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Statistics of pressure and pressure gradient
in homogeneous isotropic turbulence

By T. Gotoh 1 AND R. S. Rogallo 2

The statistics of pressure and pressure gradient in stationary isotropic turbulence

are measured within direct numerical simulations at low to moderate Reynolds

numbers. It is found that the one-point pdf of the pressure is highly skewed and

that the pdf of the pressure gradient is of stretched exponential form. The power

spectrum of the pressure P(k) is found to be larger than the corresponding spectrum

Pa(k) computed from a Gaussian velocity field having the same energy spectrum

as that of the DNS field. The ratio P(k)/PG(k), a measure of the pressure-field

r_z/2 log(k/kd)intermittence, grows with wavenumber and Reynolds number as -'_x

for k < kd/2 where kd is the Kolmogorov wavenumber. The Lagrangian correlations

of pressure gradient and velocity are compared and the Lagrangian time scale of

the pressure gradient is observed to be much shorter than that of the velocity.

1. Introduction

The pressure field plays an important role in the turbulent motion of an incom-

pressible fluid. The pressure, or more precisely its gradient, accelerates and deforms

fluid blobs in a manner that prevents them from being compressed. The pressure

is given by the solution of a Poisson equation, implying that it is a quantity dom-

inated by the large scales of the velocity field, but the source term is qua£1ratic

in the velocity gradient and leads to non-Gaussian statistics of the pressure field.

Recent studies have shown that the pdf of the pressure field is highly skewed and

has a long tall for negative fluctuations. These fluctuations correspond to intense

vortices with radii of the order of the Kolmogorov length (Holtzer & $iggia 1993,

Pumir 1994).

The internal dynamics of a turbulent fluid motion can be extracted in a frame

moving with the fluid (the Lagrangian point of view). At moderate to high Reynolds

number, the pressure gradient rather than the viscous stress is responsible for the

deformation and acceleration of fluid regions larger than the dissipation scale. For

example the time scale of small scales of turbulent motion can be inferred from the

curvature of the Lagrangian velocity auto-correlation obtained from the expansion

RL(t,s) = (v(t).v(s)) = Co -- lc2(t- s) 2 -F"', t _> s, (1.1)
L
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_0 °°
Co = 2 E(k, 8)dk, (1.2)

fo fC2 = -((Vp(x,s))2) = - k2P(k,s)dk= - k2 dk, (1.3)

D(k) = kikt/9fp+q=dpdq ui(p,s)ut(q,s), (1.4)

for small t - s. Here for simplicity we have neglected the viscous term and have

taken p = 1. The power spectrum of the pressure P(k, t) gives the pressure variance
as

&(x,t)) = P(k,t)ek.

Eqs. (1.3) and (1.4) imply that the spectrum of the pressure gradient depends on a
fourth-order moment of the velocity field, and roughly speaking the largest contri-

bution to the pressure-gradient variance comes from wavenumbers lower than the

peak wavenumber of k2E(k) when Reynolds number is large. This can be compared

with the variance of the pressure itself, which is dominated by wavenumbers near

the peak of the energy spectrum E(k), and with the variance of the dissipation e,
which is dominated by wavenumbers near the peak of k2E(k).

It is well known that the small scales of turbulent motion are intermittent (we

shall use this term herein to mean simply a departure from Gaussian statistics) and
fourth-order moments have contributions from the eumulant part. An example is

seen in Gotoh et al (1993) where the initial curvature IC2DNs] is larger than IC_l

computed from a Ganssian velocity field

0 °°

= - dk dq kq J E(k, s)E(q, s),

(1.5)

1 + a _ 2xJ(x)={(a2-1)21Ogll--a[ 2a+--aa}/(2a4),__ a= l+x-------_. (1.6)

This suggests that turbulence has a faster decay of RL(T) and a smaller turbulent

diffusivity (as given by the time integral of RL(r)) than predicted by the Gaussian

theory. In other words, it suggests that the dynamics of the Navier-Stokes equation
causes a fluid blob to forget its past history more effectively than would convection

by a Gaussian velocity field. Therefore intermittence effects appear in the dynamics

of a fluid particle through the pressure gradient and are expected to be different

from those of the viscous stress, but we do not know how fast intermittence in the

pressure increases with wavenumber, how it differs from the intermittence of the
dissipation, what its time scale depends on, and so on.

There have been many studies of the fluctuations of pressure and its gradient in

turbulence (Monin & Yaglom 1975, and Nelldn 1994) but few fundamental studies
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FIGURE 1. The pdf of pressure. (a) turbulent velocity field. -- : Rx = 172,
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velocity field with the same energy spectrum for R,x = 172. -- : turbulent

velocity field, 4..... : Gaussian velocity field, o: Gaussian.
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of pressure intermittence and its effects on the flow dynamics. This is partly because

experimental measurement of the pressure spectrum is dimcult (Uberoi 1953 and
George et a11984). Now that extensive numerical data are available, we can examine

the statistics of the pressure field systematically, albeit at rather low Reynolds

numbers. Here we present some measurements taken from the DNS data base

available during the summer program and examine the statistics of the pressure
field.

2. Numerical simulation

The turbulent flow fields used here (Jim_nez et al 1993) are all homogeneous and

isotropic and are held stationary by forcing at low wavenumber. They are arranged
into four groups according to the Reynolds number Rx, with statistical quantities

computed as averages over two fields at well separated times for Rx = 172 and
over three fields for Rx = 96, 63, 38. The numerical grid sizes were N = 2563 for

Rx = 172, 96, N = 1283 for Rx = 63, and N = 643 for Rx = 38. The Lagrangian

autocorrelations of velocity and pressure gradient were computed by the passive-

vector method (Kaneda & Gotoh 1991, Gotoh et al 1993). The pressure field p(k, t)

was computed using de-aliased spectral methods.

3. Results

8.1. One-point one-time statistic8

The one-point pdf of the pressure in Fig. la is skewed as reported by Pumir

(1994). For negative pressure fluctuations the asymptotic form of the pdf tends

to be nearly exponential P(p) c_ exp(-alp/opl_), where a is a non-dimensional

constant and the exponent a is slightly less than one, which is consistent with low

pressure in the core regions of intense vortex filaments. The tall of the pdf extends

towards negative values with large amplitude as Rx increases but a is independent
of Rx. For positive fluctuations the pdf is close to Gaussian and is insensitive to

Rx (Pumir 1994). Furthermore the pdf Pa(p) of the pressure field computed from

a Gaussian velocity field having the same energy spectrum has the same behavior

(Fig. lb) for the negative fluctuations as predicted by Holtzer & $iggia (1993).

The pdf of one component of the pressure gradient is shown in Fig. 2a for different

Reynolds numbers. The pdf is symmetric and its tails become wider as Rx increases.
Fig. 2b shows that the pdf of the pressure gradient is isotropic and that it differs

markedly from that computed from a Gaussian velocity field, unlike the case of

the pressure itself. The asymptotic form of the tails of these pdf's appears to be

stretched exponential P(p,i) o_ exp ""(-blp,,/_p,I a) with 0 < /3 < 1, where b isa

a non-dimensional constant, while that of its Gaussian counterpart is exponential

as expected. This means that the pressure-gradient field is very intermittent and

is quite different from the pressure gradient in a Gaussian velocity field. I-Ioltzer &

Siggia (1993) studied the pdf of the pressure gradient and suggested fl ,,, 1/2. The

pdfs plotted against _ (figure not shown) indicate that fl is close to 1/2 for
large amplitudes and becomes smaller as Rx increases.
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FIGURE 2. The pdf of pressure gradient. (a) variation with Reynolds number

for a single component. _ : Rx = 172, .... : Rx = 96, ......... Rx = 63,

__.b : R,x = 38, o: Gaussian, (b) Comparison of turbulent and Gaussian values

for all components at Rx = 172. _ : Op/c3x, .... : c3p/Oy, ........ : c3p/Oz for

turbulent velocity field;-F-_ :Op/Oz, [] .... : c3p/c3y, × ........ : Op/Oz Gaussian

velocity field; o: Gaussian.
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FIGURE 3. Variation with Reynolds number of velocity moments. (a) Various

moments of turbulent velocity field. 1: Fp, 2: Fvp, 3: F_, 4: F_, 5: Folul, 6:
Ful. (b) Comparison with values from the corresponding Gaussian velocity fields.

1: Fp (DNS), 2: Fp (Gaussian), 3: Fp (George et al 1984), 4: Fvp(DNS), 5: Fve

(Gaussian), 6: Fve (George et al 1984).

The variation with Rx of normalized moments of the pressure and pressure gra-

dient are shown in Fig. 3a. Included there for comparison are other normalized
fourth-order moments of velocity:

(p2> Fve- <(VP)2) (3.1)
Fp= (½(u_))_' e/_,-'/_'

F._ = F01.,=
{0_' {_;)_'

((_,/ax_),) ((u_),)
((o_,/0x_)2)2' F,,, = ((,,_)_)2, (3.2)

where _ = (e). The normalized variance of the pressure Fe is insensitive to R:_

(Batchelor 1951 and Pumir 1994). On the other hand the normalized variance of
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the pressure gradient Fvp increases rapidly with Rn and is roughly proportional to

R1/2 for the range of Reynolds numbers studied here. This tendency is in agree-

merit with Yeung & Pope (1989), where Rx was below 93. On the other hand F_
and F_ increase slowly with R_ in agreement with the data of Kerr (1985). This

difference is surprising because functions of the velocity gradient such as vorticity or

Oul/Oxl are quantities representing small scales of turbulent motion (characterized
by wavenumbers near the maximum of k2E(k)) and are believed to be more inter-

mittent than the pressure-gradient field whose characteristic wavenumber is lower

than that of k2E(k) when the Reynolds number is high (see Fig. 4).

When the universal equilibrium form of the energy spectrum (Kolmogorov 1941)

is used with the Gaussian-velocity approximation (1.5) we obtain

E(k) ._- _.l/41./5/4/(k/kd),

((Vp(x))2) = _3/2u-'/2Fvp, (3.3)

Fv, = 2 dx J

Kaneda (1993) analyzed (3.3) and found that the largest contribution to the integral
comes from the region y < kc/kd <_ x, where kc is the wavenumber above which
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E(x) cx exp(-cx) and c is a non-dimensional constant, which means that the integral

Fvp is governed by the energy spectrum up to the dissipation range. Batchelor
(1951) estimated Fvp _ 3.9 independent of Ra. George et al (1984) used (3.3) with
an empirical energy spectrum for E(k) and found

(3.4)

with _p = 3.7 and 3'p = 62.7. The constant _p is universal while "Tpdepends on the
macro-scale of the turbulence.

Fig. 3b compares the variances of the pressure and its gradient with those com-
puted from Gaussian velocity fields. The values computed from the Gaussian fields

are close to those found from (3.4) using the values of George et al (1984) but are

significantly lower than the DNS values. The Ra dependence of the turbulent pres-
sure gradient is stronger than that of its Gaussian counterpart, and it seems likely

that any theoretical explanation must take into account the non-Gaussian statistics.

3.2. Two-point one-time statistics

Eqs. (1.3) and (1.4) show that the power spectrum of the pressure gradient is a

function of a fourth-order moment of the velocity field. The Gaussian approximation

for the velocity field leads to (1.5), which implies that the peak of k2P(k) occurs at
a lower wavenumber than that of k2E(k). Comparison of these spectra, plotted in

Kolmogorov units in Fig. 4, confirms that at low Rx both spectra peak at nearly
the same wavenumber, but as R_ increases the peak of k2P(k) moves to lower

wavenumber. Collapse of the enstrophy spectra is excellent but that of the pressure
gradient is not. This implies that the Kolmogorov scaling is not appropriate for

the pressure field (Moin & Yaglom 1975). The cumulative contributions of these

spectra to the total enstrophy and pressure-gradient variance

f: q2E(q)dq Q2(k) =- f: q2p(q)dq
Ol(k) =- f:. q2E(q)dq, fog"'" q_P(q)dq'

(3.5a, b)

for the four R_,'s reach 80% at kr/kd ,_ 0.35 for the pressure gradient and at

k,_/kd _ 0.5 for total enstrophy, but their scale separation kp/kw is small (Batchelor

1951).
One way to measure the variation of pressure intermittence across the spectrum

is to compare the pressure power spectrum P(k) of the turbulence with that Pa(k)

computed from a Gaussian velocity field (Hudong et al 1987). Fig. 5a presents such

a comparison for Rx = 172. The pressure spectrum P(k) is larger than Pa(k) for
all wavenumbers beyond the forced range, meaning that the cumulant contribution

Pc(k),
P(k) = Pa(k) + Pc(k), (3.6)

is positive. This suggests that the inertial-range constant Kp for the pressure spec-

trum P(k) = h_/Sk -7/s is larger than that predicted from the Gaussian velocity
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field (Nelkin & Tabor 1990, Fung et al 1992, and the article by Pullin & Rogallo in

this proceedings). We consider the spectrum ratio

P(k)

gl(k) = PG(k) (3.7)

as a measure of the variation of pressure (and pressure gradient) intermittence across

_a/2 dependence of Kl(k) is suggested by the good collapse ofthe spectrum. A "'x

R-_I/2KI(k) shown in Fig. 5b. This implies that

Pc(k)
--'/2log( k) km <1/2. (3.8)K,(k) = l + _ c< ._ -_d ' -

The growth with wavenumber of the intermittence of second-order moments of the

pressure field is very slow (it appears to be logarithmic, but the scale range is not

sufficient to preclude a weak algebraic dependence) but the growth with Reynolds

number as ._a is faster than that of other small-scale quantities. At Ra = 172

((Vp)2) - 2.58 (3.9)

and the initial curvature of the Lagrangian velocity autoeorrelation is larger than
that of the Ganssian field (Gotoh et al 1993). Navier-Stokes dynamics decorrelates

the velocity of fluid particles faster than convection by a Gaussian velocity field
would.

The variation of the dissipation intermittence across the spectrum is measured in

a similar way. Fig. 6 compares the dissipation power spectra of turbulent-velocity

fields with those of the corresponding Gaussian-velocity fields. Here we define the
power spectrum of the dissipation and its intermittence (ratio of turbulent to Gaus-

sian spectra) as

<e2(x,t)> = E,(k,t) dk, (3.10)

E,(k)

g2(k) = E,,G(k)" (3.11)

The intermittence within the dissipation range is independent of Reynolds number.

It is interesting to note that the maxima of K1 (k) and minima of K2(k) both occur

at k/kd ._ 1/2 and that the diameter of intense vortex tubes is also of order 1/kd
(Jim_nez et al 1993). The strong variation of the dissipation intermittence across

the spectrum is opposite to that of the pressure field due to the modulation of the

energy spectrum by the small-scale structures (Hudong et al 1987). For example
when strong singularities of the velocity field with support size 1/kd are placed

periodically at a fixed separation l >> 1/kd, the power spectrum of the dissipation

field has an excitation at k .._ 1/l << kd as well as at k .._ kn, while a Gaussian

velocity field with a compact spectrum centered on kd simply generates a compact
dissipation spectrum centered on kd.
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g.g. Two-time statistics

The normalized Lagrangian auto-correlations of velocity and pressure gradient

are defined in a stationary flow as

RL(t, s) = (v(x, tit)" v(x, tls))
(iv(x, sl2)12) , for t > 2, (3.12a)

RLp(t, 2) = (F(x, tit ) •F(x, t12))
(iF(x, sls)12) , for t >_a, (3.12b)

where v(x, tl2 ) is the velocity at time s of the fluid particle whose space-time tra-
jectory passes through (x, t), and F(x, tl2 ) is the pressure gradient acting on that

particle at time 2. Note that v(x, tit ) = u(x, t) and F(x, tit ) = Vp(x, t).

Fig. 7 compares the Lagrangian auto-correlations RL(t, a) and RLp(t, 2) at Rx =
63 and 96. The correlations of the pressure gradient decay much faster than those

of the velocity and have negative correlation at later times. In Fig. 8 RLp(t, a) is
replotted with time scaled in Kolmogorov units. Collapse of the curves is excellent

up to the time at which they change sign.

We define octave-band Lagrangian correlation spectra for the pressure gradient
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(a) R_(k, t, s). (b) nv_p(k, t, s).

as E (F(k, tit)" F(-k, tls))

._Le(k, t, s) = o_t (3.13)

[_ IF(k' tlt)12E IF(k' tls)12]_/_'o_,

v'k=2'+_ and F(k, tls) is the Fourier transform of F(x, t[s) with respectwhere _ - _..,k=21
OCt

to the Lagrangian coordinates at labeling time t (Kraichnan 1966 and Gotoh et al

1993). The octave-band Eulerian correlations are defined in a similar way.
The comparison of these spectra in Fig. 9 indicates that at high wavenumbers the

Lagrangian correlation decays slower than the Eulerian, but that at low wavenum-

bers the decay rates are roughly equal. The Eulerian decorrelation of the small
scales is caused primarily by their sweeping by larger scales while their Lagrangian

decorrelation is due to deformation by larger scales. The sweeping effect on the

Eulerian correlation is clearly demonstrated in Fig. 1O where narrow-band Eulerian

correlation spectra, defined similarly to (3.13) with _oct replaced by _,heu, are
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(a) R (k, t, s). (b) R ,p(k, t, s). The low-wavenumber bands display pronounced
negative values.

plotted against the normalized time kUo(t - s). On the other hand, in Fig. 11,
the narrow-band Lagrangian correlation spectra collapse when plotted against the

normalized time _( k )( t - s), where

rl(k)=(fokq2E(q)dq) I/2 (3.14)

is the rms strain rate of eddies larger than 1/k (the inverse of the turnover time

for an eddy of that size), which is obtained from (1.5) by using the expansion

of J(x) _ 1-_-x for small x (Gotoh et al 1993). The success of these scalings is
confirmed by a comparison of Figs. 10b and llb with the unscaled data in Fig. 9.

4. Conclusions

Pressure statistics have been examined within a DNS of stationary isotropic tur-

bulence. The one-point pdf of the pressure has an exponential tail for negative
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fluctuations while that of the pressure gradient is symmetric and of stretched ex-

ponential form. The normalized variance of the pressure is insensitive to Rx but
r_1/2 The variancesthe normalized variance of the pressure gradient increases as "'x •

of both pressure and its gradient in the DNS are higher than those computed from

a Gaussian field having the same energy" spectrum.

The growth of intermittence across the pressure spectrum, characterized by the

ratio of power spectra P(k)/Pa(k), was found to be proportional to _ _,1/2 log(k/kd)

for k/kd < 1/2. The Lagrangian pressure-gradient correlation has a time scale much

shorter than that of the velocity and its narrow-band spectra change sign at the

normalized time rl(k)(t-s) _ 1. This is consistent with the notion of a fluid particle

being accelerated toward the center of a vortex of size 1/k by the pressure gradient

acting on that particle.
Previous theoretical analyses of these observations are rather scarce (Pullin 1994

and Nelkin 1994) due to the difficulty of dealing with the nonlocality in physical

space of the Poisson equation for the pressure field. Most studies so far are based
on the Gaussian velocity approximation, but intermittence effects in the pressure

field are clearly evident in its one-point statistics as well as its spectrum. The

construction of a theory that is able to explain these observations is a real challenge.
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