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Abstract

The 8-ray theoo' of track structure is compared with experimental data for the

radial dose fi'om heavy ion irradiation. The effects of electron transmission and the

angular dependence of secondao' electron ejection are included in the calculations.

Several empirical formulas for electron range and energy are compared in a wide

variety of materials in order to extend the application of the track-structure theo1)'.

The model of Rudd for the secondao" electron spectrum in proton collisions, which is

based on a modified classical kinematics binao' encounter model at high energies

and a molecular promotion model at low energies, is employed. For heavier projec-

tiles, the secondal_y electron spectrum is found by scaling the effective charge. Radial

dose calculations for carbon, water, silicon, and gold are discussed. The theoretical

data agreed well with the experimental data.

Introduction

The _-ray theory of track structure attributes the

radiation damage from and the detection of the passage

of heavy ions through matter to the ejection of electrons

(8 rays) from the material by the passing ion (refs. 1-5).

The track-structure theory has a long history of providing

the correct description of a variety of phenomena associ-

ated with heavy ion irradiation. Track-structure theory

provided the first description of the spatial distribution of

energy deposition from ions by a formula for the radial

distribution of dose, as introduced by Butts and Katz

(ref. 1) and Kobetich and Katz (ref. 2). This description

led to many experimental measurements of the radial

dose (refs. 6-10). The response of physical detectors,

such as organic scintillators (ref. 5), thermoluminescence
detectors (TLD's) (ref. 5), alanine (ref. 11), nuclear

emulsion (ref. 12), and the Fricke dosimeter (refs. 5

and 13), to heavy ions has been described with track-

structure theory. Many biological effects, such as the
thindown of mammalian cells (ref. 5), which was pre-

dicted nearly 20 years prior to the first experimental
observation (ref. 14) have also been described. Track-

structure theory is used to develop improved lithography
methods by using ion beams for applications in micro-

electronics and microtechnology (ref. 15).

The radial dose distribution and the geometry of a

target site are used in track-structure theory to map ],-ray

response to ion response. The radial dose for intermedi-
ate distances from the track structure is known to

decrease with the inverse square of the radial distance to

the path of the ion, which has led to simplified formulas

for many applications (refs. 1, 5, 16, and 17). The radial

dose both near and far from the path of the ion is difficult

to predict because of uncertainties in the electron range

and energy relation, the angular dependence of the
secondary electron production cross section, and the

effects of &ray transport in matter, especially for

condensed-phase matter. However, many track-structure
calculations have used simple, analytic forms for the
radial dose from ions. The electron transmission and the

angular dependence of electron ejection are ignored and

simplified electron range-energy relations are used. In

this paper, these factors are considered by following the
method described in references 2, 3, and 17 and compari-

sons are made to experimental data for radial dose distri-

butions. Substantial changes in the physical inputs of the

calculations were made. These changes include an

improved model for the secondary electron spectrum for

proton collisions with atoms and molecules (ref. 19) and

improved formulas for the electron range-energy and the

stopping power.

Radial Dose Formalism

The calculation of the radial dose D (t) as a function

of the radial distance of the path of an ion of charge num-

ber Z and velocity _ was formulated in references 2 to 4

and 18. In formulating the spatial distribution of energy

deposition as charged particles pass through matter, the

dominant mode of energy loss is assumed to be ioniza-

tion due to electron ejection from the atoms of the target

material. Electrons of range r that penetrate into a mate-
rial a distance t have residual energy W, which is given

by the energy co to go the residual range r - t. The resid-
ual energy of an ejected electron (5 ray) is written in
functional form as

W(r,t) = o_(r-t) (1)

In equation (1), r is the practical range (determined by

extrapolating the linear portion of the absorption curve to

the abscissa) of an ejected electron with energy ¢.o.When

the range-energy relation in a given target material is
known, the residual energy is then evaluated with

equation (1).



The energy dissipated E at a depth t by a beam con-
taining one electron per cm 2 is represented in reference 2

as

d
E = _(rlW) (2)

where r I is the probability of transmission of the
electrons.

As noted in reference 4, equation (2) neglects sev-
eral effects. First, it may neglect backscatter, although it

may be argued that the energy lost from a layer dt by

backscatter is compensated by energy gained from back-
scatter from later layers. Second, all'electrons are repre-

sented by an underscatter class. Third, the energy

deposited by the electrons that penetrate to a thickness
t > r is neglected. Such shortcomings could be overcome

by direct solution of the electron transport (ref. 20) or

through the use of Monte Carlo methods (ref. 21). How-

ever, the model of Kobetich and Katz from reference 2

has the advantage of simplicity with reasonable

accuracy.

The transmission function used is based on the

expressions of Dupouy et al. (ref. 22) as modified by

Kobetich and Katz (ref. 4) and is given by

I"1(r, t) = exp[-(qt/r)P] (3)

with

_o.98
q = 0.0059A T +1.t (4)

and

-1

p = 1.8 (logloZr) + 0.31 (5)

where Z T is the atomic number of the target material, and
r and t are in units of g/cm 2.

In order to estimate the number of free electrons

ejected by an ion per unit length of ion path with energies
between co and 01+ do, the formula given by Bradt and

Peters (ref. 23) was used by Kobetich and Katz (ref. 2)

9 *'_ 4 )ldn _ _rcNZ'e 11- 132c° rt_Z*2 ]--_-_m(-_--£m . (6)+ ,37

where e and m are the electron charge and mass, N is the

number of free electrons per em 2 in the target, and 01m is
the classical kinematic value for the maximum energy

that an ion can transfer to a free electron and is given by

(7)

In equation (6), Z* is the effective charge number of the

ion, which was represented in reference 24 as

-12513

The electron-binding effects were considered by

Kobetich and Katz (ref. 2) after the experimental find-

ings of Rudd et al. (ref. 25), who found that co may be

interpreted as the total energy imparted to the ejected

electron with a kinetic energy of W, so that co in
equation (6) is replaced by

co = W + I (9)

Results from equation (6) must be summed for compos-

ite materials. The average charge and mass number and

the density of several materials are listed in table 1. Val-

ues of mean excitation Ii from references 26 and 27 and

values for electron density N i are listed in table 2.

Rudd has provided a parameterization of the electron
spectrum after proton impact that was based on a binary

encounter model modified to agree with the Bethe theory

at high energies and with the molecular promotion model
at low energies (ref. 19). For water, the contributions

from five shells are included (ref. 19). This model of

Rudd is considered herein and scaled to heavy ions by

using effective charge. In figure 1, the secondary elec-

tron spectrum from equation (6) and the model of Rudd

for several proton energies are shown. Large differences

between the models occur for all electron energies below

proton energies of about 1 MeV and for small electron

energies at all proton energies.

Electrons of energy co are ejected at an angle 0 rela-

tive to the path of a moving ion and described by classi-
cal kinematics as

20 cocos = _ (10)
01

n7

for the collision between a free electron and an ion.

Equation (10) indicates that close to the path of the ion,
where distances are substantially less than the range of

8rays (01_ C0m), it is sufficient to consider that all
8 rays are normally ejected. The energy that the electrons

dissipate in cylindrical shells with an axis along the path

of the ion may then be found from the energy dissipation

of normally incident electrons. If the 15rays far from the

path of an ion have an important role in a particular

response, then the angular dependence, as well as the

dependence of electron range, on the velocity of the ion
becomes crucial.

If _ is the energy flux carried by 8 rays through a

cylindrical ,surface of radius t whose axis is the path of



theion,theenergydensityE deposited in a cylindrical
shell of unit Iength and mean radius t is given by

-1 dE
E = ---- (11)

2rtt dt

The total energy flux is found by integrating the energy

flux carried by a single electron, given by rlW, over the

distribution of the _5ray and summing the contributions
of all atoms in the material

2IE ( t) = °_m- I'd to W ( t , to) q ( t, to ) -_-_ (12)
• (£1 t
l

In equation (12), the lower limit tot is the energy for an

electron to travel a distance t, and the upper limit ,o3m - I i
is the maximum kinetic energy that can be given to the

electron by the passing ion. Using equation (11) and

equation (12), the energy density distribution may be
written as

-I y,f o,.-/ _ dni
E(t) = _-_tt_--,ao_ 'd° fft[rl(t'°3)W(t'°)]-d--o (13)

[

and E(t) is identified as the radial distribution of dose.

To consider the angular dependence of the ejected

electrons, the energy deposited by a ray ejected at an

angle 0 in a cylindrical shelI of radius t centered on the

path of the ion is assumed to be the same as the energy

deposited by an electron normally incident on a sIab at

depth t/sin0, as shown in figure 2. Kobetich and Katz
assume that differences between the geometry of the slab

and the cylindrical shell do not greatly affect the energy

density distribution, because the differences in the

energy density at t caused by the electrons scattered in

path A are compensated by those scattered in path B of

figure 2 (ref. 3).

The energy density distribution, which includes an

angular distribution of the ejected electrons, is assumed
to be

E(t) -- ZI daf  -'idto- 
2rtt ,I o_ (0) bt

i

dn.
t (14)

x ['q(t, to, O)W(t, to, O)]dtodff2

The angular dependence of tot , q, and W is shown in
equation (10). Experimental measurements for the dou-

ble differential cross section of electron ejection are

available for only a few ions and mostly at modest ion

energies of < 10 MeV/amu (refs. 28-31).

A qualitative model for the angular distribution of
the secondary electrons assumes that distribution peaked

about the classical kinematic ejection value described by

equation (10), so that

dn dn r (0,
do) df2 - d"o)" to) (15)

where

N
f(O, to) = 2 K (16)

[0- 0,. (to) ] +- to

with 0c (to) determined as the root of equation (10), N is

a normalization constant, and K is a constant. The con-

stant K may have some dependence on the energy of the

incident ion and target material; however, K is estimated
as 0.015keV from the data of references28 to31.

Results of equations (15) and (16), which use the model
of Rudd (ref. 19) for dn/dto in equation (15), are shown

in figures 3(a) and 3(b).

Range and Energy Formula in Arbitrary
Media

The electron range and energy relationship is diffi-

cult to evaluate theoretically and, because of the com-

plexity of the electron transport problem, empirical

expressions based on experimental measurements have

been developed (refs. 2, 4, and 32-36). Over a limited

energy range, a power law of the form r = kto c_ will be

approximately correct and is used in references I, 34,

and 36. The residual range of the power law is easily

found by inversion and leads to an analytic form for the

radial distribution of dose with the simplifying assump-

tions of normal ejection and unit electron transmission. A
more accurate form, which is given in reference 32 and

modified in reference 4, is the formula

B
r= Atoll I+COI (I7)

where

A=(0.81Z?38+0.18)x10-3g(cm 2.keV) -1 (18)

B = 0.21ZT °555 + 0.78 (19)

C = (1.1ZOT'29 + 0.21)X 10-3keV -I (20)

which was determined by extensive comparison with

experimental data for practical range in many materials.

Equation (17) is inverted to provide to = to (r) .
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As a final parameterization,therangeformulaof
reference33isconsidered

r = a 1 log(1 +a2z ) -a3"_ 1 +a4_ (21)

where

"C = cO/m

b2
a 1 = blAT/Z T

a 2 = b3Z T

a3 = b4-b5Z T

a 4 = b6-b7Z T

b 9

a 5 = b8/Z T (22)

The values of b i from reference 33 are listed in table 3.

Equation (21) reduces to equation (I7) when a2z,_ 1

and a5 = 1. A parameterization of the inversion of
equation (21) is provided in reference 33 as

where

Cl = dl/ZT

d3/A T

c 2 = d2Z T

c 3 = d 4- d5Z T

d 7

c 4 = d6/Z T

d 9

c 5 = ds/Z T

with d i listed in table 3.

(24)

A logarithm and polynomial relationship has been

used by Iskef, et al. (ref. 35) and more recently by Zhang,

et al. (ref. 36). This, however, is less useful for the radial
dose model because the inversion formula for

co = m (r) is not found easily.

In figures 4 to 6, electron range and the energy of the

ion from equation (7) is plotted for several materials. In
the low to intermediate energy range, the formula agrees

closely; however, large differences occur below 1 MeV/

amu, especially for lighter materials. Above 1000 MeV/

ainu, large differences also occur which grow with the

increasing charge of the target material. In figure 7, the

formulas of Iskef et al. (ref. 35), Waligorski et al.

(ref. 37), Kobetich and Katz (ref. 4), and Tabata et al.

(ref. 33) for water are also shown. In figure 8, dW/dr

from equation (17) or equation (21) is compared with

experimental data from references 38 and 39 for stopping

power of an electron in water. The model of Tabata et al.

(ref. 33) agrees well with experimental data to about

1.0 keV. This model will be used for the electron range

energy in radial-dose calculations.

Calculations of Radial Dose

In figures 9(a) and 9(b), the effects of electron trans-
mission on calculations of radial dose in water are

shown. Calculations are for proton projectiles; however,
the radml dose Is determined approximately by Z 2/_2
from which results for other ions can be found.

Figures 9(a) and 9(b) illustrate that the transmission fac-

tor affects the radial dose calculation only very close to

and very far from the path of the ion. The normalization

and the expected decrease of radial dose with increasing
distance as 1/t 2 are unchanged by including the trans-
mission factor.

In figure 10, the radial dose calculations are com-

pared with experimental data from references 6 to 9 for

several projectiles with ion energies from 0.25 to

377MeV/amu. Figure 10 illustrates the decrease in
radial dose with increasing distance 1/t 2 in the interme-

diate distance range. Close to the ion track (t < 10 nm)
a contribution to the radial dose from molecular excita-

tions, as discussed in reference 37, is expected but is not

included in the present calculations. It is important to

keep the contributions from excitation and ionizations

distinct, because the secondary electron dose from ion-

ization is assumed to be responsible for physical effects

by heavy ions.

At large distances, the inclusion of angular depen-

dence in equation (14) offers a substantial improvement

in the accuracy of calculations. Equation (15) provides

an improvement in accuracy over the ejection angle

model of classical kinematics (eq. (10)) at lower energies

(<2MeV/amu). At higher energies, equation(15)

appears to underestimate the radial dose at large dis-

tances. Clearly, more information on the double differen-

tial cross section for electron ejection is required.

In figures ll(a) to ll(c), the effects of the radial
dose calculations for several velocities in carbon, silicon,

and gold are illustrated. The data shown in figure ! I

were determined with equation (6) from the secondary

electron spectrum. This model is capable of providing

the radial dose for an arbitrary ion in a wide variety of
materials.



Concluding Remarks

A model for the radial distribution of energy depos-

ited about the path of a heavy ion developed prior to

most experimental measurements of this distribution was

improved. Theoretical results from the improved model

were compared with experimental data for a variety of

ions. Improved models of electron-range energy and

stopping power and the electron-ejection spectra and

angular distribution were used in calculations. ExcelIenI

agreement with experimental data was found; however,

more information on the double differential cross section

for electron ejection is required. Calculations of the

radial dose from heavy ions in several materials of inter-

est for spacecraft design and microelectronics are pre-

sented. The radial dose model developed in this report is

useful in determining the response of many detectors and

components to space radiations.

NASA Langley Research Center

Hampton, VA 23681-0001

December 2, 1994
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Table 1. Average Atomic Number (Z,), Average Mass Number (A), and Density of Materials

Material Composition a 2 .4 Density, g/cm 3

Carbon

Aluminum

Silicon

Copper

Tin

Gold

Lead

Lexan Polycarbonate

Cellulose Nitrate

Water

Air

Quartz

Muscovite Mica

Sodium Iodide

Ilford G-5 Emulsion

C

AI

Si

Cu

Sn

Au

Pb

C16H1403

C6H809N2

H20

0.755N, 0.2320, 0.013Ar

SiO 2

KAI3Si3OI 6 (OH) 2

NaI

0.41H

0.07226C

0.01932N

0.066110

0.01189S

0.3491Br

0.4741Ag
0.00312I

6.0

13.0

14.0

29.0

50.0

79.0

82.0

6.1

7.02

7.22

7.52

10.8

11.0

46.6

35.8

12.0

27.0

28.0

63.0

120.0

197.0

208.0

12.1

I4.0

14.3

15.1

21.7

22.4

Ill.0

81.I

1.95

2.702

2.33

8.92

7.28

19.30

I 1.34

1.20

1.35

1.0

0.001293

2.66

2.8

3.67

3.815

aComposition listed by percentage weight.



Table2. ElectronDensityandBindingEnergyofSeveralMaterials

aElectrondensityx 1023, aMeanexcitationenergyx 1010
Materials Composition electrons]cm3 ergs/electron

Carbon

Aluminum

Silicon

Copper
Tin

Gold

Lead

LexanPolycarbonate

Cellulose Nitrate

Water

Air

Quaaz

Muscovite Mica

Sodium Iodide

Ilford G-5 Emulsion

C

A1

Si

Cu

Sn

Au

Pb

C

H

O

C

H

O

N

H

O

N

O

Ar

Si

O

K

A1

Si

O

H

Na

I

H

C

N

O

S

Br

Ag
I

5.86

7.85

7.00

24.50

18.40

46.60

27.10

2.73

0.397

0.685

1.15

0.256

2.30

0.447

0.675

2.69

0.00299

0.000904

0.0000456

3.73

4.27

0.671

1.38

1.48

5.08

0.0706

1.62

7.80

0.322

0.830

0.222

0.760

0.0214

3.51

4.74

0.0299

1.II

2.61

3.84

5.03

8.27

12.23

13.23

1.11

0.248

1.43

1.11

0.248

1.43

1.36

0.248

1.43

1.36

1.43

2.72

2.72

1.43

3.36

2.61

2.72

1.43

0.248

2.40

8.65

0.248

1.11

1.36

1.43

3.04

5.93

7.80

8.65

aFrom references 26 and 27.
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Table3. ValuesofConstantsb i and d i

i b. a d. a
l I

1

2

3

4

5

6

7

8

9

0.2335 + 0.0091

1.290 + 0.015

(1.78 + 0.36) × lO-4

0.9891 + 0.0010

(3.01 + 0.35) × 10 -.4

1.468 + 0.090

(1.180 + 0.097) X 10-2

1.232 + 0.067

0.109 + 0.017

(2.98 + 0.30) x 103-

6.14 + 0.29

1.026 + 0.020

(2.57 + 0.12) x 103

0.34 + 0.19

(1.47 + 0.19) × 103

0.692 + 0.039

0.905 + 0.031

0.1874 + 0.0086

aFrom reference 33.
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