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Abstract

i .
v

E

w

It has been shown in the past that the turbulent boundary layer of supersonic

wind tunnel nozzle and test section walls affects adversely the Iransition Reynolds

number on models in the wind tunnel. If the boundary layer of the nozzle and test

section is kept laminar, the boundary layer disturbance can be eliminated. Two

different computational methods are used to study the effects of heating and cooling

strips on the stability of the laminar boundary layer of the nozzles and test section

wails of the Laminar Flow Supersonic Wind Tunnel (LFSWT) and the 1/8 scale of the

LFSWT called the Proof of Concept (PoC) Supersonic Wind Tunnel at NASA Ames

Research Center. The first method used is the Stability Modifiers Method, which

examines the second derivative of velocity near the wall to study stability of the

boundary layer. The second method is the eNMethod, where eNis a exponential

function of N and N is known as the N Factor. The N Factor value is used to

investigate boundary layer stability. Results of this study indicate that heating applied

upstream of the location of instability on-set can enhance boundary layer stability.

Applying cooling near the point of the on-set of instability and downstream increases

boundary layer stability. When cooling is applied upstream and heating is applied

downstream of the on-set points of instability, the boundary layer becomes more

destabilized. The effects of heating and cooling are predicted by the methods of the

present study and can be utilized to model the actual temperature distribution of

experiments.
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Nomenclature

f

H

P

Dimensional disturbance frequency

Test section height

2; - : 2:2 == == : :-

Pressure ....

p

Sound disturbance ,: _:: :_ : . :

Mean pressure

Disturbance _essure

T .... : Temperature _ .............

Entropy fluctuations

t Tune

,: __. : == .... :

u Velocity in flow direction

U

V

Turbulence

Mean velocity in flow direction

Disturbance velocity in flow direction

Velocity normal to flow direction

g

Z wave number

X wave number

Coefficient of viscosity

P Density

CO Frequency of disturbance
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Chapter I

V

U

Introduction

1.1 Background

Viscous drag willaccount fora major portionof the totaldrag foraircraftsuch

as thcHigh-Speed CivilTransport (HSCT). Since skin-frictioncan bc an order of

magnitudchighcrforturbulcntflowthanforlaminarflow,asseeninFigureI.I,

laminar flow controloffersa way toreducethe drag on aircraftliketheHSCT and

thusto increase range,payload,fuelload,etc.of theseaircraft.Because modcrn

supersonicwind mnncls produce disturbances,development of Quiet Supersonic Wind

Tunnels is importantto studylaminarflow controltechniques.One of the major

disturbancesinthesewind tunnelsisnoiseradiatedfrom theturbulentboundary layer

on thcnozzleand testsectionwalls.Iftheboundarylayercouldbckeptlaminar,this

typeof disturbanccwould bc clirninated.The above considerationsand the supportof

theNASA F-16 XL testaircraftinresearchof SupersonicLaminar Flow Control are

thereasons behind the Quiet Wind Tunnel Development atNASA Ames Research

Ccntcr. Itspurpose isto dcvelop the Laminar Flow SupersonicWind Tunnel

(LFSWT) and a 1/8 scale of the LFSWT called the Proof of Concept (PoC)

Supersonic Wind Tunnel (Reference 1). The test section of the LFSWT has cross

sectional dimensions of 8 X 16 inches. Both the LFSWT and the PoC have two-
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10-2 f IncompressibleFlow

C _

_'_ 10-3 ional

.

io5 106 107 108

PcoUGox

ReynoldsNumber, Reoox - Pm

109

Figure 1.1 Skin'friction coefficient for Laminar and Turbulent Flow (From

Reference 2)

dimensional nozzles.

r ,

t.d

i .

1.2 Wind Tunnel Disturbances

In 1953 Kovasznay theorized on the modes of disturbances in wind tunnels,

vorticity ( free stream turbulence), entropy mode (temperature spottiness) and sound

waves (Reference 3). Vorticity fluctuations and entropy fluctuations are convected to

_e,_st s_tion _ong streamline s which can be traced back upstreamto the stilling

chamber and _yon d, _d _und wave di'sturbance can radiate a_ms streamlines.

Thus, these disturbances can originate from a variety of locations. Figure 1.2 shows

2

l



u'ram

Tur_LdenlIloundlryI_nr---,
/ Tunr_elW.11"

I

Vcx,tici_lTL,'t_le_a- VelocityRLct_ons},

Acou_c Sound(PressureFlu_lons]

En_o_ Fluctuations(Temperature 5pofl ,ness),

Math Number

Rancje
Subsonic

.=<_6

Transonic

, T_e Disturbance
VelocityFILct_ions,

Acoustk:Noise,

T_p_ture Fl_¢tuatlons,

Velocity Fluctuations, "_

Acoustic Noise, "_

TemperatureFluctuations,

Velocity Fluctuations. "_

RadiatedNoise, "_

TemperatureFluctuations

Velocity Fluctuations, "_

Ra_ Noise,

Tm_e FlucluartJons,

Effecton Transition

• Usually Dominant

• Can be Dominant
Negligible

"Can beDominant

• Usually Dominant
Negligible

UsuallyNegligible

"Usually Dominant

UsuallyNegligible

UsuallyNegligible

• Usually Dominant

Could be Skjniflcant

Figure 1.2 Wind Tunnel Disturbances (From Reference 9) :" _ __ __ ....

all the possible locations of disturbances in a wind tunnel arid the-do_nanCe of Such

disturbances for different Each number ranges/In the supersoNc_Mach number

range, the speed regime of aircraft like the HSCT and the F-16 XL, the disturbance

that usually dominates transition on the test model is sound disturbance and, more

s_ifically, the radiated noise from the turbulent boundary "layex"on'_e nozziewall

and test section, as seen in the Table of Figure 1.2. This was deduced by Laufer

(Reference 4) and shown conclusively by Pate and Schueler (Reference 5). These
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o

revelations about sound disturbance by Laufer, Pate, Schueler, and others led to the

work in the development of Quiet Wind Tunnels at NASA Langley Research Center,

which is concentrating on Mach numbers from high supersonic to hypersonic

(References 6-8).

w

- J

U

1.3 Approach

It has been shown that the turbulent boundary layer on nozzle and test section

walls of a supersonic wind tunnel has an adverse effect on the transition Reynolds

number on models in the wind tunne! _eferences 4 and 5). In this thesis, a

computational study will use two differen t methods to determine the stability of the

boundary layer on the nozzles and test section walls by examining the effects of

heating and cooling strips placed at various locations in the Proof of Concept (PoC)

Supersonic Wind Tunnel and the Laminar How Supersonic Wind Tunnel 0..FSWT) of

NASA Ames Research Center.

There are several recent studies on the effect of heating and cooling on

.boundary layer stability. Demewiades has experimentally studied the effects of heating

and cooling on the stability of the boundary layer of supersonic wind tunnel nozzles

(References 10-11). Masad and Nayfeh have computed the effects of cooling and

heating strips on the stability of the boundary layer for a fiat plate at subsonic Math

numbers (Reference 12). This present study is an extension of Lafrance's

t _

4

uN



computations on cooling and heating effects on boundary layer stability for flat plates

= and for the PoC nozzle and_test section at a superso_nic Mach number (Reference 13).

The first method used is the Stability Modifiers Method(Reference 14). This

method consists of examining the second derivative of velocity near the wall; the more

negative this term is near the wall, the more stable the laminar boundary layer is. The

term that affects the second derivative of velocity (in our ease thei"u'St derivative of

temperature) is obtained for all the different cases by the boundary layer code

developed by Harris and Blanchard (Reference 15). This method and its results will be

discussed in more detail for the PoC Wind Tunnel in Chapter 2 of this study.

The second method used to study the effect of heating and cooling strips on

the stability of the boundary layer of the PoC wind tunnel and the LFSWT is the e r_

Method. In this method the exponent of er_, known as the N Factor, is obtained and

gives anindication0f theToqlmien-Schlichfinginstab_ty0fthe boundary layer of the

nozzle and test section walls. When external disturbances are small, N Factor values

between 9 and 11 give a rough estimate of the location of transition. The N Factors

..... forthe various cases are obtained from a spatial_compress_ble linear stability code

called the e M'Tikcode (Reference 16). The e M_auccode also uses output from the

boundary layer code developed by Harris and Blanchard described above (Reference

15).
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Chapter 2

Study of Boundary Layer Stability

Using Stability Modifier Method

2

2.1 Stability Modifier Method

The Stability Modifier Method (References 14 and 18) examines the second

derivative of velocity as a means for determining the stability of a laminar boundary

layer. The more negative the value of the second derivative near the wall, the more

stable the boundary layer is. The factors that affect the second derivative of velocity,

called stability modifiers, can be seen in the two-dimensional boundary layer

momentum equation:

w

_2u dB _T'_u dp

I.tw _T = (p v,_ -- (2.1)

-__ .

Using the above equation, one can select several means of making the laminar

boundary layer more stable. Favorable pressure gradients (_ < O) and the addition

of suction (v,, < O) to the boundary layer are two methods of improving stability of

the boundary layer. Another way of improving stability is with the -_- term. Since

-- 7



_T

for air the d_dT term is positive, the -_ term must also be positive in order to make

the second derivative of velocity _by 2 j more negative. This means that the wall

surface temperature must be cool relative to the boundary layer temperature.

This chapter examines walltemperatureeffectson the stabilityof theboundary

layer.The StabilityModifier Method describedabove isused to investigatehow wall

07"

temperatureaffectsstabilityand,more specifically,how the _-- term affectsthe

O2u

Oy-----yterm.

2.2 Boundary Layer Code

A boundary layer code developed by Harris and Blanchard (Reference 2) is

OT 3 2u for different cases considered. This code is
used to obtain the values of -_- and

capable of solving laminar, transitional, or turbulent perfect-gas compressible

boundary layer equations for either axisymmetri c or two-dimensional flows. The code,

written in FORTRAN, uses a finite-difference method for solving the boundary layer

equations. The present study uses this code to solve the laminar boundary layer

equations.
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2.3 Results Obtained for the PoC Supersonic Wind Tunnel

In the f'wst case a one-inch heater strip at 600°R is placed on the wall of the

nozzle and test section (2.86 < X/H < 3.73) of the Proof of Concept (PoC) Wind

Tunnel, as seen in Figure 2.1, where H is test section height, which is one inch for the

PoC supersonic wind runnel. The second case employs a cooling strip of the same

length at 400°R located in the same locations (2.86<X/H< 3.73) as the heating strip in

case one, as seen in Figure 2.2. These two cases are compared to the adiabatic case

for the PoC nozzle and test section in which the wall temperature is approximately

500°R. In all cases the stagnation pressure is 10 psia, the stagnation temperature is

530°R, and the test section Mach Number is 1.6. The heating strip causes the

boundary layer to become thicker near the location of the heating strip as seen in

Figure 2.1, and the cooling strip causes the boundary layer to become thinner near the

location of the cooling strip, as seen in Figure 2.2.

A comparison of the temperature gradient, the f'u'st derivative of

temperature, (-_) profiles at the X/H = 5.23 where the heating and cooling strips

are located approximately 1.50 non-dimensional units upstream is shown along with

the adiabatic case in Figure 2.3. From this figureltC_be seen that the first

derivative of temperature (-_) is positive near the wall in the case involving the

heating strip because heat is applied upstream and the wall surface temperature is cool

relative to the boundary layer temperature. The heat energy transfers out of the
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boundary layer. The case where the cooling is applied has negative values of the first

derivative of temperature (-_] near the wall. The second derivative of

.. (i_'u'_
ve o ty obtainedfrom Figure 2.4 is the smallest value of all the cases when the

heating strip is used, since the first derivative of temperature (-_] affects the second

derivativeof velocity profileat X/H= 5.23alongthe no_e. The largestvalueof

by 2 ) is obtained when the cooling strip is applied, (Figure 2.4). The first derivative

of temperature and the second derivative of velocity [,0y z ) profiles are also

obtained at X/H = 9.23 for the san'_ cases as shown in Figures 2.5 and 2.6

respectively. The effect of the heatingand cooling strips is not as great at X/H=9.23

as at X/H = 5.23 although the trend is similar.

The aboveprocedureis thenfonowedat a differentlocation. A heatingstrip

is placedat location5.61_<X/H<6.41as seenin Figure2.7. In thisFigurethe

boundarybecomesthickernearthe heatingstripas it does at 2.86<X/H < 3.73. A

coolingstripat 5.61_<X/H_<6.41causesthe boundarylayerto becomethinnernear

the location of the cooling strip as seen in Figure 2.8. Comparisonsof the rL,'St

derivativeof temperatureandthe secondderivativeof velocity profilesat X/H= 5.23,

approximately four-tenthsof a non--dimensionalunit upstreamof theheating/cooling

12
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w

strip, are seen in Figure 2.9 and Figure 2.10 respectively. As would be expected, since

these profiles are upstream of the heating/cooling strip, heating or cooling has little

effect at this location (X/H = 5.23). However, when a downstream location is

selected, the effect is appreciable. Heating at 5.61 <X/H<6.41 results in a more

positive term and a smaller _'_7") term near the wall, as seen in Figures 2.11

and 2.12.

w

2.4 Summary of Results

Several observations can be made from the information in this chapter. First,

the addition of heat to the boundary layer improves the stability of the boundary layer

at downstream locations because at these locations, the boundary layer is hot relative

to the cooler wall; thus, heat energy is transferred from the boundary layer to the wall.

Second, applying cooling to the boundary layer results in lower stability of the

boundary layer at downstream locations, since the downstream boundary layer is

cooler than the wall and therefore produces a heating effect on the boundary layer.

Third, the effect of heating and cooling on boundary layer stability decreases as the

distance from the heated or cooled area becomes greater. However, the Stability
_f

Modifier Method alone provides no mechanism to account for flow instability.
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Chapter 3
I

W

Study of Boundary Layer Stability

Using e s Method

3.1 Summary of Compressible Linear Stability Theory and • N Method

If we assume the basic flow is known and the flow is a function of y, the

normal to the wall direction, the flow field may be depicted by the mean flow and a

small amplitude harmonic wave form, for example velocity and pressure.

u (x,y,z,t) = _" (y) + e t_ (y)e i(°a+13z'_) (3.1)

p (x,y,z,t) = ff (y) + e/3 (y)e _(_+l_z_) (3.2)

In the above equations, e is a small value, ct is the x wave number, 13is the z

wave number, and co is the frequency of the disturbance. For spatial stability of two-

dimensional flow, 13and to can be assumed to be real numbers with ot being complex.

This means that 13and co will grow if-o_ > 0; therefore, og is the disturbance growth

rate. The disturbance growth rate is used to obtain the N Factor as follows:

,z

N(f) =- I(x,(x)dx (3.3)
Xo

where the N Factor is a function of frequency and is used as the exponent in the total

amplification rate (eN).
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_ k

The N Factor can be used to predict the onset of transition when the N Factor

reaches a value of approximately 10 if external disturbances are small. If the external

disturbances are high, the value of the N Factor which initiates transition is markedly

lower. There are many excellent sources of information on linear stability theory such

as References 17 and 18.

;.,.,.

w

3.2 Description of e staa' Code

The code used in this thesis to solve the compressible linear spatial boundary

layer stability problem described in Section 3.1 and to obtain the N Factor for various

cases is the eM'aa Code (Reference 16 ). This code uses output from the boundary

layer code, which is discussed in the previous chapter, and an input control file

prepared by the writer. The output from the boundary layer code provides the

necessary boundary layer flow parameters, and the input control file provides such

information as the frequency of the disturbances of interest, location along the body

for starting the stability calculations, and types of instability to calculate for

(Tollmien-Schlichting or G6rtler). The input file also allows the user to select either

two-dimensional or axisymmetric flow.

m

-z

24
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3.3 Results Obtained for the PoC Wind Tunnel

In this section the effect of the location of the heating and cooling strip on the

stability of the boundary layer is studied by using information obtained from the eM'd_

code discussed in Section 3,2. For the Proof of Concept (PoC) supersonic wind

tunnel at Ames Research Center, the nozzle and test section flow is two-dimensional.

Also, the nozzle is comparatively long in relation to the test section height, and

Tollmien-Schlichting instability is dominant over Gt_rtler instability. Therefore, two-

dimensional flow and ToUmien-Schiichting instability are selected as conditions to

investigate. The heating/cooling strip is located in seven different locations, For all

the cases the stagnation pressure is 10 psia, the stagnation temperature is 560°R, the

test section Mach number is 1.6, and the adiabatic wall temperature is approximately

500°R. For all Cases considered, the heating snip is at 600°R, and the cooling strip is

at 400°R. The d!sturbance frequency of 14 kHz is chosen because it is observed that

this frequency results in the maximum instability. Figure 3.1 shows the location of the

heating/cooling snip (0.00_<X/H_<0'84) on the nozzle wall for the fh'st case and the

effect of both the heating and cooling strips on the N Factor growth. It also compares

the N Factor growth to the adiabatic case. As seen in Figure 3.1, the cooling snip

causes the N Factor to grow faster than in the adiabatic case, and the heating snip

causes the N Factor to decrease. Therefore, for this fn'st case, when the heating snip

is applied, the boundary layer is more stable. The heating/cooling snip is located in six

other positions, and the N Factor growth along the nozzle and test section wall is
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Figure 3.1 N Factor Growth with the Heating/Cooling Strip located at 0.00 < X/I-I< 0.84 for a
disturbance frequency of 14 kHz
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obtained for each. The growth for each is then compared to the adiabatic N Factor

growth.

As heating/cooling is applied downstream, heating improves the stability of

the boundary layer and cooling makes the boundary layer less stable until the location

of the heating/cooling strip is 2.86 <X/H< 3.73, as seen in Figures 3.1 through 3.4.

When the heating/cooling strip is located at 3.80<X/H<4.59, heating causes the N

Factor to grow at an upstream location and to have a greater N Factor value for the

entire test section than in the adiabatic case, as seen in Figure 3.5. When cooling is

applied at this same location, the N Factor does not begin to grow as far upstream as

when heating is applied, but the N Factor does reach a greater value at the end of the

test section (Figure 3.5). The farther the heating strip location is moved downstream

(4.67 <X/H < 5.54 and 5.61 <X/H<6.41), the greater the increase is in the value of

the N Factor. Thus, the stability of the boundary layer decreases, as seen in Figure 3.6

and Figure 3.7. When the cooling strip is located at 4.67 <X/H<5.54, the value of

the N Factor is non-existent for most of the length of the nozzle and test section of the

PoC Wind Tunnel, as can be seen in Figure 3.6. -_

Next, the cooling strip is located at 5 61 <X/H<6.41. At this location, the N

Factor grows just as in the adiabatic case until the flow reaches the cooling snip.

There the cooling strip causes a substantive decrease in the N Factor value, as seen in

Figure 3.7.
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3.4 LFSWT Results

For the LFSWT, the disturbance frequency of 3000 I-Iz is selected, since that

frequency results in maximum instability. A six-inch heating strip is located at

0.32 < X/H < 0.82 on the nozzle of the Laminar Flow Supersonic Wind Tunnel

(LFSWT). Its effect on the boundary layer thickness is relatively small, as seen in

Figure 3.8. Also, a cooling strip is placed at that same location, and its effects on the

boundary layer growth is also small, as seen in Figure 3.9. However, the effects of

both heating and cooling on the N Factor value along the nozzle and test section wall

is more pronounced, as shown in Figure 3.10. The results are similar to those

obtained from the PoC Wind Tunnel discussed in Section 3.3

_J

3.5 Summary of Results

When the heating strip is located at certain distances upstream from the

beginning of the N Factor growth for the adiabatic case, for example, at

0.00 <X/H___ 0.84 as seen in Figure 3.1, at 0.88 <X/H_< 1.85 in Figure 3.2, at

1.93_<X/H<2.78 in Figure 3.3, and at 2.86 <X/H_< 3.73 in Figure 3.4, the N Factor

begins to decrease, and the stability of the boundary layer improves as compared to

the adiabatic case. When the heating strip is located at 2.86<X/H_<3.73, the

greatest improvement in the stability of the boundary layer is achieved. When the

heating strip is located just upstream of the beginning of the N Factor growth for the

adiabatic case (3.80<X/H<4.59), the heating strip causes the N Factor value to
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increase in comparison to the N Factor for the adiabatic case (Figure 3.5), thus causing

the boundary layer to become less stable. For the cases where the heating strip is

located farther downstream (4.67 < X/H < 5.54 and 5.61 < X/H < 6.41), the boundary

layer becomes less stable, as seen in Figure 3.6 and Figure 3.7. Therefore, at these

locations, any benefit from the cooling effect downstream of the heating strip is

negated because the instability has already begun and the heating strip causes the

instability to grow even more. Applying heat at the 0.32<X/H<0.82 location on the

LFSWT nozzle causes the N Factor at the exit of the test section to decrease to 5.87

as compared to 6.17 for the adiabatic case.

Locating the cooling strip upstream of the beginning of the N Factor growth

has a destabilizing effect on the boundary layer as seen in Figures 3.1 though 3.5, with

the highest value for the N Factor occurring when the cooling strip is located at

2.86<X/H<3.73, as seen in Figure 3.4. At this same location, the heating strip has

the greatest effect on stabilization of the boundary layer. Almost complete elimination

of any instability can be achieved in the output of the code when the cooling strip is

located at 4.67 <X/H<5.54, as seen in Figure 3.6. With the cooling strip at

5.61 < X/H_< 6.41, the N Factor is greatly reduced (and stabilization is increased)

over the adiabatic case as seen in Figure 3.7. Applying cooling at the

0.32 < X/H < 0.82 location on the LFSWT nozzle causes the N Factor at the exit of the

test section to increase to 6.93 as compared to 6.17 for the adiabatic ease.

'L..z_
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Chapter 4

Conclusions and Recommendations

4.1 Conclusions

The purpose of this study is to gain an insight into the effects of applying

heating and cooling strips on the boundary layer stab!lity of the Proof of Concept....

(PoC) Wind Tunnel and Laminar Flow Supersonic Wind Tunnel O_.,FSWT). The two

different methods used in this study are the Stability Modifier Method (Chapter 2) and

the er_Method using Linear Stability Theory (Chapter 3). The two different CFD

codes used to carry out this study are the boundary layer code (Reference 15) and the

e M_aik code, which is a Spatial Linear Stability code using the eN Method (Reference

16).

The two methods used in Chapter 2 (Stability Modifier Method) and Chapter 3

(e N Method) demonstrate that heating upstream of the location where instability begins

improves the boundary layer stability and that coolingupstream of that locadon

destabilizes the boundary layer in both the PoC Wind Tunnel and the LFSWT. The eN

Method indicates that heating downstream of the location where instability begins

results in the boundary layer's becoming more unstable and that cooling

downstream at this location improves the stability of the boundary layer. But the

results obtained from the Stability Modifier Method show the same effect whether the
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heating]cooling strip is applied upstream or downstream of the location where

instability starts. That is, heating upstream improves the stability of the boundary

layer downstream, and cooling upstream decreases the stability of the boundary layer.

Therefore, to obtain greater stability, heating should be applied upstream of

the location of the beginning of instability, and if cooling is applied, it should be

located near the point of beginning instability or downstream of the point where actual

instability starts. These results are consistent with the findings for a flat plate with

subsonic flow of Masad and Nayfeh (Reference 12) and for flat plates and nozzles at

supersonic Mach number of Lafrance (Reference 13). Also, Demetriades'

experimentation found that heating delays transition on the nozzle of a supersonic

wind tunnel (Reference 11) and that cooling accelerates transition on the nozzle

(Reference 12). For actual tunnel runs, nozzle surface roughness, stilling chamber

disturbances, outside wall vibration, etc. cause the beginning point of actual instability

to be upstream of the location predicted in this study.

Although this is a qualitative study of the effect on the boundary layers of

heating and cooling the walls of the nozzles and test section of the PoC Wind Tunnel

and the LFSWT, the codes can be used to model actual experiments of these effects.

Also, studies of this type can be used to aid in the development of aircraft where

laminar flow control is important.
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flow.

4.2 Rec0mmendations

_it is recommended _at fu_er Study of the eff_t of _ieating and cooling on

boundary layer stability be systematically carried out on the LFSWT. Particular

attention should be paid to when the cooling strip is located at the point of the on-set

of instability to determine the validity of the results obtained from this study. Also,

further study is needed, since the changes in thickness of the boundary layer, which are

the results of heating and cooling, can cause disturbances in the tunnel's frcc-su'eam

= .........

When-experimeht-s of theg_ etYec_ are conducted inthe wind tunnels, the

methods and codes used in this study should be used to model the temperature

distrib_adon of the:actual experiment.
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