YEARLY PROGRESS REPORT
NASA Grant NAGW - 10-74507 2974
(1 April 1994 – 31 March 1995)

Modeling of collision induced absorption
spectra of CO$_2$-CO$_2$ pairs
for planetary atmosphere of Venus

Principal Investigator: Aleksandra Borysow

Physics Department
Michigan Technological University
Houghton, MI 49931
The objective of the proposal was to model the rototranslational, and the rotovibrational collision induced absorption spectral bands of importance for the radiative transfer analysis of the atmosphere of Venus.

The work has progressed, and is close to produce the first meaningful results. Our main task has been to compute the roto-translational (and, as a long term goal, also the rotovibrational) collision-induced absorption spectra of CO$_2$ pairs. The approach is not straightforward: whereas computational techniques to compute CIA spectra of small linear molecules exist, and were successfully applied to molecules like H$_2$ or N$_2$, they fail when applied to large molecules like CO$_2$. For small molecules one can safely assume that the interaction potential is isotropic. Same approximation does not work for CO$_2$, and when employed, it gives an incorrect band shape and only 50% of the CIA intensity.

We have started with examining the CIA spectral moments, to assess the significance of the effect of the anisotropy of the interaction potential, and to select the most suitable model for CO$_2$ pairs. We have been successful at that [1]. Currently, based on the information gathered in preliminary tests, we are close to the completion of computing the spectra. It needs to be mentioned that there have been no prior computations of that sort. Molecular Dynamics simulations, which we use, have been originally designated for liquids only, whereas our attempt is to apply them to the gas phase. At present, we have reached the agreement between the spectral moments obtained from Molecular Dynamics and from the independent code we used before [1]. We are thus confident about the computational tools we developed. Within these days we expect to obtain full RT CIA spectral band. We seem also to be very close in getting (by adjusting the overlap contribution to the induced dipoles) a good agreement between the computed, and the experimental spectral moments.

Our next goal is to reach same degree of agreement between the computed and experimental spectral profiles. Once it is reached, we'll be ready to run computations also at the temperatures of interest to Venus (i.e. up to 700K). Having mastered the numerical technique, we are confident that we will be able to deliver dependable model of CIA absorption spectra as a function of frequency and temperature. We will distribute that model, in a form of a FORTRAN computer program, as soon as it is ready, to all interested planetary scientists.

One publication, related to CO$_2$ CIA spectra, resulted from the last year NASA funding: “Spectral moments of collision-induced absorption of CO$_2$ pairs: The role of the intermolecular potential”, by M. Gruszka and A. Borysow [1].
Related work

Few publications related to other planetary applications resulted from our last year research. Following publications have been completed with a partial support of the NASA grant. NASA support has been acknowledged in each of them and all the preprints are attached.

“New analysis of the spectral moments of collision induced absorption in gaseous N_2”, by M. Gruszka and A. Borysow, *Molecular Physics*, submitted, currently being revised [3].

“Collision induced absorption of $H_2–H_2$ and $H_2–He$ in the rotational and fundamental bands (0–6,000cm$^{-1}$) for planetary applications”, by G. Birnbaum, A. Borysow, L. Frommhold and G. S. Orton, *Icarus*, to be submitted (1995) [6].
Conference Abstracts
(with NASA support acknowledged)

We presented three contributions at the XII International Conference on Spectral Line Shapes, Toronto, Canada, June 1994:
1. C. Zheng and A. Borysow,
 “Rototranslational CIA spectra of H₂-H₂ at temperatures between 600 and 7,000 K”;
2. M. Gruszka and A. Borysow,
 “Spectral Moments of Collision Induced Absorption of CO₂ and N₂ pairs”;
3. M. Moraldi and A. Borysow,
 “Spectral moments for the absorption coefficient of CO₂–Ar pairs”.

In addition, we presented a paper at the recent DPS Meeting, Washington, DC, October 1994:
4. A. Borysow and C. Zheng,

References

