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ABSTRACT

To assist analysis of riveted lap joints, stress intensity factors are determined for surface and
corner cracks emanating from a wedge-loaded hole by using a 3-D weight function method in
conjunction with a 3-D finite element method. A stress intensity factor equation for surface cracks is
also developed to provide a closed-form solution. The equation covers commonly-encountered
geometrical ranges and retains high accuracy over the entire range.

INTRODUCTION

Current damage tolerance analysis of aircraft structures is mainly based on linear elastic fracture
mechanics, where the stress intensity factor is a key parameter. Surface and corner cracks emanating
from circular holes are among the most common defects occurring in aircraft structures. Stress
intensity factor solutions for these cracks are available in the literature for remote tension and remote
bending [1-5]. Based on three-dimensional finite element solutions, the corresponding stress intensity
factor equations were also developed [3], and are being used in a variety of applications. However,
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for another important category of loading conditions (i.e. wedge loading of a cracked hole) very
limited solutions [1,4] exist in the literature for corner cracks, and no solution is available for surface
cracks. The primary interest in the wedge loading case lies in the fact that solutions for commonly
encountered pin-loading case, such as the riveted lap joints shown in Fig.1, can be obtained by
superposing solutions for remote tension, remote bending and wedge loading. The objective of this
paper is to provide stress intensity factor solutions for surface and corner cracks emanating from a
wedge-loaded hole, which can be used to obtain solutions for rivet loading. This is accomplished in
two ways. First, an accurate and efficient 3-D weight function method [5] is extended to solve the
problems by using stress distributions from a 3-D finite element analysis of the same, but otherwise
uncracked, configuration. The weight-function analysis code covers a wide range of geometrical
parameters and various loading conditions, and produces accurate solutions on Personal Computers.
Second, a stress intensity factor equation for surface cracks is developed by curve-fitting procedures.
This latter effort is to facilitate the determination of stress intensity factors for commonly-encountered
surface cracks in damage tolerance analysis.

METHODS OF ANALYSIS

The crack configurations to be considered are shown in Fig.2 together with the definition of
relevant parameters (infinite plate width and height assumed). The 3-D weight function method is
used in combination with the 3-D finite element method to solve these problems. This combined
approach takes optimal advantage of both methods. The weight function method is accurate and
efficient in solving 3-D crack configurations. However, its accuracy can not be guaranteed without
using, as input, an accurate stress solution for the same, but otherwise uncracked, configuration. For
crack configurations involving stress concentrations (such as a hole or notch), the stress distribution in
the region of uncracked configuration where cracks will occur has a fully 3-D nature, the stress varies
not only in plate-width direction but also in thickness directions, even though the applied load does
not change through the plate thickness. This 3-D effect manifests itself most near the intersection of
the hole with the plate surface for small r/t ratios (see for example [6,7]). Therefore, to account for
this 3-D nature, a 3-D finite element analysis was performed [7] to provide the normal stress
distributions. Because the finite element analysis involves no cracks, only one finite element
calculation is required for each r/t ratio. The normal stress distribution obtained from the finite
element analysis is then fitted into the following equation:

I 7
ooy =Y ¥ CPHH? M

i=1 j=1 r

Equation (1) is used in the following weight function equations:
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K (y.c)= fo “Px,y) W(c,.x)dx | (2b)

where K,(x,a,) and K.(y,c,) are, respectively, stress intensity factors for a-slice and c-slice, intersecting
at point (x,y) on the crack front (see Fig. 2 (d) and (e)), and W, and W, are the weight functions. The
stress intensity factors for the 3-D crack, K(9), are then obtained by eq.(3):

1

K(o) = -n" 4 A E 4 3)
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For further details of the weight function method, please refer to [5].
RESULTS AND COMPARISONS

The stress intensity factors are presented in a dimensionless form defined as:

F(o) =K(@)/(c/nalQ) 4

in which o is a reference stress, and equal to remote uniform stress for remote tension, and o=P/(2rT)
for wedge loading, where P is the total applied force along the bore of the hole.

Corner Cracks

Reference [1] provides stress intensity factors for wedge loading with a cosine squared pressure
distribution, while the present weight function solutions are for wedge loading with a cosine pressure
distribution. However, the difference caused by the different pressure distributions will be negligible,
as long as the c/r ratio of cracks exceeds about 0.8. The following comparisons are made for such
cases. Figure 3 shows the comparison of the weight function results with the finite element solution
[1]. Very good agreement is observed. Figure 4 (a) shows the difference between a single corner crack
and double corner cracks. Figure 4 (b) gives the stress intensity factor ratio of double corner
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cracks over single corner cracks. The corresponding estimate by using Shah’s empirical fofmula [8]
and the ratios for through-the-thickness cracks [9] are also shown in Fig. 4 (b).

Surface Cracks

The comparison with finite element solution [3] for surface cracks is made for remote tension,
since no solution is available for surface cracks under wedge loading in the literature. Figure 5 shows
the comparison. Again, very good agreement is observed. To examine the behavior of the weight
function method, some limiting cases are also considered as a/c—=>0 and oo. Figures 6 (a) and (b) show
these limiting cases. It is clear that the appropriate 2-D limits are reached under the limiting
conditions.

STRESS INTENSITY FACTOR EQUATION FOR SURFACE CRACKS

In many situations, a closed-form solution is desirable, as evidenced by the popularity of the
previous stress intensity factor equations for other cases [3]. Therefore, an effort is made to develop
an equation for double surface cracks under wedge loading based on the weight function solutions.
The applicable range of the equation is chosen to be 1<1/t<5, 0.5<a/c<2 and 0.005<a/t<0.9.
This range is believed to cover most cases encountered in practice. If a problem does go beyond this
range, then the weight function code is directly used. The equation is developed separately at 0° and
90° only, so as to reduce the number of independent variables from 4 to 3 (r/t, a/c and a/t). The
general form of the equation is:

K(¢) =oy/na/QF(¢) ¢=0°,90° ©)

The developments for F(90°) and F(0°) are described in the following sections.
Development of F(90°)

The form of F(90°) is:
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where y=0 for a/c<1, and y=-1 for a/c>1. The f, function is given below:

FTa8y_ oL 84,2 7
.fg(t’cat) g9(t’c’t)f“(r’ t) Q)

where g, is a fitting function, and f,, is a combination of the two functions f(x/r) and f,(a/t).
The f(x/r) is the dimensionless normal stress distribution along the x-axis for a wedge loaded hole in
an infinite plate. According to Rooke & Tweed [10], f,(x/r) is expressed as:

14201+%) 31+ %) (242
L(E):E@:f’. 3+ 1, r r r (8)
r

L BT 2(1+%)3 x
r r r

The f,(a/t) is the dimensionless stress intensity factor for collinear cracks, and given as [11]:

1
ay_[. ma, mal; ©)
165 [tan( VL )} |

The introduction of f, and f, is based on the consideration that F(90°)=£(0)*f,(a/t) as a/c—0. Using f,
and f,, £, is defined as:

159 =1[3j;(0)f:,(3) +1;<5)f,,(0)} (10)
rt 4 t r

The use of f, is to bring in some of the contributions of the rest of the crack to F(90°). The use of
these functions is believed to be very helpful in fitting complicated functions involving multiple
variables in a wide range. The g, is fitted in the following form:
r a
)

raa r a, ,a*p
gg(_ 9_3_)=a1(_"") *(—') £
' t ct tt c

1)

The functions «,(r/t,a/t) and o,(r/t,a/t) are expressed as:
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(13)
2 3
oD = iy U # (D) gy (D) aygn (D), E-1,2,3,4.
The o parameters with 3-digit subscripts are constants, and listed in Table 1.
Development of F(0°)
The functional form of F(0°) is given as:
FO)=(D G0 (14)
where A=1/2 for a/c<1, and A=-1/2 for a/c>1. The f, function is given below:
raa r a a raa
ﬁ)(— = —) go(— = )f (= ) 0( P —) (15)

where g, and t, are fitting functions, and f_ is a weighted average of f(c/r). The latter
is the dimensionless stress intensity factor for through-the-thickness cracks under the same loading,
and given as:

2 3 4 5
fco(-§)=1.788—4.935(§) +8.527(§) —7.790(-?) +3.450(§) —o.sssz(g) (16)

Then, f, is defined as:
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Similarly to F(90°), the introduction of f, is based on the consideration that F(0°)=f4(c/r) as
a/c->oc0. And f; is used to bring in some of the contributions of the rest of the crack to F(0°). The g,
is fitted in the following form:

raa roa, ,ablpP (18)
— = —y— Hf
go(t - t) Bl(t t) (c)

The functions B3,(r/t,a/t) and B,(1/t,a/t) are expressed as:

) 3
b5 D= (D) *Erp[pu(§>*<§)+pu(§>*(§) ]

Bu(f) = p111+5112*(£)

(19)
2 3
ﬁn(f) = pm+ﬁm*(§)+pm*(§) +ﬁm*(§)
2
B 13(5) =Bigt 9132*(‘2) +p 133(5)
1
ray {o (Ivog Iy @y2 b, LAY ST
P59 {92,(t> B0+ } Exp{pzs(t)*(t> pu(:’*(t’}
(20)

B0 ﬁz,.,+pm*<§)+ﬁm*(§)2+ﬁ2,.,,*<§)3, i=1,2,3.

2
Bu(%) = ﬁ'241 + 5242*(':“) +p243 *(f)

The B parameters with 3-digit subscripts are constants and listed in Table 2. The t; is a fine-tuning
function and equal to 1 for a/t<0.2, and fitted as follows for a/t=0.2:
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2
Py =pi,,,+pi,.,*(§)+pi,2*(-‘tf) j=0,1,2,3.

The constants py, for t, are given in Table 3.

Comparison of Equation with Weight Function Data

The accuracy of the equation is examined by comparing it with the original weight function data.
Figures 7 (a) and (b) give F(90°) and F(0°) versus a/t, respectively. The variations of F(90°) and
F(0°) with a/c are shown in Figs. 8 (a) and (b), respectively, which are for a/t=0.9, the largest a/t
ratio considered. The largest deviation of the equation with the weight function data occurs at this a/t
ratio for F(90°). From Fig. 8 (a) the maximum deviation is within 3%. Figures 9 (a) and (b) show
F(90°) and F(0°) versus r/t, respectively. It is seen that the equation is generally within 2% of the
weight function data, with maximum error of about 3% in the whole range considered.

CONCLUSIONS

Based on the above analysis and results, the following conclusions can be made:

1. The combination of the 3-D weight function method and the 3-D finite element method is an
efficient approach to solve 3-D crack problems involving stress concentrations.

2. Accurate stress intensity factors are provided for surface and corner cracks emanating from a
wedge-loaded hole.

3. A stress intensity factor equation is developed for double surface cracks. The equation covers
commonly-encountered geometrical ranges and retains very good accuracy.
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Table 1.

Coefficients of g, function

1 2 3 4
ol 1.292 -0.02280
o -0.6158 0.03094
oy -0.3834 0.1790 -0.02065
01 0.06285 0.01986 -0.008287 0.0009832
Olyi 0.1827 -0.2219 0.08763 -0.01045
Ol3; 0.09046 -0.02106 -0.02337 0.005125
Ol 1.871 -0.7457 0.4400 -0.05090

Table 2. Coefficients of g, function

1 2 3 4
B 0.9708 -0.005293
By -1.415 0.7752 -0.1815 0.01502
B3 0.4926 -0.1570 0.01652
Baii 0.0007527  0.05418 -0.02149 0.002344
Baai 0.4667 -0.4266 0.1586 -0.01709
B 3.345 0.04976 -0.6747 0.1018
By  -3.626 1.941 -0.2248

Table 3. Coefficients of t, function

1 2 3
Pioi 6.89367 -53.6151 50.8248
P -4.08538 40.9391 -46.3484
P12 0.677014  -9.35989 12.1718
P -0.0226694  0.668142 -1.00152
P -12.0523 108.472 -102.842
Paii 8.63812 -84.3581 94.9457
P -1.60061 20.0463 -25.5194
Pasi 0.0778192 -1.51170 2.15760
Paoi 5.83664 -53.1766 50.5411
psu  -4.20676 41.6555 -46.9805
P3y; 0.801768 -10.0724 12.7830
pssi -0.0421292  0.778241 -1.09613
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Fig.3 Comparison of dimensionless stress intensity

factors with finite element solutions.
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Fig. 4 (b) Ratios of stress intensity factors of
double cracks to single cracks.
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Fig. 4 (@) Comparison between single crack and
double cracks.
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Fig. 5 Comparison with finite element solutions for
surface cracks under remote tension.
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Fig. 6 Limiting behavior as (a) a/c tends to 0,
(b) a/c tends to infinity.
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8 Comparison of the equation with original weight function data, (a) at 90 degree, (b) at 0 degree.
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Fig. 9 Dimensionless stress intensity factor as a function of r/t ratio, (a) at 90 degree, (b) at 0 degree.
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