack growth and were recorded
with the corresponding number of elapsed cycles as well as the loading conditions. These crack
lengths were measured using two travelling microscopes, one for each crack, mounted to the test-
ing frame. Vertical and horizontal microscope movements were measured with digital travel indi-
cators to give an (z,y) location of the crack tip at each measurement. When setting up the test
the microscopes were rotated to be normal to the plane of the center of the specimen when the
mean torque was applied. This initial rotation was maintained throughout the test. Fluorescent
light reflected onto the specimen surface with a sheet of white card stock was used to illuminate
the crack tip region. With this arrangement crack length could be measured to an accuracy of
+0.05mm.

TEST SPECIMEN CALIBRATION

A calibration is needed to relate experimentally measurable quantities, such as the applied
loads and crack length, to the stress intensity factors. For the current experiments, P, the net
tension load, T, the net torque and, a, the crack length are inputs to a calibration function with
the stress intensity factors, K; and k2, as output. What makes the calibration for this testing ar-
rangement difficult is that K; is not solely a function of P and a and k2 is not solely a function
of T and a; on the contrary, Ky and k; are both nonlinear functions of P, T and a. Perhaps a
simpler way of stating this disregarding the fracture mechanics is that the axial stiffness as well
as the torsional stiffness of the specimen are not just functions of the plate geometry but func-
tions of the plate geometry and the current loading of the plate. To approach this aspect of the
experimental work it was deemed early on that a numerical approach would be needed to com-
pute the correct stress intensity factor calibration. The approach thus employed is a fully geo-
metrically nonlinear plate finite element analysis.

The means used to calculate the stress intensity factors from the results of a finite element
computation were described in a previous section. Using a half-plate model (see figure 6 for mod-
elling details and boundary conditions) and the modified crack closure integral method to obtain
the G; values, geometrically nonlinear analyses were performed for a grid of P, T values at five
discrete crack lengths: 6.35mm, 12.7mm, 19.05mm, 25.4mm and 31.75mm, chosen to span the
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experimental results which are for crack lengths from 6.0mm to approximately 32.0mm. The Kj
calibration “surface” as a function of P, T for three crack lengths (6.35mm, 19.05mm, 31.75mm)
is given in figure 8. The corresponding ko calibration for the same crack lengths is given in figure
9.

Although these calibration plots exhibit many interesting features only a few will be dis-
cussed here. Notice that for higher torque values K becomes less sensitive to increasing axial
load (see figure 8). This is especially conspicuous for the shortest crack length. Also notice that
ko at higher torque levels decreases as the axial load is increased (see figure 9). This effect is a
result of the dependence of the torsional stiffness on the axial tension load in that as the axial
load is increased, the torsional stiffness of the plate also increases.

Further results from the calibration calculations although not shown in figures 8 and 9
also show that Kj; and k; are small compared to Ky and k2, respectively, though they are
present[7,8]. This result is a welcome one, since the crux of this research depends on the near
tip stress field in the test specimen being essentially the same as the near tip field in the actual
cracked aircraft fuselage. Simulations of crack growth in fuselage bays show that indeed the Kj;
and k; components are small compared to K and k2, respectively.

MIXED MODE FATIGUE CRACK GROWTH RATE DATA

The experiments completed to date cover a wide range of cyclic loadings. The stress inten-
sity factors corresponding to these tests were calculated based on the calibration curves of figures
8 and 9 and the maximum values at the start of a test and the end are plotted as the dashed
lines in figure 4. This figure shows that the experiments cover the lower end of the Ky and k2
range for a crack lying along a stringer in a lap joint.

Results from two of the tests are presented here. Analysis of the remaining twenty tests
"completed to date is in progress. Figures 10 and 11 show the envelopes of stress intensity fac-
tors for test nos. 14 and 18. In both tests the torque range was the same, but the axial load in
test no. 14 was ten times larger than the axial load range used for test no. 18. In both tests Ky
is larger than k, for most of the test except for the longest crack lengths in test no. 18.

Fatigue crack growth rates as well as crack length versus elapsed cycles data for each test are
shown in figure 12. Shown on the growth plots are benchmark data from Hudson and Newman
for pure mode I fatigue crack growth[20,21].

In each test the crack grew intially at a rate close to the pure mode I rate but slowed down
dramatically as the crack grew. Thus the g% data fell well below the reference lines for longer
crack lengths. This appears to be caused by roughness induced crack closure. During an experi-
ment it is observed (by eye and ear) that the crack faces are in contact as they slide with respect
to each other. A scanning electron microscope image of the fracture surface (figure 13) shows the
region where crack contact has occurred. In this figure the horizontal direction is parallel to the
plate surface; the direction of relative crack face sliding is vertical. The fracture surface is flat-
tened out and scoring in the sliding direction is clearly seen.

However, crack growth rate acceleration does occur towards the end of the test data pre-
sented in figure 12. It is thought that the crack surface abrasion just mentioned might wear away
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enough of the contacting surface that at some critical point this effect is minimized and the crack
growth rate once again increases. If this sort of three-phase behavior (i.e., initial pure mode I
type growth, then growth rate decrease followed by an increase) is common to all such loading
situations for the testing configuration is still unknown, but should be elucidated after all of the
test data is analyzed.

DISCUSSION

The experimental data indicate that in the regime of stress intensity factors for which tests
were performed the crack growth rate is initially reduced by the presence of k, resulting from
crack face contact, but that generally this condition does not persist and crack growth rate does
eventually increase. Whether this is true at higher values of K; and k- is unclear at this time.
Intuitively it would seem logical that by increasing the value of the stresses at the crack tip the
crack would grow faster. This may be the case at the higher levels of K; and ko where the crack
faces should separate more and crack face contact should not retard crack growth rate. Thus fu-
ture experiments may concentrate on higher stress intensity factor levels.

SUMMARY AND CONCLUSIONS

Although it is still unclear as to what systematic role, if any, the presence of a ko crack tip
fracture mode might have on the overall fatigue crack growth rate of a crack in a stiffened fuse-
lage structure, it is clear that characterizing the problem as one of simple mode I fatigue crack
growth resulting from the fuselage hoop stress would greatly underestimate the K 1 field at the
crack tip. Geometrically nonlinear analyses and resultant stress intensity factor calibrations are
necessary to describe properly the crack tip stress field in a cracked fuselage lap joint as well as
any test specimen configuration used to examine the fatigue crack growth behavior in such struc-
tures. Whether or not the presence of the k, mode partially drives the fatigue crack growth or if
it is simply the additional K; supplied by the tearing or bulging aspect of the crack through the
geometrically nonlinear effects that drives the crack growth is still not resolved.

However, this investigation has seemingly raised as many questions as it may have answered.
The question of how to account for crack face contact effectively and what impact it may have on
the local loading or unloading of the crack tip is unresolved. Furthermore, the more basic ques-
tion of whether or not the same phenomenon occurs when a long crack in a fuselage lap joint
is flapping is of primary concern as to the relevance of this work to the actual cracked fuselage
problem. To complete some fatigue tests at stress intensity factor levels equal to those experi-
enced by an actual cracked fuselage might be required to answer this question definitively. Fi-
nally, a quicker and more accurate method of computing all stress intensity factors from a finite
element analysis is required.
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Air pressure causes crack bulging
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Figure 1. Crack in an aircraft fuselage lap joint along a stringer causing crack face
bulging.
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X~

Symmetric membrane loading, K; Anti-symmetric membrane loading, Kn
Symmetric bending, ky Anti-symmetric bending and transverse shear, kz

Figure 2. Fracture modes for a thin, cracked plate: K1, Kir, k1, k2.
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Figure 3. Crack tip coordinate system (see eq. 1).
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Figure 7. Photograph of the test s
frame.
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Figure 11. Envelopes of K; and ko versus crack length for test no. 18. (Prmaz =4.5kN,
Pin =3.1kN, Tpapy =112.0Nm, Trmin =78.4Nm).
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Figure 12. Crack length, a, versus total elapsed cycles, N, and crack growth rate, y
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pure mode I data is shown by the solid line; Newman’s
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Figure 13. Scanning electron micrograph of the fracture surface in a region where crack

910

contact has occurred. The region in the upper part of the picture shows no
contact: the typical ductile fracture surface is seen. In the lower region the
ductile fracture surface has been flattened and abraded by the crack surfaces
sliding past each other.



