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Pressure and higher-order spectra

for homogeneous isotropic turbulence

By D. I. Pullin 1 AND R. S. Rogallo 2

The spectra of the pressure, and other higher-order quantities including the dis-

sipation, the enstrophy, and the square of the longitudinal velocity derivative are
computed using data obtained from direct numerical simulation of homogeneous

isotropic turbulence at Taylor-Reynolds numbers Rx in the range 38 - 170. For the

pressure spectra we find reasonable collapse in the dissipation range (of the velocity

spectrum) when scaled in Kolmogorov variables and some evidence, which is not
conclusive, for the existence of a k -7/3 inertial range, where k = ]kl is the modu-

lus of the wavenumber. The power spectra of the dissipation, the enstrophy, and

the square of the longitudinal velocity derivative separate in the dissipation range,

but appear to converge together in the short inertial range of the simulations. A
least-squares curve-fit in the dissipation range for one value of Rx = 96 gives a form

for the spectrum of the dissipation as k ° exp(-Ckg), for k9 > 0.2, where 9 is the

Kolmogorov length and C _ 2.5.

1. Introduction

The collapse of data for the various forms of the velocity power spectrum when

scaled in Kolmogorov variables of the form

E(k) = (v5(_))l/4fl(kl_) , (1)

is well established as either an exact, or at least a very good approximation at

large Reynolds numbers, by both experiment and numerical simulation; see for

example Saddoughi & Veeravalli (1994) for an update of a graphical compilation

originally due to Chapman (1979). In (1) E is either the shell-summed spectrum or
a form of the related one-dimensional spectra, t/= (v3/(¢)) 1/4 is the Kolmogorov

length, and (¢) is the volume-averaged dissipation. The aim of the present work
is to use numerical data bases obtained from direct numerical simulation (DNS) of

homogeneous isotropic turbulence to study the power spectra of several quantities

that are quadratic in the velocity or its spatial derivative. It is hoped that the
results may be useful for testing the predictive capability of theories or models of

turbulent fine scales as well as adding to our basic understanding of turbulence in

the inertial and dissipation ranges.
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We shall consider two-point correlations and associated power spectra of quanti-

ties that are scalar functions of position in homogeneous isotropic turbulence. Let

q(x, t) be an arbitrary function of position x - (xl, x2, xa) and time t, and denote
its Fourier transform by

1
(2)

In (2) and subsequently we have suppressed the explicit dependence on t. Define

the two-point one-time correlation of q(x) at points x, x + r by

Q(r) = (q(x)q(x + r)>, (3)

where (...) is a volume average over x. The Fourier transform of Q(r) is

,(k)-87ra Q(r) dr, (4)

and it is easy to show that

17(k) = _(k)_*(k), (5)

where * denotes the complex conjugate. On integrating (5) over the surface of a

sphere S(k) of radius k in k-space, we obtain

E,(k)= f

We shall refer to q(k) q*(k) as the power spectrum of q(x) and to Eq(k) defined by

(6) as its shell-summed power spectrum. When the turbulence is isotropic and q(x)
is an invariant scalar in the sense that its value at any point is axis independent,

then Q(r) = Q(r), r = ]r], and II(k) = II(k), k = Ik]. The right-hand side of (6) is

then equal to 4a'k2II(k).

We consider power spectra of four quantities for which q(x) is identified in turn

with the following: the pressure-density ratio p(x), the dissipation _ = 2v(Oui/Ox I +

Ouj/Oxi) 2, the enstrophy density t2 = w2, and a quantity proportional to the square
of the longitudinal velocity derivative T = 15(Ou) 2, where Ou - OUl/OXl and

u = (ul, u2, ua) is the velocity vector. We denote the shell-summed power spectra
of these quantities, in Kolmogorov scaling variables, respectively by

Ep(k) = (_)3/4 _/.fs(k,).

E_(k) = (e)'/4_._/'/3(k,),

Er(k) = (_)m_-5/, h(k_).

(7)

(s)

(9)

(10)
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For homogeneous isotropic turbulence, (¢), (fl), and (T) are nonzero and satisfy
the relations

(c) = u(_) = y(T). (II)

In (8-10) these mean values are subtracted, and the integrals of the right-hand sides

over k = (0, oo) are equal to the fluctuations, respectively, (g2) =_ ((__ (e))2),

We remark that (Oul/Oxz) 2 is not a proper scalar, but is one component of the
fourth-order tensor

oxi ] kOXm)

whose two-point correlation is an eighth-order tensor. As a consequence the power
spectrum of T is not uniform over spherical surfaces in k-space. We nevertheless

treat T as if it were a scalar for the reason that it has been used as a surrogate for
e in experiment, being the gradient-variance that can most easily be measured with

a hot-wire probe. It is therefore of interest to compare its fluctuations with those

of e and f/. Note that (3-5) remain valid and (6) may still be applied.

2. Data bases

For the most part we have used data from the forced DNS runs of Jim_nez et al.

(1993), henceforth referred to as JWSR. See their §2 for a detailed description of

the numerical experiments and their Table 1 for a summary of the flow parameters.
Our data base differs from JWSR Table 1 as follows: first, JWSR take both volume

and time averages, the latter being over several large-eddy turnover times, whereas

our results are based on Fourier coefficients of the velocity from a single time frame,
being the last for the run. Comparisons made with one-time results at earlier

times separated by a substantial fraction of a large-eddy turnover time indicated

that statistical equilibrium had been obtained. Because we are using a single time

frame our values Rx = 38 (643), 65 (1283), 96 (2563), and 170 (2563) (the bracketed
number gives the numerical grid resolution N 3) differ slightly from those of JWSR.

Secondly and more importantly, our largest Rx run was at a resolution of 2563
compared to the 5123 run of JWSR which was unavailable to us. Since the 2563

data at Rx = 170 has kmaxr/_- 1.0 compared with kmazrl _ 2.0 for all the JWSR

runs, it may be somewhat under-resolved. All shell-summed spectra were calculated
directly from coefficients in k-space with de-aliased quadratic products evaluated in

physical space. Those for the pressure were obtained from a solution of the relevant
Poisson equation.

For the pressure spectra, in addition to the DNS runs, we also consider results

from two kinds of LES (large-eddy simulation) runs. The first of these utilizes a

method in which, at every time step, the magnitudes of the Fourier components of
the velocity are adjusted, with no change to either the relative magnitudes in the

(xl, x2,x3) directions or the complex phases, such that the velocity spectrum was

locked to a k -s/3 form. We will refer to this as Locked-E LES (She & Jackson,
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1993). In addition some pressure spectra calculated from a Smagorinsky subgrid
approach using the so called dynamic localization model (D£M, Ghosal et aI. 1994)

are also presented.

3. Spectrum of the pressure

Fig. 1 shows the velocity (energy) spectrum plotted in the compensated

inertial-range form (E)-2/ak s/3 E(k) = (kTI)5/3fl(kTI). The data, including the

Rx = 170 case, collapses reasonably across the whole range of ky. A Kolmogorov
constant of ]Co _ 2.2 appears to be indicated, but as pointed out by Jim4nez (pri-

vate communication), the plateau at kT/< 0.2 may in fact be part of a bump in the

spectrum near the beginning of the dissipation range (see Saddoughi _ Veeravalli,
1994, for related experimental evidence), which is not properly resolved owing to the

small inertial range of the DNS. The above quoted ]c0 may then be an overestimate.

It is well known that Kolmogorov-type dimensional arguments suggest a form for

Ep in the inertial range

Ev(k ) = Kv (C)4/3 k--7/3, (12)

where ]cp is a dimensionless number which may or may not be a universal con-
stant. In Fig. 2 Ev(k ) is plotted in the compensated form suggested by (12),

(e)-4/3k ?/3 Ev(k) = (k_?)7/3 f2(k,7). The collapse in the dissipation range (by which
we mean k_? greater than about 0.125) is only fair if one discards the R:_ = 170
case as under-resolved, mad poor if it is included. If this case is discarded Fig. 2 is

consistent with a possible plateau corresponding to ]cv m 8.5, which is somewhat

higher than the value ]Cv _ 7 suggested by Pumir (1994). Again, owing to the small
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FIGURE 2. Compensated pressure spectra in Kolmogorov units. --

Rx = 96, ........ R_ = 65, ----- R_ = 38.

\

R_ = 170,

inertial range, definitive conclusions cannot be drawn and we cannot rule out the

possibility of a bump analogous to that found found for E(k) with or without a
plateau at lower k_/.

An argument due to Obukov (1949) and Batchelor (1951) based on a joint-normal

hypothesis for the two-point probability distribution of the velocity field suggests

that ]c0 and ]Cp (if they exist) are related as

]cP 4536(r
= 3025 F [_] ]C°2= 1"3245105"']c°2" (13)

Taking ]Co = 1.5 gives, from (13), ]Cp = 2.98 which is much lower than the peak
shown in Fig. 2 but which agrees approximately with the range of values 2.4 - 3.4

estimated by Pullin (1994) from the Lundgren (1982) stretched spiral vortex model.

The ratio Ep(k)/(kE(k) 2) is shown in Figs. 3-4. If both E(k) and Ep(k) follow
their respective K-41 power laws in the inertial range, this ratio should plateau at

]Cp/]C2. As a test of our means of calculating Ep, the phases of the Fourier co-
efficients of the velocity field for the Locked-E LES run were randomized without

change to their magnitudes. This should produce a Gaussian joint-normal veloc-
ity probability distribution while maintaining a k -s/3 inertial range. The plateau

shown in Fig. 3 for this case is in good agreement with (13) as indeed it should be

(see the article by Gotoh & Rogallo in these proceedings for a discussion of various

spectra for Ganssian velocity pdf's). The roll-off at both large and small k is at-

tributed to the finite range of k in the calculation of the pressure via the (elliptic)
Poisson equation, which evidently "feels" the bounded dimensions of the box. The
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FIGURE 5. Compensated one-dimensional pressure spectra in Kolmogorov units.

R_ = 170, .... R_ = 96, ........ R_ = 65,-----R_ = 38. × DLMLES

(643), R_ = 269. + DLM LES (323), R_ = 176. • experiment of George et al.

(1984).

true £ocked-E LES also shows a plateau in Figs. 3-4, but at a value close to 3.8.

In Fig. 4 the DNS and Zocked-E LES show agreement in a small range of k at the

larger R_.

An attempt to bring experiment, DNS, and LES results together is made in Fig. 5

which plots the one-dlmensional form of the pressure spectrum

1 fk _ 1 Ep(_')d_'E_l)(kl) = _ , _ (14)

The measurements of George et al. (1984) shown in Fig. 5 were made in the
mixing layer of a turbulent jet at 1.5 - 3 diameters downstream of the jet exit.

Reynolds numbers based on the exit velocity and jet diameter were 4.0 × l0 s and

6.2 x 105. Taylor Reynolds numbers were in the range R_ _ 350 - 600. George et

aI. nondimensionalized their data with large-scale parameters which may be more

appropriate at the fairly low wavenumbers of the experiment. We have rescaled

their results using estimates of the dissipation and of the Kolmogorov microscale
given in §17 of their paper. They state that velocity contamination caused by

flow-probe interactions may have had some effect on the accuracy of the data.
Fig. 5 well illustrates the difficulties of studying pressure correlations. Neither

DNS, which is currently limited to low R_, nor experiment, which is limited by

accuracy problems at large wavenumbers, can span an appreciable spectral band.

The combined experiment, DI, M LES, and DNS results may indicate a plateau in
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FIGURE 6. Power spectra of the dissipation in Kolmogorov units. --

.... R_ = 96, ........ Rx = 65, ----- Rx = 38.
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7/s
the k1 -compensated spectra, but the scatter is very large. If (12) is true then

from (14) the one-dimensional inertial-range coefficient is/C(1) =1_3/Cp.

4. Spectra of e, fl, and T

Calculated dissipation spectra E, and enstrophy spectra E_ are shown in Figs• 6

and 7 respectively. Fig. 8 shows a comparison of these together with the spec-

trum of T = 15(Ou]/Oxl) 2 at R_ = 96. This indicates that the fluctuations of

are rather larger than those of _/v with fluctuations of 15(Oul/Oxl) _ larger

still• If Kolmogorov scaling is exact then the quantities _2_/(_) 2, _'_2)/(_'_) 2,

and ((Ou)4)/((Ou)) 2 should each be constant independent of Reynolds number.
There is evidence from DNS, e.g. Kerr (1985), JWSR, that this is not the case for

((Ou)4 ) / ((0u)l 2, which exhibits a weak dependence on the Taylor Reynolds number
R;_ = uA/v, where u is the root-mean square of one component of the velocity and

is the Taylor microscale. This is confirmed by Gotoh & Rogallo in these proceedings

who also tabulate (_)/(_)2, (1-/2)/(f/)2 for the present data set.

It is notable that Fig. 8 shows no sign of power-law behavior at low k, and indeed

an asymptote to a constant appears to be indicated for all three quantities. This

is in qualitative agreement with measurements, made using a multi-wire probe, of

Tsinober et al. (1992) (see their Fig. 9(a)). In Fig. 9 we have plotted the spectra

of Fig. 8 in the form d[log(f,(krl))]/d[log(krl)], n = 3,4,5 where f, are defined by

Equations (8-10). If curves are of the form (kr/) _ exp(-Ckq), then this plot should

be a straight line of slope -C that intercepts the vertical axis at ft. The fit of a
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straight line to the data sets in Fig. 9 is very approximate. Nevertheless a least-
squares best fit was made in each case in the window 0.2 < k < 1.8. The method

was tested using the velocity spectrum (not shown) for which we found/3 = -1.6

and C = 4.9 in fair agreement with Kerr (1990) and others. We find that for Ee;

/3 _ 0., C _ 2.5, En;/3 _ 0.5, C _ 3.5. There was some sensitivity to the chosen

range, so the errors are substantial, of order :k0.1 for/3 and 4-0.2 for C. Clearly a

larger resolved dissipation range is needed to improve accuracy.

5. Concluding remarks

We have examined the power spectra of several quantities using numerical data

bases from DNS and LES box turbulence, focusing mainly on flow variables that are

quadratic in the velocity components and which have proven difficult to measure
experimentally. When taken in conjunction with the one-dimensional spectra of

Figure 5, the DNS shell-summed spectra provide tentative evidence for the presence

of a k -7/3 range with K:p _ 8.5 and a corresponding K:(]) ,_ 1.8, but with large error.

These are higher than those predicted by either the joint-Gaussian model (K:p _ 2.98
corresponding to/E0 = 1.5) or the stretched-spiral vortex model (K:p = 2.4 - 3.4

depending on R.x). Since it is unlikely that the spectral range of DNS will increase

sufficiently in the near future to resolve this issue, there is clearly a need for a

definitive experiment of the Saddoughi & Veeravalli (1994) type. The spectra of (e)

and (_) show significant differences in the dissipation range but appear to behave
similarly in the short inertial range, where a k° form is indicated, in agreement with

the prediction of the stretched spiral-vortex model (Pullin e_ al. 1994).
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