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ABSTRACT 

Recent work on the friction and wear properties of as-deposited and carbon ion-implanted dia
mond films was reviewed. Diamond films were produced by the microwave plasma chemical vapor depo
sition (CVD) technique. Diamond films with various grain sizes and surface roughnesses were implanted 
with carbon ions at 60 keY ion energy, resulting in a dose of 1.2X1017 carbon ions/cm2. Various analyti
cal techniques, including Raman spectroscopy, proton recoil analysis, Rutherford backscattering, trans
mission and scanning electron microscopy, x-ray photoelectron spectroscopy, and x-ray diffraction, were 
utilized to characterize the diamond films. Sliding friction experiments were conducted with a polished 
natural diamond pin in contact with diamond films in the three environments: humid air (40 percent rela
tive humidity) , dry nitrogen «1 percent relative humidity), and ultrahigh vacuum (10-7 Pa). The CVD 
diamond films indeed have friction and wear properties similar to those of natural diamond in the three 
environments. The as-deposited, fine-grain diamond films can be effectively used as self-lubricating, 
wear-resistant coatings that have low coefficients of friction (0.02 to 0.04) and low wear rates (10-7 to 
1O-8mm3/N·m) in both humid air and dry nitrogen. However, they have high coefficients of friction 
(1.5 to 1.7) and a high wear rate (10-4mm3/N.m) in ultrahigh vacuum. The carbon ion implantation pro
duced a thin surficial layer «O.lll-m thick) of amorphous, nondiamond carbon on the diamond films. In 
humid air and dry nitrogen, the ion-implanted, fine- and coarse-grain diamond films have a low coeffi
cient of friction (around 0.1) and a low wear rate (10-7 mm3/N·m). Even in ultrahigh vacuum, the pres
ence of the nondiamond carbon layer reduced the coefficient of friction of fine-grain diamond films to 0.1 
or lower and the wear rate to 1O-6mm3/N·m. Thus, the carbon ion-implanted, fine-grain diamond films 
can be effectively used as wear-resistant, self-lubricating coatings not only in air and dry nitrogen, but 
also in ultrahigh vacuum. The wear mechanism of diamond films is that of small fragments chipping off 
the surface. The size of wear particles is related to the extent of wear rates. 

INTRODUCTION 

In aerospace and automotive industries, composites, aluminum alloys, and nonmetallics are 
becoming the dominant materials. However, the composites, high silicon-content aluminums, and ceram
ics used in these industries are extremely abrasive and, in many cases, corrosive, making them difficult to 
machine with existing tools. Chemically vapor-deposited (CVD) diamond provides the answer to many of 
these hard-to-machine materials because it possesses many of the most desirable properties of a cutting 
tool: extreme hardness, high abrasion and wear resistance, low coefficient of friction, high seizure and 
galling resistance, good fatigue strength, high thermal conductivity, chemical and thermal inertness, high 
corrosion resistance, and environmental compatibility. As such, CVD diamond is also being considered 
for tribological parts and components applications, such as jet nozzles, computer disks, extrusion and 
drawing dies, medical implants, and bearings and valves for aeropropulsion systems, rocket propulsion 
systems, and automotive engines [1 to 3]. 



However, these physical properties are altered when the clean surface of diamond is brought into 
contact with a clean counterfacing material and strong bonds form between the two materials. As a result, 
diamond possesses high friction and low abrasion and wear resistance [4 to 10]. This situation applies to 
some degree in the machining process or in the sliding contacts where fresh surfaces are continuously 
exposed by the cutting tool or counterfacing material. Under actual conditions of machining or sliding 
operations, direct contacts of fresh surfaces are unavoidable and the cutting or tribological performance of 
clean, unlubricated diamond is actually of paramount importance. 

To achieve the best performance from CVD diamond as a cutting tool or a self-lubricating, wear 
resistant barrier for many moving mechanical assemblies, we must have a good understanding of diamond 
itself, the counterfacing material or material to be machined, and the type of environment and operation. 
Understanding the behavior of CVD diamond in the applications of diamond-coating technology is 
challenging. 

The objective of this paper is to review the friction and wear behavior of as-deposited and carbon ion
implanted, fme- and coarse-grain CVD diamond films in humid air, dry nitrogen, and ultrahigh vacuum envi
ronments. Some earlier data and experimental details on this research are given in references 10 to 15. 

The as-deposited diamond films were produced on the flat surfaces of silicon (Si) , polycrystalline 
a-silicon carbide (SiC), and polycrystalline silicon nitride (Si3N,J substrates using the microwave
plasma-assisted CVD technique. The ion-implanted diamond films were produced by impacting carbon 
ions into the as-deposited CVD diamond films using an accelerating energy of 60 ke V and a current den
sity of 50 l1A1cm2 for approximately 6 min, resulting in a dose of 1.2 Xl 017 carbon ions/cm2 less than 
0.1 11m thick in a ballistic layer. 

A variety of analytical techniques was used to characterize the as-deposited and the carbon ion
implanted, diamond films: scanning and transmission electron microscopy (SEM and TEM) to determine 
surface morphology and grain size measurements; Rutherford backscattering spectroscopy (RBS) to iden
tify impurities (if any) in the films and to determine carbon and impurity concentrations; Raman spectros
copy and Fourier transform infrared spectroscopy (FTIR) to characterize diamond quality and structure; 
proton recoil detection (PRD) to measure the hydrogen concentration; x-ray photoelectron spectroscopy 
(XPS), to characterize surface chemistry; and x-ray diffraction to determine the crystal orientation of the 
films. 

Reciprocating and rotating sliding friction experiments were conducted in humid air at a relative 
humidity of 40 percent, in dry nitrogen at a relative humidity of less than 1 percent, and in ultrahigh 
vacuum at a pressure of 10-7 Pa. The experiments were conducted with the as-deposited and the carbon 
ion-implanted diamond films in contact with a natural bulk diamond pin (1.3-mm rad.). 

MICROSTRUCTURAL AND CHEMICAL PROPERTIES 

The morphology, microstructure, and properties of the diamond films deposited onto Si, SiC, and 
Si3N4 substrates vary as a function of substrate temperature, gas ratio, and intensity of the plasma at the 
deposition surface [10 and 11]. 

Grain Size, Surface Roughness, and Morphology 

The grain size and surface roughness of the diamond films deposited on the flat surfaces of Si, 
SiC, and Si3N4 substrates ranged from 20 to 3300 nm and from 15 to 160 nm root-mean-square (rms), 
respectively. The surface roughness increased as the grain size increased [10). 

The morphologies of the as-deposited diamond films used in the friction and wear experiments 
are two types: smooth fine-grain and rough coarse-grain. In the first type, the crystallites have a granu
lated or spherulitic morphology, the surfaces containing spherical asperities of different sizes as shown in 
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figure 1 (a). The grain size and surface roughness of the as-deposited, fine-grain diamond films ranged 
from 20 to 100 run and from 6 to 37 nm rms, respectively. 

In the second type of diamond films, the crystallites have a triangular faceted morphology typical 
of diamond. The surfaces contained cubic and octahedral asperities and a rough morphology as shown in 
figure 2(a). The grain size and surface roughness of the as-deposited, coarse-grain diamond films ranged 
from 1000 to 3300 nm and from 48 to 160 run rms, respectively. 

No significant changes in surface roughness and morphology resulted from the carbon ion 
implantation (figs. 1 and 2). The surface features of both carbon ion-implanted, fine- and coarse-grain 
diamond films were almost the same as those of the as-deposited, fine- and coarse-grain diamond films. 
The only effect of the carbon ion implantation on the morphology of the diamond films was the rounding 
of edges (figs. 1 (b) and 2(b )). Carbon ion implantation on the surfaces of the fine-grain diamond films 
with a granulated or spherulitic morphology produced a surface with somewhat blunt, rounded grains. 
Likewise, the edges of the grains in the ion-implanted, coarse-grain diamond films were somewhat 
rounded as a result of the carbon ion implantation. Edge shape could have a strong influence on the wear 
of counterfacing material: rounded edges may reduce the wear. 

Bulk and Surface Chemistry 

Rutherford backscattering spectroscopy of the as-deposited diamond films revealed that they con
sisted of carbon and some elements from the substrate material such as Si [10 and 11]. From the proton 
recoil detection data, the hydrogen concentration was estimated to be 2.5 at. % in the as-deposited, fine
grain diamond films and less than 1 at. % in the as-deposited, coarse-grain diamond films [10 and 11]. 

Figures 3(a) and (b) present a Raman spectrum of type ITa, single-crystal (111) diamond as a ref
erence and a Raman spectrum of an as-deposited, coarse-grain diamond film, respectively [15]. In 
figure 3(a), the presence of diamond bonding is unambiguous and clear in the Raman spectrum of the 
single-crystal diamond. Single-crystal diamond is identified by a single sharp Raman peak at 1332 cm- I 

(wave number). 
In figure 3(b), the Raman spectrum of the as-deposited, coarse-grain diamond film is decon

volved. When the Raman spectra of both the as-deposited, fine- and coarse-grain diamond films are 
deconvolved, three bands, which are characteristic of CVD diamond films, are revealed: (1) a sharp band 
centered near 1330 cm- I , (2) a broad band centered in the 1500-to-1530-cm-I range, and (3) an even 
broader band centered near 1320 cm- I . The sharp band centered near 1330 cm-1 is characteristic of the sp3 
bonding of diamond. The two broad, overlapping bands centered near the range of 1500 to 1530 cm-1 and 
near 1320 cm- l are characteristic of the nondiamond form of carbon and are referred to as the G-band and 
D-band, respectively. The Raman shifts referred to as the G-band are attributed to the sp2 bonded carbon, 
whereas the Raman shifts referred to as the D-band are attributed to the disorder of the nondiamond car
bon present in the films. 

Figures 4 and 5 present Raman spectra of the as-deposited and the carbon ion-implanted, fine
and coarse-grain diamond films. The as-deposited, fine-grain diamond films contained considerably more 
nondiamond carbon than the as-deposited, coarse-grain diamond films as indicated by the relative intensi
ties of the diamond band and the nondiamond carbon bands. Because the Raman scattering efficiency for 
sp2 bonded form of carbon is more than 50 times the efficiency for the sp3 bonded diamond form of car
bon [3], the as-deposited diamond films actually contain much more of the diamond form of carbon than 
may be inferred from the spectra shown in figures 4(a) and 5(a) . 

Both the frequency and half-width of the diamond band were related to the grain size of the dia
mond films. The diamond peak is broader and located at a higher phonon frequency for smaller grain
sized films. In addition, micro-Raman spectroscopy shows the presence of Si-O in the fine-grain diamond 
film on (100) silicon, whereas hexagonal a-SiC is present in the coarse-grain diamond film deposited on 
the silicon nitride substrate. 
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The characteristic diamond peak is absent from the micro-Raman spectra of the carbon ion
implanted diamond films. In figures 4(b) and 5(b), the very broad band with a peak near 1500 to 1530 cm-
1 and a shoulder near 1320 cm-1, indicative of the amorphous nondiamond form of carbon, is the 
prominent feature in the Raman spectra. However, no significant change in the surface morphology as a 
result of carbon ion implantation was observed by scanning electron microscopy and surface 
profilometry. Hence, the difference between the Raman spectra of the as-deposited and carbon ion
implanted diamond films can be interpreted as twofold: (1) the intensity of the Raman bands from the 
nondiamond carbon increased, and (2) the intensity of the diamond peak has decreased to the extent that 
the diamond peak could not be resolved from the much larger nondiamond carbon bands in the time that 
the spectra were collected. 

Because the depth sensitivity of micro-Raman spectroscopy is 11lm or less, the significant 
decrease in the intensity of the diamond peak observed after carbon ion implantation is evidence of both 
the formation of a nondiamond surface layer on top of the diamond films and of structural damage and 
distortion from the cubic diamond structure. Furthermore, the increased frequency shift of the G-band and 
the D-band after carbon ion implantation indicates the nondiamond carbon present in the as-deposited 
diamond films. These results are consistent with those from the Raman analysis conducted in the previous 
study [13 and 14]. The carbon (with an accelerating energy of 160 keY and a dose of 6.7X 1017 carbon 
ions/cm2) and the nitrogen (with an accelerating energy of 35 ke V and a dose of 5 X 1016 nitrogen ions/ 
cm2) ion implantation in diamond films caused structural surface damage to the fine-grain and coarse
grain diamond films, as well as to the polished diamond films. The ion-implantation processes also pro
duced a thin layer of non diamond carbon [13 and 14] . 

Fourier transform infrared (FTIR) spectroscopy of both the as-deposited and carbon ion
implanted diamond films showed absorbance only in the 600-to-1500-cm-1 range [15]. Only very weak 
absorbance was observed in the carbon-hydrogen (C-H) stretch region for either the as-deposited or the 
carbon ion-implanted diamond films. This finding is consistent with the low hydrogen concentration 
determined by proton recoil detection analysis. From the FTIR spectra, the composition of the sampling 
region appeared quite uniform. However, absorbances from both the films and the substrates were 
observed in the FTIR spectra. The FTIR spectrum of the carbon ion-implanted diamond film has a much 
larger peak around 832 cm-1 than the as-deposited diamond film has. This absorption band, which seemed 
to vary in intensity across the ion-implanted film, has been attributed to aromatic ring breathing [16]. This 
attribution is consistent with the Raman spectra interpretation that carbon ion-implanted diamond films 
have more sp2 bonding than the as-deposited diamond films have. 

X-ray photoelectron spectra of the surfaces of as-deposited and carbon ion-implanted, fine- and 
coarse-grain diamond films revealed that all four surfaces contained oxygen (0) [15]. The C/O ratio 
ranged between 8 and 12. Several atomic percent of nitrogen and silicon were detected in the surfaces of 
both the as-deposited and carbon ion-implanted, coarse-grain diamond films . The plasmon loss structure 
of the CIs peak of as-deposited and carbon ion-implanted diamond films indicated that carbon ion implan
tation decreased the sp3/sp2 ratio of carbon bonds at the surface [17]. Furthermore, the carbon ion
implanted diamond films were more conductive than the as-deposited diamond films during analysis, 
indicating that carbon ion implantation alters the normally insulating diamond surface to a conductive 
carbon surface. 

Crystal Structure 

X-ray diffraction data revealed that although most of the crystallites in the as-deposited, fine
grain diamond films were oriented along (110) planes, those of the as-deposited, coarse-grain diamond 
films were oriented along (111) planes [10 and 11]. The well-formed triangular facets of the coarse-grain 
diamond films observed in SEM photomicrographs (e.g., fig. 2) confirm the <111> orientation. 
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FRICTION AND WEAR CHARACTERISTICS 

In the three environments, humid air, dry nitrogen, and ultrahigh vacuum, the bulk diamond pin 
tended to produce a wear track (groove) on both as-deposited and carbon ion-implanted diamond films 
(e.g., fig. 6) . Abrasion or adhesion interaction, or the combination of both, occurred during sliding action. 

As-Deposited Diamond Films 

Friction in humid air and in dry nitro gen.-In humid air and in dry nitrogen, abrasion occurred 
and dominated the friction and wear behavior [10, 11, and 15]. The bulk diamond pin tended to dig into 
the surface of diamond films during sliding and produce a wear track (groove). 

Overall, the friction behavior of as-deposited, fine- and coarse-grain diamond films in contact 
with a bulk diamond pin in dry nitrogen was similar to their friction behavior in humid air: the coefficient 
of friction started relatively high (0.13 to 0.52), depending on the initial surface roughness of the diamond 
films; it rapidly decreased after 60 to 200 passes; and then it gradually decreased with the increasing num
ber of passes, reaching an equilibrium value of between 0.03 and 0.04. 

When interactions between the diamond pin surface and the initially sharp tips of asperities on the 
as-deposited diamond film surfaces were strong, the initial friction was high. The surface roughness of 
as-deposited diamond films can appreciably influence initial friction: the greater the initial surface rough
ness, the higher the initial coefficient of friction (fig. 7(a)). These frictional results are consistent with the 
work on single-crystal diamond and on diamond coatings [18 and 19]. 

As sliding continued and the pin passed repeatedly over the same track, the coefficient of friction 
was appreciably affected by the wear on the as-deposited diamond films; that is , by the blunted tips of 
asperities. When repeated sliding produced a smooth groove or a groove with blunted asperities on the 
surface of the diamond films, the coefficient of friction was low, and the initial surface roughness effect 
became negligible (fig. 7(b )); this result showed that the equilibrium coefficient of friction at 30 000 
passes was independent of the initial surface roughness of the diamond films. 

Friction in ultrahigh vacuum.-In ultrahigh vacuum, as in humid air and in dry nitrogen, the bulk 
diamond pin produced a wear track (e.g., fig . 6). Both abrasion and adhesion occurred during sliding 
action, but adhesion dominated the friction and wear behavior. 

Generally, the coefficient of friction increased with an increase in the number of passes, reaching 
an equilibrium value after a certain number of passes in ultrahigh vacuum [10]. This trend in friction 
behavior is just the opposite of that in humid air and in dry nitrogen. 

The initial surface roughness of the as-deposited diamond film had no effect on friction, as pre
sented in figure 8. The equilibrium coefficients of friction (1.5 to 1.8) obtained at 100 passes were greater 
than the initial coefficients of friction (1.1 to 1.3), regardless ofthe initial surface roughness of the 
as-deposited diamond films. These results lead us to ask, What factors determine the friction behavior? 
Which is more important for diamond surfaces in ultrahigh vacuum: abrasion or adhesion? 

Our results showed that removing some contaminant surface layer from the contact area of dia
mond films resulted in a stronger interfacial adhesion between the diamond pin and diamond films and 
raised the coefficient of friction [10]. A contaminant surface layer was removed by repeatedly sliding the 
pin over the same track in ultrahigh vacuum. 

Our results are in agreement with other researchers' results for single-crystal diamond rubbing 
against diamond and for CVD diamond sliding against CVD diamond in vacuum [4 and 9]. At a pressure 
of9.3XlO-8 Pa, Bowden and Hanwell [4] observed an initial coefficient of friction of 0.1 for diamond on 
diamond; within several hundred passes, however, the coefficient of friction rose rapidly to 0.9 and 
remained constant. Dugger, Peebles, and Pope [9] also found that in vacuum «6XlO-7 Pa) the coefficient 
of friction increased to 0.47 when CVD diamond slid against itself [9]. In both cases, the increase in 
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friction was attributed to cleaning the adsorbed contaminants from the surface by rubbing or sliding in 
ultrahigh vacuum at room temperature. 

An opposite trend in friction behavior was observed in an investigation conducted on CVD dia
mond films in the relatively modest vacuum (1 .3 X 10-3 Pa) of a scanning electron microscope. Gardos, 
Ravi, and Soriano found that the coefficient of friction began at 0.5 to 0.8 and dropped within several 
hundred passes [7 and 20]. According to the authors, this resulted from the removal of absorbed oxygen 
and water vapor. Such an explanation for the decrease in initial friction, however, is not shared by 
Dugger, Peebles, and Pope, who see the decrease as more likely attributable to a reduction in surface 
roughness than to the desorption of surface contaminants [9]. 

When sliding continues, the wear dulls the tips of the diamond grains and increases the contact 
area in the wear track, thereby causing an increase in friction. The increase in friction that results from 
cleaning off the contaminant surface layer by sliding and from increasing the contact area is greater than 
the corresponding decrease in friction that results from blunting the tips of surface asperities. This rela
tionship is apparent in figure 8; here the coefficients of friction (1.5 to 1.8) at 100 passes are greater than 
the initial coefficients of friction (1.1 to 1.3) regardless of the initial surface roughness of the diamond 
films . In ultrahigh vacuum, therefore, the friction arises primarily from adhesion between the sliding sur
faces of the diamond pin and diamond films. 

Gardos, Ravi, and Soriano found that the coefficients of friction for CVD diamond on CVD dia
mond in vacuum (1.3 X 10-3 Pa) sometimes increased to as high as 0.8 as the temperature increased [7 and 
20]. They attributed this high friction to the presence of dangling bonds on the surfaces of the diamond 
coatings. Dugger, Peebles, and Pope [9] attributed the high "clean state" value of the coefficient of fric
tion (as high as about 0.5) to the adhesive interaction of CVD diamond surfaces. Under the ultrahigh 
vacuum condition of our experiments, it was adhesion between the sliding surfaces of the diamond pin 
and diamond films that played a significant role in the friction process; the surface roughness of the dia
mond films did not have much influence on the friction of as-deposited diamond films in ultrahigh 
vacuum [10] . 

Wear Rate.-In humid air, dry nitrogen, and ultrahigh vacuum, the diamond pin grooved the sur
faces of diamond films . The groove surface was smoother than the original surface of the as-deposited 
diamond films. Further analysis of the grooves by scanning electron microscopy revealed that the tips of 
the diamond coating asperities were worn smooth and the gaps between asperities were filled by wear 
debris. 

Figure 9 presents the wear rates of the as-received diamond films as a function of the initial sur
face roughness in the three environments. The wear rate was strongly dependent on the initial surface 
roughness of as-deposited diamond films; it increased markedly with an increase in the initial surface 
roughness. 

The wear rates of the as-deposited diamond films measured in dry nitrogen were similar to those 
measured in humid air. However, the wear rates of the as-deposited diamond films measured in ultrahigh 
vacuum were 10 000 times higher than those measured in humid air and in dry nitrogen. Obviously, under 
these vacuum conditions, adhesion between the sliding surfaces of the diamond pin and diamond film 
plays an important role in the wear process. 

Note that the wear rates of the as-deposited diamond films in humid air and in dry nitrogen were 
comparable to the wear rates of single-crystal diamonds and other CVD diamond films [8, 12, and 21] . 

Ion-Implanted Diamond Films 

Friction and wear in humid air and in dry nitro gen.-The effect of carbon ion implantation on the 
coefficients of friction in humid air and in dry nitrogen was small. The coefficients of friction were low, 
around 0.1. 

6 



Although the wear rates of the ion-implanted diamond films were higher than those of the 
as-deposited diamond films, they were on the order of 10-7 mm3/N·m and were at an accepatable level of 
wear resistance for tribological applications. 

Friction and wear in ultrahigh vacuum.-The effects of carbon ion implantation on the friction 
and wear behavior in ultrahigh vacuum were twofold: (1) a reduction in the coefficient of friction and 
(2) an increase in the wear resistance. The coefficients of friction obtained for the carbon ion-implanted, 
fine-grain diamond films were less than 0.1, which were lower than those obtained for the as-deposited, 
fine-grain diamond films by factors of 20 to 30 (e.g., fig. 1O(a)). Likewise, the coefficients of friction 
obtained for the carbon ion-implanted, coarse-grain diamond films were approximately 0.35, which were 
lower than those obtained for the as-deposited diamond films by a factor of 5 (fig. 10 (b)). 

The average wear rates for the carbon ion-implanted, fine-grain diamond films were on the order 
of 10-6 mm3/N·m, which were lower than those obtained for the as-deposited, fine-grain diamond films 
by factors of 30 to 60 (fig. 11). Similarly, the average wear rates for the carbon ion-implanted, coarse
grain diamond films were on the order of 1O-6mm3/N·m, which were lower than those obtained for the 
as-deposited, coarse-grain diamond films by factors of 30 to 80. 

With the ion-implanted, fine-grain diamond films, both the coefficient of friction and wear rate 
were at acceptable levels for tribological application in ultrahigh vacuum. With the ion-implanted, coarse
grain diamond films, however, the coefficient of friction (0.35) was too high for use in tribological appli
cations in ultrahigh vacuum, even though the wear rate was acceptable. 

MECHANISMS OF FRICTION 

Fine-Grain Diamond Films 

Because the surface of fine-grain diamond films is smooth and the asperities are round, if we 
neglect the plowing term, the friction arising between the fine-grain diamond film and the diamond pin is 
described by the equation J..I. = sAIW, where J..I. is the coefficient of friction; s, the shear strength of junc
tions (contact area); A, the true contact area; and W, the normal contact load [22 and 23]. 

Humid air and dry nitrogen environment.-In humid air and in dry nitrogen, the atmosphere pro
vides a strongly attached contaminant layer which has a low shear strength s [6 and 15]. However, the 
load is largely supported by hard as-deposited diamond films because the contaminant layer is thin 
(-2 run) . Consequently, the true area of contact A is small. For this reason the coefficient of friction for 
both the as-deposited, fine-grain diamond films is low «0.1) in humid air and in dry nitrogen. In the case 
of the carbon ion-implanted, fine-grain diamond films, because both the contaminant layer and 
nondiamond carbon surface layer have a low shear strength, the coefficient of friction is low «0.1) in 
humid air and in dry nitrogen. 

Ultrahigh vacuum environment.-In ultrahigh vacuum, the high coefficients of friction (> 1.0) for 
the as-deposited diamond films arise primarily from the adhesion between the sliding surfaces [10]. In 
this case, the area of contact A is small, resulting from the high elastic modulus and high hardness of the 
as-deposited diamond film, but the shear strength of the junctions s is correspondingly high. The presence 
of dangling bonds on the surfaces of the diamond films may playa significant role in the high shear 
strength of the junctions in vacuum [5 and 7]. For this reason, the coefficient of friction of the 
as-deposited diamond films is high (> 1.0) in ultrahigh vacuum. 

In the case of the carbon ion-implanted diamond films, because the nondiamond carbon surface 
layer formed is thin «0.1) /lm), the contact load is largely supported by the hard, underlying diamond 
films. Consequently, the true area of contact A, resulting from the high elastic modulus of the underlying 
diamond, is again small. However, the nondiamond carbon has a low shear strength s. The combination of 
the low shear strength s of the thin nondiamond carbon surface layer and the small true contact area A 
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gives rise to low coefficients of friction «0.1) for the carbon ion-implanted, fine-grain diamond films, 
even in ultrahigh vacuum. Thus, the thin nondiamond carbon surface layer produced by carbon ion 
implantation provides lubrication in ultrahigh vacuum. 

Note that when the nondiamond carbon surface layer is removed from the diamond film during 
repeated sliding action, the coefficient of friction increased to a greater value (0.35) even with the fine
grain diamond films. 

Coarse-Grain Diamond Films 

The friction of the coarse-grain diamond films may be attributed to the sum of an adhesion and a 
plowing (a fracture and deformation) resulting from the interaction of the sharp asperities with the dia
mondpin. 

Humid Air and Dry Nitrogen Environment.-In humid air and in dry nitrogen, the atmosphere 
provides a strongly attached contaminant which has a low shear strength s. However, plowing (abrasive 
interaction) is significant. For this reason, the coefficient of friction for both the as-deposited and the ion
implanted coarse-grain diamond films is high and surface roughness can influence friction. 

Ultrahigh Vacuum Environment.-With the as-deposited, coarse-grain diamond films, even 
though the surface asperities have sharp tips, adhesion between the sliding surfaces of the diamond pin 
and diamond films still plays the most significant role in the friction in ultrahigh vacuum; plowing result
ing from the interaction of the sharp asperities with the diamond pin was insignificant. As stated earlier, 
the surface roughness of the as-deposited diamond films does not have much influence on the coefficient 
of friction of as-deposited diamond films in ultrahigh vacuum [10]. 

With the ion-implanted, coarse-grain diamond films , however, surface roughness affects the ini
tial coefficients of friction in ultrahigh vacuum. Although the nondiamond carbon surface layer provides 
low shear strength at the contact areas, the coefficients of friction of the carbon ion-implanted, coarse
grain diamond films are still 3 to 4 times higher than those of the carbon ion-implanted, fine-grain dia
mond films in ultrahigh vacuum. The higher coefficient of friction is caused by the interactions of the 
asperities on the coarse-grain diamond films. This surface roughness effect on friction of the carbon ion
implanted diamond films in ultrahigh vacuum is similar to that on the friction behavior of as-deposited 
diamond films in humid air and in dry nitrogen. The two most significant factors influencing the coeffi
cients of friction of the carbon ion-implanted, coarse-grain diamond films are (1) plowing between the 
surface asperities and the diamond pin, and (2) adhesion at the frictional junction, which is relatively low 
because the nondiamond carbon surface layer produced by carbon ion implantation has a low shear 
strength. 

MECHANISMS OF WEAR 

The generally accepted mechanism of wear for diamond is that of small fragments chipping off 
the surface [8, 12,21, and 24], which is in agreement with the SEM observations of the diamond films 
and their wear debris particles (e.g., fig. 12). Debris generated by sliding action provide a useful history of 
the wear process. In addition to the quality and size of the wear debris particles, much useful information 
is obtainable from microscopic observation of their nature and shape [25 and 26]. 

The SEM observations indicated that the mechanism of wear for the as-deposited and carbon ion
implanted diamond films is primarily adhesive and abrasive interactions and fatigue fracture, resulting in 
small fragments chipping off the surface of both the as-deposited and carbon ion-implanted diamond 
films. Wear debris particles (submicron to micron in size) were observed on the surfaces of both the dia
mond pin and the diamond films. Much finer particles were generated on the surfaces of the carbon ion
implanted diamond films than those generated on the surfaces of the as-deposited diamond films, 
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regardless of grain size. The generation of finer wear debris particles from the surfaces of carbon ion
implanted diamond films primarily resulted from the wear and removal of amorphous, nondiamond car
bon by sliding action. The size differences of the wear particles contributed to their respective wear rates. 
The wear rates of the carbon ion-implanted diamond films (on the order of 10-6 mm3/N·m) are consider
ably lower than those of the as-deposited diamond films (on the order of 10-4 mm3/N·m). 

SUMMARY OF PROPERTIES OF DIAMOND FILMS 

The physical properties of the as-deposited and ion-implanted diamond films are summarized in 
table 1. The carbon ion-implantation process using an accelerating energy of 60 keY and a dose of 
1.2X 1017 carbon ions/cm2 changes the surface chemistry of the microwave-plasma-vapor-deposited, fme
and coarse-grain diamond films and causes structural damage to the diamond lattice. As a result, a thin 
layer of amorphous, nondiamond carbon is produced in the near surface region of the fine- and coarse
grain diamond fi lms. 

For comparison, the coefficients of friction and wear rates of the as-deposited and ion-implanted, 
fine- and coarse-grain diamond films are summarized in table II. 

CONCLUSIONS 

From the results of characterization and sliding friction experiments on as-deposited and carbon 
ion-implanted, fine- and coarse-grain diamond films in ultrahigh vacuum, the following conclusions were 
drawn. 

1. The as-deposited, fine-grain diamond films can be effectively used as wear-resistant, self-lubri
cating coatings in humid air and in dry nitrogen, but they have a high coefficient of friction (> 1) and wear 
rate (10-4 cm3/N·m) in ultrahigh vacuum. 

2. The carbon ion-implanted, fine-grain diamond films can be effectively used as wear-resistant, 
self-lubricating coatings not only in humid air and in dry nitrogen but also in ultrahigh vacuum. 
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Table I.-Summary of Physical Properties of Diamond Films 

(a) As-Deposited 

As-deposited diamond films Fine-grain Coarse-grain 

Grain size, nm 20 to 100 1000 to 3300 

Surface roughness, nm, rms IS to 50 52 to 160 

Shape of asperities Spherical Cubic and octahedral 

Morphology Granulated or spherulitic Triangular faceted 

Hydrogen concentration, at. % 2.5 <1 

Crystal orientation <110> < I ll> 

SP3 bonded carbon Less Greater 

SP2 bonded carbon Greater Less 

(b) Carbon Ion-Implanted, Fine- and Coarse-Grain 

Presence of a thin layer «0.1 ~m thick) of amorphous, nondiamond carbon in 
the near surface region of diamond films 

No appreciable change in surface roughness and morphology 
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Table H.-Summary of Tribological Properties of Diamond Films 

(a) As-deposited 

Environment Properties Fine-grain Coarse-grain 

Air and dry nitrogen Coefficient of friction in 0.15 >0.4 
running-in 

Coefficient of friction at 0.03 to 0.04 0.03 to 0.04 
30 000 passes 

Wear rate, mm3/N·m 10-8 10-8 to 10-7 

Ultrahigh vacuum Coefficient of friction in l.2 l.2 
running-in 

Coefficient of friction at 1.7 1.7 
100 passes 

Wear rate, mm3/N·m In 10-4 1 to 4n 10-4 

(b) Carbon ion-implanted diamond films 

Environment Properties Fine-grain Coarse-grain 

Air Coefficient of friction in 0. [ 0.3 
running-in 

Wear rate, mm3/N·m 10-7 10-7 

Coefficient of friction at 0 .08 0.1 
30 000 passes 

Dry nitrogen Coefficient of friction in 0 .06 0.12 
running-in 

Coefficient of friction at 0.05 0 .08 
30 000 passes 

Wear rate, mm3/N·m 10-7 10-7 

Ultrahigh Coefficient of friction in 0.1 to 0.15 0.2 
vacuum running-in 

Coefficient of friction at <0.1 0.35 
100 passes 

Wear rate, mm3/N·m [0-6 10-6 
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(a) 1 J.Ul1 

(b) 1 J.Ul1 

Figure 1.-Scanning electron micrographs of fine-grain diamond films on polycrystalline 
silicon nitride (Si3N4) substrates. (a) As-deposited. (b) Carbon ion-implanted. 
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(a) 1 IJ111 

(b) 1 IJ111 

Figure 2.-Scanning electron micrographs of coarse-grain diamond films on polycrystalline 
silicon nitride (Si:3N4) substrates. (a) As-deposited. (b) Carbon ion-implanted. 
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Figure 3.-Raman spectra of a natural diamond and an as-deposited, coarse-grain diamond film. (a) Natural diamond. (b) Deconvolution of 
Raman bands from coarse-grain diamond film on SiC. 
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(a) As-deposited. (b) Carbon ion-implanted. 
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Figure 5.-Raman spectra of coarse-grain diamond film on a Si3N4 substrate. Spectra are vertically displaced for viewing purposes. 

(a) As-deposited. (b) Carbon ion-implanted. 

16 



(a) 10 .... m 
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(c) 

Figure S.-Wear scar produced on diamond pin and wear 
track produced on diamond film after sliding contact in 
vacuum. (a) SEM image of wear scar and its surroundings on 
diamond pin. (b) SEM image of wear track and its surroundings 
on diamond film. (c) Profilometer record of wear track. 
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Figure 11 .-Wear rates of as-deposited and carbon ion
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View at center of wear track 1 fUTl 

(al View on side of wear track 1 fUTl 

Figure 12.-Scanning electron micrographs of a wear track and their surroundings pro
duced on as-deposited, fine-grain diamond film, as-deposited, coarse-grain diamond 
films, and carbon ion-implanted, fine-grain diamond film after sliding against a diamond 
pin in ultrahigh vacuum. (al As-deposited, fine-grain diamond film. (bl As-deposited, 
coarse-grain diamond films. (cl Carbon ion-implanted, fine-grain diamond film. 
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Grain size, 1500 nm 

(b) Grain size, 3300 nm 1 f1111 

Figure 12.-Continued. (b) As-deposited, coarse-grain diamond films. 
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View at center of wear track 1 IJlTl 

(c) View on side of wear track 10,...m 

Figure 12.-Concluded. (c) Carbon ion-implanted, fine-grain diamond film. 
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