
1. Introduction

The need to solve optimization and control problems arises in many settings.
Although in some cases these problems may be easily solved, either analytically or
computationally, in many other cases substantial di�culties are encountered. For
example, candidate optimal states and controls may belong to in�nite dimensional
function spaces and one may have to minimize a nonlinear functional of the state and
control variables subject to nonlinear constraints that take the form of a system of
partial di�erential equations whose solutions are in general not unique. In this paper,
our goal is to construct and analyze a framework for the approximate solution of
many such problems. The setting for our framework is a class of nonlinear control or
optimization problems which is general enough to be of use in numerous applications.
The major steps in the development and analysis of our framework are as follows:

� de�ne an abstract class of nonlinear control or optimization
problems;

� show that, under certain assumptions, optimal solutions exist;

� show that, under certain additional assumptions, Lagrange mul-
tipliers exist that may be used to enforce the constraints;

� use the Lagrange multiplier technique to derive an optimality
system fromwhich optimal states and controls may be deduced;

� de�ne algorithms for the approximation, in �nite dimensional
spaces, of optimal states and controls; and

� derive estimates for the error in the approximations to the op-
timal states and controls.

Two of the key ingredients used to carry out the above plan are a theory given in
[21] for showing the existence of Lagrange multipliers and a theory �rst developed in
[6] for the approximation of a class of nonlinear problems. In both of these theories,
certain properties of compact operators on Banach spaces play a central role. We
point out that the nonuniqueness of solutions of the nonlinear constraint equations
deems it appropriate to employ Lagrange multiplier principles.

After having developed and analyzed the abstract framework, we will apply it
to some speci�c, concrete problems. In each case, we use the abstract framework to
analyze the concrete problems by merely showing that the latter �t into the former.
The particular applications we consider are:

� control problems in structural mechanics having geometric non-
linearities that are governed by the von K�arm�an equations;

� control problems in superconductivity that are governed by the
Ginzburg-Landau equations; and

� control problems for incompressible, viscous 
ows that are gov-
erned by the Navier-Stokes equations.

In considering these applications, we will purposely choose di�erent types of controls
in order to illustrate how these can be accounted for within the abstract framework.
In all three cases, approximation will be e�ected through the use of �nite element
methods.
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2. The abstract problem and its analysis

In this section we de�ne and analyze an abstract class of constrained nonlinear
control problems; an outline of the de�nitions and results of this section is as follows.

� In x2.1, the abstract class of constrained control problems that
we consider is de�ned.

� In x2.2, a list of assumptions about the class of abstract prob-
lems is given.

� In Theorem 2.1 of x2.3, some of the assumptions listed in x2.2
are used to show that optimal solutions of the abstract problem
exist.

� In x2.4, some additional assumptions of x2.2 are used to show
that Lagrange multipliers exist that may be used to enforce the
constraint; also, �rst-order necessary conditions are given.

� In Theorems 2.5 and 2.6 of x2.4, the �rst-order necessary condi-
tions for determining optimal states and controls are simpli�ed
under additional assumptions about the control set.

� In x2.5, the optimality system from which optimal controls and
states can be determined is made more amenable to approxima-
tion by simplifying the dependence of the objective functional
on the control.

2.1. The abstract setting

We begin with the de�nition of the abstract class of nonlinear control or opti-
mization problems that we study.

We introduce the spaces and control set as follows. Let G, X, and Y be re
exive
Banach spaces whose norms are denoted by k �kG, k �kX , and k �kY , respectively. Dual
spaces will be denoted by (�)�. The duality pairing between X and X� is denoted
by h�; �iX ; one similarly de�nes h�; �iY and h�; �iG. The subscripts are often omitted
whenever there is no chance for confusion. Let �, the control set, be a closed convex
subset of G. Let Z be a subspace of Y with a compact imbedding. Note that the
compactness of the imbedding Z � Y will play an important role.

We assume that the functional to be minimized takes the form

(2:1) J (v; z) = �F(v) + � E(z) 8 (v; z) 2 X � � ;

where F is a functional on X, E a functional on �, and � is a given parameter which
is assumed to belong to a compact interval � � RI +.

The constraint equation M (v; z) = 0 relating the state variable v and the control
variable z is de�ned as follow. Let N be a di�erentiable mapping from X to Y , K a
continuous linear operator from � to Y , and T a continuous linear operator from Y

to X. For any � 2 �, we de�ne the mappingM from X �� to X by

(2:2) M (v; z) = v + �TN (v) + �TK(z) 8 (v; z) 2 X � � :

With these de�nitions we now consider the constrained minimization problem:

(2:3) min
(v;z)2X��

J (v; z) subject to M (v; z) = 0 :
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In (2.3), we seek a global minimizer with respect to the set f(v; z) 2 X � � :
M (v; z) = 0g. Although, under suitable hypotheses, we will show that the problem
(2.3) has a solution, in practice, one can only characterize local minima, i.e., points
(u; g) 2 X �� such that for some � > 0

(2:4)
J (u; g) � J (v; z) 8 (v; z) 2 X � � such that

M (v; z) = 0 and ku� vkX � � :

Thus, when we consider algorithms for locating constrained minima of J , we must be
content to �nd local minima in the sense of (2.4).

After showing that optimal solutions exist and that one is justi�ed in using the
Lagrange multiplier rule, we will introduce some simpli�cations in order to render the
abstract problem (2.3), or (2.4), more amenable to approximation. The �rst is to only
consider the control set � = G. The second is to only consider Fr�echet di�erentiable
functionals E(�) such that the Fr�echet derivative E 0(g) = E�1g, where E is an invertible
linear operator from G� to G.

2.2. Hypotheses concerning the abstract problem

The �rst set of hypotheses will be invoked to prove the existence of optimal
solutions. It is given by:

(H1) infv2X F(v) > �1 ;

(H2) there exist constants �, � > 0 such that E(z) � �kzk� 8 z 2 � ;

(H3) there exists a (v; z) 2 X �� satisfying M (v; z) = 0 ;

(H4) if u(n) * u in X and g(n) * g in G where f(u(n); g(n))g � X � �, then
N (u(n))* N (u) in Y and K(g(n))*K(g) in Y ;

(H5) J (�; �) is weakly lower semicontinuous on X �� ; and

(H6) if f(u(n); g(n))g � X�� is such that fF(u(n))g is a bounded set in RI and

M (u(n); g(n)) = 0, then fu(n)g is a bounded set in X.

The second set of assumptions will be used to justify the use of the Lagrange
multiplier rule and to derive an optimality system from which optimal states and
controls may be determined. The second set is given by:

(H7) for each z 2 �, v 7! J (v; z) and v 7!M (v; z) are Fr�echet di�erentiable ;

(H8) z 7! E(z) is convex, i.e.,

E
�

z1 + (1� 
)z2

�
� 
 E(z1) + (1� 
) E(z2) 8 z1; z2 2 � ; 8 
 2 [0; 1] ;

and

(H9) for v 2 X, N 0(v) maps X into Z.

In (H9), N 0 denotes the Fr�echet derivative of N .

A simpli�ed optimality system may be obtained if one invokes the additional
assumption:

(H10) � = G, and the mapping z 7! E(z) is Fr�echet di�erentiable on G.

Hypotheses (H7)-(H10) allow us to obtain a simpli�ed optimality system for al-
most all values of the parameter � 2 �. In many cases, it is possible to show that
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the same optimality system holds for all values of �. The following two additional
assumptions which will only be invoked in case (1=�) is an eigenvalue of �TN 0(u)
each provides a setting in which this last result is valid:

(H11) if v� 2 X� satis�es
�
I + � [N 0(u)]�T �

�
v� = 0 and K�T �v� = 0, then

v� = 0 ; or

(H11)0 the mapping (v; z) 7! v + �TN 0(u)v +�TKz is onto from X � G to Y .

In order to make the optimality system more amenable to approximation and
computation, we will invoke the following additional assumption:

(H12) E 0(g) = E�1g ; where E is an invertible linear operator from G� to G and

g is an optimal control for the constrained minimization problem (2:4).

2.3. Existence of an optimal solution

We �rst use assumptions (H1)-(H6) to establish that optimal solutions exist.

THEOREM 2.1. Assume that the functional J and mapping M de�ned by (2:1) and
(2:2), respectively, satisfy the hypotheses (H1)-(H6). Then, there exists a solution to

the minimization problem (2:3).

Proof: Assumption (H3) simply asserts that there is at least one element ofX�� that
satis�es the constraint. Thus, we may choose a minimizing sequence f(u(n); g(n))g �
X � � such that

lim
n!1

J (u(n); g(n)) = inf
(v;z)2X��

J (v; z)

and
M (u(n); g(n)) = 0 :

By (H1) and (H2), the boundedness of fJ (u(n); g(n))g implies the boundedness of
the sequences fkg(n)kGg and fF(u

(n))g. Then, by (H6), we deduce that fku(n)kXg is
bounded. Thus, we may extract a subsequence f(u(n); g(n))g such that u(n) * u in X
and g(n) * g in G. Since � is closed and convex, we have g 2 �. Of course, u 2 X.
We next show that (u; g) satis�es the constraint equation. Using (H4), we have that

lim
n!1

hTN (u(n)); fi = lim
n!1

hN (u(n)); T �fi = hN (u); T �fi = hTN (u); fi 8 f 2 X�

and

lim
n!1

hTK(g(n)); fi = lim
n!1

hK(g(n)); T �fi = hK(g); T �fi = hTK(g); fi 8 f 2 X�

so that

0 = lim
n!1

hM (u(n); g(n)); fi = hu + �TN (u) + �TK(g); fi 8 f 2 X� ;

i.e., M (u; g) = 0. Finally, we use (H5), the weak lower semicontinuity of J (�; �), to
conclude that (u; g) is indeed a minimizer inX�� satisfying the constraintM (u; g) =
0.

2.4. Existence of Lagrange multipliers

We now wish to use the additional assumptions (H7)-(H9) to show that the La-
grange multiplier rule may be used to turn the constrained minimization problem
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(2.3) into an unconstrained one. Actually, the Lagrange multiplier rule will only en-
able us to �nd local minima in the sense of (2.4). We �rst quote the following abstract
Lagrange multiplier rule whose proof can be found in [21].

THEOREM 2.2. Let X1 and X2 be two Banach spaces and � an arbitrary set. Suppose

J is a functional on X1 � � and M a mapping from X1 � � to X2. Assume that

(u; g) 2 X1 � � is a solution to the following constrained minimization problem:

(2:5)
M (u; g) = 0 and there exists an � > 0 such that J (u; g) � J (v; z)

for all (v; z) 2 X1 � � such that ku� vkX1
� � and M (v; z) = 0 :

Let U be an open neighborhood of u in X1. Assume further that the following conditions

are satis�ed:

(2:6) for each z 2 �, v 7! J (v; z) and v 7!M (v; z) are Fr�echet-di�erentiable at

v = u ;

(2:7) for any v 2 U , z1; z2 2 �, and 
 2 [0; 1], there exists a z
 = z
 (v; z1; z2)
such that

M (v; z
 ) = 
M (v; z1) + (1� 
)M (v; z2)

and

J (v; z
 ) � 
J (v; z1) + (1� 
)J (v; z2) ;

and

(2:8) Range
�
Mu(u; g)

�
is closed with a �nite codimension ;

where Mu(u; g) denotes the Fr�echet derivative of M with respect to u. Then, there

exists a k 2 RI and a � 2 X�
2 that are not both equal to zero such that

k hJu(u; g); vi � h�;Mu(u; g)vi = 0 8 v 2 X1

and

min
z2�

L(u; z; �; k) = L(u; g; �; k) ;

where L(u; g; �; k) = kJ (u; g) � h�;M (u; g)i is the Lagrangian for the constrained

minimization problem (2:5) and where Ju(u; g) denotes the Fr�echet derivative of J

with respect to u. Moreover, if

(2:9) the algebraic sum Mu(u; g)X1 +M (u;�) contains 0 2 X2 as an interior

point,

then we may choose k = 1, i.e., there exists a � 2 X�
2 such that

hJu(u; g); vi � h�;Mu(u; g)vi = 0 8 v 2 X1

and

min
z2�

L(u; z; �; 1) = L(u; g; �; 1) :

Proof: See [21].
Next, we apply Theorem 2.2 to the optimization problem (2.4). In doing so, we

will need the following result.

LEMMA 2.3. Let the spaces X, Y , and Z and operators T and N be de�ned as in x2:1.
For v 2 X, assume that N 0(v) maps X into Z. Then, TN 0(v) is a compact operator
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from X to X, and therefore �
�
�TN 0(v)

�
, the spectrum of the operator

�
�TN 0(v)

�
, is

at most countable with zero being the only possible limit point.

Proof: Since Z ,!,! Y , we see that N 0(v) is a compact linear operator from X to
Y . Also, T is a bounded linear operator from Y to X so that TN 0(v) is a compact
operator from X to X. Hence, �

�
�TN 0(v)

�
is at most countable and consists only of

0 and the eigenvalues of
�
�TN 0(v)

�
.

Note that in the following result, the existence of at least one pair (u; g) satisfying
(2.4) is guaranteed by Theorem 2.1.

THEOREM 2.4. Let � 2 � be given. Assume that assumptions (H1)-(H9) hold. Let

(u; g) 2 X � � be an optimal solution satisfying (2:4). Then, there exists a k 2 RI
and a � 2 X� that are not both equal to zero such that

(2:10) k hJu(u; g); wi � h�;Mu(u; g) �wi = 0 8 w 2 X

and

(2:11) min
z2�

L(u; z; �; k) = L(u; g; �; k) :

Furthermore, if (1=�) 62 �
�
�TN 0(u)

�
, we may choose k = 1, i.e., for almost all �,

there exists a � 2 X� such that

(2:12) hJu(u; g); wi � h�;Mu(�; u; g) �wi = 0 8 w 2 X

and

(2:13) min
z2�

L(u; z; �; 1) = L(u; g; �; 1) :

Proof: Let � 2 � be given. To show the existence of k and � such that (2.10) and
(2.11) are valid, we only need to verify that the hypotheses (2.6)-(2.8) of Theorem 2.2
hold with X1 = X2 = X, since in this case (2.5) reduces to (2.4). Obviously, (2.6) is
merely a restatement of (H7). Since � is convex and since the mappings T and K are
linear, we have that if z
 = 
z1 + (1� 
)z2, then

M (v; z
) = v + �TN (v) + �TKz


= 

�
v + �TN (v)

�
+ (1� 
)

�
v + �TN (v)

�
+ 
�

�
TKz1 + (1 � 
)TKz2)

�
= 
M (v; z1) + (1� 
)M (v; z2) :

Moreover, (H8) implies that

J (v; z
) = �F(v) + � E(z
) = �F(v) + � E
�

z1 + (1� 
)z2

�
� �F(v) + �

�

E(z1) + (1� 
) E(z2)

�
= 
 J (v; z1) + (1 � 
)J (v; z2) :

Thus, (2.7) holds. The operator Mu(u; g) from X to X is de�ned by

Mu(u; g) �w = w + �TN 0(u) �w 8 w 2 X

or simply,
Mu(u; g) = I + �TN 0(u) :
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From (H9) and Lemma 2.3, we have that TN 0(u) is a compact operator from X to X.
As a result, Mu(u; g) = I + �TN 0(u) is a Fredholm operator so that it has a closed
range with a �nite codimension, i.e., (2.8) holds. Thus, by Theorem 2.2, there exists
a k 2 RI and a � 2 X� which are not both equal to zero such that (2.10) and (2.11)
hold.

To show the existence of a � such that (2.12) and (2.13) are valid, we only need
to verify that the additional hypothesis (2.9) of Theorem 2.2 holds. In fact, if, in
addition (1=�) 62 �

�
�TN 0(u)

�
, then it follows that X = Range

�
I + �TN 0(u)

�
=

Range
�
Mu(u; g)

�
so that Range

�
Mu(u; g)

�
contains 0 2 X as an interior point, i.e.,

(2.9) holds. Hence, by Theorem 2.2 and Lemma 2.3, we conclude that for almost all
�, there exists a � 2 X� such that (2.12) and (2.13) hold.

So far � has only been assumed to be a closed and convex subset of G. No
smoothness condition on the control variable g has been assumed in the functional
or in the constraint. Thus, the necessary condition of optimality with respect to
variations in the control variable is expressed in the cumbersome relation (2.11). We
now turn to the case where � contains a neighborhood of g, where (u; g) is an optimal
solution. In particular, we assume that � = G. In this case, (2.11) can be given a
more concrete structure.

THEOREM 2.5. Let � 2 � be given. Assume that assumptions (H1)-(H10) hold. Let

(u; g) 2 X � G be a solution of the problem (2:4). Then, there exists a k 2 RI and a

� 2 X� that are not both equal to zero such that

(2:14) k hJu(u; g); wi � h�;
�
I + �TN 0(u)

�
wi = 0 8 w 2 X

and

(2:15) khE 0(g); zi � h�; TKzi = 0 8 z 2 G :

Furthermore, if (1=�) 62 �
�
�TN 0(u)

�
, we may choose k = 1, i.e., there exists a � 2 X�

such that

(2:16) hJu(u; g); wi � h�;
�
I + �TN 0(u)

�
wi = 0 8 w 2 X

and

(2:17) hE 0(g); zi � h�; TKzi = 0 8 z 2 G :

hold.

Proof: Since the hypotheses imply that J (v; z) is Fr�echet di�erentiable with respect
to z, (2.14)-(2.17) follow easily from Theorem 2.4.
Remark. If k = 0, then there exists a � 6= 0 such that

�h�;Mu(u; g)wi = 0 8 w 2 X

so that the optimality system necessarily has in�nitely many solutions. In fact, for any
C 2 RI , (C�) is a solution whenever � is a solution. This creates both theoretical and
numerical di�culties. Thus, it is of great interest to try to eliminate this situation.
Fortunately, Lemma 2.3 and Theorem 2.4 tell us that we may set k = 1 6= 0 for almost
all values of (1=�), i.e., except for the at most countable set of values in �

�
�TN 0(u)

�
.
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If the control g enters the constraint in a favorable manner, then we may take
k = 1 even when (1=�) 2 �

�
�TN 0(u)

�
. Speci�cally, we invoke one of the assumptions

(H11) and (H11)0. We then have the following result.

THEOREM 2.6. Assume that the hypotheses of Theorem 2:5 hold. Assume that if

(1=�) 2 �
�
�TN 0(u)

�
, then either (H11) or (H11)0 holds. Then, for all � 2 �, there

exists a � 2 X� such that (2:16) and (2:17) hold.

Proof: Because of Theorem 2.5, we only need to examine the case (1=�) 2 �
�
�TN 0(u)

�
and show that the algebraic sumMu(u; g)X+M (u;G) = X. If (H11)0 holds, the result
is a direct application of Theorem 2.2.

If (H11) holds, let (1=�) be a nonzero eigenvalue of
�
�TN 0(u)

�
. Then, � is

also an eigenvalue of
�
�N 0(u)�T �

�
with a �nite dimensional eigenspace having the

corresponding eigenfunctions fv�i g
m
i=1 � X� as a basis. We claim that fK�T �v�i g

m
i=1 �

G� is a linearly independent set. To see this, we assume
Pm
i=1 �iK

�T �v�i = 0 with
�i 2 RI ; this expression can be rewritten as K�T �

�Pm
i=1 �i v

�
i

�
= 0. Because each v�i

is an eigenvector, we have
�
I + �N 0(u)�T �

�Pm
i=1 �i v

�
i = 0. Thus, the assumption

(H11) implies that
Pm
i=1 �i v

�
i = 0. Since fv�i g

m
i=1 is an eigenbasis, and is therefore

a linearly independent set, we have each �i = 0. This shows that fK�T �v�i g
m
i=1 is

linearly independent set in G�. Hence, we may choose an orthonormal dual basis
fzig

m
i=1 � G such that hzi;K

�T �v�j i = �ij.

Now, let w 2 X be given. We choose z = 1
�

Pm
i=1hw; v

�
i izi. Then hw; v�j i �

�hTKz; v�j i = hw; v�j i��hz;K
�T �v�j i = hw; v�j i�

Pm
i=1hw; v

�
i i�ij = 0 for j = 1; : : : ;m.

Thus, by Fredholm alternatives, there exists a unique v 2 X that satis�es
�
I +

�TN 0(u)
�
v = w � �TKz, or,

�
I + �TN 0(u)

�
v + �TKz = w; thus, we have shown

that Mu(u; g)X +M (u;G) = X. Hence, by Theorem 2.2, there exists a � 2 X� such
that (2:16) and (2:17) hold.

2.5. The optimality system

Under the assumptions of Theorem 2.6, an optimal state u 2 X, an optimal con-
trol g 2 G, and the corresponding Lagrange multiplier � 2 X� satisfy the optimality
system of equations formed by (2.2), (2.16), and (2.17). From (2.1) we have that
Ju = �F 0 and Jg = �E 0, where F 0 denotes the obvious Fr�echet derivative. Then,
(2.16)-(2.17) may be rewritten in the form

(2:18) �+ � [N 0(u)]�T ��� �F 0(u) = 0 in X�

and

(2:19) E 0(g) �K�T �� = 0 in G� :

For purposes of numerical approximations, it turns out to be convenient to make the
change of variable � = T ��. Then, the optimality system (2.2), (2.18), and (2.19) for
u 2 X, g 2 G, and � 2 Y � takes the form

(2:20) u+ �TN (u) + �TKg = 0 in X ;

(2:21) � + �T �[N 0(u)]�� � �T �F 0(u) = 0 in Y � ;

and

(2:22) E 0(g) �K�� = 0 in G� :
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It will also be convenient to invoke an additional simplifying assumption concern-
ing the dependence of the objective functional on the control. Speci�cally, we assume
that (H12) holds. Then, (2.20)-(2.22) can be rewritten as

(2:23) u+ �TN (u) + �TKg = 0 in X ;

(2:24) � + �T �[N 0(u)]�� � �T �F 0(u) = 0 in Y � ;

and

(2:25) g � EK�� = 0 in G :

Remark. Note that the optimality systems, e.g., (2.23)-(2.25), are linear in the adjoint
variable �. Also, note that the control g may be eliminated from the optimality system
(2.23)-(2.25). Indeed, the substitution of (2.25) into (2.23) yields

(2:26) u+ �TN (u) + �TKEK�� = 0 in X :

Thus, (2.24) and (2.26) determine the optimal state u and adjoint state �; subse-
quently, (2.25) may be used to determine the optimal control g from �. This observa-
tion serves to emphasize the important, direct role that the adjoint state plays in the
determination of the optimal control.
Remark. Given a � 2 Y �, it is not always possible to evaluate g exactly from (2.25).
For example, the application of the operator E may involve the solution of a partial
di�erential equation. Thus, although it is often convenient to devise algorithms for
the approximation of optimal control and states based on the simpli�ed optimality
system (2.24) and (2.26), in some other cases it is best to deal with the full form
(2.23)-(2.25). Thus, when we consider approximations of optimal controls and states,
we will deal with the latter.
Remark. In many applications we have that X� = Y . Since these spaces are assumed
to be re
exive, we also have that Y � = X. In this case, we have that both u and �
belong to X.

3. Finite dimensional approximations of the abstract problem

In this section we de�ne and analyze algorithms for the �nite dimensional approx-
imation of solutions of the optimality system (2.23)-(2.25); an outline of the de�nitions
and results of this section is as follows.

� In x3.1, we de�ne the �nite dimensional approximate problems
that we consider.

� In x3.2, a list of assumptions about the approximate problems
is given.

� In x3.3, we quote a result of [6] that we will use to analyze
approximations obtained as solutions of the approximate prob-
lems de�ned in x3.1-3.2.

� In x3.4, we provide error estimates for the approximation of
solutions of the optimality system (2.23)-(2.25)
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3.1. Formulation of �nite dimensional approximate problems

A �nite dimensional discretization of the optimality system (2.23)-(2.25) is de-
�ned as follows. First, one chooses families of �nite dimensional subspaces Xh � X,
(Y �)h � Y �, and Gh � G. These families are parameterized by a parameter h that
tends to zero. (For example, this parameter can be chosen to be some measure of the
grid size in a subdivision of 
 into �nite elements.) Next, we de�ne approximate oper-
ators T h : Y ! Xh, Eh : G� ! Gh, and (T �)h : X� ! (Y �)h. Of course, one views
T h, Eh, and (T �)h as approximations to the operators T , E, and T �, respectively.
Note that (T �)h is not necessarily the same as (T h)�. The former is a discretization
of an adjoint operator while the later is the adjoint of a discrete operator.

Once the approximating subspaces and operators have been chosen, an approxi-
mate problem is de�ned as follows. We seek uh 2 Xh, gh 2 Gh, and �h 2 (Y �)h such
that

(3:1) uh + �T hN (uh) + �T hKgh = 0 in Xh ;

(3:2) �h + � (T �)h[N 0(uh)]��h � � (T �)hF 0(uh) = 0 in (Y �)h ;

and

(3:3) gh �EhK��h = 0 in Gh :

3.2. Hypotheses concerning the abstract problem and the approximate

problem

We make the following hypotheses concerning the approximate operators T h,
(T �)h, and Eh:

(H13) lim
h!0

k(T � T h)ykX = 0 8 y 2 Y ;

(H14) lim
h!0

k(T � � (T �)h)vkY � = 0 8 v 2 X� ;

and

(H15) lim
h!0

k(E �Eh)skG = 0 8 s 2 G� :

We also need the following additional hypotheses on the operators appearing in
the de�nition of the abstract problem (2.4):

(H16) N 2 C3(X;Y ) and F 2 C3(X; RI ) ;

(H17) N 00, N 000, F 00, and F 000 are locally bounded, i.e., they map bounded sets to

bounded sets;

(H18) for v 2 X, in addition to (H9), i.e., N 0(v) 2 L(X;Z) where Z ,!,! Y ,

we have that [N 0(v)]� 2 L(Y �; Ẑ) where Ẑ ,!,! X� , that for � 2 Y �,

[N 00(v)]� � � 2 L(Y �; Ẑ), and that for w 2 X, F 00(v) �w 2 L(X; Ẑ); and
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(H19) K maps G into Z.

Here, (�)00 and (�)000 denote second and third Fr�echet derivatives, respectively.

3.3. Quotation of results concerning the approximation of a class of non-

linear problems

The error estimate to be derived in Section 3.4 makes use of results of [6] and [10]
(see also [13]) concerning the approximation of a class of nonlinear problems. These
results imply that, under certain hypotheses, the error of approximation of solutions
of certain nonlinear problems is basically the same as the error of approximation of
solutions of related linear problems. Here, for the sake of completeness, we will state
the relevant results, specialized to our needs.

The nonlinear problems considered in [6], [10], and [13] are of the following type.
For given � 2 �, we seek  2 X such that

(3:4) H(�;  ) �  + T G(�;  ) = 0 ;

where T 2 L(Y;X ), G is a C2 mapping from � � X into Y, X and Y are Banach
spaces, and � is a compact interval of RI . We say that f(�;  (�)) : � 2 �g is a branch

of solutions of (3.4) if � !  (�) is a continuous function from � into X such that
H(�;  (�)) = 0. The branch is called a regular branch if we also have that H (�;  (�))
is an isomorphism from X into X for all � 2 �. Here, H (�; �) denotes the Fr�echet
derivative of H(�; �) with respect to the second argument. We assume that there exists
another Banach space Z, contained in Y, with continuous imbedding, such that

(3:5) G (�;  ) 2 L(X ;Z) 8 � 2 � and  2 X ;

where G (�; �) denotes the Fr�echet derivative of G(�; �) with respect to the second ar-
gument.

Approximations are de�ned by introducing a subspace X h � X and an approxi-
mating operator T h 2 L(Y;X h). Then, given � 2 �, we seek  h 2 X h such that

(3:6) Hh(�;  h) �  h + T hG(�;  h) = 0 :

Concerning the operator T h, we assume the approximation properties

(3:7) lim
h!0

k(T h � T )!kX = 0 8 ! 2 Y

and

(3:8) lim
h!0

k(T h � T )kL(Z;X ) = 0 :

Note that whenever the imbedding Z � Y is compact, (3.8) follows from (3.7) and,
moreover, (3.5) implies that the operator T G (�;  ) 2 L(X ;X ) is compact.

We can now state the result of [6] or [10] that will be used in the sequel. In the
statement of the theorem, D2G represents any and all second Fr�echet derivatives of G.

THEOREM 3.1. Let X and Y be Banach spaces and � a compact subset of RI . Assume
that G is a C2 mapping from �� X into Y and that D2G is bounded on all bounded
sets of ��X . Assume that (3:5), (3:7), and (3:8) hold and that f(�;  (�));� 2 �g is a
branch of regular solutions of (3:4). Then, there exists a neighborhood O of the origin
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in X and, for h � h0 small enough, a unique C2 function �!  h(�) 2 X h such that
f(�;  h(�));� 2 �g is a branch of regular solutions of (3:6) and  h(�)�  (�) 2 O for
all � 2 �. Moreover, there exists a constant C > 0, independent of h and �, such that

(3:9) k h(�)�  (�)kX � Ck(T h � T )G(�;  (�))kX 8 � 2 � :

3.4. Error estimates for the approximation of solutions of the optimality

system

We now apply the result of Theorem 3.1 to study the approximation of solutions
of the optimality system. Set X = X � G � Y �, Y = Y � X�, Z = Z � Ẑ, and
X h = Xh �Gh� (Y �)h. (Recall that Ẑ was introduced in (H18).) By the hypotheses
on Z and Ẑ, we have that Z is compactly imbedded into Y. Let T 2 L(Y;X ) be
de�ned in the following manner: T (~r; ~�) = (~u; ~g; ~�) for (~r; ~�) 2 Y and (~u; ~g; ~�) 2 X if
and only if

(3:10) ~u+ T ~r = 0 ;

(3:11) ~� + T �~� = 0 ;

and

(3:12) ~g �EK� ~� = 0 :

Similarly, the operator T h 2 L(Y;X h) is de�ned as follows: T h(~r; ~�) = (~uh; ~gh; ~�h)
for (~r; ~�) 2 Y and (~uh; ~gh; ~�h) 2 X h if and only if

(3:13) ~uh + T h~r = 0 ;

(3:14) ~�h + (T �)h~� = 0 ;

and

(3:15) ~gh �EhK� ~�h = 0 :

The nonlinear mapping G : � � X ! Y is de�ned as follows: G
�
�; (~u; ~g; ~�)

�
= (~r; ~� )

for � 2 �, (~u; ~g; ~�) 2 X , and (~r; ~�) 2 Y if and only if

(3:16) ~r = �N (~u) + �K~g

and

(3:17) ~� = � [N 0(~u)]�~� � �F 0(~u) :

It is evident that the optimality system (2.23)-(2.25) and its �nite dimensional coun-
terpart (3.1)-(3.3) can be written as

(u; g; �) + T G
�
�; (u; g; �)

�
= 0
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and
(uh; gh; �h) + T hG

�
�; (uh; gh; �h)

�
= 0 ;

respectively, i.e., with  = (u; g; �) and  h = (uh; gh;  h), in the form of (3.4) and
(3.6), respectively.

Now we examine the approximation properties of T h.

LEMMA 3.2. Let the operators T and T h be de�ned by (3:10)-(3:12) and (3:13)-(3:15),
respectively. Assume that the hypotheses (H13)-(H15) hold. Then,

(3:18) lim
h!0

k(T � T h)(r; � )kX = 0 8 (r; � ) 2 Y :

Proof: Let (~u; ~g; ~�) = T (r; � ), i.e., (~u; ~g; ~�) satis�es (3.10)-(3.12). Let (~uh; ~gh; ~�h) =
T h(r; � ) , i.e., (~uh; ~gh; ~�h) satis�es (3.13)-(3.15). Subtracting the corresponding equa-
tions yields that

k~u� ~uhkX = k(T � T h)rkX ;

k~� � ~�hkY � = k(T � � (T �)h)�kY � ;

and
k~g � ~ghkG = k(E �Eh)K� ~�h + EK�(~� � ~�h)kG

� k(E �Eh)K� ~�hkG + kEK�kL(Y �;G) k(~� � ~�h)kG :

Thus, for some constant C > 0,

k(T � T h)(r; � )kX

� C
n
k(T � T h)rkX + k(T � � (T �)h)�kY � + k(E �Eh)K� ~�hkG

o
:

Then, the result of the proposition follows from (H13)-(H15).
Next, we examine the derivative of the mapping G.

LEMMA 3.3. Let the mapping G : ��X ! Y be de�ned by (3:16)-(3:17). Assume that

the hypotheses (H9), (H16), and (H18)-(H19) hold. Then, for every � 2 � and every

(u; g; �) 2 X , the operator G(u;g;�)
�
�; (u; g; �)

�
2 L(X ;Z).

Proof: A simple calculation shows that G(u;g;�)
�
�; (u; g; �)

�
2 L(X ;Y) is given by

G(u;g;�)
�
�; (u; g; �)

�
� (~u; ~g; ~�) = �

�
N 0(u) � ~u+K~g

[N 00(u) � ~u]� � � + [N 0(u)]� � ~� � F 00(u) � ~u

�
:

Then, the result follows from (H9) and (H18)-(H19).

A solution
�
u(�); g(�); �(�)

�
of the optimality system (2.23)-(2.25) is called regular

if the system
�
for the unknowns (~u; ~g; ~�)

�

(3:19) ~u+ �TN 0(u)~u+ �TK~g = ~x ;

(3:20) ~� + �T �[N 00(u)]�~u � � + �T �[N 0(u)]�~� � �T �F 00(u)~u = ~y

and

(3:21) ~g � EK� ~� = ~z :
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is uniquely solvable for any (~x; ~z; ~y) 2 X = X � G � Y �. (Note that the linear
operator appearing on the left hand side of (3.19)-(3.21) is obtained by linearizing the
optimality system (2.23)-(2.25) about (u; g; �).)

In the following theorem, we will assume that the solution
�
u(�); g(�); �(�)

�
of the

optimality system (2.23)-(2.25) that we are trying to approximate is a regular solution.
The assumptions we have made, in particular (H9), (H18)-(H19), are su�cient to
guarantee that for almost all values of �, this is indeed the case.

LEMMA 3.4. Assume the hypotheses of Lemma 3:3. Then, for almost all �, solutions�
u(�); g(�); �(�)

�
of the optimality system (2:23)-(2:25) are regular.

Proof: The system (3.19)-(3.21) is equivalent to

(3:22)
�
I + � T S(u; g; �)

�
(~u; ~g; ~�) = (~x; ~z; ~y) ;

where the linear operator S(u; g; �) : X ! Y is de�ned by

S(u; g; �) � (~u; ~g; ~�) �
1

�
G(u;g;�)

�
�; (u; g; �)

�
� (~u; ~g; ~�)

=

�
N 0(u) � ~u+K~g

[N 00(u) � ~u]� � � + [N 0(u)]� � ~� � F 00(u) � ~u

�
:

Now, T 2 L(Y;X ), so that, by Lemma 3.3,
�
I +� T S(u; g; �)

�
is a compact perturba-

tion of the identity operator fromX toX . Thus, for almost all �, (3.22), or equivalently
(3.19)-(3.21), is uniquely solvable, i.e., for almost all �, the solution

�
u(�); g(�); �(�)

�
of the optimality system (2.23)-(2.25) is regular.

Using Theorem 3.1, we can now provide an error estimate for approximations of
solutions of the abstract problem.

THEOREM 3.5. Let
�
u(�); g(�); �(�)

�
2 X , for � 2 �, be a branch of regular solutions

of the optimality system (2.23)-(2.25). Assume that the hypotheses (H13)-(H19) hold.
Then, there exists a � > 0 and an h0 > 0 such that for h < h0, the discrete optimality

system (3:1)-(3:3) has a unique solution
�
uh(�); gh(�); �h(�)

�
satisfying

k
�
u(�); g(�); �(�)

�
�
�
uh(�); gh(�); �h(�)

�
kX < � :

Moreover,

(3:23) lim
h!0

k
�
u(�); g(�); �(�)

�
�
�
uh(�); gh(�); �h(�)

�
kX = 0

uniformly in � 2 � and there exists a constant C, independent of h and �, such that

(3:24)

lim
h!0

k
�
u(�); g(�); �(�)

�
�
�
uh(�); gh(�); �h(�)

�
kX

� C�
n
k(T h � T )

�
N (u(�)) +Kg(�)

�
kX + k(Eh �E)K��(�)kG

+ k
�
(T �)h � T �

��
[N 0(u(�))]�� � F 0(u(�))

�
kY �

o
:

Proof: Assumptions (H16) and (H17) ensure that G 2 C2(X ;Y) and D2G maps
bounded sets of � � X into bounded sets of Y. By Lemma 3.3, assumptions (H18)
and (H19) imply that (3.5) holds. By Lemma 3.2, assumptions (H13)-(H15) imply
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that (3.7) holds. Then, since Z is compactly imbedded into Y, (3.7) implies that (3.8)
holds. Thus, all the hypotheses of Theorem 3.1 are veri�ed. Then, a direct application
of Theorem 3.1 yields (3.23) and (3.24) follows from (3.9).

It is easily seen that (3.23) and (3.24) are equivalent to:

lim
h!0

n
ku(�) � uh(�)kX + kg(�) � gh(�)kG + k�(�)� �h(�)kY �

o
= 0

uniformly in � 2 � and that there exists a constant C, independent of h and �, such
that

ku(�)� uh(�)kX + kg(�) � gh(�)kG + k�(�) � �h(�)kY �

� C�
n
k(T h � T )

�
N (u(�)) +Kg(�)

�
kX + k(Eh �E)K��(�)kG

+ k
�
(T �)h � T �

��
[N 0(u(�))]��(�) � F 0(u(�))

�
kY �

o
:

If, in (3.9), the operator T is invertible, we have, using (3.4), that

k h(�) �  (�)kX � Ck(T hT �1 � I) (�)kX 8 � 2 � :

Thus, if the operator T from Y to X is invertible, we have that (3.24) is equivalent to

(3:25)

ku(�) � uh(�)kX + kg(�) � gh(�)kG + k�(�) � �h(�)kY �

� C
n
k(T hT�1 � I)u(�)kX + k(EhE�1 � I)g(�)kG

+ k
�
(T �)h(T �)�1 � I

�
�(�)kY �

o
:

4. Applications

We now apply the framework and analyses developed in x2 and x3 to some concrete
problems, all of which feature constraints on admissible states and controls that take
the form of a system of nonlinear partial di�erential equations. In each application,
we use a di�erent control mechanism so that the discussion provided in this section
illustrates the treatment of a variety of such mechanisms. However, one could use any
of the control mechanisms discussed in any of the applications in any other application,
or in fact, use any combination of such mechanisms.

Before examining any speci�c application, we establish some notation. Further
notation will be established as needed when the individual applications are considered.

Throughout, C will denote a positive constant whose meaning and value changes
with context. Also, Hs(D) for s 2 RI denotes the standard real Sobolev space of order
s with respect to the set D, where D could either be a bounded domain 
 2 RI d,
d = 2; 3, or part of the boundary � of such a domain. Of particular interest are the
spaces H0(D) = L2(D),

H1(D) =

�
� 2 L2(D)

��� @�

@xj
2 L2(D) for j = 1; : : : ; d

�

and

H2(D) =

�
� 2 L2(D)

��� @�

@xj
;

@2�

@xj@xk
2 L2(D) for j; k = 1; : : : ; d

�
:
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Also of interest is the subspace

H1
0(D) =

n
� 2 H1(D)

��� � = 0 on @D
o
;

where @D denotes the boundary of D.
Dual spaces will be denoted by (�)�. Duality pairings between spaces and their

duals will be denoted by h�; �i. Norms of functions belonging to Hs(
) and Hs(�) are
denoted by k � ks and k � ks;�, respectively. Of particular interest are the L

2(
)-norm
k � k0, the H

1(
)-norm

k�k21 =

dX
j=1





 @�@xj





2

0

+ k�k20 ;

and the H2(
)-norm

k�k22 =

dX
j;k=1





 @2�

@xj@xk






2

0

+ k�k21 :

Corresponding Sobolev spaces of real, vector-valued functions having r compo-
nents will be denoted by Hs(D), e.g., H1(D) = [H1(D)]r. Of particular interest will
be the spaces L2(D) = H0(D) = [L2(D)]r ,

H1(D) =

�
vj 2 L

2(D)
��� @vj

@xk
2 L2(D) for j = 1; : : : ; r and k = 1; : : : ; d

�
;

and

H2(D) =

�
vj 2 L

2(D)
��� @vj

@xk
2 L2(D) ;

@2vj

@xk@x`
2 L2(
)

for j = 1; : : : ; r and k; ` = 1; : : : ; d

�
;

where vj, j = 1; : : : ; r, denote the components of v. Also of interest is the subspace

H1
0(D) =

n
v 2H1(D)

��� vj = 0 on @D, j = 1; : : : ; r
o
:

Norms for spaces of vector-valued functions will be denoted by the same notation as
that used for their scalar counterparts. For example,

kvk2s =

rX
j=1

kvjk
2
s and kvk2s;� =

rX
j=1

kvjk
2
s;� :

We denote the L2(
) and L2(
) inner products by (�; �), i.e., for p; q 2 L2(
) and
u;v 2 L2(
)

(p; q) =

Z



pq d
 and (u;v) =

Z



u � v d
 :

Similarly, we denote by (�; �)� the L
2(�) and L2(�) inner products, i.e., for p; q 2 L2(�)

and u;v 2 L2(�)

(p; q)� =

Z
�

pq d� and (u;v)� =

Z
�

u � v d� :
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Since in all cases L2-spaces will be used as pivot spaces, the above inner product
notation can also be used to denote duality pairings between functions de�ned on
Hs-spaces and their dual spaces.

For details concerning the notation employed, one may consult, e.g., [1].

4.1. Distributed controls for the von K�arm�an plate equations

For this application we will use distributed controls, i.e., control is e�ected through
a source term in the governing partial di�erential equations. Let 
 be a bounded, con-
vex polygonal domain in RI 2 and let � denote the boundary of 
. The von K�arm�an
equations for a clamped plate are given by (see, e.g., [9] or [18])

�2 1 +
1

2
[ 2;  2] = 0 in 
 ;

�2 2 � [ 1;  2] = �g in 
 ;

and

 1 =
@ 1

@n
=  2 =

@ 2

@n
= 0 on � ;

where

[ ; �] =
@2 

@x21

@2�

@x22
+
@2 

@x22

@2�

@x21
� 2

@2 

@x1x2

@2�

@x1x2
:

Here,  1 denotes the Airy stress function,  2 the de
ection of the plate in the direction
normal to the plate, �g is an external load normal to the plate which depends on the
loading parameter �, and @(�)=@n the normal derivative in the direction of the outer
normal to �.

By introducing appropriate rescalings, i.e., by replacing  1 by � 1,  2 by � 2,
and g by �g, we can rewrite the von K�arm�an equations as follows:

(4:1) �2 1 +
�

2
[ 2;  2] = 0 in 
 ;

(4:2) �2 2 � � [ 1;  2] = � g in 


and

(4:3)  1 =
@ 1

@n
=  2 =

@ 2

@n
= 0 on � :

We introduce the spaces

H2
0(
) =

�
 2 H2(
)

���  = 0 ;
@ 

@n
= 0 on �

�
;

H2
0(
) = [H2

0(
)]
2 ; H�2(
) =

�
H2
0 (
)

��
; and H�2(
) =

�
H2

0(
)
��

and the bilinear form

a( ; �) =

Z



� ��d
 8  ; � 2 H2(
)
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in order to de�ne the following weak formulation of the von K�arm�an equations (4.1)-
(4.3): �nd    = ( 1;  2) 2 H

2
0(
) such that

(4:4) a( 1; �1) +
�

2

�
[ 2;  2]; �1

�
= 0 8 �1 2 H

2
0 (
)

and

(4:5) a( 2; �2) � �
�
[ 1;  2]; �2

�
= �hg; �2i 8 �2 2 H

2
0 (
) :

Using the identity

(4:6)
�
[ ; �]; �

�
=
�
[ ; �]; �

�
8  ; �; � 2 H2

0 (
) ;

one can show that for each g 2 H�2(
), (4.4)-(4.5) possesses at least one solution
   = ( 1;  2) 2H

2
0(
) and that all solutions of (4.4)-(4.5) satisfy the a priori estimate

(4:7) k 1k2 + k 2k2 � Ckgk�2 ;

see, e.g., [18], for details. In the sequel a solution to (4.1)-(4.3) will be understood in
the sense of (4.4)-(4.5).

Given a desired state    0 =
�
 10;  20

�
2 L2(
), we de�ne for any    = ( 1;  2) 2

H2
0(
) and g 2 L

2(
) the functional

(4:8)

J (   ; g) = J ( 1;  2; g)

=
�

2

Z



�
( 1 �  10)

2 + ( 2 �  20)
2
�
d
+

�

2

Z



g2 d
 :

We then consider the following optimal control problem associated with the von
K�arm�an plate equations:

(4:9) min
�
J (   ; g) j    2H2

0(
) ; g 2 �
	

subject to (4.4)-(4.5) ;

where � is a subset of L2(
).
We de�ne the spaces X = H2

0(
), Y = H�2(
), G = L2(
), and Z = L1(
).
By compact imbedding results, Z ,!,! Y . For the time being, we assume that the
admissible set � for the control g is a closed, convex subset of G = L2(
).

Let the continuous linear operator T 2 L(Y ;X) be de�ned as follows: for f =
(f1; f2) 2 Y = H�2(
), T f =    2 X = H2

0(
) is the unique solution of

a( 1; �1) = hf1; �1i 8 �1 2 H
2
0 (
)

and

a( 2; �2) = hf2; �2i 8 �2 2 H
2
0 (
) :

It can be easily veri�ed that T is self-adjoint.
We de�ne the (di�erentiable) nonlinear mapping N : X ! Y by

N (   ) =

�
1
2 [ 2;  2]
�[ 1;  2]

�
8    2 X
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or equivalently

hN (   ); ���i =
1

2
([ 2;  2]; �1) � ([ 1;  2]; �2) 8 ��� = (�1; �2) 2 X

and de�ne K : g 2 L2(
)! Y by

Kg = �

�
0
g

�
;

or equivalently,
hKg;���i = �hg; �2i 8 ��� = (�1; �2) 2 X :

Clearly, the constraint equations (4.4)-(4.5) can be expressed as

   + �TN (   ) + �TKg = 0 ;

i.e., in the form (2.2). With the obvious de�nitions for F(�) and E(�), i.e.,

F(   ) =
1

2

Z



�
( 1 �  10)

2 + ( 2 �  20)
2
�
d
 8    2 X

and

E(g) =
1

2

Z



g2 d
 8 g 2 G ;

the functional (4.8) can be expressed as

J (   ; g) = �F(   ) + � E(g) ;

i.e., in the form (2.1). Thus, the minimization problem (4.9) is in the form of the
minimization problem (2.3).

We are now in a position to verify, for the minimization problem (4.9), all the
hypotheses of x2 and x3.

4.1.1. Veri�cation of the hypotheses for the existence of optimal solutions.

We �rst verify that the hypotheses (H1)-(H6) hold in the current setting.
(H1) is obviously satis�ed with a lower bound 0.
(H2) holds with � = 1 and � = 2.

(H3) is veri�ed with the choice (   
(0)
; g(0)) 2 X � �, where g(0) is an arbitrarily

chosen element in � and    (0) =
�
 
(0)
1 ;  

(0)
2

�
is a solution of

�2 
(0)
1 +

�

2
[ 

(0)
2 ;  

(0)
2 ] = 0 in 
 ;

�2 
(0)
2 � � [ 

(0)
1 ;  

(0)
2 ] = � g(0) in 
 ;

and

 
(0)
1 =

@ 
(0)
1

@n
=  

(0)
2 =

@ 
(0)
2

@n
= 0 on � :

In order to verify (H4), we assume fg(n)g � � is a sequence satisfying g(n) * g

in L2(
); then, we have g(n) * g in H�2(
) so that limn!1hg
(n); zi = hg; zi for

all z 2 H2(
), i.e., Kg(n) * Kg in Y . Assume that the sequence f   
(n)
g � H2

0(
)
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satis�es    (n)
*    in H2

0(
); then, (@
2   

(n)
=@xi@xj) * (@2   =@xi@xj) in L

2(
) and,

by using a compact imbedding result,    (n) !    in L2(
). Now, using the identity
(4.6),

hN (   
(n)

); ���i =
1

2

�
[ 

(n)
2 ;  

(n)
2 ]; �1

�
�
�
[ 

(n)
1 ;  

(n)
2 ]; �2

�

=
1

2

�
[ 

(n)
2 ; �1];  

(n)
2

�
�
�
[ 

(n)
1 ; �2];  

(n)
2

�

!
1

2
([ 2; �1];  2) � ([ 1; �2];  2)

=
1

2
([ 2;  2]; �1)� ([ 1;  2]; �2) = hN (   ); ���i :

Hence, (H4) is veri�ed.
The veri�cation of (H5) follows directly from the observation that the mappings

��� 7! F(���) = (1=2)k����    0k
2
0 and g 7! E(g) = (1=2)kgk20 are convex.

The veri�cation of (H6) is a trivial consequence of the a priori estimate (4.7).
It is now just a matter of citing Theorem 2.1 to prove the existence of an optimal

solution that minimizes (4.8) subject to (4.4)-(4.5).

THEOREM 4.1. There exists a (���; g) 2H2
0(
)�� such that (4:8) is minimized subject

to (4.4)-(4.5).

4.1.2. Veri�cation of the hypotheses for the existence of Lagrange multipliers.

We now assume (   ; g) is an optimal solution and turn to the veri�cation of hy-
potheses (H7)-(H9).

The validity of (H7) is obvious.
(H8) holds since the mapping g 7! E(g) = (1=2)kgk20 is convex.
(H9) can be veri�ed as follows. For any    2 X, the operator N 0(   ) : X ! Y is

given by

N 0(   ) ���� =

�
[ 2; �2]

�[ 1; �2]� [ 2; �1]

�
8 ��� = (�1; �2) 2 X :

Thus, using the de�nition of [�; �], we obtain that N 0(   ) ���� 2 L1(
) = Z.
The Lagrangian is given by

L(   ; g; ���; k) = kJ (   ; g)�
n
a( 1; �1) +

�

2

�
[ 2;  2]; �1

�

+ a( 2; �2) � �
�
[ 1;  2]; �2

�
� �(g; �2)

o

for all (   ; g; ���; k) 2 X�G�X� RI = H2
0(
)�L

2(
)�H2
0(
)� RI . Note that in this

form of the Lagrangian, the Lagrange multiplier ��� 2 X = Y � so that we have already
introduced the change of variables indicated between (2.17)-(2.18) and (2.19)-(2.21).

Having veri�ed the hypotheses (H7)-(H9), we may apply Theorem 2.4 to conclude
that there exists a Lagrange multiplier ��� 2 X = H2

0(
) and a real number k such that

(4:10) ��� + �T �
�
[N 0(   )]� � ��� � kJ   (   ; g)

�
= 0

and

(4:11) L(   ; g; ���; k) � L(   ; z; ���; k) 8 z 2 �

and that for almost all values of �, we may choose k = 1.
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Recall that T is self-adjoint. Also, note that for any    2 X =H2
0(
),

[N 0(   )]� � ��� =

�
�[ 2; �2]

[ 2; �1]� [ 1; �2]

�
8 ��� = (�1; �2) 2 X :

Thus, (4.10), with k = 1, can be rewritten as

(4:12) a(�1; �1) � �
�
[ 2; �2]; �1

�
= �( 1 �  10; �1) 8 �1 2 H

2
0(
)

and

(4:13)
a(�2; �2) + �

�
[ 2; �1]; �2

�
� �

�
[ 1; �2]; �2

�
= �( 2 �  20; �2) 8 �2 2 H

2
0 (
) :

Using the de�nition of the Lagrangian functional, (4.11), with k = 1, can be rewritten
as

�

2
(z; z) + �(z; �2) �

�

2
(g; g) � �(g; �2) � 0 8 z 2 � :

Note that, in the above expression, we have already employed hypothesis (H12) which
in the current context is trivially satis�ed with E the identity operator on G� = G =
L2(
). For each � 2 (0; 1) and each t 2 �, set z = �t+(1��)g 2 � in the last equation
to obtain

�2

2
(t� g; t� g) + � (t� g; g) + � (t� g; �2) � 0 8 t 2 �

so that, after dividing by � > 0 and then letting �! 0+, we obtain

(4:14) (t� g; g + �2) � 0 8 t 2 � :

We see that for almost all values of �, necessary conditions for an optimum are
that (4.4)-(4.5) and (4.12)-(4.14) are satis�ed. The system formed by these equations
will be called an optimality system.

We now specialize to the case � = L2(
). Note that the hypothesis (H10) is
satis�ed. Then, using Theorem 2.5, we see that the inequality (4.14) becomes an
equality and, by letting z = t � g vary arbitrarily in L2(
), we now have, instead of
(4.14),

(4:15) (z; g + �2) = 0 8 z 2 L2(
) :

Thus, according to that theorem, we have that for almost all �, an optimality system
of equations is now given by (4.4)-(4.5), (4.12)-(4.13), and (4.15). However, we can go
further and verify that the hypothesis (H11)0 is valid, which in turn will justify the
existence of a Lagrange multiplier satisfying the optimality system for all � 2 �. We
now assume the domain 
 is a convex polygon with no angles greater than 126o.

Let � be given such that 1=� is an eigenvalue of�TN 0(   ), where (   ; g) 2H2
0(
)�

L2(
) is an optimal pair that minimizes (4.8) subject to (4.4)-(4.5). We wish to show

that for each ~f 2H�2(
), there exists a ~g 2 L2(
) and a ~   2H2
0(
) such that

~   + �TN 0(   ) � ~   + �TK~g = ~f ;

i.e.,

(4:16) a( ~ 1; �1) + �
�
[ 2; ~ 2]; �1

�
= h ~f1; �1i 8 �1 2 H

2
0 (
)
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and

(4:17)
a( ~ 2; �2)� �

�
[ ~ 1;  2]; �2

�
� �

�
[ 1; ~ 2]; �2

�
� �(~g; �2)

= h ~f2; �2i 8 �2 2 H
2
0(
) :

To show this, we �rst let ~   2H2
0(
) be a solution of

a( ~ 1; �1) + �
�
[ 2; ~ 2]; �1

�
= h ~f1; �1i 8 �1 2 H

2
0 (
)

and

a( ~ 2; �2)� �
�
[ ~ 1;  2]; �2

�
= h ~f2; �2i 8 �2 2 H

2
0(
) :

The existence of such a ~   can be shown in a manner similar to that for showing the
existence of a solution to the von K�arm�an equation; the key step is that by adding the
two equations with the test function ��� replaced by ~   , we have the a priori estimate

a( ~ 1; ~ 1) + a( ~ 2; ~ 2) = h ~f1; ~ 1i+ h ~f2; ~ 2i :

Then, we choose ~g = �[ 1; ~ 2]. Note that regularity results for the biharmonic equa-
tion applied to (4.4)-(4.5) yield    2 H4(
) (see [3]). Hence, using imbedding theorems

we deduce that ~g 2 L2(
). It is obvious that ~g and ~   satisfy (4.16)-(4.17), i.e., we have
veri�ed (H11)0. Hence we conclude that for all �, the optimality system (4.4)-(4.5),
(4.12)-(4.13), and (4.15) has a solution. Thus, we have Theorem 2.6 which, in the
present context, is given as follows.

THEOREM 4.2. Let (   ; g) 2 H2
0(
)�L

2(
) denote an optimal solution that minimizes

(4:8) subject to (4.5)-(4.6). Then, for all � 2 �, there exists a nonzero Lagrange

multiplier ��� 2 H2
0(
) satisfying the Euler equations (4.12)-(4.13) and (4.15).

4.1.3. Veri�cation of the hypotheses for approximations and error estimates.

We �nally verify the hypotheses (H13)-(H19) that are used in connection with
approximations and error estimates.

A �nite element discretization of the optimality system (4.4)-(4.5), (4.12)-(4.13),
and (4.15) is de�ned in the usual manner. We �rst choose families of �nite dimensional
subspaces Xh � H2

0(
) and G
h � L2(
) parameterized by a parameter h that tends

to zero and satisfying the following approximation properties: there exists a constant
C and an integer r such that

(4:18) inf
���
h
2Xh

k���� ���
h
k2 � Chmk���km+2 ; 8 ��� 2Hm+2(
) ; 1 � m � r

and

(4:19) inf
zh2Gh

kz � zhk0 � Chmkzkm ; 8 z 2 Hm(
) ; 1 � m � r :

One may consult, e.g., [8] for some �nite element spaces satisfying (4.18) and (4.19).
For example, one may choose Xh = V h�V h where V h is the piecewise quintic-C1(
)
�nite element space constrained to satisfy the given boundary conditions and de�ned
with respect to a family of triangulations of 
. In this case, h is a measure of the grid
size. For simplicity, one may choose Gh = V h.
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Once the approximating spaces have been chosen, we may formulate the approx-
imate problem for the optimality system (4.4)-(4.5), (4.12)-(4.13), and (4.15): seek

   
h
2 Xh, gh 2 Gh, and ���h 2 Xh such that

(4:20) a( h1 ; �
h
1) +

�

2

�
[ h2 ;  

h
2 ]; �

h
1

�
= 0 8 �h1 2 V

h ;

(4:21) a( h2 ; �
h
2) � �

�
[ h1 ;  

h
2 ]; �

h
2

�
= (g; �h2) 8 �h2 2 V

h ;

(4:22) a(�h1 ; �
h
1 )� �

�
[ h2 ; �

h
2 ]; �

h
1

�
= �( h1 �  10; �

h
1 ) 8 �h1 2 V

h ;

(4:23) a(�h2 ; �
h
2 ) + �

�
[ h2 ; �

h
1 ]; �

h
2

�
� �

�
[ h1 ; �

h
2 ]; �

h
2

�
= �( h2 �  20; �

h
2 ) 8 �h2 2 V

h ;

and

(4:24) (zh; gh + �h2 ) = 0 8 zh 2 Gh :

The operator T h 2 L(Y ;Xh) is de�ned as follows: for f 2 Y , T hf =    
h
2 Xh is

the unique solution of

a( h1 ; �
h
1) = hf1; �

h
1i 8 �h1 2 V

h

and
a( h2 ; �

h
2) = hf2; �

h
2i 8 �h2 2 V

h :

Since T = T �, we de�ne (T �)h = T h.
We de�ne the operator Eh : L2(
)! Gh as the L2(
)-projection on Gh, i.e., for

each g 2 L2(
),
(Ehg; �h) = (g; �h) 8 �h 2 Gh :

Since G = L2(
) is re
exive, Eh is in fact an operator from G� ! Gh.
By the well-known results concerning the approximation of biharmonic equations

(see, e.g., [2] or [8]), we obtain

k(T � T h)fkX ! 0

as h! 0, for all f 2 Y . This is simply a restatement of (H13).
(H14) follows trivially from (H13) and the fact that T is self-adjoint and we have

chosen (T �)h = T h.
(H15) follows from the best approximation property of L2(
)-projections and

(4.19).
(H16) and (H17) follow from the fact that N and F are polynomials. Here we

also use imbedding theorems and Cauchy inequalities.
We set Ẑ = Z = L1(
). For each ��� 2H2

0(
) and ��� 2 H
2
0(
), Sobolev imbedding

theorems imply that

[N 0(   )]� � ��� =

�
�[ 2; �2]

[ 2; �1]� [ 1; �2]

�
2 Ẑ ;

23



�
[N 00(   )]� � ���

�
� ��� =

�
�[�2; �2]

[�2; �1]� [�1; �2]

�
2 Ẑ

and �
F 00(   ) � ���

�
� ��� =

�
�1�1
�2�2

�
2 Ẑ :

These relations verify (H18).
From the de�nition of the operator K we see that K maps L2(
) into L1(
), i.e.,

K maps G into Z. Thus (H19) is veri�ed.
Hence, we are now in a position to apply Theorem 3.5 to derive error estimates

for the approximate solutions of the optimality system (4.4)-(4.5), (4.12)-(4.13) and
(4.15). It should be noted that Lemma 3.4 implies that for almost all values of �, the
solutions of the optimality system are regular.

THEOREM 4.3. Assume that � is a compact interval of RI + and that there exists

a branch f(�;   (�); g(�); ���(�)) : � 2 �g of regular solutions of the optimality system

(4.4)-(4.5), (4.12)-(4.13), and (4.15). Assume that the �nite element spaces Xh and

Gh satisfy the hypotheses (4.18)-(4.19). Then, there exists a � > 0 and an h0 > 0 such

that for h � h0, the discrete optimality system (4.20)-(4.24) has a unique branch of

solutions f
�
�;   

h(�); gh(�); ���h(�)
�
: � 2 �g satisfying

fk   
h(�) �   (�)k2 + kgh(�) � g(�)k0 + k���h(�)� ���(�)k2g < � for all � 2 �.

Moreover,

lim
h!0

fk   
h(�) �   (�)k2 + kgh(�) � g(�)k0 + k���h(�) � ���(�)k2g = 0 ;

uniformly in � 2 �.
If, in addition, the solution of the optimality system satis�es

�
   (�); g(�); ���(�)

�
2

Hm+2(
)�Hm(
)�Hm+2(
) for � 2 �, then there exists a constant C, independent

of h, such that

k   (�) �   
h(�)k2 + kg(�) � gh(�)k0 + k���(�)� ���h(�)k2

� Chm
�
k   (�)km+2 + kg(�)km + k���(�)km+2

�
;

uniformly in � 2 �.

Proof: All results follow from Theorem 3.5. For the last result, we also use (3.25) and
the estimates (see, e.g., [2] or [8])

k(T hT�1 � I)   k2 � Chmk   km+2 for    2Hm+2(
) ;

k
�
(T �)h(T �)�1 � I

�
���k2 = k(T hT�1 � I)���k2 � Chmk���km+2 for ��� 2 Hm+2(
) ;

and
k(EhE�1 � I)gk0 � Chmkgkm for g 2 Hm(
) :

In these estimates, the constant C is independent of h,    , g, ���, and �.

Remark. In fact, we obtain from (4.15) that g = ��2 so that the term kg(�)km in the
right-hand side of the error estimate is redundant.
Remark. By using (4.15) again, along with (4.24) and the error estimate in Theorem
4.3, we have the following improved error estimate for the approximation of the control
g:

kg(�) � gh(�)k2 = k�2(�)� �h2 (�)k2 � Chm
�
k   (�)km+2 + k���(�)km+2

�
:
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Of course, we also use the fact that we have chosen Gh = V h � H2(
).

4.2. Neumann boundary controls for the Ginzburg-Landau superconduc-

tivity equations

For this application we will use Neumann boundary controls, i.e., control is ef-
fected through the data in a Neumann boundary condition. Let 
 be a bounded open
domain in RI d, d = 2 or 3, and let � be its boundary. A simpli�ed Ginzburg-Landau
model for superconductivity is given by

�� 1 +
�
 21 +  22 + jAj2 � 1

�
 1 �r � (A 2)�A � r 2 = 0 in 
 ;

�� 2 +
�
 21 +  22 + jAj2 � 1

�
 2 +r � (A 1) +A � r 1 = 0 in 
 ;

n � (r 1 +A 2) = �g1 on � ;

and
n � (r 2 �A 1) = �g2 on � :

Here,  1 and  2 denote the real and imaginary parts, respectively, of the complex-
valued order parameter, A is a given real magnetic potential, g1 and g2 are related
to the normal component of the current at the boundary, and � > 0 is a \current
loading" parameter. These equations are a special case of a more general model for
superconductivity wherein A is also unknown; see, e.g., [22] for a derivation of the
general model. It can be shown that in certain limits, e.g, high values of the applied
�eld, the above simpler model is valid; see [7].

By introducing appropriate rescalings, i.e, by replacing  j by � j and gj by �gj,
j = 1; 2, we can rewrite the above Ginzburg-Landau equations as follows:

(4:25) �� 1 + (jAj2 � 1) 1 �r � (A 2)�A � r 2 + �
�
 21 +  22

�
 1 = 0 in 
 ;

(4:26) �� 2 + (jAj2 � 1) 2 +r � (A 1) +A � r 1 + �
�
 21 +  22

�
 2 = 0 in 
 ;

(4:27) n � (r 1 +A 2) = �g1 on � ;

and

(4:28) n � (r 2 �A 1) = �g2 on � :

We introduce the bilinear forms

a( ; �) =

Z



�
r � r�+ (jAj2 � 1) �

�
d
 8  ; � 2 H1(
)

and

b( ; �) =

Z



A � ( r�� �r ) d
 8  ; � 2 H1(
) :

We assume that A 2H1(
). Note that

a( ; �) = a(�;  ) and b( ; �) = �b(�;  ) :
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Then, a weak formulation of the Ginzburg-Landau equations (4.25)-(4.28) is de�ned
as follows: seek    = ( 1;  2) 2 H

1(
) such that

(4:29) a( 1; �1) + b( 2; �1) + �
�
( 21 +  22) 1; �1

�
= �hg1; �1i� 8 �1 2 H

1(
)

and

(4:30) a( 2; �2) � b( 1; �2) + �
�
( 21 +  22) 2; �2

�
= �hg2; �2i� 8 �2 2 H

1(
) :

It can be shown that, for each g = (g1; g2) 2 H�1=2(�), (4.29) and (4.30) possess at
least one solution    2 H1(
) and that all solutions of (4.29) and (4.30) satisfy the a
priori estimate

(4:31) k 1k1 + k 2k1 � C
�
kg1k�1=2;� + kg2k�1=2;�

�
;

see, e.g., [11], for details. In the sequel, a solution of (4.25)-(4.28) will be understood
in the sense of (4.29)-(4.30).

Given a desired state    0 = ( 10;  20) 2 L2(
), we de�ne for any    = ( 1;  2) 2
H1(
) and g = (g1; g2) 2 L

2(�) the functional

(4:32) J (   ;g) =
�

2

Z



�
( 1 �  10)

2 + ( 2 �  20)
2
�
d
+

�

2

Z
�

(g21 + g22) d� :

We then consider the following optimal control problem associated with the Ginzburg-
Landau equations for superconductivity:

(4:33) min
�
J (   ;g) j    2H1(
) ; g 2 �

	
subject to (4.29) and (4.30) ;

where � is a subset of L2(�).
We de�ne the spaces X = H1(
), Y = (H1(
))�, G = L2(�), and Z =

[H1=2+�(
)]� where � 2 (0; 1=2) is chosen such that H1(
) ,!,!H1=2+�(
) ,! L4(
).
By compact imbedding results, L4=3(
) ,! Z ,!,! Y . For the time being, we assume
that the admissible set � for the control g is a closed convex subset of G = L2(�).

Let the continuous linear operator T 2 L(Y ;X) be de�ned as follows: for each
f = (f1; f2) 2 Y = (H1(
))�, T f =    2 X = H1(
) is the unique solution of

a( 1; �1) + b( 2; �1) = hf1; �1i 8 �1 2 H
1(
)

and
a( 2; �2) � b( 1; �2) = hf2; �2i 8 �2 2 H

1(
) :

It can be easily veri�ed that T is self-adjoint. Also, it can be shown that for most
choices of A, the operator T is well de�ned; see [11].

We de�ne the (di�erentiable) nonlinear mapping N : X ! Y by

N (   ) =

�
( 21 +  22) 1
( 21 +  22) 2

�
8    2 X

or equivalently

hN (   ); ���i =
�
( 21 +  22) 1; �1

�
+
�
( 21 +  22) 2; �2

�
8 ��� = (�1; �2) 2 X
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and de�ne K :H�1=2(�)! Y as the injection mapping:

hKz;vi = �hz;vi� 8 z 2H�1=2(�) ; 8 v 2H1(
) :

Clearly, the constraint equations (4.29)-(4.30) can be expressed as

   + �TN (   ) + �TKg = 0 ;

i.e., in the form (2.2). With the obvious de�nitions for F(�) and E(�), i.e.,

F(   ) =
1

2

Z



�
( 1 �  10)

2 + ( 2 �  20)
2
�
d
 8    2 X

and

E(g) =
1

2

Z
�

(g21 + g22) d� 8 g 2 G ;

the functional (4.32) can be expressed as

J (   ; g) = �F(   ) + � E(g) ;

i.e., in the form (2.1). Thus, the minimization problem (4.33) is in the form of the
minimization problem (2.3).

We are now in a position to verify, for the minimization problem (4.33), all the
hypotheses of x2 and x3.

4.2.1. Veri�cation of the hypotheses for the existence of optimal solutions.

We �rst verify that the hypotheses (H1)-(H6) hold in the current setting.
(H1) is obviously satis�ed with a lower bound 0.
(H2) holds with � = 1 and � = 2.
(H3) is veri�ed since    = 0 and g = 0 is obviously a solution of (4.29)-(4.30).
In order to verify (H4), we assume fg(n)g � � � L2(�) is a sequence satisfying

g(n) * g in L2(�); then, we have g(n) * g in H�1=2(�) so that limn!1hg
(n);vi� =

hg;vi� for all v 2 H1(
), i.e., Kg(n) * Kg in Y . Assume that the sequence

f   
(n)
g � H1(
) satis�es    

(n)
*    in H1(
); then, by using the compact imbed-

ding H1(
) ,!,! L4(
),    
(n)

!    in L4(
). Now,

hN (   
(n)

); ���i =
��
( 

(n)
1 )2 + ( 

(n)
2 )2

�
 
(n)
1 ; �1

�
+
��
( 

(n)
1 )2 + ( 

(n)
2 )2

�
 
(n)
2 ; �2

�

!
�
( 21 +  22) 1; �1

�
+
�
( 21 +  22) 2; �2

�
= hN (   ); ���i :

Hence, (H4) is veri�ed.
The veri�cation of (H5) follows directly from the observation that the mappings

��� 7! F(���) = (1=2)k����    0k
2
0 and g 7! E(g) = (1=2)kgk20;� are convex.

The veri�cation of (H6) is a trivial consequence of the a priori estimate (4.31).
It is now just a matter of citing Theorem 2.1 to prove the existence of an optimal

solution that minimizes (4.32) subject to (4.29)-(4.30).

THEOREM 4.4. There exists a (���;g) 2H1(
)�� such that (4:32) is minimized subject

to (4.29)-(4.30).

4.2.2. Veri�cation of the hypotheses for the existence of Lagrange multipliers.
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We now assume (   ;g) is an optimal solution and turn to the veri�cation of
hypotheses (H7)-(H9).

The validity of (H7) is obvious.
(H8) holds since the mapping g 7! E(g) = (1=2)

R
�
jgj2 d� is convex.

(H9) can be veri�ed as follows. For any    2 X, the operator N 0(   ) : X ! Y is
given by

N 0(   ) � ��� =

�
(3 21 +  22)�1 + (2 1 2)�2
(3 22 +  21)�2 + (2 1 2)�1

�
8 ��� = (�1; �2) 2 X :

Thus, we obtain that N 0(   ) � ��� 2 L4=3(
) ,! [H1=2+�(
)]� = Z.
The Lagrangian is given by

L(   ;g; ���; k) =kJ (   ;g)

�
n
a( 1; �1) + b( 2; �1) + �

�
( 21 +  22) 1; �1

�
� �(g1; �1)�

+ a( 2; �2) � b( 1; �2)� �
�
( 21 +  22) 2; �2

�
� �(g2; �2)�

o

for all (   ;g; ���; k) 2 X�G�X � RI = H1(
)�L2(�)�H1(
)� RI . Note that in this
form of the Lagrangian, the Lagrange multiplier ��� 2 X = Y � so that we have already
introduced the change of variables indicated between (2.17)-(2.18) and (2.19)-(2.21).

Having veri�ed the hypotheses (H7)-(H9), we may apply Theorem 2.4 to conclude
that there exists a Lagrange multiplier ��� 2 X = H1(
) and a real number k such that

(4:34) ��� + �T �
�
[N 0(   )]� � ��� � kJ   (   ; g)

�
= 0

and

(4:35) L(   ; g; ���; k) � L(   ; z; ���; k) 8 z 2 �

and that for almost all values of �, we may choose k = 1.
Recall that T is self-adjoint. Also, note that for any    2 X =H1(
),

[N 0(   )]� � ��� =

�
(3 21 +  22)�1 + (2 1 2)�2
(3 22 +  21)�2 + (2 1 2)�1

�
8 ��� = (�1; �2) 2 X :

Thus, N 0(   ) is self-adjoint as well and (4.34), with k = 1, can be rewritten as

(4:36)
a(�1; �1) � b(�1; �2) + �

�
(3 21 +  22)�1; �1

�
+ �

�
(2 1 2)�2; �1

�
= �( 1 �  10; �1) 8 �1 2 H

1(
)

and

(4:37)
a(�2; �2) + b(�2; �1) + �

�
(3 22 +  21)�2; �2

�
+ �

�
(2 1 2)�1; �2

�
= �( 2 �  20; �2) 8 �2 2 H

1(
) :

Using the de�nition of the Lagrangian functional, (4.35), with k = 1, can be rewritten
as

�

2
(z; z)� + �(z; ���)� �

�

2
(g;g)�� �(g; ���)� � 0 8 z 2 � :
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Note that, in the above expression, we have already employed hypothesis (H12) which
in the current context is trivially satis�ed with E the identity operator on G� = G =
L2(�). For each � 2 (0; 1) and each t 2 �, set z = �t + (1 � �)g 2 � in the last
equation to obtain

�2

2
(t� g; t� g)� + � (t� g;g)� + � (t� g; ���)� � 0 8 t 2 �

so that, after dividing by � > 0 and then letting �! 0+, we obtain

(4:38) (t� g;g+ ���)� � 0 8 t 2 � :

We see that for almost all values of �, necessary conditions for an optimum are
that (4.29)-(4.30) and (4.36)-(4.38) are satis�ed. Again, the system formed by these
equations will be called an optimality system.

We now specialize to the case � = L2(�). Note that the hypothesis (H10) is
satis�ed. Then, using Theorem 2.5, we see that the inequality (4.38) becomes an
equality and, by letting z = t� g vary arbitrarily in L2(�), we now have, instead of
(4.38),

(4:39) (z;g + ���)� = 0 8 z 2 L2(�) :

Thus, according to that theorem, we have that for almost all �, an optimality system
of equations is now given by (4.29)-(4.30), (4.36)-(4.37), and (4.39). However, we can
go further and verify that the hypothesis (H11) is valid, which in turn will justify the
existence of a Lagrange multiplier satisfying the optimality system for all � 2 �.

To verify (H11), we �rst note that, through the change of variable � = T �v, that
assumption can be equivalently stated as follows:

if � 2 Y � satis�es
�
I + �T �[N 0(u)]�

�
� = 0 and K�� = 0, then � = 0 :

To verify this version of (H11), we assume that ��� 2 Y � = H1(
) satis�es
�
I +

�T �[N 0(   )]�
�
��� = 0 and K���� = 0, i.e.,

a(�1; �1)� b(�1; �2) + �
�
(3 21 +  22)�1; �1

�
+�

�
(2 1 2)�2; �1

�
= 0 8 �1 2 H

1(
) ;

a(�2; �2) + b(�2; �1) + �
�
(3 22 +  21)�2; �2

�
+�

�
(2 1 2)�1; �2

�
= 0 8 �2 2 H

1(
) ;

and
��� = 0 on � :

(Note that K���� = ���j�.) Let 

0

be a smooth extension of 
 such that 
 is a compact
subset of 


0

. We then de�ne ���0,    0 and A0 to be the extension, by zero outside 
,
of ���,    and A, respectively. Let the forms a0(�; �), b

0

(�; �), and (�; �)0 de�ned over 

0

be the analogues of corresponding forms de�ned over 
. We may show from the last
three equations that

���
0
2H1(


0

) ;    
0

2 L6(

0

) ;

a0(�1; �
0
1)� b

0

(�1; �
0
2) + �

�
(3 01

2
+  02

2
)�01; �1

�0
+�

�
(2 01 

0
2)�

0
2; �1

�0
= 0 8 �1 2H

1
0(


0

) ;
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and
a0(�2; �

0
2) + b

0

(�2; �
0
1) + �

�
(3 02

2
+  01

2
)�02; �2

�0
+�

�
(2 01 

0
2)�

0
1; �2

�0
= 0 8 �2 2H

1
0(


0

) :

In the sense of distribution, ���
0
satis�es

(4:40)
���01 � 2A0 � r�02 +

�
jA0j2 + � (3 01

2
+  02

2
)� 1

�
�01

�(r �A0 � 2� 01 
0
2)�

0
2 = 0 in 


0

and

(4:41)
���02 + 2A0 � r�01 + (r �A0 + 2� 01 

0
2)�

0
1

+
�
jA0j2 + � (3 02

2
+  01

2
)� 1

�
�02 = 0 in 


0

:

We now quote the following unique continuation result whose proof can be found in
[17]. See also [12] and [19].

LEMMA 4.5. Let 

0

be an open and connected subset of RI d, d = 2 or 3. Let the

functions V 2 [Lqloc(

0

)]d�d for some q � 2 and W 2 [L2d�1loc (

0

)]d�d�d be given. If

��� 2 H1
loc(


0

) ;���i +
Pd
j=1

Pd
k=1Wijk(@�k=@xj) +

Pd
j=1 Vij�j = 0 (in the sense of

distributions), i = 1; :::; d, and ��� = 0 on an open, non-empty subset of 

0

, then ��� = 0

on 

0

.

Since A 2 H1(
) and    2H1(
), it is easy to see that the coe�cients in (4.40)-
(4.41) satisfy the regularity requirements of Lemma 4.5. Also note that ���

0 = 0 on
(


0

n
) which contains an open set. Thus we obtain that ���
0 = 0 in 


0

, or ��� = 0 in 
,
i.e., (H11) is veri�ed.

Hence we conclude that for all �, the optimality system (4.29)-(4.30), (4.36)-
(4.37), and (4.39) has a solution. Thus, we have Theorem 2.6 which, in the present
context, is given as follows.

THEOREM 4.6. Let (   ;g) 2H1(
)�L2(�) denote an optimal solution that minimizes

(4:32) subject to (4.29)-(4.30). Then, for all � 2 �, there exists a nonzero Lagrange

multiplier ��� 2 H1(
) satisfying the Euler equations (4.36)-(4.37) and (4.39).

4.2.3. Veri�cation of the hypotheses for approximations and error estimates.

We �nally verify the hypotheses (H13)-(H19) that are used in connection with
approximations and to derive error estimates.

A �nite element discretization of the optimality system (4.29)-(4.30), (4.36)-
(4.37), and (4.39) is de�ned in the usual manner. We �rst choose families of �nite
dimensional subspaces Xh � H1(
) and Gh � L2(�) parameterized by a parameter h
that tends to zero and satisfying the following approximation properties: there exists
a constant C and an integer r such that

(4:42) inf
���
h
2Xh

k���� ���
h
k1 � Chmk���km+1 ; 8 ��� 2Hm+1(
) ; 1 � m � r

and

(4:43)
inf

zh2Gh
kz� zhk0;� � Chm inf

v2Hm+1=2(
);vj�=z
kvkm+1=2 ;

8 z 2Hm+1=2(
)j� ; 1 � m � r :
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One may consult, e.g., [8] and [15], for some �nite element spaces satisfying (4.42) and
(4.43). For example, one may choose Xh = V h � V h where V h is the piecewise linear
or quadratic �nite element space de�ned with respect to a family of triangulations
of 
. In this case, h is a measure of the grid size. For simplicity we may choose
Gh = (Xh)j�, i.e., the functions in Gh are the restrictions to the boundary � of
functions belonging to Xh.

Once the approximating spaces have been chosen, we may formulate the approx-
imate problem for the optimality system (4.29)-(4.30), (4.36)-(4.37), and (4.39): seek

   
h
2 Xh, gh 2 Gh, and ���h 2 Xh such that

(4:44) a( h1 ; �
h
1) + b( h2 ; �

h
1) + �

��
( h1 )

2 + ( h2 )
2
�
 h1 ; �

h
1

	
= �hgh1 ; �

h
1i� 8 �h1 2 V

h ;

(4:45) a( h2 ; �
h
2)� b( 

h
1 ; �

h
2) + �

��
( h1 )

2 + ( h2 )
2
�
 h2 ; �

h
2

	
= �hgh2 ; �

h
2i� 8 �h2 2 V

h ;

(4:46)
a(�h1 ; �

h
1 ) � b(�h1 ; �

h
2 ) + �

�
(3( h1 )

2 + ( h2 )
2)�h1 ; �

h
1

�
+ �

�
(2 h1 

h
2 )�

h
2 ; �

h
1

�
= �( h1 �  10; �

h
1 ) 8 �h1 2 V

h ;

(4:47)
a(�h2 ; �

h
2 ) + b(�h2 ; �

h
1 ) + �

�
(3( h2 )

2 + ( h1 )
2)�h2 ; �

h
2

�
+ �

�
(2 h1 

h
2 )�

h
1 ; �

h
2

�
= �( h2 �  20; �

h
2 ) 8 �h2 2 V

h ;

and

(4:48) (zh;gh + ���h)� = 0 8 zh 2 Gh :

The operator T h 2 L(Y ;Xh) is de�ned as follows: for f 2 Y , T hf =    
h
2 Xh is

the solution for
a( h1 ; �

h
1) + b( h2 ; �

h
1) = hf1; �

h
1i 8 �h1 2 V

h

and
a( h2 ; �

h
2) � b( h1 ; �

h
2) = hf2; �

h
2i 8 �h2 2 V

h :

Since T = T �, we de�ne (T �)h = T h.
We de�ne the operator Eh : L2(�)! Gh as the L2(�)-projection on Gh, i.e., for

each g 2 L2(�),
(Ehg; zh)� = (g; zh)� 8 zh 2 Gh :

Since G = L2(�) is re
exive, Eh is in fact an operator from G� ! Gh.
By results concerning the approximation of the Ginzburg-Landau equations (see,

e.g., [11]), we obtain
k(T � T h)fkX ! 0

as h! 0, for all f 2 Y . This is simply a restatement of (H13).
(H14) follows trivially from (H13) and the fact that T is self-adjoint and we have

chosen (T �)h = T h.
(H15) follows from the best approximation property of L2(�)-projections and

(4.43).
(H16) and (H17) follow from the fact that N and F are polynomials. Here we

also use imbedding theorems and Cauchy inequalities.
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Setting Ẑ = Z = H1=2+�(
), we have that Ẑ ,!,! [H1(
)]� = X�. For each
��� 2H1(
) and ��� 2H1(
), Sobolev imbedding theorems imply that

[N 0(   )]� � ��� =

�
(3 21 +  22)�1 + (2 1 2)�2
(3 22 +  21)�2 + (2 1 2)�1

�
2 L4=3(
) � Ẑ ;

�
[N 00(   )]� � ���

�
� ��� =

�
(6 1�1 + 2 2�2)�1 + (2 1�2)�2 + (2�1 2)�2
(6 2�2 + 2 1�1)�2 + (2 1�2)�1 + (2�1 2)�1

�
2 L4=3(
) � Ẑ ;

and �
F 00(   ) � ���

�
� ��� =

�
�1�1
�2�2

�
2 L4=3(
) � Ẑ :

These relations verify (H18).

From the de�nition of the operatorK we see thatK mapsL2(�) into [H1=2+�(
)]�,
i.e., K maps G into Z. Thus (H19) is veri�ed.

Hence, we are now in a position to apply Theorem 3.5 to derive error estimates
for the approximate solutions of the optimality system (4.29)-(4.30), (4.36)-(4.37), and
(4.39). It should be noted that Lemma 3.4 implies that for almost all values of �, the
solutions of the optimality system are regular.

THEOREM 4.7. Assume that � is a compact interval of RI + and that there exists a

branch f(�;   (�);g(�); ���(�)) : � 2 �g of regular solutions of the optimality system

(4.29)-(4.30), (4.36)-(4.37), and (4.39). Assume that the �nite element spaces Xh and

Gh satisfy the hypotheses (4.42)-(4.43). Then, there exists a � > 0 and a h0 > 0 such

that for h � h0, the discrete optimality system (4.44)-(4.48) has a unique branch of

solutions f
�
�;   

h(�); gh(�); ���h(�)
�
: � 2 �g satisfying

fk   
h(�) �   (�)k1 + kgh(�) � g(�)k0;� + k���h(�) � ���(�)k1g < � for all � 2 �.

Moreover,

lim
h!0

fk   
h(�) �    (�)k1 + kgh(�)� g(�)k0;� + k���h(�) � ���(�)k1g = 0 ;

uniformly in � 2 �.

If, in addition, the solution of the optimality system satis�es
�
   (�);g(�); ���(�)

�
2

Hm+1(
) � Hm+1=2(
)j� � Hm+1(
) for � 2 �, then there exists a constant C,

independent of h, such that

k   (�) �   h(�)k1 + kg(�)� gh(�)k0;� + k���(�) � ���h(�)k1

� Chm
�
k   (�)km+1 + inf

v2Hm+1=2(
);vj�=g
kvkm+1=2 + k���(�)km+1

�
;

uniformly in � 2 �.

Proof: All results follow from Theorem 3.5. For the last result, we also use (3.25) and
the estimates (see [11])

k(T hT�1 � I)   k1 � Chmk   km+1 for    2Hm+1(
) ;

k
�
(T �)h(T �)�1 � I

�
���k1 = k(T hT�1 � I)���k1 � Chmk���km+1 for ��� 2 Hm+1(
) ;
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and (see, e.g., [2], [8] and [15])

k(EhE�1 � I)gk0;� � Chm inf
v2Hm+1=2 (
);vj�=g

kvkm+1=2 for g 2 Hm+1=2(
)j� :

In these estimates, the constant C is independent of h,    , g, ���, and �.
Remark. In fact, we obtain from (4.39) that g = ����j� which implies

inf
v2Hm+1=2(
);vj�=g

kvkm+1=2 � k���km+1=2 � k���km+1

so that the term
�
inf

v2Hm+1=2(
);vj�=g
kvkm+1=2

�
in the right-hand side of the error

estimate is redundant.

Remark. By using (4.39) again, along with (4.48) and the error estimate in Theorem
4.7, we have the following improved error estimate for the approximation of the control
g:

kg(�)� gh(�)k1=2;� � Ck���(�)� ���h(�)k1 � Chm
�
k   (�)km+1 + k���(�)km+1

�
:

Of course, we also use the fact that we have chosen Gh = (Xh)j� � H1=2(�).

4.3. Dirichlet boundary control for the Navier-Stokes equations of incom-

pressible, viscous 
ow

For this application we will use Dirichlet boundary controls, i.e., control is e�ected
through the data in a Dirichlet boundary condition. Let 
 denote a bounded domain
in RI d, d = 2 or 3 with a boundary denoted by �. Let u and p denote the velocity and
pressure �elds in 
. The Navier-Stokes equations for a viscous, incompressible 
ow
are given by (see, e.g., [13], [14], or [20])

��r �
�
(ru) + (ru)T

�
+ (u � r)u+rp = f in 
 ;

r � u = 0 in 


and
u = b+ g on � ;

where f is a given body force, b and g are boundary velocity data with
R
�
b �n d� = 0

and
R
� g � n d� = 0, and � denotes the (constant) kinematic viscosity. We have

absorbed the constant density into the pressure and the body force. If the variables in
these equations are nondimensionalized, then � is simply the inverse of the Reynolds
number Re.

Setting � = 1=� = Re and replacing p with p=�, b with �b, and g with �g, we
may write the Navier-Stokes equations in the form

(4:49) �r �
�
(ru) + (ru)T

�
+rp+ �u � ru = � f in 
 ;

(4:50) r �u = 0 in 
 ;

and

(4:51) u = �(b+ g) on � :
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We introduce the subspaces

L20(
) =

�
p 2 L2(
)

���
Z



p d
 = 0

�

and

H1
n(�) =

�
g 2H1(�)

���
Z
�

g �n d� = 0

�
:

We also introduce the bilinear forms

a(u;v) =
1

2

Z



�
(ru) + (ru)T

�
:
�
(rv) + (rv)T

�
d
 8 u;v 2H1(
)

and

b(v; q) = �

Z



qr � v d
 8 v 2H1(
) and 8 p 2 L2(
)

and the trilinear form

c(u;v;w) =

Z



(u � r)v �w d
 8 u;v;w 2H1(
) :

These forms are continuous over the spaces of de�nition indicated above. Moreover,
we have the coercivity properties

(4:52) a(v;v) � Cakvk
2
1 8 v 2 H1

0(
)

and

(4:53) sup
06=v2H1

0
(
)

b(v; q)

kvk1
� Cbkqk0 8 q 2 L20(
)

for some constants Ca and Cb > 0. For details concerning the notation employed
and/or for (4.52)-(4.53), one may consult [13], [14], and [20].

We recast the Navier-Stokes equations (4.49)-(4.51) into the following particular
weak form (see, e.g., [15]): seek (u; p; t) 2H1(
) � L20(
) �H�1=2(�) such that

(4:54) a(u;v) + b(v; p)� ht;vi� + � c(u;u;v) = � hf ;vi 8 v 2H1(
) ;

(4:55) b(u; q) = 0 8 q 2 L20(
) ;

and

(4:56) hs;ui� � � hs;gi� = � hs;bi� 8 s 2 H�1=2(�) :

Formally we have

t =
�
�pn+

�
ru+ (ru)T

�
� n
�
�
;

i.e., t is the stress force on the boundary. The existence of a solution (u; p; t) for the
system (4.54)-(4.56) was established in [15].
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Given a desired velocity �eld u0, we de�ne for any (u; p; t) 2 H1(
) � L20(
) �
H�1=2(�) and g 2H1

n(�) the functional

(4:57) J (u; p; t;g) =
�

4

Z



ju� u0j
4
d
+

�

2

Z
�

�
jrsgj

2 + jgj2
�
d� ;

where rs denotes the surface gradient.

We de�ne the spaces X = H1(
)� L20(
) �H�1=2(�), Y = [H1(
)]� � L20(
)�
H1=2(�), G = H1

n(�), and Z = L3=2(
)�f0g�H1(�). By compact imbedding results,
Z is compactly imbedded into Y . For the time being, we assume that the admissible
set � for the control g is a closed, convex subset of G =H1

n(�).

We then consider the following optimal control problem associated with the
Navier-Stokes equations:

(4:58) minfJ (u; p; t;g) : (u; p; t) 2 X;g 2 �g subject to (4.54)-(4.56) :

We de�ne the continuous linear operator T 2 L(Y ;X) as follows: for each
(���; �; ���) 2 Y , T (���; �; ���) = (~u; ~p;~t) 2 X is the unique solution of

a(~u;v) + b(v; ~p) � h~t;vi� = h���;vi 8 v 2H1(
) ;

b(~u; q) = (�; q) 8 q 2 L20(
)

and

hs; ~ui� = hs; ���i� 8 s 2H�1=2(�) :

It can be easily veri�ed that T is self-adjoint.

We de�ne the (di�erentiable) nonlinear mapping N : X ! Y by

N (u; p; t) = �

0
@ f � u � ru

0
b

1
A

or equivalently

hN (u; p; t); (v; q; s)i= �(f ;v) + c(u;u;v)� hs;bi� 8 (v; q; s) 2 X

and de�ne K :H1=2(�)! Y by

Kg = �

0
@ 0
0
g

1
A

or equivalently

hKg; (v; q; s)i = �hs;gi� 8 g 2H1=2(�) ; 8 (v; q; s) 2 X :

Clearly, the constraint equations (4.54)-(4.56) can be expressed as

(u; p; t)+ �TN (u; p; t)+ �TKg = 0 ;
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i.e., in the form (2.2). With the obvious de�nitions for F(�) and E(�), i.e.,

F(u; p; t) =
1

4

Z



ju� u0j
4 d
 8 (u; p; t) 2 X

and

E(g) =
1

2

Z
�

�
jrsgj

2 + jgj2
�
d� ;

the functional (4.57) can be expressed as

J (u; p; t;g) = �F(u; p; t)+ � E(g) ;

i.e., in the form (2.3).
We are now in a position to verify, for the minimization problem (4.58), all the

hypotheses of x2 and x3.

4.3.1. Veri�cation of the hypotheses for the existence of optimal solutions.

We �rst verify the that the hypotheses (H1)-(H6) hold in the current setting.
(H1) is obviously satis�ed with a lower bound 0.
(H2) holds with � = 1 and � = 2.
(H3) is veri�ed with the choice (u(0); p(0); t(0);0) 2 X � � where (u(0); p(0)) is

a solution to the Navier-Stokes equations with Dirichlet boundary conditions, and
t(0) =

�
�p(0)n+

�
ru(0) + (ru(0))T

�
� n
�
�
; see, e.g., [13] or [20].

In order to verify (H4), we assume fg(n)g � � � H1
n(�) is a sequence satisfying

g(n) * g in H1(�); then we have g(n) * g in H1=2(�) so that limn!1hg
(n);vi� =

hg;vi� for all v 2H1(
), i.e.,Kg(n) *Kg in Y . Assume that the sequence fu(n)g �
H1(
) satis�es u(n) * u in H1(
); then u(n) ! u in L4(
) by the compactness of
the imbedding H1(
) ,!,! L4(
). Now,

hN (u(n));vi = c(u(n);u(n);v) = c(u;u(n);v) + c(u(n) � u;u(n);v)

! c(u;u;v) + 0 = hN (u);vi as n!1 :

Hence, (H4) is veri�ed.
The veri�cation of (H5) follows directly from the observation that the mappings

(u; p; t) 7! F(u; p; t) = (1=4) ku� uk4
L4(
) and g 7! E(g) = (1=2) kgk21;� are convex.

To verify (H6), we combine a priori estimates obtained from the constraint equa-
tions and the functional. Let fu(k); p(k); t(k);g(k)g � H1(
) � L20(
) �H�1=2(�) �
H1
n(�) be a sequence such that

(4:59) J (u(k);g(k)) � C ;

(4:60) a(u(k);v)+ b(v; p(k))�ht(k);vi�+� c(u
(k);u(k);v) = � hf ;vi 8 v 2H1(
) ;

(4:61) b(u(k); q) = 0 8 q 2 L20(
) ;

and

(4:62) hs;u(k)i� � �hs;g(k)i� = �hs;bi� 8 s 2H�1=2(�) :
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First, (4.59) implies that (u(k);g(k)) is uniformly bounded in L4(
)�H1(�). For each
g(k), we may choose a (w(k); r(k)) 2 H1(
)� L20(
) that satis�es the Stokes problem

(4:63) a(w(k);v) + b(v; r(k)) = hf ;vi 8 v 2H1
0(
) ;

(4:64) b(w(k); q) = 0 8 q 2 L20(
)

and

(4:65) w(k) = �(g(k) + b) on � :

Furthermore, there holds the estimate

(4:66) kw(k)k1 � C(kfk0+ kbk1=2;� + kg(k)k1;�) :

By subtracting (4.63) from (4.60) with v = u(k) �w(k), also using (4.61) and (4.64),
we obtain

(4:67)
a(u(k) �w(k);u(k)�w(k)) = �� c(u(k);u(k);u(k)�w(k))

= � c(u(k);u(k) �w(k);u(k)) :

Note that

jc(u(k);u(k)�w(k);u(k))j

=
1

2

����
Z



u(k) �
�
(r(u(k) �w(k))) + (r(u(k) �w(k)))T

�
� u(k) d


����
� C




(r(u(k) �w(k))) + (r(u(k) �w(k)))T




0




u(k)




L4(
)

�
1

4�




(r(u(k) �w(k))) + (r(u(k) �w(k)))T



2
0
+C�




u(k)



4
L4(
)

so that, using (4.67), we have that

1

4




�r(u(k) �w(k))
�
+
�
r(u(k) �w(k))

�T


2
0
� C�




u(k)



4
L4(
)

:

Then, by (4.66) and the triangle inequality, we have that




(ru(k)) + (ru(k))T




0
� Cfkfk0+ kbk1=2;� + kg(k)k1;� + ku(k)k2

L4(
)g :

Thus,

k(ru(k)) + (ru(k))Tk0 + ku(k)k0;�

� k(ru(k)) + (ru(k))T k0 + kbk0;�+ kg(k)k0;�

� C(kfk0 + kbk1=2;� + kg(k)k1;� + ku(k)k2
L4(
)) :

Since the mapping u 7! kru+(ru)Tk0+ kuk0;� de�nes a norm on H1(
) equivalent
to the standard H1(
)-norm, we have that

ku(k)k1 � Cfkfk0+ kbk1=2;� + kg(k)k1;� + ku(k)k2
L4(
)g ;
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and, since ku(k)kL4(
) and kg
(k)k1;� are uniformly bounded, we conclude that ku(k)k1

is uniformly bounded as well. One easily concludes from (4.60) that kt(k)k�1=2;� is
uniformly bounded. Thus (H6) is veri�ed.

It is now just a matter of citing Theorem 2.1 to conclude the existence of an
optimal solution that minimizes (4.57) subject (4.54){(4.56).

THEOREM 4.8. There exists a (u; p; t;g)2 H1(
)�L20(
)�H
�1=2(
)�� such that

(4.57) is minimized subject to (4.54)-(4.56).

4.3.2. Veri�cation of the hypotheses for the existence of Lagrange multipliers.

We now assume (u; p; t;g) is an optimal solution and turn to the veri�cation of
hypotheses (H7)-(H9).

The validity of (H7) is obvious.
(H8) holds since the mapping z 7! E(g) = (1=2)

R
�

�
jrsgj

2 + jgj2
�
d� is convex.

(H9) can be veri�ed as follows. For any (u; p; t) 2 X, the operator N 0(u; p; t) :
X ! Y is given by

N 0(u; p; t) � (v; q; s) = �

0
@u � rv + v � ru

0
0

1
A

for all (v; q; s) 2 H1(
) � L20(
) �H�1=2(�). Thus we obtain N 0(u; p; t) � (v; q; s) 2
L3=2(
) � f0g �H1(�) = Z.

The Lagrangian is given by

L(u; p; t;g; ���; �; ��� ; k)

= kJ (u;g)� fa(u; ���) + � c(u;u; ���) + b(���; p) + b(u; �)� h��� ;ui�

� ht; ���i� � � hf ; ���i� + � h��� ;bi� + � h��� ;gi�g

for all (u; p; t;g; ���; �; ���; k) 2 X�G�X � RI = H1(
)�L20(
)�H
�1=2(�)�H1

n(�)�
H1(
) � L20(
) � H�1=2(�) � RI . Note that in this form of the Lagrangian, the
Lagrange multiplier (���; �; ��� ) 2 X = Y � so that we have already introduced the change
of variables indicated between (2.17)-(2.18) and (2.19)-(2.21).

Having veri�ed the hypotheses (H7)-(H9), we may apply Theorem 2.4 to conclude
that there exists a Lagrange multiplier (���; �; ��� ) 2 X = H1(
) � L20(
) �H�1=2(�)
and a real number k such that

(4:68) (���; �; ��� ) + �T �
�
[N 0(u; p; t)]� � (���; �; ��� )� kJ(u;p;t)(u; p; t;g)

�
= 0

and

(4:69) L(u; p; t; z; ���; �; ��� ; k) � L(u; p; t;g; ���; �; ��� ; k) 8 z 2 �

and that for almost all values of �, we may choose k = 1.
Recall that T � = T . Also, note that for (u; p; t) 2 X = H1(
)�L20(
)�H

�1=2(�),
the operator [N 0(u; p; t)]� : X ! Y is given by

[N 0(u; p; t)]� � (v; q; s) =

0
@�u � rv + v � (ru)T

0
0

1
A 8 (v; q; s) 2 X:
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Thus, (4.68), with k = 1, can be rewritten as

(4:70)
a(w; ���) + � c(w;u; ���) + � c(u;w; ���) + b(w; �)� h��� ;wi�

= �
�
(u� u0)

3;w
�

8 w 2H1(
) ;

(4:71) b(���; r) = 0 8 r 2 L20(
) ;

and

(4:72) hy; ���i� = 0 8 y 2H�1=2(�) :

In the right-hand side of (4.70), we use the notation (v3;w) =
Pd

j=1(v
3
j ; wj).

Using the de�nition of the Lagrangian functional, (4.69), with k = 1, can be
rewritten as

�

2
(rsz;rsz)� +

�

2
(z; z)� �

�

2
(rsg;rsg)�

�
�

2
(g;g)� � �h��� ; zi� + �h��� ;gi� � 0 8 z 2 � :

For each � 2 (0; 1) and each z 2 �, by plugging �z + (1 � �)g 2 � into the last
inequality we obtain

�
�
rsg;rs(z � g)

�
�
+ � (g; z� g)� +

�2

2

�
rs(z� g);rs(z � g)

�
�

+
�2

2
(z� g; z� g)� � �h��� ; z� gi� � 0 8 z 2 �

so that, after dividing by � > 0 and then letting �! 0+, we obtain

(4:73)
�
rsg;rs(z� g)

�
�
+ (g; z� g)� � h��� ; zi� � 0 8 z 2 � :

We see that for almost all values of �, necessary conditions for an optimum are
that (4.54)-(4.56), (4.70)-(4.72) and (4.73) are satis�ed. Again, the system formed by
these equations will be called an optimality system.

We now specialize to the case � = H1
n(�). Note that the hypothesis (H10) is

satis�ed. Then using Theorem 2.5, we see that the inequality (4.73) becomes an
equality and, by letting z = k� g vary arbitrarily in H1

n(�), we now have, instead of
(4.73),

(4:74) (rsg;rsz)� + (g; z)� � h��� ; zi� = 0 8 z 2 � = H1
n(�) :

Thus, according to that theorem, we have that for almost all �, an optimality system
of equations is now given by (4.54)-(4.56), (4.70)-(4.72) and (4.74). However, we can
go further and verify that the hypothesis (H11) is valid, which in turn will justify the
existence of a Lagrange multiplier satisfying the optimality system for all � 2 �.

We now verify (H11) which we again note can be equivalently stated as follows:

if � 2 Y � satis�es
�
I + �T �[N 0(u)]�

�
� = 0 and K�� = 0, then � = 0 :
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To verify this hypothesis, we assume that (���; �; ���) 2 Y � = H1(
)�L2(
)�H�1=2(�)
satis�es

�
I + �T �[N 0(u; p; t)]�

�
(���; �; ���) = (0; 0;0) and K�(���; �; ���) = 0, i.e.,

a(w; ���) + � c(w;u; ���) + � c(u;w; ���) + b(w; �)� h���;wi� = 0 8 w 2H1(
) ;

b(���; r) = 0 8 r 2 L20(
) ;

hy; ���i� = 0 8 y 2 H�1=2(�) ;

and

��� = 0 on � :

(Note that K�(���; �; ���) = ���.) Let 

0

be a smooth extension of 
 such that 
 is a
compact subset of 


0

. We then set ���0, �0 and u0 to be the extension, by zero outside

, of ���, � and u, respectively. We may show from the last four equations that

���
0
2 H1(


0

) ; �0 2 L20(

0

) ;

(4:75) a0(w; ���
0) + � c0(w;u0; ���

0) + � c0(u0;w; ���
0) + b

0

(w; �0) = 0 8 w 2H1
0(


0

) ;

and

(4:76) b
0

(���
0
; r) = 0 8 r 2 L20(


0

) ;

where the forms a0(�; �), b
0

(�; �) and c0(�; �; �) de�ned over 

0

are the analogues of cor-
responding forms de�ned over 
. Using a unique continuation result for the system
(4.75)-(4.76) that was established in [16] or [17], we obtain ���

0 = 0 and �0 = 0 in 

0

,
or ��� = 0 and � = 0 in 
. Thus (H11) is veri�ed.

Hence we conclude that for all �, the optimality system (4.54)-(4.56), (4.70)-
(4.72), and (4.74) has a solution. Thus, we have Theorem 2.6 which, in the present
context, is given as follows.

THEOREM 4.9. Let (u; p; t;g)2 H1(
)�L20(
)�H
�1=2(�)�H1

n(�) denote an optimal

solution that minimizes (4.57) subject to (4.54)-(4.56). Then, for all � 2 �, there

exists a nonzero Lagrange multiplier (���; �; ��� ) 2H1(
)�L20(
)�H
�1=2(�) satisfying

the Euler equations (4.70)-(4.72) and (4.74).

Note that, in the above expression, we have already employed hypothesis (H12)
which in the current context is easily seen to be satis�ed with E : G! G� de�ned by

hEg; zi =

Z
�

(rsg � rsz + g � z) d� 8 z 2H1
n(�) = G :

We also note that for each �xed ��� , (4.74) with g 2 H1
n(�) is equivalent to

(4:77) (rsg;rsk)� + (g;k)� + 


Z
�

k � n d� = h��� ;ki� 8 k 2H1(�)

and

(4:78)

Z
�

g �n d� = 0 ;
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where 
 2 RI is an additional unknown constant that accounts for the single integral
constraint of (4.78). The equivalence can be shown as follows. First, an application
of Lax-Milgram Lemma to (4.74) on the space H1

n(�) guarantees the existence and
uniqueness of a solution g 2 H1

n(�) to (4.74); this solution g clearly satis�es (4.77)-
(4.78) with 
 =

R
�

�
��� � n � rsg : rsn � g � n

�
d�. Conversely, any solution (g; 
) of

(4.77)-(4.78) trivially satis�es (4.74). Although (4.74) and (4.77)-(4.78) are equivalent,
the latter is more easily discretized.

4.3.3. Veri�cation of the hypotheses for approximations and error estimates.

We �nally verify the hypotheses (H13)-(H19) that are used in connection with
approximations and error estimates.

A �nite element discretization of the optimality system (4.54)-(4.56), (4.70)-
(4.72), and (4.74) is de�ned as follows. First, one chooses families of �nite dimensional
subspaces Vh �H1(
) and Sh � L2(
). These families are parameterized by the pa-
rameter h that tends to zero; commonly, this parameter is chosen to be some measure
of the grid size in a subdivision of 
 into �nite elements. We let Sh0 = Sh \L20(
) and
Vh

0 = Vh \H1
0(
).

One may choose any pair of subspaces Vh and Sh that can be used for �nd-
ing �nite element approximations of solutions of the Navier-Stokes equations. Thus,
concerning these subspaces, we make the following standard assumptions which are
exactly those employed in well-known �nite element methods for the Navier-Stokes
equations. First, we have the approximation properties: there exist an integer k and
a constant C, independent of h, v and q, such that

(4:79) inf
vh2Vh

kv � vhk1 � Chmkvkm+1 8 v 2Hm+1(
) ; 1 � m � k

and

(4:80) inf
qh2Sh

0

kq � qhk0 � Chmkqkm 8 q 2 Hm(
) \ L20(
) ; 1 � m � k :

Next, we assume the inf-sup condition, or Ladyzhenskaya-Babuska-Brezzi condition:
there exists a constant C, independent of h, such that

(4:81) inf
06=qh2Sh

0

sup
06=vh2Vh

b(vh; qh)

kvhk1 kqhk0
� C :

This condition assures the stability of �nite element discretizations of the Navier-
Stokes equations. For thorough discussions of the approximation properties (4.79)-
(4.80), see, e.g., [2] or [8], and for like discussions of the stability condition (4.81), see,
e.g., [13] or [14]. The latter references may also be consulted for a catalogue of �nite
element subspaces that meet the requirements of (4.79)-(4.81).

Next, let Ph = Vhj�, i.e., P
h consists of the restriction, to the boundary �, of

functions belonging toVh. For all choices of conforming �nite element spaces Vh, e.g.,
Lagrange type �nite element spaces, we have that Ph �H�1=2(�). For the subspaces
Ph = Vhj�, we can show the following approximation property: there exist an integer
k and a constant C, independent of h and s, such that

(4:82)

inf
sh2Ph

ks� shk�1=2;�

� Chm inf
v2Hm(
);vj�=s

kvkm 8 s 2 Hm(
)j� ; 1 � m � k :
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We also use the following inverse assumption: there exists a constant C, independent
of h and sh, such that

(4:83) kshks;� � Chs�qkshkq;� 8 sh 2 Ph ; �1=2 � q � s � 1=2 :

See [2] or [8] for details concerning (4.82) and (4.83). See also [15] for (4.82).
Now, let Qh = Vhj� , i.e., Qh consists of the restriction, to the boundary �, of

functions belonging to Vh. Again, for all choices of conforming �nite element spaces
Vh we then have that Qh � H1(�). We can show the approximation property: there
exist an integer k and a constant C, independent of h and k, such that for 1 � m � k,
0 � s � 1 and k 2 Hm+1(
)j�,

(4:84) inf
kh2Qh

kk� khks;� � Chm�s+
1
2 inf
v2Hm+1(
);vj�=k

kvkm+1 :

This property follows from (4.79), once one notes that the same type of polynomials
are used in Qh as are used in Vh. We set Gh = Qh \H1

n(�).
Once the approximating subspaces have been chosen we seek uh 2 Vh, ph 2 Sh0 ,

th 2 Ph, gh 2 Qh, ���h 2 Vh, �h 2 Sh0 , ���
h 2 Ph, and 
h 2 RI such that

(4:85) a(uh;vh) + � c(uh;uh;vh) + b(vh; ph) � hvh; thi� = � hf ;vhi 8 vh 2 Vh ;

(4:86) b(uh; qh) = 0 8 qh 2 Sh0 ;

(4:87) huh; shi� � �hgh; shi� = �hb; shi� 8 sh 2 Ph ;

(4:88) (rsg
h;rsk

h)� + hgh;khi� + 
h
Z
�

kh � n d� = h���h;khi� 8 kh 2 Qh ;

(4:89)

Z
�

gh � n d� = 0 ;

(4:90)
a(wh; ���h) + � c(wh;uh; ���h) + � c(uh;wh; ���h) + b(wh; �h) � hwh; ���hi�

= �
�
(uh � u0)

3;wh
�

8 wh 2 Vh ;

(4:91) b(���h; rh) = 0 8 rh 2 Sh0 ;

and

(4:92) h���h;yhi = 0 8 yh 2 Ph :

Note that if (4.85)-(4.92) are satis�ed, then necessarily gh 2 Gh. Also, in the right-
hand side of (4.90), we use a notation similar to that used in the right-hand side of
(4.70).
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The operator T h 2 L(Y;Xh) is de�ned as the solution operator for

a(uh;vh) + b(vh; ph)� hvh; thi� = hf ;vhi 8 vh 2 Vh ;

b(uh; qh) = 0 8 qh 2 Sh0 ;

and
huh; shi� = hb; shi� 8 sh 2 Ph ;

i.e, for each f 2 Y , T hf =    
h
2 Xh is the solution of the above system of equations.

Since T = T �, we de�ne (T �)h = T h.
We de�ne the operator Eh : G� ! Gh as follows. For each ��� 2 G�, gh = Eh��� if

and only if

(rsg
h;rsz

h)� + hgh; zhi� + 
h
Z
�

zh � n d� = h���h; zhi� 8 zh 2 Qh

and Z
�

gh � n d� = 0 :

The existence and uniqueness of a solution (gh; 
h) 2 Qh � RI is guaranteed by the
Brezzi theory for mixed �nite element methods (see [4] or [5]) and the inequalities

(4:93) (rsk
h;rsk

h)� + (kh;kh)� � Ckkhk21;� 8 kh 2 Qh � H1(�)

and

(4:94) sup
06=kh2Qh


h
R
� k

h � n d�

kkhk1;�
� Cj
hj 8 
h 2 RI :

The solution necessarily satis�es gh 2 Gh. Thus the operator Eh is well de�ned.
With these de�nitions we see that (4.85)-(4.92) can be written in the form (3.1)-

(3.3).
By results concerning the approximation of the Navier-Stokes equations with

inhomogeneous boundary conditions (see [15]), we obtain

k(T � T h)fkX ! 0

as h! 0, for all f = (���; �; ���) 2 Y . This is simply a restatement of (H13).
(H14) follows trivially from (H13), the fact that T is self-adjoint, and the choice

(T �)h = T h.
To verify (H15), we note that the nondiscretized version of (4.93)-(4.94) certainly

also holds, i.e.,

(rsk;rsk)� + (k;k)� � Ckkk21;� 8 k 2H1(�)

and

sup
06=k2H1(�)



R
�
k � n d�

kkk1;�
� Cj
j 8 
 2 RI :

Using the Brezzi theory for mixed �nite element method (see [4] or [5]), we obtain
that

k(E � Eh)���k1;� ! 0 as h! 0 ;
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which veri�es (H15).
(H16) and (H17) follow from the fact that N and F are polynomials. Here we

also use imbedding theorems and Cauchy inequalities.

We set Ẑ = L3=2(
) � f0g � f0g. For each (v; q; s) 2 X = H1(
) � L20(
) �
H�1=2(�) and (w; r;k) 2 X = H1(
) � L20(
)�H�1=2(�), Sobolev imbedding theo-
rems imply that

[N 0(u; p; t)]� � (v; q; s) = �

0
@�(u � r)v + v � (ru)T

0
0

1
A 2 Ẑ ;

�
[N 00(u; p; t)]� � (v; q; s)

�
� (w; r;k) = �

0
@�(w � r)v + v � (rw)T

0
0

1
A 2 Ẑ ;

and

�
F 00(u; p; t) � (v; q; s)

�
� (w; r;k) =

0
BBBB@

0
B@
3(u1 � u01)

2w1v1
...

3(ud � u0d)
2wdvd

1
CA

0
0

1
CCCCA 2 Ẑ ;

where d (= 2 or 3) is the space dimension. These relations verify (H18).
From the de�nition of the operator K we see that K mapsH1

n(�) into L
3=2(
)�

f0g �H1(�), i.e., K maps G into Z. Thus (H19) is veri�ed.

Hence, we are now in a position to apply Theorem 3.5 to derive error estimates
for the approximate solutions of the optimality system (4.54)-(4.56), (4.70)-(4.72) and
(4.74). It should be noted that Lemma 3.4 implies that for almost all values of �, the
solutions of the optimality system are regular.

THEOREM 4.10. Assume that � is a compact interval of RI + and that there exists

a branch f(�;u(�); p(�); t(�);g(�); ���(�); �(�); ��� (�)) : � 2 �g of regular solutions of

the optimality system (4.54)-(4.56), (4.70)-(4.72), and (4.74). Assume that the �nite

element spaces Xh and Gh satisfy the hypotheses (4.79)-(4.84). Then, there exists a

� > 0 and an h0 > 0 such that for h � h0, the discrete optimality system (4.85)-(4.92)
has a unique branch of solutions f(�;uh(�); ph(�); th(�);gh(�); ���h(�); �h(�); ���h(�)) :
� 2 �g satisfying

�
ku(�)� uh(�)k1 + kp(�) � ph(�)k0 + kt(�)� th(�)k�1=2;�

+ kg(�)� gh(�)k1;� + k���(�) � ���h(�)k1 + k�(�)� �h(�)k0

+ k��� (�) � ���h(�)k�1;2;�

�
< � for all � 2 �.

Moreover,

lim
h!0

�
ku(�)� uh(�)k1 + kp(�) � ph(�)k0 + kt(�)� th(�)k�1=2;� + kg(�)� gh(�)k1;�

+ k���(�) � ���h(�)k1 + k�(�)� �h(�)k0 + k��� (�) � ���h(�)k�1;2;�

�
= 0

uniformly in � 2 �.
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If, in addition, the solution satis�es
�
u(�); p(�); t(�);g(�); ���(�); �(�); ��� (�)

�
2

Hm+1(
) � Hm(
) � Hm(
)j� �Hm+1(
)j� �Hm+1(
) � Hm(
) �Hm(
)j� for

� 2 �, then there exists a constant C, independent of h, such that

�
ku(�)� uh(�)k1 + kp(�) � ph(�)k0 + kt(�)� th(�)k�1=2;� + kg(�)� gh(�)k1;�

+ k���(�) � ���h(�)k1 + k�(�)� �h(�)k0 + k���(�) � ���h(�)k�1;2;�

�

� Chm�1=2
�
ku(�)km+1 + kp(�)km + inf

v2Hm(
);vj�=t
kvkm

+ inf
v2Hm+1(
);vj�=g

kvkm+1 + k���(�)km+1 + k�(�)km + inf
w2Hm(
);wj�=���

kwkm

�
;

uniformly in � 2 �.

Proof: All results follow from Theorem 3.5. For the last result, we also use (3.25) and
the estimates (see, e.g., [16] or [17])

k(T hT�1 � I)(u; p; t)kX � Chm(kukm+1 + kpkm + inf
v2Hm(
);vj�=t

kvkm)

for u 2Hm+1(
), p 2 Hm(
), and t 2Hm(
)j� ;

k
�
(T �)h(T �)�1 � I

�
(���; �; ��� )kY � = k(T hT�1 � I)(���; �; ��� )kX

� Chm(k���km+1 + k�km + inf
w2Hm(
);wj�=���

kwkm)

for ��� 2Hm+1(
), � 2 Hm(
), and ��� 2Hm(
)j� ;

and

k(EhE�1 � I)gk1;� � Chm�1=2 inf
v2Hm+1(
);vj�=g

kvkm+1 for g 2Hm+1(
)j� :

In these estimates, the constant C is independent of h, u, p, t, g, ���, �, ��� , and �.
Remark. If the control g 2Hm+3=2(
)j�, then the exponent of h in the error estimate
of Theorem 4.10 can be increased from (m � 1=2) to m.

5. Conclusions

We have set up an abstract framework for the analysis and approximation of
a class of nonlinear optimal control and optimization problems. Nonlinearities can
occur in both the objective functional and in the constraints. Within the framework we
have de�ned an abstract nonlinear optimization problem posed on in�nite dimensional
spaces, de�ned an approximate problem posed on �nite dimensional spaces, and listed
a number of hypotheses concerning the two problems. We then have shown that
optimal solutions exist and that Lagrange multipliers may be used to enforce the
constraints. We then used the Lagrange multiplier rule to derive an optimality system
from which optimal states and controls may be deduced. We then derived existence
results and error estimates for solutions of the approximate problem. The abstract
framework and the results derived from that framework were then applied to three
concrete control or optimization problems and their approximation by �nite element
methods. The �rst involves the von K�arm�an plate equations of nonlinear elasticity,
the second the Ginzburg-Landau equations of superconductivity, and the third the
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Navier-Stokes equations for incompressible, viscous 
ows. It is certainly possible to
apply the abstract results that we have derived to a variety of optimal control problems
arising in other settings.
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