NASA-CR-197409

N95-21891
Unclas
63/04 0037959

Thesis
(california Polytechnic State

yniv.)

A REAL-TIME
“.So

TEGRATING
LLITE AND INERTIAL

RMATION DURING

(NASA-CR-197409)

DIFFERENTIAL SATE

NAVIGATION INFO

HELICOPTER APPROACH
67T p

ALGORITHM FOR IN

NeO Q- 775
VY S

5075
A REAL-TIME ALGORITHM FOR INTEGRATING

Lt
DIFFERENTIAL SATELLITE AND INERTIAL NAVIGATION /
INFORMATION DURING HELICOPTER APPROACH

A Thesis
Presented to
the Faculty of the Graduate School

California Polytechnic State University, San Luis Obispo

In Partial Fulfillment
of the Requirements for the Degree

Master of Science in Aeronautical Engineering

by
Ty Hoang
April 1994

AUTHORIZATION FOR REPRODUCTION
OF MASTER’S THESIS

I grant permission for the reproduction of this thesis in its entirety or any of its parts,

without further authorization from me.

Signature

April 1994

Date

PRECEDING PAGE BLANK NOT FiLM

ABSTRACT
A Real-Time Algorithm For Integrating Differential Satellite and Inertial
Navigation Information During Helicopter Approach
by
Ty Hoang

A real-time, high-rate precision navigation Kalman filter algorithm is developed and
analyzed. This Navigation algorithm blends various navigation data collected during
terminal area approach of an instrumented helicopter. Navigation data collected include
helicopter position and velocity from a global position system in differential mode (DGPS)
as well as helicopter velocity and attitude from an inertial navigation system (INS). The
goal of the Navigation algorithm is to increase the DGPS accuracy while producing
navigational data at the 64 Hertz INS update rate. It is important to note that while the data
was post flight processed, the Navigation algorithm was designed for real-time analysis.

The design of the Navigation algorithm resulted in a nine-state Kalman filter. The
Kalman filter's state matrix contains position, velocity, and velocity bias components. The
filter updates positional readings with DGPS position, INS velocity, and velocity bias
information. In addition, the filter incorporates a sporadic data rejection scheme. This
relatively simple model met and exceeded the ten meter absolute positional requirement.

The Navigation algorithm results were compared with truth data derived from é laser
tracker. The helicopter flight profile included terminal glideslope angles of 3, 6, and 9
degrees. Two flight segments extracted during each terminal approach was used to evaluate
the Navigation algorithm. The first segment recorded small dynamic maneuver in
the lateral plane while motion in the vertical plane was recorded by the second segment. The
longitudinal, lateral, and vertical averaged posiéonal accuracies for all three glideslope
approaches are as follows (mean * two standard deviations in meters): longitudinal (-0.03 £

1.41), lateral (-1.29 +2.36), and vertical (-0.76 £ 2.05).

ACKNOWLEDGMENTS

The expertise and patience of Dr. Stanley F. Schmidt are greatly appreciated in
teaching this novice designer the inner workings of the Kalman filter. Thank you Dr.
Daniel J. Biezad for giving me the opportunity to do my best and for being flexible with the
direction of this project. Thank you Mr. Harry N. Swenson for your motivational support
and confidence. With gratitude to Mr. David N. Kaufmann, for his technical inputs and aid
with the continuity between the two projects. And a special thanks to the engineers and
computer support personnel at the Guidance and Navigation Branch of NASA Ames
Research Center for their inputs and support of this project. Lastly, I like to thank my
parents Minh & Tinh Hoang, and my family whom emotional and financial supports are
often taken for granted, but not this time.

TABLE OF CONTENTS
Page
LIST OF TABLEScoteiteteieerieeereseesestesseseesessessessisesssssssnmsmssessssessssssrnsssssannesassssseesssess viii
LIST OF FIGUREScvetererrereetensesessesseeesesestsssssssssssssessarsssesssssssssssnessssasssasssssssssssss ix
CHAPTER.......ovieneetierererserrersesessessassastassssssssssassstsstsss srbessessssessessessssnssssasssnnsssesassnassasoses 1
1 INETOAUCHON c.vvvvveveerrvernssessssnsssssssssecesscnssessssssosersssssmssssssssssassssusssnssssanss 1
PreviOUS WOTKSveoceeverreeeneeseereescessessessesssseesesssssssessessessassessansnssnsnas 1
Problem DefiNitionccceeveeeeerreseescenserseseessecsessssssssessessassssessansssasns 2
2 Flight Test Data COUECHOMNccovvuirrrieririeriererirnrirnecassesssessenssessssessssceseaes 3
Test Equipment and Materialccccveeeiierennreectesesnnernensnsesscessessanes 3
Flight Test Profile.......c.cocuinrimrienrieeieieiesestssestnsssnssssssssesscesssenes 5
3 Flight Data Reduction And VerifiCation.........coceeeveveeieeseenseressnesseceseccsae 8
Data REQUCHONcevieveereiererriereecneteceseescssessissessessessssesssnessessesnens 8
Analysis of the Navigation Data.........eeeeereeeneninineieiineccncnnenens 11
INS Data RedUCHOM. ...ccvceveeetreecenccereennrretissestnsennessasesansnens 11
DGPS Data ReQUCHON.cccrrereerrracceesscessunsucssacssessresssesssessens 12
Data Manipulationceeceeevmssesvemessererssesesssanssensssssassessanes 16
Analysis of the Truth Data........cccccvuecverieecnsescsensnisessiseensnsessnenis 16
INS Data RedUCHON.....ccveveruereenrrerresecsenseseesssasscssssesesssnssanessee 16
Laser Data ReducCtion.......ccceceeueeseenieerniencisncenionncssnssenserssecssnes 16
Dafa Manipulationcccceoereevueevscriseeisnsseesessesssisssssnessosseses 17
Data Verification and Selection........cccccevceiiniiccsicnncicninscinsneesneennns 17
4 Overview And Design Of The Kalman Filter..........covvvenirenienrenunnrnnraenns 20
Kalman Filter TREOTY......cccccvivrrninininiriinicsetnressessnsnssssssnassssans 20

Design of the Navigation Filter.........cccocevvricnvrnininnrisnesesesnesseseesenne. 25

Design of the Truth FAItercoieeeieereiccceiienieeeeieiee e ienesae 26

5 Navigation Algorithm RESUILSc.cevrurreerenrrcncnmsisimisiiniieneninsnsssssnsensae 27

6 Summary and Recommendations..........c.ceeocescssecnensccnsesessssessuenassssssnse 34

SUITITIATY . vcvvevererereensesesinsosenesssessmssssessssasasssssessnsssassisssnssssencssassanssas 34

RECOMMENAALIONS.vcurereeeeereresserersisecssssrmsessssensonsssssassessssnsnsassassssssssss 35

5 REFERENCES......ooeeterieteeserertrsesssessestesesssssssssnsssssssssssassassasssssasssssssssssstssssassssannssnsssresss 36
A Navigation Algorithm Written in Matlab Code......cccoevieinivincninninarinennes 37

B Truth Algorithm Written in Matlab Code.......coceueuececnirisncvinneninesenannanacs 48

C Locations of Navigation COMPONENLS.......cceveereresecsesnescscssetensssesessesnsnne 58

LIST OF TABLES
Table Page
4.1 The Nine State Navigation FIHETc.ovrriiiieeiiriitinencceeccscnnsiensetisnsssensesanes 25
4.2 The Six State Truth FIHEr.....ccoeerireniieniiierntnnreressssssnenesssssssssssscsesscorssssanses 26
X 5.1 Navigation Filter and Time History Results - 3, 6, and 9 Degree Samples.......... 32

Figure

2.1
2.2
2.3
24
2.5
2.6
2.7
3.1
32
3.3
3.4
3.5
3.6
3.7
3.8
4.1
4.2
43
4.4
5.1
52
53

LIST OF FIGURES
Page
UH-60A RASCAL Flight Test HELICOPIET ...cveueviveccisunirerenitsnsnssencnsscecesisncasenas 3
AIrDOMNE SYSLEML..uueureecurrecnisrarsetesessssssstsastasissasass s sasssssestsssssssasssasssensnesssneses 4
Ground Based SYSIEIMScueeecrerrerirerremssrrsssssessensemssssssissmsessesssnssssssessascscsssasens 4
Flight Test Profile at Crows Landing Runway 35 ...c..ccoevrerusscmsenecsinssincncnasnnens 5
Sample Laser Ground Track PTOfIlecoceviuimnrmmirinmisnissiensenenccnsinnnesninnisneees 6
Vertical DeSCent PrOIlEovveereeireeieereereencseiieenrssnsssassessessessssnsnssanasnasssssnsasss 7
Sample Laser Vertical Descent Profile - 6° GHAESIOPEcovverrreusenrmccscenrinnnns 7
Sample Ground Track Plot of Raw Laser and DGPS Data......ccooceveccuseunninennen. 9
Sample Vertical Descent of Raw Laser and DGPS Data......ccooueeeveseveccuscunsinenns 9
Sample Ground Track Plot of Truth and Navigation Datacceceevecuvucnccanriens 10
Sample Vertical Descent Plot of Truth and Navigation Data........ceceeumceunciscnnsns 10
WGS-84 Ellipsoid and ECEF Reference Frame.......ccmeinienccnccnsucnsnnninnee 13
Sample Laser Ground Track Profile with Data DIop-0ut.....cccecoecscuscusissareusenenss 18
Sample Laser Vertical Descent Profile with Data Drop-0ut.....ceeecesseecuscnseucnenes 18
Sample Laser Ground Track Profile Showing Small Dynamic Maneuvers......... 19
Kalman FIter LOOD..cecrtereuescmseeremrreersassssesssssensastscssasiscassssesnsasssssssssonssossssnsasacass 22
Modified Kalman Logical LOOP.......courvurreremreinmssssssrsonensnscssssssanansessssassassssasasscs 22
System Block Diagram of the Navigation FILeT.......cocccviemmmnirsssesscmsssusseases 23
Algorithm FIow DIBIam.......eceeeiruermeeecsmcmsmssiianesinisisstssistsssessascusiosssassisnsnasees 24
Representative Navigation and Truth Ground Track Profile.....ccoeeversecsccencenncces 27
Representative Navigation and Truth Vertical Descent Profileooveeeuecesecuncen. 28

3° Longitudinal EITOLS ..c.cecuruiresereiesssnssnssssssscsstsessiseississssssssnssssssssnscasiosssssuseaes 29

Figure

Page
5.4 3% Lateral EITOIS...coveereeeieeeereseersrsessssssmessssesssaasesssosssonsssstsssanesssssssasesssnssnssssosssesser 29
8.5 30 VETtICAL EITOTS ..uvveeeeeecreeeeeeeiressnseessnssessssssssossssessssnorsesessasssssressansssssnssssssessoss 30
5.6 3° Ground Track Profile - Raw Laser Data.......ccoccoviinminnrerneecienieenscnecccnecsunnnae 31
5.7 Statistical Results Showing Mean + 2s for 3°, 6° and 9° Flights........cc.coeesvuuueec. 31

CHAPTER 1
INTRODUCTION
Previous Works

Considerable attention has been given to the integration of inertial navigation
systems (INS) and the differential global positioning systems (DGPS) via the Kalman filter
to provide precision navigation information. Work has been done on both fixed-wing [1-3]
and rotary wing aircraft [4-7] using precision (P) and course acquisition (C/A) code.
DGPS research at NASA Ames Research Center was initiated in the early 1980's using a
Sikorsky SH-3G helicopter. The objective of the tests was to evaluate the use of DGPS to
support helicopter terminal approach operations.

The helicopter was equipped with an early research DGPS systerm. Final approach
positioning accuracy was 5.2 + 8.0 meters (mean 20) laterally and 5.0 + 4.0 m vertically
with radar altimeter enhancement. Since then, commercial GPS receivers have made
significant improvements in positional accuracy. A recent NASA rotary wing project using
commercial DGPS yield the following non real-time result during final approach.
Navigation accuracy resulted in -0.79 £ 2.74 m laterally and -2.03 + 3.54 m vertically [4].

Currently, NASA Ames Research Center and the U.S. Army Aeroflightdynamics
Directorate are developing a research rotorcraft, the Rotorcraft-Aircrew Systems Concepts
Airborne Laboratory (RASCAL). The RASCAL's UH-60A Black Hawk helicopter was
used as the flight test vehicle which will be modified in stages to support flight research of
advanced guidance, control and pilot display programs. Among the requirements of these
programs is to provide navigational information that has a minimum of 10 meter absolute
accuracy with a sample rate of 20 Hz [8]. It is this navigation requirement that the current

thesis sets out to address.

A}

Problem Definition

The purpose of this research is to provide a real-time navigation a}gorithm
integrating DGPS and INS navigation data. The goal is to design a simple algorithm that
would not tax the performance of the onboard computer, thereby displaying timely and
accurate readings. Real-time implies that computational time requirements are less than
clock time during program execution. Although work accomplished by Kaufmann [4]
meets RASCAL's positional requirement, it encountered two important short comings: 1)
the DGPS update rate was only at 2 Hz and 2) the DGPS time-lag was not implemented in
real-time. The current navigation algorithm addresses and resolves both short comings

encountered in Kaufmann's research, in addition to providing real-time positional updates.

CHAPTER 2
FLIGHT TEST DATA COLLECTION
T ipmen M

To satisfy RASCAL's navigation requirement, a C/A-code global positioning system
with differential upload capability was installed on the UH-60A. The contribution of these
two components makes a differential global positioning system (DGPS). An additional
ground-based differential uplink GPS system was located at a pre-surveyed site. The data
from the DGPS receiver and navigation information from the inertial navigation system
(INS) was sent to the onboard Data Acquisition Computer (DAC). The DAC collects GPS
position data at 2 Hz and INS Euler angle and velocity data at 64 Hz.

The flight tests were conducted at Crows Landing located approximately 50 miles
east of the Moffett Field Naval Air Station. Data acquisition was divided into two major
systems: airborne and ground-based. The airborne system includes the RASCAL UH-60A
helicopter which was equipped with an Ashtech Model XII 12 channel C/A code GPS
receiver, a Maxon/Ashtech SM 3010 VHF telemetry uplink receiver, a Litton LN-93 ring
laser gyro inertial navigation system (barometric altimeter aided), a laser reflector on each
side of the fuselage, and an 80486 data acquisition computer. Figure 2.1 shows the flight
test vehicle with laser, GPS, and differential uplink placements. A schematic of the airborne

system integration is shown in Figure 2.2.

Pl ¢

- (=] ("‘.
LASER
REFLECTOR /
(ONE ON EACH SIDE)

Figure 2.1 UH-60A RASCAL Flight Test Helicopter [4]

GPS
ANTENNA

2N T

[ASHTECH CDI
SPSGPS |— I [HARD DISK] —»| INTERFACE

RECEIVER
N3 DATA ACQUISITION
s o COVPUTR [

UPLINK
ANTENNA

OPERATOR'S
TERMINAL
Figure 2.2 Airborne System [4]

The ground-based system consists of two components. The first component
includes the same Ashtech GPS receiver and a Maxon/Ashtech telemetry uplink transmitter
providing the differential correction. The second component, a laser tracker system located
at Crows Landing NAS provides precision truth data. The two components of the ground-

based systems are illustrated in Figure 2.3

GPS UPLINK
ANTENNA ANTENNA
ASSPH%ECH UPLINK
| SPSGPS >

RECEIVER TRANSMITTER
Differential Uplink Transmitter

LASER

TRA DATA
ACKING —| RECORDER
Laser Tracker

Figure 2.3 Ground Based Systems [4]

Bouncing off the reflector mounted on the side of the helicopter, the laser tracker
provides precise range, azimuth, and elevation truth data at 100 Hz. Laser range accuracy is
nominally + 0.3 m out to approximately 9 km while azimuth and elevation accuracy are

nominally + 0.2 mrad. Altogether, DGPS data is collected at 2 Hz, INS data at 64 Hz, and

laser data at 100 Hz.

Elight Test Profile

The flight test helicopter collects data by flying in a rectangular pattern. Figure 2.4
illustrates the pattern as seen from above Runway 35 at Crows Landing. Starting at the Aim
Point (AP), the helicopter flies crosswind, downwind, around the base and up the final
approach segment to finish the flight profile. Five important locations are identified on the
figure. Data collection is initiated at approximately 9450 meters (X-axis) down of the AP.
At the Initial Approach Fix (IAF) point, the helicopter is on altitude, on course, and on
speed. The helicopter then intercepts the appropriate glideslope at the Final Approach Fix
(FAF) and descends toward the AP. At the AP, the helicopter arrests its rate of descent,
levels off, and flies crosswind. Data collection is terminated about 2200 meters after the
AP. Afterward, the helicopter flies downwind to complete the run and restarts the process.
The AP is the origin of the runway coordinate system (RCS), which has the X-axis
(longitudinal) pointing along the runway centerline with the Y-axis (lateral) pointing right of
runway and the Z-axis (vertical) pointing down, normal to the runway. The length of the

Base segment is 1852 meters.

9450 m Downwind
— 175° 2220 m Ol
Py =
o =
m a
[«
- 355° —» — AP &
d T 1L
IAF FAF ¢ X
Final Approach Y

Note: all values indicate X distances

Figure 2.4 Flight Test Profile at Crows Landing Runway 35

Compared to Figure 2.4, a laser data representation of the base and final approach
segment is plotted in Figure 2.5. The IAF and FAF points are located at -9960 and -5560
meters respectively along the X axis. The AP is located at the origin of the figure.

-2500 ; ; ; T
.2000.— E: §J; j\ s

1500 }reeererrenaace- ,\, , -

Raw
Laser

-1000

Y Pasition (m)

-500

0

1 i 1 i
-10000 -8000 -6000 -4000 -2000 0
X Pasition (m)

Figure 2.5 Sample Laser Ground Track Profile

The flight path between the IAF and AP point is composed of two maneuvers. The
helicopter flies a "straight and level" approach from the IAF to the FAF point, as shown in
Figure 2.6. The descent portion is carried out between the FAF and AP point. This project
investigates the standard 3 degree approach as well as various other glideslope angles
(steeper 6 and 9 degree). By holding the distance between the JAF and FAF constant
during the straight and level flight segment, each glideslope angle had its unique approach
altitude. For the 3, 6, and 9 degree glideslopes, the approach altitudes are 340, 640, and 910
meters respectively. Once again, the descent segment as recorded by the laser tracker is

shown in Figure 2.7.

[e]
910 mg 355 I 90
640 mp 6°
340 m 3°
IAF FAF
9960 m 5560 m

Figure 2.6 Vertical Descent Profile

-700 T T T T T
-600}-=

-500

Raw

Z Position {m)

-100

i : H !
0 50 100 150 200 250 300
Time (s)

Figure 2.7 Sample Laser Vertical Descent Profile - 6° Glideslope

Unlike the ground track profile, the vertical descent profile is plotted against time
instead of position to show a better representation of the level flight segment. Starting the
descent around 600 m, the figure represents a 6 degree approach glideslope. With reference
to the Figure 2.5, the turn from the Base to Final Approach segment occurs between 40 and
60 seconds. Although the plots show data from the Base segment up to the AP, the
algorithm analyzes data only from the IAF to the AP locations.

CHAPTER 3
FLIGHT DATA REDUCTION AND VERIFICATION
Data Reduction

During flight test, three sets of data were recorded for analysis: laser, INS and
DGPS. The Navigation algorithm was established to provide positional information. To
validate the Navigation data, it was compared to a laser derived "Truth" data. Truth data is
obtained via the Truth algorithm. The performance of the Navigation model was determined
by calculating the deviations between the Navigation and Truth data.

The Truth algorithm merges laser and INS data to reduce noise and synchronizes
laser data at 100 Hz to INS's 64 Hz update rate. The Navigation algorithm integrates the
airborne system's INS and DGPS data. The data are presented to the algorithms in the
RCS reference frame. A segment of a typical ground track and vertical descent profile is
graphed in Figures 3.1 and 3.2. Note that the positions are plotted against a common Irig B
time stamp The solid line represents raw laser data and the dashed line represents DGPS
data.

While Figures 3.1 and 3.2 show the raw data, Figures 3.3 and 3.4 display the
reduced data in the form of the Truth and Navigation data. The solid line represents Truth
data and the dashed line is the Navigation data. Compared to the raw data, the reduced data
correlates very well. In addition, a time-lag update correction has been factored into the
Navigation algorithm. This is most apparent when comparing the peak time locations
between the raw and reduced data. Note the reduction in spike amplitude in the reduced
data plots_. The following sections present the procedures required to reduce data such as
that in Figures 3.1-3.2 to Figures 3.3-3.4. In addition, both source codes are available in
Appendix A and B. Codes are written in Matlab script format [9]. Every effort has been
made to keep the design of the algorithm simple, in addition to providing precise, high rate

positional information.

70

75

80

85

Laser ———
DGPS — —

90

Y Position (m)

95

100

105

i] I
1 12%00 2210 2220 2230 2240 2250
Irig B Time (s)

Figure 3.1 Sample Ground Track Plot of Raw Laser and DGPS Data

-900 T T T T
-890
-880

-870

-860
Laser ——

DGPS — —

ion (m)

-850

it

Z Pos
®
o

-830

PPN IS e ORI S— S -

8900 2210 2220 2230 2240 2250
Irig B Time (s)

Figure 3.2 Sample Vertical Descent of Raw Laser and DGPS Data

70

75

80

85

90

Y Position (m)

g5

100

105

Irig B Time (s)

! E%OO 2211 0 22I20 22130

1
2240

2250

10

Figure 3.3 Sample Ground Track Plot of Truth and Navigation Data

-900 ; ; ;
-890 : ;
-880
-870

-860

Z Position (m)
(‘D
o
(=)

3

-830

-820

-810

e

. 1 L i
8%%00 2210 2220 2230
Irig B Time (s)

2240

Truth =

Nav. —

Figure 3.4 Sample Vertical Descent Plot of Truth and Navigation Data

11
is of vigation D
INS Data Reduction
A common time source, Irig B time, was used by both the airborne and ground-
based systems. In addition, the INS data set required a considerable amount of matrix
transformation before it could be used by the Kalman filter. The transformations were
necessary to supply the Kalman filter with Irig B time (ms), yaw angle (degree), azimuth
angle (degree), X velocity (m/s), Y velocity(m/s), and Z velocity (m/s) in the runway
coordinate system. Converting INS velocities into the RCS reference frame required the
transformations in Equation 3.1. Note that the INS velocity vector (Vins) for each axis is
represented by a 3 by 1 matrix. The velocity data recorded by the INU is in the platform
reference frame, which has the X-axis oriented North, Y-axis pointing West, both rotated by
the wander angle, and the Z-axis pointing up. Recall that the RCS reference frame has the

X-axis parallel to the runway, Y-axis pointing right and Z-axis pointing down.

Vies = [C;c;u] ngﬁ] [Cinnv;u] [Vms]

X | (€RY

ICS = RCS frame, Parallel, East and Down into runway

pwu = Parallel, West and Up frame

nwu = North, West and Up frame

ins = Platform frame, North, West (rotated by wander angle)-and Up

In Equation 3.1, Cnmv;u is the transformation matrix of the INU platform into the
North, West and up reference frame. This transformation is shown in Equation 3.2, where
 is defined as the difference between the platform azimuth angle and the yaw angle (in

radians). The value of the o angle is calculated with every INS update.

12

cos(or) —sin(a) O
Ch¥ ={sin(a) cos(a) 0 (3.2)
0 0 1

a = platform azimuth angle - yaw angle

wu
The ngu, matrix in Equation 3.3 transforms the helicopter to a system parallel to
the runway. This time the transformation rotates about the wander angle, . The wander

angle is defined as the angle between the runway X-axis and true North. The wander angle
was recorded at 10.099 degree. Note that ¢ is analyzed in radians.

cos(p) —sin(g) 0
CP™! =|sin(p) cos(g) O (33)
0 0 1

¢ = 10.099 degree

The final transformation brings the INS velocities into the runway coordinate

system. This simple transformation (Equation 3.4) rotates the Y-axis and Z-axis 180

degrees.
1 0 0
Cpwu =[0 -1 O (3.4)
0 0 -1 :

The order of these transformations are crucial in providing correct data for processing by

the Kalman filter.
DGPS Data Reduction

DGPS data was recorded in the Earth-Centered Earth Fixed (ECEF) reference
frame. This axis system has the Z-axis pointing from the center of the earth through the
North Pole, the X-axis through the Greenwich prime meridian at the equator and the Y-axis

13

orthogonally rotated (see Figure 3.5). DGPS measurements include Irig B time (ms), X, Y,
and Z positions (m) and differential X, Y, and Z velocities (m/s).

The first step transforms the WGS-84 geodetic coordinates of the Aim Point to the
ECEF reference frame [4]. The graphical representation of the relationship between the
WGS-84 ellipsoid and the ECEF reference frame is shown in Figure 3.5. The geodetic
height, h represents the length of the ellipsoidal normal from the surface of the ellipsoid to
the point P (say the Aim Point). The geodetic latitude, ¢ is the angle between the ellipsoidal
normal and the equator. The geodetic longitude, A defines the angle between two meridional

planes oriented counter-clockwise from the ECEF's X axis.

P

ecef I

Figure 3.5 WGS-84 Ellipsoid and ECEF Reference Frame

The Aim Point can now be transform into the ECEF reference frame by the
relationship shown in Equation 3.5. The radius of the earth is defined as N (Equation 3.6)
and e is the eccentricity of the earth ellipsoid of evolution (Equation 3.7). In Equation 3.7, a

and b represent the semi-major and semi-minor axis (in meters) of the earth ellipsoid of

evolution respectively.

14

Note that the ¢ and A are analyzed in radians. Following the ECEF reference convention, A

has a value of -121.1082725 degrees.

APxecef (N + h)cos(¢p)cos(L)
APyecer | =| (N+h)cos(p)sin(R) 3.5)
AP, e | |(N(1-€*)+h)sin(p)

. |
N = (3.6)
J1-¢e?sin’(g)
2
. \F(a ~b) (a —2b) a7
a a

a=6378137.0m
b=6356752.3141 m

¢ = 37.41335361 degree
A =-121.1082725 degree
h=124m

With the location of the Aim Point calculated in the ECEF frame, the distance

between the airborne GPS receiver antenna and the Aim Point can be determined. Equation

3.8 displays this simple calculation.

AX ocef Antennaye.es APxecef
AYeeer |= | Antennayeces |—| APyeces (3.8)
AZ oot Antennaze . APzecef

The next process takes the GPS receiver antenna position in the ECEF frame and
transforms it into the RCS reference frame. The transformation is outlined in Equations

3.9-3.12.

15

Antennay. .. AX ocef
Antennay;s | =[Chiae | | AY cer 3.9)
Antennaz.. AZ. ¢

The Caues matrix transforms ECEF data into RCS reference frame.
crse =[cvey] o] (3.10)

The Cyea¢ matrix brings ECEF coordinates into the Vehicle-Carried Vertical (VCV)
coordinate system. VCV has positive X oriented towards True North, positive Y in True
East, and positive Z pointing down, normal to the runway. ¢ and A were defined previously.
VCV is transformed into the RCS system via the Cir, matrix. The True Heading (H) of
Runway 35 is 10.099 degrees.

—sin(p)cos(A) —sin(@)sin(A) cos(Q)
C¥%. = —sin(A) cos(A) 0 (3.1D)

ecef —

—cos(p)cos(A) —cos(@)sin(A) —sin(e)

cos(H) sin(H) O
Crs =|-sin(H) cos(H) 0 (3.12)
0 0 1

The DGPS positions and differentially derived velocities are transformed from the ECEF to
the RCS reference frame via Equation 3.13.

Xres = [Cgsef] [Xecef] ’ chs = [Ccr:ccscf] [Xecef] (3.13)

One last transformation is required before the data is to be processed by the Kalman filter.
In the RCS reference frame, the helicopter's GPS antenna is translated to the INU location
through Equations 3.14-3.15. The location of the INU was selected as the origin of the

helicopter.

16

Xgps Antennay, . (.14)
Y gps | =| Antennayg | - [C;nn‘:enna]
Zgps Antennay ..
-11.74115
[C;nn‘tlenna] = INUjgcation = GPSjocation = 0.8128 (3.15)
-3.0861

Equation 3.14 produces the vital navigation information that the Kalman filter
requires to predict the next positional estimate. Note that the units in Equation 3.15 are in
meters. More details on component locations are available in Appendix C. This entire
process from Equations 3.1-3.14 is repeated for each INS and DGPS update, up to 64

times a second.

Data Manipulation
After the appropriate transformations, the Navigation algorithm checks for and reject

sporadic data. The data sets are then sent to the Kalman filter where INS and DGPS data
are merged. The Kalman filter provides navigational position and velocity estimates, at a

much higher rate.

Analysis of the Truth Data
INS Data Reduction

See "Analysis of the Navigation Data-INS Data Reduction" in the previous section.

Laser Data Reduction

Laser data is the simplest of the three data sets to analyze. Data collected include)
Irig B time (ms), X, Y, and Z positions (m) in the RCS frame. The laser reflector was
transformed once, from the starboard side reflector location to the INU. Appendix C
provides more detail and the location of each components. Although a laser reflector is

situated on each side of the helicopter, the translation to the INU was only made for the

17
starboard reflector. Due to time constraint, analysis of the port reflector was not examined.
The problem of reflector ambiguity was brought up by Kaufmann [4], which this algorithm
partially addresses. Chapter 5 provides more detail and results.

Data Manipulation

The first procedure requires synchronization of the INS and laser data sets via the
Trig B time stamp. When Irig B time matches laser data is interpolated to match INS data
rate. ThisA is required since the INS operates at 64 Hz while the laser operates at 100 Hz.
The algorithm used a linear interpolation routine. The data sets then filters out and reject

sporadic data. The INS and laser data sets are now suitable for input into the Kalman filter.

Data Verification and Selection

After the proper transformations into the RCS system, each data set is visually
inspected for data consistency. The criteria for selecting the sample data sets includes:

1) a complete data set with minimal data drop-outs 2) a flight profile with small dynamic
maneuvers and 3) a flight path representative of other data sets.

A complete data set is defined as a sample which contain INS, DGPS, and laser data,
all synchronized to the common Irig B time. For this analysis, only small dynamic
maneuvers are examined. Highly dynamic maneuvers are not analyzed since the
investigation only concentrated on helicopter final approach maneuvers. Lastly, the sample
data set selected for analysis was representative of the other data sets.

Although the algorithm is designed to handle sporadic data measurement, data set
with excessive data drop-out were not analyzed. Figures 3.6-3.7 show a sample 3 degree
laser data set that was not analyzed in its entirety due to excessive data drop-out. Because
the drop-out occurred at the beginning of the approach and the rest of the data set met all the
criteria stated above, this particular sample was analyzed. Again, the algorithm only analyze
data between the IAF and AP locations.

-800 r ,

-600

o
K

18

-200

Y Position (m)
o

200

400

1 { 1 i
6? 8000 -8000 -6000 -4000 -2000 0
X Position (m)

Figure 3.6 Sample Laser Ground Track Profile with Data Drop-out

-350 T T ; !
-300

-250

N
]
]

Z Position (m)
@
(=]

L]
-
(=]
(=]

T
V
H
H
M
:
H
‘
H
‘
:
.
:
.
'
.
h
.
.

-1 8000 -8000 -6000 -4000
X Position (m)

Figure 3.7 Sample Laser Vertical Descent Profile with Data Drop-out

19

Both figures show a substantial amount of laser data drop-out between -10000 and
-9000 meters in the X position. The plot in Figure 3.6 should have made a smooth
continuous loop joining the two end points (between 300-500 m in the Y axis) instead of the
discontinuous jump. Figure 3.7 shows the corresponding vertical discontinuity as a jagged
spike (between -250 and -310 m). The figures also illustrate sporadic data captured by the
laser tracker. At about -3500 m (X axis, Figure 3.6), a major spike can be seen. The data
spike deviates significantly from the zero Y position in the ground track profile. |

The vertical spike is obvious, showing a rapid drop instead of a continuous descent
profile. This spike was rejected as a sporadic data point. Figure 3.8 plots a blown up
segment of Figure 3.6, showing the small dynamic maneuver experienced during this flight.
Note the noise (small spikes) characteristics recorded by this laser system. This segment of

the run met all three of the data selection criteria mentioned previously and was analyzed.

-120
-100
-80
-60
Raw
Laser

Y Position (m)
8 &

(=)

N
o

0 : L i 1 i i 1 1
-%000 -8000 -7000 -6000 -5000 -4000 -3000 -2000 -1000 0]
X Position (m})

Figure 3.8 Sample Laser Ground Track Profile Showing Small Dynamic Maneuvers

CHAPTER 4

OVERVIEW AND DESIGN OF THE KALMAN FILTER

K Filter Th

The Kalman filter is one of many methods available for discrete time analysis and a

standard technique used to process data with noise. It allows measurements to be processed

in real-time. The filter can also integrate a redundancy of measurement data from a variety

of sources. In addition, it carries an estimate of the measurements with every measurement

update, allowing for the rejection of sporadic measurement data. The filter allows for the

integration and update of non-synchronous measurements between the different sources.

The Kalman filter used in this thesis is similar in design and notation to that of

Brown & Hwang [10]. The Kalman filter is comprised of two components; the State and

Measurement models. They are defined respectively below in Equations 4.1 and 4.2.

Xk+1=(Dka+Wk (4.1)

Zk = HIC Xk + Vk (4'2)

(nx 1) process state vector at ime t;, .

(nx n) matrix relating x, to X, ; in the absence of a forcing
function. (If x, is a sample of continuous process, @, is the state
transition matrix.) '
(nx 1) a vector assumed to be white (uncorrelated) sequence with
know covariance structure.

(mx 1) vector measurement at time t; .

(m x n) matrix giving ideal noiseless relation between the

measurement and state vector at time t; .
(m x 1) measurement error, assurmed to be white sequence with

known covariance structure and uncorrelated with the w; sequence.

20

21
The covariance matrices for w; and v, vectors, are given in Equations 4.3 - 4.5. Qis the
covariance structure of w, (state) and R, is the covariance structure for v, (measurement).
The values for Qz and Ry, are usually supplied by the hardware manufacturer or are

assumed. The subscript "k" represents current time.

Qk i=k
E[w,w]= ’ (4.3)
kT { 0, i#k
Elv;vil=4 '
0, i#k 4.4)
E[w,v;]1=0, forallkandi (4.5)

The Kalman filter has four basic steps (see below). The first step calculates the
Kalman gain matrix, K , the matrix that minimizes the mean square estimation error. In
Step 2, the state measurement estimate (X) is updated with the calculated K;. The
covariance matrix, (Py) associated with the optimal estimate can now be computed in Step 3.
In Step 4, the state and covariance matrix are both projected ahead («+1) and fed back into
Step 1 with the next available update. A fifth step, Step M is a modified procedure
incorporated in this algorithm to reject sporadic data.

Step 1: Calculate Kalman gain.
K, =P; H. (H, P; H +R;)""
Step 2: Update state measurement estimate.
X =%, +K, (z, —H X})
Step 3: Update error covariance.
P, =(1-K, H)P,
Step 4: Project state and covariance ahead.
Rpe1 = Pp%p
Pi.s = 0P, 0 +Q
Step M: Erroneous positional data rejection.
I 7, - X, I >30m

22
A figure borrowed from Brown & Hwang [10] and duplicated in Figure 4.1 shows
how the Kalman filter loop is formed. Note that the Kalman loop is initialized with prior
state and error covariance estimates.

Enter prior estimate X; and
its error covariances P

Compute Kalman gain:
K =Py Hf (H, P; H +R,)™!

Project ahead: Update estimate with
Xpe1 =DPrxs measurement Zj :
_ T s _a— &=
Pri = OPr®p +Qy X =Xg +Kp(zp —Hy X))

\ Compute error covariance ‘/
for update estimate:

Py =I-K; H)P

Figure 4.1 Kalman Filter Loop

While Figure 4.1 represents the basic Kalman filter loop, the dashed box in Figure
4.2 signifies the modification made to the basic Kalman filter. In the basic configuration,
output from Step 1, (S1) goes directly into Step 2 (S2) for processing.

KALMANFILTER BLOCK

— ———

Reject r——s-2> Update

S lLMeasurcmcnt | Estimate >
Measurement _f _-SK/I- - ¢ Estimate
- Input 53 Output

Compute Update
1 Covariance

Gain
S1 t . l
Project State

and Covariance | g4

Figure 4.2 Modified Kalman Logical Loop

23

The criteria for positional measurement rejection is straight forward. If the
difference between the measurement and estimated Kalman positional value is greater than a
fixed value (30 meters, Step M), the measurement is rejected and the filter is updated with
the estimated Kalman value. An incremental difference greater than 30 meters is sufficient
to reject the data during an approach to landing maneuver. Highly dynamic maneuvers are
not expected. Thus data not rejected via this criteria are processed by the filter. The 30 |
meter cut off value was heuristically derived. It is important not to make the rejection value
too small, since this has the possibility of rejecting good but noisy data. This simple
rejection criteria reduces computation time.

The INS velocity profile was assumed to vary slowly relative to the 64 Hz sample
rate. Therefore, higher order dynamics are not necessary in the Kalman filter
implementation. This reduces the number of states. The Kalman state equations were then
decoupled into individual axis. By treating the axis independently, the algorithm was easier
to code and modify. Execution time for each axis was reduced by solving a simple 3-by-3
matrix inversion. A graphical representation showing the integration of INS and DGPS
information by the Kalman filter is depicted in Figure 4.3. The diagram represents data
being processed for one axis. Note that position and velocity outputs from the Kalman

filter are both at 64 Hz update rate.

Differential Global X; Xy — %,
Positioning System Time-Lag > an)
(DGPS) X, > Update %, Filter -
Xk
Accuracy <10m | 5 g 2 Hz 64 Hz~
Inertial Navigation
Systemn (INS) .
Xk
Acculracy drift of 64 Hz

Figure 4.3 System Block Diagram of the Navigation Filter

24

The DGPS system is accurate to within 10 meters while the INS system has an
accuracy drift of one nautical miles per hour. This DGPS unit supplies both position and
derived velocity data at 2 Hz. INS velocity is supplied at 64 Hz. This particular DGPS unit
had an inherent time-lag of 0.494 second which was incorporated in the algorithm to
provide the Kalman filter with the most accurate measurement reading. Incorporation of the
time-lag update (X,,) made a significant improvement in the performance of the algorithm.

The Navigation filter corrected this time-lag by updating the modified DGPS
position with current DGPS position plus an averaged, integrated INS velocity calculated
since the last update. The time-lag update formula is shown in Equation 4.6.

z:Vins

Xpm = Xgps + — 2% Mg (4.6)

Atgps = 0.494 seconds

While Figure 4.3 pictured an example of data being processed for one axis, Figure
4.4 shows the integration of all three axes in the algorithm flow diagram. The data
initialization and data rejection routine are also included in this algorithm flow diagram.

P Initialization
No
Measurements %
Yes
Time-Lag Rejection Kalman
X P Update » “rest ™| Filter
Time-Lag Rejection Kalman
Y —>> Update P Test [_Filter
Time-Lag Rejection Kalman
Z Update B Test [Filter
End

Figure 4.4 Algorithm Flow Diagram

25

Note that initialization occurred only once, at the beginning of the run. Data rejection

testing begins with the next available measurement reading and before every measurement

update.

Design of the Navigation Filter
The Navigation algorithm blends INS with DGPS measurements to produce

navigational data. Simplicity in the design of the Navigation Kalman filter is a prime goal.
This resulted in a nine state Kalman filter model, three states for each axis. By decoupling
the equations (axis), the algorithm solves the three sets of filters sequentially. Input data
include INS velocity which is derived from accelerometers, DGPS position and DGPS
velocity derived from differential positions. Table 4.1 describes the state and measurement

model used in the analysis of the Navigation filter. All measurements are in meters.

Table 4.1 The Nine State Navigation Filter

|_____ State Model Measurement Model
xk+1=d>kxk+wk Zk =Hkxk+vk
Position where
xp =| Velocity Xgps
Velocity Bias 7, = Xms
X x XU’H‘ Xgp.\' * e
Position =| Y| | Velocity = | ¥ |, Velocity Bias =| ¥, — Y Xins ~ Xgps
yA Z Zins = Zgps
d@* o 0 ©3n2 0 0
E(w,wiy=| 0 (031> 0 Evpl)=| 0 030 o0
0 0 (1527 0 0 (0.91)?
1 At At 100
(Dk: 01 0 At =1/64 sec . sz 010
0 0 1 001

26

The state vector, X includes the position, velocity, and velocity bias states. The
incorporation of the velocity bias state was an attempt to reduce the velocity error due to
drift and to control the performance of the barometric altimeter damped vertical axis. The
@ matrix shows that position is updated by both the INS velocity and the velocity bias
states. Note that At is 64th of a second, the INS data rate. As each DGPS and INS data are

captured, the states are computed and projected ahead via the ®; matrix. Values for the
covariance matrices E(w;w!) and E(vgv7}) are estimated from empirical data or provided
by manufacturer specifications. The zj vector captures measurement data. For simplicity,

the H matrix is represented by the identity matrix.

Design of the Truth Filter
The design of the Truth filter is very similar to that of the Navigation filter. The
Truth filter integrates 64th Hz INS and 100 Hz laser data. The Truth filter synchronizes
laser and INS measurement data and smoothes out laser data. The Truth filter is simpler in
design than the Navigation filter. Laser position and INS velocity make up the state vector.
Once again the axes are analyzed independently and are then sequentially processed.
Descriptions for the six state Truth filter are presented in Table 4.2. Here, the ®; matrix
updates position with only INS velocity.
Table 4.2 The Six State Truth Filter

State Model Measurement Model
xk+1=d)kxk+wk Zk=Hka+Vk
[Position Xiaser
Xp =) , =| .,
| Velocity Xins
[©0.15% o0 0.3002 0
E(Wgwg)= , E(vyv;)=)

| O (0.3D) 0 (0.31)

1 At . 1 O

(Dk= At=1/64 S€C Hk=
0 1 0 1

CHAPTER §
NAVIGATION ALGORITHM RESULTS

The Navigation Kalman filter integration of DGPS and INS data was conducted for
the sample 3, 6, and 9 degree flights. The positional output of the navigation filter was
compared with the laser tracker derived Truth data. The result of the sample 6 degree flight
profile is plotted in Figures 5.1 and 5.2. These figures show a portion of the level and
descent segments of flight. The ground track and vertical descent figures are representative
of the other 3 and 9 degree approaches. The high correlation between the longitudinal aﬁd
lateral positions characterizes the ground track profile. Truth data is represented by a solid

line while Navigation data is represented by a dashed line.

7L —— N e e A -
20F -\ o o e e 4
0... .. ol

E
£ Truth ——
.S 20_.......; O S T T R AR RERE R LAt § ot
= Nav, ——
[o]
o :
>_ 40............. Fersseseisananacaatsiosnssasusserensissassraasriomanscenrenficcroimitaerrrorrrrees ol

0 R S N LIt ST -

11| S B T L T e e e el SRRy ad

-8500 -8000 -7500 -7000 -6500 -6000
X Position {m)

Figure 5.1 Representative Navigation and Truth Ground Track Profile

27

28

-620 T s T T T T

-600

-580
£ Truth ——
s
E= -560 Nay., — —
o]
o
N

-540

-520

.50 H i ; i i i

-6%00 -6000 -5800 -5600 -5400 -5200 -5000 -4800

X Position (m)

Figure 5.2 Representative Navigation and Truth Vertical Descent Profile

A characteristic of the vertical descent profile is the small bias error between the Navigation
and Truth data. The vertical bias error is attributed to the general characteristic of the GPS
system where the vertical axis is the least accurate [7].

The 3 degree positional histories of the difference (Delta) between the Navigation
and Truth filters are shown in Figures 5.3-5.5. The figures points out a common trend in
all three axes. At the initialization of the filters, errors greater than 4 m were calculated.
During the initialization period, the filters were trying to converge the errors by producing a
more accurate state estimator. As the system gradually converged, the errors stabilized to £
3 meters of its mean value. On average, the system stabilized after 30-40 seconds. The
error reduction in two sigma standard deviation is significant after convergence. This trend

is also consistent with the 6 and 9 degree error differences.

Delta X (m)

Delta Y (m)

Longitudinal Errors Between Navigation and Truth Data

gLl i] 1 1] ! 1 1
-8000 -7000 -6000 -5000 -4000 -3000 -2000 -1000 0
X Position (m)
Figure 5.3 3° Longitudinal Errors
Lateral Errors Between Navigation and Truth Data
4 T T 1] T 1] T ! T
R 4
PSP SRS | SN -
] R TR | B S RTEE Bevermmnrecioceansasonsonsogboreafiarecenreas x -
OF ¥ ARHRHL -2] b oo Ui -
a i ;
ICTRNLINE | B I O L ARE 3 HTIW R K NN AL SR p BTV | D
I | SO RRNUUUIN AN AR SOOI | IROUPRRR Y eeanearan , Tevennans -
Y IR R ST SURIUURRI: DR , e FEUUURORPRPS A -
4 i H i i i i H i
-8000 -7000 -6000 -5000 -4000 -3000 -2000 -1000 o

X Position (m)

Figure 5.4 3° Lateral Errors

29

30
The navigation solution shows a higher variance at X positions less than -1000m, for
the longitudinal and vertical errors. Within this range, the helicopter is arresting its vertical
rate of descent and leveling off near the Aim Point. The filter tries to incorporate this
dynamic maneuver into its prediction of the next state estimate. The slight increase in error
is expected since the state model did not incorporate an acceleration component. This is

most apparent in the vertical axis of Figure 5.5.

Vertical Errors Between Navigation and Truth Data

'
N

Delta Z (m)
é

1]
A

1 1] 1 1 1 i i
-8000 -7000 -8000 -5000 -4000 -3000 -2000 -1000 0
X Position (m)

Figure 5.5 3° Vertical Errors

The lateral errors of Figure 5.4 converge from the initial spike at -8500 meter, like
the longitudinal and vertical results. However, the figure shows a distinct spike occurring at
-7500 meters with a shift in mean error of approximately one meter. At the corresponding
X position in Figure 5.6, the aircraft is performing a level turn in the lateral plane. This
maneuver can cause a possible ambiguity in laser reflector readings. Two more spikes
occurring at -5000 and -3500 meters (in Figure 5.4) also correlate to the other level

maneuvers of Figure 5.6.

-120

-100

-60

Y Position (m)
&
o

N
[s]

(9] R e P S UL L LR LT T TETTTY P St A
v : v : . . v

20k e S— S e\ fors S ST S5 S

i i i i i i i i
-%%00 -8000 -7000 -6000 -5000 -4000 -3000 -2000 -1000 0
X Position (m)

Figure 5.6 3° Ground Track Profile - Raw Laser Data

The statistical results for the sample 3, 6, and 9 degree flights are summarized in

Figure 5.7. Figure 5.7 shows the mean and 2o standard deviation of the differences

between the Navigation and Truth data.

31

5
2.5 -
E -
o i
H 04 ¢
g
p> 4)
2.5 - 1
L 1
-5 T ¥ |] I [] 1] i |
3° 6° 9° 3° 6° 9° 3° 6° 9°
Longitudinal Lateral Vertical

Figure 5.7 Statistical Results Showing Mean * 2¢ for 3°, 6° and 9° Flights

FEB-11-95 SAT 18:01 CAL POLY AERO ENGR FAX NO. 8057562376 P. 02

32

The statistical results are a culmination of both the level and dynamic descent
portions of flight. In Figure 5.7, the 3 degree results show the smallest standard deviation
spread. The 20 spread widened slightly with steeper glideslope angle. The increase in
spread can be attributed to the fact that during the 6 and 9 degree approaches, the aircraft

was performing a higher dynamic maneuver. When comparing errors among the level
portion of flight, the 2o spread of the steeper approaches closely resembles that of the 3

degree profile. Overall, the results are well within RASCAL's 10 meter absolute positional
requirement,

Table 5,1 compares the sample 3, 6, and 9 degree approaches with the
corresponding time history flights from Kaufmann [4]. At first glance, the numbers
indicate only a small difference between the two analytical methods. However, a direct
comparison between the two results is difficult to make since the methods are fundamentally
very different. But, the proximity of the results indicates that the Kalman filter can produce

results within the same order of magnitude as the time history method.

Table 5.1 Navigation Filter and Time History Results - 3, 6, and 9 Degree Samples

Glideslope Angle Navigation Filter Method” | Time History Method™*
Flight Numbers | Axis | Meanm) | 20Gm) | Mean(m) | 2o (m)
3 Degree X -0.27 +1.08 -1.09 +1.71
3042-015 1 Y -0.70 +1.16 0.26 + 3.25
3092-314 Z -2.68 + 1.28 -2.80 +2.25
6 Degree X -2.42 + 1.46 -4.98 + 1.83
3092-04 1 Y -1.31 +2.72 -0.47 + 1.06
3092-604 ¥ Z 0.00 + 1.97 0.23 + 1.35
9 Degree X 2.59 x 1.68 0.22 +2.23
3092-018 ¥ Y -1.42 +2.75 0.13 + 1.36
3092-917 1t Z 0.40 + 2.88 0,13 +1.51
I Curre:_at flight reference ' Kaufmann's cross reference flight number
Real-time analysis ** Post flight analysis

33

The fundamental differences between the two analytical methods are: real-time
capability, time-lag update, and INS data update. Recall that the Navigation algorithm
analyzes data in real-time and includes an embedded, time-lag advancement scheme. In
contrast, the time history method advances the DGPS positions to match the laser positions
during post flight analysis. Afterwards, the Irig B time-lag factor is calculated. Also, time
history analysis uses no INS information. Without INS data, the time history method can
ngt_pg_irnplemented on amll'??lf_li{ne dynam1c airborne system. However, the time history
results do show the best positional accuracy achievable with this DGPS system. These
differences make a direct comparison between the two methods difficult.

CHAPTER 6
SUMMARY AND RECOMMENDATIONS
Summary

A real-time, high-rate precision Navigation algorithm has been developed and
analyzed. The algorithm was designed to integrate time-lagged DGPS position and velocity
data with high-rate INS velocity and attitude information via the Kalman filter. Result, the
Navigation algorithm met and exceeded RASCAL's 10 meter absolute positional accuracy
and _20 Hz update requircmentsf The al gorithrn demonstrated absolute precision navigatidn
performance within 4.5 meters in all three axes and produced positional solution at a 64 Hz
update rate.

The solutions surpassed RASCAL's positional requirement by 50% and the update
rate by 200%. A relatively simple nine state Kalman filter model accomplished all this.
Furthermore, the Kalman state matrix did not include an acceleration measurement model.
The algorithm also accounted for errors caused by ambiguous and sporadic data readings.
Additional number of states could be use to improve filter performance but doing so would
compromise the simplicity of the algorithm design.

These results were achieved by strictly adhering to the data selection criteria. This
data criteria allowed for testing of small dynamic maneuvers only. The logical extension
would be to test the algorithm with more dynamic maneuvers. However, high dynamic
maneuvers should be avoided since the algorithm was designed to provide navigation data

during approach to landing only. This flight profile does not expect to experience such

demanding maneuvers.

34

35
mmendation
The algorithm used thus far has not been optimized for positional accuracy. Recall

that the state matrix used only DGPS position, INS velocity, and velocity bias states. To
increase positional accuracy, the velocity bias state may be replaced with an acceleration
state or a better method may be employed on the velocity bias state itself. To check the
robustness of the filter, less stringent data set should be tested. Different amount of data
drop-outs should suffice. In addition, attention to detail during the data collection is crucial.
T’I_jis_i§ _cspccially true with Irig B‘ﬁ{nc synchronization between the different data sets.

Recalibration of the INU before each flight is also crucial in providing consistent data.

FEB-11-95 SAT 18:01 CAL POLY AERO ENGR FAX NO. 8057562376 P. 03

REFERENCES

L. van de Leijgraaf, R., Breeman, J,, Moek, G., and van Leeuwen, S.S., "A Position
§ef&rerltce System for the Fokker 70," National Aerospace Laboratory, Amsterdam, The
etherlands.

2. McNally, B.D., Warmnecr, D.N. Jr., Hegarty, D.M.,, Schultz, T.A., and Bronson, R,
"Flight Evaluation of Precision Code Differential GPS for Terminal Area Positioning,"
Institute of Navigation Satellite Division's 4th International Technical Meeting AION GPS-

91), September 11-13, 1991.

3. McNally, B.D,, Paielli, R.A., Bach, R.E., and Warner, D.N. Ir., "Flight Evaluation of
Differential GPS Alded Inertial Navigation Systems," AGARD Guidance and Control Panel
Specialist Meeting on Integrated and Multi-Function Navigation, Ottawa, Ontario, Canada,
May 14-15, 1992.

4, Kaufmann, David N., "Helicopter Approach Capability Using the Differential
Global Positioning System," NASA CR 177618, Moffett Field, NASA Ames Research

Center, 1993

J. Edwards, F.G, and Hegarty, D.M., "Flight Test Evaluation of Civil Helicopter
Terminal Approach Operations Using Differential GPS," ATAA 89-3635, AIAA Guidance,
Navigation and Control Conference, Boston, MA, August 1989,

6. Edwards, F.G., and Loomis, P.V.W_, "Civil Helicopter Flight Operations Using
ll)éjsfgrential GPS," Navigation: Journal of the Ingtitute of Navigation, Vol. 32, No. 3, Fall

7. Edwards, F.G., Paielli, R.A. and Hegarty, D.M., "Helicopter Terminal Approach
Using Differential GPS wirth Vertical-Axis Enhancement,” Satellite Division Meeting of the
Institute of Navigaton, Colorado Springs, CO September 1987

8. Jacobson, R.A,, Doane, D.H.,, Eshow, M\M., Aiken, E,W., and Hindson, W.S., "4n
Integrated Rotorcraft Avionics | Controls Architecture to Support Advanced Controls and
Low-Altitude Guidance Flight Research,” NASA TM-103983, Moffett Field, NASA Ames
Research Center, October, 1992,

0. MATLAB® High-Performance Numeric Computation and Visualization Software,
The MathWorks, Inc., Version 4.0, Natick, MA, 1992

10. Brown, R.G., and Hwang, P.Y.C. "Introduction to Random Signals and Applied
Kalman Filtering," New York, John Wiley & Son, 1983.

36

Hoang 37

APPENDIX A
NAVIGATION ALGORITHM WRITTEN IN MATLAB CODE

The following flights met all data set requirements and were analyzed by this algorithm:
3°: FSN-01901
6° : FSN-3092-011
9¢: FSN-01904
###

PROJECT: NAVIGATION KAIMAN FILTER
INTEGRATION OF DGPS & INS INFORMATION

WRITTEN BY: TY HOANG
AFRONAUTICAL ENGINEERING DEPARTMENT

CAL PCLY STATE UNIVERSITY - SAN LUIS OBISPO
FEBRUARY 18 1594

In fulfillment of a Master's Thesis at CAL POLY

CAL POLY ADVISOR: DR. DANIEL J. BIEZAD,
AERONAUTICAL ENGINEERING DEPARTMENT

NASA AMES ADVISOR: MR. EARRY N. SWENSCN,
NAVIGATION AND CCNTROLS BRANCH

i o i L e e o T L T o]

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

SE2232883 843433 S4H4E 353 HHHHHEFHH AT A IR ERRAR AR

TT R g

Objective: To implement a Kalman filter integrating GPS and INS data, to
produce positional information. Output has GPS accuracy with high rate

of update, 64 Hertz.
INS data received at 64Hz and GPS at 2Hz

O o0 A O K KN A N NI KA NN IR N N O I N

file KF Navigation = ('KFNavigation.m'):

% Assumptions:
Guessed Initial Value of: Q & R covariances

Initialized Values: x_prior, P_prior, tau, del_time
Constant Calculated Matrix: phi, H
Constant velocity during delta time segment
First data point is not a wild point
NOTE: insdata is in English Units _
gpsdata is in SI Units

o d® o dO oP d° oe

tic % Engage time counter
clc % clear command window
clear on = input ('Clear memory before starting script? << YES >> or [< NO >]
','s'):
if
clear on='y'|clear_on='Y'|clear_on=='yes'|clear_on—='YES'|clear on=='Yes'
clear
end

Hoang 38

echo off
echo _on = input ("Turn echo on? << YES >> or [< NO >] *','s');
if Iéempty(echo_on)==1lechq_on=='n'|echq_pn=='N'lecho_pn=='No'|echo_pn==rNov
echo off
else
echo on
end

%
% #Rsdddddnndddddd#Hde INITIALIZING CONSTANTS ########## #4738 553 233844

% Input Parameters
gps_rate = 2 ; fprintf ('GPS data rate at 2 Hz.\n') % In Hertz;
ins_rate = 64; fprintf('INS data rate at 64 Hz.\n\n')

half = ins_rate/gps_rate:

% Setting Constants' initial wvalues: Length(ft), Time (ms)
del time = 1/ins_rate;
gps_time = 0.494;

ft2m = 0.3048; % Conversion from feet to meters
in2ft = 1/12; % Conversion from inches to feet

cg_location =[359.50; 0.00; 258.75]*in2ft*ft2m; % CG depends on config.
gps_location =[761.00; 0.00; 334.00]*in2ft*ft2m; % GPS antenna

inu location =[298.75; 32.0; 212.50)*in2ft*ft2m; % Actual INU location
laser_location=[251.00; 56.0:; 206.50]*in2ft*ft2m; % Right Reflector

% Coordinate GPS from tail boom to INU location;
gps_inu = inu location - gps_location; % In feet & good sign convention
[298.75-761.00; 32.0-0.00; 212.50-334.00]*in2ft*ft2m;

% gps_inu =

% gps_inu= [- ; + ; -]; % For proper sign convention when subtracted
%
% #¥##d#diddddH4#4484444 INITIALIZING INPUT FILES #4#74#sd002524¢3332444%
% Default raw data file formatted columns:
% Irig B Time, Roll, Pitch, Yaw, Platform Azimuth Angle, Vx, vy, Vz.
% Or modified data file:
% Irig B Time, Vx, Vy, Vz

fprintf('\nINS raw data file MUST contain ALL the following data \n')

fprintf (' (In column format)\n')
fprintf (' [Irig B, Yaw, Planform Azimuth Angle, Vx ins, Vy_ins, Vz_ins]\n\n')
fprintf ('NOTE: Columns do not have to be in this specific order\n\n')

ins_data file = input ('Enter INS data file: ','s');
while isempty (ins_data file)==1
ins_data file = input('Enter INS data file: ','s');

end
fprintf('\nLoading INS data..... \n\n\n'’)

eval ({'load ', ins_data file]):

eval (['INS = ', ins data file, ';']);

(rins,cins] = size(INS); % sizing row by column data

fprintf('INS data is in Geodetic Coordinate System \n')

fprintf (' (Longitude, Latitude, and Altitude)\n')

fprintf('Time: milliseconds, Angle: degree, Velocity: feet/second \n!')
fprintf (' \nDEFAULT loads the following column format : \n')

Hoang 39

fprintf (' [Irig_B, Yaw, Pitch, Roll, Azimuth Angle, Vx_ins, Vy _ins,

vz_ins]\n')
fprintf ('NOTE: Current code uses only the following information \n*)

fprintf (' {Irig B, Yaw, Azimuth Angle, Vx_ins, Vy_ins, Vz_ins] \n\n")
IC = input('Use DEFAULT [< YES >] or << NO >> : ,'s'):
fprintf ('\nConverting INS data into SI Units..... \n')

if IC='n'|IC=="no'|IC=='N'|IC=='NO'

IBT = input ('Enter Column Number for "INS Irig B time™ :'):
IYW = input ('Enter Column Number for "INS Yaw Angle"” :');
IAA = input ('Enter Column Number for "Azimuth Angle™ :');
IVX = input ('Enter Column Number for "INS X Velocity™ :'):
IVY = input ('Enter Column Number for "INS Y Velocity" :"):
IVZ = input ('Enter Column Number for "INS 2 Velocity®™ :'):

INS(:,IBT):

raw ins(:,1)

raw_ins(:,2) = INS(:,IYW);
raw_ins(:,3) = INS(:,IRA);
raw_ins{(:,4) = INS(:,IVX):
raw_ins{(:,3) = INS (:,IVY);
raw_ins(:,6) = INS(:,IVZ):

end % End IF IC Loop
raw_ins = zercs(rins,6);

if IC='y'|IC='Y'|IC="'yes'|IC="YES'|isempty (IC)==1

raw_ins{(:,1l) = INS(:,1): % Irig

raw_ins(:,2) = INS(:,2}); % Yaw did not use Pitch and Roll
raw_ins(:,3) = INS(:,5): % Azimuth Angle

raw ins(:,4:6) = INS(:,6:8); % vxins, Vyins, Vzins

end % End IF IC Lcop

gps_data_file = input ('Enter GPS data file: ','s');
while isempty (gps_data file)==1

gps_data file = input ('Enter GPS data file: ','s');
end

fprintf ('\nLoading GPS data..... \n\n')

eval(['load ', gps_data file]):

eval (['GPS = ', gps_data_file, ':;']);

(rgps,cgps] = size(GPS); % sizing row by column data

fprintf ('GPS data is in Earth Center Earth Fixed Coordinate System\n')
fprintf (' (Xposition, Yposition, and Zposition)\n')
fprintf ('Time: milliseconds, Position: meters, Velocity: meters/second\n’)
fprintf (' \nDEFAULT loads the following column format : \n')
fprintf (' [Irig B, gps_time, Age, Xgps, Ygps, 2gps, Vxgps, Vygps, Vzgps,
PDOP) \n'") -
fprintf ('NOTE: Current code uses only the following information \n")
fprintf (' [Irig B, Xgps, Ygps, 2gps, Vxgps, Vygps, Vzgps]\n\n')
GC = input ('Use DEFAULT [< YES >] or << NO >> : ','s’');

if Gc=lnl IGC=InO| IG_C_—_:INI IGC=INO'

GB = input ('Enter Column Number for "GPS Irig B time"” :'};
GX = input ('Enter Column Number for "GPS X Position™ :');
GY = input ('Enter Column Number for "GPS Y Position™ :');
GZ = input ('Enter Column Number for "GPS Z Position™ :'}):

Hoang 40

GU = input ('Enter Column Number for "GPS X Velocity" :');
GV = input ('Enter Column Number for "GPS Y Velocity" :'):;
GW = input ('Enter Column Number for "GPS Z Velocity" :');
gps_raw(:,1) = (GPS(:,GB)):
gps_raw(:,2) = (GPS(:,GX)):
gps_raw(:,3) = (GPS(:,GY));
gps_raw(:,4) = (GPS(:,GZ));
gps_raw(:,5) = (GPS (:,GU))
gps_raw(:,6) = (GES(:,GV));
gps_raw(:,7) = (GPS(:,GW));
end

if GC='y'|GC="'yes'|GC=="Y"'|GC=='YES' |isempty (GC)=1
gps raw(:,1) = (GPS(:,1)}): % Irig B did not use GPS time and Age
gps_raw(:,2:7) = (GPS(:,4:9));
% Did not use PDOP

end

[rgps_raw,cgps_raw] = slze(gps_raw);

printme=input ('Save Kalman, gps, covariance, or Bias files? [< YES >] or << NO
>> llls')'.

if printme=='y'|printme=="'Y'|printme=='YES’ |printme=='yes'|printme=="Yes'|
isempty (printme)=1
savekal = input('Save Kalman output to file? {[< YES >] or << NO >> ','s');
if savekal=='y'|savekal='Y'|savekal=="'yes'|savekal=="YES'|savekal=="Yes'|
isempty (printme)==1
kalout = input ('Enter name for Kalman filter output file: ','s');
while isempty (kalout)==1
kalout = input('Enter name for Kalman filter output file: ','s'):

end

Kalout = 1;
else

KAaLout = 0;
end

savegps = input('Save GPS output to file? [< YES >] or << NO >> *,'s'");
if
savegps='y' | savegps=='Y"'|savegps=='yes' |savegps=='YES' |savegps="'Yes'|isempty
{savegps)=1
gpsout = input ('Enter name for transformed GPS file: ','s'):
while isempty (gpsout)=—1
gpsout = input ('Enter name for transformed GPS file: *,'s’):

end
GPSout = 1;

else , -
GPSout = 0;

end

savecov = input ('Save Covariances to file? (< YES >] or << NO >> ','s'");
if
savecov="'y' | savecov="'Y' | savecov="'yes' | savecov=='YES' | savecov=—"Yes' |isempty
(savecov)==1 ’
covout = input ('Enter name for Covariance output file: ','s’'):
while isempty(covout)=1
covout = input ('Enter name for Covariance output file: ','s'):

FEB-11-85 SAT 18:02 CAL POLY AERO ENGR FAX NO. 8057562376 P. 04

41

end
COVout =
elae
COvVout
end

Q=

[}
~

savebias = input('Save Velocity bias to file? << YES »> or [< NO =] ‘,'8'):
if savebias=='n’'|savebias=='N'|savebias=='no'|savebias=='NO" |
lgempty (savebias)==1
BIASout = 0;

else
BIASout = 1;
biasout = input('Enter name for Bias output file: ','s');

while isempty (biasout)==
biasout = input('Enter name for Bias output file: ','s');
end
end % End IF savebias Loop
end % End IF printme Loop

if printme=='n‘|printme=='N'{printme=='no’ |printme=="NO"' |printme=='No"
fprint£('\nGgeneric output files have been c¢reated: kal out and gps_out\n')
eval (['frm cov_out kal_out gps_out'l)

kalout = 'kal_out';
gpsout = 'gps_out!';
covout = 'cov_out’;
KALout = 1;
GPSout = 1;
COvout = 1;
printme = 'y’;
end
&
B R M COORDINATE TRANSFORMATIONS ####¥RFRHEHAHE SR FHSE00E
% Cooxdinate Transform of INS from VCV (Geodetic) to RCS
% variable convention:
% C_nwu _ing = transformation matrix from ing to nwu gystem
% Conversion from V_ins to V_rcs:
$ V_rcs = C_rcs pwu * C_pwunwu * C_nwu ins * V_ins;
% res = runway coordinate gystem (parallel runway, right, down)
% pwu = Parallel runway, West (left), Up system
% o©owu = North, West, Up system
% ing = inertial navigation system
%
wander_angle = 10.099; % Degrees, wander angle
phi = wander_angle/180.0*pi; % Angle between True North and X_rcs(rad)
% Read in ins data:
% First Transformation: From ins to nwu: C_pwu_ing * V_ina = V_nwu
% Second Transformation: From nwu to pwu: C_pwu nwu * Vopwu = V_pwu
% Third Transformaticn: From pwu to res: C_rcs pwu * V_pwu = V_rcs
¥ Translate than Rotate Coordinates
% Final Translation is from the GPS to INU location of aircraft.
% gps_cg = gps_location - cg_location

prmg = input ('SAVE Coordinate Transfoxm of Vins to Vres ? << YES »>» or {< NO
>] os')
if isenpty (prme) ==
prme == 'ne‘’;

Hoang 42

end
if prme=='y'|prme='Y' |prme=='YES' |prme=='yes'|prme='Yesg'
inout=input ('Enter name for transformed Vins-Vrcs output flle t,'sh);

while isempty (inout)==1
inout=input ('Enter name for transformed Vins-Vrcs output file: ','s');

end
end

% Preallocate of memory location to increase processing speed
% Zeros(row,columns); 6 because of six column output.

insdata = zeros(rins, 6):

C_pwu nwu [cos(phi),-sin(phil),0; sin(phi),cos(phi),0; 0,0,1];
C rcs_pwu = [1,0,0; 0,-1,0; 0,0,-1];
fprintf{'\nPerforming Coordinate Transform of INS from Local Level to RCS

system\n')

insdata(:,1l) = raw_ins(:,1); % Needs no transformation for time
for 1 = l:rins
% alpha = azimuth angle - true heading: (in radians)
alpha = raw_ins(i,3) - raw_ins{(i,2);
C_nwu_ins= (cos (alpha),-sin(alpha),0; sin(alpha),cos(alpha),0; 0,0,1]:

V_rcs=C rcs_pwu*c_pwu nwu*C_nwu_ins*[raw_ins (i, 4);raw _ins(i,5).raw _ins(i,6)]:

insdata(i,2:4) = V rcs' .* ft2m;

if prme=='y'Iprme——'Y’|prme=='YES'|prme==‘yes'|prme==’¥es'
fprintf (inout, '%8.0f ',insdata(i,l))
fprintf(inout, '$10.5f ',insdata(i,2:3))
fprintf (inout, '$10.5f\n’', insdata (i, 4))

end % End IF prme Loop

end % End For i Locp

% Coordinate Transform of GPS from ECEF to RCS

% Variable cenvention:

% C_r e = transformation matrix from ecef to rcs system

% C_;_e =Crv*Cve

% r = rcs, runway coordinates

% e = earth center earth fixed

% v = vehicle carried vertical (true north)

%

a = 6378137.0; % Semi-major axis of earth ellipsoid (6378137 m)

b = 6356752.3141; % Semi-minor axis of earth ellipsoid (m)

h =12.4; % Geodetic height of Runway 35 Aim Point (m)

e = sgrt((2*(a-b)/a)-((a-b)"2/(a"2))): % Eccentricity of earth ellipsoid
SI = 37.41335361/180.0*pi; % Geodetic latitude of Runway Aim Point (rad)
IM = -121.1082725/180.0*pi; % Geodetic longitude of Runway Aim Point (rad)
N = a/(sqrt (1-(e*e*sin(SI)*sin(SI)))); % Radius of curvature of ellipsoid

% AP_ecef 1s the relationship between geodetic & ECEF at Crows Landing, now in

SI units
AP ecef=[(N+h) *cos(SI)*cos(LM); (N+h)*cos(SI)*sin(IM); (N* (1~

e*e)+h)*sin(SI)];

C v e=[- 51n(SI)*cos(LM),—51n(SI)*51n(LM) cos (SI);~sin(1M),cos(LM),0; -
cos(SI)*cos(lM),—cos(SI)*51n(LM),—51n(SI)],

Crv [cos(phi), sin(phi), 0; =-sin(phi), cos(phi), 0; 0, 0, 1];
Cre=Crv=*Cuve:;

FEB-11-95 SAT 18:03 CAL POLY AERO ENGR FAX NO. 8057562376 P. 05

43

fprintf (' \nPerforming Coordinate Transform of GPS from VCV to RCS system\n')

gpsdata = zeros(rgps,7); % 7 for 7 columng output style. '
gpsdata(:,1) = gps_raw(:,1); % Needs no transformation for time

for j = l:rgps

del wgs = [gps_raw(j,2);gpa_raw(j,3);gps_raw(i,4)]1-AP ecef;
gps_res = Cr e * del_wgs; % Now gpsdata is in rcs frame
opsV_recs = C_r e * [gps_raw(j,5); gps_raw(i,6); gps_raw(j,7)]1;
gpsdata{j,2:4) = gps_rcs'; % GPS positionsg
gpsdata(j,5:7) = gpaV_xcs(1:3,1)'; % Vxres, Wrce, Vzrcs
if GPSout ==
fprintf (gpsout, '%8.0f ',gpsdata(j,1)) % Irig B
fprincf(gpsout, '%10.5f ',gpadata(j,2:6)) % Xgps, Yaps, Zaps, Vx, W
fprintf (gpsout, '%10.5f\n',gpsdata(j,7)) % Vz

end % End IF GPSout Loop
end % End FOR j Loop

%
% Transferring GPS at tail to INU location before entering Kalman filter
forintf('And from GPS antenna te INU location.\n')
for b = l:rgps
gpsdata(b,2:4) = gpsdata(b,2:4) - gps_inu';
end

B AR Y INITYALIZING KALMAN VARIABLES ######## 54885 44HE04414

fprintf (' \nInitalizing Kalman Variables now.....\n')

% Tnitializing Matrices % format [11 12 13; 21 22 23; ...]

g = 10.0;

exr = [g*3.0; g*3.0; g*3.0]; % Wild data, prcent change from previous

fprint £ ('\nDATA Filter now at +/-%6.3f meters.\n', err)
Q= [(4.0)"2, 0, 0; 0, (1*£t2m)"2, 0; 0, 0, (5*fg2m)~2];
% Init Measure Cov, Q(1,1) is already in meters.

H=1{1, 0, 0; 0, 1, 0; 0, 0, 1]; % H = Ideal noiseless matrix between z & x
R = [(1.0%€t2m)~2, 0, 0; Q, (3*£t2m) "2, 0; 0, 0, (3*ft2m)~2); %

% Initial: State Covariance

IM = {1, O, 0; O, 1, 0; O, 0, 1]; % Identity Matrix

RKx = [1, 0, 0; 0, 1, 0; 0, 0, 1); % Initial Guess: Kalman Gain vValue

Ry = [, 0, G; 0, 1, 0; 0, O, 11;

Rz «~ [1, O, O; 0, 1, 0; 0, 0, 11:;

Px prior = (1, 1, 1; 1, 1, 1; 1, 1, 1]; % Prior estimate of Xerror P

Py prior = [1, 1, 1; 1, 1, 1; 1, 1, 11;

Pz prior = [1, 1, 1; 1, 1, 1; 1, 1, 11;

phi_Matrix = [1, del _time, del_time; 0, 1, 0; 0, 0, 11:

% Search for a common Irig B time befoxe starting Kalman Filter Routine
ina_start 2; % Start INS at 2nd row of data
gps_start 1;

mn

for start = 1l:rgps
if insdata(start,1)==gpsdata(gps_start,1)linsdata(start,l)
<gpsdata(gps_staxrt, 1)
ins start = start;
break;
else

Hoang 44

gps_start = gps_start + 1;
end % End IF insdata... Loop
end % End FOR start Loop
if start = rgps
fprintf('\n\n f!iftrrerrrrrrririitt WARNING prrrrrrrrrrrrrprtrttiN\nt)

fprintf ("\nINS and GPS Irig B times are not within the same time frame\n')

fprintf(’\n******************** Goshawk Terminated ***x#xkxxx*kxx**\n')

break: end;
end

% Prior estimate of X state = [Xtrue_position; Vtrue velocity:; V_bias]
X _prior = [gpsdata(gps_start, 2)+insdata (ins_start, 2) *gps_time;
insdata(ins start,2); (insdata(ins_start,2)-gpsdata(gps_start,3))];
y_prior =_[gpsdat:a(gps_st:a::t,3)~r~insdata(ins_sta.rt,3)"fgps___t:ime;
insdata(ins_start,3); (insdata(ins_start,3)-gpsdata(gps_start,6))];
z_prior = (gpsdata(gps_start,4)+insdata(ins_start,4)*gps_time:
insdata(ins_start,4); (insdata(ins_start,4)-gpsdata(gps_start,7))];
%
% $FFFFFFsAA4#4444444% ENTERING KAIMAN FILTER LOCP ########isd#dds#s#adns

fprintf ('\nEntering Kalman Filter Loop..... \n')

% Equations working with

% State: X({k+1l) = Phi(k) * X(k) + W(k)

$ Measurement: Z(k) = H(k) * X(k) + V(k)

% Where: X{k) = [True_ position; True velocity]
% W(k) = [Qgps 0; 0 Qinu]

% Z{(k) = [Position _gps:; Velocity inu]

% V(k) = [Rgps:; Rinu]

%

% Kalman Gain: K=P* H' *» (H* P * H' + R)"(-1)
% Update Estimate: X upest = X prior + K * (2 - H * X prior)
% Error Covariance: P _upest = (IM - K * H) * P _prior;

% Project Ahead: X _prior = phi Matrix * X upest;

% P prior = phi_Matrix * P_upest * phi Matrix' + Q;
%

m=90;

gps_x_total = 0O;

gps_y_total = 0Q;

gps_z total = 0;

gc = gps_start: % Counters for GPS data advancement
gps_X_total = 0;

gps_Y_total = 0;

gps_2_total = 0; % Total # GPS ignored

half time = 1:

Vx_sum = 0;

Vy_sum = 0;

Vz_sum = (; % Running total of gps-ins lag time
X average = 0; -
Y average = 0;

Z_average = 0;

X count = 1;

Y _count = 1;

Z_count = 1;

X skip data = 2;

Y skip data = 2;

Z skip data = 2;

Pins(1l,1) = gpsdata(gps_start,2):; % Initial INS position
Pins(2,1) = gpsdata(gps_start, 3):

Hoang 45

Pins(3,1) = gpsdata(gps_start,4):;

Entering Kalman Loop
K kalm = zeros(0.8*rins,13); % Output has 13 columns
for p = ins_start:rins
m=m+ 1;
% STEP ONE: Compute Kalman Gain

o0 o0

Kx = Px _prior * H' * (H * Px_prlor * H' + R)"(-1):
Ky = Py prior * H' * (H * Py_prlor * B' + R)™(-1);
Kz = Pz prior * H' * (B * Pz_prior * H' + R)"(-1);

% Test to ensure not using wild data in next z measurement
if half time == half & gc < rgps

gc = qc + 1; % Read next gps data or incoming data

if abs(gpsdata(qc, 2)+ (Vx_sum/X_count+gpsdata(qc, 5)) /2*gps_time-
x prior(1,1)) > err(1,1)
fprintf('p = %8.0f, Irig = %8.0f :',p,insdata(p,1))
fprintf('X Diff = %9.4f\n',abs(gpsdata(qc,2)+x_average-x_prior(1,1)))

X skip data = 1; % Update ins measurements only
gps_x_total = gps_x_total + 1; % Keep track of total points deleted
else
X skip data = 2; % Status flag, good measurements
end

if abs(gpsdata(gc, 3)+(Vy_sum/Y_count+gpsdata(qc, 6))/2*gps_time-
y pricr(l,1)) > err(2,1)
fprintf ('p = %8.0f, Irig = %8.0f :',p,insdata(p,1))
fprintf ('Y Diff = %9.4f\n',abs(gpsdata(qc,B)+Y_average—y_prior(1,l)))

Y skip data = 1; % Update ins measurements only
gps_y_total = gps_y_total + 1; % Keep track of total points deleted
else
Y skip data = 2; % Status flag, good measurements
end

if abs(gpsdata(qgc, 4)+(Vz_sum/Z_count+gpsdata(qgc,7))/2*gps_time-
z_prior(i,1)) > err(3,1)
fprintf('p = %8.0f, Irig = %8.0f :',p,insdata(p,1))
fprintf ('2 Diff %9.4f\n', abs (gpsdata(gc, 4) +Z_average-z_prior(l,1)))
Z_skip_data = 1; % Update ins measurements only

I

gps_z_total = gps_z_total + 1; % Keep track of total points deleted
else
Z skip data = 2; % Status flag, gocd measurements
end
half time = 1; % Reset ins/gps time sync
else % Else half time Loop _
X skip data = 1. % Update with INS Position estimate
Y Sklp “data = 1;
2 _skip_data = 1;
half time = half time + 1; % Incremental sync time counter

end % End IF half time Loop

% STEP TWO: Update estimate with measurement z
% Equation: #_upest = # prior + K¢ * (z# - H * # prior)

Hoang 46

if X skip data = 2 % Update X and use good measurement data
X average = (Vx_sum/X_count + gpsdata(qc,5))/2 * gps_time;
zx = [gpsdata{qc, L, 2)+X _average; insdata(p,2):; (insdata(p,2)-
gpsdata{gc,5))]
X count = 0:
Vx_sum = 0;
else
zx = [x prior(l,1); insdata(p,2); x_prior(3,1)];
X count = X count + 1;
Vx_sum = Vx_sum + insdata(p,2);
end
x_upest = x prior + Kx * (zx - H * x _prior);

if Y skip data = 2 % Update Y and use good measurement data
Y average = (Vy_sum/Y_count + gpsdata(qc,6))/2 * gps_time;
zy = [gpsdata(qgc, 3)+Y_average; insdata(p,3); (insdata(p,3)-
gpsdata(ge,6))]:
Y count = 0;
Vy_sum = 0;
else
= [y _prior(1,1):; insdata(p,3): y_prior(3,1)];
Y count = Y_count + 1;
Vy_sum = Vy_sum + insdata(p,3);
end
y_upest = y prior + Ky * (zy - H * y_prior);

if Z_skip data == 2 % Update Z and use good measurement data
Z_average = (Vz_sum/Z_count + gpsdata(qc,7))/2 * gps_time;
zz = [gpsdata(gc, L, 4) +2 average, insdata(p,4):; (insdata(p,4)-
gpsdata(gc, 7))]:
Z count = 0;
Vz_sum = 0;
else
zz = [z_prior(1,1); insdata(p,4); z_prior(3,1)]:
Z_count = Z count + 1;
Vz_sum = Vz_sum + insdata(p,4):
end
z_upest = z prior + Kz * (zz - B * z_prior):

K kalm(1) = insdata(p,1); % Irig B

K kalm(2:4) = x_upest'; % X update, Vx_update, Vx bias_update
K kalm(5:7) = y upest'; % Y update, Vy update, Vy] “bias _update
K kalm(8:10) = z upest'; % Z_update, Vz_update, Vz_bias update
K kalm(11:13) = Pins';

Pins(1,1) = Pins(1,1) + insdata(p,2) * del time;

Pins(2,1) = Pins(2,1) + insdata(p,3) * del : _time;

Pins(3,1) = Pins(3,1) + insdata(p,4) * del_time:

% STEP THREE: Compute Error Covariance for Updated Estimate

Px_upest = (IM - Kx * H}) * Px prior;
Py upest = (IM - Ky * H) * Py prior;
Pz_upest = (IM - Kz * H) * Pz_prior;
if

printme=='y'|printme=='Y' |printme=='YES' |printme=='yes'|printme=='Yes’ |isempty
(printme)==1
if KALout == 1

Hoang 47

fprlntf(kalout,'% -7.0f ',K kalm(1)) % INS Irig B
% X ins, X kalman, Y ins, Y_ kalman Z_ins

fprintf (kalout,'%-10.4f ',K kalm(1l),X kalm(2),K kalm(12),K kalm(5),
K _kalm(13))
fprintf (kalout, '$-10.4£f\n’,K kalm(8)) %2_kalman
end

if COvout = 1
fprintf (covout, '%-8.0f ', K kalm(l)) % Irig B
% Px_upest, Pvx_upest, Py_upest
fprintf (covout, '%-6.3f ',Px_upest(l,1l),Px_upest(2,2),Py_upest(l,1))
% Pvy upest, Pz_upest
fprintf (covout, '%-6.3f ',Py upest(2,2),Pz_upest(l,1))
fprintf (covout, '$-6.3f\n’,Pz “upest (2,2)) % Pvz_upest

end

if BIASout == 1
fprintf (biasout,' %-8.0f ', K kalm(l)) % Irig B
fprintf (biasout,' %-10.4f ', zx(3,1), zy(3,1))
% Vx _bias_update, Vy bias update
fprintf (biasout,' %-10.4f\n', zz(3,1)) % Vz_bias_update
end
end % End IF printme Loop

% STEP FOUR: Project Ahead

x_prior = phi Matrix * x_upest;

y_prior = phi Matrix * y upest;

z_prior = phi | “Matrix * z _upest;

Px_prior = phi_ Matrix * Px upest * phi Matrix' + Q;
Py prior = phi Matrix * Py upest * phi Matrix' + Q;
Pz_prior = phi_Matrix * Pz upest * phi_Matrix' + Q;

end % End For p Loop

fprintf ('\n')

fprintf ('Total number of GPS X data omitted: %-5.0f points\n', gps_x_total)
fprintf ('Total number of GPS Y data omitted: %-5.0f points\n', gps_y_total)
fprintf ('Total number of GPS Z data omitted: %-5.0f points\n', gps_z_ total)

echo off

toc % Print time counter
end % End of script

%
% #333433444444444344444444444 END OF SCRIPT ######i##84444 44444443434 344

Hoang 48

APPENDIX B
TRUTH ALGORITHM WRITTEN IN MATLAB CODE

The following flights met all data set requirements and were analyzed by this algorithm:
3°: FSN-01901
6° : FSN-3092-011

9°: FSN-01904
S HEHFSSR4LAFHHAAH BB SEFHSHHBHSFHFF AR ER AR A AR AR R SR AR R AR ARS
% # .
% # PROJECT: TRUTH KAIMAN FILTER #
% # INTEGRATION OF DGPS & LASER INFORMATION #
% # #
% # #
% # WRITTEN BY: TY HOANG #
% # AERONAUTICAL ENGINEERING DEPARTMENT #
% # CAL POLY STATE UNIVERSITY - SAN LUIS OBISPO #
% # FEBRUARY 18 1994 #
% # #
% # In fulfillment of a Master's Thesis at CAL POLY #
% # #
% # CAL POLY ADVISOR: DR. DANIEL J. BIEZAD, #
% # AERCNAUTICAL ENGINEERING DEPARTMENT #
% # NASA AMES ADVISOR: MR. HARRY N. SWENSON, #
% # NAVIGATION AND CONTROLS BRANCH #
% # #
S EREFFEEFHEFHEEH IS HHH M HH AR AR AR A R e AR A AR A R AR E AR R
%
% Objective: To implement a Kalman filter routine on laser and ins data, to
% produce positional information. OCutput used as truth data and compared
% to the positional information from the Navigation Kalman Filter.
% INS data received at 64Hz and LASER at 100 Hz

file KF Truth = ('KFTruth.m');

% Assumptions:
Guessed Initial Value of: Q & R covariances
Initialized Values: x prior, P_prior, tau, del time
Ceonstant Calculated Matrix: phi, H
Constant velocity during flight and data gathering
First data point is not a wild point
NOTE: insdata is in English Units -
laser data is in SI Units

o A 0 o JO o o

tic % Engage time counter

clc % clear command window

clear on = input ('Clear memory before starting script? << YES >> or [< NO >]

l, lsl);

if

clear on='y'|clear _on='Y'|clear_on=='yes'|clear on=='YES'|clear on=='Yes'
clear

end

FEB-11-95 SAT 18:03 CAL POLY AERO ENGR FAX NO. 8057562376 P. 06

49

echo off
echo_on = input ('Turn echo on? << YES >> or [« NO »] ', 'g');
if isempty(echq_on)==1]echQ_on=='n'lecho_on==‘ ' lecho_on=='No" |echo_on=="'NQ"
echo off
else
echo on
end
%
% HHHERR S R RS INITIALIZING CONSTANTS #####T R4 #S SR RGRIHERES
% Input Parameters
laser_rate = 2 ; % 2 Hertz to simulate gps update of 2 Hertz;
fprint £ ('LASER data rate of 100 Hz is captured at 2 Hz for INS update.\n')
ins_rate = 64;
fprintf ('INS data rate at 64 Hz.\n\n')
half = ins_rate/laser rate;

% Setting Constants' initial values: Length(ft), Time(ms)
del_time = 1/ins rate;

ft2m = 0.3048; % Conversion from feet to meters

in2ft = 1/12; % Conversion from inches to feet

cg_location [359.50; 0.00; 258.75]*in2ft*ft2m; % cg depends on config
gpa_laocation {761.00; 0.00; 334.00]*in2ft*ft2m; % GPS antenna
inu_location [298.75; 32.0; 212.50]*in2ft*ft2m; % Actuval INU location
lazer. location [251.00; 56.0; 206.50]1*in2ft*ft2m; % Right Reflector

nn

% Coordinate Transfoxrm of LASER from right reflector to INU location
laser_inu = inu location - laser_location:
% laser_inu = [298.75-251.00; 32.0-56.0; 212.50-206.50]*in2ft*ft2m; % RHS
% laser_imu = [+ ; - ; + 1; % For proper sign convention when subtracted.
%
$ AEEMR R R #H S INTTIALIZING INPUT FILES HEFHRBHERH SR HEFSE R BB #
% Default raw data file formatted columns:
% Irig B Time, Roll, Pitch, Yaw, Platform Azimuth Angle, Vvx, W, Vz.
% Or modified data file:
% Irig B Time, Vx, W, Vz

fprint£ ('\nINS raw data file MUST contain ALL the following data \n')
fprintf (' (In column format)\n')

fprintf (' [Irig B, Yaw, Planform Azimuth Angle, Vx_ins, Vy_ins, Vz_ins]\n\n')
fprintf (*NOTE: Columns do not have to be in this specific order\n\n')

ins_data file = input('Enter INS data file: ', 's');
while isenpty(ing_data_file)==

ins_data file = input ('Enter INS data file: Lis');
end

fprintf('\nloading INS data.....\n\n\n')

eval(['load ', ins_data_file]);

eval (['INS = ', ins_data file, ';']);

[ring,cins) = size(INS); % sizing row by colum data

fprintf('INS data is in Geodetic Coordinate System \n')
fprintf(...(Longitude, Latitude, and Altitude)\n')

fprintf('Time: milliseconds, Angle: degree, Velocity: feet/second \n')
fprintf (' \nDEFAULT loads the following column format : \n*)

Hoang 50

fprintf (' (Irig B, Yaw, Pitch, Roll, Azimuth Angle, Vx_ins, Vy ins,
vz _insl\n')

fprintf ('NOTE: Current code uses the following information \n')

fprintf (! [Irig B, Yaw, Azimuth Angle, Vx_ins, Vy_ins, Vz_ins] \n\n')
IC = input ('Use DEFAULT ([< YES >] or << NO >> ','s'):;

if isempty(IC)==1

IC = 'y';
end
fprintf('\nConverting INS data into SI Units..... \n')

if IC='n'|IC="no'|IC=="N'|IC=='NO'

IBT = input ('Enter Column Number for "INS Irig B time" :');
IYW = input ('Enter Column Number for "INS Yaw Angle"” :'});
IAA = input ('Enter Column Number for "Azimuth Angle” vy ;
IVX = input ('Enter Column Number for "INS X Velocity™ :');
IVY = input ('Enter Column Number for "INS Y Velocity" :');
IVZ = input ('Enter Column Number for "INS Z Velocity™ :'):
raw_ins(:,1) = INS(:,IBT);

raw_ins(:,2) = INS(:,IYW);

raw_ins(:,3) = INS(:,IRA);

raw_ins(:,4) = INS{:,IVX);

raw_ins(:,5) = INS(:,IVY);

raw ins(:,6) = INS(:,IVZ);

end % End IF IC Locp

raw_ins = zeros(rins,6);

if IC="y'
raw_ins(:,1) = INS(:,1); % Irig
raw_ins(:,2) = INS(:,2): % Yaw
% raw_ins(:,#) = INS(:,3:4); % Pitch, Roll : not used
raw_ins(:,3) = INS(:,5): % Azimuth Angle
raw ins(:,4:6) = INS(:,6:8); % Vxins, Vyins, Vzins

end % End IF IC Loop

laser_data file = input('Enter LASER data file: ','s’');
while isempty (laser data file)==1

laser data file = input('Enter LASER data file: ','s');
end

fprintf ('\nLoading LASER data..... \n\n')

eval (['load ', laser data file]):

eval (['LASER = ', laser _data file, ';']):

(rlaser,claser] = size(LASER); % sizing row by column data

fprintf ('LASER data is in Runway Cocrdinate System\n’)
fprintf('... (Xposition, Yposition, and Zposition)\n')
fprintf('Time: milliseconds, Position: meters, Velocity: meters/second\n')
fprintf ('\nDEFAULT loads the following column format : \n')
fprintf (' (Irig B, Xlaser, Ylaser]\ n')
fprintf ("NOTE: Current code uses the follewing information \n')
fprintf (* [Irig B, Xlaser, Ylaser, Zlaser]\n\n')

LC = input ('Use DEFAULT (< YES >] or << NO >> ','s');

if isempty (LC)==1
IC = 'y';

end

Hoang 51

laserdata = zeros(rlaser,4):
if IC='n'|LC="no' |LC='N'|LC=='NO'
input ('Enter Column Number for "LASER Ixig B time™ :');

LB:
ILX = input (’Enter Column Number for "LASER X Position" :');
LY = input ('Enter Column Number for "LASER Y Position™ :'):
LZ = input ('Enter Column Number for "LASER Z Position" :');
laserdata(:,1l) = (LASER(:,LB)); % Laser data in SI Units
laserdata(:,2) = (LASER(:,LX)):
laserdata(:,3) = (LASER(:,LY)):
laserdata(:,4) = (LASER(:,LZ2)):
end
if LC='y'|LC=='yes'|LC=="Y'|[LC=='YES'|isempty (LC)==1
laserdata(:,1) = (LASER(:,1)): % Irig B
laserdata(:,2:4) = (LASER(:,2:4)):; % Convert to English Units
end

% Making sure data are within range before further processing

if raw ins(rins,1) < laserdata(l,l) | laserdata(rlaser,l) < raw_ins(1,1)
fpri;tf (! \n************************ WARNING ***********************\nl)
fprintf('Time stamps between the two file are out of range.\n')
fprintf ('Program TERMINATED, please try again...\n\n')
break;

end

printme=input ('Save Truth Laser/Kalman file? [< YES >] or << NO >> ','s'});
if isempty(printme) = 1
printme = 'y*';
end
if printme=='y'|printme=='Y' |printme=='yes'|printme='YES'|printme="'Yes'
truth X = input ('Enter name of X axis Truth Laser/Kalman output file:
l'lsl);
while isempty(truth X)=1
truth X=input ('Enter name of X axis Truth Laser/Kalman output file:
l,'sl);
end
truth ¥ = input ('Enter name of Y axis Truth Laser/Kalman output file:
l,lsl);
while isempty (truth Y)==1
truth_Y=input ('Enter name of Y axis Truth Laser/Kalman output file:
l’lsl)'.
end '
truth 2 = input ('Enter name of Z axis Truth Laser/Kalman output file:
','S'),'
while isempty (truth 2)=1 .
truth Z=input ('Enter name of Z axis Truth Laser/Kalman output file:
1,lsl);
end
end % End IF printme='Yes' Loop
if printme=='n'|printme=='N'|printme='no’'|printme=="'NO'|printme=="'No’
fprintf ('\nGeneric output files have been created: truthX out, truthY out,
and truthZ out.\n\n')
eval (['!'rm truthX out truthY out truthZ out'])
truth X "truthX out’:
truth ¥ 'truthY out’;
truth 2 'truthZ out’;

Hoang 52

printme = 'y';
end

save_sync=input ('Save synchronized INS/LASER data to file? << YES >> or [< NO
>} ','s'):
if isempty(save_sync) = 1
save_sync = 'non';
end

if save sync='y'|save_sync=='Y'|save_ sync=='yes'|save_ sync='YES'
save_sync = 'yes';
sync_out = input ('Enter name of synchronized INS/LASER cutput file: ','s');

while isempty (sync_out)}==1
sync_out = input ('Enter name of synchronized INS/LASER output file:
", 'sT) i
end
end
$2I3555Ea44R44%433% COORDINATE TRANSFORMATICNS #######dsdsd#ssnssdadias

o
Coordinate Transform of INS from VCV (Geodetic) to RCS
Variable convention:

C nwu_ins = transformation matrix from ins to nwu system
Conver51on from V_ins to V_rcs:

V_rcs = C_rcs pwua * C pwu nwu * C _nwu ins * V_ins;
runway coordinate system (parallel runway, right, down)
Parallel runway, West(left), Up system
North, West, Up system; also Local Level System
inertial navigation system, geodesic (lecng.,lat.,alt)

o0 o0 G0 P OP JO OO OO 0P O o oF
5
é |
mnu

wander_angle = 10.099; % Degrees, wander angle
phi = wander_angle/lB0.0*pi; % Angle between True North and X rcs(rad)

Read in ins data:
First Transformation: From ins to nwu: C nwu ins * V_ins

Second Transformation: From nwu to pwu: C _pwu nwu * V_nwu
Third Transformation: From ned to rcs: C_rcs_pwu * V_pwu

Translate than Rotate Coordinates
Final Translation is from the GPS to INU location of aircraft.

V_nwu

V_pwu

V_rcs

a0 o0 o° o0 o0 o

% Preallocate of memory location to increase processing speed

insdata = zeros(0.8*rins,4);
C_pwu nwu = [cos(phi),-sin(phi),0; sin(phi),cos(phi),0; 0,0,1];

C rcs_pwu = [1,0,0; 0,-1,0; 0,0,-1];
fprintf (' \nPerforming Coordinate Transform of INS from Local Level to RCS

system\n')

for 1 = 1l:xins

insdata(i,1) = raw_ins{i,1l); % Needs no transformation for time
% alpha = azimuth angle - true heading: (in radians)
alpha = raw_ins(i,3) - raw_ins(i,2):

C_nwu ins—[cos(alpha),—sin(alpha) 0; sin(alpha),cos(alpha),0; 0,0,1]:;

V_zcs=C rcs_pwu*c_pwu nwu*C_nwu_ins*(raw_ins(i,4);raw_ins(i,5);raw_ins(i,6)];
insdata(i,2:4) = V_rcs' * ft2m;
end % End For i Loop

% Synchronizing INS and LASER data and transforming LASER to INU location

Hoang 53

fprintf ('\nSynchronizing INS and LASER data..... \n'")

syncdata = zeros(0.8*rlaser,7):
entry = 2;
sync_row = 0;

if insdata(2,1) < laserdata(2,1)
while insdata(entry,l) < laserdata(2,1)
entry = entry + 1;
end
if insdata(entry,l) > laserdata(2,1)
entry = entry - 1; % To always make laser the larger time stamp
end
end

for lsrrow = 2:rlaser

% If laser and ins time matches, Jjust print to file

while laserdata(lsrrow,l) == insdata(entry,l) & entry < rins
Sync_xrow = Sync row + 1;
syncdata (sync_row,1:4)
syncdata (sync_row, 5:7)
entry = entry + 1;

end % End WHILE laserdata... = ... LoOp

insdata(entry,1:4):;
laserdata (lsrxrow,2:4);

([}

% Interpolate Irig B time between ins and laser if times dont match

% Only laser time will be interpolated

% Calling interpolation function ('inter8.m' is a 'function' file)

% function = inter8(TL(i), TL(f), TI(n), X{(i), X(f))

% TL=laser time, TI=ins time, i=initial, f=final, n=now, X=Position

while laserdata(lsrrow,l) > insdata(entry,l) & entry < rins
Sync_row = sync_row + 1;

NOW(1l,1) = feval('inter8', laserdata(lsrrow-1,1), laserdata (lsrxow, 1),
insdata(entry,l), laserdata(lsrrow-1,2), laserdata(lsrrow,2}):

NOW(2,1) = feval('inter8', laserdata(lsrrow-1,1), laserdata (1srrow,1),
insdata(entry,1), laserdata(lsrrow-1,3), laserdata(lsrrow,3)):

NOW(3,1) = feval('inter8',6 laserdata(lsrrow-1,1), laserdata(lsrrow,1l),
insdata(entry,l), laserdata(lsrrow-1,4), laserdata(lsrrow,4)):

syncdata (sync_row,1:4) = insdata(entry,1:4);
syncdata (sync_row, 5:7) = NOW';
entry = entry + 1;
end % End WHILE laserdata... > ... Loop
if sync_row <= rins
rhos = sSync _row;
end
end % End FOR lsrrow Loop _

% sizing synchronized row by column data
{rsync,csync] = size({syncdata);:
%
% Transferring RHS laser to INU location before entering Kalman filter
for b = 1l:rsync
syncdata(b, 5:7) = syncdata(b,5:7) = laser_inu';
end

% Equations working with

Hoang 54

% State: X(k+1) = Phi(k) * X(k) + W(k)

% Measurement: Z(k) = H(k) * X(k) + V(k) Where:
% X(k) = [Xtrue_position; Vtrue_velocity]

% W(k) = [Qlaser 0; 0 Qinu]

% Z(k) = [Xlaser; Vinu]

% V(k) = [Rlaser; Rinu]

% 5FFFFEFETEEEB3%%%%%%% Initializing Constants $%%%¥%%3%E%53%5%5%5%%3%%%

% Setting initial values: Length in feet, Time in seconds
g = 10.0; % Set as a criteria for wild data filter
err = {g*3.0; g*3.0;9*3.0]; % Wild data clearance, 3.5 for Xtra clearance

lerr = [g*3.0; g*3.0; g*3.0)]: % Laser wild data clearance in feet

ins_rate = 64; % In Hertz

del time = l/lns rate;

inscount = 0; % Total number of data points skipped
las_x total
las_y total
las_z_total
X sklp data
Y Sklp data
Z_skip data
track x las
track_y_las
track z_las

-,

% 0 is good initial data, 1 is bad initial data

L/ | 1 | O 1

[oNeoNoNoNoloNeoNeNe]
Ss Ye Ye Se Ne N Ne Se wa

fprintf ('\nFilter Bandwidth now at +/-%6.3f meters.\n',6err)

% FEHLHHIEEEIEE%%%% Initializing Kalman Constants $¥%%3%33%333%53%%%%%

% Inltializing Matrices
phi Matrix = [1 del time; 0 1];

Q = [(0.5*ft2m)"2 O T0 (1*ft2m)~2); % Initial Guess: Measurement Covariance
H=[10; 01]; % Ideal noiseless matrix between z & x

R = [(1*ft2m)*2 0; 0, (0.3)"2): % 172 Initial Guess: State Covariance
M ={1 ; 01}; % Identity Matrix

= [1 O 0 13 % Initial Guess: Kalman Gain Value

Ky = {1 0; 01]); % Initial Guess: Kalman Gain Value

Kz = (1 0; 0 1); % Initial Guess: Kalman Gain Value

Px_prior = {1 1; 1 1]; % Prior estimate of Xerror covariance

Py prior = (1 1; 1 1]; % Prior estimate of Xerror covariance

Pz prior = [1 1; 1 1]; % Prior estimate of Xerror covariance
x_prior = [syncdata(l,5); syncdata(l,2)]:; % Set equal to laser data
y_prior = [syncdata(l,6); syncdata(l,3)]: ‘
z_prior = [syncdata(l,7); syncdata(l,4)]:

Pins(l,1l) = syncdata(l,5); % Set equal to laser data

Pins(2,1) = syncdata(l,6): _

Pins(3,1) = syncdata(l,7):

xn = 0;

yn = 0;

zn = 0O;

xk = 0;

vk = 0;

zk = 0;

% Entering Kalman Loop

55

% NOTE: output file format
% [Irig B, Vyinsrcs, Vyupes, Yinsrcs, Yupest, Ylaser, Px, Pv]

kaloutX = zeros({.8*rsync,8);
kaloutY = zeros(.8*rsync, 8);
kaloutZ = zeros(.8*rsync,8);

fprintf{'\nEntering Kalman Filter Loop\n')

for m = 1l:rhos
% STEP ONE: Compute Kalman Gain

Kx = Px_prior * H' * (H * Px prior * H' + R)"™(-1);
Ky = Py _prior * H' * (H * Py prior * H' + R)~(-1);
Kz = Pz prior * H' * (H * Pz_prior * H' + R)"(-1);
xt = syncdata(m,5);
xw = X _prior(l,1);
if abs(xt-xw) > err(l,1)
X_skip data = 1; % Update ins measurements only
las_x total = las_x total + 1; % Keep track of total points deleted
else
X_skip_data = 0; % Status flag, good measurements
end
vyt = syncdata(m,6);
yw = y_prior(l,1);
if abs(yt-yw) > err(2,1)
Y_skip_data = 1; % Update ins measurements only
las_y_total = las_y_total + 1; % Keep track of total points deleted
else
Y_skip_data = 0; % Status flag, good measurements
end
zt = syncdata(m,7);
zw = z_prior(l,1);
if abs(zt-zw) > erx(3,1)
Z_skip data = 1; % Update ins measurements only
las_z_total = las_z_total + 1; % Keep track of total points deleted
else
Z_skip_data = 0; % Status flag, good measurements
end
ifm==1
X_skip_data = 0; % To ensure lst data is read as good measurement
Y_skip_data = 0O;
Z_skip_data = 0;
end

Determine Wild Laser Data for Qutput to file, this is for output purposes
not used by code for Kalman analysis
If wild data point is bad print last "good*® data point.
ifm>16&m«< rhos -1
if abs(syncdata(m,5)-syncdata(m-1,5)) > lerr(l,1)
XN = X1 + 1;
else
xn = 0;
end

9P 0P dP

56

xk = m - xn;

if abs(syncdata(m,6)-syncdata(m-1,6)) > lerr(2,1)

yn =yn + 1;
else

yn = 0;
end
vk =m - yn;

if abs(syncdata(m,7)-syncdata(m-1,7)) > lerr(3,1)
zn = zn + 1;

else
zn = 0;

end

zk = m - zn;

else

B
TRRTINT!
288

~s

end

STEP TWO: Update estimate with measurement z

if X _skip_data == 0 % Update and use good measurement data
zx = [syncdata{(m,5); syncdata(m,2)]; % X axis

else
zx = [x_prior(l,1l); syncdata(m,2)];

end

x_upest = x_prior + Kx * (zx - H * x_prior);

if Y _skip_data == 0 % Update and use good measurement data
zy = [syncdata(m,6); syncdata(m,3)]}; % Y axis

else
zy = [y_prior(l,1); syncdata(m,3)];

end

y_upest = y_prior + Ky * (zy - H * y_prior);

if Z_skip_data == 0 % Update and use good measurement data
zz = [syncdata(m,7); syncdata(m,4)]; % 2Z axis

else
zz = [z_prior(l,1); syncdata(m,4)];

end

z_upest = z_prior + Kz * (zz - H * z_prior);

STEP THREE: Compute Error Covariance for Updated Estimate
Px_upest = (IM ~ Kx * H) * Px_prior;
Py _upest = (IM - Ky * H) * Py _prior;
Pz_upest = (IM - Kz * H) * Pz_prior;

Output in following column format:

[Irig, Vxins, Vkalman, Xinsrcs, Xkalman, Xlaser, Px, PVx]

kaloutX(m,1l) = syncdata(m,1);

kaloutX(m,2:5) = [syncdata(m,2), x_upest(2,1), Pins(1,1), x_upest(1,1)];
kaloutX(m, 6:8) = [syncdata(xk,5), Px_upest(1l,1), Px_upest(2,2)];
Pins(1,1) = Pins(1,1) + syncdata(m,2) * del_time;

kaloutY(m,1l) = syncdata(m,1);

57

kaloutY(m,2:5) = [syncdata(m,3), y_upest(2,1), Pins{(2,1), y_upest(1,1)1;
kaloutY(m, 6:8) = [syncdata(yk,6), Py_upest(l,1)}, Py _upest(2,2)}];
Pins(2,1) = Pins(2,1) + syncdata(m,3) * del time;

kaloutZ(m,1l) = syncdata(m,l);

kaloutZ(m,2:5) = [syncdata(m,4), z_upest(2,1), Pins(3,1), z_upest(1,1)];
kaloutZ(m,6:8) = [syncdata(zk,7), Pz_upest(l,1), Pz_upest (2,2)];
Pins(3.1) = Pins(3,1) + syncdata(m,4) * del time;

% STEP FOUR: Project Ahead

x_prior = phi_Matrix * x_upest;
y_prior = phi_Matrix * y_upest;
z_prior = phi_Matrix * z_upest;
Px_prior = phi_Matrix * Px_upest * phi_Matrix' + Q;
Py_prior = phi_Matrix * Py_upest * phi_Matrix' + Q;
Pz_prior = phi_Matrix * Pz_upest * phi Matrix' + Q;

end % End IF m Loop

fprintf (' \nNumber of X LASER points thrown out: $6g\n', las_x_total)
fprintf (' \nNumber of Y LASER points thrown out: %6g\n', las_y_total)
fprintf (' \nNumber of Z LASER points thrown out: $6g\n', las_z_total)

toc

% [Irig, Vxins, Vkalman, Xinsrcs, Xkalman, Xlaser, PX, PVx]
if printme == 'v'! |printme=="'YES' |printme=="yes' |printme=="'Y"
[rkalout,ckalout] = size(kaloutX);

for v = l:rkalout
fprintf (truth_X, '$8.0f ', kaloutX(v,1))
fprintf (truth_X, '$10.5f ', kaloutX(v,2:7))
fprintf (truth X, '%$10.5f\n', kaloutX(v,8))

fprintf (truth_Y, '$8.0f ',kaloutY¥(v,1))
fprintf (truth_Y, '$10.5f ', kaloutY(v,2:7))
fprintf (truth_Y, '%10.5f\n', kalout¥(v, 8))

fprintf (truth_z,'$8.0f ',kaloutZ(v,1))
fprint f (truth_Z, '$10.5f ', kaloutZ(v,2:7))
fprintf (truth_Z, '$10.5f\n', kaloutZ(v,8))
end
end % End IF printme Loop

if save_sync == 'yes'
for j = l:rsync
fprintf (sync_out, '$8.0f ', syncdata(j, 1)}
fprintf (sync_out, '%10.5f ',syncdata(j,2:6))
fprint f (sync_out, '%10.5f\n', syncdata(j,7))
end % End FOR Loop
end % End IF Loop
toc
end ;

Buttline

APPENDIX C

LOCATIONS OF NAVIGATION COMPONENTS

Right Reflector

INS

Waterline

Left Reflectoﬁ

]

0.6096 (24.0)
B - 0.8128 (32.0) -
C - - - 0.1524 (6.0)
D - -- 3.0861 (121.5)
E 1.2129 (47.75) - -
F 11.7412 (462.25) - -

58

