October 1, 1994

Modeling of Rolling Element Bearing Mechanics

Contract NAS 8-38607
User's Manual

Prepared For:
National Aeronautics and Space Administration
George C. Marshall Space Flight Center
Marshall Space Flight Center, AL 35812

Prepared By:
Lyn M. Greenhill, Principal Author
Chief Engineer
Rotordynamics-Seal Research
3628 Madison Avenue
North Highlands, CA 95660

Approved By:
Roy W. Michel
Program Manager
Strategic & Space Propulsion

David H. Merchant, Co-author
Senior Engineering Specialist
Product Analysis

GenCorp Aerojet
P.O. Box 13222
Sacramento, CA 95813-6000
TABLE OF CONTENTS

1.0 INTRODUCTION ............................................................................................................ 1-1
   1.1 Types of Bearing Analyses Supported ............................................................... 1-3
   1.2 Computing Platform Requirements ................................................................. 1-4

2.0 OVERVIEW OF REBANS ......................................................................................... 2-1
   2.1 Assumptions and Limitations ............................................................................. 2-2
   2.2 Typical Steps in a REBANS Analysis ................................................................. 2-3
   2.3 General Bearing Information Required ............................................................ 2-4
   2.4 Ball Bearing Information Required ................................................................. 2-5
   2.5 Roller Bearing Information Required ............................................................... 2-5

3.0 ANSYS MODEL GENERATION ............................................................................. 3-1
   3.1 Inner Ring Models ............................................................................................. 3-1
   3.2 Outer Ring Models ............................................................................................ 3-3
   3.3 Creating and Running a Substructured ANSYS Model ...................................... 3-7
   3.4 Ball Bearing Example ANSYS Model ............................................................... 3-9
   3.5 Roller Bearing Example ANSYS Models .......................................................... 3-14
# TABLE OF CONTENTS, CONTINUED

4.0 USE INSTRUCTIONS FOR PREBAN .......................................................................................... 4-1
   4.1 Operating PREBAN ........................................................................................................... 4-1
   4.2 Required Input to PREBAN ............................................................................................. 4-2
   4.3 Output from PREBAN ................................................................................................. 4-9
   4.4 Ball Bearing Example Analysis File .............................................................................. 4-9
   4.5 Roller Bearing Example Analysis File ........................................................................... 4-11

5.0 USE INSTRUCTIONS FOR FEREBA .................................................................................. 5-1
   5.1 Operating FEREBA .......................................................................................................... 5-2
   5.2 Output from FEREBA ...................................................................................................... 5-2
   5.3 Convergence Problems ................................................................................................. 5-4
   5.4 Ball Bearing Example Output File ................................................................................ 5-5
   5.5 Roller Bearing Example Output File ............................................................................. 5-12
1.0 INTRODUCTION

This manual describes the use and operation of Version 1.10 of the NASA Rolling Element Bearing ANalysis System (REBANS) family of computer programs. This analysis system offers improved capabilities to determine the response to external loads or displacements for three types of high-speed rolling element bearings:

- angular contact ball bearings (single ball row),
- duplex angular contact ball bearings (dual ball row),
- cylindrical roller bearings.

The capabilities of the programs in this system are unique to the analysis of rolling element bearings in that the effects of bearing ring and support structure flexibility are included directly in the calculations. A finite element representation, prepared using Version 4.4 of ANSYS, is used for modeling of bearing rings and any support structure. The current analysis system, which can determine the response of the bearing and surrounding structure to quasi-static loading conditions, is composed of two main programs. These codes, which are referred to in separate chapters of this manual, may be briefly described as:

PREBAN – PREprocessor for Bearing ANalysis, used to create and modify the necessary input files for the main analysis program FEREBA. PREBAN is run interactively, and provides extensive on-line help for all model definition commands. Input data is also examined for validity. All output files from this program are character based ASCII format, to enable transfer between various computing platforms.

FEREBA – Flexibility Enhanced Rolling Element Bearing Analysis, the main analysis code, reads the ASCII files prepared by PREBAN and performs the requested analysis. The program may be run either interactively or batch, and provides for command line arguments. All output results are written to an ASCII format file, which may be printed or edited to extract the desired analysis information.

This manual is intended to provide an a complete description of how to prepare and run a complete bearing analysis using REBANS. Individual chapters explain how to run PREBAN and FEREBA. For details of the theoretical formulation of the calculations, the reader is referred to a companion technical manual.
Two example problems are carried throughout the manual to illustrate the use of and output from the two main codes. Pertinent details of these examples will be given as needed, general descriptions are as follows:

Example #1 - 60 mm angular contact ball bearing with flexible outer ring and carrier, with 12 ball complement, subjected to axial and radial loads at speed. No inner ring model will be used.

Example #2 - 12 roller 73 mm cylindrical roller bearing with flexible outer ring and carrier, and flexible inner ring, with applied radial and centrifugal loads.

Both example problems have nonlinear deflections of the outer ring/carrier combination.
1.1 Types of Bearing Analyses Supported

The REBANS system will currently determine the frictionless quasi-static equilibrium conditions for the two ball and one roller bearing types supported. Capability for analysis with friction has been provided for in the codes, however, this feature has not been implemented. The term quasi-static implies that speed effects are considered from the standpoint of centrifugal loads only. Other influences due to speed and friction, such as rolling element-cage interaction or gyroscopic moments, are not considered. Each rolling element is fixed at an equally spaced azimuthal position based on complement.

Primary input to a REBANS analysis is a set of 5-axes loads or displacements, applied to the inner ring, with the desired output an equivalent set of displacements or loads that satisfies static equilibrium. The five axes considered are the translations and rotations about perpendicular diametral axes of the bearing, and in the case of ball bearings, the fifth axis is axial motion. Roller bearings are not permitted axial displacements in this analysis, nor are any effects due to flange interactions considered.

REBANS essentially calculates the load-deflection characteristics of a bearing mounted in one of several ways. The most basic type of analysis is the response due to Hertzian deformation only, assuming the bearing inner and outer rings to be rigid. This is typically the only solution available with other rolling element bearing analysis programs. Normally, bearing rings are not rigid, and depending on the mounting conditions, may be quite flexible, especially with the outer ring. As such, the program provides three different arrangements for incorporating general ring and support flexibility:

- general bearing ring flexibility, with the outer and inner rings modeled as elastic components without any clearance with surrounding support structure,
- general ring flexibility including axial and radial clearance between the outer ring and any surrounding structure, and
- general ring and support flexibility with the bearing rings and any support structure modeled as elastic components with clearance between the outer ring and structure.

Specific details of the exact nature of the elastic models considered is given in Chapter 3. The mounting arrangements were chosen to provide a “control volume” representation of all the important features of a rolling element bearing. For example, some bearings may be mounted in rigid structures, in which case only the bearing rings would add any flexibility to the contact deformation. Other mounting configurations may have appreciable clearance between the outer ring and a flexible “carrier”, which would require a model of both the outer ring and the structure. Use of the ANSYS finite element program permits very general models to be constructed and analyzed with REBANS. However, as described in Chapter 3, there are a few important node numbering conventions which must be followed.

With ball bearings, it is common to place a spring between the outer ring and housing to create a known compliance. This type of mechanical element, known as a preload spring, is also permitted in the analysis system.
1.2 Computing Platform Requirements

Both PREBAN and FEREBA were developed using ANSI Standard FORTRAN coding techniques targeting a 32-bit engineering workstation using the UNIX operating system. FEREBA has also been successfully tested on the NASA/MSFC Cray. There are a few machine dependent subroutine calls, for system utilities such as date, time, and command line arguments.

Current versions of both codes are much more dependent on core memory that any other hardware. When installed on a Silicon Graphics workstation, the programs require the following physical resources:

- **Core Memory**: Approximately 4 million (32-bit) words for PREBAN, 8 million words for FEREBA
- **Disk Space**: Neither PREBAN or FEREBA generate any scratch files. The main output files from PREBAN are ASCII data files, which can contain approximately 600 million characters at the largest problem size. FEREBA can create an extensive output file, the contents of which are solely at the discretion of the user. If maximum diagnostic output is requested for the largest problem size, this file can easily exceed 1 billion characters in length. Standard output from FEREBA will be only a few thousand characters.
- **Execution Time**: PREBAN is an interactive program and requires very little time to complete any requested operation. FEREBA is normally run interactively as well, since the most computationally intensive calculations involve the reduction and inversion of the stiffness matrix to form the required compliance partitions. For large models, the matrix operations can require a few minutes, with roughly an equal amount of time to obtain the desired iterative quasi-static solution. The example problems in Chapter 5 list elapsed run times, and can be used as a guide for similar analyses.

Both PREBAN and FEREBA are supplied with each subroutine stored as a separate file, with 32 and 75 routines comprising PREBAN and FEREBA, respectively. To compile and load the programs, the `make` utility available with the UNIX operating system is the most convenient method, and both codes are supplied with `makefiles` for this purpose. Note that these `makefiles` also use the UNIX archive utility to store object files. When compiled, PREBAN may be loaded to an executable using only standard system routines. FEREBA, however, makes use of IMSL matrix and nonlinear equation solvers, and the `makefile` for FEREBA must be modified to specify the source of this math library.

* The IMSL MATH/LIBRARY is available from Visual Numerics, Inc.
2.0 OVERVIEW OF REBANS

REBANS was initially designed to provide three separate functions: preprocessing, analysis, and postprocessing. The Version 1.10 release has only the first two modules implemented – there is no explicit results processing program. A schematic of the overall operation of REBANS is shown in Figure 2-1 below:

The general use of REBANS, as shown by Figure 2-1, begins with the creation of the appropriate ANSYS model of the bearing and surrounding structure to be analyzed. Note that in order to obtain a run with rigid rings using REBANS, it is not necessary to provide REBANS with an ANSYS model. Assuming a finite element model representation is desired, the model is created and substructured to the required master nodes in ANSYS for use with REBANS. Creation and substructuring ANSYS models will be discussed more fully in Chapter 3.
Having obtained any binary substructure files from ANSYS, the REBANS family of programs can now be used. The REBANS system is schematically denoted by the dashed-line box around the preprocessor program PREBAN, the main calculation program FEREBA, and the associated data files. The main data file used by both PREBAN and FEREBA is the analysis file, which is an ASCII file that contains all of the necessary parameters needed by FEREBA to perform the analysis. PREBAN both reads and writes the analysis file. The only other information required by FEREBA is the finite element model information, which is passed from ANSYS to PREBAN, converted to ASCII format, and then sent to FEREBA. Note that all information transmitted to the FEREBA is in the form of ASCII files, which means that FEREBA may be placed on an entirely different computing system than either PREBAN or ANSYS.

2.1 Assumptions and Limitations

REBANS was developed by making the following assumptions on the composition and behavior of the bearing system:

- All interaction forces are the result of elastic, frictionless contact
- Finite element models used to represent flexibility of the bearing rings and surrounding support structure will correspond to one of nine configurations for the outer ring and to one of three configurations for the inner ring
- Boundary conditions placed on finite element models must be consistent with the ring configuration selected
- Node numbers used with the finite element models will be chosen with a pattern that matches a predetermined order based on the ring configuration selected
- Loads placed on the bearing system are applied to the inner ring.shaft assembly, and consist of forces and moments in 5 orthogonal axes or displacements in the same axes, but not a combination of forces and displacements
- Cylindrical roller bearings are not permitted to generate any internal loads due to interaction between the rollers and flanges
- The inner ring of the bearing system can rotate at a given speed, and the outer ring is fixed and not free to rotate
- Temperatures of the bearing system components, once specified, will be held constant throughout the quasi-static equilibrium calculation
- Material properties used for bearing system components should be specified at operating temperatures and will be held constant throughout the quasi-static equilibrium calculation
- All clearances between components of the bearing system are uniform at each rolling element azimuthal position
Chapter 3 explains the different types of ring configurations handled by REBANS, and provides the required master node numbering scheme. The user is free to choose virtually any boundary condition, so long as the model fits one of the predefined ring configurations.

The following limits have also been placed on the problem to be analyzed:

- The bearing system to be analyzed must be either an angular contact ball bearing, a cylindrical roller bearing, or a duplex pair of angular contact ball bearings
- The total number of rolling elements in any bearing row is 20 (duplex can have a total of 40 balls, 20 in each bearing)
- Cylindrical roller bearings are not permitted any axial loads or displacements
- All finite element models must be created with ANSYS Version 4.4

2.2 Typical Steps in a REBANS Analysis

There are several key steps in a typical REBANS analysis. Initially, if ring flexibility is desired, an ANSYS model must be created to represent the desired bearing geometry. The finite element model is then substructured and passed to the preprocessor program PREBAN, which converts the binary substructure file to ASCII format and writes an analysis file, containing necessary input data. The main calculation program FEREBA then reads the analysis and any substructure files, and performs the requested calculations. Results are contained in an output file for subsequent user review.

The ANSYS model, created using Version 4.4 of the code, must correspond to one of the prescribed ring configurations, which are described in Chapter 3. Careful attention must be given to master node numbers, since FEREBA assumes that a certain numbering scheme is used with the stiffness matrix. In ANSYS, all nodes must be rotated into a cylindrical coordinate system prior to creating elements. After the grid is created, boundary conditions are applied, master nodes are selected, and the model is then substructured using a standard ANSYS analysis procedure. The result from the substructuring will be a binary file, with a default name of FILE08.DAT, which is passed to PREBAN.

PREBAN interactively converts any substructure files and writes an analysis file. Note that the binary file created by ANSYS does not output the reduced stiffness matrix in any particular order, and PREBAN not only reads the ANSYS information but sorts the data into ascending node number order, as required by FEREBA. The analysis file is normally written by PREBAN after the user has entered all necessary data, however, PREBAN can also read the analysis file. This permits new files to be generated from previous versions. PREBAN also performs extensive checks on the data in the analysis file, and will advise the user if enough information is present in the model to permit a FEREBA analysis. Information required by PREBAN to build the analysis file is given in the next three subsections of this chapter. A printed summary of analysis parameters can be obtained from PREBAN, which may be sent directly to the screen or to a user defined file.
Using the analysis file and any converted substructure files, FEREBA is then run either interactively or in batch mode. Substructure file names are contained in the analysis file, and FEREBA can run without any ring models, in which case the analysis assumes the rings to be rigid. FEREBA accepts command line arguments for analysis and output file names, alternatively, this information can be specified in batch mode using redirection. Output from FEREBA consists of an ASCII file that contains the definition of the problem to be analyzed and results from the equilibrium calculation. The standard output file consists of 8 pages of listing formatted 80 characters wide by 60 lines per page. If additional printout options are requested, the output file can become very large.

Normally, after the FEREBA run is finished, the REBANS analysis is complete. Additional load steps can be analyzed by editing the analysis file and re-running FEREBA. Since the output from FEREBA contains contact loads at each azimuthal position, this information can be back placed on the ANSYS to obtain stresses and graphically examine stresses for configurations which have fixed boundary conditions.

2.3 General Bearing Information Required

The following general bearing information is required by REBANS in order to conduct an analysis, and is normally specified using PREBAN:

- Inner ring/shaft speed (in rpm, can be zero)
- Pitch diameter (diameter of rolling element centers)
- Number of rolling elements (≤ 20)
- Life multipliers for inner & outer ring (normally unity)
- Inner ring mean outer diameter
- Outer ring mean inner diameter
- Outer ring mean outer diameter
- Housing mean inner diameter
- Axial gap between outer ring and carrier
- Axial preload spring stiffness
- Material properties for shaft, inner ring, rolling elements, outer ring, and housing
- Loads or displacements applied to shaft/inner ring

In addition to the required information, optional data concerning temperatures of the shaft, inner ring, rolling elements, outer ring, and housing may also be specified. If no temperature data is given, room temperature is assumed.
2.4 Ball Bearing Information Required

The following geometric information is required by REBANS in order to conduct an analysis with ball bearings:

- Ball diameter (all equal)
- Diametral clearance (can be negative)
- Outer and inner raceway curvatures, defined as
  \[ f_{o,i} = \frac{r_{o,i}}{D} \]
  where \( f_{o,i} \) are the outer and inner curvatures, \( r_{o,i} \) are the outer and inner raceway groove radii, and \( D \) is the ball diameter
- Axial gap and stiffness of any spring between outer race and housing

If the bearing system being analyzed is a duplex, additional information is needed:

- Axial preload force
- Axial gap between primary and duplex bearings
- Distance between centers of primary and duplex bearings

In order to create an ANSYS model of a ball bearing, additional geometric data such as ring widths and land diameters will also be needed. Such information is usually found on a drawing of the bearing to be analyzed.

2.5 Roller Bearing Information Required

The following geometric information is required by REBANS in order to conduct an analysis with roller bearings:

- Roller diameter (all equal)
- Diametral clearance (can be negative)
- Roller overall length (including any crowning)
- Roller crown radius
- Roller flat length (equal to overall length if no crowning)
- Effective outer & inner raceway lengths (includes effect of crowning)
- Outer & inner raceway crown radii (may be zero)

As with a ball bearing, the creation of an ANSYS model will require additional geometric data such as ring widths and chamfer dimensions, which is best taken from a drawing of the bearing to be analyzed.
3.0 ANSYS MODEL GENERATION

The use of finite element models to include elastic effects into the quasi-static load and deflection calculations are the most significant feature of REBANS. These 3D models are used represent shafting, bearing inner and outer rings, and any supporting structure around the outer ring, commonly referred to as a carrier or isolator. The intent of the model should be to represent as much of the relevant bearing “control volume” for use in the analysis. The “control volume” can be as simple as just the inner and outer rings, or could be composed of detailed models of shafting and housing as well as the bearing rings. As with any finite element analysis, it is important that the analyst have a good understanding of the loads and boundary conditions involved before defining the extent of the representation. Virtually any physical system can be incorporated into REBANS because the analysis is conducted with substructured models.

REBANS uses two separate 3D finite element models – one for the inner ring and shafting, and the other for the outer ring and any carrier. It is not necessary to run REBANS with finite element models of either ring, in which case rigid rings will be assumed. For both single bearing configurations (i.e. ball or roller bearing but not duplex), a single outer or inner ring model can be used without a corresponding inner or outer ring companion model.

The next two subsections of this chapter describe the types of models accommodated by REBANS and the required numbering of specified master nodes. After the configurations have been explained, a third subsection describing how a model should be created and run using ANSYS is given. This information is provided as a summary for users unfamiliar with substructuring and master node concepts. The final three subsections in this chapter are actual ANSYS input decks used to create models for the examples discussed in this manual.

3.1 Inner Ring Models

For use in REBANS, the inner ring/shafting model must correspond to one of four prescribed configurations as listed in Table 3-1 below, one for each of the three bearing types considered and a traditional rigid-ring case.

<table>
<thead>
<tr>
<th>Inner Ring Configuration</th>
<th>Model Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>rigid ring, any bearing type (ball, roller, or duplex)</td>
</tr>
<tr>
<td>1</td>
<td>ball bearing, flexible or rigid shaft</td>
</tr>
<tr>
<td>2</td>
<td>duplex bearing set, flexible or rigid shaft</td>
</tr>
<tr>
<td>3</td>
<td>roller bearing, flexible or rigid shaft</td>
</tr>
</tbody>
</table>

For configuration 0, no substructured finite element model is required, and the analysis file written by PREBAN will indicate that the inner ring file is not available. For the three non-zero configurations, specific finite element files must be named in the analysis file, which will also indicate the type of inner ring configuration specified according to the numbers in Table 3-1. The
three flexible configurations are graphically illustrated in Figures 3-1 through 3-3. Numbers on the three figures refer to master nodes, and while it is not necessary to have node numbers in the models identical to those in the figures, it is necessary that master nodes in the substructure model are incremented in the same order as the nodes in the figures. In addition, the analysis assumes no flexibility or gap between the inner ring bore and the shaft outer diameter, which is usually the case for most installations.

The first flexible inner ring configuration is illustrated in Figure 3-1, which is a single ball bearing with a flexible (or rigid) shaft. Only two master nodes are used at each ball azimuthal position, with the first master at the inner race curvature center, labeled IRCC in the figure. The IRCC is the centerpoint of the arc used to define the inner raceway geometry, and can be established knowing either the nondimensional raceway curvature or the actual arc radius. Displacements at the IRCC are obtained from the raceway by connecting the IRCC node to the raceway with rigid links. The second master node is defined at an assumed contact point on the inner raceway. Normally, this point can be set at an angle from the radial centerline equal to the mounted contact angle. The total number of master degrees of freedom (DOF) defined with the configuration will be 6 (six) times the number of rolling elements.

Figure 3-2 shows the second flexible inner ring configuration, a duplex ball bearing set mounted on a flexible (or rigid) shaft. The number of elements in each pair of the duplex bearing must be equal. As the figure illustrates, the inner rings of the duplex pair are separated by a spacer, which can be modeled using ANSYS as a flexible or rigid connection. Note carefully the orientation and numbering of the master DOF. Each azimuthal position of the duplex has four master nodes, for a total of 12 (twelve) DOF at each element location. The primary bearing is identical to the single ball bearing of configuration 1, whereas the duplex bearing IRCC is the next master DOF after the primary bearing contact node, with the final master the duplex contact node. The user is cautioned to follow the master DOF numbering scheme used in this configuration exactly.

As Figure 3-2 illustrates, the contact angle of the duplex bearing is opposite that of the primary bearing, thus the contact pattern of the duplex set handled by the analysis is an open or “O” configuration. Other loading patterns, such as crossed or “X” arrangement, are not considered by this version of REBANS.

Also shown in Figure 3-2 is the global R-X (radial-axial) coordinate system, which is placed at the geometric center of the duplex bearing. All specified inner ring loads or deflections are applied to
the bearing set at this location. For use in the equilibrium calculations, the overall forces or displacements are transferred to a coordinate system relative to the axial center of each bearing, which for the primary bearing is the $R_I-X_I$ system. All output from the calculations is in the fixed, $R-X$ inertial reference frame.

The final flexible inner ring configuration handled by REBANS is shown in Figure 3-3, which is a single cylindrical roller bearing on a flexible (or rigid) shaft. This is similar to the first configuration for a single ball bearing, with two master DOF at each roller position. The equilibrium calculations assume that the axial positions of the master nodes are defined at locations equal to 60% of the roller effective length, thus the two nodes selected for mastering must lie 20% in from the active extent of the roller. The effective length of the roller is not usually the total length due to roller end treatments. Force couples will be necessary to insure that loads applied to the two masters are distributed along the entire roller/raceway interface. The number of master DOF will be 6 (six) times the number of rollers in the bearing.

### 3.2 Outer Ring Models

Similar to the inner ring models, the outer ring/carrier model also must correspond to one of ten prescribed configurations as listed in Table 3-2 below. Each of the three supported bearing types has three associated outer ring/carrier configurations defined, for a total of nine possible structural models. A final rigid-ring case is also provided for comparison to traditional analyses.

<table>
<thead>
<tr>
<th>Outer Ring Configuration</th>
<th>Model Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>rigid ring, any bearing type (ball, roller, or duplex)</td>
</tr>
<tr>
<td>1</td>
<td>ball bearing, flexible outer ring and/or carrier, no deadband</td>
</tr>
<tr>
<td>2</td>
<td>ball bearing, flexible outer ring and deadband, rigid carrier</td>
</tr>
<tr>
<td>3</td>
<td>ball bearing, flexible outer ring and carrier, with deadband</td>
</tr>
<tr>
<td>4</td>
<td>duplex bearing set, flexible outer rings and/or carrier, no deadband</td>
</tr>
<tr>
<td>5</td>
<td>duplex bearing set, flexible outer rings and deadband, rigid carrier</td>
</tr>
<tr>
<td>6</td>
<td>duplex bearing set, flexible outer ring and carrier, with deadband</td>
</tr>
<tr>
<td>7</td>
<td>roller bearing, flexible outer ring and/or carrier, no deadband</td>
</tr>
<tr>
<td>8</td>
<td>roller bearing, flexible outer ring and deadband, rigid carrier</td>
</tr>
<tr>
<td>9</td>
<td>roller bearing, flexible outer ring and carrier, with deadband</td>
</tr>
</tbody>
</table>

For configuration 0, no substructured finite element model is required, and the analysis file will indicate that the outer ring file is not available. For the non-zero configurations, specific finite
element files must be named in the analysis file. The nine flexible configurations are graphically illustrated in Figures 3-4 through 3-12. The figures show not only the ring and structure geometry, but also indicate the required node numbering scheme. Since the finite element model required in REBANS uses a reduced number of degrees of freedom, careful attention must be given to ordering the nodes such that the retained grid points (master degrees of freedom) are numbered in the sequence indicated by the figures. The actual numbers are not important, just the order.

Figure 3-4 illustrates the first outer ring configuration, corresponding to a single ball bearing with a flexible outer ring and/or carrier, constrained in both the radial and axial directions. Only two master nodes at each ball position are required with this configuration, the first at the outer race curvature center (ORCC), and the second at the outer race contact point. The contact point is usually defined at an angle from the radial centerline equal to the mounted contact angle. This is a linear model, and will have 6 (six) times the number of balls as master DOF.

Figure 3-5 Outer Ring Configuration #2

The second outer ring model introduces nonlinear effects into the analysis. This configuration, shown in Figure 3-5, corresponds to a single ball bearing with flexible outer ring, with radial and axial clearance between the ring and carrier. In this model, the carrier is assumed to be rigid. The radial gap is commonly known as deadband. On the loaded side of the bearing, the axial gap is permitted to have a spring between the ring and carrier, referred to as a preload spring. With this ring configuration, six master nodes are required. The first two are identical to the nodes in Configuration 1, the remainder are used to define the gaps. Although Figure 3-5 shows the outer ring connected at all four master nodes with springs, the actual ANSYS model is substructured without restraints (i.e., free-free). The user defined radial gap at master nodes 4 and 5 and the axial gap at master node 6 are assumed to be equal at all azimuthal positions. A large gap is set by the program at master node 3, to prevent unrestrained motion. The substructured ANSYS model will have 18 (eighteen) times the number of balls passed to REBANS as master DOF.

Figure 3-6 Outer Ring Configuration #3

The most complicated outer ring model for a single ball bearing is displayed in Figure 3-6. This configuration is similar to the previous model, except that both the outer ring and carrier are modeled as flexible structures. Appropriate nodes on the carrier are constrained in the radial and axial directions. A preload spring may also be used at the loaded axial gap. There are a total of 10 master nodes in this configuration, with the required numbering sequence given in
the figure. The ten master nodes generate a total of 30 DOF per ball location in the ANSYS substructure model.

Figure 3-7 illustrates the first duplex outer ring configuration handled by the program. This bearing set has flexible outer rings and carrier, without any deadband. The number of balls in each bearing is restricted to the same complement, and a preload spring can connect the two outer rings. If a preload analysis is desired, a corresponding inner ring model must also be supplied. Note that the boundaries are not the same on each outer ring. The primary bearing is allowed to displace axially, subject only to the restraint provided by the preload spring. No radial motion is permitted, however. The duplex bearing is constrained both axially and radially. Notice also the master node numbering scheme, which is unique compared to the other 9 outer ring configurations. Each azimuthal position requires 6 master nodes; two for the curvature centers, two for the contact points, and the final two for the gap between outer rings.

The outer ring contact angle for all duplex bearings, as shown in Figures 3-7 through 3-9, is assumed by REBANS to be negative. This orientation corresponds to an open or “O” configuration. Other duplex orientations, such as a crossed or “X” arrangement, are not considered by this version of REBANS.

The second duplex bearing configuration that can be analyzed is shown in Figure 3-8. This more general configuration permits both axial and radial gaps, and assumes that the carrier is rigid. A preload spring can be defined between the primary and duplex bearings. A total of seven nonlinear gaps are permitted with this model, four radial and three axial, although the gap at master node three is set by the program to avoid unrestrained axial motion in the event of negative loads. A total of 12 (twelve) master nodes are used with this model, which results in 36 (thirty-six) DOF per azimuthal position. The ANSYS model of this configuration will be substructured with free-free boundary conditions, all connections to the rigid carrier will be applied by REBANS.
Figure 3-9 illustrates the most complicated outer ring/carrier configuration that REBANS can accept. This duplex system has both flexible outer rings and a carrier, with seven total gaps, four radial and three axial. A preload spring can be placed between the two outer rings. The ANSYS model consists of three 6 master nodes of each outer ring and carrier, with the latter restrained radially and axially. The 18 master nodes of this configuration generate a total of 54 DOF at each azimuthal plane.

Compared to the ball bearing configurations, the roller bearing models are more straightforward. Figure 3-10 shows the first outer ring roller bearing configuration handled by REBANS. This single cylindrical bearing is represented with a flexible outer ring and carrier, and is completely linear in response characteristics. Only two master DOF per roller are required, with the axial positions of the master nodes located at points corresponding to 60% of the roller effective length. Note that the model is shown restrained axially, which is generally good practice, however, no axial loads are permitted with a roller bearing in REBANS.

With the three outer ring roller bearing configurations, forces are applied to the two raceway master nodes. However, this is not representative of the physical behavior of the load transmission, which occurs along a line equal to the effective roller length. To obtain such contact, node coordinate couples must be included in the ANSYS model linking nodes along the interface to the master nodes. This is illustrated in the subsection 3.5 roller bearing examples.

The next roller bearing configuration is shown in Figure 3-11 and corresponds to a mounting arrangement with deadband. The carrier in this model is assumed rigid. A total of 4 master nodes per roller are required with this configuration, two at the roller-raceway interface, and two representing the gap between the outer ring and carrier. The two raceway master nodes must be selected at symmetric positions equal to 60% of the roller effective length. There is no similar position requirement on the outer ring gap nodes, however, the axial positions should be selected towards the end of the outer ring to properly consider tilting effects. This model will be substructured in ANSYS with free-free boundary conditions, and will generate a total of 12 master DOF per roller.
The final outer ring configuration, illustrated in Figure 3-12, is the most general roller bearing model which consists of a flexible outer ring and carrier with radial deadband. In the ANSYS model, the outer ring and carrier comprise two separate pieces of the substructure, with the outer ring unconstrained and the carrier restrained radially and axially. Although the roller bearing is not permitted axial load, it is good practice to restrain the carrier in the axial direction. At each roller position, a total of 6 master nodes are defined, creating 18 master DOF per roller. As with the other roller bearing models, the nodes on the raceway must be selected at axial positions corresponding to 60% of the roller effective length, or 20% in from the effective end of the roller.

Although the nine flexible outer ring configurations have been illustrated with simplified boundary conditions and geometries, it is permissible to create models with constraints that differ from the figures and still obtain valid results. As long as the overall intent of the model fits one of the nine prescribed configurations, REBANS will accept the substructure. For instance, the linear roller bearing configuration #7 can have the radial and axial restraints placed on the axial faces of the ring and carrier, permitted the outer diameter to flex radially. Another example of “intent” could be cited with any of the separate carrier models. In configuration #3, the carrier could be cantilevered from one location, which would satisfy the axial and radial restraints, although the motion produced by such a system would be quite different from a model with radial restraints placed over the bearing.

### 3.3 Creating and Running a Substructured ANSYS Model

When work on REBANS was started, ANSYS Version 4.4 was chosen for the finite element model generator. Other programs can be used, however, the routines in PREBAN that read the binary substructure files created by ANSYS will almost certainly not read similar files from other programs. Since ANSYS has now upgraded to Version 5.0, the routines in PREBAN will probably need minor updates to read files created by this latest edition. FORTRAN source for these file I/O routines is usually provided with ANSYS.

It is assumed that the user is familiar with the operation of ANSYS and the use of the preprocessor PREP7 for creating finite element models. REBANS requires that any substructure passed from ANSYS have precisely 3 degrees of freedom (DOF) per node, which restricts element types used for modeling to 3D solids. Beam elements can be used, with the 3 rotational degrees of freedom reduced out when the model is substructured. In general, the elements of choice will be fully 3-dimensional with 3 DOF per node, such as STIF8 (spar), STIF45 (isoparametric brick), and STIF95 (quadratic brick). Based on experience, it is recommended that the STIF45 element be used whenever possible. If a model is created with several element types, particularly with 2D and 3D combinations, it is strongly advised that the final substructure be tested for static equilibrium prior to passing the model to REBANS.
To create a model for use in REBANS using ANSYS, the following steps are needed:

1. Decide what type of inner and outer ring configurations will be used, determine the applicable bearing "control volume", and obtain the necessary geometry data to describe the physical space.

2. Create ANSYS models of the inner ring/shaft and outer ring/carrier systems. It is strongly recommended that a cylindrical coordinate system be used to define nodes, although not required. **However, all nodes should be rotated into a cylindrical coordinate system prior to creating elements.** REBANS assumes that the substructured model is passed in the cylindrical system, any other system used will not result in valid answers. To rotate all nodes into a cylindrical system, a single command is all that is required.

3. Apply boundary conditions appropriate to the particular inner or outer ring configuration being analyzed. For inner ring models, axial and tangential restraints are required. For outer ring models, some configurations will not have any boundary conditions at all, others will have radial and axial restraints. All restraints are of the zero displacement type.

4. Select nodes for mastering, recalling that three degrees of freedom per node are required for all masters. Keep in mind also that the master node numbering sequence must agree with the selected inner or outer ring configuration. It is substantially easier to define nodes in a pattern such that masters can be selected in the correct order, however, renumbering can be used to place the nodes in proper sequence.

5. Run the substructuring analysis (KAN,7) to create the binary substructure file (FILE08.DAT). Since this version of REBANS only uses the stiffness matrix, the analysis option of KAY,6,0 can also be placed in the run stream.

All of the above steps in the procedure for creating ANSYS models is illustrated in the next two subsections for the single ball bearing and roller bearing example analyses. These example input files contain extensive comments which explain what is being defined. When reviewing these examples, pay particular attention to the use of ANSYS parameters to define constants, spars to connect ball bearing curvature centers to the raceways, node couples to connect roller bearing raceway nodes to masters, and the applied boundary conditions.
3.4 Ball Bearing Example ANSYS Model

An example of a typical ANSYS run stream to create a substructured model is contained in this subsection for the first example problem, the 12 ball 60 mm angular contact bearing. Only the outer ring and carrier will be modeled, which is outer ring configuration #3. No inner ring model will be created. Although REBANS will run problems without an inner ring model provided, the final results may underpredict deflection, due to the absence of a flexible inner ring.

When using the ANSYS preprocessor PREP7, there are several ways to build a model and prepare an input deck for the main ANSYS analyzer. The method illustrated in this manual begins by creating an ASCII file which contains all of the necessary commands to build the model, and then the file is read into PREP7. This file contains a total of 269 lines, many of which are comments (denoted by the label /COM), and completely defines nodes and elements, applies constraints, selects master nodes, and inserts the requested substructure directives. The first 32 lines are:

1 /TITLE,Example Case 1, 12 ball 60mm Bearing, IBSCOR = 3
2
3 /COM Configuration for IBSCOR = 3, 6 masters per ball
4 /COM --------------------------------------------------
5 /COM Model No. 1, 07 January 94 (Created from IBSCOR = 2 model)
6 /COM - Coarse grid definition, 2 elements thru thickness, 8 around
7 /COM - raceway in circular pattern
8 /COM - NRE primary azimuthal planes, with 1 division between
9 /COM - Connection between ORCC & raceway thru 3D spars
10 /COM - Carrier modeled as simple channel, 2 elems thru thickness
11 /COM --------------------------------------------------
12 /COM Define number of elements and primary azimuthal spacing
13 NRE = 12.
14 PAS = 360./NRE
15 MINC = 1000
16
17 /COM Set material properties for MAT code 1 (typical steel)
18 MP, EX , 1, 30.00E+6
19 MP, ALPX, 1, 8.00E-6
20 MP, NUXY, 1, .280
21 MP, GXY , 1, 11.72E+6
22 MP, DENS, 1, 7.33E-4
23 /COM Set material properties for MAT code 2 (another steel)
24 MP, EX , 2, 30.00E+6
25 MP, ALPX, 2, 8.00E-6
26 MP, NUXY, 2, .280
27 MP, GXY , 2, 11.72E+6
28 MP, DENS, 2, 7.33E-4
29
30 /COM Establish cylindrical coordinate system (R, theta, Z)
31 CSYS, 1
32

Note that three ANSYS parameters are defined in lines 13 – 15. NRE is the number of rolling elements (12), PAS is the azimuthal spacing (360°/12 = 30°), and MINC is the main node numbering increment (1000). Lines 18 – 28 define two identical materials, with different material codes for display purposes. A cylindrical coordinate system is defined in line 31 with the CSYS command.
Lines 33 – 92 define outer ring nodes. The node numbering scheme is shown in lines 43 – 56, the explicitly defined nodes are listed in lines 60 – 73. Remaining nodes are created using FILL and NGEN commands. Line 91 rotates all nodes into the required cylindrical coordinate system.

```
33 /COM Outer Ring Nodes & Elements
34 /COM Define required node locations for theta = 0 azimuthal plane,
35 /COM graphically depicted in the following figure. Note that first
36 /COM plane starts node numbers at 1001, second at 2001, etc.
37 /COM
38 /COM Revised node numbering from IBSCOR = 2 model
39 /COM
40 /COM
41 /COM
42 /COM
43 /COM
44 /COM
45 /COM
46 /COM
47 /COM
48 /COM
49 /COM
50 /COM
51 /COM
52 /COM
53 /COM
54 /COM
55 /COM
56 /COM
57 /COM
58 /COM
59 /COM
60 /COM
61 /COM
62 /COM
63 /COM
64 /COM
65 /COM
66 /COM
67 /COM
68 /COM
69 /COM
70 /COM
71 /COM
72 /COM
73 /COM
74 /COM
75 /COM
76 /COM
77 /COM
78 /COM
79 /COM
80 /COM
81 /COM
82 /COM
83 /COM
84 /COM
85 /COM
86 /COM
87 /COM
88 /COM
89 /COM
90 /COM
91 NROT, ALL
92
```

```
<table>
<thead>
<tr>
<th>R</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>1001</td>
<td>1.8552</td>
</tr>
<tr>
<td>1002</td>
<td>2.0983</td>
</tr>
<tr>
<td>1003</td>
<td>2.1888</td>
</tr>
<tr>
<td>1004</td>
<td>2.2407</td>
</tr>
<tr>
<td>1005</td>
<td>2.2688</td>
</tr>
<tr>
<td>1006</td>
<td>2.2777</td>
</tr>
<tr>
<td>1007</td>
<td>2.2688</td>
</tr>
<tr>
<td>1008</td>
<td>2.2407</td>
</tr>
<tr>
<td>1009</td>
<td>2.1888</td>
</tr>
<tr>
<td>1010</td>
<td>2.0983</td>
</tr>
<tr>
<td>1012</td>
<td>2.0983</td>
</tr>
<tr>
<td>1022</td>
<td>2.5590</td>
</tr>
<tr>
<td>1024</td>
<td>2.5590</td>
</tr>
<tr>
<td>1028</td>
<td>2.0983</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
</tr>
</tbody>
</table>
```

* Defines node 1023
* Defines nodes 1025 - 1027
* Defines node 1029
* Defines nodes 1012 - 1020
* Defines node 1025 - 1027
* Defines nodes 1025 - 1027

3-10
With the outer ring nodes defined, elements can be created. Lines 93 – 128 set material properties and element type (STIF45), and create all the elements for the outer ring. Note the use of ANSYS parameters to define the last section of elements in lines 119 and 120. For this model, a total of 384 elements will be created.

```
93 /COM -------------------------------------------------------------
94 /COM All nodes for outer ring model now defined, create elements
95 /COM -------------------------------------------------------------
96
97 /COM Associate material properties for element definition
98   MAT, 1
99
100 /COM Define element type 1 as STIF45 (3D solid brick), set active
101   ET, 1, 45
102   TYPE, 1
103
104 /COM Define first element at lower left corner of raceway (Element 1)
105    EN, 1, 1002, 1003, 1013, 1012, 1502, 1503, 1513, 1512
106
107 /COM Generate remaining inner row of elements around raceway
108   EGEN, 8, 1, 1 * Elements 2 - 8
109
110 /COM Generate outer row of elements from inner row
111   EGEN, 2, 10, 1, 8, 1 * Elements 9 - 16
112
113 /COM Use first 16 elements as pattern to generate almost all elements
114   EGEN, 2*NRE-1, MINC/2, 1, 16, 1 * Elements 17 - 80
115
116 /COM Define lower left corner element in last arc (note node numbers)
117 /COM    Element number is 16*(2*NRE - 1) + 1 = NUME
118 /COM    First node number is MINC*(NRE + 1/2) + 2 = NUMN
119    NUME = 16*(2*NRE-1)+1
120    NUMN = MINC*(2*NRE+1)/2+2
121    EN, NUME, NUMN, NUMN+1, NUMN+11, NUMN+10, 1002, 1003, 1013, 1012
122
123 /COM Generate inner row of elements in last arc
124   EGEN, 8, 1, NUME
125
126 /COM Generate last outer row of elements from inner row
127   EGEN, 2, 10, NUME, NUME+8, 1
128 /COM Last element number is 16*(2*NRE)
129
```

To link the curvature center to the motion at the raceway, 3D spars are used. The exact properties are not important, since the only function these elements serve is to transform motion from the raceway to the curvature centers. The definition of the spars is given in lines 131 – 137.

```
130 /COM Connect ORCCs to raceway using 3D spars
131   ET, 2, 8 * Linear 3D spar
132   TYPE, 2
133   R, 2, 0.10 * Value of area (arbitrary)
134   REAL, 2
135   EN, 401, 1001, 1006 * Spar element 401 from node 1001 to 1006
136   EN, 402, 1001, 1008 * Spar element 402 from node 1001 to 1008
137   EGEN, NRE, MINC, 401, 402 * Spar elements 403 - 424
138
139
```

3-11
The definition of the outer ring is now complete. Next, nodes and elements are defined for the carrier model. This process is very similar to that used for the outer ring. Lines 140 – 194 establish the nodes for the carrier.

140 /COM Carri er Nodes & Elements
141 /COM Define required node locations for theta = 0 azimuthal plane, graphically depicted in the following figure. Note that first plane starts node numbers at 1102, second at 2102, etc.
142 /COM Gap between OR and carrier ID set to .010, axial gaps are .100, carrier is uniformly .400 thick
143 /COM
144 /COM
145 /COM
146 /COM
147 /COM
148 /COM
149 /COM
150 /COM
151 /COM
152 /COM
153 /COM
154 /COM
155 /COM
156 /COM
157 /COM
158 /COM
159 /COM
160 /COM
161 /COM
162 /COM
163 /COM
164 /COM
165 /COM
166 /COM
167 /COM
168 /COM
169 /COM
170 /COM
171 /COM
172 /COM
173 /COM
174 /COM
175 /COM
176 /COM
177 /COM
178 /COM
179 /COM
180 /COM
181 /COM
182 /COM
183 /COM
184 /COM
185 /COM
186 /COM
187 /COM
188 /COM
189 /COM
190 /COM
191 /COM
192 /COM
193 /COM
194 /COM

<table>
<thead>
<tr>
<th>R</th>
<th>Z</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>N, 1102, 2.0000, 0, -0.7012</td>
<td>* Left side @ OR raceway</td>
<td></td>
</tr>
<tr>
<td>N, 1104, 2.5690, 0, -0.7012</td>
<td>* Left side OR (OD+.01)</td>
<td></td>
</tr>
<tr>
<td>N, 1108, 2.5690, 0, +0.7012</td>
<td>* Right side OR (OD+.01)</td>
<td></td>
</tr>
<tr>
<td>N, 1110, 2.0000, 0, +0.7012</td>
<td>* Right side @ OR raceway</td>
<td></td>
</tr>
<tr>
<td>N, 1122, 2.0000, 0, -1.1012</td>
<td>* Left end OR land</td>
<td></td>
</tr>
<tr>
<td>N, 1124, 2.9690, 0, -1.1012</td>
<td>* Left end carrier outer dia</td>
<td></td>
</tr>
<tr>
<td>N, 1128, 2.9690, 0, +1.1012</td>
<td>* Right end carrier outer dia</td>
<td></td>
</tr>
<tr>
<td>N, 1130, 2.0000, 0, +1.1012</td>
<td>* Right end OR land</td>
<td></td>
</tr>
</tbody>
</table>

195 /COM Fill remaining node locations
196 /COM
197 /COM Generate carrier nodes at primary and intermediate azimuthal planes (increment = MINC/2)
198 /COM
199 /COM
200 /COM
201 /COM
202 /COM
203 /COM
204 /COM
205 /COM
206 /COM
207 /COM
208 /COM
209 /COM
210 /COM
211 /COM
212 /COM
213 /COM
214 /COM
215 /COM
216 /COM
217 /COM
218 /COM
219 /COM
220 /COM
221 /COM
222 /COM
223 /COM
224 /COM
225 /COM
226 /COM
227 /COM
228 /COM
229 /COM
230 /COM
231 /COM
232 /COM
233 /COM
234 /COM
235 /COM
236 /COM
237 /COM
238 /COM
239 /COM
240 /COM
241 /COM
242 /COM
243 /COM
244 /COM
245 /COM
246 /COM
247 /COM
248 /COM
249 /COM
250 /COM
251 /COM
252 /COM
253 /COM
254 /COM
255 /COM
256 /COM
257 /COM
258 /COM
259 /COM
260 /COM
261 /COM
262 /COM
263 /COM
264 /COM
265 /COM
266 /COM
267 /COM
268 /COM
269 /COM
270 /COM
271 /COM
272 /COM
273 /COM
274 /COM
275 /COM
276 /COM
277 /COM
278 /COM
279 /COM
280 /COM
281 /COM
282 /COM
283 /COM
284 /COM
285 /COM
286 /COM
287 /COM
288 /COM
289 /COM
290 /COM
291 /COM
292 /COM
293 /COM
294 /COM
295 /COM
296 /COM
297 /COM
298 /COM
299 /COM
300 /COM
301 /COM
302 /COM
303 /COM
304 /COM
305 /COM
306 /COM
307 /COM
308 /COM
309 /COM
310 /COM
311 /COM
312 /COM
313 /COM
314 /COM
315 /COM
316 /COM
317 /COM
318 /COM
319 /COM
320 /COM
321 /COM
322 /COM
323 /COM
324 /COM
325 /COM
326 /COM
327 /COM
328 /COM
329 /COM
330 /COM
331 /COM
332 /COM
333 /COM
334 /COM
335 /COM
336 /COM
337 /COM
338 /COM
339 /COM
340 /COM
341 /COM
342 /COM
343 /COM
344 /COM
345 /COM
346 /COM
347 /COM
348 /COM
349 /COM
350 /COM
351 /COM
352 /COM
353 /COM
354 /COM
355 /COM
356 /COM
357 /COM
358 /COM
359 /COM
360 /COM
361 /COM
362 /COM
363 /COM
364 /COM
365 /COM
366 /COM
367 /COM
368 /COM
369 /COM
370 /COM
371 /COM
372 /COM
373 /COM
374 /COM
375 /COM
376 /COM
377 /COM
378 /COM
379 /COM
380 /COM
381 /COM
382 /COM
383 /COM
384 /COM
385 /COM
386 /COM
387 /COM
388 /COM
389 /COM
390 /COM
391 /COM
392 /COM
393 /COM
394 /COM

3-12
After the carrier nodes have been rotated into the cylindrical system, elements can be defined using a process similar to that used for the outer ring. Note the use of a different material number in line 201.

195 /COM ---------------------------------------------
196 /COM All nodes for carrier model now defined, create elements, starting
197 /COM with element number 1001
198 /COM ---------------------------------------------
199
200 /COM Associate material properties for element definition
201 MAT, 2
202 /COM Set element type 1 as STIF45 (3D solid brick), set active
203 TYPE, 1
204 /COM Define first element at lower left corner of raceway (Element 1001)
205 EN, 1001, 1102, 1103, 1113, 1112, 1602, 1603, 1613, 1612
206 /COM Generate remaining inner row of elements around raceway
207 EGEN, 8, 1, 1001 * Elements 1002 - 1008
208
209 /COM Generate outer row of elements from inner row
210 EGEN, 2, 10, 1001, 1008, 1 * Elements 1009 - 1016
211
212 /COM Use first 16 elements as pattern to generate almost all elements
213 EGEN, 2*NRE-1, MINC/2, 1001, 1016, 1 * Elements 1017 - 1080
214
215 /COM Define lower left corner element in last arc (note node numbers)
216 /COM Element number is 16*(2*NRE - 1) + 1001 = NUME
217 /COM First node number is MINC*(NRE + 1/2) + 102 = NUMN
218
219 /COM Generate remaining inner row of elements in last arc
220 EGEN, 8, 1, NUME
221
222 /COM Generate last outer row of elements from inner row
223 EGEN, 2, 10, NUME, NUME+8, 1
224
225 /COM Last element number is 16*(2*NRE)+1001
226
227 With all of the outer ring and carrier elements defined, master nodes can be selected. Lines 238 - 245 specify nodes and degrees of freedom used for mastering.
228
229 /COM ---------------------------------------------
230 /COM All elements have been generated, now establish master DOFs & BCs
231 /COM ---------------------------------------------
232
233 /COM Define set of master DOFs for outer ring
234 M, 1001, UX, 1007, 6, UY, UZ * Set nodes 1001 & 1007 as masters
235 M, 1023, UX, 1029, 2, UY, UZ * Define similar nodes as masters
236 MGEN, NRE, MINC, 1001, 1007, 6 * Define similar nodes as masters
237 MGEN, NRE, MINC, 1023, 1029, 2 * Define similar nodes as masters
238
239 /COM Define master DOFs for carrier
240 M, 1103, UX, 1109, 2, UY, UZ * Master nodes 1103, 1105, 1107, & 1109
241 MGEN, NRE, MINC, 1103, 1109, 2 * Define similar nodes as masters
242
243 3-13
The final step is the specification of boundary conditions. The outer ring has no applied restraints, however, the carrier needs to be grounded. For this example, the entire outer periphery is selected in lines 247 – 252 and constrained to zero displacement in line 255. After applying the boundary conditions, all nodes and elements are returned to the active set in line 258. The final part of this input deck is the specification of analysis commands in lines 264 and 265.

```
247 /COM Fix outer boundaries of carrier, first select nodes on outer radius
248   NRSE, X, 2.90, 3.00
249
250 /COM Select nodes on left and right hand edges
251  NASE, Z, -1.20, -1.00
252  NASE, Z, +1.00, +1.20
253
254 /COM Fix all selected outer ring nodes
255  D, ALL, ALL, 0.0
256
257 /COM Restore all nodes & elements
258   NALL & EALL
259
260 /COM -------------------------------------------------------------
261 /COM Model is complete, now insert analysis commands
262 /COM -------------------------------------------------------------
263
264 KAN, 7 * Specify analysis type as substructure
265 KAY, 6, 0 * Generate stiffness matrix only
266
267 /COM -------------------------------------------------------------
268 /COM End of model generation deck
269 /COM -------------------------------------------------------------
```

This input file is directly submitted to the PREP7 processor using the /INPUT command. When the file has been read and processed, the model can be viewed using standard ANSYS plot commands. It is important to review the model graphically to verify geometry, master nodes, and applied boundary conditions. The final step in PREP7 is the creation of the analysis deck using the AFWRITE command.

### 3.5 Roller Bearing Example ANSYS Models

The second example problem illustrates the use of ANSYS to create both inner and outer ring models. With a roller bearing, nodes on the raceway need to be coupled so that forces applied to the master nodes are distributed along the effective length of the roller/raceway interface. Both example ANSYS input decks illustrate this procedure.

The first model is for the inner ring, corresponding to configuration #3 (Figure 3-3), and contains 147 lines of input data. This is a relatively simple input deck, due in part to the less complicated geometry inherent with a roller bearing.

As with the ball bearing example, ANSYS parameters are used to define the number of elements, azimuthal spacing, and master increment. Only one material is defined, and all input will be entered using a cylindrical coordinate system. This information is contained in lines 1 – 26 of the following input file listing.
Example Case 2 Inner Ring, 12 roller 73mm Bearing, IBSCIR = 3

Configuration for IBSCIR = 3, fixed ID, 2 masters on raceway

Model No. 2, 16 July 93 (more elements axially)
- Coarse grid, 2 elements thru thickness, 9 axially
- NRE primary azimuthal planes, with 1 division between
- Master nodes constrained to adjacent with couples, 6 total
- Nodes on raceway

Define primary azimuthal spacing, numbering increment
NRE = 12,
PAS = 360./NRE
MINC = 100

Set material properties for MAT code 1 (typical steel)
MP, EX, 1, 30.00E+6
MP, ALPX, 1, 8.00E-6
MP, NUXY, 1, .280
MP, GXY, 1, 11.72E+6
MP, DENS, 1, 7.33E-4

Establish cylindrical coordinate system (R, theta, Z)
CSYS, 1

Next node locations for the 0° azimuthal position are defined, based on the numbering scheme shown in the figure illustrated in lines 36 – 49.

Define required node locations for theta = 0 azimuthal plane, graphically depicted in the following figure. Note that first plane starts node numbers at 101, second at 201, etc.
Node numbering for rows thru thickness increments by 10. Model no. 2 added nodes between end of roller and ring (102 & 109).
Actual nodes are defined in lines 51 – 73, and then rotated into the cylindrical system with the command given in line 75. Two coupled node sets are defined in lines 78 and 79, which ties nodes adjacent to the masters.

With all the nodes defined, elements can be created. The first block of elements is defined in lines 95 – 102, using 3D brick (STIF45) elements.
Remaining elements are defined based on the pattern of the first block. Then boundary conditions are applied, which are axial and tangential restraints at the bore. Finally, master nodes are selected and the substructure commands are inserted.

```
106 /COM Define lower left corner element in last arc (note node numbers)
107 /COM Element number is 18*(2*NRE - 1) + 1 = CRNE = 415
109 /COM First node number is MINC*(NRE + 1/2) + 1 = BEGN = 1251
110 CRNE = 18*(2*NRE-1)+1
111 BEGN = MINC*(2*NRE+1)/2+1
112 EN, CRNE, BEGN, BEGN+1, BEGN+11, BEGN+10, 101, 102, 112, 111
113 /COM Generate inner row of elements in last arc
114 EGEN, 9, 1, CRNE
116 /COM Generate last outer row of elements from inner row
118 EGEN, 2, 10, CRNE, CRNE+8, 1
119 /COM Last element number is 18*(2*NRE) = 432
120 /COM All elements have been generated, now establish BCs & master DOFs
122 /COM Select nodes on bore
125 NRSE, X, 1.40, 1.45
127 /COM Fix all selected bore nodes axially and tangentially
129 D, ALL, UY, 0.0, , , , UZ
130 /COM Restore all nodes & elements
132 NALL & EALL
134 /COM Define set of master DOFs
135 M, 104, UX, 107, 3, UY, UZ  * Set nodes 104 & 107 as masters
136 MGEM, NRE, MINC, 104, 107, 3  * Define similar nodes as masters
137 /COM Model is complete, now insert analysis commands
140 /COM KAN, 7  * Specify analysis type as substructure
142 KAY, 6, 0  * Generate stiffness matrix only
145 /COM End of model generation deck
146 /COM---------------------------------------------
```

This deck is now ready to be submitted to the PREP7 processor. After verifying geometry, node coupling, boundaries, and the selected masters, the model is prepared for ANSYS execution by using the AFWRITE command.
The last ANSYS input deck is the companion model for the outer ring of the roller bearing example. This corresponds to an outer ring configuration #8 (Figure 3-11), which considers the carrier to be rigid and does not include any restraints on the outer ring. The first 50 lines of this deck define parameters, materials and illustrate the node numbering scheme.

```
1 /TITLE, Example Case 2 Outer Ring, 12 roller 73mm Bearing, IBSCOR = 8
2
3 /COM Configuration for IBSCOR = 8, free-free, 4 total masters
4 /COM--------------------------------------------------------------
5 /COM Model No. 2, 16 July 93 (more elements axially)
6 /COM  - Coarse grid, 2 elements thru thickness, 9 axially
7 /COM  - NRE primary azimuthal planes, with 1 division between
8 /COM  - Master nodes constrained to adjacent with couples, 6 total
9 /COM--------------------------------------------------------------
10 /COM Define primary azimuthal spacing, numbering increment
11 NRE = 12.
12 PAS = 360./NRE
13 MINC = 100
14
15 /COM Set material properties for MAT code 1 (typical steel)
16 MP, EX , 1, 30.00E+6
17 MP, ALPX, 1, 8.00E-6
18 MP, NUXY, 1, .280
19 MP, GXY , 1, 11.72E+6
20 MP, DENS, 1, 7.33E-4
21
22 /COM Establish cylindrical coordinate system (R, theta, Z)
23 CSYS, 1
24
25 /COM---------------------------------------------------------------
26 /COM Define required node locations for theta = 0 azimuthal plane,
27 /COM graphically depicted in the following figure. Note that first
28 /COM plane starts node numbers at 101, second at 201, etc.
29 /COM---------------------------------------------------------------
30 /COM Node numbering for rows thru thickness increments by 10. Model
31 /COM no. 2 added nodes between end of roller and ring (102 & 109).
32 /COM---------------------------------------------------------------
33 /COM
34 /COM
35 /COM
36 /COM
37 /COM
38 /COM
39 /COM
40 /COM
41 /COM
42 /COM
43 /COM
44 /COM
45 /COM
46 /COM
47 /COM
48 /COM
49 /COM
50 /COM
```
Node locations, in the cylindrical coordinate system established in line 25, are defined explicitly and by using FILL and NGEN commands. All of the nodes are rotated into the cylindrical system using the command in line 75, and the master node couples are established in lines 78, 79, and 82. The first 18 elements are then defined beginning at the 0° azimuthal plane.

```
51 /COM R Z Location
52 /COM
53 N, 101, 2.3000, 0, -.6012 * Left edge of outer ring
54 N, 102, 2.2638, 0, -.5512 * Left side raceway break (.050 chmfr)
55 N, 103, 2.2638, 0, -.2953 * Left extent of effective roller length
56 N, 104, 2.2638, 0, -.1772 * 20% in from roller left end (Master)
57 N, 107, 2.2638, 0, +.1772 * 20% in from roller right end (Master)
58 N, 108, 2.2638, 0, +.2953 * Right extent of effective roller length
59 N, 109, 2.2638, 0, +.5512 * Right side raceway break (.050 chmfr)
60 N, 110, 2.3000, 0, +.6012 * Right edge of outer ring
61 N, 121, 2.4400, 0, -.6012 * Left end OD edge break (.060 chmfr)
62 N, 122, 2.5000, 0, -.5412 * Left end outer dia
63 N, 129, 2.5000, 0, +.5412 * Right end outer dia
64 N, 130, 2.4400, 0, +.6012 * Right end OD edge break (.060 chmfr)
65 /COM Fill remaining node locations
66 FILL, 104, 107, 2, 105, 1, 1 * Defines nodes 105 & 106
67 FILL, 122, 129, 6, 123, 1, 1 * Defines nodes 123 - 128
68 FILL, 101, 121, 1, 111, 1, 10, 1 * Defines nodes 111 - 120
69 /COM Generate remaining nodes at azimuthal planes (increment = 50)
70 NGEN, 2*NRE, 50, 101, 130, 1, 0, PAS/2., 0
71 /COM Rotate all nodes into cylindrical system
72 NROT, ALL
73 /COM Couple adjacent nodes to intended masters
74 CP, 1, UX, 104, 103, 105 * Couple set 1 - node 104
75 CP, 2, UX, 107, 106, 108 * Couple set 2 - node 107
76 /COM Generate remaining couples from first 2
77 CPSGEN, NRE, MINC, 1, 2, 1
78 /COM All nodes for outer ring model now defined, create elements
79 /COM Associate material properties for element definition
80 MAT, 1
81 /COM Define element type 1 as STIF45 (3D solid brick), set active
82 ET, 1, 45
83 TYPE, 1
84 /COM Define first element at lower left corner of raceway
85 EN, 1, 101, 102, 112, 111, 151, 152, 162, 161 * Element 1
86 /COM Generate remaining inner row of elements around raceway
87 EGEN, 9, 1, 1 * Elements 2 - 9
88 /COM Generate outer row of elements from inner row
89 EGEN, 2, 10, 1, 9, 1 * Elements 10 - 18
90
91
92
93
94
95
96
97
98
99
100
101
102
103
```

3-19
With the first 18 elements defined, the remaining elements can be generated using the EGEN command and two parameters for node and element numbers. Master nodes are then selected, but no displacement boundaries are given, since this is a free-free model. The required substructuring analysis commands are inserted at the end of the deck.

104  /COM Use first 18 elements as pattern to generate almost all elements
105   EGEN, 2*NRE-1, MINC/2, 1, 18, 1  * Elements 19...
106
107  /COM Define lower left corner element in last arc (note node numbers)
108  /COM Element number is 18*(2*NRE - 1) + 1 = CRNE = 415
109  /COM First node number is MINC*(NRE + 1/2) + 1 = BEGN = 1251
110   CRNE = 18*(2*NRE-1)+1
111   BEGN = MINC*(2*NRE+1)/2+1
112   EN, CRNE, BEGN, BEGN+1, BEGN+11, BEGN+10, 101, 102, 112, 111
113
114  /COM Generate inner row of elements in last arc
115   EGEN, 9, 1, CRNE
116
117  /COM Generate last outer row of elements from inner row
118   EGEN, 2, 10, CRNE, CRNE+8, 1
119  /COM Last element number is 18*(2*NRE) = 432
120
121  /COM  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
122  /COM All elements have been generated, now establish master DOFs
123  /COM  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
124
125  /COM Define set of master DOFs
126   M, 104, UX, 107, 3, UY, UZ  * Set nodes 104 & 107 as masters
127   MGEN, NRE, MINC, 104, 107, 3  * Define similar nodes as masters
128   M, 124, UX, 127, 3, UY, UZ  * Also set nodes 124 & 127 as masters
129   MGEN, NRE, MINC, 124, 127, 3  * Add other similar nodes
130
131  /COM  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
132  /COM Model is complete, now insert analysis commands
133  /COM  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
134  /COM KAN, 7  * Specify analysis type as substructure
135  /COM KAY, 6, 0  * Generate stiffness matrix only
136
137  /COM  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
138  /COM End of model generation deck
139  /COM  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
140

This outer ring input deck, along with the previously discussed inner ring file, will generate ANSYS binary substructure files which are processed by PREBAN.
The PREBAN preprocessor for REBANS was designed as a standalone package to enable separate computing systems to build and run the complete analysis. PREBAN is designed to be run interactively, although a redirected input file can be used for execution in batch mode. All information produced by PREBAN is in ASCII format. As Figure 2-1 illustrates, two files are created for use by the main analysis code FEREBA:

- The analysis file, containing problem definition, geometry, material, temperature and load/deflection data. This file is named REBANS.DAT if not explicitly defined by the user.
- The converted substructure file(s) from ANSYS, which must be given a new name before PREBAN will generate the file.

It is not necessary to start from scratch each time PREBAN is run. Previously created analysis files can be read by PREBAN and a new file subsequently written. Even different bearing types can be used as input (i.e., input a ball bearing file, create a roller bearing file). The first user input required is the response for use of a previously created analysis file.

4.1 Operating PREBAN

Once the analysis file source has been determined, the main input menu of PREBAN is reached. The program prompt appears as:

Enter processing option (A-D,F-H,L,M,O-U,W,Z), ? for HELP, or Q to Quit

All parameters necessary to define an analysis model are entered via a single character command. Entering H or ? outputs the top level help information:

Help option entered; The following are valid options:
A - Specify Analysis Options  O - Output Request
B - Define Ball Bearing Parameters P - Plot Request
C - Define Control Parameters Q - Quit (Terminate Execution)
D - Specify Applied Displacements R - Define Roller Bearing Parameters
F - Finite Element Model File Names S - Print Model Summary
G - Define General Parameters T - Specify Temperatures
H - Help option (same as ?) U - Specify Unit System
L - Specify Applied Loads W - Write Analysis File
M - Define Material Properties Z - Zap Currently Defined Model

For HELP with a specific option, enter the option letter followed by a separator <; , >/ and a ? as in  G,?  for help on the G option

Enter the option letter only for full prompt mode

To reset an option, enter the option letter followed by a separator and nothing else as in  L,  which will clear values set for the L option
Note that in addition to this top level help, each option also has specific help information. Besides the definition options, the S option for model summary is very convenient for determining what information has been entered and if the model is sufficiently defined to run. The W option allows writing an analysis file at any time, whether complete or not (a warning will be issued if not compete). Although present, the P option for plotting is not active (e.g. no plotting capability exists). The following subsection describes the required input for all of the active options. If applicable, valid input ranges for the variables are listed.

4.2 Required Input to PREBAN

Since PREBAN is an interactive program, there is no specific input stream. Starting the program without a previously created analysis file requires significantly more input than to just modify an existing deck. Required information for the processing options can be determined by using the specific help for each option. Data for a specific option can be entered (in order) on the command line, separated by semicolons, commas, or forward slashes (/). The program can be also directed to prompt for input by just entering the letter of the option. Most users will find the prompt mode to be much easier for entering data than trying to remember what parameters must be placed after the option letter. The prompt mode also displays any units and a default value for each parameter. In alphabetical order, the following information is required to be entered for each processing option.

Processing Option “A” – Analysis Options

This option specifies overall FERBA analysis options, including iteration loop limits and required accuracy, output units, and print option. The print option is normally set to 0 (zero) for standard output, setting values of 1-3 will generate increasing amounts of debug information. If the help option is entered, the following information will be output:

Help for Analysis Option Definition

7 parameters are currently require specification:

1 - Analysis type (must be = 1 right now)
2 - Analysis output units (English = 0, Metric= 1)
3 - Ring Disp iteration limit (suggested value = 10)
4 - Ring Disp iteration percent error (suggested value = .01)
5 - Force iteration limit (suggested value = 100)
6 - Force iteration percent error (suggested value = .001)
7 - Analysis print option
   0 = standard output (default, no debug)
   1 = partial analysis debug output
   2 = full analysis debug output
   3 = verbose analysis debug output (not recommended)

The suggested values for iteration parameters are program defaults. Depending on the problem being analyzed, these values may require modification. Note that the iteration errors are relative and are entered in percent. Refer to Chapter 5 for more information on iteration parameters.
Processing Option “B” – Ball Bearing Parameters

This option defines specific parameters for use with ball bearings. Four quantities are required to be input, as listed when the help option is requested:

Help for Ball Bearing Parameter Definition

4 parameters require specification:

1 - Ball Diameter [in]
2 - Diametral Clearance [in]
3 - Outer Race Curvature
4 - Inner Race Curvature

Each one of these four parameters are checked by PREBAN for validity. Note that units are included in the first two variables, in this case in the English system. If the metric system for input was selected, the units would be millimeters.

Processing Option “C” – Analysis Configuration

The particular type of bearing and ring configuration are defined with this option. The three input parameters are listed by using the help option:

Help for Analysis Configuration Definition

3 parameters are currently require specification:

1 - Bearing Type Designator
   0 = ball bearing (default)
   1 = roller bearing
   2 = duplex ball bearing set
2 - Outer Ring Configuration (0 - 9, 0 = rigid)
3 - Inner Ring Configuration (0 - 3, 0 = rigid)
Refer to User Manual for Nonzero Ring Configurations

The outer and inner ring configurations correspond to Figures 3-4 through 3-12 for the outer ring and Figures 3-1 through 3-3 for the inner ring.

Processing Option “D” – Applied Displacements

This option, along with the “L” option, are the means to apply forces the the bearing system. Specifying displacements with this option eliminates the iteration for inner ring force equilibrium, although elastic deflections are still determined iteratively. There is no check made to insure that the displacements specified will result in a valid solution. The five input displacements correspond to the five axes of inner ring motion:

Help for Applied Displacement Definition

5 parameters require specification:

1 - X-Axis (Axial) Disp [in]
2 - Y-Axis (Radial) Disp [in]
3 - Z-Axis (Radial) Disp [in]
4 - XZ-plane Rotation [rad]
5 - YZ-plane Rotation [rad]
**Processing Option “F” – Finite Element Substructure File(s)**

This option controls the reading of the binary FILE08.DAT from ANSYS and the output of a sorted ASCII file with the substructure information. ASCII file names present in the analysis file will be used as defaults. Up to four files may be specified:

**Help for Finite Element Model Data Files**

A maximum of 4 data files require specification:

1. Name of Outer Ring ANSYS FILE08 (may be blank)
2. Name of Inner Ring ANSYS FILE08 (also may be blank)
3. Desired Name of Outer Ring ASCII File
4. Desired Name of Inner Ring ASCII File

ASCII files written only if valid FILE08 input

When reading and writing the substructure data, several messages are output to the screen, advising the user of progress. This text should be reviewed carefully for any errors in the conversion process.

**Processing Option “G” – General Bearing Parameters**

This option is used to specify general parameters for the bearing system, such as geometry, number of rolling elements, and inner ring speed. The required data is context sensitive with respect to the type of bearing specified with the “C” option. For a duplex ball bearing type, which requires the most input data, the following information is required:

**Help for General Bearing Parameter Definition**

14 parameters require specification:

1. Shaft Speed [rpm]
2. Pitch Diameter [in]
3. Number of Rolling Elements
4. Outer Ring Life Factor
5. Inner Ring Life Factor
6. Inner Ring Outer Diameter [in]
7. Outer Ring Inner Diameter [in]
8. Outer Ring Outer Diameter [in]
9. Housing Inner Diameter [in]
10. Outer Ring/Hsg Axial Gap [in]
11. Distance Between Centers [in]
12. Gap Between Outer Rings [in]
13. Axial Preload Force [lbf]
14. Preload Spring Stiff [lbf/in]

For ball and roller bearings, some of the parameters will not need to be input. For instance, a roller bearing will not require information on axial preload force or preload spring stiffness. The life factors are used to estimate inner and outer ring life (in revolutions), and are normally given values of unity. All of the dimensions for ring diameters and axial gaps are passed to FEREBA for use in the nonlinear deflection analysis if the outer ring configuration is one of the unconstrained types.
Processing Option “L” – Applied Load Definition

Use of this option enables the specification of loads to be applied to the inner ring/shaft along the five axes of inner ring motion. If a roller bearing is currently selected as the bearing type, the program will not allow axial loads to be specified. The five input loads are:

Help for Applied Load Definition

5 parameters require specification:

1 - X-Axis (Thrust) Force [lbf]
2 - Y-Axis Force [lbf]
3 - Z-Axis Force [lbf]
4 - XZ-plane Moment [in-lbf]
5 - YZ-plane Moment [in-lbf]

Processing Option “M” – Material Properties

Properties of the materials comprising the shaft, inner ring, rolling elements, outer ring, and carrier/housing are specified with this option. Four parameters for each component are required, and with the English unit system, are listed with the help option as:

Help for Material Property Definition

4 parameters require specification:

1 - Elastic Modulus [psi]
2 - Poisson Ratio
3 - Density [lbm/in3]
4 - Coeff of Expansion [l/deg F]

For Shaft, Inner Ring, Rolling Elements, Outer Ring, and Carrier/Housing

Processing Option “O” – Output Request

In order to examine the currently defined model, it is useful to obtain a listing of all defined properties. This option allows such a list to be displayed directly to the screen, which is the default case, or to a file, the name of which can be specified by the user. Only one parameter is required with this option, which is explained by the help option to be:

Help for Model Definition Printout

Only 1 parameter is required:

F - write model definition to file (default = preban.out)
S - write model definition to screen

This option is one of the few requests which can be input as a command line. To get a listing to the screen, the string O, S would be input. For output to a file, O, F would be entered, and the program will ask for the name of a file, with the default name of preban.out used.
Processing Option “P” – Plot Model

PREBAN was initially designed with the intent to provide graphical displays of geometry, loading, and other model definition parameters. The current version does not support such displays, however, this option has been retained for use with future releases.

Processing Option “Q” – Quit

After all of the desired processing options have been specified, this single character entry is used to terminate execution and exit PREBAN. Accidentally entering this option is not fatal, the program asks if quitting was really the user’s intent. If leaving the program was intended, the program determines if an analysis file has been written, and if not, the user is prompted to write an analysis file with the current options. The user is cautioned that the default to this question is to not write the analysis file.

Processing Option “R” – Roller Bearing Definition

Compared to a ball bearing, substantially more data is required to be entered with a roller bearing. A total of 16 quantities need to be input, which are listed by the help option as:

       Help for Roller Bearing Parameter Definition

       16 parameters require specification:

       1 - Roller Diameter [in]
       2 - Diametral Clearance [in]
       3 - Roller Length End-to-End [in]
       4 - Roller End Sphere Radius [in]
       5 - Roller Included Angle [deg]
       6 - Roller Crown Radius [in]
       7 - Roller Flat Length [in]
       8 - Outer Race Length [in]
       9 - Inner Race Length [in]
      10 - Outer Race Crown Radius [in]
      11 - Inner Race Crown Radius [in]
      12 - Flange Inversion Flag (1 - 16)
      13 - Outer Ring Flange Angle [deg]
      14 - Inner Ring Flange Angle [deg]
      15 - Outer Ring End Play [in]
      16 - Inner Ring End Play [in]

Although requested, parameters 4, 5, and 12 through 16 are not active quantities in the current version of REBANS. The only valid entry for flange inversion flag is unity (1). The end sphere radius, included angle, flange angles, and end play terms should be entered as zero. These quantities are included in the current version of PREBAN in anticipation of future releases of the main analysis program FEREBA.
Processing Option “S” – Model Summary

This option lists the currently defined analysis options and whether or not enough information has been defined to enable a FEREBA run to be made. A listing from this option lists the current title, input unit system, and status of analysis options, an example of which is as follows:

Summary of Analysis Options

Title used to describe analysis:
Example title for use with manual

Current unit system in effect is: English

<table>
<thead>
<tr>
<th>OPTION</th>
<th>Defined</th>
<th>Needed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control Parameters [C]</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>General Bearing Parameters [G]</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Ball Bearing Parameters [B]</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Roller Bearing Parameters [R]</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Material Properties [M]</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Component Temperature Data [T]</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Applied Load Data [L]</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Applied Displacement Data [D]</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

Bracketed [] letter in each option indicates code required for definition

Model as defined is sufficient to run requested analysis

Note the last line of the output. In this particular example, enough information has been defined so that the FEREBA analysis can be run. If insufficient input exists, the following message would appear at the bottom of the summary:

Model as defined is NOT sufficient to run requested analysis
Options C, G, B or R, L or D, and M require input data

When this message is encountered, a quick examination of the full summary will reveal what options need to be specified.

Processing Option “T” – Temperature Definition

This option permits specification of component temperatures other than at room temperature (70°F in English units), which is the default value. Five values of temperature require entry:

Help for Bearing Temperature Definition

5 parameters require specification:

1 - Shaft Temperature [deg F]
2 - Inner Ring Temperature [deg F]
3 - Element Temperatures [deg F]
4 - Outer Ring Temperature [deg F]
5 - Carrier/Housing Temp [deg F]

When values other than room temperature are entered, the thermal clearance change module in FEREBA is activated. This routine alters bearing internal and external clearances based upon the difference in temperature from 70°F and the value of thermal expansion coefficient.
Processing Option “U” – Input Units

Two input unit systems are supported in PREBAN, the tradition English system and the SI or metric system. Before using any of the other input options that require dimensional entry, the unit option can be toggled from one system to the other. Use of this option requires the entry at most of one parameter:

Help for Input Unit Option Definition

Format is U[,#] where data in brackets is optional:
- U entered alone invokes prompt mode
- U, resets to default units (English)
- U,# specifically set units, where # is a number. If # is 0 (zero), units are set to English. If # is nonzero (any number), units are set to Metric.

The current entry unit system can be determined at any time by using the “S” option.

Processing Option “W” – Write Analysis File

The analysis file created by PREBAN can be written at any time during a session. All of the necessary information to make a FEREBA run need not be defined, in which case PREBAN will inform the user the insufficient data has been written.

The file name of the analysis file is set to rebans.dat by default, although the user is prompted to enter any other name. When this option is requested, the user is first queried as to the use of any existing files:

Do you want to overwrite an existing analysis file? (Y or N, default = N)

If a new file is desired, the following prompts are issued:

Enter the name (and path) of new analysis file (default = rebans.dat)

Analysis data written to file:
rebans.dat

As with the output summary, the data currently defined is examined to determine if enough information is present to run the desired analysis.

Processing Option “Z” – Zap (Clear) Analysis Options

The final option in PREBAN permits all of the currently defined analysis options to be cleared and/or reset to default values. Normally, such a drastic action is not required, however, this option is provided as an alternative for exiting and restarting the program. When this option is requested, the program issues the warning:

All defined parameters will be removed, ARE YOU SURE? (Y or N, default = N)

If Y is entered, the zap action will be performed. Note that each individual option may also be reset by entering the letter of the option followed by a separator with no data. The user will be prompted for permission to conduct this operation as well.
4.3 Output from PREBAN

The primary output from PREBAN is the analysis file. This ASCII file contains all of the necessary information used by FEREBA to run the desired problem. The data in the file is arranged in groups corresponding to keywords such as CONTROL for analysis parameters and MATL PROP for material property definitions. Each of the parameters in the groups are placed on a single line, with each line composed of a numeric quantity and an character descriptor. All data in the analysis file is in the English unit system.

Examining an analysis file with the keyword delimited format is relatively straightforward, and simple changes can be made with a text editor, rather than running PREBAN again. However, bypassing PREBAN to make changes to the analysis file also defeats the PREBAN error checking and is recommended only for experienced users. Examples of analysis files are given in the next two subsections of this chapter.

Finite element model substructure data converted by PREBAN also uses the keyword delimited format in the output ASCII file. The format used to output the structural matrix data has been selected to obtain 17 significant figures of accuracy, the maximum possible with double precision variables on a 32 bit computer. It is assumed that the binary data from ANSYS is also accurate to the same precision.

Both the analysis and substructure data files are written with headers containing the time and date of creation. When PREBAN reads a previously created analysis file, the time and date the file was written are displayed for reference.

4.4 Ball Bearing Example Analysis File

A listing of the analysis file for the first example case, the 60 mm ball bearing, is given on page 4-10. Notice the keyword delimiters and the single line for each parameter, followed by a description of the variable.
Example Case 1, 12 Ball 60mm Bearing, IBSCOR = 3, Fa = 1000, Fr = 500, 25Krpm

Date this analysis file written: Thu Jan 6, 1994
Time this analysis file written: 13:38:06

Listing of Analysis File for Ball Bearing Example Problem

<table>
<thead>
<tr>
<th>CONTROL</th>
<th>Analysis Type</th>
<th>Bearing Type (0, 1, or 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>Analysis Units</td>
</tr>
<tr>
<td>30.00000</td>
<td>0</td>
<td>Ring Disp Iteration Loops</td>
</tr>
<tr>
<td>0.10000</td>
<td>0</td>
<td>Ring Disp Iteration Error [%]</td>
</tr>
<tr>
<td>50.00000</td>
<td>0</td>
<td>Force Iteration Loops</td>
</tr>
<tr>
<td>1.000000E-04</td>
<td>0</td>
<td>Force Iteration Error [%]</td>
</tr>
<tr>
<td>3.000000</td>
<td>0</td>
<td>Outer Ring Configuration</td>
</tr>
<tr>
<td>0.000000</td>
<td>0</td>
<td>Inner Ring Configuration</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>GENERAL</th>
<th>Shaft Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>25000.00</td>
<td>Bearing Pitch Diameter</td>
</tr>
<tr>
<td>3.740200</td>
<td>Number of Rolling Elements</td>
</tr>
<tr>
<td>12.000000</td>
<td>Outer Ring Life Multiplier</td>
</tr>
<tr>
<td>1.000000</td>
<td>Inner Ring Life Multiplier</td>
</tr>
<tr>
<td>1.000000</td>
<td>Inner Ring Outer Diameter</td>
</tr>
<tr>
<td>2.925100</td>
<td>Outer Ring Inner Diameter</td>
</tr>
<tr>
<td>4.555300</td>
<td>Outer Ring Outer Diameter</td>
</tr>
<tr>
<td>5.118000</td>
<td>Carrier/Hsg Inner Diameter</td>
</tr>
<tr>
<td>5.138000</td>
<td>Outer Ring/Hsg Axial Gap</td>
</tr>
<tr>
<td>0.100000</td>
<td>Preload Spring Stiffness</td>
</tr>
<tr>
<td>100000.0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BALL BRG</th>
<th>Ball Diameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.8125000</td>
<td>Diametral Clearance</td>
</tr>
<tr>
<td>5.200000E-03</td>
<td>Outer Raceway Curvature</td>
</tr>
<tr>
<td>0.5200000</td>
<td>Inner Raceway Curvature</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MATL PROP</th>
<th>Shaft Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>9310</td>
<td>Inner Ring Material</td>
</tr>
<tr>
<td>440C</td>
<td>Elements Material</td>
</tr>
<tr>
<td>4340</td>
<td>Outer Ring Material</td>
</tr>
<tr>
<td>4340</td>
<td>Car/Hsg Material</td>
</tr>
<tr>
<td>3.00000000E+07</td>
<td>Shaft Elastic Modulus</td>
</tr>
<tr>
<td>3.00000000E+07</td>
<td>Inner Ring Elastic Modulus</td>
</tr>
<tr>
<td>3.00000000E+07</td>
<td>Elements Elastic Modulus</td>
</tr>
<tr>
<td>3.00000000E+07</td>
<td>Outer Ring Elastic Modulus</td>
</tr>
<tr>
<td>3.00000000E+07</td>
<td>Car/Hsg Elastic Modulus</td>
</tr>
<tr>
<td>0.3000000</td>
<td>Shaft Poisson Ratio</td>
</tr>
<tr>
<td>0.3000000</td>
<td>Inner Ring Poisson Ratio</td>
</tr>
<tr>
<td>0.3000000</td>
<td>Elements Poisson Ratio</td>
</tr>
<tr>
<td>0.3000000</td>
<td>Outer Ring Poisson Ratio</td>
</tr>
<tr>
<td>0.3000000</td>
<td>Car/Hsg Poisson Ratio</td>
</tr>
<tr>
<td>0.2830000</td>
<td>Shaft Density</td>
</tr>
<tr>
<td>0.2830000</td>
<td>Inner Ring Density</td>
</tr>
<tr>
<td>0.2830000</td>
<td>Elements Density</td>
</tr>
<tr>
<td>0.2830000</td>
<td>Outer Ring Density</td>
</tr>
<tr>
<td>0.2830000</td>
<td>Car/Hsg Density</td>
</tr>
<tr>
<td>8.00000000E-06</td>
<td>Shaft Thermal Exp Coeff</td>
</tr>
<tr>
<td>8.00000000E-06</td>
<td>Inner Ring Thermal Exp Coeff</td>
</tr>
<tr>
<td>8.00000000E-06</td>
<td>Elements Thermal Exp Coeff</td>
</tr>
<tr>
<td>8.00000000E-06</td>
<td>Outer Ring Thermal Exp Coeff</td>
</tr>
<tr>
<td>8.00000000E-06</td>
<td>Car/Hsg Thermal Exp Coeff</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LOADS</th>
<th>X-Axis (Thrust) Force</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000.000</td>
<td>Y-Axis Force</td>
</tr>
<tr>
<td>500.000</td>
<td>Z-Axis Force</td>
</tr>
<tr>
<td>0.00000000E+00</td>
<td>XX-plane Moment (About Y)</td>
</tr>
<tr>
<td>0.00000000E+00</td>
<td>XY-plane Moment (About Z)</td>
</tr>
</tbody>
</table>
4.5 Roller Bearing Example Analysis File

For the second example case, the 73 mm roller bearing, the analysis file listing begins on this page and concludes on the following page. With the roller bearing, the addition information regarding geometry makes the file slightly longer than with the ball bearing. Notice that both outer and inner ring ASCII files are specified with this file, compared to the ball bearing example which only uses an outer ring file.

Example Case 2, 12 roller 73mm Bearing, OR/IR = 8/3, Fr = 1000, 25K rpm

Date this analysis file written: Thu Aug 19, 1993
Time this analysis file written: 15:18:42

<table>
<thead>
<tr>
<th>rbexor8.asc</th>
<th>rbexir3.asc</th>
</tr>
</thead>
</table>

CONTROL

| 1 | Analysis Type |
| 1 | Bearing Type |
| 0 | Analysis Units |
| 50.00000 | Ring Disp Iteration Loops |
| 0.1000000 | Ring Disp Iteration Error [%] |
| 50.00000 | Force Iteration Loops |
| 1.000000E-04 | Force Iteration Error [%] |
| 2.000000 | Analysis Print Flag |
| 8.000000 | Outer Ring Configuration |
| 3.000000 | Inner Ring Configuration |

GENERAL

| 25000.00 | Shaft Speed |
| 3.937000 | Bearing Pitch Diameter |
| 12.00000 | Number of Rolling Elements |
| 1.000000 | Outer Ring Life Multiplier |
| 1.000000 | Inner Ring Life Multiplier |
| 3.346400 | Inner Ring Outer Diameter |
| 4.527600 | Outer Ring Inner Diameter |
| 5.000000 | Outer Ring Outer Diameter |
| 5.020000 | Carrier/Hsg Inner Diameter |
| 0.000000E+00 | Outer Ring/Hsg Axial Gap |
| 0.000000E+00 | Preload Spring Stiffness |

ROLLER BRG

| 0.5906000 | Roller Diameter |
| 0.0020000 | Diametral Clearance |
| 0.5906000 | Roller Length End-to-End |
| 0.0000000E+00 | Roller End Sphere Radius |
| 0.0000000E+00 | Roller Included Angle |
| 9.0000000E-01 | Roller Crown Radius |
| 0.3000000 | Roller Flat Length |
| 1.2024000 | Outer Race Length |
| 1.1275000 | Inner Race Length |
| 0.0000000E+00 | Outer Race Crown Radius |
| 0.0000000E+00 | Inner Race Crown Radius |
| 0.0000000E+00 | Outer Ring Flange Angle |
| 0.0000000E+00 | Inner Ring Flange Angle |
| 0.0000000E+00 | Outer Ring End Play |
| 0.0000000E+00 | Inner Ring End Play |
| 1.0000000 | Flange Inversion Flag |

Listing of Analysis File for Roller Bearing Example Problem
**MATL PROP**

<table>
<thead>
<tr>
<th>Steel</th>
<th>Shaft Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>9310</td>
<td>Inner Ring Material</td>
</tr>
<tr>
<td>440C</td>
<td>Elements Material</td>
</tr>
<tr>
<td>9310</td>
<td>Outer Ring Material</td>
</tr>
<tr>
<td></td>
<td>Car/Hsng Material</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Steel</th>
<th>Shaft Elastic Modulus</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Inner Ring Elastic Modulus</td>
</tr>
<tr>
<td></td>
<td>Elements Elastic Modulus</td>
</tr>
<tr>
<td></td>
<td>Outer Ring Elastic Modulus</td>
</tr>
<tr>
<td></td>
<td>Car/Hsng Elastic Modulus</td>
</tr>
<tr>
<td>3.0000000E+07</td>
<td>Shaft Poisson Ratio</td>
</tr>
<tr>
<td>3.0000000E+07</td>
<td>Inner Ring Poisson Ratio</td>
</tr>
<tr>
<td>3.0000000E+07</td>
<td>Elements Poisson Ratio</td>
</tr>
<tr>
<td>3.0000000E+07</td>
<td>Outer Ring Poisson Ratio</td>
</tr>
<tr>
<td>0.3000000</td>
<td>Car/Hsng Poisson Ratio</td>
</tr>
<tr>
<td>0.3000000</td>
<td>Shaft Density</td>
</tr>
<tr>
<td>0.3000000</td>
<td>Inner Ring Density</td>
</tr>
<tr>
<td>0.3000000</td>
<td>Elements Density</td>
</tr>
<tr>
<td>0.3000000</td>
<td>Outer Ring Density</td>
</tr>
<tr>
<td>0.3000000</td>
<td>Car/Hsng Density</td>
</tr>
<tr>
<td>8.0000000E-06</td>
<td>Shaft Thermal Exp Coeff</td>
</tr>
<tr>
<td>8.0000000E-06</td>
<td>Inner Ring Thermal Exp Coeff</td>
</tr>
<tr>
<td>8.0000000E-06</td>
<td>Elements Thermal Exp Coeff</td>
</tr>
<tr>
<td>8.0000000E-06</td>
<td>Outer Ring Thermal Exp Coeff</td>
</tr>
<tr>
<td>8.0000000E-06</td>
<td>Car/Hsng Thermal Exp Coeff</td>
</tr>
</tbody>
</table>

**TEMP DATA**

| 70.000000 | Shaft Temperature |
| 70.000000 | Inner Ring Temperature |
| 70.000000 | Elements Temperature |
| 70.000000 | Outer Ring Temperature |
| 70.000000 | Car/Hsng Temperature |

**LOADS**

| 0.0000000E+00 | X-Axis (Thrust) Force |
| 1000.0000    | Y-Axis Force |
| 0.0000000E+00 | Z-Axis Force |
| 0.0000000E+00 | XZ-plane Moment |
| 0.0000000E+00 | YZ-plane Moment |

Listing of Analysis File for Roller Bearing Example Problem, continued
5.0 USE INSTRUCTIONS FOR FEREBA

The REBANS quasi-static iteration results are determined by the main analysis code FEREBA. PREBAN prepares the analysis file and any substructured finite element models, which are read by FEREBA. Using the substructured stiffness data, compliance matrices are created and used with modified kinematic relations to determine an equilibrium solution to the applied loads or specified displacements. FEREBA is normally run interactively, however, batch mode processing can be used if desired.

Since the quasi-static equilibrium solution is obtained iteratively, the user should be familiar with the nested loop character of the iterative process. Assuming a flexible ring configuration has been specified, there are 4 iterations that must be successfully converged to obtain the final equilibrium solution. Beginning with the innermost loop, the iterative solutions required are:

1. **Rolling element equilibrium** – for each ball or roller in the bearing, local displacements are determined that satisfy the equations for frictionless static equilibrium at each element, using kinematic relations that include ring flexibility.

2. **Inner ring force equilibrium** – contact forces resulting from the rolling element equilibrium solution are summed for all elements and compared to the set of specified global inner ring forces. Assumed inner ring displacements are adjusted until calculated forces match specified forces within the requested relative error or the change in displacements has become “small.” If inner ring displacements, rather than forces, have been specified, no iteration is performed.

3. **Outer ring gap closures** – with a converged set of inner ring forces, corresponding element forces on the outer ring are calculated and applied to the compliance matrix at each element position. Deflections resulting from the application of element forces are compared to specified gaps. If the displacements are larger than the gap at any position, a nonlinear iteration is performed to determine whether a gap should be closed or open. A set of elastic outer ring deflections that satisfies the applied loads and any constraints due to closed gaps is returned from this iteration.

4. **Elastic deflection equilibrium** – using the set of outer ring elastic displacements, a companion set of linear inner ring elastic displacements are calculated and both are compared to assumed deflections. A nonlinear iteration routine is used to adjust the assumed deflections until the relative difference with calculated displacements meets the specified error. For each inner and outer ring configuration, the number of elastic displacements is approximately equal to the number of master nodes at each rolling element position times the number of rolling elements. Thus for configurations with a large number of master nodes and rolling elements, a sizable quantity of elastic displacements are produced.

The solution from traditional quasi-static bearing analysis codes is the result of satisfying the equilibrium problems posed by the first two loops. The flexibility enhancements offered by REBANS are reflected by the addition of the third and fourth iteration loops.
5.1 Operating FEREBA

FEREBA is designed to be run either interactively or batch. Since run times for most analyses with FEREBA are not exceptionally long, interactive use is not unreasonable. Only two parameters are required for execution – the names of the analysis and output files.

FEREBA supports command line arguments, with the analysis file specified first, followed by the output file:

```
fereba analfil outfil
```

where `analfil` is the desired analysis file and `outfil` is the corresponding output file. While running, FEREBA also prints a limited amount of status information, as described in the next subsection, to the default display device, either the console or a batch file.

In batch mode, the command line format can still be used, with appropriate batch mode directives (such as `nohup` on a UNIX system) placed ahead of the `fereba` argument. Also in batch mode, redirection of the status information is advisable, otherwise the operating system default file name will be used. An example of a UNIX batch request is:

```
nohup fereba analfil outfil >fereba.out &
```

where `fereba.out` is the redirected status information file. The ampersand at the end of the command is a UNIX directive to execute in background mode.

The analysis file is obtained from PREBAN. A default name of `rebans.dat` is given to the file by PREBAN, and if not specified on the command line, FEREBA assumes the same name. The output file is given the default name of `rebans.out` by FEREBA, and contains an echo of input parameters, as well as any results produced by the analysis code. Specifying print flags larger than 1 (standard output is 0) can result in sizable output files. Standard listings from the two example problems are contained in the last two subsections of this chapter.

It is not necessary to run FEREBA with a substructure file, in fact, it is recommended that the initial runs be made with inner and outer ring configurations of 0 (zero), which correspond to rigid rings. Subsequent runs can be made using substructure files by editing the analysis file to specify the substructure file name(s) and changing the ring configuration number to one of the values listed in Tables 3-1 and 3-2.

5.2 Output from FEREBA

Results from a FEREBA analysis are contained in the output file, with the default name of `rebans.out` unless specified differently on the command line. When running, FEREBA also prints run status information, and example of which is shown on the next page. This status data is designed to keep the user informed of progress during the iteration. Any error messages are directed to the output file and the status display.
Example of FEREBA status information printout
5.3 Convergence Problems

Due to the nature of the iterative analysis performed by FEREBA, absolute convergence can not be guaranteed. Usually the inner ring force iteration is reliable, seldom will the program be unable to obtain a solution. The outermost elastic displacement iteration is much more volatile, and may have difficulties in converging.

Particular attention is warranted when convergence errors are encountered, since the resulting solution may not be valid. Difficulties in obtaining a solution may be encountered in all four iteration loops, and in some instances the analysis may be rerun to obtain convergence by modifying iteration parameters contained in the analysis file. Some typical iteration convergence errors and suggested remedies are as follows:

- **ERROR FROM DNEQNF** - The number of calls to FCN has exceeded ITMAX*(N+1).
- **ERROR FROM DNEQNF** - The iteration has not made good progress.

These errors are from the rolling element equilibrium iteration, which has program determined accuracy and loop limits. No user action can be taken, since errors of this type usually imply serious problems with the solution have been encountered. Normally, execution will be stopped automatically when errors of this type have been detected. Activating print option level 3 will display information specific to the rolling element equilibrium iteration.

- **WARNING** - Forces not in equilibrium after ?? iterations - WARNING
  Maximum error XXXXXX% (requested YYYYY%) residuals are: (11111111 22222222 33333333 44444444 55555555)
- **WARNING** - Solution valid if residuals are small enough - WARNING

This error is from the inner ring force equilibrium iteration, with user defined accuracy and loop limits. The residuals are the differences between specified and calculated forces. Increasing the number of iterations and/or relaxing the requested error may result in a converged solution. Execution will continue, however, the forces calculated may be so far away from a valid solution that further gap and elastic deflection calculations will be pointless. Specifying print option level 2 will provide information on the force iteration.

- **ERROR** - Outer Ring/Carrier Gap Iteration Limit Reached - ERROR
- **ERROR** - Resulting Elastic Deflections are Probably Invalid - ERROR

If the outer ring gap iteration is unable to obtain a set of constrained gaps that match the applied rolling element forces, this error message is issued. The number of iterations is set by the program, and the user will be unable to alter the iteration. Execution will continue, however, the elastic deflections that result from exceeding the iteration are probably invalid. Changing the print option to 1 will result in more diagnostic details regarding the gap iteration.

- **WARNING** - Elastic deformations unconverged after ?? loops - WARNING
  Outer ring deformation error is = XXXXXXX%
  Inner ring deformation error is = YYYYYYY%
  Requested maximum iteration error is = ZZZZZZZZ%
- **WARNING** - Solution may be acceptable - examine carefully - WARNING

This warning is given if the number of elastic deformation loops is exceeded and the relative errors are not below the user specified value. Increasing the number of allowed iterations and/or increasing the desired error may result in a converged solution. Successive iterates in any given run stream are printed by the program in the status information, and a reasonable solution may be obtained by setting the number of iterations to a value that yielded a relatively low error.
5.4 Ball Bearing Example Output File

This page and the next six pages contain a listing of the standard output from a FEREBA run, in this case for the ball bearing example problem. The first four pages are an echo of the input data contained in the analysis file, the final three pages are the calculated results. Note that this output file is formatted to fit on 8½" x 11" paper.

| FFFFFFFF | EEEEEEE | RRRRRR | EEEEEEE | BBBBBB | AAAA  |
| FF       | EE      | RR     | RR      | EE     | BB    |
| FFFFFFFF | EEEEEEE | RRRRRR | EEEEEEE | BBBBBB | AAAA  |
| FF       | EE      | RR     | RR      | EE     | BB    |
| FF       | EEEEEEE | RR     | RR      | EEEEEEE | BBBBBB | AA    |

Flexibility Enhanced Rolling Element Bearing Analysis

Final Release Version 1.10 - Dated 02 June 1994

Title of this analysis:
Example Case 1, 12 Ball 60mm Bearing, IBSCOR = 3, Fa = 1000, Fr = 500, 25Krpm

This FEREBA analysis started on Fri Jun 3, 1994 at 11:21:29

-- -- -- -- -- ANALYSIS DESCRIPTION -- -- -- -- --

Requested Analysis ........ Quasi-Static
Elastic Deformation Iteration Limit .......... 30 loops
Elastic Deformation Iteration Accuracy .......... 1.0E-1 percent
Inner Ring Force Iteration Limit .......... 50 loops
Inner Ring Force Iteration Accuracy .......... 1.0E-4 percent

** Page FEREBA-1 **

Page 1 of FEREBA output for ball bearing example problem
The second page of output from FEREBA contains the general description of the bearing analyzed, including data specific to the ball bearing for this example problem.

<table>
<thead>
<tr>
<th>REBANS - Rolling Element Bearing Analysis System - REBANS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example Case 1, 12 Ball 60mm Bearing, IBSCOR = 3, Fa = 1000, Fr = 500, 25Krpm</td>
</tr>
</tbody>
</table>

--- GENERAL BEARING DESCRIPTION ---

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bearing Type Analyzed</td>
<td>Ball Bearing</td>
</tr>
<tr>
<td>Inner Ring/Shaft Speed</td>
<td>25000 rpm</td>
</tr>
<tr>
<td>Number of Rolling Elements</td>
<td>12</td>
</tr>
<tr>
<td>Pitch Diameter</td>
<td>3.7402 inches</td>
</tr>
<tr>
<td>Outer Ring Life Multiplier</td>
<td>1.000</td>
</tr>
<tr>
<td>Inner Ring Life Multiplier</td>
<td>1.000</td>
</tr>
<tr>
<td>Inner Ring Outer Diameter</td>
<td>2.9251 inches</td>
</tr>
<tr>
<td>Outer Ring Inner Diameter</td>
<td>4.5553 inches</td>
</tr>
<tr>
<td>Outer Ring Outer Diameter</td>
<td>5.1180 inches</td>
</tr>
<tr>
<td>Carrier/Hsg Inner Diameter</td>
<td>5.1380 inches</td>
</tr>
<tr>
<td>Outer Ring/Housing Axial Gap</td>
<td>0.1000 inches</td>
</tr>
<tr>
<td>Axial Preload Spring Stiffness</td>
<td>100. Klbf/in</td>
</tr>
</tbody>
</table>

--- ROLLING ELEMENT DATA ---

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ball Diameter</td>
<td>0.8125 inches</td>
</tr>
<tr>
<td>Diametral Clearance</td>
<td>0.0052 inches</td>
</tr>
<tr>
<td>Outer Raceway Curvature</td>
<td>0.5200</td>
</tr>
<tr>
<td>Inner Raceway Curvature</td>
<td>0.5800</td>
</tr>
</tbody>
</table>

** Page FEREBA-2 **

Page 2 of FEREBA output for ball bearing example problem
The third page of output from FEREBA contains material and temperature information. Although no temperature data was specified, note that the program sets the temperature of all components to room temperature.

---

--- MATERIAL PROPERTIES ---

**Example Case 1, 12 Ball 60mm Bearing, IBSCOR = 3, F\(_a\) = 1000, Fr = 500, 25Krpm**

---

**Shaft Material Designation** ................. 9310

**Inner Ring Material Designation** ............. 9310

**Rolling Element Material Designation** ........ 440C

**Outer Ring Material Designation** ............. 440C

**Carrier/Housing Material Designation** ....... 4340

---

**Elastic Modulus (Ksi)**

Shaft: 30000, Inner Ring: 30000, Rolling Element: 30000, Outer Ring: 30000, Carrier/Housing: 30000

**Poisson's Ratio**

Shaft: 0.3000, Inner Ring: 0.3000, Rolling Element: 0.3000, Outer Ring: 0.3000, Carrier/Housing: 0.3000

**Density (Ibm/in\(^3\))**

Shaft: 0.2830, Inner Ring: 0.2830, Rolling Element: 0.2830, Outer Ring: 0.2830, Carrier/Housing: 0.2830

**Thermal Exp Coef (1/F)**

Shaft: 8.0E-6, Inner Ring: 8.0E-6, Rolling Element: 8.0E-6, Outer Ring: 8.0E-6, Carrier/Housing: 8.0E-6

---

**COMPONENT TEMPERATURES**

**Shaft Temperature** ................. 70.0 F

**Inner Ring Temperature** ................. 70.0 F

**Rolling Element Temperature** ............ 70.0 F

**Outer Ring Temperature** ................. 70.0 F

**Carrier/Housing Temperature** ............. 70.0 F

---

**Page FEREBA-3**

Page 3 of FEREBA output for ball bearing example problem
The fourth page of output from FEREBA lists the applied loads and any finite element model files used. If applied displacements were given, the input values would be printed rather than loads. In this particular example, no inner ring file was used, and the program indicates this option as shown in the listing.

---

**Page FEREBA-4**

Page 4 of FEREBA output for ball bearing example problem
The fifth page of output from FEREBA contains the first information about iteration results. Three separate pieces of data are presented – a summary of iteration parameters, the final values of inner ring displacements, and a life estimate.

<table>
<thead>
<tr>
<th>Iteration Results Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required elastic deflection loops</td>
</tr>
<tr>
<td>Outer ring deflection accuracy</td>
</tr>
<tr>
<td>Inner ring deflection accuracy</td>
</tr>
<tr>
<td>Maximum number of force iteration loops</td>
</tr>
<tr>
<td>Final force iteration accuracy</td>
</tr>
</tbody>
</table>

- Calculated Inner Ring Displacements -

<table>
<thead>
<tr>
<th>Displacement</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Translation in X-direction (axial)</td>
<td>0.01358 inches</td>
</tr>
<tr>
<td>Translation in Y-direction</td>
<td>0.01222 inches</td>
</tr>
<tr>
<td>Translation in Z-direction</td>
<td>0.00014 inches</td>
</tr>
<tr>
<td>Rotation in XZ-plane (about Y-axis)</td>
<td>0.00000 radians</td>
</tr>
<tr>
<td>Rotation in XY-plane (about Z-axis)</td>
<td>0.00304 radians</td>
</tr>
</tbody>
</table>

- Fatigue Life Prediction -

<table>
<thead>
<tr>
<th>Life Prediction</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outer Ring Life</td>
<td>7.84E+08 revs</td>
</tr>
<tr>
<td>Inner Ring Life</td>
<td>2.06E+08 revs</td>
</tr>
<tr>
<td>Overall Bearing Life</td>
<td>1.72E+08 revs</td>
</tr>
</tbody>
</table>

** Page FEREBA-5 **

Page 5 of FEREBA output for ball bearing example problem
The sixth page of output from FEREBA presents the contact loads and elastic deflections calculated for the beating system. Note that the inner ring elastic deflections are zero, since no inner ring finite element model was used.

--- CONTACT FORCES & ANGLES ---

<table>
<thead>
<tr>
<th>Ball</th>
<th>Azimuth (deg)</th>
<th>Normal Forces (lbf)</th>
<th>Contact Angles (deg)</th>
<th>Contact Stress (psi)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Outer</td>
<td>Inner</td>
<td>Outer</td>
</tr>
<tr>
<td>1</td>
<td>0.00</td>
<td>896.4</td>
<td>496.9</td>
<td>7.71</td>
</tr>
<tr>
<td>2</td>
<td>30.00</td>
<td>742.1</td>
<td>342.2</td>
<td>6.84</td>
</tr>
<tr>
<td>3</td>
<td>60.00</td>
<td>620.1</td>
<td>220.2</td>
<td>6.01</td>
</tr>
<tr>
<td>4</td>
<td>90.00</td>
<td>601.6</td>
<td>203.2</td>
<td>6.53</td>
</tr>
<tr>
<td>5</td>
<td>120.00</td>
<td>600.0</td>
<td>203.7</td>
<td>7.34</td>
</tr>
<tr>
<td>6</td>
<td>150.00</td>
<td>625.2</td>
<td>231.3</td>
<td>8.55</td>
</tr>
<tr>
<td>7</td>
<td>180.00</td>
<td>628.4</td>
<td>235.4</td>
<td>8.88</td>
</tr>
<tr>
<td>8</td>
<td>210.00</td>
<td>621.2</td>
<td>227.3</td>
<td>8.47</td>
</tr>
<tr>
<td>9</td>
<td>240.00</td>
<td>605.5</td>
<td>209.4</td>
<td>7.46</td>
</tr>
<tr>
<td>10</td>
<td>270.00</td>
<td>595.4</td>
<td>196.9</td>
<td>6.40</td>
</tr>
<tr>
<td>11</td>
<td>300.00</td>
<td>621.6</td>
<td>221.8</td>
<td>6.04</td>
</tr>
<tr>
<td>12</td>
<td>330.00</td>
<td>746.4</td>
<td>346.5</td>
<td>6.89</td>
</tr>
</tbody>
</table>

--- ELASTIC RING DEFORMATIONS ---

<table>
<thead>
<tr>
<th>Ball</th>
<th>Azimuth (deg)</th>
<th>Outer Ring (in)</th>
<th>Inner Ring (in)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Axial</td>
<td>Radial</td>
</tr>
<tr>
<td>1</td>
<td>0.00</td>
<td>0.010116</td>
<td>0.0010117</td>
</tr>
<tr>
<td>2</td>
<td>30.00</td>
<td>0.010116</td>
<td>0.009054</td>
</tr>
<tr>
<td>3</td>
<td>60.00</td>
<td>0.010071</td>
<td>0.005538</td>
</tr>
<tr>
<td>4</td>
<td>90.00</td>
<td>0.010032</td>
<td>0.000434</td>
</tr>
<tr>
<td>5</td>
<td>120.00</td>
<td>0.010023</td>
<td>-0.004635</td>
</tr>
<tr>
<td>6</td>
<td>150.00</td>
<td>0.010036</td>
<td>-0.008414</td>
</tr>
<tr>
<td>7</td>
<td>180.00</td>
<td>0.010045</td>
<td>-0.009809</td>
</tr>
<tr>
<td>8</td>
<td>210.00</td>
<td>0.010037</td>
<td>-0.008538</td>
</tr>
<tr>
<td>9</td>
<td>240.00</td>
<td>0.010024</td>
<td>-0.004900</td>
</tr>
<tr>
<td>10</td>
<td>270.00</td>
<td>0.010031</td>
<td>0.000177</td>
</tr>
<tr>
<td>11</td>
<td>300.00</td>
<td>0.010070</td>
<td>0.005290</td>
</tr>
<tr>
<td>12</td>
<td>330.00</td>
<td>0.010117</td>
<td>0.008903</td>
</tr>
</tbody>
</table>

** Page FEREBA-6 **

Page 6 of FEREBA output for ball bearing example problem
The seventh and final page of output from FEREBA lists rolling element speeds in the three rolling element centered coordinates. Total and orbital speeds are also given. Note that the elapsed run time is printed at the end of the listing for reference.

<table>
<thead>
<tr>
<th>Ball</th>
<th>Azimuth (deg)</th>
<th>Axial</th>
<th>Radial</th>
<th>Tangential</th>
<th>Total</th>
<th>Orbital</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.00</td>
<td>5716.32</td>
<td>-596.59</td>
<td>6.13</td>
<td>5747.37</td>
<td>1026.91</td>
</tr>
<tr>
<td>2</td>
<td>30.00</td>
<td>5716.01</td>
<td>-600.36</td>
<td>6.17</td>
<td>5747.46</td>
<td>1026.94</td>
</tr>
<tr>
<td>3</td>
<td>60.00</td>
<td>5715.44</td>
<td>-608.24</td>
<td>6.25</td>
<td>5747.71</td>
<td>1027.02</td>
</tr>
<tr>
<td>4</td>
<td>90.00</td>
<td>5714.64</td>
<td>-617.76</td>
<td>6.34</td>
<td>5747.94</td>
<td>1027.10</td>
</tr>
<tr>
<td>5</td>
<td>120.00</td>
<td>5713.67</td>
<td>-627.98</td>
<td>6.45</td>
<td>5748.08</td>
<td>1027.17</td>
</tr>
<tr>
<td>6</td>
<td>150.00</td>
<td>5712.55</td>
<td>-637.57</td>
<td>6.55</td>
<td>5748.02</td>
<td>1027.20</td>
</tr>
<tr>
<td>7</td>
<td>180.00</td>
<td>5712.16</td>
<td>-640.83</td>
<td>6.58</td>
<td>5748.00</td>
<td>1027.21</td>
</tr>
<tr>
<td>8</td>
<td>210.00</td>
<td>5712.66</td>
<td>-636.60</td>
<td>6.54</td>
<td>5748.02</td>
<td>1027.20</td>
</tr>
<tr>
<td>9</td>
<td>240.00</td>
<td>5713.70</td>
<td>-627.24</td>
<td>6.44</td>
<td>5748.03</td>
<td>1027.16</td>
</tr>
<tr>
<td>10</td>
<td>270.00</td>
<td>5714.72</td>
<td>-616.86</td>
<td>6.34</td>
<td>5747.92</td>
<td>1027.09</td>
</tr>
<tr>
<td>11</td>
<td>300.00</td>
<td>5715.46</td>
<td>-607.68</td>
<td>6.24</td>
<td>5747.68</td>
<td>1027.01</td>
</tr>
<tr>
<td>12</td>
<td>330.00</td>
<td>5716.06</td>
<td>-599.77</td>
<td>6.16</td>
<td>5747.44</td>
<td>1026.94</td>
</tr>
</tbody>
</table>

** Page FEREBA-7 **

FEREBA Execution Completed, Total CP Time = 162.89 secs

Page 7 of FEREBA output for ball bearing example problem
5.5 Roller Bearing Example Output File

This page and the next six pages contain a listing of the output from the FEREBA run for the roller bearing example problem. As with the ball bearing example, the first four pages echo the input data, and the final three pages are the calculated results.

**Page FEREBA-1**
Page 1 of FEREBA output for roller bearing example problem
The second page of output from FEREBA contains the general description of the bearing analyzed, including data specific to the roller bearing for this example problem.

---

**FEREBA - Rolling Element Bearing Analysis System - FEREBA**

---

**Example Case 2, 12 roller 73mm Bearing, OR/IR = 8/3, Fr = 1000, 25K rpm**

---

### GENERAL BEARING DESCRIPTION

- **Bearing Type Analyzed**: Roller Bearing
- **Flange Type Number**: 1
- **Inner Ring/Shaft Speed**: 25000 rpm
- **Number of Rolling Elements**: 12
- **Pitch Diameter**: 3.9370 inches
- **Outer Ring Life Multiplier**: 1.000
- **Inner Ring Life Multiplier**: 1.000
- **Inner Ring Outer Diameter**: 3.3464 inches
- **Outer Ring Inner Diameter**: 4.5276 inches
- **Outer Ring Outer Diameter**: 5.0000 inches
- **Carrier/Hsg Inner Diameter**: 5.0200 inches

---

### ROLLING ELEMENT DATA

- **Roller Diameter**: 0.5906 inches
- **Diametral Clearance**: 0.0020 inches
- **Roller Length**: 0.5906 inches
- **Roller Profile Flat Length**: 0.3000 inches
- **Roller Crown Radius**: 0.9000 inches
- **Roller End Sphere Radius**: 0.0000 inches
- **Roller Included Angle**: 0.0000 degrees

<table>
<thead>
<tr>
<th>Outer Raceway</th>
<th>Inner Raceway</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effective Length</td>
<td>1.2024</td>
</tr>
<tr>
<td>Crown Radius</td>
<td>0.0000</td>
</tr>
<tr>
<td>Axial Play</td>
<td>0.0000</td>
</tr>
<tr>
<td>Flange Angle</td>
<td>0.00</td>
</tr>
<tr>
<td>Osculation</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

---

**Page FEREBA-2**

Page 2 of FEREBA output for roller bearing example problem
The third page of output from FEREBA contains material and temperature information. Temperature data was specified in the analysis file for all components equal to room temperature.

---

**MATERIAL PROPERTIES**

<table>
<thead>
<tr>
<th>Component</th>
<th>Material Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shaft Material</td>
<td>Steel</td>
</tr>
<tr>
<td>Inner Ring Material</td>
<td>9310</td>
</tr>
<tr>
<td>Rolling Element</td>
<td>440C</td>
</tr>
<tr>
<td>Outer Ring Material</td>
<td>9310</td>
</tr>
<tr>
<td>Carrier/Housing</td>
<td>Steel</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Property</th>
<th>Shaft</th>
<th>Inner Ring</th>
<th>Rolling Element</th>
<th>Outer Ring</th>
<th>Carrier/Housing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elastic Modulus (Ksi)</td>
<td>30000</td>
<td>30000</td>
<td>30000</td>
<td>30000</td>
<td>30000</td>
</tr>
<tr>
<td>Poisson's Ratio</td>
<td>0.3000</td>
<td>0.3000</td>
<td>0.3000</td>
<td>0.3000</td>
<td>0.3000</td>
</tr>
<tr>
<td>Density (lbm/in3)</td>
<td>0.2830</td>
<td>0.2830</td>
<td>0.2830</td>
<td>0.2830</td>
<td>0.2830</td>
</tr>
<tr>
<td>Thermal Exp Coef (1/F)</td>
<td>8.0E-6</td>
<td>8.0E-6</td>
<td>8.0E-6</td>
<td>8.0E-6</td>
<td>8.0E-6</td>
</tr>
</tbody>
</table>

**Component Temperatures**

<table>
<thead>
<tr>
<th>Component</th>
<th>Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shaft Temperature</td>
<td>70.0 F</td>
</tr>
<tr>
<td>Inner Ring Temperature</td>
<td>70.0 F</td>
</tr>
<tr>
<td>Rolling Element</td>
<td>70.0 F</td>
</tr>
<tr>
<td>Outer Ring Temperature</td>
<td>70.0 F</td>
</tr>
<tr>
<td>Carrier/Housing</td>
<td>70.0 F</td>
</tr>
</tbody>
</table>

**Page FEREBA-3**

Page 3 of FEREBA output for roller bearing example problem
The fourth page of output from FEREBA lists the applied loads and any finite element model files used. An inner ring file is used in this example, as listed by the program.

---

**Example Case 2, 12 roller 73mm Bearing, OR/IR = 8/3, Fr = 1000, 25K rpm**

---

**APPLIED INNER RING LOADS**

- Force in X-direction (thrust) ......... 0.0 lbf
- Force in Y-direction .................. 1000.0 lbf
- Force in Z-direction .................. 0.0 lbf
- Moment in XZ-plane (about Y-axis) ... 0.0 in-lbf
- Moment in XY-plane (about Z-axis) ... 0.0 in-lbf

---

**FINITE ELEMENT MODEL DATA**

- Outer Ring Configuration ............. 8
- Inner Ring Configuration ............. 3
- Outer Ring ASCII File: rbexor8.asc
- Inner Ring ASCII File: rbexir3.asc

---

**Page FEREBA-4 **

Page 4 of FEREBA output for roller bearing example problem
The fifth page of output from FEREBA contains the first information about iteration results. Three separate pieces of data are presented – a summary of iteration parameters, the final values of inner ring displacements, and a life estimate. Note that the nonlinear outer ring iteration accuracy is significantly larger than the linear inner ring error.

--- ITERATION RESULTS SUMMARY ---

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required elastic deflection loops</td>
<td>23</td>
</tr>
<tr>
<td>Outer ring deflection accuracy</td>
<td>8.3E-2 percent</td>
</tr>
<tr>
<td>Inner ring deflection accuracy</td>
<td>2.6E-4 percent</td>
</tr>
<tr>
<td>Maximum number of force iteration loops</td>
<td>10</td>
</tr>
<tr>
<td>Final force iteration accuracy</td>
<td>1.2E-3 percent</td>
</tr>
</tbody>
</table>

--- CALCULATED INNER RING DISPLACEMENTS ---

<table>
<thead>
<tr>
<th>Displacement</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Translation in X-direction (axial)</td>
<td>0.00000 inches</td>
</tr>
<tr>
<td>Translation in Y-direction</td>
<td>0.01148 inches</td>
</tr>
<tr>
<td>Translation in Z-direction</td>
<td>0.00000 inches</td>
</tr>
<tr>
<td>Rotation in XZ-plane (about Y-axis)</td>
<td>0.00000 radians</td>
</tr>
<tr>
<td>Rotation in XY-plane (about Z-axis)</td>
<td>0.00000 radians</td>
</tr>
</tbody>
</table>

--- FATIGUE LIFE PREDICTION ---

<table>
<thead>
<tr>
<th>Life</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outer Ring Life</td>
<td>6.66E+05 revs</td>
</tr>
<tr>
<td>Inner Ring Life</td>
<td>1.30E+05 revs</td>
</tr>
<tr>
<td>Overall Bearing Life</td>
<td>1.14E+05 revs</td>
</tr>
</tbody>
</table>

** Page FEREBA-5 **

Page 5 of FEREBA output for roller bearing example problem
The sixth page of output from FEREBA presents the contact loads and elastic deflections calculated for the bearing system. In this example, the inner ring is virtually unloaded, except at the element where the load is applied, which implies the bearing will probably skid under this load and clearance combination. Since both the inner and outer rings were represented with finite element models, both sets of elastic deflections are non-zero.

--- CONTACT FORCES & ANGLES ---

<table>
<thead>
<tr>
<th>Roller</th>
<th>Azimuth (deg)</th>
<th>Normal Forces (lbf)</th>
<th>Contact Angles (deg)</th>
<th>Contact Stress (psi)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Outer</td>
<td>Inner</td>
<td>Outer</td>
</tr>
<tr>
<td>1</td>
<td>0.00</td>
<td>2162.5</td>
<td>1000.0</td>
<td>0.00</td>
</tr>
<tr>
<td>2</td>
<td>30.00</td>
<td>1161.8</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>3</td>
<td>60.00</td>
<td>1159.4</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>4</td>
<td>90.00</td>
<td>1156.4</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>5</td>
<td>120.00</td>
<td>1156.4</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>6</td>
<td>150.00</td>
<td>1156.4</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>7</td>
<td>180.00</td>
<td>1156.4</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>8</td>
<td>210.00</td>
<td>1156.4</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>9</td>
<td>240.00</td>
<td>1156.4</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>10</td>
<td>270.00</td>
<td>1156.4</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>11</td>
<td>300.00</td>
<td>1159.4</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>12</td>
<td>330.00</td>
<td>1161.7</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

--- ELASTIC RING DEFORMATIONS ---

<table>
<thead>
<tr>
<th>Roller</th>
<th>Azimuth (deg)</th>
<th>Outer Ring (in)</th>
<th>Inner Ring (in)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Radial - L</td>
<td>Radial - R</td>
</tr>
<tr>
<td>1</td>
<td>0.00</td>
<td>0.010104</td>
<td>0.010104</td>
</tr>
<tr>
<td>2</td>
<td>30.00</td>
<td>0.008968</td>
<td>0.008968</td>
</tr>
<tr>
<td>3</td>
<td>60.00</td>
<td>0.005617</td>
<td>0.005618</td>
</tr>
<tr>
<td>4</td>
<td>90.00</td>
<td>0.000837</td>
<td>0.000837</td>
</tr>
<tr>
<td>5</td>
<td>120.00</td>
<td>-0.004045</td>
<td>-0.004045</td>
</tr>
<tr>
<td>6</td>
<td>150.00</td>
<td>-0.007681</td>
<td>-0.007681</td>
</tr>
<tr>
<td>7</td>
<td>180.00</td>
<td>-0.009900</td>
<td>-0.009900</td>
</tr>
<tr>
<td>8</td>
<td>210.00</td>
<td>-0.007631</td>
<td>-0.007631</td>
</tr>
<tr>
<td>9</td>
<td>240.00</td>
<td>-0.003980</td>
<td>-0.003980</td>
</tr>
<tr>
<td>10</td>
<td>270.00</td>
<td>0.000891</td>
<td>0.000891</td>
</tr>
<tr>
<td>11</td>
<td>300.00</td>
<td>0.005687</td>
<td>0.005688</td>
</tr>
<tr>
<td>12</td>
<td>330.00</td>
<td>0.009008</td>
<td>0.009008</td>
</tr>
</tbody>
</table>
The seventh and final page of output from FEREBA lists rolling element speeds in the three rolling element centered coordinates. Total and orbital speeds are also given. For a roller bearing, the predominate angular velocity is in the axial direction. Note that the elapsed run time printed at the end of the listing is significantly shorter than required for the ball bearing example, due to the much more difficult force and gap iterations required for the combined loading placed on the ball bearing system.

```
+-------------------------------------------------+
| R E B A N S - Rolling Element Bearing Analysis System - R E B A N S |
+-------------------------------------------------+
Example Case 2, 12 roller 73mm Bearing, OR/IR = 8/3, Fr = 1000, 25K rpm

- - - - - ROLLING ELEMENT SPEEDS - - - - -

<table>
<thead>
<tr>
<th>Roller</th>
<th>Azimuth (deg)</th>
<th>Axial</th>
<th>Radial</th>
<th>Tangential</th>
<th>Total</th>
<th>Orbital</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.00</td>
<td>17059.08</td>
<td>0.00</td>
<td>0.00</td>
<td>17059.08</td>
<td>2225.26</td>
</tr>
<tr>
<td>2</td>
<td>30.00</td>
<td>17059.08</td>
<td>0.00</td>
<td>0.00</td>
<td>17059.08</td>
<td>2225.26</td>
</tr>
<tr>
<td>3</td>
<td>60.00</td>
<td>17059.08</td>
<td>0.08</td>
<td>0.00</td>
<td>17059.08</td>
<td>2225.26</td>
</tr>
<tr>
<td>4</td>
<td>90.00</td>
<td>17059.08</td>
<td>0.00</td>
<td>0.00</td>
<td>17059.08</td>
<td>2225.26</td>
</tr>
<tr>
<td>5</td>
<td>120.00</td>
<td>17059.08</td>
<td>0.00</td>
<td>0.00</td>
<td>17059.08</td>
<td>2225.26</td>
</tr>
<tr>
<td>6</td>
<td>150.00</td>
<td>17059.08</td>
<td>0.00</td>
<td>0.00</td>
<td>17059.08</td>
<td>2225.26</td>
</tr>
<tr>
<td>7</td>
<td>180.00</td>
<td>17059.08</td>
<td>0.00</td>
<td>0.00</td>
<td>17059.08</td>
<td>2225.26</td>
</tr>
<tr>
<td>8</td>
<td>210.00</td>
<td>17059.08</td>
<td>0.00</td>
<td>0.00</td>
<td>17059.08</td>
<td>2225.26</td>
</tr>
<tr>
<td>9</td>
<td>240.00</td>
<td>17059.08</td>
<td>0.00</td>
<td>0.00</td>
<td>17059.08</td>
<td>2225.26</td>
</tr>
<tr>
<td>10</td>
<td>270.00</td>
<td>17059.08</td>
<td>0.00</td>
<td>0.00</td>
<td>17059.08</td>
<td>2225.26</td>
</tr>
<tr>
<td>11</td>
<td>300.00</td>
<td>17059.08</td>
<td>0.08</td>
<td>0.00</td>
<td>17059.08</td>
<td>2225.26</td>
</tr>
<tr>
<td>12</td>
<td>330.00</td>
<td>17059.08</td>
<td>0.00</td>
<td>0.00</td>
<td>17059.08</td>
<td>2225.26</td>
</tr>
</tbody>
</table>

** Page FEREBA-7 **

*********************************************************************************
| FEREBA Execution Completed, Total CP Time = 34.21 secs |
*********************************************************************************

Page 7 of FEREBA output for roller bearing example problem

---

5-18
**Title And Subtitle**

Modeling of Rolling Element Bearing Mechanics

**Author(s)**

L. M. Greenhill  
D. K. Merchant

**Performing Organization Name and Address**

Aerojet  
P.O. Box 13222  
Sacramento, CA 95813-6000

**Sponsoring Agency Name and Address**

Aerojet Sacramento Operations  
P.O. Box 1322  
Sacramento, California 95813-6000

**Abstract**

This report provides the user's manual for the Rolling Element Bearing Analysis System (REBANS) analysis code which determines the quasi-static response to external loads or displacement of three types of high-speed rolling element bearings: angular contact ball bearings, duplex angular contact ball bearings, and cylindrical roller bearings. The model includes the defects of bearing ring and support structure flexibility. It is comprised of two main programs: the Preprocessor for Bearing Analysis (PREBAN) which creates the input files for the main analysis program, and Flexibility Enhanced Rolling Element Bearing Analysis (FEREBA), the main analysis program. This report addresses input instructions for and features of the computer codes. A companion report addresses the theoretical basis for the computer codes. REBANS extends the capabilities of the SHABERTH (Shaft and Bearing Thermal Analysis) code to include race and housing flexibility, including such effects as dead band and preload springs.

**Key Words (Suggested by Author(s))**

Rolling Element, Bearings, Ball, Roller, Finite Element, Stability, Mechanics, Clearance, Internal Loads, Deadband, Stiffness, Damping

**Distribution Statement**

Unclassified - Unlimited

**No. of pages**

60