NASA Technical Memorandum 104566, Vol. 18

SeaWiFS Technical Report Series
Stanford B. Hooker, Editor
Goddard Space Flight Center
Greenbelt, Maryland

Elaine R. Firestone, Technical Editor
General Sciences Corporation
Laurel, Maryland

Volume 18, SeaWiFS Technical Report Series
Cumulative Index: Volumes 1–17

Elaine R. Firestone
General Sciences Corporation
Laurel, Maryland

Stanford B. Hooker
Goddard Space Flight Center
Greenbelt, Maryland

National Aeronautics and Space Administration
Goddard Space Flight Center
Greenbelt, Maryland 20771

1995
ABSTRACT

The Sea-viewing Wide Field-of-view Sensor (SeaWiFS) is the follow-on ocean color instrument to the Coastal Zone Color Scanner (CZCS), which ceased operations in 1986 after an eight-year mission. SeaWiFS is expected to be launched in 1995 on the SeaStar satellite, being built by Orbital Sciences Corporation (OSC). The SeaWiFS Project at the National Aeronautics and Space Administration’s (NASA) Goddard Space Flight Center (GSFC), has undertaken the responsibility of documenting all aspects of this mission, which is critical to the ocean color and marine science communities. This documentation, entitled the SeaWiFS Technical Report Series, is in the form of NASA Technical Memorandum Number 104566. All reports published are volumes within the series. This particular volume serves as a reference, or guidebook, to the previous 17 volumes and consists of 6 sections including: an errata, an addendum (summaries of various SeaWiFS Working Group Bio-optical Algorithm and Protocols Subgroups Workshops, and other auxiliary information), an index to key words and phrases, a list of all references cited, and lists of acronyms and symbols used. It is the editors’ intention to publish a cumulative index of this type after every five volumes in the series. Each index covers the topics published in all previous editions, that is, each new index includes all of the information contained in the preceeding indices.

1. INTRODUCTION

This is the third in a series of indices, published as a separate volume in the Sea-viewing Wide Field-of-view (SeaWiFS) Technical Report Series, and covers information found in the first 17 volumes of the series. The Report Series is written under the National Aeronautics and Space Administration’s (NASA) Technical Memorandum (TM) Number 104566. The volume numbers, authors, and titles are as follows:

Vol. 7: M. Darzi, Cloud Screening for Polar Orbiting Visible and IR Satellite Sensors.
This volume within the series serves as a reference, or guidebook, to the aforementioned volumes. It consists of the four main sections included with the first two indices published, Volumes 6 and 12, in the series: a cumulative index to key words and phrases, a glossary of acronyms, a list of symbols used, and a bibliography of all references cited in the series. In addition, as in Volume 12, errata and addenda sections have been added to address issues and needed corrections that have come to the editors' attention since the volumes were first published.

The nomenclature of the index is a familiar one, in the sense that it is a sequence of alphabetical entries, but it utilizes a unique format since multiple volumes are involved. Unless indicated otherwise, the index entries refer to some aspect of the SeaWiFS instrument or project, for example, the mission overview index entry refers to an overview of the SeaWiFS mission. An index entry is composed of a keyword or phrase followed by an entry field which directs the reader to the possible locations where a discussion of the keyword can be found. The entry field is normally made up of a volume identifier shown in bold face, followed by a pages identifier, which is always enclosed in parentheses:

keyword, volume(pages).

If an entry is the subject of an entire volume, the volume field is shown in slanted type without a page field:

keyword, Vol. #.

For the first time in the series of indices, an entry can be the subject of a complete chapter, as in the chapters found in Volume 13. In this instance, both the volume number and chapter number appear without a page field:

keyword, Vol. # ch. #.

Figures or tables that provide particularly important summary information are also indicated as separate entries in the pages field. In this case, the figure or table number is given with the page number on which it appears.

2. ERRATA

1. Note: It had been expected that SeaWiFS would utilize the ozone measurement data obtained from the NIMBUS Total Ozone Mapping Spectrometer (TOMS). In May 1993, however, this instrument ceased operations. As of this writing, the alternative sensor that will provide equivalent or similar data for the SeaWiFS mission will either be the Earth Probe-Total Ozone Mapping Spectrometer (EP-TOMS) or the Television and Infrared Satellite (TIROS) Operational and Vertical Sounder (TOVS).

2. Note: The name of the Moderate Resolution Imaging Spectrometer (MODIS) has been changed to the Moderate Resolution Imaging Spectroradiometer; the acronym has stayed the same.

3. Note: Previously in the SeaWiFS Technical Report Series, mention was made of the tilt and nadir versions of the MODIS instrument—the so-called MODIS-T and MODIS-N variations, respectively. As of this writing, only the MODIS-N instrument will be developed and launched. In this, and all subsequent volumes of this series of technical memoranda, MODIS refers to this nadir version of the instrument.

4. In Volume 13 of the SeaWiFS Technical Report Series, “Case Studies for SeaWiFS Calibration and Validation, Part 1,” Equation 19 was printed as:

\[A = \frac{I_0 - I_2}{I_0}, \]

\[= 1 - \exp \left(\frac{-\tau_{ox}}{\mu_0 + \mu} \right). \]

The correct equation should read:

\[A = \frac{I_0 - I_2}{I_0}, \]

\[= 1 - \exp \left(-\tau_{ox} \left(\frac{1}{\mu_0} + \frac{1}{\mu} \right) \right). \]

5. In Volume 3, page 34, under Section 3.5, the list of eight assumptions should read:

1) For a given scene, the aerosol type, as characterized by the Ångström exponents, are constant. In the global CZCS processing, the Ångström exponents for all scenes were 0.1, 0, and 0 for 443, 520, and 550 nm, respectively. These values imply almost no wavelength dependence in aerosol scattering, which is approximately true for marine atmospheres.

2) \(L_w(670) \) was assumed to be zero everywhere.

3) The Ångström exponent at 443 nm was assumed to be the average of those estimated at 520 nm in clear water regions.

4) The second order interaction between Rayleigh and aerosol scattering was assumed to be zero.

5) The sun glint mask algorithm assumed constant 6 m s\(^{-1}\) wind speeds. No radiometric correction was made for sun glint or sea foam.

6) The correction geometry assumed a flat Earth.

7) The Rayleigh optical thickness was assumed to be constant. (In the global processing, the ozone optical thicknesses have been derived from Total Ozone Mapping Spectrometer (TOMS) Dobson units.)

8) The water-leaving radiances were assumed to be independent of scan angle.

6. Also in Volume 3, a reference was incorrectly made to “Table 9.” The reference should have read “Table 1, Volume 5” [of the SeaWiFS Technical Report Series].
7. Note: Since the issuance of previous volumes, a number of the references cited have changed their publication status, e.g., they have gone from “submitted” or “in press” to printed matter. In other instances, some part (or parts) of the citation has changed, for example, the title or year of publication. Listed below are the references in question as they were originally cited in one or more of the first 17 volumes in the series, along with how they now appear in the references section of this volume.

Original Citation

Revised Citation

Original Citation

Revised Citation

Original Citation

Revised Citation

Original Citation

Revised Citation

3. **ADDENDA**

This section presents summaries of the following meetings which were held at the NASA Goddard Space Flight Center (GSFC):

a) the Second SeaWiFS Working Group (SWG) Bio-optical Algorithm and Optical Protocols Workshop (BAOPW-2) (Section 3.1) 8–10 November 1993; written by C. McClain, J. Mueller, and J. Acker;

b) the end-to-end software review of the Marine Optical Buoy (MOBY), 7–8 April 1994; written by S. Hooker (Section 3.2);

c) the SeaWiFS Calibration Subgroup Meeting, 12 April 1994; written by C. McClain (Section 3.3);

d) the SeaWiFS Atmospheric Correction Subgroup Meeting, 3 May 1994; written by C. McClain (Section 3.4);

e) the Third SWG Bio-Optical Algorithm and Optical Protocols Workshops (BAOPW-3), 12–13 May 1994; written by C. McClain (Section 3.5); and

f) the Fourth SWG Bio-Optical Algorithm and Optical Protocols Workshops (BAOPW-4), 9–10 November 1994; written by C. McClain (Section 3.6).

In addition, this section contains the SeaWiFS Baseline Product List, revised 26 April 1994—written by W. Esaias and C. McClain (Section 3.7)—and the names and addresses of all attendees of the aforementioned workshops and meetings (Section 3.8).

3.1 **Bio-Optical Algorithms and Protocols**

The following is a summary of the Second SeaWiFS Bio-optical Algorithm and Optical Protocols Workshop (BAOPW-2), which was held at GSFC on November 8–10, 1993. The primary workshop objectives were to: 1) define the initial SeaWiFS pigment and chlorophyll a algorithms, 2) complete a draft of the measurement protocols for Case-2 waters, and 3) draft recommendations for near- and long-term round-robin calibration program. Due to the way the workshop was conducted, the summary is arranged according to subject matter, and not in the session sequence. The team members and invited guests are listed in Table 1.

Table 1. Team members and invited guests to the BAOPW-2, held 8–10 November, 1993 at GSFC. The subgroup memberships are as listed in Hooker et al. (1993). Attendees are identified with a checkmark (√).

<table>
<thead>
<tr>
<th>Team Members</th>
<th>Present</th>
<th>Team Members</th>
<th>Present</th>
</tr>
</thead>
<tbody>
<tr>
<td>J. Aiken</td>
<td>√</td>
<td>A. Morel</td>
<td>√</td>
</tr>
<tr>
<td>W. Balch</td>
<td>√</td>
<td>J. Morrison</td>
<td>√</td>
</tr>
<tr>
<td>K. Carder</td>
<td>√</td>
<td>J. Mueller</td>
<td>√</td>
</tr>
<tr>
<td>D. Clark</td>
<td>√</td>
<td>F. Muller-Karger</td>
<td></td>
</tr>
<tr>
<td>C. Davis</td>
<td>√</td>
<td>R. Smith</td>
<td></td>
</tr>
<tr>
<td>W. Esaias</td>
<td>√</td>
<td>D. Siegel</td>
<td></td>
</tr>
<tr>
<td>H. Gordon</td>
<td>√</td>
<td>P. Stegman</td>
<td></td>
</tr>
<tr>
<td>F. Hoge</td>
<td></td>
<td>C. Trees</td>
<td></td>
</tr>
<tr>
<td>S. Hooker</td>
<td>√</td>
<td>C. Yentsch</td>
<td></td>
</tr>
<tr>
<td>M. Kishino</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G. Mitchell</td>
<td>√</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3
3.1.1 Bio-optical Algorithm Sessions

1. Introduction: (C. McClain)
 - A. Workshop Objectives and Agenda
 - B. Review of Action Items from the First Workshop

3.1.1.1 Bio-optical Algorithm Development

The item numbers below follow the Workshop Charter stated for the first bio-optical algorithm and optical protocols workshop—BAOPW-1 (Firestone and Hooker 1993).

Item 3A.

Bio-optical data sets: The data sets to be provided to the SeaWiFS Project are shown in Table 2 along with their respective status.

Following the discussion on data set status, R. Doerffer agreed to provide North Sea data. Also, A. Morel commented that he has three classes of data: historical, intermediate, and recent. The historical data would be difficult to retrieve because of the media. Retrieving the intermediate data would require a substantial effort. The recent data, which was collected within the past two years, can be made available.

Item 3B.

The SeaWiFS Project bio-optical data archive and distribution system (C.R. McClain): The database structure and implementation plan for both the historical pigment database and bio-optical database have been defined and implemented. Documents describing both were distributed at the workshop and will become volumes in the SeaWiFS Technical Report Series. To date, both types of Coastal Zone Color Scanner (CZCS) Nimbus Experiment Team (NET) data, station and along-track, have been ingested into the bio-optical database.

Other bio-optical data sets that have been received and are being processed include optics-only data from the Joint Global Ocean Flux Study (JGOFS) North Atlantic Bloom Experiment (NABE) and the JGOFS Equatorial Pacific Process Study (EqPac), provided by C. Trees; and optics-only data from the World Ocean Circulation Experiment (WOCE), provided by J. Marra. Several historical pigment data sets have been ingested, including data from A. Longhurst (North Atlantic); G. Mitchell [Research on Antarctic Coastal Ecosystem Rates (RACER)]; and JGOFS EqPac station data. In addition, the data from the first two calibration round-robins (SeaWiFS Intercalibration Round-Robin Experiments, SIRREX-1 and SIRREX-2) have been ingested, and the prelaunch calibration and characterization data for the SeaWiFS instrument from Hughes/Santa Barbara Research Center (SBRC) is also being ingested.

SeaWiFS Bio-optical Database (S.B. Hooker): The SeaWiFS Calibration and Validation Program implemented an on-line database for round-robin, SeaWiFS prelaunch calibration, and bio-optical data. The system and present holdings were described. The data distribution policy and plans related to expanding the holdings were discussed.

Item 3C.

Strawman Operational Pigment and Chlorophyll a Algorithms (K. Carder): Per the recommendation from the first bio-optical algorithm workshop, the pigment and chlorophyll algorithms should be semi-analytical, encompass both Case-1 and Case-2 waters, and should allow for seamless space-time variability in key parameters as the bio-optical database becomes more global in coverage. K. Carder has assumed the responsibility of developing the methodology and presented his initial approach.

The chlorophyll algorithm requires estimates of remote sensing reflectance at 412, 443, 555, and 670 nm, and knowledge of both the Q factor and backscatter and absorption coefficients for water, Gelbstoff, and phytoplankton at 412, 443, and 555 nm. A number of issues were discussed, including:

a) the availability of data sets containing suitable measurements of the free parameters;

b) the estimation of specific absorption coefficients for phytoplankton;

c) test criteria for branch points in the algorithm logic; and

d) the incorporation of relationships based on inherent optical properties (IOP) into the algorithm.

One major concern is the present lack of suitable measurements over a wide variety of water masses.

Strawman Operational Pigment and Chlorophyll a Algorithms Continued (K. Carder): Further discussion on the strawman algorithm was concluded. K. Carder will incorporate several suggestions into a revised version of the algorithm which he will provide to the SeaWiFS Project by early January 1994.

Item 4.

Quality Control (QC) Flags and Masks

Cloud mask (C.R. McClain, R. Evans, S. Gallegos, K. Arrigo, and R. Stumpf): C. McClain examined an albedo threshold approach using the CZCS 750 nm band. K. Arrigo presented results for CZCS scenes having low sun elevations, ice, and coccolithophore blooms. S. Gallegos presented some results from the work she had done on a statistical approach for a cloud and ice mask.

Sea ice flag (G. Cota, J. Alken, K. Arrigo, R. Zaneveld, and G. Moore): It is generally felt that insufficient data is available to develop an ice flag separate from a cloud flag.

Trichodesmium flag (A. Morel and A. Subramaniam): A. Subramaniam presented some observations and analyses of in situ data from Trichodesmium blooms. He also
submitted a recommendation on an approach to developing a flag algorithm.

Bottom reflectance flag (K. Carder, C. Davis, W. Esa- ias, and R. Arnone): The SeaWiFS Project decided to use a bathymetry database to flag shallow water areas, rather than rely on a radiometric algorithm.

Land mask (R. Evans and C.R. McClain): A combination of geographic and radiometric algorithms will be used. Implementation is underway.

Item 5.

1. **Bio-optical Field Program Update** (S. Hooker): This session was meant to provide an update of recent field activities relevant to algorithm development with brief presentations of the results, if available. The session concluded with a discussion of bio-optical cruises planned by the community in order to evaluate overall program deficiencies and strategies.

A. Report on MOCE-II (S. Hooker): The SeaWiFS Project's Calibration and Validation Group maintains a schedule of bio-optical cruises (Fig. 1). Additions or changes to that schedule included the following (also in Fig. 1):

1) Oligotrophy in the Pacific (OLIPAC) Ocean, A. Morel, June 1994;
2) (Geochemical) Fluxes in the Pacific (FLUPAC) Ocean, A. Morel, August 1994;
3) Arabian Sea, J. Aiken, August-October 1994;
4) North Sea, J. Aiken, November 1994;
5) JGOFS Arabian Sea Bio-optics, November 1994;
6) Yellow Sea, C. Trees, July 1994;
7) U.S. Mid-Atlantic Bight, D. Kambykowski, late 1994;
8) Chesapeake Bay, F. Muller-Karger, annual, 1993-1995;
9) Gulf of California, J. Mueller and Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE) Principal Investigators, (November 1994, March, June, and November 1995); and

Item 6.

Alternative bio-optical data collection strategies (J. Mueller, K. Carder, C. Davis, G. Mitchell, and R. Arnone): Little progress has been made. K. Carder and C. Davis will provide a draft protocol in the January–February 1994 time frame.

Table 2. Bio-optical data sets to be provided to the SeaWiFS Project.

<table>
<thead>
<tr>
<th>Team Members</th>
<th>Source</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>K. Carder</td>
<td>North Atlantic
Gulf of Mexico</td>
<td>Not received
Not received</td>
</tr>
<tr>
<td>J. Mueller</td>
<td>North Pacific</td>
<td>Not received
Not received (permission needed from the Navy)</td>
</tr>
<tr>
<td>C. Trees</td>
<td>CZCS NET Data [1]
MOCE-I [2]
MOCE-II</td>
<td>Received
Being processed
Being processed</td>
</tr>
<tr>
<td>D. Clark</td>
<td>Equatorial Pacific
North Atlantic
U.S. West Coast</td>
<td>Not received
Not received
Not received</td>
</tr>
<tr>
<td>C. Davis</td>
<td>Tokyo Bay
Sea of Japan</td>
<td>Not received
Not received
Not received</td>
</tr>
<tr>
<td>M. Kishino</td>
<td>RACER</td>
<td>Pigments received
Optics not received
Not received
Not received</td>
</tr>
<tr>
<td>G. Mitchell</td>
<td>CalCoFI 1 [3]
CalCoFI 2</td>
<td>Not received
Not received
Not received
Not received</td>
</tr>
<tr>
<td>R. Arnone</td>
<td>Gulf of Mexico</td>
<td>Not received</td>
</tr>
<tr>
<td>A. Weidemann</td>
<td>Bermuda</td>
<td>Not received</td>
</tr>
</tbody>
</table>

[1] Coastal Zone Color Scanner NIMBUS Experiment Team
[3] California Cooperative Fisheries Institute
<table>
<thead>
<tr>
<th>Location</th>
<th>Contact</th>
<th>Brief Description of Activities</th>
<th>J</th>
<th>F</th>
<th>M</th>
<th>A</th>
<th>M</th>
<th>J</th>
<th>A</th>
<th>S</th>
<th>O</th>
<th>N</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monterey Bay</td>
<td>D. Clark</td>
<td>MOBY test deployment.</td>
<td></td>
</tr>
<tr>
<td>Moss Landing</td>
<td>D. Clark</td>
<td>Submersible in situ radiometer test.</td>
<td></td>
</tr>
<tr>
<td>Calendar Year 1992</td>
<td></td>
</tr>
<tr>
<td>Bermuda</td>
<td>D. Siegel</td>
<td>JGOFS pigments and optical time series.</td>
<td></td>
</tr>
<tr>
<td>Lake Pend Oreille</td>
<td>R. Zaneveld</td>
<td>ONR Optical Closure Experiment.</td>
<td></td>
</tr>
<tr>
<td>Monterey Bay</td>
<td>D. Clark</td>
<td>MOCE-1 instrumentation shake-down.</td>
<td></td>
</tr>
<tr>
<td>Monterey Bay</td>
<td>D. Clark</td>
<td>MOBY at-sea test.</td>
<td></td>
</tr>
<tr>
<td>Calendar Year 1993</td>
<td></td>
</tr>
<tr>
<td>Bermuda</td>
<td>D. Siegel</td>
<td>JGOFS pigments and optical time series.</td>
<td></td>
</tr>
<tr>
<td>Gulf of California</td>
<td>D. Clark</td>
<td>MOCE-2 final integration of instruments.</td>
<td></td>
</tr>
<tr>
<td>Gulf of Mexico</td>
<td>R. Arnone</td>
<td>Navy optical instruments shake-down.</td>
<td></td>
</tr>
<tr>
<td>Lanai, Hawaii</td>
<td>D. Clark</td>
<td>Deep sea mooring (for MOBY) deployment.</td>
<td></td>
</tr>
<tr>
<td>Monterey Bay</td>
<td>D. Clark</td>
<td>Final test of prototype MOBY.</td>
<td></td>
</tr>
<tr>
<td>Weddell Sea</td>
<td>J. Torres</td>
<td>Phytoplankton production and biomass.</td>
<td></td>
</tr>
<tr>
<td>Calendar Year 1994</td>
<td></td>
</tr>
<tr>
<td>Bermuda</td>
<td>D. Siegel</td>
<td>JGOFS pigments and optical time series.</td>
<td></td>
</tr>
<tr>
<td>Lanai, Hawaii</td>
<td>D. Clark</td>
<td>MOBY prototype deployment.</td>
<td></td>
</tr>
<tr>
<td>Gulf of Mexico</td>
<td>A. Weidemann</td>
<td>Navy regional Case 2 algorithms cruise.</td>
<td></td>
</tr>
<tr>
<td>Mid-Atlantic Bight</td>
<td>D. Kamykowski</td>
<td>Case 1 and Case 2 pigments.</td>
<td></td>
</tr>
<tr>
<td>Lanai, Hawaii</td>
<td>D. Clark</td>
<td>MOBY refurbishment.</td>
<td></td>
</tr>
<tr>
<td>Lanai, Hawaii</td>
<td>D. Clark</td>
<td>MOCE-3 initialization and certification.</td>
<td></td>
</tr>
<tr>
<td>Sargasso Sea</td>
<td>A. Weidemann</td>
<td>Navy Case 1 and 2 algorithms cruise.</td>
<td></td>
</tr>
<tr>
<td>Arabian Sea</td>
<td>R. Arnone</td>
<td>Navy Case 1 and 2 pigments cruise.</td>
<td></td>
</tr>
<tr>
<td>Arabian Sea</td>
<td>W. Balch</td>
<td>JGOFS mini-process study cruise.</td>
<td></td>
</tr>
<tr>
<td>Gulf of California</td>
<td>D. Clark</td>
<td>MOCE-4 calibration and validation cruise.</td>
<td></td>
</tr>
<tr>
<td>Calendar Year 1995</td>
<td></td>
</tr>
<tr>
<td>Bermuda</td>
<td>D. Siegel</td>
<td>JGOFS pigments and optical time series.</td>
<td></td>
</tr>
<tr>
<td>Lanai, Hawaii</td>
<td>D. Clark</td>
<td>MOBY refurbishment.</td>
<td></td>
</tr>
<tr>
<td>Gulf of Mexico</td>
<td>D. Clark</td>
<td>MOCE-5 calibration and validation cruise.</td>
<td></td>
</tr>
<tr>
<td>Arabian Sea</td>
<td>R. Arnone</td>
<td>Navy Case 1 and 2 pigments cruise.</td>
<td></td>
</tr>
<tr>
<td>Canary Islands</td>
<td>D. Clark</td>
<td>MOCE-6 calibration and validation cruise.</td>
<td></td>
</tr>
<tr>
<td>Calendar Year 1996</td>
<td></td>
</tr>
<tr>
<td>Bermuda</td>
<td>D. Siegel</td>
<td>JGOFS pigments and optical time series.</td>
<td></td>
</tr>
<tr>
<td>Arabian Sea</td>
<td>R. Arnone</td>
<td>Navy Case 1 and 2 pigments cruise.</td>
<td></td>
</tr>
<tr>
<td>Lanai, Hawaii</td>
<td>D. Clark</td>
<td>MOBY refurbishment.</td>
<td></td>
</tr>
<tr>
<td>Eastern Pacific</td>
<td>D. Clark</td>
<td>MOCE-7 calibration and validation cruise.</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 1. Field deployment schedule for SeaWiFS, as of late 1993.
3.1.1.2 Special Topics

This session, led by C. McClain, was for discussing topics of interest relevant to algorithm development, SeaWiFS QC, and ocean color missions. The topics discussed were:

- **a)** SeaWiFS sensor status update, W. Esaias;
- **b)** Regression analyses for bio-optical algorithms, J. Campbell;
- **c)** Remote sensing reflectance from inherent optical properties, R. Zaneveld;
- **d)** $K(490)$ algorithms, Case-1 Water, C. Trees;
- **e)** $K(490)$ algorithms, Case-2 Water, R. Arnone;
- **f)** Coccolithophore detection, C. Brown;
- **g)** *Trichodesmium* detection, A. Subramaniam;
- **h)** Cloud and ice detection, S. Gallegos;
- **i)** Cloud and ice detection, K. Arrigo; and
- **j)** Marine Optical Spectroradiometer (MOS) and Pr/roda, A. Neumann.

During the presentations on $K(490)$, the point was made that the baseline Austin-Petzold algorithm is robust over a broader range of Case-1 waters than the original data set encompassed. It was also shown, however, that the algorithm is not accurate in turbid Case-2 waters.

The Austin-Petzold relationship remains the baseline for $K(490)$. This algorithm, however, is not accurate in very turbid Case-2 waters. K. Carder will continue to refine his chlorophyll a algorithm and will provide an update to the Project by the end of the year. J. Aiken volunteered to examine the existing CZCS pigment algorithm and assess its performance using additional data sets. He will provide those results to the Project by the March 1994 SWG meeting.

Questions were raised regarding the SeaWiFS distributed products (W. Esaias) about whether or not the current level-2 and level-3 products are the most useful for the user community. For instance, it is not clear that binned normalized water leaving radiances at wavelengths other than 550 nm have any applications. Also, the bio-optical algorithms may use reflectance and E_0. Should adjustments in the present product list be recommended? A lengthy discussion resulted with a decision to continue the deliberations later in the workshop. When discussions resumed, they focused primarily on the definition and usefulness of the CZCS pigment product. It was agreed that the most accurate estimates of water-leaving or normalized water-leaving radiance should be used to compute the pigment product, rather than to employ values derived using a method identical to the CZCS atmospheric correction. The final recommendations were synthesized and are listed in the tables found in Section 3.7. These recommendations will be distributed to the SWG for comment and will be formally addressed at the March SWG meeting.

3.1.2 Optical Protocols

Attendees and invited guests to the Round-Robin and Optical Protocols Working Group are found in Table 3.

3.1.2.1 Workshop Objectives and Agenda

J. Mueller lead the summary and status action items from the first workshop, again using the item numbers from the BAOPW-1 meeting (Firestone and Hooker 1993).

Table 3. Round-Robin and Optical Protocols Working Group attendees. The subgroup memberships are as listed in Hooker et al. (1993).

<table>
<thead>
<tr>
<th>Team</th>
<th>Present</th>
<th>Team</th>
<th>Present</th>
</tr>
</thead>
<tbody>
<tr>
<td>D. Clark</td>
<td></td>
<td>A. Mueller</td>
<td></td>
</tr>
</tbody>
</table>
| C. Davis | | R. Doerffer | ✓
| R. Doerffer | ✓ | G. Mitchell | ✓
| W. Esaias | ✓ | A. Morel | ✓
| H. Gordon | ✓ | J. Mueller | ✓
| F. Hoge | | D. Siegel | |
| M. Kishino | | R. Smith | |
| O. Kopelievich | | R. Zaneveld | ✓

<table>
<thead>
<tr>
<th>Other Attendees</th>
</tr>
</thead>
<tbody>
<tr>
<td>R. Arnone</td>
</tr>
<tr>
<td>K. Arrigo</td>
</tr>
<tr>
<td>C. Brown</td>
</tr>
<tr>
<td>J. Campbell</td>
</tr>
<tr>
<td>R. Evans</td>
</tr>
</tbody>
</table>

Item 1A.

Item 1B. Not discussed

Item 1C.

Bio-optical algorithm instrumentation specifications (J. Mueller): No progress to report. J. Mueller has obtained the CZCS NET data and will be performing correlation analyses to see what corrections can be made to observations at wavelengths near to, but not coincident with, the SeaWiFS bands.

Item 1D.

Case-2 water protocols (K. Carder, C. Yentsch, R. Doerffer, F. Muller-Karger, C. Davis, W. Esaias, A. Weidemann, R. Arnone, and R. Stumpf): No progress to report. R. Doerffer will provide data to assist in the development of these protocols.

Item 1E.

Data quality control (J. Mueller, D. Siegel, C. Davis, A. Weidemann, G. Mitchell, and H. Gordon): J. Mueller will present some initial comparisons later in the workshop. More comprehensive analyses need to be completed.

Item 1F.

Item 1G. Not discussed
3.1.2.2 Case-2 Protocols

The group, lead by J. Mueller, discussed the areas in which new protocols must be drafted to reflect:

a) well-known difficulties associated with making accurate radiometric and optical measurements in turbid Case-2 waters, and

b) the increased need for accurate measurements of IOP to develop and validate semi-analytic algorithms of the form recommended by the Algorithm Working Group.

This recommendation is for algorithms based, in any of several forms, on the interrelationships between the ratio $b_α/a$, chlorophyll concentration, and remote sensing reflectance. Physically, remote sensing reflectance (R_{rs}) may be accurately modelled as a function of the ratio of backscattering to absorption, where absorption is strongly dependent, and scattering is somewhat dependent, on pigment concentrations. Pigment concentrations are often expressed using chlorophyll a concentration as a proxy index for a typical oceanic phytopigment assemblage.

The classical ratio algorithm simply assumes the following: other absorbing substances are either constant or covariant with chlorophyll a; and the log of a ratio of two radiometric quantities, e.g., upwelling radiances, can be approximated by a linear function. The classical type algorithm will calculate least-squares coefficients for the apparent functional relationship between the radiometric quantities.

A semi-analytic algorithm, of the type proposed for SeaWiFS, expresses some (or all) IOP explicitly in terms of chlorophyll, theoretical relationships, or constants, then combines equations for two or more wavelengths and inverts the result to solve for chlorophyll. In several models, reflectance is expressed as a function of the ratio of backscattering to absorption, which in turn is then empirically linked to chlorophyll a concentration.

To date, most observational algorithm development has been limited to finding direct correlations between chlorophyll and spectral combinations of remote sensing reflectance. This emphasis is reflected in the brevity with which IOP measurement and analysis protocols are presented in the SeaWiFS Optical Protocols (Mueller and Austin 1992), even though they are specified as required variables for bio-optical algorithm development. Given the explicit appearance of IOP in the proposed baseline algorithm and recent advances in instrumentation to measure spectral absorption, beam attenuation, and segments of the volume scattering function, the majority of the working group members seem to favor revising the protocols to emphasize IOP measurements more prominently (albeit an explicit vote was not taken on that issue).

The workshop discussions identified three general areas where new, or strengthened protocols are necessary. These are:

1) Experiment design and sampling methods for algorithm development in Case-2 waters (R. Doerffer);
2) Protocols and related database for measuring absorption (R. Zaneveld); and

Individuals identified in parentheses will orchestrate the development of protocols for each area. A detailed outline of the specific subtopics identified in each area is given below, together with the names of potential contributors (those on the working group agreed to provide input, and contributions from the others will be solicited).

It was agreed to pull each topic area together as a loose-leaf notebook containing individual working reports, etc., from the identified contributors, with a brief overview and summary recommendation for new protocols written by the topic leader (identified in parentheses above). J. Mueller will coordinate the overall effort, and will draft recommended protocol additions, or revisions, based on the material presented. The intent is to assemble this material by early February 1994 for distribution to all SeaWiFS Science Team members. The protocol numbers refer back to the same numbered sections in Mueller and Austin (1992).

Outline

(Contributors identified in parentheses)

I. Experiment Design and Sampling Methods for Algorithm Development in Case-2 Waters
A. Overview of Case-2 Sampling Methods and Experiment Design (R. Doerffer)
B. Instrument Self-Shadow Effects [Gordon and Ding model]
 1. Near-IR tank experiments (R. Doerffer and J. Mueller)
 a. Wave and platform effects (R. Doerffer and J. Mueller)
 b. Above-water remote sensing reflectance measurements, including Gulf of Mexico Experiment (GOMEX) results (K. Carder, C. Davis, R. Arnone, and J. Mueller).

II. Absorption: Measurement Protocols and Database
A. Overview and Absorption Protocol Recommendations (R. Zaneveld)
B. Absorption Measurement Methods
 1. Filter Method vs. Reflecting Tube Absorption Comparisons (C. Roesler, R. Zaneveld)
 2. “β-Factor” Comparisons in Filter Particle Absorption Measurements (J. Cleveland)
 3. Benchtop Absorption Meter for Dissolved Organics (K. Carder)
 5. Filter Specifications [Protocol 5.4.3] (C. Trees)
B. Database: Absorption, Chlorophyll, and other variables.
 1. Overview, summary, and coordination of database assembly (J. Campbell)
 2. Filter Absorption and Pigment data sets (G. Mitchell, K. Carder, M. Kishino, C. Roesler, and others who will be determined at a later date).
 3. Filter Absorption, Pigments, and Radiometry Data Sets (K. Carder; M. Wernand; R. Doerffer; J. Cleveland, C. Trees, and J. Mueller; K. Voss, and B. Balch, and others who will be determined at a later date).
 4. Absorption, other IOP, Pigments, and Radiometric Profiles (R. Zaneveld, Pend Orielle Closure Experiment, and East Puget Sound)
 5. Protocol 5.4.2 and 5.2.4.3 Review and Revision (K. Carder, R. Zaneveld, R. Doerffer, and C. McClain)

III. Scattering: Measurement Protocols and Database

A. Overview of Scattering Measurement Methods, Prognosis for Improved Instruments and Methods, Protocol Recommendations (R. Zaneveld)

B. Backscattering Measurement:
 1. Single-Wavelength \(\beta(170^\circ) \) (R. Maffione)
 2. Intermediate and large angle scattering meter development [5 angles at 9 wavelengths] (R. Zaneveld)
 3. General Angle Scattering Meter (GASM) (K. Voss)

3.1.2.3 Data QC and Analysis Round-Robin

J. Mueller lead this discussion on a follow-up of an activity initiated during the protocols workshop in May 1993 (Firestone and Hooker 1993). He presented some initial comparisons between his analysis technique and that used by C. Davis of diffuse attenuation coefficients and derived water-leaving radiances, which indicated some large discrepancies for some optical profiles. Further analysis, and the participation of others, is required.

3.1.2.4 Calibration Round-Robin

Results from SIRREX-2 (J. Mueller): The results obtained from SIRREX-2 indicate a significant improvement over SIRREX-1 in terms of the sphere comparisons, etc. The final report will be submitted to the Project by December 1994 for publication in the SeaWiFS Technical Report Series (see Mueller 1994).

Recommendations for SIRREX in 1994

1. SIRREX-3 (Group Experiments):
 a. Continue the sphere characterizations and radiance scale transfers with emphasis on spatial and angular uniformity and temporal stability.
 b. Verify stability and stray light rejection for all transfer radiometers.
 c. Examine the bidirectional diffuse reflectance of the plaques.

2. Radiometer Round-Robins:
 a. Calibrate selected sets of radiometers at several laboratories within 3-4 week intervals, and test comparability of blind test results.
 b. Follow up on discrepancies as appropriate.

3. FEL lamp irradiance standards
 a. Schedule FEL lamps for transfers at GSFC on an annual basis.

4. Error budget analyses
 a. Document overall calibration error budget illustrating goals, SIRREX accomplishments to date, and schedule for meeting goals.

3.1.2.5 The Long-Term Round-Robin Program

The SeaWiFS Project is supporting the present round-robin program, which has a limited duration and scope (C. McClain). Questions that need to be addressed include:

1. How will the activity be expanded and supported in the future within the US?
2. How will it be managed?
3. How will an international program be coordinated? It was also recommended that an approach for quantifying the overall impact of the round-robin comparison program on the quality of in situ optical measurements be defined.

3.2 MOBY Review Summary

An end-to-end software review of the MOBY was held 7-8 April 1994 at GSFC, the attendees of which are listed in Table 4. The review was triggered by an inability of the buoy to properly multi-task during its February 1994 deployment off the coast of Lanai, Hawaii. More specifically, the buoy cannot collect data reliably if the cellular telephone communications task is running while the MOBY data acquisition task is executing. It is important to note, however, that the buoy is collecting data successfully, but in a more simplistic serial mode; that is, the buoy collects in situ data once per day, does nothing else during that acquisition event, and then stops acquisition before attempting the next scheduled activity.

A review panel comprised of GSFC Forth (an interactive and interpretive language used in small computers) experts, autonomous system experts, and Project personnel was assembled to meet with the MOBY Team to assist in determining the source of the multi-tasking problem. The Project representatives also reviewed the MOBY data processing and distribution plan.
3.2.1 Agenda

The following is the agenda followed for this review.

7 April 1994

0800 Introductory Remarks C. McClain
0810 MOBY System Overview D. Clark
0830 End-to-end Communications Overview W. Broenkow
0850 Hardware (as it relates to software) Overview M. Yarbrough
0910 MOBY Software Overview W. Broenkow
0930 MOBY Operating System R. Reeves
1000 Break
1010 Resume Review
1200 Adjourn
1330 Afternoon Session
1500 Meeting with Nancy Farnan
1530 Review of Contract Deliverables D. Clark
1700 Adjourn

8 April 1994

0800 Introductory Remarks and Morning Agenda C. McClain
1000 Break
1010 Resume Review
1200 Adjourn
1330 Afternoon Session
1340 Post-processing Software Overview D. Clark
1400 Individual Post-processing Elements W. Broenkow
1500 Adjourn

Table 4. MOBY review attendees.

<table>
<thead>
<tr>
<th>Attendee</th>
<th>Level of Participation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Samuel Bergeson-Willis</td>
<td>Participant</td>
</tr>
<tr>
<td>William Broenkow</td>
<td>MOBY Team</td>
</tr>
<tr>
<td>Robert Caffrey</td>
<td>Review Panel</td>
</tr>
<tr>
<td>Dennis Clark</td>
<td>MOBY Team</td>
</tr>
<tr>
<td>Mary Cleave</td>
<td>Participant</td>
</tr>
<tr>
<td>Michael Darzi</td>
<td>Participant</td>
</tr>
<tr>
<td>Wayne Esaias</td>
<td>Participant</td>
</tr>
<tr>
<td>Stanford Hooker</td>
<td>Review Panel</td>
</tr>
<tr>
<td>Charles McClain</td>
<td>Review Panel</td>
</tr>
<tr>
<td>Todd Miller</td>
<td>Review Panel</td>
</tr>
<tr>
<td>Richard Reaves</td>
<td>MOBY Team</td>
</tr>
<tr>
<td>Thomas Riley</td>
<td>Review Panel</td>
</tr>
<tr>
<td>Shane Hynes</td>
<td>Review Panel</td>
</tr>
<tr>
<td>Mark Yarbrough</td>
<td>MOBY Team</td>
</tr>
</tbody>
</table>

3.2.2 Review Panel Comments

The MOBY Review Panel had a number of comments based on the information presented.

1. The panel members were impressed with the operating system and the people who built it. They feel it is based on a sound architecture and should work. It appears to be a multi-tasking Forth system with each task operating in a non-preemptive round-robin fashion. The system is a hybrid Forth modeled after a particular commercial package (probably polyForth) but patterned after several others.

2. The execution problem is probably due to a programming bug in the Forth code. Stack overflow, which could be caused by improper clean-up of the stack when a task completes and exits, is the most likely source of difficulty.

3. Richard Reaves is the only person who understands the MOBY operating system, so he is a single point of failure. Another person needs to be brought on to ensure Richard’s knowledge is duplicated and retained by the Team.

4. The MOBY Team is needlessly isolated and should investigate a wider participation in the Forth community. The Special Interest Group (SIG) Forth and Forth Interest Groups are user groups that can provide an opportunity for the Team to meet other Forth programmers. There is a user community in Monterey (near the Team’s locale in Salinas, California).

5. Another opportunity for interaction in the Monterey area is Everett “Skip” Carter who has developed a buoy using Forth (408-899-0336 and on the Internet: skip@taygeta.oc.nps.navy.mil).

6. The MOBY Team should investigate the use of version control software (VCS) or a public domain program.

7. The MOBY Team should schedule code walk-throughs at a frequency in keeping with the level of elapsed development and the importance of the version being created, i.e., major revisions requiring substantial effort need reviews.

8. Once the MOBY Team has implemented many of the recommendations, particularly the data simulator, one of the panel members should probably visit Moss Landing Marine Laboratory (MLML) and review the progress made.

9. The present data processing system requires manual intervention to handle all calibration and formatting.

10. No QC is currently in place, although some parts of such a system are under consideration or rudimentary design.

3.2.3 Action Items for the MOBY Team

Action items to be completed by the Team include:

a. Overview details need to be agreed upon. This begins with a highest-level sketch of what the system looks like and is followed by a diagram of the basic functional units, each of which performs a well-specified...
E.R. Firestone and S.B. Hooker

This diagram includes the pathways and interfaces between the various components and must be supported by lists of requirements and specifications. The lists detail what each basic unit does by itself and in relation to the other units, via the data pathways and interfaces, which means the interfaces must also be completely described. Once an overview of the buoy is completed, the entire system is largely defined and the requirements for the operating system, which will control its execution, can then be specified (or in this case, completely evaluated).

b. A list of tasks and a description of what each task does needs to be created. This should also include what activates and deactivates a particular task.

c. The time it takes to execute one loop in the round-robin should be determined and monitored.

d. Timing diagrams need to be produced, in part, to establish whether or not the hardware can support what the software is required to do, and also to aid the debugging effort.

e. A watchdog timer should be implemented.

f. The stack depth is a good indicator of system health and should be monitored. The current stack depth is frequently at 30 and should usually be less than 8 and never above 20 (as a rule of thumb).

g. An interactive programming environment should be created. Right now the program cannot be debugged when it runs. This will require the implementation of a TALKER task.

h. A simulator for each data source should be created, probably using personal computers (PCs) or local area transport (LAT) interfaces on a VAX (if the proper data rates can be simulated). This will allow for testing and debugging even when the buoy is unavailable.

i. The GET and RELEASE Forth commands should be looked at. There may be a requirement associated with their use for certain functions to be locked out when tasks exit.

j. An automated processing capability should be developed prior to the launch of SeaWiFS.

k. MLML should itemize the tasking, milestones, and resource requirements for near-real time data analysis. In particular, the QC modules, both in terms of how the data is collected and processed, need to be clearly presented.

3.3 Calibration Subgroup Meeting

The SeaWiFS Calibration Subgroup Meeting was held on 12 April 1994. The purpose of the meeting was to review the results of analyses on the prelaunch calibration and characterization data provided by Hughes/SBRC. These data are being archived within the SeaWiFS Calibration and Validation database. The archived data will be described in a separate technical memorandum within the SeaWiFS Technical Report Series (Volume 23).

3.4 Atmospheric Correction Subgroup

The meeting of the SeaWiFS Atmospheric Correction Subgroup was held at GSFC on 3 May 1994. The purpose of the meeting was a comprehensive discussion regarding both the current status of the SeaWiFS algorithm and further required improvements to the algorithm. In addition, the ongoing problem of the oxygen absorption band was discussed.

† Topics slated for publication within the Series.
The meeting was small, but very informative and constructive. H. Gordon's work on the operational algorithm has progressed substantially since the previous atmospheric correction workshop in May 1993. The initial description of the algorithm has been published by Gordon and Wang (1994), and other augmentations to the algorithm, including the glint flag, the whitecap correction, and the 765 nm oxygen absorption correction have been either completed or are well underway.

Gordon has also analyzed the limitations of the plane parallel assumption and found that the assumption introduces negligible errors for SeaWiFS geometries. Primary concerns at present are corrections in the presence of absorbing aerosols, e.g., Saharan and Asian dust, and the effects of stratospheric aerosols.

3.5 Bio-Optical Algorithm and Protocols

This section summarizes BAOPW-3, held at GSFC on 12–13 May 1994. The attendees and invited guests to BAOPW-3 appear in Table 5.

The purposes of the workshops were to 1) finalize the initial operational SeaWiFS pigment and chlorophyll a algorithms, and 2) complete the measurement protocols for Case-2 waters.

3.5.1 Bio-Optical Algorithm Development

1. **Introduction** (C. McClain):
 - Workshop Objectives and Agenda
 - SeaStar/SeaWiFS update

2. **Operational Chlorophyll a Algorithm** (K. Carder):
 - Since the last bio-optical algorithm meeting, there has been considerable discussion between K. Carder, R. Zaneveld, J. Mueller, and D. Siegel on the form of the chlorophyll a algorithm. All agree on the basic structure of the algorithm, and that the algorithm should be modular so that specific components can be isolated and replaced as improved parameterizations are developed. Of primary concern is the temporal and spatial variability in phytoplankton absorption coefficients.

3. **Band Ratio Algorithms for SeaWiFS and CZCS** (J. Aiken):
 - J. Aiken described a variety of multiple band ratio algorithms for a number of geophysical parameters. One issue is whether the CZCS pigment product should utilize bands other than those that are similar to the CZCS bands. The Project's present position is it should not unless it can be demonstrated that other band ratio algorithms produce a significant improvement in the pigment retrievals. Also, assuming the CZCS data will eventually be reprocessed using improved atmospheric and cloud masking algorithms, an attempt to develop a more geographically robust algorithm using only the CZCS bands should be undertaken.

Table 5. Team members and invited guests to the SWG Bio-optical Algorithm and Protocols Workshops, held 12–13 May 1994 at GSFC. Attendees are identified with a checkmark (✓).

<table>
<thead>
<tr>
<th>Team Members</th>
<th>Present</th>
<th>Team Members</th>
<th>Present</th>
</tr>
</thead>
<tbody>
<tr>
<td>J. Aiken</td>
<td>✓</td>
<td>C. McClain</td>
<td>✓</td>
</tr>
<tr>
<td>W. Balch</td>
<td>✓</td>
<td>G. Mitchell</td>
<td>✓</td>
</tr>
<tr>
<td>K. Carder</td>
<td>✓</td>
<td>A. Morel</td>
<td>✓</td>
</tr>
<tr>
<td>D. Clark</td>
<td>✓</td>
<td>J. Mueller</td>
<td>✓</td>
</tr>
<tr>
<td>C. Davis</td>
<td>✓</td>
<td>F. Muller</td>
<td>✓</td>
</tr>
<tr>
<td>R. Doerffer</td>
<td>✓</td>
<td>M. Karger</td>
<td>✓</td>
</tr>
<tr>
<td>W. Esaias</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H. Gordon</td>
<td>✓</td>
<td>R. Smith</td>
<td>✓</td>
</tr>
<tr>
<td>F. Hoge</td>
<td>✓</td>
<td>C. Trees</td>
<td>✓</td>
</tr>
<tr>
<td>S. Hooker</td>
<td>✓</td>
<td>C. Yentsch</td>
<td>✓</td>
</tr>
<tr>
<td>D. Kamykowski</td>
<td>✓</td>
<td>J. Yoder</td>
<td>✓</td>
</tr>
<tr>
<td>M. Kishino</td>
<td>✓</td>
<td>R. Zaneveld</td>
<td>✓</td>
</tr>
<tr>
<td>O. Kopelevich</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Other Attendees

S. Ackleson	✓	L. Harding	✓
M. Behrenfeld	✓	S. Hawes	✓
C. Brown	✓	J. Morrow	✓
J. Campbell	✓	H. Schiller	✓
H. Fukushima	✓		

The point was also made that the SeaWiFS Project plans to periodically reprocess the entire SeaWiFS data set as improvements to the atmospheric, bio-optical, and calibration algorithms are developed, and the suite of derived products can be modified with each reprocessing as the Science Team recommends. The only limitation at present is the data volume and number of data granules passed to the GSFC Distributed Active Archive Center (DAAC).

3.5.2 Optical Protocols

1. **Workshop Objectives** (J. Mueller)
2. **Case-2 Protocols**:
 - A. Overview and Strawman Outline (J. Mueller)
 - B. Status of the Absorption Database Development (J. Campbell)
 - C. Case-1 and Case-2 Discrimination (R. Doerffer)
 - D. Absorption Protocols (C. Trees and R. Zaneveld)
E. Scattering Protocols (R. Zaneveld): Drafts of sections of the Case-2 protocols were written in advance and distributed. J. Campbell has been soliciting absorption spectra data from the community and some data and preprints of data analyses have been provided. As a result of R. Doerffer's presentation, the terms "Case-1" and "Case-2," as originally defined by Prieur and Morel, may not be appropriate for the purposes of measurement protocols.

3. Data QC and Analysis Round-Robin (D. Siegel): D. Siegel will organize and host a small data analysis round-robin at UCSB this summer. The purpose is to quantify the differences among various algorithms for estimating surface upwelling radiance, irradiance, and diffuse attenuation coefficient. The participants will draft a publication based on their results.

4. An Atmospheric Correction Scheme for Turbid Waters (J. Aiken): J. Aiken described a brightest pixel method for the atmospheric correction of turbid water using aircraft data.

5. An Instrument Self-Shading Experiment (R. Doerffer): R. Doerffer described a laboratory experiment designed to quantify instrument self-shading effects. It was recommended that he test the Gordon and Ding (1992) correction scheme.

6. An Update on the Chlorophyll Measurement Protocols (C. Trees): C. Trees discussed recent revisions of the JGOFS protocols based on information provided by R. Bidigare and his own work.

7. Wavelength Interpolation Analyses (J. Mueller): J. Mueller presented initial empirical orthogonal function (EOF) analyses of the CZCS NET radiometer data. The objective is to quantify how well the observed upwelling water radiance and irradiance spectra, and the downwelling irradiance spectra, can be determined from radiometric observations at a limited number of wavelengths. If sufficient accuracy can be achieved, observations at wavelengths near, but not identical to, the SeaWiFS bands can be used for algorithm development. Suggestions offered included separating the different radiometric parameters and performing separate analyses on each and partitioning the data into unique water types.

3.5 Bio-Optical Algorithm Development

1. The MODIS Document Archive (MODARCH), (D. Herrin): D. Herrin presented a brief description of the MODARCH system which the EOS/MODIS program is using to archive documents and presentation materials. The system can be accessed through the Internet.

2. Operational Chlorophyll a Algorithm Continued (K. Carder): Discussions on the chlorophyll a algorithm were continued based on previous deliberations.

3. Field Program Reports
 A. Bermuda Bio-optical Time Series (D. Siegel)
 B. CalCoFI Bio-optical Data Set (G. Mitchell)
 C. MOCE and MOBY Update (D. Clark)
 D. GOMEX Data Update (J. Mueller)
 E. Navy Field Program Update (C. Davis)
 F. United Kingdom (UK) Field Program Update (J. Aiken)
 G. Japanese Field Program Update (M. Kishino)
 H. German Field Program Update (R. Doerffer)

 The intent was not to present results, but activities and data set development status. D. Siegel is routinely feeding data into the SeaWiFS bio-optical database. G. Mitchell has several hundred high latitude historical bio-optical stations ready for submission to the database pending the outcome of the data analysis round-robin. He has also participated in six CalCoFI cruises. The GOMEX data is nearly ready for submission by J. Mueller and C. Trees (most of the pigment data has been received already). D. Clark described the first and second MOCE cruises in Monterey Bay, the Gulf of California, and Baja regions. The initial processing of these data is about 90% complete. He described recent progress with the MOBY deployment and support facility development in Hawaii. The buoy was deployed in February and will be retrieved in June 1994.

 C. Davis discussed the optical observations to be collected on six Navy and NSF sponsored cruises in the Arabian Sea during 1994 and 1995. J. Aiken, M. Kishino, and R. Doerffer provided updates on British, Japanese, and German bio-optical cruise plans over the next year, respectively. The SeaWiFS launch slip is having a serious impact on some of these programs as most were either designed as post-launch validation cruises or were counting on SeaWiFS coverage to meet their scientific objectives.

3.5.4 Calibration Round-Robin

1. Calibration Round-Robin (J. Mueller)
 A. Hawaii Intercomparison Study: J. Mueller and C. Cromer described a mini-round-robin conducted at the MOBY support facility in Hawaii. As a result of the experiment, several modifications to the calibration sphere configuration are being recommended.
 B. Immersion Coefficient Study: J. Mueller discussed laboratory measurements of the immersion coefficients required for the calibration of irradiance measurements. Some concerns have been raised regarding the historical values applied to marine environmental radiometers (MERs).
 C. SIRREX-3 Activities: J. Mueller briefly outlined the activities to be conducted during the next round-robin at CHORS. Several participants suggested the event be slipped beyond the present July schedule.
2. Neural Network Applications (H. Schiller): H. Schiller described an application of neural network methodologies to the inversion of CZCS water-leaving radiance data for estimation of chlorophyll a and other quantities in Case-2 water. The approach results in substantially reduced processing times.

3.5.5 Workshop Wrap-Ups

Summaries, Action Items, Final Discussions, etc.

The topics for discussion in this segment were: the operational chlorophyll a algorithm (D. Siegel), and protocols and round-robin (J. Mueller).

The Action Items included the following:

1. K. Carder, working with R. Zaneveld, D. Siegel, and J. Mueller, will generate a draft document describing the chlorophyll a algorithm, implementation, and rationale which will be submitted to the SeaWiFS Project by mid-June.

2. J. Aiken, D. Clark, and C. Trees will generate a draft document on the rationale and form of CZCS and SeaWiFS band ratio algorithms which will be submitted to the SeaWiFS Project by mid-June.

3. J. Mueller has several action items including the following:

 A. Collate the Case-2 protocol documents and modifications to the existing protocols, and submit these to the SeaWiFS Project;

 B. Finalize the comparison of his MER with the MOBY radiometer, which he conducted in Hawaii;

 C. Notify the SIRREX-3 participants of the agenda and work that must be completed in advance (one item is the mapping of sphere apertures and a recommended measurement scheme must be defined);

 D. Complete the processing of the GOMEX optical measurements and provide them to the SeaWiFS Project;

 E. Complete the immersion coefficient study in collaboration with Biospherics, Inc. and refine the protocols section on immersion coefficients as required; and

 F. Work with C. Davis on the completion of the analysis of their initial study on reflectance measurements.

4. K. Carder, C. Davis, J. Mueller, and R. Doerffer are to collaborate on the remote sensing reflectance protocol. R. Doerffer will be executing a 10-day field study during July 1994 in the North Sea which should provide additional data for the verification of the technique.

3.6 BAOPW-4

This summary is of the Fourth SeaWiFS Bio-optical Algorithm Optical Protocols Workshop (BAOPW-4), held at GSFC on 9-10 November, 1994. The primary workshop objectives were to: 1) finalize the initial operational CZCS pigment, chlorophyll a, and $K(490)$ algorithms and 2) complete the update of the in situ measurement protocols. Due to the way the workshop was conducted, the summary is arranged according to subject matter, not the session sequence. Attendees and invited guests are listed in Table 6.

3.6.1 Bio-optical Algorithm Sessions

1. Introduction (C. McClain)

 A. Workshop objectives and agenda

 B. Review of Action Items from the third workshop

 C. SeaStar/SeaWiFS update

Table 6. Team members and invited guests to the BAOPW-4, held 9-10 November 1994 at GSFC. Attendees are identified with a checkmark (✓). Those people who came in members' places are indicated with their names in parentheses and are listed directly below the member's name.

<table>
<thead>
<tr>
<th>Team Present</th>
<th>Team Present</th>
</tr>
</thead>
<tbody>
<tr>
<td>J. Aiken</td>
<td>✓</td>
</tr>
<tr>
<td>(G. Moore)</td>
<td>✓</td>
</tr>
<tr>
<td>W. Balch</td>
<td>✓</td>
</tr>
<tr>
<td>K. Carder</td>
<td>✓</td>
</tr>
<tr>
<td>D. Clark</td>
<td>✓</td>
</tr>
<tr>
<td>G. Cota</td>
<td>✓</td>
</tr>
<tr>
<td>C. Davis</td>
<td>✓</td>
</tr>
<tr>
<td>R. Doerffer</td>
<td>✓</td>
</tr>
<tr>
<td>K. Carder</td>
<td>✓</td>
</tr>
<tr>
<td>D. Siegel</td>
<td>✓</td>
</tr>
<tr>
<td>F. Hoge</td>
<td>✓</td>
</tr>
<tr>
<td>S. Hooker</td>
<td>✓</td>
</tr>
<tr>
<td>D. Kamykowski</td>
<td>✓</td>
</tr>
<tr>
<td>(G. Kirkpatrick)</td>
<td>✓</td>
</tr>
<tr>
<td>M. Kishino</td>
<td>✓</td>
</tr>
<tr>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

2. The NASA/HQ Perspective (R. Frouin)

3. The Operational Chlorophyll a Algorithm (K. Carder): Based on comments received during and since the last bio-optical algorithm workshop, K. Carder has restructured the algorithm and rewritten the algorithm description. That document was distributed to the Science Working Group Bio-optical Algorithm Subgroup in August for comment. The subgroup is now generally satisfied with the algorithm structure. The primary concern is that the algorithm has been developed using
a small data set from the Gulf of Mexico, the North Pacific, and the North Atlantic. There are also some concerns about the particulate backscattering coefficient parameterization. To address the issue of general applicability, an independent validation effort is being undertaken. The validation will seek to test not only the algorithm as a whole, but also specific components of the algorithm. The specific components include the following:

A. Remote sensing reflectance as a function of absorption and backscattering coefficients;
B. Particulate backscatter coefficient as a function of reflectance at 443, 490, and 555 nm;
C. Gelbstoff absorption as a function of absorption at 400 nm;
D. Phytoplankton absorption spectrum as a function of the phytoplankton absorption at 675 nm; and
E. Chlorophyll a concentration as a function of phytoplankton absorption at 675 nm.

1) J. Campbell, working with the SeaWiFS Project, will solicit and distribute contributed data sets for this purpose. One recurring comment voiced by several attendees was the concern that the absorption coefficients for water being used by the marine optics community may be too large. K. Carder will provide the algorithm code to anyone who wishes to participate.

2) If the semi-analytic chlorophyll algorithm fails to return a value, a reflectance ratio algorithm is used. K. Carder and G. Moore will examine the ratio defined in the draft document and also examine alternative empirical algorithms (see discussion in next section).

4. CZCS Pigment Algorithms—both Empirical and Semi-analytic (G. Moore): G. Moore presented results of studies on empirical and simulated ratio algorithms and provided an initial draft of a paper for comment. The paper also examines relative concentrations of different pigments. The group suggested that an algorithm using two 2-band reflectance ratios be used for the operational CZCS pigment product. The options, however, are available from the presentation included only ratios with 412 and 443 nm reflectances in the numerator. In high concentration waters, these reflectances are small and are subject to errors due to the atmospheric correction, instrument noise, and instrument calibration. It was suggested that G. Moore examine algorithms which incorporate a 490–555 nm reflectance ratio rather than a ratio using the 412 nm band. It was also decided that the best band ratios available should be used and not just those compatible with the CZCS band. He should also incorporate K. Carder’s data into the analysis.

5. SeaWiFS K(490) Algorithm (J. Mueller): The question is whether or not the differences between the CZCS bands and SeaWiFS bands, i.e., 550 nm versus 555 nm, cause a significant change in the Austin-Petzold K(490) algorithm constants. J. Mueller did not have time to examine this issue in detail and will follow up with a report.

6. Field Program Reports: The intent here was not to present results, but activities. In the cases where investigators are being funded by the SeaWiFS Project (Siegel, Mitchell, Clark, and Mueller), the updates should review past and future cruise plans, numbers of stations, data collected, status of analysis, data delivery to SeaWiFS Project, etc. Each presentation was to be no longer than 15 minutes.

A. Bermuda Bio-optical Time Series (D. Siegel)
B. CalCoFI Bio-optical Time Series (G. Mitchell)
C. Japanese Field Program Update (M. Kishino)
D. MODIS Case-2 Field Studies (K. Carder)
E. Arabian Sea Bio-optical Program (D. Phinney and C. Davis)

7. Operational Chlorophyll a Algorithm Continued (K. Carder)
8. CZCS Pigment Algorithm Continued (G. Moore)

3.6.2 Optical Protocols

1. Workshop Objectives and the Action Items Resulting from BAOPW-3 (J. Mueller)

2. Data QC and Analysis of the Round-Robin Results (D. Siegel): The Data Analysis Round-Robin (DARR) did show that different analysis techniques can lead to substantial differences in derived products, especially at wavelengths longer than 600 nm and for upwelling radiance. The report is due from D. Siegel and will be published in the SeaWiFS Technical Report Series.

3. Status and Discussion of the Protocols Update (J. Mueller):

a) Outline of Revised and Added Protocols—the revised or added section numbers from the original protocols TM (Volume 5) appear in parentheses.

1) Absorption Profiles (in situ; Sections 5.2.4 and 6.8.2)
2) Absorption Samples (spectrophotometric; Sections 5.4.2 and 6.8.2)
3) Backscattering Profiles (Section 5.2.5)
4) Instrument Self-Shading Corrections to L_u and E_u at the surface ($z = 0^-$, Sections 5.1.6 and 6.1.7)
5. Above-Water L_W from Ships and Low-Altitude Aircraft (Sections 3.3, 5.1.7, 5.1.8, and 6.2)
6. Case-1 and Case-2 Sampling Protocols (Sections 5.8 and 5.8.3)
7. Draft hardcopies of the revised protocols TM (Volume 25, Revision 1 of the protocols) were distributed and discussed in detail. Final revisions were completed by the end of the second day and were handed to the SeaWiFS Project for publication.

4. SIRREX-3 Results (J. Mueller): SIRREX-3 went reasonably well. All data were documented in near-real time and have been ingested into the SeaWiFS Bio-optical Archive and Storage System (SeaBASS). One problem that arose was the primary FEL lamp used as the standard lamp is deteriorating. J. Mueller will be submitting the round-robin report for publication in the SeaWiFS TM Series.

5. Protocols Update Continued (J. Mueller)
A. Final edits, as well as editorial improvements, will be made of the protocol revisions to reconcile any outstanding issues which surface in the discussion.
B. An outline identifying unresolved protocol areas in which significant progress is expected, to be included in Revision 2, will be developed.

3.6.3 Workshop Wrap-Ups

1. Action Items
A. K. Carder and G. Moore: refine the empirical reflectance ratio algorithm used in the chlorophyll a algorithm.
B. G. Moore: examine empirical CZCS pigment algorithms that incorporate a 490/555 nm reflectance ratio. Collect comments on the draft Aiken et al. paper and assist co-authors in getting the manuscript submitted to the SeaWiFS Project for publication.
C. J. Campbell and C. McClain: collect, organize, and distribute data sets suitable for testing the chlorophyll a algorithm (overall algorithm and specific components).
D. D. Siegel: finalize the DARR report.
E. J. Mueller: complete the accuracy analysis of the Austin-Petzold algorithm for the SeaWiFS bands. Submit the SIRREX-3 results to the SeaWiFS Project for publication.
F. W. Balch, J. Campbell, K. Carder, G. Cota, G. Mitchell, G. Moore, and D. Siegel: conduct the chlorophyll a algorithm studies over the next 2-3 months and distribute their results to the SeaWiFS Project and the Bio-optical Algorithm Subgroup by the end of February.

3.7 Revised Baseline Product List
The listings of standard products recommended by the Project Scientists, as of April 1994, are given in Tables 7-9. (These products may be revised in the future and will be reported in subsequent volumes of the SeaWiFS Technical Report Series.) There are a few changes from the original recommendations of the Bio-Optical Working Group. These changes have been made as a result of input from the Science Team and subsequent discussions within the SeaWiFS Project, in order to provide the most useful information at launch.

Changes in the level-2 products include:

a) saving the aerosol radiance (L_a) at 670 nm rather than the water-leaving radiance at $L_W(670)$, since the water-leaving radiance at 670 nm is very small; and
b) at launch, the atmospheric correction will assume that $L_W(670)$ equals zero.

The single scattering epsilon will be reported for the 670/865 nm combination, along with the aerosol optical depth at 865 nm.

The level-3 binned products follow the level-2 product listing. It is important to note that binning must be optimized for a single product, in this case chlorophyll a, since only a single set of statistics for sample numbers will be accumulated. Accordingly, the high aerosol optical depth values, where the atmospheric correction may have unacceptable high errors, will not be included in the binned aerosol products. The flags planned for use at launch are also defined, and have undergone some revision.

The approach taken is to attempt to process all ocean data to level-2 and provide flags for certain conditions. Threshold values need to be set for several of the flags, and evaluated after launch. Where atmospheric correction is impossible, and over land, ice, and clouds, the total at-satellite radiance will be reported. The current defaults for producing level-3 fields according to how flags are set are also given. The present listing should serve well through the instrument check-out period.

It is important to note that, if necessary, the products list can be revised with each reprocessing. For example, at some point, it might make sense to report water-leaving radiance at 670 nm for reflective waters, report values for 765 nm corrections and aerosol parameters, and to have multiple level-3 products optimized for different geophysical fields, e.g., aerosols and coccolith concentration. The usefulness of the present binned water-leaving radiances can also be evaluated at that time.

The final algorithms for some of the masks and flags are still being defined, e.g., the stray light flag. Once this initial suite of operational mask and flag algorithms is finalized, a separate summary description will be published in the SeaWiFS Technical Report Series.
Table 7. SeaWiFS level-2 products.

<table>
<thead>
<tr>
<th>Product</th>
<th>Original Bytes</th>
<th>Revised Bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Baseline</td>
<td>Baseline</td>
</tr>
<tr>
<td>$L_{WN}(412)$</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>$L_{WN}(443)$</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>$L_{WN}(490)$</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>$L_{WN}(510)$</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>$L_{WN}(555)$</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>$L_a(670)$</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>$L_a(765)$</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>$L_a(865)$</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>$\epsilon(670,865)$</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>$\tau_a(865)$</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>CZCS Pigment</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Chlorophyll a</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>$K(490)$</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Masks/Flags</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

| Total | 12 | 13 |

<table>
<thead>
<tr>
<th>Scaling</th>
<th>All Linear</th>
<th>All Linear</th>
</tr>
</thead>
<tbody>
<tr>
<td>Masked Pixels</td>
<td>Values = 0</td>
<td>Values = Level-1 radiances for L_{WN} and L_a products, 0 for other products</td>
</tr>
</tbody>
</table>

Definitions:

a) L_{WN} = normalized water-leaving radiance;
b) L_a = aerosol radiance;
c) τ_a = aerosol optical thickness;
d) Masks/Flags = bit plane overlays of QC parameters, e.g., cloud and ice mask, 0-30 m isobath; and
e) L_a and ϵ values are single scattering parameters.

Table 8. SeaWiFS level-3 binned products.

<table>
<thead>
<tr>
<th>Product</th>
<th>Original Baseline</th>
<th>Revised Baseline</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Baseline</td>
<td>Baseline</td>
</tr>
<tr>
<td>$L_{WN}(412)$</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>$L_{WN}(443)$</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>$L_{WN}(490)$</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>$L_{WN}(510)$</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>$L_{WN}(555)$</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>$L_a(670)$</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>$L_a(765)$</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>$L_a(865)$</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>$\epsilon(670,865)$</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>$\tau_a(865)$</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>CZCS Pigment</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Chlorophyll a</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>$K(490)$</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Chlorophyll $a/K(490)$</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

| Total | 12 | 12 |

The SeaWiFS level-3 standard mapped images are: CZCS pigment, chlorophyll a, $K(490)$, $L_{WN}(550)$, and $\tau_a(865)$.

E.R. Firestone and S.B. Hooker
Table 9. SeaWiFS level-2 masks and flags.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Bits</th>
<th>Mask or Flag</th>
<th>Bin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engineering Tolerance: can be displayed line by line</td>
<td></td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Tilt: can be displayed line by line</td>
<td></td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Solar Zenith Angle</td>
<td>1</td>
<td>Flag</td>
<td>No</td>
</tr>
<tr>
<td>S/C Zenith Angle</td>
<td>1</td>
<td>Flag</td>
<td>No</td>
</tr>
<tr>
<td>High L_t</td>
<td>1</td>
<td>Flag</td>
<td>No</td>
</tr>
<tr>
<td>Stray Light</td>
<td>1</td>
<td>Flag</td>
<td>No</td>
</tr>
<tr>
<td>Land</td>
<td>1</td>
<td>Mask</td>
<td>No</td>
</tr>
<tr>
<td>Bathymetry</td>
<td>1</td>
<td>Flag</td>
<td>Yes</td>
</tr>
<tr>
<td>Cloud/Ice/Land</td>
<td>1</td>
<td>Mask</td>
<td>No</td>
</tr>
<tr>
<td>Missing Ancillary Data</td>
<td>1</td>
<td>Flag</td>
<td>Yes</td>
</tr>
<tr>
<td>Glint</td>
<td>1</td>
<td>Flag</td>
<td>No</td>
</tr>
<tr>
<td>Atmospheric Correction Algorithm Failure</td>
<td>1</td>
<td>Flag†</td>
<td>No</td>
</tr>
<tr>
<td>High $L_a(865)$</td>
<td>1</td>
<td>Flag</td>
<td>No</td>
</tr>
<tr>
<td>Negative L_W</td>
<td>1</td>
<td>Flag</td>
<td>No</td>
</tr>
<tr>
<td>Coccolithophore</td>
<td>1</td>
<td>Flag</td>
<td>No</td>
</tr>
<tr>
<td>Turbid Case-2</td>
<td>1</td>
<td>Flag</td>
<td>Yes</td>
</tr>
<tr>
<td>Low $L_W(555)$</td>
<td>1</td>
<td>Flag</td>
<td>No</td>
</tr>
<tr>
<td>Level-3 Binning</td>
<td>1</td>
<td>Flag</td>
<td>No</td>
</tr>
<tr>
<td>Total</td>
<td>16</td>
<td>Available</td>
<td>0</td>
</tr>
</tbody>
</table>

Definitions:

1. **Flag:** a bit plane is switched on, but data is still processed to level-2. Level-3 processing will exclude pixels flagged for tilt, stray light, land mask, cloud/ice, glint, and coccolithophores.

2. **†:** level-2 processing is attempted, but atmospheric correction procedures failed to return parametric values with unacceptable ranges. Level-1 L_t is assigned to the pixel values.

3. **Mask:** a bit plane is switched on, the pixel is assigned its level-1 count value and is not processed to level-2. Masked pixels are excluded from level-3 processing.

4. **Scan Line Flags Engineering Tolerance:** a bit-per-scan line is reserved within the level-2 file for each of 32 sensor engineering parameters to indicate if any of the parameters are outside normal operating range.

5. **Tilt:** the scan line ranges for each tilt state (-20°, +20°, 0°, and tilting) are provided in the header of each file. Also, the tilt angle is stored with every scan line as a real number. Scan line ranges for the tilting state will be excluded from binning.

6. **Pixel Flag and Mask Descriptions Solar Zenith Angle:** all pixels with solar zenith angles greater than 70° will be flagged.

7. **Spacecraft (S/C) Zenith Angle:** all pixels with solar zenith angles greater than 70° will be flagged.

8. **High L_t:** all pixels having counts (radiances) greater than the knee value (760 counts) in one or more bands will be flagged.

9. **Stray Light:** a fixed number of GAC pixels in the vicinity of a pixel whose count level exceeds a specified value will be flagged as being contaminated by stray light. The flag will be generated using both bands 7 and 8 because of the even-odd band asymmetry in the stray light and because the effects are most pronounced in these bands.

10. **Land:** pixels over land, as determined using an external database, will be masked.

11. **Bathymetry:** pixels over water with depths less than or equal to 30 m, as determined using an external database, will be flagged.

12. **Cloud/Ice/Land:** pixels having an albedo at 865 nm greater than a fixed value, e.g., 0.9%, will be flagged.

13. **Missing Ancillary Data:** if a gap in the ancillary data exists, the monthly climatological value is used and the pixel will be flagged.

14. **Glint:** pixels having a $L_a(865)$ greater than a fixed fraction of $L_t(865)$ will be masked.

15. **Atmospheric Correction Algorithm Failure:** pixels where the atmospheric correction algorithm fails to return epsilon values within a specified range will be flagged and assigned the level-1 total radiance values.

16. **High L_a:** pixels having a $L_a(865)$ greater than a fixed fraction of $L_t(865)$ will be flagged.

17. **Negative L_W:** any pixel having a computed L_W greater than zero will be flagged and the value will be set to zero.

18. **Coccolithophore:** using a modified version of the method of Brown and Yoder (1994), pixels selected as being contaminated by coccolithophores will be flagged. The primary modification will be to delete the $L_a(670)$ test.

19. **Turbid Case-2:** The reflectance algorithm recommended in Bricaud and Morel (1987) for discriminating between Case-1 and Case-2 waters will be used to flag Case-2 water.

20. **Low $L_W(555)$:** Pixels where the water-leaving radiance at 555 nm is below a predefined level, e.g., 10 times the noise equivalent radiance (NEΔL), will be flagged.
3.8 Colleagues’ Addresses

Following are the names and addresses of attendees of the various workshops and reviews presented in Sections 3.1–3.7. Members of the various teams and panels are identified with their team name(s) shown in slanted type face.

James Aiken
SeaWiFS Science Team
Plymouth Marine Laboratory
Prospect Place
West Hoe
Plymouth, PL1 3DH
UNITED KINGDOM
Telephone: 44-752-222772
Fax: 44-752-670637
Internet: j.aiken@pml.ac.uk

Steven Ackleson
Ocean Optics Program, Code 3233
Office of Naval Research
800 N. Quincy Street
Arlington, VA 22217
Telephone: 703-696-4732
Fax: 703-696-4884
Internet: ackless@onrhq.onr.navy.mil

Robert Arnone
NRL/Code 7240
Stennis Space Center, MS 39527
Telephone: 601-688-5268
Fax: 601-688-4149
Internet: arnone@csips2.nrlssc.navy.mil

Kevin Arrigo
NASA/GSFC/USRA/Code 971
Greenbelt, MD 20771
Telephone: 301-286-9634
Fax: 301-286-0240
Internet: kevin@shark.gsfc.nasa.gov

William Balch
SeaWiFS Science Team
MBF/RSMAS/U. of Miami
4600 Rickenbacker Causeway
Miami, FL 33149-1098
Telephone: 305-361-4653
Fax: 305-361-4600
Internet: balch@rcf.rsmas.miami.edu

Michael Behrenfeld
Brookhaven National Laboratory
Upton, NY 11973
Telephone: 516-828-2123
Fax: 516-828-3000
Internet: behrenfe@bnlux1.bnl.gov

Samuel Bergeson-Willis
NASA/GSFC/Code 704
Greenbelt, MD 20771
Telephone: 301-286-5344
Fax: 301-286-1718
Internet: sam.bergeson-willis@ccmail.gsfc.nasa.gov

William Broenkow
Moss Landing Marine Laboratory
PO Box 450
Moss Landing, CA 95039
Telephone: 408-633-3304
Internet: broenkow@mlml.calstate.edu

Christopher Brown
NASA/GSFC/NRC/Code 971
Greenbelt, MD 20771
Telephone: 301-286-0946
Fax: 301-286-0240
Internet: chrisb@puffin.gsfc.nasa.gov

Robert Caffrey
MOBY Review Panel
NASA/GSFC/Code 735
Greenbelt, MD 20771
Telephone: 301-286-4766
Internet: r.caffrey@baloo.gsfc.nasa.gov

Janet Campbell
OPAL/Morse Hall
Univ. of New Hampshire
Durham, NH 03824
Telephone: 813-893-9148
Fax: 813-893-9189
Internet: campbell@kelvin.unh.edu

Kendall Carder
SeaWiFS Science Team
Dept. of Marine Science
MODIS Science Team
Univ. of South Florida
140 Seventh Avenue, South
St. Petersburg, FL 33701-5016
Telephone: 813-893-9148
Fax: 813-893-9189
Internet: kcarder@monty.marine.usf.edu

Francisco Chavez
Associate Scientist
Monterey Bay Aquarium Research Institute
160 Central Avenue
Pacific Grove, CA 93950
Telephone: 408-647-3709
Fax: 408-649-8587
Internet: chfr@mbari.org

Dennis Clark
SeaWiFS Science Team
NOAA/NESDIS
MODIS Science Team
E/RA 28, WWB, Rm. 104
Washington, DC 20233
Telephone: 301-763-8102
Fax: 301-763-8020
Internet: dclark@orbit.nesdis.noaa.gov

Mary Cleave
SeaWiFS Project
NASA/GSFC/Code 970.2
Greenbelt, MD 20771
Telephone: 301-286-1404
Fax: 301-286-1775
Internet: mary@ardbeg.gsfc.nasa.gov
Thomas Riley
NASA/GSFC/Code 916
Greenbelt, MD 20771
Telephone: 301-286-6807
Internet: riley@chapman.gsfc.nasa.gov

David Siegel
SeaWiFS Science Team
UCSB/CRSEO
Santa Barbara, CA 93106-3060
Telephone: 805-893-4547
Fax: 805-893-2578
Internet: davey@crseo.ucsb.edu

Raymond Smith
SeaWiFS Science Team
CRSEO/UCSB
Santa Barbara, CA 93106
Telephone: 805-893-4709
Fax: 805-893-2578
Internet: ray@crseo.ucsb.edu

Petra Stegman
Graduate School of Oceanography
Univ. of Rhode Island
South Ferry Road
Narragansett, RI 02882
Telephone: 401-792-6863
Fax: 401-792-6728
Internet: petra@uri.gso.uri.edu

Richard Stumpf
Center for Coastal Geology
US Geological Survey
600 4th Street
St. Petersburg, FL 33701
Telephone: 813-893-3100 ext. 3024
Fax: 813-893-3333
Internet: rstumpf@wayback.er.usgs.gov

Ajit Subramaniam
Brookhaven National Laboratory
Upton, NY 11973
Telephone: 516-828-2123
Fax: 516-828-3000
Internet: ajit@bnlcm6.bnl.gov

Charles Trees
SeaWiFS Science Team
SDSU/CHORS
6505 Alvarado Road, Suite 206
San Diego, CA 92120-5005
Telephone: 619-594-2241
Fax: 619-594-4570
Internet: chuck@chors.sdsu.edu

Alan Webb
NASA Headquarters
Code YD
Washington, DC 20456
Telephone: 202-554-6482
Fax: 202-554-6499
Internet: awebb@mtpe.hq.nasa.gov

Alan Weidemann
NOARL/Code 301
Stennis Space Center, MS 38929
Telephone: 601-688-5253
Fax: 601-688-5997

Mark Yarbrough
MOBY Team
Moss Landing Marine Laboratory
PO Box 450
Moss Landing, CA 95039
Telephone: 408-755-8685
Fax: 408-755-8686
Internet: yarbrough@mlml.calstate.edu

Charles Yentsch
SeaWiFS Science Team
Bigelow Laboratory
McKown Point
W. Boothbay Harbor, ME 04575
Telephone: 207-633-9600
Fax: 207-633-9641

James Yoder
SeaWiFS Science Team
URI/GSO
Narragansett, RI 02882
Telephone: 401-792-6864
Fax: 401-792-8098
Internet: yoder@uri.gso.uri.edu

J. Ronald Zaneveld
SeaWiFS Science Team
Oregon State University
Ocean. Admin. Bldg. 104
Corvallis, OR 97331-5503
Telephone: 503-737-3571
Fax: 503-737-2064
Internet: zaneveld@oce.orst.edu

James Zaitzeff
NOAA/NESDIS
Oceanic Sciences Branch, Code E/RA13
World Weather Bldg., Rm. 102
Washington, DC 20233
Telephone: 301-763-8231
Fax: 301-763-8020
Internet: jzaitzeff@orbit.nesdis.noaa.gov

Gerhard Zimmerman
DLR, Institute for Space Sensing Applications
German Aerospace Research Establishment
Rudower Chaussee 5
0-1199 Berlin, GERMANY
Telephone: 49-30-69545-669
Fax: 49-30-69545-642
CUMULATIVE INDEX

Unless indicated otherwise, the index entries that follow refer to some aspect of the SeaWiFS instrument or project, for example, the mission overview index entry refers to an overview of the SeaWiFS mission.

- A -

absorption study:
 pressure and oxygen, 13(ch. 3).
absorption correction, 13(19-20).
Advanced Very High Resolution Radiometer, see AVHRR.
airborne spectral radiometry, 5(7-8).
aircraft calibration technique, 3(Fig. 19 p. 27).
algorithms, 1(3, 17); 4(2).
 atmospheric correction, 3(1-2, Fig. 4 p. 5, 16, 23, 27-28, 31, 32-34); 8(4, Table 1 p. 14, 17, Table 4 p. 21); 13(1, 4, 9, 27).
bio-optical, Vol. 5.
data, 9(1); 12(3-4).
database development, 3(28).
derived products, 3(27-28); 13(1).
development, 1(5); 3(23, 27-35, Fig. 22 p. 33); 5(Table 4 p. 11); 8(4, 10).
field studies, 3(30-32, Fig. 22 p. 33, 34-35).
input values, 13(Table 16 p. 44).
linearity and stability, 5(12).
optical measurements, Vol. 5.
pigment, 13(1, 12).
validation of, 1(3); 8(16, Table 4 p. 21).
see also GAC.
along-track, 3(38).
 see also propagation model.
ancillary:
 data climatologies, 13(2, ch. 7, and Plates: 16-18).
 measurements, 5(8, 27-28, 30).
animation:
 meteorological data sets, 13(41-42).
 ozone data sets, 13(41-42).
ascending node, Vol. 2.
 computation methods, 2(1-2).
 tilt strategy, 2(Table 1 p. 2).
atmospheric conditions, 9(6-7).
atmospheric contributions, 9(4-6).
atmospheric measurements, 5(2, 28-29).
at-satellite radiances, 15(7-13, Table 10 p. 11).
AVHRR:
 deriving vegetation index, 7(2).
 GAC data, 7(3-4).
 LAC data, 7(2-4).
 LDTNL test, 7(4).
 nighttime IR data, 7(5).
 thermal IR channels, 7(1).
algorithms, 1(19); 3(8, 13, Fig. 20 p. 29, 29); 5(3); 8(10).
algorithm working group members, 8(Table 1 p. 14); 12(Table 1 p. 3, 3).
 Algorithm Workshop, 12(3-5, 6-8).
data 12(Table 2 p. 4).
 see also algorithm development.
bio-optics, 1(3, 5, 7, 19); 8(10).
 algorithm, 13(1, ch. 1, 27).
bright target recovery, 15(Fig. 8 p. 15).
Brouwer-Lyddane model, 11(2-5, 11, 15-16, Figs. 5-8 pp. 8-9, Fig. 13 p. 12); 15(2-3).
see also models.
Buoy:
 see MOBY.
 see optical buoy.
 see optical mooring.

- B -
baselines, 8(6-13).
algorithms, 8(6-7).
ancillary data, 8(7).
data archive and delivery, 8(9-10).
data for bio-optical algorithms, 8(10).
data for vicarious calibration, 8(10-11).
data processing and software, 8(8-9).
data products, 8(12-13).
data quality and acceptance, 8(7-8).
detector failure contingency, 8(7-8).
equator crossing contingency, 8(12).
ground station support, 8(11).
in situ data policy, 8(13).
launch slip contingency, 8(11).
level-3 binning, 8(8, 16).
loss of tilt contingency, 8(11).
navigation accuracy contingency, 8(11).
optical protocols, 8(12).
orbit contingency, 8(12).
orbital altitude contingency, 8(11).
power limitation contingency, 8(11).
products, 3(27-28); 5(1).
real-time data access, 8(12).
recommendations, 8(13-19).
see also data.
basin-scale processes, 1(4, 6-7).
biogeochemical, 1(2, 19); 8(1).
properties, 5(6-7).
see also Science Team Meeting. Abstracts.
bio-optical:
algorithms, 1(19); 3(8, 13, Fig. 20 p. 29, 29); 5(3); 8(10).
algorithm working group members, 8(Table 1 p. 14); 12(Table 1 p. 3, 3).
 Algorithm Workshop, 12(3-5, 6-8).
data 12(Table 2 p. 4).
 see also algorithm development.
bio-optics, 1(3, 5, 7, 19); 8(10).
 algorithm, 13(1, ch. 1, 27).
bright target recovery, 15(Fig. 8 p. 15).
Brouwer-Lyddane model, 11(2-5, 11, 15-16, Figs. 5-8 pp. 8-9, Fig. 13 p. 12); 15(2-3).
see also models.

azimuth:
 angles at equinox, 2(2, 10, 16).
 angles at solstice, 2(Fig. 5 p. 7, 10, 16).
satellite angle, 13(46).
solar angle, 2(2, 16); 7(1); 13(Table 11 p. 29, 46).
spacecraft angle, 2(2, Fig. 6 p. 8, 16); 13(Table 11 p. 29).
relative angle, 2(2, Fig. 7 p. 9, 10, Fig. 10 p. 13, 16).

calibration, 5(2); 10(Tables 1–2 p. 4, Fig. 3 p. 6, Fig. 20 p. 23, Fig. 21 p. 24); Vol. 14; Vol. 16.
background on, 10(2–3).
initialization, 5(4–6).
in situ instruments, 14(2).
lunar, 1(11, 18); 3(Fig. 15 p. 22); 10(1–3, 7, 10, Table 3 p. 10, Fig. 9 p. 11, Figs. 12–15 pp. 14–17, Fig. 16 p. 20, Fig. 19 p. 22, Table 4–5 p. 19, 25); 15(Fig. 2 p. 5, Table 5 p. 7, Figs. 22–23 pp. 34–35).
onboard, 3(21); 5(2–3); 10(1–2).
pigment, 5(24).
quality control, 10(25).
round-robin, 8(4, 17, Table 4 p. 21); Vol. 14; Vol. 16.
sensor, 1(11); 5(2–3); 17(2, 3).
solar, 1(11, 18); 3(24); 10(1–7, Fig. 2 p. 5, Fig. 4 p. 6, Figs. 5–8 pp. 8–9, Figs. 10–11 pp. 12–13, 18); 15(Fig. 3 p. 6, Table 5 p. 7, Fig. 20 p. 32).
solar diffuser, 10(3–5, 7).
spectral, 5(24).
sphere test, 14(Fig. B2 p. 48, Table B2 p. 49).
sun photometers, 5(24).
system test, 14(Fig. B1 p. 48).
vicarious, 5(2–4); 8(1–2).
working group members, 8(Table 1 p. 14).
see also round-robin.
see also SeaStar.
see also sphere.
calibration and validation, 1(3, 8, 14, 18–22); Vol. 3; 17(3, 5–6, 10–14, 15).
baselines, 3(17); 8(3); see also baselines.
field deployment, 8(17, Table 2 p. 18, Table 4 p. 20).
on board, 3(21–23).
post-launch, 3(23–27).
preflight program, 3(17–21).
program milestones, 3(Fig. 12 p. 14).
program schematic, 3(Fig. 11 p. 14).
team (CVT), 13(1).
see also calibration.
see also CVT.
see also initialization.
characterization:
collector cosine response, 5(18–19).
immersion factors, 5(19–20).
pressure effects, 5(21).
radiance field-of-view, 5(18).
radiometric, 5(15–17).
spectral bandpass, 5(15).
temperature, 5(20–21).
temporal response, 5(17).
climatology generation, 13(40–41).
cloud detection, 7(1, 5).
MODIS, 7(1).
see also MODIS-N.
cloud screening, Vol. 7.
cloud screening cont.
determining thresholds, 7(2–3).
direct thresholds, 7(1–4).
evaluating methods, 7(5–6).
more complex methods, 7(4–5).
spatial coherence, 7(3–4).
see also AVHRR GAC data.
COADS:
data, 13(Plates: 16–18).
time series, 13(36–40).
Coastal Zone Color Scanner, see CZCS.
command:
schedules, 15(3–7, Table 3 p. 4, Table 4 p. 6).
sequence, 15(Tables 7–8 p. 11).
commercial applications, 1(7).
Comprehensive Ocean-Atmosphere Data Set, see COADS.
contingencies:
detector failure, 8(11).
equator crossing, 8(12).
launch slip, 8(11).
loss of tilt, 8(11).
navigation accuracy, 8(11).
orbit, 8(12).
orbital altitude, 8(11).
power limitation, 8(11).
correction study:
pressure and oxygen, 13(1–4).
cross-track, see propagation model.
CVT, 13(1).
CZCS, 1(1, 5, 6–7, 19); 3(1).
 algorithms, 3(1–11, 23); 13(1–4).
application of data, 9(7–9).
calibration and validation, 17(10–11).
channels, 7(1, 5).
data collection, 3(6, Fig. 5 p. 5, 21, 30), 7(1).
global sampling, 3(Fig. 9 p. 10).
level-2 products, 4(1).
level-2 processing parameters, 4(Table 2 p. 2).
modeling compared to SeaWiFS, 3(Fig. 4 p. 5).
orbit, 3(2).
orbital characteristics, 9(Table 2 p. 3).
overlapping scenes study, 13(ch. 5).
parameters and characteristics, 1(Table 2 p. 5), 3(Table 1 p. 1).
cloud screening cont.
 pigment algorithm, 13(Tables 12–13 p. 31).
 pigment concentration, 1(5–6); 3(1–2, 8, 27); 13(1, 2, 4, Figs. 1–5 pp. 5–8, 9, Figs. 8–9 p. 11, 15, Figs. 14–16 pp. 17–18, 22, Figs. 18–19 p. 26, Fig. 20 p. 28, Table 10 p. 29, ch. 6, Table 18 p. 45, and Plates: 1–14, 19–20).
 quality control, 3(Fig. 7 p. 8, Fig. 8 p. 9, 32, 35).
ringing mask comparison, 13(2, ch. 8, and Plate 19).
sensor, 1(5); 3(8).
sensor degradation, 3(23).
time of launch, 2(1).
vicarious calibration, 3(Fig. 6 p. 7, 11, 23, 24–27); 5(3–4).
see also NET.
ancillary, 8(7); 13(2, Fig. 23 p. 36).
archive and delivery, 5(2); 8(9-10).
collection, 3(24); 8(4).
distribution, 1(16); 8(2, 4, 16, 17).
format, 8(43-44); 12(5); 15(16-20, Fig. 9 p. 17).
interpolation, 13(22).
management, 1(3, 11-18); 3(32).
policy, 3(37-38); 8(13, Table 4 p. 21, 41-42).
processing, 1(3, Fig. 2 p. 4, 11-16, Fig. 10 p. 20, 22); 3(13, 32); 7(5); 8(4, 8-9); 13(16, 21, 35).
products, 8(12-13, 15-17, Table 4 pp. 20-21, 42-43); 15(2).
real-time access of, 8(12).
requirements, 5(4-6).
subsampling, 4(1).
subsets, 17(3-4, 12-14).
using SEAPAK with, 4(1-2).
data sets, 1(3); Vol. 9; Vol. 15.
animation of, 13(41-42).
meteological conditions, 9(6-7).
meteological contributions, 9(4-6).
availability of, 9(9-13); 15(40).
code for simulating, 9(13-15).
eci, 15(Table 9 p. 11).
meteorological, 13(35, Table 14 p. 36).
meteorological animation, 13(41-42).
methods for simulating, 9(2-7).
normalized water-leaving radiances, 9(2-3).
orbit model, 9(3-4).
ozone, 13(35, Fig. 31 p. 42).
ozone animation, 13(41-42).
simulated total radiances, 9(Figs. 2-4 pp. 10-12).
start and stop times, 9(Table 6 p. 9).
ten-bit words and data structures, 9(7).
viewing and solar geometries, 9(4-6).
descending node, Vol. 2.
see also ascending node.
detector failure contingency, see contingencies.
ecosystem, 17(3, 9-10, 11, 13-17).
eosdis, 17(3, 13, 17).
equator crossing time, 2(10, 16); 9(Tables 6-7 p. 9).
equinox:
see azimuth.
see sun glint.
see zenith.
field deployment, see calibration and validation.
field program:
instrumentation, 3(34-35).
field program cont.
computing network, 3(Fig. 21 p. 31).
filter radiometer, 14(Table B9 p. 56).
flags:
algorithm, 8(3, 4, 17).
level-2 processing, 8(7); 12(4, Table 3 p. 4).
gac, 1(3, 16); 15(4); 17(5, 12).
avhrr data, 7(3).
algorithms, Vol. 4.
generation mechanisms, 4(Table 1 p. 1).
generation methods, Vol. 4.
resolution, 4(Plates: 1-8).
sampling techniques, Vol. 4.
see also AVHRR.
geometry, 2(1).
derived parameters, 2(1).
solar, 2(1, 10, 16).
sun glint, 2(1).
viewing, 2(1, 10, 16).
see also azimuth.
see also zenith.
global area coverage, see GAC.
global-scale processes, 1(6-7).
ground coverage, 2(2, Fig. 1 p. 3).
ground station coverage, 8(11).
ground systems and support, 1(14-15).
hrpt:
data, 1(14, 19); 8(8-9, 19); 15(2, 4, 27, Figs. 24-27 pp. 36-39, and Plates: 4-6).
policies, 8(17, Table 4 p. 20).
infrared radiometers, 7(1).
initialization, 5(4-6, Table 1 p. 5).
sampling, 5(31-32).
intercalibration, Vol. 14; Vol. 16.
sources, 14(Table 1 p. 4).
data archive 14(56-57, Tables C1 and C2 p. 57).
joint commercial aspects, 1(8).
LAC, 1(3).
data, 1(8, 11); 15(2, 4, 27, Figs. 16-19 pp. 28-31, and Plate 3).
lamps, Vol. 14; Vol. 16.
apparent drift, 14(Fig. 6 p. 13).
calibration setup, 14(Fig. B7 p. 53).
GSFC reference, 14(Table 3 p. 12).
lamps cont.
irradiance, 14(Fig. B4 p. 50, Table B5 p. 52, Fig. B8 p. 53, Table B7 p. 55).
operating currents, 14(Table 8 p. 50, Table B5 p. 52, Fig. B8 p. 53, Table B7 p. 55).
standards, 16(3-23).
see also calibration.
see also spectral irradiance.
see also spectral radiance.
see also sphere.
see also transfer.
lunar observations, Vol. 10.

- M -
marine optical buoy:
see MOBY.
see optical buoy.
mask:
algorithm, 8(3, 4, 17).
level-2 processing, 3(6); 8(7); 12(4, Table 3 p. 4).
Miami edge, 13(29).
see also sun glint.
measurement protocols, 5(26-33).
meeting agenda, see Science Team Meeting.
mesoscale processes, 1(6).
Miami edge mask, 13(29).
mission:
oplications, 1(14-18); 11(1-2, 15).
overlap, 17(12).
overview, Vol. 1; 8(1).
MOBY, 1(3); 8(3, 4).
system schematic, 3(Fig. 17 p. 25).
see also optical buoy.
see also optical mooring.
modeling, 10(1, 10, 18, 25).
models:
orbital prediction, 1(17).
see also Brouwer-Lyddane models.
see also modeling.
see also perturbation models.
see also propagation models.
MODIS or MODIS-N, 1(19); 17(3, 5, 6-7, 8, 11, 13-15).
instrument characteristics, 3(Table 4 p. 12).
presentations, 8(3-5).

- N -
navigation, 8(11); 9(4); 11(2); 15(3).
of pixels, 9(4).
NET, 3(2, Figs. 1-3 pp. 2-4, 29-30); 12(4).
NIMBUS Experiment Team, see NET.
normalized water-leaving radiances, 1(15); 3(2, 6, 24, 28-29, 37-38); 4(1-3, 20); 5(1, 3-4, 6, 8, 13, 31-32, 37-38); 8(16, 42); 9(2-3).
non-research uses, 1(7-8).

- O -
ocean color, 1(1-4, 8, 10); 8(1-3, 22-43); 13(1, ch. 4); Vol. 17.
ocean color cont.
future missions, 3(Fig. 10 p. 12).
requirements, 1(2).
see also algorithm development.
ocean optics protocols, Vol. 5; 8(12, 14-15, Table 4 p. 20).
see also Protocols Workshop.
OCTS, 1(2); 3(11); 17(4, 10, 13, 17).
instrument characteristics, 3(Table 3 p. 11).
operational applications, 1(7-8).
optical buoy, 3(Fig. 17 p. 25).
drifting, 5(9, 31).
mooring, 3(Fig. 18 p. 26); 5(8, 30-31).
see also MOBY.
optical instruments, Vol. 5; 10(Figs. 17-19 pp. 21-22).
optical measurements, 5(1).
accuracy specifications, 5(9-15).
analysis methods, 5(33-39).
science community, role of, 5(3).
sensor characterization, 5(15-25, Tables 2-4 pp. 10-11).
see also MOBY.
see also optical buoy.
orbit, 3(23).
contingency, 8(12).
distribution of local time, 2(Fig. 2 p. 4).
downlink, 15(4, Table 3 p. 4).
parameters. 1(18); 2(2).
propagation, 15(3, Table 3 p. 3).
see also propagation model.
orbital:
alitude contingency, 8(11).
characteristics, 9(1, Table 3 p. 3); 15(Table 1b p. 3).
elements, 11(2).
oxygen absorption band, 13(16, 19, Fig. 17 p. 19).
ozone:
absorption, 13(9, 21).
concentration, 13(9, Figs. 6-7 p. 10, Figs. 11-12 p. 13, and Plate 15).
correction, 13(22, and Plates: 7-13).
control point value, 13(Tables 7-9 pp. 24-25).
data analysis, 13(1, ch. 2).
images, 13(Plates: 7-13).
optical thickness, 13(Fig. 10 p. 12).
see also data set, ozone.

- P -
perturbations model:
general, 11(2-3).
special, 11(2).
photodetector measurements, 14(Table A1 p. 47).

pigment:
concentration, 1(Plates: 1-5); 3(32); 4(Table 1 p. 1, Table 3 p. 3, Figs. 5-11 pp. 6-9, and Plates: 1-8); 5(2); 8(4).
mean, 13(Tables 1-2 p. 8).
see also CZCS, pigment concentration.
data, 9(2).
values, 4(Fig. 26 p. 15, Figs. 31-33 pp. 18-19).
pigment cont.

see also calibration.

pixel size, 3(Fig. C1 p. 39).

Prelaunch Science Working Group, see SPSWG.

pressure:

surface, see surface pressure.

pressure and oxygen:

absorption study, 13(ch. 3)

correction study, 13(ch. 4, and Plates: 8, 10, 12)

primary productivity, 1(1), 5(7), 17(8-9).

working group members, 8(Table 1 p. 14).

proceedings:

Science Team Meeting, Vol. 8.

see also Science Team Meeting.

Project, 1(3), 3(1, 13, 16, 23-24, 32, 34, 38).

goals, 1(2-3).

objectives, 1(3).

organization and personnel, 1(Table 4 p. 22), 3(Fig 13 p. 15).

presentations, 8(3-5).

responsibilities, 12(3-4).

schematic, 1(Fig. 8 p. 12, Fig. 9 p. 13).

structure, 3(13-16).

propagation model:

along-track, 11(5, Figs. 1-8 pp. 6-9, Fig. 11 p. 11, Figs. 12-14 pp. 12-13, Fig. 15 p. 14).

cross-track, 11(5, Fig. 9 p. 10, Fig. 15 p. 13, Fig. 17 p. 14).

orbit, Vol. 11.

radial, 11(4, 5, Fig. 10 p. 10).

Protocols Workshop, (ocean optics), 12(3, 5-8).

team members and guests, 12(Table 1 p. 3).

attendees addresses, 12(6-8).

quality control, 3(29-30, 35-36); 10(Fig. 20 p. 23).

flags, 12(3-4).

level-1 screening, 3(35).

level-2 product screening, 3(35-36).

level-3 product screening, 3(36).

level-2 quality control, 3(35); 8(4).

masks, 12(4).

see also bio-optical algorithm workshop.

radial, see propagation model.

radiometric profiles, 5(33-39).

radiometric specifications, 3(36-37, Table A1 p. 36); 8(4).

radiance measurements, 14(Table 9 pp. 29-30, Table 10 p. 31, Fig. 15 p. 32, Table 11 pp. 33-35, 44); 16(Table 6-7 pp. 37-44).

calibration factors, 16(Fig. 18 p. 46).

output, 14(Table 12-14 pp. 38-41).

see also spectral radiance.

see also spectral irradiance.

reflectance:

plaque, 14(31, 41); 16(111).

research:

applications, 1(3-5).

cruises, 3(30-32).

round-robin, Vol. 14; Vol. 16.

calibration, 8(4, 17, Table 4 p. 21); 12(4).

protocols working group, 8(Table 1 p. 14).

satellite remote sensing, 7(1).

saturation radiances, 3(Tables A2 through A4 pp. 36-37); 15(Table 11 p. 13).

see also transfer.

scanning characteristics, 9(1).

science mission goals, 3(12-13).

Science Team Meeting, Vol. 8.

abstracts, 8(22-41).

agenda, 8(5-6).

attendees, 8(51-59).

executive committee, 8(22).

invited presentations, 8(1-3).

questionnaire, 8(19-22, 44-51).

SEAPAK, 4(1-2, 20).

SeaStar, 1(1, 3, 8); 2(1-2); 3(21); 10(3,7).

launch sequence, 1(Fig. 4 p. 9).

operational system, 1(Fig. 6 p. 10).

orbital simulation parameters, 2(Table 1 p. 2); 11(Table 1 p. 1).

pitch rate, 10(7).

satellite, 1(Fig. 5 p. 9).

spacecraft description, 1(8-10).

SeaWiFS instrument, 1(1, 5-6, 8, 10-11).

acceptance testing, 8(4, 13-14, Table 4 p. 20).

bandwidths, 1(Table 1 p. 1, Fig. 2 p. 2, 11).

calibration and characterization, 3(Fig 14 p. 18); 8(4).

characteristics, 2(Table 1 p. 2); 3(Table 2 p. 11, 13).

description, 1(10-11).

launch time, 2(1).

major milestones, 3(Table 7 p. 21).

monitoring of, 1(18).

operations schedules, 1(17-18).

scanner, 1(11, Fig. 7 p. 14).

sensitivities, 1(5, Fig. 3 p. 6); 5(Table 4 p. 11, 14).

spectral bands, 1(11); 9(1, Table 1 p. 2).

telemetry parameters, 3(Table 8 p. 23).

test plan summary, 3(Table 6 pp. 19-20).

vicarious calibration, 5(3-4, 33).

see also optical instruments.

sensor:

characterization, 5(15-25); 15(13).

CZCS, see CZCS.

monitoring, 1(18).

operations schedules, 1(17).

ringing, 4(2).
SeaWiFS Technical Report Series Cumulative Index: Volumes 1-17

sensor cont.
 ringing mask, 13(2, 27, Plate: 19).
 tilt, 15(Fig. 1 p. 5).
 see also characterization.
 see also CZCS, ring mask comparison.
 SeaWiFS, see SeaWiFS instrument.

ship shadow avoidance, 5(25–26).
 tests, 14(41–42).

SIRREX:
 see SIRREX-1.
 see SIRREX-2.

 attendees, 14(57–58).
 equipment and tests, 14(Table B1 p. 49).
 participants, 14(Table 1 p. 4).
 validation process, 14(Fig. 1 p. 3).

SIRREX-2, Vol. 16.
 attendees, 16(116–118).
 equipment and tests, 16(Table A1 p. 117).
 participants, 16(Table A1 p. 117).

solar irradiance measurements, 3(Fig 16 p. 22).

solar observations, Vol. 10.
 see also calibration.

solstice:
 see azimuth.
 see sun glint.
 see zenith.

spectral bands, 1(1–2); 5(Table 2 p. 10, 17); 9(1, Table 1 p. 2).

spectral reflectance, 16(Table 20 pp. 112–113, Fig. 31 p. 114).

spectral irradiance, 5(13, 16, 25–27); 8(25); 14(Figs. 2–5 pp. 8–11, Figs. 7–14 pp. 20–27, Fig. 18 p. 43); 16(Figs. 2–5 pp. 6–9, Tables 1–5 pp. 10–23, Figs. 6–16 pp. 25–35).

 and radiances, 14(Table B3 p. 55).
 calibration geometry, 14(Fig. B3 p. 50).

 see also lamps.

spectral radiances, 5(21–23, 25–27); 8(25); 14(Figs. 16–17 pp. 36–37, 45–47, Fig. A2 p. 46, 47, 52, 55–56).

 BSI sphere, 16(Fig. 22 p. 73, Table 14 pp. 79–81, 62).
 CHORS sphere, 16(Figs. 23–27 pp. 74–78, Tables 15–16 pp. 82–90).
 calibration, 14(Fig. A1 p. 46).

 GSFC sphere, 16(36, Fig. 17 p. 45, Figs. 19–20 pp. 47–48, Tables 8–10 pp. 49–61, Fig. 21 p. 63, Tables 11–13 pp. 64–72, 118–119, Figs. C1 and C2 p. 119).
 NOAA sphere, 16(81, Table 19 pp. 106–109, Fig. 30 p. 110).
 UCSB sphere, 16(62, 81, Table 17 pp. 91–95, Fig. 28 p. 96).
 WFF sphere, 16(81, Table 18 pp. 97–103, Fig. 29 p. 104).
 see also sphere sources.

 calibration setup, 14(Fig. B5 p. 51, Fig. B9 p. 54).

sphere cont.
 integrating, 14(28–31, 45).
 measurements, 14(Table B8 p. 55).
 radiances, 14(Table B3 p. 49, Fig. B6 p. 51, Table B4 p. 52, Table B6 p. 52).
 source comparisons, 14(42–44).
 sources, 16(23–111).

SPSWG, 1(1); 3(Table 5 p. 16, 27–28).

stability tests, 14(42).

stray light response, 15(Fig. 7 p. 14).

sun glint, 1(18); 2(1, 10, 14); 3(6); 15(4).

 at equinox, 2(10).
 flag sensitivity study, 13(ch. 9, Plate: 20).
 at solstice, 2(10, 16).
 radiances, 2(Fig. 8 p. 11, Fig. 11 p. 14).

surface pressure, 8(4, 7); 13(Table 3 p. 16, Fig. 13 p. 17, 19–22, Tables 4–6 p. 23–24, and Plates: 6–7, and 17).

- T, U -

telemetry, 1(10, 14); 8(11); 9(1, 2, 7, Fig. 1 p., 9); 10(1).

 irradiance scale, 14(Table 2 pp. 6–7, Tables 4–7 pp. 14–19, 28).

- V, W, X, Y -

validation:
 algorithm, 8(16).
 product, 8(10, 16).
 sampling, 5(2, 31–33).

 see also algorithms.

 see also calibration.

 see also calibration and validation.

viewing and solar geometries, 9(4–6); 13(3, 46).

visible radiometers, 7(1).

 see also AVHRR.

 see also CZCS.

 see also MODIS.

 see also SeaWiFS instrument.

voltmeter, 16(111–116).
 tests, 14(41–42).

- Z -

zenith, 2(10).

 angles at equinox, 2(2, 16).

 angles at solstice, 2(10, 16).

satellite angle, 13(15, 19, 46).

solar angle, 2(2, Fig. 3 p. 5, 10, Fig. 9 p. 12, Fig. 12 p. 15, Table 3 p. 16, 16); 3(2, 8, 23); 7(1, 4); 9(Table 6 p. 9); 13(Table 11 p. 29, 46).

spacecraft angle, 2(2, Fig. 4 p. 6, 10, 16); 13(Table 11 p. 29).
GLOSSARY

- A -
AC Alternating Current
ACC Antarctic Circumpolar Current
ACRIM Active Cavity Radiometer Irradiance Monitor
ACS Attitude Control System
A/D Analog-to-Digital
ADEOS Advanced Earth Observation Satellite (Japan)
AE Angström Exponent
ALSCAT ALPHA and Scattering Meter (Note: the symbol \(\alpha \) corresponds to \(c(\lambda) \), the beam attenuation coefficient, in present usage).
AM-1 Not an acronym, used to designate the morning platform of EOS.
AMC Angular Momentum Compensation
AOCI Airborne Ocean Color Imager
AOL Airborne Oceanographic Lidar
AOP Apparent Optical Property
AOS/LOS Acquisition of Signal/Loss of Signal
ARGOS Not an acronym, but the name given to the data collection and location system on the NOAA Operational Satellites.
ARI Accelerated Research Initiative
ASCII American Standard Code for Information Interchange
ASI Italian Space Agency
AT Along-Track
AVHRR Advanced Very High Resolution Radiometer
AVIRIS Advanced Visible and Infrared Imaging Spectrometer
AXBT Airborne Expendable Bathymeter

- B -
BAOPW-1 First Bio-optical Algorithm and Optical Protocols Workshop
BAOPW-2 Second Bio-optical Algorithm and Optical Protocols Workshop
BAOPW-3 Third Bio-optical Algorithm and Optical Protocols Workshop
BAOPW-4 Fourth Bio-optical Algorithm and Optical Protocols Workshop
BAS British Antarctic Survey
BATS Bermuda Atlantic Time-Series Station
BBOP Bermuda Bio-Optical Profiler
BBR Band-to-Band Registration
BCRS Dutch Remote Sensing Board
BEP Benguela Ecology Programme
BER Bit Error Rate
BMFT Minister for Research and Technology (Germany)
BOMS Bio-Optical Moored Systems
bpi bits per inch
BRDF Bidirectional Reflectance Distribution Function
BSI Biospherical Instruments, Incorporated
BSIXR BSI's Transfer Radiometer
BTR Bright Target Recovery
BUV Backscatter Ultraviolet Spectrometer
BWI Baltimore-Washington International (airport)

- C -
CalCoFI California Cooperative Fisheries Institute
Cal/Val Calibration and Validation
CALVAL Calibration and Validation
Case-1 Water whose reflectance is determined solely by absorption.
Case-2 Water whose reflectance is significantly influenced by scattering.
CCPO Center for Coastal Physical Oceanography (Old Dominion University)
CDF (NASA) Common Data Format
CD-ROM Compact Disk-Read Only Memory
CDOM Colored Dissolved Organic Material
CDE Critical Design Review
CEC Commission of the European Communities
CENR Committee on Environment and Natural Resources
CHORS Center for Hydro-Optics and Remote Sensing (San Diego State University)
CICESE Centro de Investigación Científica y de Educación Superior de Ensenada (Mexico)
CIRES Cooperative Institute for Research in Environmental Sciences
COADS Comprehensive Ocean-Atmosphere Data Set
COOP Coastal Ocean Optics Program
COTS Commercial Off-The-Shelf (software)
CPR Continuous Plankton Recorder
cpu Central Processing Unit
CRM Contrast Reduction Meter
CRN Italian Research Council
CRSEO Center for Remote Sensing and Environmental Optics (University of California at Santa Barbara)
CRT Calibrated Radiance Tapes; or Cathode Ray Tube.
CSIRO Commonwealth Scientific and Industrial Research Organization (of Australia)
CSL Computer Systems Laboratory
CT Cross-Track
CTD Conductivity, Temperature, and Depth
CVT Calibration and Validation Team
CW Continuous Wave
CZCS Coastal Zone Color Scanner

- D -
DAAC Distributed Active Archive Center
DARR Data Analysis Round-Robin
DAT Digital Audio Tape
DC Direct Current
DCF Data Capture Facility
DCOM Dissolved Colored Organic Material
DCP Data Collection Platform
DEC Digital Equipment Corporation
DMS dimethyl sulfide
DOC Dissolved Organic Carbon
DOM Dissolved Organic Matter
DOS Disk Operating System
DSP Not an acronym, but an image display and analysis package developed at RSMAS University of Miami.
DXW Not an acronym, but a lamp designator.
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EAFB</td>
<td>Edwards Air Force Base</td>
</tr>
<tr>
<td>ECEF</td>
<td>Earth-Centered Earth-Fixed</td>
</tr>
<tr>
<td>ECMWF</td>
<td>European Centre for Medium Range Weather Forecasts</td>
</tr>
<tr>
<td>ECT</td>
<td>Equator Crossing Time</td>
</tr>
<tr>
<td>EEZ</td>
<td>Exclusive Economic Zone</td>
</tr>
<tr>
<td>EOF</td>
<td>Empirical Orthogonal Function</td>
</tr>
<tr>
<td>ENSO</td>
<td>El Niño Southern Oscillation</td>
</tr>
<tr>
<td>ENVISAT</td>
<td>Environmental Satellite</td>
</tr>
<tr>
<td>ERS</td>
<td>Earth Observing System</td>
</tr>
<tr>
<td>EOSAT</td>
<td>Earth Observation Satellite Company</td>
</tr>
<tr>
<td>EOSDIS</td>
<td>EOS Data Information System</td>
</tr>
<tr>
<td>EqPac</td>
<td>Equatorial Pacific (Process Study)</td>
</tr>
<tr>
<td>EP-TOMS</td>
<td>Earth Probe-Total Ozone Mapping Spectrometer</td>
</tr>
<tr>
<td>EPA</td>
<td>Environmental Protection Agency</td>
</tr>
<tr>
<td>ER-2</td>
<td>Earth Resources-2</td>
</tr>
<tr>
<td>ERBE</td>
<td>Earth Radiation Budget Experiment</td>
</tr>
<tr>
<td>ERBS</td>
<td>Earth Radiation Budget Sensor</td>
</tr>
<tr>
<td>ERL</td>
<td>(NOAA) Environmental Research Laboratories</td>
</tr>
<tr>
<td>ERS</td>
<td>Earth Resources Satellite</td>
</tr>
<tr>
<td>ESA</td>
<td>European Space Agency</td>
</tr>
<tr>
<td>EUVE</td>
<td>Extreme Ultraviolet Explorer</td>
</tr>
<tr>
<td>FASCAL</td>
<td>Fast Calibration (Facility)</td>
</tr>
<tr>
<td>FDDI</td>
<td>Fiber Data Distribution Interface</td>
</tr>
<tr>
<td>FEL</td>
<td>Not an acronym, but a lamp designator.</td>
</tr>
<tr>
<td>FGGE</td>
<td>First GARP Global Experiment</td>
</tr>
<tr>
<td>FLUPAC</td>
<td>(Geochemical) Fluxes in the Pacific (Ocean)</td>
</tr>
<tr>
<td>FNOC</td>
<td>Fleet Numerical Oceanography Center</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>Formula Translation (computer language)</td>
</tr>
<tr>
<td>FOV</td>
<td>Field-of-View</td>
</tr>
<tr>
<td>FPA</td>
<td>Focal Point Assembly</td>
</tr>
<tr>
<td>FRD</td>
<td>Federal Republic of Deutschland (Germany)</td>
</tr>
<tr>
<td>FTP</td>
<td>File Transfer Protocol</td>
</tr>
<tr>
<td>FWHM</td>
<td>Full-Width at Half-Maximum</td>
</tr>
<tr>
<td>GAC</td>
<td>Global Area Coverage, coarse resolution satellite data with a nominal ground resolution at nadir of approximately 4 km.</td>
</tr>
<tr>
<td>GARP</td>
<td>Global Atmospheric Research Program</td>
</tr>
<tr>
<td>GASM</td>
<td>General Angle Scattering Meter</td>
</tr>
<tr>
<td>GF/F</td>
<td>Not an acronym, a specific type of glass fiber filter made by Whatman.</td>
</tr>
<tr>
<td>GIN</td>
<td>Greenland, Iceland, and Norwegian Seas</td>
</tr>
<tr>
<td>GISS</td>
<td>Goddard Institute for Space Studies</td>
</tr>
<tr>
<td>GLI</td>
<td>Global Imager</td>
</tr>
<tr>
<td>GLOBEC</td>
<td>Global Ocean Ecosystems dynamics</td>
</tr>
<tr>
<td>GMT</td>
<td>Greenwich Mean Time</td>
</tr>
<tr>
<td>GOES</td>
<td>Geostationary Operational Environmental Satellite</td>
</tr>
<tr>
<td>GOFS</td>
<td>Global Ocean Flux Study</td>
</tr>
<tr>
<td>GOMEX</td>
<td>Gulf of Mexico Experiment</td>
</tr>
<tr>
<td>GP</td>
<td>Global Processing (algorithm)</td>
</tr>
<tr>
<td>GPM</td>
<td>General Perturbations Model</td>
</tr>
<tr>
<td>GPS</td>
<td>Global Positioning System</td>
</tr>
<tr>
<td>GPRS</td>
<td>Groupe de Recherche de Geodesie Spatial</td>
</tr>
<tr>
<td>GRIDTOMS</td>
<td>Gridded TOMS (data set)</td>
</tr>
<tr>
<td>GSFC</td>
<td>Goddard Space Flight Center</td>
</tr>
<tr>
<td>GSO</td>
<td>Graduate School of Oceanography (University of Rhode Island)</td>
</tr>
<tr>
<td>G/T</td>
<td>System Gain/Total System Noise Temperature</td>
</tr>
<tr>
<td>GUI</td>
<td>Graphical User Interface</td>
</tr>
<tr>
<td>HDF</td>
<td>Hierarchical Data Format</td>
</tr>
<tr>
<td>HEI</td>
<td>Hoffman Engineering, Incorporated</td>
</tr>
<tr>
<td>HeNe</td>
<td>Helium-Neon</td>
</tr>
<tr>
<td>HIRIS</td>
<td>High Resolution Imaging Spectrometer</td>
</tr>
<tr>
<td>HOTS</td>
<td>Hawaiian Optical Time Series</td>
</tr>
<tr>
<td>HP</td>
<td>Hewlett Packard</td>
</tr>
<tr>
<td>HPLC</td>
<td>High Performance Liquid Chromatography</td>
</tr>
<tr>
<td>HQ</td>
<td>Headquarters</td>
</tr>
<tr>
<td>HRPT</td>
<td>High Resolution Picture Transmission</td>
</tr>
<tr>
<td>HYDRA</td>
<td>Hydrographic Data Reduction and Analysis</td>
</tr>
<tr>
<td>IAPSO</td>
<td>International Association for the Physical Sciences of the Ocean</td>
</tr>
<tr>
<td>IAU</td>
<td>International Astronomical Union</td>
</tr>
<tr>
<td>IBM</td>
<td>International Business Machines</td>
</tr>
<tr>
<td>ICD</td>
<td>Interface Control Document</td>
</tr>
<tr>
<td>ICES</td>
<td>International Council on Exploration of the Seas</td>
</tr>
<tr>
<td>IDL</td>
<td>Interactive Data Language</td>
</tr>
<tr>
<td>IFOV</td>
<td>Instantaneous Field-of-View</td>
</tr>
<tr>
<td>IMS</td>
<td>Information Management System</td>
</tr>
<tr>
<td>I/O</td>
<td>Input/Output</td>
</tr>
<tr>
<td>IOP</td>
<td>Inherent Optical Property</td>
</tr>
<tr>
<td>IR</td>
<td>Infrared</td>
</tr>
<tr>
<td>ISCCP</td>
<td>International Satellite Cloud Climatology Project</td>
</tr>
<tr>
<td>ISIC</td>
<td>Integrating Sphere Irradiance Collector</td>
</tr>
<tr>
<td>IUE</td>
<td>International Ultraviolet Explorer</td>
</tr>
<tr>
<td>JAM</td>
<td>JYACC Application Manager</td>
</tr>
<tr>
<td>JGOFS</td>
<td>Joint Global Ocean Flux Study</td>
</tr>
<tr>
<td>JOI</td>
<td>Joint Oceanographic Institute</td>
</tr>
<tr>
<td>JPL</td>
<td>Jet Propulsion Laboratory</td>
</tr>
<tr>
<td>JRC</td>
<td>Joint Research Center</td>
</tr>
<tr>
<td>LAC</td>
<td>Local Area Coverage, fine resolution satellite data with a nominal ground resolution at nadir of approximately 1 km.</td>
</tr>
<tr>
<td>LANDSAT</td>
<td>Land Resources Satellite</td>
</tr>
<tr>
<td>LDGO</td>
<td>Lomon-Doherty Geological Observatory (Columbia University)</td>
</tr>
<tr>
<td>LDTRNL</td>
<td>Local Dynamic Threshold Nonlinear Raleigh Level-0 Raw data.</td>
</tr>
<tr>
<td>Level-1</td>
<td>Calibrated radiances.</td>
</tr>
<tr>
<td>Level-2</td>
<td>Derived products.</td>
</tr>
<tr>
<td>Level-3</td>
<td>Gridded and averaged derived products.</td>
</tr>
<tr>
<td>LMCE</td>
<td>Laboratoire de Modelisation du climat et de l'Environnement (France)</td>
</tr>
<tr>
<td>L&N</td>
<td>Leeds & Northrup</td>
</tr>
<tr>
<td>LODYC</td>
<td>Laboratoire d'Océanographie et de Dynamique du climat (France)</td>
</tr>
<tr>
<td>LOICZ</td>
<td>Land Ocean Interaction in the Coastal Zone</td>
</tr>
<tr>
<td>LPCM</td>
<td>Laboratoire de Physique et Chimie Marines (France)</td>
</tr>
<tr>
<td>LRER</td>
<td>Long-Range Ecological Research</td>
</tr>
<tr>
<td>LSB</td>
<td>Least Significant Bits</td>
</tr>
</tbody>
</table>

M

MAREX Marine Resources Experiment Program
MARS Multispectral Airborne Radiometer System
MASSS Multi-Agency Ship-Scheduling for SeaWiFS
MBARI Monterey Bay Aquarium Research Institute
MEM Maximum Entropy Method
MER Marine Environmental Radiometer
MERIS Medium Resolution Imaging Spectrometer
METEOSAT Meteorological Satellite
M F Minor Frame
MF Major Frame
MIPS Millions of Instructions Per Second
MIZ Marginal Ice Zone
MLE Maximum Likelihood Estimator
MLML Moss Landing Marine Laboratory (San Jose State University)
MOBY Marine Optical Buoy
MOCE Marine Optical Characterization Experiment
MODARCH MODIS Document Archive
MODIS Moderate Resolution Imaging Spectroradiometer
MODIS-N Nadir-viewing MODIS instrument
MODIS-T Tilted MODIS instrument (to minimize sunglint)
MOS Marine Optical Spectroradiometer
MOU Memorandum of Understanding
MSB Most Significant Bits
MS/DOS MicroSoft/Disk Operating System
MTF Modulation Transfer Function

N

NABE North Atlantic Bloom Experiment
NAS National Academy of Science
NASA National Aeronautics and Space Administration
NASCOM NASA Communications
NASDA National Space Development Agency (Japan)
NASIC NASA Aircraft/Satellite Instrument Calibration
NAVSPASUR Naval Space Surface Surveillance
NCAR National Center for Atmospheric Research
NCCOSC Navy Command, Control, and Ocean Surveillance Center
NCDC (NOAA) National Climatic Data Center
NCDS NASA Climate Data System
NCSA National Center for Supercomputing Applications
NCSU North Carolina State University
NDVI Normalized Difference Vegetation Index
NEΔT Noise Equivalent Delta Temperature
NEΔL Noise Equivalent delta Radiance
NER Noise Equivalent Radiance
NERC Natural Environment Research Council
NESSDIS National Environmental Satellite Data Information Service
NET NIMBUS Experiment Team
NGDC National Geophysical Data Center
NIMBUS Not an acronym, but a series of NASA experimental weather satellites containing a wide variety of atmospheric, ice, and ocean sensors
NIST National Institute of Standards and Technology
NMC National Meteorological Center
NMFS National Marine Fisheries Service
NOAA National Oceanic and Atmospheric Administration
NOARL Naval Oceanographic and Atmospheric Research Laboratory
NORAD North American Air Defense (Command)
NOS National Ocean Service
NRA NASA Research Announcement
NRAD Naval Research and Development
NRIFSF National Research Institute of Far Seas Fisheries (Japan)
NRIL Naval Research Laboratory
NSCAT NASA Scatterometer
NSF National Science Foundation
NSSDC National Space Science Data Center

O

OAM Optically Active Materials
OCEAN Ocean Colour European Archive Network
OCTS Ocean Color Temperature Sensor (Japan)
ODAS Ocean Data Acquisition System
ODU Old Dominion University
OFFI Optical Free-Fall Instrument
OI Original Irradiance
OLIPAC Oligotrophy in the Pacific (Ocean)
OMEX Ocean Marine Exchange
ONR Office of Naval Research
OPT Ozone Processing Team
OS Operating System
OSC Orbital Sciences Corporation
OSFI Optical Surface Floating Instrument
OSA Office of Space Science and Applications
OSU Oregon State University

P

PAR Photosynthetically Available Radiation
PC (IBM) Personal Computer
PDR Preliminary Design Review
PDT Pacific Daylight Time
PFF Programmable Frame Formatter
PI Principal Investigator
PIKE Phased Illuminated Knife Edge
PM-1 Not an acronym, used to designate the afternoon EOS platform.
PML Plymouth Marine Laboratory
POC Particulate Organic Carbon
POLDER Polarization and Directionality of the Earth's Reflectances (France)
PON Particulate Organic Nitrogen
PR Photo Research
PRIME Plankton Reactivity in the Marine Environment
PST Pacific Standard Time
PSU Practical Salinity Units
PTFE Polytetrafluoroethylene
PUR Photosynthetically Usable Radiation
QC Quality Control
QED Quantum Efficient Device
SeaWiFS Technical Report Series Cumulative Index: Volumes 1-17

- **R** -
 - R&A Research and Applications
 - R&D Research and Development
 - RACER Research on Antarctic Coastal Ecosystem Rates
 - RF Radio Frequency
 - RFP Request for Proposals
 - RISC Reduced Instruction Set Computer
 - rms root mean squared
 - ROSIS Remote Sensing Imaging Spectrometer, also known as the Reflective Optics System Imaging Spectrometer (Germany)
 - RR Round-Robin
 - RSMAS Rosenstiel School for Marine and Atmospheric Sciences (University of Miami)
 - RTOP Research and Technology Operation Plan

- **S** -
 - SAC Satellite Applications Centre
 - SARSAT Search and Rescue Satellite
 - SBRC (Hughes) Santa Barbara Research Center
 - SBUV Solar Backscatter Ultraviolet Radiometer
 - SBUV-2 Solar Backscatter Ultraviolet Radiometer-2
 - S/C Spacecraft
 - SCOR Scientific Committee on Oceanographic Research
 - SDPS SeaWiFS Data Processing System
 - SDS Scientific Data Set
 - SDSU San Diego State University
 - SeaBASS SeaWiFS Bio-optical Archive and Storage System
 - SEAPAK Not an acronym, but an image display and analysis package developed at GSFC.
 - SeaSCOPE SeaWiFS Study of Climate, Ocean Productivity, and Environmental Change
 - SeaWiFS Sea-viewing Wide Field-of-view Sensor
 - SES Shelf Edge Study
 - SGI Silicon Graphics, Incorporated
 - SI Système International d' Unités or International System of Units
 - SIG Special Interest Group
 - SIO Scripps Institution of Oceanography
 - SIO/MPL Scripps Institution of Oceanography/Marine Physical Laboratory
 - SIRREX SeaWiFS Intercalibration Round-Robin Experiment
 - SIRREX-1 The First SIRREX (July 1992)
 - SIRREX-2 The Second SIRREX (June 1993)
 - SIRREX-3 The Third SIRREX (September 1994)
 - SIS Spherical Integrating Source
 - SISSR Submerged In Situ Spectral Radiometer
 - SJSU San Jose State University
 - SMM Solar Maximum Mission
 - S/N Serial Number
 - SNR Signal-to-Noise Ratio
 - SO Southern Ocean (algorithm)
 - SOC Simulation Operations Center
 - SOGS SeaStar Operations Ground Subsystem
 - SOH State of Health
 - SOW Statement of Work
 - SPM Suspended Particulate Material or Special Perturbations Model (depending on usage)
 - SPO SeaWiFS Project Office
 - SPOT Satellite Pour l'Observation de la Terre (France)
 - SPSWG SeaWiFS Prelaunch Science Working Group
 - SQL Sequential Query Language
 - SRC Satellite Receiving Station (NERC)
 - SRT Sigma Research Technology, Incorporated
 - SST Sea Surface Temperature or SeaWiFS Science Team (depending on usage).
 - ST Science Team
 - SUN Sun Microsystems
 - SWAP Sylter Wattenmeer Austausch-prozesse
 - SWG Science Working Group
 - SXR SeaWiFS Transfer Radiometer
 - T- T-S Temperature-Salinity
 - TBD To Be Determined
 - TBUS Not an acronym, but a NOAA orbit prediction
 - TDI Time-Delay and Integration
 - TDRSS Tracking and Data Relay Satellite System
 - TIBOS Television and Infrared Observation Satellite
 - TLM Telemetry
 - TM Technical Memorandum
 - TOGA Tropical Ocean Global Atmosphere program
 - TOMS Total Ozone Mapping Spectrometer
 - TOPEX Topography Experiment
 - TOVS TIROS Operational Vertical Sounder
 - TSM Total Suspended Material
 - TV Thermal Vacuum
 - U- UA University of Arizona
 - UARS Upper Atmosphere Research Satellite
 - UAXR University of Arizona's Transfer Radiometer
 - UCMBO University of California Marine Bio-Optics
 - UCSB University of California at Santa Barbara
 - UCSD University of California at San Diego
 - UH University of Hawaii
 - UIM/X User Interface Management/X-Windows
 - UM University of Miami
 - UNESCO United Nations Educational, Scientific, and Cultural Organizations
 - UPS Uninterruptable Power System
 - URI University of Rhode Island
 - USC University of Southern California
 - USF University of South Florida
 - UTM Universal Transverse Mercator (projection)
 - UV Ultraviolet
 - UVB Ultraviolet-B
 - UWG User Working Group

- **V** -
 - V0 Version 0
 - V1 Version 1
 - VAX Virtual Address Extension
 - VCS Version Control Software
 - VDC Volts Direct Current
 - VHF Very High Frequency
 - VI Virtual Instrument
 - VISLAB Visibility Laboratory (Scripps Institution of Oceanography)
 - VISNIR Visible and Near Infrared
 - VMS Virtual Memory System
E.R. Firestone and S.B. Hooker

- W, X, Y, Z -

WFF Wallops Flight Facility
WHOI Woods Hole Oceanographic Institute

WMO World Meteorological Organization
WOCE World Ocean Circulation Experiment
WORM Write Once Read Many (times)
WVS World Vector Shoreline
SYMBOLS

- A -

a The semi-major axis of the Earth's orbit, a formulation constant, a constant equal to 0.983, or a constant equal to \(-20/\tanh(2)\) (depending on usage).

\(a(z, \lambda)\) Spectral absorption coefficient.

\(a_\text{ox}\) Coefficient for oxygen absorption.

\(a_{\text{oz}}\) Coefficient for ozone absorption.

\(a_{\text{wv}}\) Coefficient for water vapor absorption.

\(A(k)\) Absorptivity.

\(A(\lambda)\) Coefficient for calculating \(b(z, \lambda)\).

\(A_i\) The intersection area.

- B -

\(b(z, \lambda)\) Total scattering coefficient.

\(b(\theta, z, \lambda_0)\) Volume scattering coefficient.

\(b_{\text{sc}}(z, \lambda)\) Spectral backscattering coefficient.

\(b_{\text{sc}}(\lambda)\) Spectral backscattering coefficient for phytoplankton.

\(b_{\text{r}}(\lambda)\) Total Raman scattering coefficient.

\(b_{\text{w}}(\lambda)\) Total scattering coefficient for pure seawater.

\(B\) Excess target radiance.

\(B(\lambda)\) Coefficient for calculating \(b(z, \lambda)\).

- C -

\(c(z, \lambda)\) Spectral beam attenuation coefficient.

\(C(\lambda)\) Red beam attenuation (at 660 nm).

\([\text{chl. a}]/K\) Concentration of chlorophyll a over \(K\), the diffuse attenuation coefficient.

\(C\) Chlorophyll a pigment, or just pigment concentration.

\(C_{13}\) Pigment concentration derived using CZCS bands 1 and 3.

\(C_{23}\) Pigment concentration derived using CZCS bands 2 and 3.

\(C_{\text{ref}}\) Reference chlorophyll value (0.5).

\([C + P]\) Pigment concentration defined as mg chlorophyll a plus phaeopigments m\(^{-3}\).

- D -

\(d\) The distance between source and detector apertures.

\(d_i\) Distance from the \(i\)th observation point to the point of interest.

\(d_j\) Distance from the \(j\)th observation point to the point of interest.

\(D\) Sequential day of the year.

\(D\) Orbit position difference vector.

\(D_{\text{ast}}\) Along-track position difference.

\(D_{\text{ct}}\) Cross-track position difference.

\(D_{\text{rad}}\) Radial position difference.

\(DC\) Digital count (value) or direct current (depending on usage).

\(DC_{10}\) Digital counts at 10-bit digitization.

- E -

\(e\) Orbit eccentricity of the Earth.

\(E(\lambda)\) Spectral irradiance.

\(E_{\text{in}}(\lambda)\) Irradiance in air.

\(E_{\text{beg}}\) Beginning irradiance value.

\(E_{\text{end}}\) Calibration source irradiance.

\(E_{a}(\lambda)\) Incident downwelling irradiance.

\(E(0^\circ-\lambda)\) Incident spectral irradiance.

\(E_{\text{dg}}(z, \lambda)\) Downwelled spectral irradiance.

\(E_{\text{end}}\) Ending irradiance value.

\(E_{\text{meas}}(\lambda)\) Measured radiance.

\(E_{\text{ref}}(\lambda)\) Reference radiance.

\(E_{\text{sr}}(\lambda)\) Surface irradiance.

\(E_{\text{rem}}\) Percentage of energy removed from a wavelength band.

\(E_{\text{sky}}(\lambda)\) Spectral sky irradiance distribution.

\(E_{\text{sun}}(\lambda)\) Spectral sun irradiance distribution.

\(E_{\text{n}}(z, \lambda)\) Upwelled spectral irradiance.

\(E_{\text{w}}(z, \lambda)\) Irradiance in water.

- F -

\(f_i\) Filter number, \(i=0-11\).

\(f\) Ratio The ratio of new to total production.

\(F\) Arithmetic average.

\(F(\lambda)\) A mean conversion factor.

\(F_{\text{c}}(\lambda)\) Calibration factor.

\(F(\lambda)\) A conversion factor to convert PR714 readings to the GSFC sphere irradiance scale.

\(F(\lambda)\) Average of calibration factors.

\(F_0\) Extraterrestrial irradiance corrected for Earth-sun distance.

\(F_0\) Mean solar irradiance.

\(F_{\text{et}}\) Extraterrestrial irradiance corrected for the atmosphere.

\(F_{\text{st}}(\lambda)\) Mean extraterrestrial spectral irradiance.

\(F_{\text{st}}(\lambda)\) Mean extraterrestrial irradiance.

\(F_{\text{f}}\) Forward scattering probability of the aerosol.

\(F\) A correction factor.

- G -

\(g_i\) A constant equal to 0.82.

\(g_1\) A constant equal to \(-0.55\).

\(G\) Gain factor.

\(G(\lambda)\) \(\frac{R_{\text{st}}(\lambda)}{R_{\text{st}}(670)} = (670/\lambda)^{1.5} \frac{T_{2r}(670)/T_{2r}(\lambda)}{T_{2r}(\lambda)}\).

\(G\) Gravitational constant of the Earth \((398,600\, \text{km}^3\, \text{s}^{-2})\).

- H -

\(H_{\text{GMT}}\) GMT in hours.

\(H_\ast\) Altitude of the spacecraft (for SeaStar 705 km).

- I -

\(i\) Inclination angle or interval index (depending on usage).

\(i\) Inclination angle minus 90°.

\(I\) Rayleigh intensity.

\(I_0\) Surface downwelling irradiance.

\(I_1\) Radiant intensity after traversing through an absorbing medium.

\(I_2\) Reflected radiant energy received by the satellite sensor.
E.R. Firestone and S.B. Hooker

- J -
 j Interval index.
 J2 The J2 gravity field term (0.0010863).
 J3 The J3 gravity field term (−0.0000254).
 J4 The J4 gravity field term (−0.0000161).
 J5 The J5 gravity field term.

- K -
 k Wavenumber of light (1/λ).
 k1 Beginning wavenumber.
 k2 Ending wavenumber.
 k_c(λ) Spectral fit coefficient weighted over the SeaWiFS bands; k_c(λ) also used.
 K(z, λ) Diffuse attenuation coefficient.
 K_0(λ) Diffuse attenuation coefficient at z = 0.
 K_c(λ) Attenuation coefficients for phytoplankton.
 K_E(λ) Attenuation coefficient downwelled irradiance.
 K_g(λ) Attenuation coefficients for Gelbstoff.
 K_L(z, λ) Attenuation coefficient upwelled radiance.
 K_w(λ) Attenuation coefficients for pure seawater.

- L -
 L(λ) Spectral radiance.
 L(z, θ, φ) Submerged upwelled radiance distribution.
 L_o Aerosol radiance.
 L_c(λ) Cloud radiance threshold.
 L_c(λ) Calibration source radiance.
 L_g(λ) Sun glint radiance.
 L_i(λ) Spectral radiance for run number i.
 L_NER(λ) Noise equivalent radiance.
 L_r Rayleigh radiance.
 L_(at)(λ) Rayleigh radiance at standard atmospheric pressure, P_0.
 L_s(λ) Subsurface water radiance.
 L_(sat)(λ) Saturation radiance for the sensor.
 L_(sky)(λ) Spectral sky radiance distribution.
 L_t(λ) Total radiance at the sensor.
 L_u(z, λ) Upwelled spectral radiance.
 L_W(λ) Water-leaving radiance.
 L_WN(λ) Normalized water-leaving radiance.

- M -
 m Index of refraction.
 M Path length through the atmosphere.
 M_m The corrected mean orbit anomaly of the Earth, which is a function of date, and refers to an imaginary moon in a circular orbit.
 M_ao Path length for ozone transmittance.

- N -
 n Index of refraction or mean orbital motion in revolutions per day (depending on usage).
 n(λ) An exponent conceptually similar to the Ångström exponent.
 n_w(λ) Index of refraction of water.
 N The total number of something.

- O -
 \(\mathbf{\Omega} \cdot \mathbf{\bar{P}} \times \mathbf{\bar{V}} \).

- P -
 p_a A factor to account for the probability of scattering to the spacecraft for three different paths from the sun.
 p_w The probability of seeing sun glitter in the direction θ, φ given the sun in position θ_0, φ_0 as a function of wind speed (W).
 P Nodal period, phaeopigment concentration or local surface pressure (depending on usage).
 \(\vec{P} \) Orbit position vector.
 P(θ^+) Phase function for forward scattering.
 P(θ^-) Phase function for backward scattering.
 P_0 Standard atmospheric pressure (1,013.25 mb).
 P_α Probability of scattering to the spacecraft.
 P_r PR714 raw radiance.
 P_α Phaeopigment concentration.

- Q -
 q Water transmittance factor.
 Q(λ) L_u(0^-, λ) to E_u(0^-, λ) relation factor (theoretically equal to π).

- R -
 r Water-air reflectance for totally diffuse irradiance.
 r_1 The radius of circle one or source aperture (depending on usage).
 r_2 The radius of circle two or detector aperture (depending on usage).
 R Reflectance.
 R(0^-, λ) Irradiance reflectance just below the sea surface.
 R_o Aerosol reflectance.
 R_a Rayleigh reflectance.
 R_(a)/R_(T2). Remote sensing reflectance.
 R_r Subsurface reflectance.
 R_t Total reflectance at the sensor.
 R_t (R_t - R_r)/(qT_2r).
 R_s Sunspot number.

- S -
 s(λ) Slope for the range 0–1,023.
 S Solar constant.
 S(λ) L_o(λ)/L_o(670).

- T, U -
 t Time variable.
 t(k) Spectral transmission as a function of wavenumber.
 t(λ) Diffuse transmittance of the atmosphere.
 t_1 First observation time.
 t_2 Second observation time.
 t_0 Initial time.
 t_a Aerosol transmittance after absorption.
 t_a Aerosol transmittance after scattering.
 t_d Direct component of transmittance after absorption by the gaseous components of the atmosphere, scattering and absorption by aerosols, and scattering by Rayleigh.
 t_e Time difference in hours between present position and most recent equator crossing.
 t_ec Equator crossing time.
Transmittance after absorption by ozone.
t_r Transmittance after Rayleigh scattering.
t_d Diffuse component of transmittance after absorption by the gaseous components of the atmosphere, scattering and absorption by aerosols, and scattering by Rayleigh.
t_{ww} Transmittance after absorption by water vapor.
$T_s(\lambda)$ Transmittance through the surface.
T Tilt position.
$T(\lambda, \theta)$ Total transmittance (direct plus diffuse) from the ocean through the atmosphere to the spacecraft along the path determined by the spacecraft zenith angle θ.
T_{2r} Two-way diffuse transmittance for Rayleigh attenuation.
$T_d(\lambda, \theta_0)$ Total downward transmittance of irradiance.
T_ℓ Equation of time.
T_{ox} Transmittance of oxygen (O$_2$).
T_{oz} Transmittance of ozone (O$_3$).
$T_w(\lambda)$ Transmittance through a water path.
T_{ww} Transmittance of water vapor (H$_2$O).

V Orbit velocity vector.
$V_i(t_j)$ The ith spatial location at observation time t_j.

W Wind speed.
W_d Direct irradiance divided by the total irradiance at the surface.
W_s Diffuse irradiance divided by the total irradiance.

X Abscissa or longitudinal coordinate, or the pixel number within a scan line (depending on usage).
X_{ECEF} X component of orbit position.

Y Ordinate or meridional coordinate.
Y_{ECEF} Y component of orbit position.

Z Abscissa or longitudinal coordinate, or the pixel number within a scan line (depending on usage).
Z_{ECEF} Z component of orbit position.

γ The Ångström exponent.

α Percent albedo, tilt angle, formulation coefficient (intercept), or the power constant in the Ångström formulation (depending on usage).
β A formulation coefficient (slope) or a constant in the Ångström formulation (depending on usage).
$\beta(z, \lambda, \theta)$ Spectral volume scattering function.

δ Great circle distance from $\Psi_s(t_0)$ to $\Psi_s(t - t_0)$, the departure of each individual conversion factor from the mean, or a relative difference (depending on usage).
Δk Equivalent bandwidth.
Δp Partial pressure difference of CO$_2$ between air and sea water.
ΔP The difference in successive pixels or the pressure deviation from standard pressure, P_0 (depending on usage).
Δt Time difference.
$\Delta \lambda$ An interval in wavelength.
$\Delta \omega$ The longitude difference from the sub-satellite point to the pixel.

η Bearing from the sub-satellite point to the pixel along the direction of motion of the satellite.
θ Spacecraft zenith angle or pitch (depending on usage).
$\dot{\theta}$ Pitch rate.
θ_1 The intersection angle of circle one.
θ_2 The intersection angle of circle two.
θ_0 Solar zenith angle.
θ_n The zenith angle of the vector normal to the surface vector for which glint will be observed.
θ_N The angle with respect to nadir that the sea surface slopes to produce a reflection angle to the spacecraft.
θ_s Scan angle of sensor.
θ'_s Scan angle of sensor adjusted for tilt.
λ Wavelength of light.
μ Mean value or cosine of the satellite zenith angle (depending on usage).
μ_0 Cosine of the solar zenith angle.
$\bar{\mu}_d(0^\circ, \lambda)$ Spectral mean cosine for downwelling radiance at the sea surface.
ν_j The jth temporal weighting factor.
ξ_{EM} The distance between the Earth and the moon.
ρ Fresnel reflectivity or the weighted direct plus diffuse reflectance.
$\rho(\theta)$ Fresnel reflectance for viewing geometry.
$\rho(\theta_0)$ Fresnel reflectance for solar geometry.
$\rho_{o,i}$ Reflectance of clouds and ice.
ρ_n Sea surface reflectance for direct irradiance at normal incidence for a flat sea.
ρ_N Reflectance for diffuse irradiance.
σ Standard deviation of a set of data values.
σ^2 The mean square surface slope distribution.
$\tau(z, \lambda)$ Spectral optical depth.
τ_a Aerosol optical thickness.
τ_{ox} Oxygen optical thickness at 750 nm.
τ_r Rayleigh optical thickness.
τ_r' Pressure corrected Rayleigh optical thickness.
τ_{ro} Rayleigh optical thickness at standard atmospheric pressure, P_0.
$\tau_s(\lambda)$ Spectral solar atmospheric transmission.
Φ Spacecraft azimuth angle or roll (depending on usage).
Φ Roll rate.
Φ0 Solar azimuth angle.
Ψ Pixel latitude or yaw (depending on usage).
Ψ Yaw rate.
Ψd Solar declination latitude.
Ψs(t) Sub-satellite latitude as a function of time.

ω Longitude variable or the surface reflection angle (depending on usage).
ω0 Old longitude value.
ωa Single scattering albedo of the aerosol.
ωe Equator crossing longitude.
ωs Spatial weighting factor.
ω Lange Longitude variable.
Ω Solar hour angle.
REFERENCES

A

Abel, P., G.R. Smith, R.H. Levin, and H. Jacobowitz, 1988: Results from aircraft measurements over White Sands, New Mexico, to calibrate the visible channels of spacecraft instruments. SPIE, 924, 208-214.

—, E.R. Firestone and S.B. Hooker

Smith, R.C., and P. Dusan, 1981: Fluorometric techniques for the measurement of oceanic chlorophyll in the support of remote sensing. SIO Ref. 81–17, Scripps Inst. of Oceanogr., La Jolla, California 14 pp.

Smith, Jr., and —, 1985: Spatial and temporal patterns in pigment biomass in Gulf Stream Warm-Core Ring 82B and its environs. J. Geophys. Res., 90, 8,850–8,870.

THE SeaWiFS TECHNICAL REPORT SERIES

Vol. 1

Vol. 2

Vol. 3

Vol. 4

Vol. 5

Vol. 6

Vol. 7

Vol. 8

Vol. 9

Vol. 10

Vol. 11

Vol. 12

Vol. 13

Vol. 14

Vol. 15

Vol. 16

Vol. 17

Vol. 18
The Sea-viewing Wide Field-of-view Sensor (SeaWiFS) is the follow-on ocean color instrument to the Coastal Zone Color Scanner (CZCS), which ceased operations in 1986 after an eight-year mission. SeaWiFS is expected to be launched in 1995 on the SeaStar satellite, being built by Orbital Sciences Corporation (OSC). The SeaWiFS Project at the National Aeronautics and Space Administration's (NASA) Goddard Space Flight Center (GSFC), has undertaken the responsibility of documenting all aspects of this mission, which is critical to the ocean color and marine science communities. This documentation, entitled the SeaWiFS Technical Report Series, is in the form of NASA Technical Memorandum Number 104566. All reports published are volumes within the series. This particular volume serves as a reference, or guidebook, to the previous 17 volumes and consists of 6 sections including: an errata, an addendum (summaries of various SeaWiFS Working Group Bio-optical Algorithm and Protocols Subgroups Workshops, and other auxiliary information), an index to key words and phrases, a list of all references cited, and lists of acronyms and symbols used. It is the editors' intention to publish a cumulative index of this type after every five volumes in the series. Each index covers the topics published in all previous editions, that is, each new index includes all of the information contained in the preceding indices.