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PREFACE

NASA has an interest in turbines related primarily to aeronautics

and space applications. Airbreathing turbine engines provide jet and

turboshaft propulsion, as well as auxiliary power for aircraft, l%o-

pellant-driven turbines provide rocket propulsion and auxiliary

power for spacecraft. Closed-cycle turbine engines using inert gases,

organic fluids, and metal fluids have been studied for providing

long-duration electric power for spacecraft. Other applications of

interest for turbine engines include land-vehicle (cars, trucks, buses,

trains, etc.) propulsion power and ground-based electrical power.

In view of the turbine-system interest and efforts at Lewis Research

Center, a course entitled "Turbine Design and Application" was

presented during 1968-69 as part of the In-House Graduate Study

Program. The course was somewhat revised and again presented in

1972-73. Various aspects of turbine technology were covered including

thermodynamic and fluid-dynamic concepts, fundamental turbine

concepts, velocity diagrams, losses, blade aerodynamic design, blade

cooling, mechanical design, operation, and performance.
The notes written and used for the course have been revised and

edited for publication. Such a publication can serve as a foundation

for an introductory turbine course, a means for self-study, or a

reference for selected topics.

Any consistent set of units will satisfy the equations presented.

Two commonly used consistent sets of units and constant values

are given after the symbol definitions. These are the SI units and

the U.S. customary units. A single set of equations covers both

sets of units by including all constants required for the U.S. customary

units and defining as unity those not required for the SI units.
ARTHUR J. GLASSMAN

,°°
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CHAPTER1

ThermodynamicandFluid-Dynamic
Concepts

ByArthurJ. Glassman

This chapter is intended to review some of the fundamental con-

cepts of thermodynamics and compressible fluid mechanics. These

are the concepts needed to analyze and understand the flow and

energy-transfer processes occurring in a turbine. A more complete

treatment of these subjects can be found in reference 1 and in many

textbooks. Flow is assumed to be steady and one-dimensional for

the purposes of this chapter.

Any consistent set of units will satisfy the equations presented.

Two commonly used consistent sets of units and constant values are

given after the symbol definitions. These are the SI units and the

U.S. customary units. A single set of equations covers both sets of

units by including all constants required for the U.S. customary

units and defining as unity those not required for the SI units.

BASIC CONCEPTS AND RELATIONS

Equation of State

Before we can get very far with any kind of calculation involving

gases, we must know how pressure, volume, and temperature are

interrelated. The study of gases has resulted in certain laws and

generalizations concerning their behavior. In discussing these laws

of behavior, gases are referred to as being either ideal or real. The



TURBINE DESIGN AND APPLICATION

ideal gas is only hypothetical and obeys various simplified laws that

the real gas can only approach under certain conditions.

The ideal gas equation of state is

R*

pv=--_-

where

P

V

R*

T (1-1)

absolute pressure, N/mS; lb/ft 2

specific volume, m3/kg; fta/lb

universal gas constant, 8314 J/(kg mole)(K);

(lb mole) (°R)

molecular weight, kg/(kg mole); lb/(Ib mole)

absolute temperature, K; °R

1545 (ft) (lb)/

The quantity R*/M,_ is often used as a single quafftity such that

R $

R-----_-_ (1-2)

where R is the gas constant, in J/(kg)(K) or (ft)(Ib)/(lb)(°R).

Density is often used instead of specific volume in the ideal gas

law. Thus,

1
p =- RT = pRT (1-3)

V

where p is density, in kg/m 3 or lb/ft 3.

In general, a real gas will approximate ideal behavior at low pres-

sures or high temperatures, conditions under which the free space

within the gas is large and the attractive forces between molecules are

small. For gases which are above their critical temperatures, the

ideal gas law may be accurate to within 5 percent up to pressures as

high as 50 atmospheres, while for gases below their critical tempera-

tures, deviations of 2 to 3 percent may appear at 1 atmosphere pressure.

Deviations of real gases from ideal behavicr have resulted in the

proposal of several hundred equations of state to express the p-v-T

relation. None of these have been found universally satisfactory, and

most are applicable only to a single gas over a limited range of tem-

perature and pressure. Even the most useful of these equations are

cumbersome to use and cannot be justified unless a high degree of

accuracy is required.

The similarity in behavior of substances at equal values of reduced

temperature (ratio of temperature, T, to critical temperature, To)

and reduced pressure (ratio of pressure, p, to critical pressure, pc)

forms the basis of a relatively simple method for estimating real gas

behavior. The method of general correlation is to incorporate a

2



THERMODYNAMIC AND FLUID-DYNAMIC CONCEPTS

correction term, called the compressibility factor, into the ideal gas

law:

p=zpRT (1-4)

where z is the compressibility factor.

The compressibility factor is a function of reduced temperature

and reduced pressure, and is assumed to be independent of the nature

of the gas. Values of compressibility factor as a function of reduced

temperature and reduced pressure are presented in many texts and

other sources. One of the charts from reference 2 is reproduced here

as figure 1-1. This type of correlation is derived from an average

of data for a large number of gases and is not in rigorous agreement

with all the data for any one gas. The compressibility-factor correla-

tion may be extended to gas mixtures if pseudocritical temperatures

and pressures are used to calculate reduced temperatures and pres-

sures. The pseudocritical properties are approximated by using the

molal averages of the critical properties of the components.

Examination of figure 1-1 shows that there is a large region of

state conditions where use of the ideal gas law would result in a large

error. Fortunately, the conditions that we are concerned with in our

calculations do not usually fall within this region. However, we

should never take for granted that the ideal gas law is always valid.

A quick determination of the compressibility factor can show the

approximate error associated with use of the ideal gas law.

N

t_

1.20

1.10

1.00

•90

.80

• 70

.60

.50

.30!

Reduced

temperature,

T/Tc_

_ _-- _._ ______

-- 1. 1_50

-- 1.20

- I \ -1.1o 

_-'LO0 I I 1 I f I I I F
1.0 2,0 3,0 4.0 5.0 6.0 7.0 8.0 9,0 10.0

Reduced pressure, P/Pc

FIGURE 1-1.--Effect of reduced pressure and reduced temperature on com-

pressibility factor. (Curves from ref. 2.)
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TURBINE DESIGN AND APPLICATION

Relation of Energy Change to State Conditions

In a flow process, the energy term associated with work and heat

is the enthalpy h. For a one-phase system of constant chemical com-

position, enthalpy can be expressed as a function of temperature

and pressure:

h=fcn(T, p) (1-5)

where h is specific enthalpy, in J/kg or Btu/lb. A differential change in

enthalpy can be expressed as

Oh
dh:(-O-T) v dT+(00-_h)rp dp (1-6)

The partial derivatives can be expressed in terms of determinable

properties as follows. By definition,

Oh

Cv=(-_'_), (1-7)

where cp is heat capacity at constant pressure, in J/(kg)(K) or Btu/

(lb) (°R). One of the basic differential equations of thermodynamics is

dh= Tds + j vdp (1-8)

where s is specific entropy, in J/(kg)(K) or Btu/(lb)(°R), and J is a

conversion constant, 1 or 778 (ft)(lb)/Btu. Therefore, the partial

derivative with respect to pressure at constant temprature is, as

determined from equation (1-8),

Oh'_ T los\ 1

One of the Maxwell relations states that

(1-10)

Substituting equations (1-7), (1-9), and (1-10) into equation (1-6)

yields
Ov

dh=c,dT+ j [v-- T (_-_)p_ dp (1-11)

Equation (1-11) is the rigorous equation for a differential enthalpy

change in terms of the state conditions, and the enthalpy change

between two states is calculated rigorously as

4
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Ts 1 P* _V
(1-12)

If we now assume that the gas behaves according to the ideal gas

law, we can set

RT
v------- (1-13)

P

and

( Ov' R
(1-14)

By using these last two equations in equation (1-12), the effect of

pressure on enthalpy change is reduced to zero, and there remains

Ah: frTcz, dT (1-15)

Empirical equations for ca as a function of T are available in hand-

books and textbooks for most gases of interest. If, for example,

cp=a-t- bT+cT 2 (1-16)

then integration of equation (1-15) yields

b (_--_)+3 (_--T_)Ah=a( T2-- T1) +_ (1-17)

Although one might not want to use this type of expression for hand

calculations, there is no reason to avoid it for computer calculations.

If it can be assumed that ca is constant between temperatures T_

and /'2, then equation (1-15) becomes

_=c.( T2-- T1) (1-18)

This assumption is an excellent one for monatomic gases; for other

gases, there is a significant variation in c_ with T. However, the use

of some average value for cv will give an approximation that should

be within a few percent of the true value.

Relation of State Conditions for Constant Entropy Process

In a turbine, the heat loss is normally small, and the flow process

usually can be assumed to be adiabatic. For adiabatic flow with no

loss, there is no change in entropy. Therefore, the constant-entropy

(isentropic) process is the ideal process for flow in the various parts

of the turbine (inlet manifold, stator, rotor, and exit diffuser) as well

as for the overall turbine. Actual conditions within and across the
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turbine are usually determined from isentropic process calculations

in coniunction with some efficiency or loss term. It is, therefore,

necessary to be able to relate state conditions for an isentropic process.

For a one-phase system of constant chemical composition, entropy

can be expressed as a function of temperature and pressure

s----fcn (T, p) (1-19)

and a differential change in entropy can be expressed as

ds----(_), dT÷(_)r (tp (1-20)

From equations (1-8) and (1-7), we get

Substituting equations (1-21) and (1-10) into equation (1-20) yields

ds=_ dT--j 0v(0-T), dp (1-22)

For a constant-entropy process, ds=0 and

Equation (1-23) is the rigorous, but not particularly useful, expression

relating temperature and pressure conditions for an isentropie process.

If we assume ideal-gas-law behavior and substitute equation (1-14)

into equation (1-23) and perform the integration, we get

, _dT---- Rln_ (1-24)

By using a relation such as equation (1-16), integration yields

1Rln_=aln_--kb(T2--T_)+2 (T_--T_) (1-25)
J p_

Like equation (1-17), equation (1-25) also is more suitable for use in

a computer calculation than in a hand calculation.

With the additional assumption that cp is constant between tem-

peratures T_ and T2, equation (1-24) becomes

6
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and

But

Jc_ ln T2--R p2
T1-- ln- (1-26)pl

p2=('%'_ Jc,/R
p, \T1/ (1-27)

Jcp 3'

R 3"-- 1 (1-28)

where 3" is the ratio of heat capacity at constant pressure to heat

capacity at constant volume. Substitution of equation (1-28) into
equation (1-27) yields the more familiar form

p,
_-_----\_] (1-29)

Where specific heat ratio 3" is not constant, the use of an average value

should give a reasonable approxlmation.

Conservation of Mass

The rate of mass flow through an area A can be expressed as

w=pAV
where

w rate of mass flow, kg/sec; lb/sec

A flow area, m2; ft 2

V fluid velocity, m/see; ft/see

(1-30)

For a steady flow (and nonnuclear) process, the rate of mass flow

across any section of the flow path must equal the rate of mass flow

across any other section. That is,

plA, VI = p2A2 V2 (1-31)

This expresses the principle of conservation of mass, and equation

(1-31) is referred to as the continuity equation.

Newton's Second Law of Motion

All conservation equations, theorems, etc., dealing with momentum

are consequences of Newton's Second Law of Motion, which states

that an unbalanced force that ac_s on a body will cause it to accelerate

in the direction of the unbalanced force in such a manner that the

force is proportional to the product of the mass and acceleration of

the body.

7
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Thus,

where

F

m

a

g

But

F= m a
g

unbalanced force, N; lbf

mass, kg; lbm

acceleration, m/sec2 ; ft/sec 2

conversion constant, 1 ; 32.17 (lbm) (ft)/(lbf) (sec 2)

(1-32)

dV

a =--d- 7 (1-33)

where t is time, in seconds. Substituting equation (1-33) into equation

(1-32) yields

F=m dV
g dt (1-34a)

Since the mass is constant, equation (1-34a) can also be written as

F=I d(mV__) (1-34b)
g dt

Equation (1-34b) specifies that the unbalanced force acting on the

fluid is equal to the rate of change of momentum (mV) with time.

Since mass per increment of time is the mass flow rate, equation

(1-34a) can also be written as

F =w dV (1-35)
g

A useful relation, sometimes called the equation of motion, can

be derived from second-law considerations. Consider an element of

fluid as indicated in figure 1-2. Gravitational forces are assumed neg-

ligible. A fIictional resistance (force) is indicated as R s. The element

of fluid is subjected to fluid-pressure and boundary-surface-pressure

forces acting in the downstream direction and fluid-pressure and

friction forces acting in the upstream direction. Therefore, the net

force in the downstream direction is

F=pA +(p+ d-_)dA--(p+dp) (A+dA)--dRt (1-36)

Expanding, simplifying, and dropping

yields

F= -- Adp-- dR I

second-order differentials

(1-37)

8
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The mass of the element is

m:pAdx

Substituting equation (1-38) into equation (1-34) yields

Since

F_ pAdx d V
g dt

equation (1-39) can be written in the form

F_pAV dv
g

Equating (1-37) with (1-41) now yields

and

F=--Adp--dRs= pA VdV
g

dp + VdV+ dRs 0
p-F--i-A--

(1-38)

(1-39)

(1-40)

(1--41)

(1-42)

(1-43)

%
,%

Flow p

V

p+dp
2

dx

dRf

A+dA
f

f

p+dp

V+dV

FIGURE 1-2.--Forces on an element of fluid.
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If we now let

(1-44)

where ql is heat produced by friction, in J/kg or Btu/lb, we have

dpp __V_VdgV+Jdq1= 0
(1-45)

For isentropic flow, dqs----0.

Conservation of Energy

For a steady-flow (and nannuclear) process, the energy entering

a system or part of a system must equal the energy leaving that

system or part of that system. If we can neglect chemical energy,

electrical energy, etc., we still have to consider internal energy u, flow

energy pv, kinetic energy V2/2g, potential energy Z, heat q, and

mechanical work I¥,. Thus,

p2l'2_l__ V2" .4 _2_4_W (1-46)P lvl "Jr- V12 _j[_Z1 , Tr 2 Z

u,+--j- _gj -j+q=u:+ j-2g J-J-- s

where

u specific internal energy, J/kg; Btu/lb

Z specific potential energy, J/kg; (ft) (lbf)/lbm

q heat added to system, J/kg; Btu/lb

W, mechanical work (lone by system, J/kg; Btu/lb

For a gas system, the potential energy can be neglected. In addition,

by definition

pv (1-47)
h=u + -j

Thus, equation (1-46) reduces to

"{72 V 2

gd g
(1-48)

Equation (1-48) is the basic form of the steady-flow energy balance

as we will be using it.

Total Conditions

The sum of the enthalpy and the kinetic energy is always appearing

in flow problems, and it is convenient to use it as a single quantity.

Thus,

V 2
(1-49)

h ' _-h + 2gJ

10
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where h' is total enthalpy, in J/kg or Btu/lb.

The concept of total enthalpy leads us to the concept of total

temperature. Total temperature can be defined as the temperature

that corresponds to the total enthalpy. The total-temperature con-

cept is most useful when ideal-gas-law behavior and constant heat

capacity can be assumed. In that case, according to equation (1-15),

h'--h=cp(T'--T) (1-50)

where T' is total temperature, in K or °R. Combining equation (1-50)

with equation (1-49) yields

V 2
T' (1-51)= T+ 2gJcp

The total temperature T' can be thought of as the temperature

attained when a gas at static temperature T and velocity V is brought

to rest adiabatically. Thus, total temperature is also called stagnation

temperature, and these two terms are used interchangeably.

The total, or stagnation, pressure can be regarded as the pressure

of a fluid brought to rest isentropically from a velocity V and static

pressure p. Since the relation between p' and p is isentropic, we can

use equation (1-29) to write

(1-52)

where p' is total pressure, in N/m 2 or lb/ft _.

With regard to the above-defined total conditions, certain points

should be emphasized. The concept of total enthalpy is general, and

its use involves no assumptions other than those associated with the

energy balance as we have considered it. Total temperature, as will

be seen, is a very useful convenience for easing the burden of calcula-

tion, but it is rigorous only for ideal-gas-law behavior and constant

heat capacity. For systems involving chemical reaction or a phase

change, the use of total temperature is not recommended. Total

pressure, in addition to the assumptions associated with total tempera-

ture, involves an isentropic path between the static and total
conditions.

Flow Process With No Heat and No Work

Let us now, in terms of total conditions, examine a process that

occurs with neither heat transfer (adiabatic process) nor mechanical

work. This process is the one that occurs (neglecting heat losses) in

each part of the turbine (including the rotor, at constant radius, when

11
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the velocities are expressed relative to the moving blade).

Substitution of equation (1-49) into equation (1-48)

rangement yields
h2' -- hi' = q--W_

and rear-

(1-53)

The energy balance now looks something like the First Law of Thermo-

dynamics for a flow process, as we were first exposed to it in college.

If we set q and W_ equal to zero, we get

h_' =-h,' (1-54)

Therefore, for adiabatic flow with no work, total enthalpy remains

constant. Further, from equations (1-18) and (1-50), it can be shown

that total temperature also remains constant.

TJ =T/ (1-55)

Note that the process does not have to be isentropic in order for total

enthalpy and total temperature to remain constant.

Total pressure is another matter. From equations (1-22), (1-52),

and (1-55) and the ideal-gas-law and constant-heat-capacity assump-

tions, it can be shown that for adiabatic flow with no work,

eJd' l _= P_' (1-56)
p2'

Only for isentropic flow (ds=0), therefore, does total pressure remain

constant. For flow with loss (ds>0), there is a decrease in total

pressure.

Speed of Sound and Velocity Ratios

An important characteristic of gases is the speed of pressure-

wave propagation or, as otherwise called, the speed of sound. From

small-pressure-disturbance theory

a=_/g(-_p), (1-57)

where a is speed of sound, in m/sec or ft/sec.

From the ideal gas law and isentropic process relations, this reduces
to

a= _gRT (1-58)

The ratio of fluid velocity V to sound velocit_y a is an important

factor in determining the flow characteristics of a gas. This ratio is
called the Mach number M:

12
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M= --V (1-59)
a

Mach number is a useful parameter not only for identifying flow-

behavior regimes, but also for simplifying and generalizing certain

expressions. Consider the relation of total temperature to static

temperature, given in equation (1-51). Combining equations (1-58),

(1-59), and (1-28) with equation (1-51) yields

T' l_I_7__ M 2 (1-60)

Another velocity ratio often used is the ratio of fluid velocity to

critical velocity

V V

Vc,--acr (1-61)

where V. is critical velocity, in m/sec or ft/sec, and a. is speed of

sound at critical condition, in m/sec or ft/sec. The critical velocity

is equal to the velocity of sound at the critical condition. The critical

condition is that condition where M----1. Consequently, from equation
(1-60), at the critical condition

2

T.=3"+ 1 T' (1-62)

and substitution of equation (1-62) into equation (1-58) yields

acr=_/_lgRT'
(1-63)

Thus, in any flow process with constant total temperature (no heat and

no work), the value of the critical velocity (Vc,=a,) remains constant

for the entire process, whilethe value of the speed of sound (a) changes

as the static temperature changes.

The ratio of fluid velocity to critical velocity is sometimes called

the critical velocity ratio. Its use is often preferred over Mach number

because the critical velocity ratio is directly proportional to velocity,

while Mach number is not (since there is a square root of static tem-

perature in the denominator).

The relation between static and total temperature in terms of the

critical velocity ratio results from combining equations (1-61), (1-63),

(1-28), and (1-51).

T 3,--1(V) 2T '-1 3"-t-1 _ (1-64)

13



TURBINE DESIGN AND APPLICATION

APPLICATION TO FLOW WITH VARYING AREA

The equations already presented are sufficient to analyze completely

the flow through turbine passages, provided that there are no losses

(flow is isentropic). Although there are losses in a turbine, we can use

the loss-free process to learn something about the behavior of the flow

in the varying-area passages (stator, rotor, and exit diffuser) of the
turbine.

Effect of Flow Regime

We are going to examine the relations a,mon_ pressure, velocity,

area change, and Much number. Prot)er manipulation of the previ-

ously presented equations yields the following equation for isentropic

flo_v:

_(I_M_ )dV 1--M 2alp dA
V-- 7M 2 p A (1-65)

Equation (1-65) shows that (1) for all Much numbers the change in

velocity is opposite to the change in l)ressure amt (2) the directions of

the changes in velocity and pressure with changes in area depend on

whether the Much number is less than 1 (subsonic flow), equal to 1

(sonic flow), or greater than 1 (supersonic flow). By way of definition,

let us specify that a nozzle is a varying-area passage in which static

pressure decreases and a diffuser is a varying-area passage in which

static pressure increases.

Let us examine the various cases from equation (1-65) :

A. Subsonic flow (M<I):

1. Increasing pressure (dp>0):

Velocity decreases (dV<0) and area increases (dA>0).

This is the subsonic diffuser..

2. Decreasing pressure (dp<0):

Velocity increases (dV>0) and area decreases (dA_0).

This is the subsonic nozzle.

B. Supersonic flow (M>I):

1. Increasing pressure (dp>0):

Velocity decreases (dV<0) and area (tecreases (dA_0).

This is the supersonic diffuser.

2. Decreasing pressure (dp<0):

Velocity increases (dV>0) and area increases (dA>0).

This is the supersonic nozzle.

C. Sonic flow (M= 1) :

Both increasing (dp>0) and decreasing (dp<0) pressure.

Area change must equal zero (dA=0). Thus, the sonic, or

critical, condition can occur only at the inlet, exit, or mini-

mum-area section of a varying-area passage.

14
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You may also want to note that in order to cross the critical con-

dition (M= 1) going either up or down in velocity, the flow passage

must have a decreasing-area portion followed by an increasing-area

portion.
Flow in Nozzles

Since we are concerned primarily with nozzle flow rather than

diffuser flow in turbines, we will narrow the discussion to flow in

nozzles. We will further limit the discussion to the case where the flow

entering the nozzle is subsonic, since this is the case of most interest.

Convergent nozzle.--Let us first consider the simple convergent

nozzle. This corresponds to the case A2 mentioned previously. Assume

the nozzle is supplied with gas from a reservoir (zero velocity) where

the gas is maintained at a static (and total) pressure p' and a static

(and total) temperature T'. The exhaust, or outside, static pressure is

designated as p, and the static pressure right at the nozzle exit (in the

throat) is designated as pt. When pe is a little less than p', flow com-

mences and the throat pressure pt is equal to pc. As p_ is progressively

lowered, flow rate and velocity both increase, with Pt still equal to pc.

At some value of p,, the velocity at the throat becomes equal to sonic

velocity, and M= 1 at the throat.

What happens if pc is now lowered further? We have seen that a

Mach number greater than 1 cannot be attained in a convergent

nozzle. Therefore, the flow at the throat remains in the critical condi-

tion (M= 1) no matter how much p_ is lowered. The static pressure in

the throat remains at the critical pressure, which according to equa-

tions (1-62) and (1-29) is

{ 2-_-_ "_/(_-') (1-66)
P'=P_'=P' \_,+ 1/

Once pe is reduced below p,, the exhaust pressure has no effect on

the flow within the nozzle. The gas expands from p' to pt=p, within

the nozzle and then expands further from Pt to pe outside the nozzle.

The expansion process from Pt to Pe occurs with shocks (which occur

with an increase in entropy and will be discussed a little later), and

the isentropic equations are not valid for this part of the process.
The fact that the throat condition remains constant for nozzle

pressure ratios (p'/p,) greater than or equal to the critical pressure

ratio (p'/p_r) means that the nozzle mass flow rate also remains

constant under these conditions. Thus, for a fixed upstream state,
the mass flow rate reaches a maximum value when M becomes 1 at

the throat and thereafter remains constant no matter to what value

the exhaust pressure is reduced. The fact that this condition corre-

st)on(is to maximum flow can be pr6ver_ mathematically. A nozzle in

15
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this condition is said to be choked.

Convergent-divergent nozzle.--Let us now consider the somewhat

more involved case of the convergent-divergent nozzle. Again, assume

the nozzle to be supplied with gas from the same reservoir maintained

at pressure p' and temperature T'. Figure 1-3, showing plots of pres-

sure ratio against nozzle length, will supplement this discussion. If

the exhaust pressure pe is a little less than p' (curve AB in fig. 1-3),

flow commences with the lowest pressure occurring at the throat

(pt_P_). In this case, the divergent section of the passage is acting

as a subsonic diffuser. As pe is progressively lowered (curve AC in fig.

1-3), the pressure p, at the throat decreases and the velocity increases.

Eventually, at some particular value of p_, the throat velocity becomes

equal to the sonic velocity, or Mr----1 (curve AD in fig. 1-3). Note

that p_ is still higher than Pt, and the gas still diffuses subsonically
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in the diveruent section. Since the throat condition is now critical

(with pt:pc._pe), we see that the nozzle pressure ratio (p'/pe)

required to achieve the critical condition in a convergent-divergent

nozzle is less than the nozzle pressure ratio (p'/p_:p'/pc,) required to

achieve the critical condition in a simple convergent nozzle.

If p_ is a_ain lowered, the throat must remain at the critical

condition because equation (1-65) showed us that the throat is the

only place where the critical condition can exist. Thus, as with the

convergent nozzle, the throat state remains constant, and the mass

flow must remain constant at its maximum value. As long as the

critical condition is maintained at the throat, the nozzle is choked

and the convergent part of the nozzle continues to behave inde-

pendently of the conditions beyond the throat.

If the flow is to be supersonic and isentropic throughout the

divergent part of the nozzle, then for any given ratio of throat area

to discharge area, only one exhaust pressure p_ will satisfy the con-

servation of mass and energy, as well as the isentropic process,

relations. This case is represented in figure 1-3 by curve AE, which

shows pressure falling continuously. It is unreasonable to assume

that flow is impossible between the values of p_ that allow either

isentropic subsonic diffusion to some Pe_pt (curve AD, fig. 1-3) or

isentropic supersonic expansion to some Pe_Pt (curve AE, fig. 1-3).

The flow that does take place, therefore, cannot be isentropic.

Observing the gas flow under these nonisentropic conditions by

optical means reveals that surfaces of abrupt density changes occur

in the flow. These apparent discontinuities in the flow are shock

waves. Shock waves are of very small thickness, and the fluid state

changes may be considered as occurring instantaneously. Total

temperature across a shock remains constant but, even though there

is a rise in static pressure, there is a loss in total pressure because the

process occurs with an increase in entropy. Shocks may be strong or

weak. Strong shocks occur normal to the flow (and are thus called

normal shocks) and result in subsonic velocities downstream of the

shock. Weak shocks occur at some small angle with respect to the

flow direction (and are thus called oblique shocks), and the velocity

downstream of the shock remains supersonic, but the Mach number

is less than that upstream of the shock.

Let us now complete the discussion of convergent-divergent nozzles

for the region of pressure ratios between points D and E in figure 1-3.

If the exhaust pressure p, is reduced a little below the value at point

D, a normal shock occurs at some point in the divergent part of the

nozzle, and the l)ressure rises instantaneously to a value such that

isentropic subsonic diffusion occurs from the shock plane to the nozzle
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exit. The flow process in this case is illustrated by the path AKLF,

with AK being an isentropic expansion, KL being the normal shock,

and LF being the isentropic diffusion. As pe is reduced further, the

normal shock moves toward the nozzle exit, and the flow process is

represented by a path such as AMNG. At some value of pe correspond-

ing to point H, the normal shock will be right at the nozzle exit, and

the flow path in the nozzle is AEH.

For values of pe between points H and E, a normal shock cannot

occur because it is too strong and would result in a static pressure

higher than p_. In this case, the weaker oblique shock occurs at the

nozzle exit, with the shock becoming weaker as p_ approaches point E.

When p_ corresponds to point E, as mentioned previously, the nozzle

flow is again completely isentropic. For lower values of p_, the final

expansion from the nozzle-exit static pressure to pe occurs outside

the nozzle in a nonisentropic manner.

It should be pointed out that the previous discussion and the proc-

esses shown in figure 1-3 are idealized. In actuality, the shock effects

do not occur exactly instantaneously and the pressure rise, although

abrupt, takes place over a finite distance. Also, real-fluid considera-

tions may produce effects that make the subsonic flow downstream of

a shock different from isentropic. The general processes, however, are

qualitatively similar to those shown in figure 1-3.

Thermodynamic-Property and Flow-Function Tables and Charts

In order to facilitate thermodynamic and flow calculations, many

sets of tables and charts have been constructed and published in

books and reports. Some of these are listed as references 3 to 7.

Thermodynamic properties of air and its combustion products as

functions of temperature are presented in references 3 and 4. These

charts and tables include the variation in heat capacity with tempera-

ture. The thermodynamic properties of air and also the individual

components of air and its combustion products (nitrogen, oxygen,

carbon dioxide, water vapor, and argon) are presented in references 4

and 5. Compressibility factors are also presented in reference 5. The

properties presented in reference 5 include the effect of pressure, as

well as temperature.

Isentropic compressible-flow functions (TIT', pip', p/p',A/Ac,, and

others) as functions of Mach number are presented in references 4, 6, and 7

for various values of heat-capacity ratio. Also included are tables and

charts for normal and oblique shock calculations. Reference 6 pre-

sents a listing of compressible flow function and _hock function equa-

tions in terms of both Mach number and critical velocity ratio.
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SYMBOLS

A

a

aj b_ c

c_

F

g
h

J

M

M_

m

P

q

ql
R

RI

R*

8

T

t

V

V

Ws

w

x

Z

Z

P

flow area, m2; ft _

acceleration, m/seC; ft/sec 2
speed of sound, m/sec; ft/sec

general constants for polynomial, eq. (1-16)

heat capacity at constant pressure, J/(kg)(K); Btu/(lb)(°R)

unbalanced force, N; lb

conversion constant, 1 ; 32.17 (lbm) (ft)/(lbf)(seC)

specific enthalpy, J/kg; Btu/lb
conversion constant, 1 ; 778 (ft) (lb)/Btu

Mach number, defined by eq. (1-59)

molecular weight, kg/(kg mole); lb/(lb mole)

mass, kg; lb

absolute pressure, N/mS; lb/ft 2

heat added to system, J/kg; Btu/lb

heat produced by friction, J/kg; Btu/lb

gas constant, J/(kg) (K) ; (ft) (lbf)/(lbm) (°R)

frictional resistance force, N; lb

universal gas constant, 8314 J/(kg mole)(K); 1545 (ft)(lbf)/

(lb mole) (°R)

specific entropy, J/(kg) (K) ; Btu/(lb) (°R)

absolute temperature, K; °R

time, sec

specific internal energy, J/kg; Btu/lb

fluid absolute velocity, m/sec; ft/sec

specific volume, m3/kg; ft3/lb

mechanical work done by system, J/kg; Btu/lb

mass flow rate, kg/sec; lb/sec

length, in; ft

specific potential energy, J/kg; (ft)(lbf)/lbm

compressibility factor, defined by eq. (1-4)

ratio of heat capacity at constant pressure to heat capacity

at constant volume

density, kg/m_; lb/ft 3

Subscripts:

c critical state condition

cr critical flow condition (M: 1)

e exhaust

t throat

Superscript:

' absolute total state
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CHAPTER2

BasicTurbineConcepts

ByArthurJ. Glassman

This chapter introduces turbine geometric, flow, energy-transfer,

efficiency, and performance characteristics primarily by means of defi-

nitions, diagrams, and dimensionless parameters. Terms referring to

the blades and blading geometry are defined in the GLOSSARY, at

the end of this chapter.

TURBINE FLOW AND ENERGY TRANSFER

Analysis Coordinate System

An analysis of the flow and energy-transfer processes within a tur-

bine requires some convenient coordinate system. For fluid flowing

through a turning wheel, a logical system consists of one coordinate

directed parallel to the axis of rotation, one coordinate directed radi-

ally through the axis of rotation, and one coordinate directed tan-

gentially to the rotating wheel. These are the axial, radial, and

tangential directions indicated in figure 2-1.

These three coordinates form three planes. Analysis of flow in the

radial-axial plane depicts the circumferentially-averaged (or blade-to-

blade average) radial and axial variation of the desired flow t)aram-

eters. For many types of calculations, we can ignore the circumferential

(or blade-to-blade) variation of parameter values and just use average

values. Such a calculation is called an axisymmetric analysis.

Calculations made in the axial-tangential or radial- tangential planes

are usually at some constant value (rather than for average conditions)

of the third coordinate. Velocity diagram, as well as blade-to-blade

velocity-variation, calculations are usually made in these planes. When
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2

V u

FIGURE 2-1.--Velocity components for a generalized rotor.

flow is predominantly radial, such as at the inlet to a radial-flow

turbine, the radial-tangential plane is used. When flow is predomi-

nantly axial, such as in an axial-flow turbine, the axial-tangential

plane is used.

Velocity Vectors and Diagrams

One of the most, if not the most, important variables that we will

be concerned with in the analysis of turbine flow and energy transfer

is the fluid velocity and its variation in the different coordinate direc-

tions. To assist us in making these analyses and in depicting blading

shapes and types, we use velocity-vector diagrams.

For flow in and across the stators, the absolute velocities are of

interest. For flow in and across the rotors, velocities must be consid-

ered relative to the rotating blade. In terms of relative velocities and

other relative parameters to be discussed later in this chapter, flow in

a rotating blade row can be analyzed in a manner similar to the analysis

of flow in a stationary passage.
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Velocity-diagram calculations are made at locations upstream and

downstream of the various blade rows or at just infinitesimal distances

inside the blade rows. In making the velocity diagrams, the circum-

ferential variations in flow are not considered. The velocity vectors

represent the circumferential average of the flow.

The velocity diagram shows both the absolute and the relative

velocities. In making the velocity diagram, note that

Relative velocity=Absolute velocity--Blade velocity (2-1)

or

where
W=V--U (2-2)

W relative velocity vector

V absolute velocity vector

U blade velocity vector

Since blade velocity is always in the tangential direction, we need only

consider the magnitude, that is, the blade speed. So, we can write

W= V--U (2-3)

The velocity diagram in figure 2-2 represents equation (2-3) and also

shows the components of the absolute and relative velocities. Assuming

this velocity diagram to be drawn in an axial-tangential plane, the

absolute and relative velocities can be expressed in terms of their

Relative

angle
of flow,

V x = Wx

Absolute

angle
of flow,

cl7
I
I
I

V

VU

FIGURE 2-2.--Typical velocity-vector diagram having tangential components

of absolute and relative velocities in the same direction.
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components in the axial and tangential directions as

V2:V_2q-V,, 2 (2-4)
and

W 2=W2+ Wu 2 (2-5)
where

V magnitude of V, m/see; ft/sec

V= axial component of absolute velocity, m/see; ft/sec

Vu tangential component of absolute velocity, m/see; ft/sec

W magnitude of W, m/see; ft/sec

IV= axial component of relative velocity, m/see; ft/sec

W_ tangential component of relative velocity, m/see; ft/sec

If this diagram (fig. 2-2) were drawn in the radial-tangential plane,

the values marked as axial components would be radial components.

From figure 2-2, we see that we can write

W_,=V,,--U (2-6)

A sign convention must be established for the angles and the

tangential components of velocity, since not all velocity diagrams

are of the exact same geometrical shape as the example diagram

shown in figure 2-2. We could have, for example, the velocity dia-

gram shown in figure 2-3. In this instance, the tangential components

and flow angles of the absolute and relative velocities are directed

in opposite directions, and it is not obvious that equation (2-6) is

valid. Therefore, we will adopt and stick with the convention that

Relative

angle of
flow,

13_

Wu Wx = Vx._ Wx = Vx

r-Absolute

angle
of flow,

cI

t U ---I

FIGURE 2-3.--Typical velocity-vector diagram having tangential components of
absolute ap.d relative velocities in opposite directions.
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all angles and tangential components of velocity are positive if they

are in the direction of the blade velocity and are negative if they are

in the direction opposite to the blade velocity. With this convention,

we can now see that equation (2-6) remains valid for the velocity

diagram shown in figure 2-3, where a small positive value of Vu

minus a larger positive value of U yields a negative value for Wu.

Not all turbine analysts use the above convention for all cases.

Some use the above convention at a location immediately upstream

of a rotor and then switch positive and negative directions at locations

immediately downstream of a rotor. In many cases this avoids working

with negative values. Also, many analysts work with angles defined

with respect to the tangential direction rather than the axial direction

as we are using. Therefore, if you should have occasion to use velocity-

diagram information generated by someone else, make sure that

you are aware of the convention used in generating this information.

Energy Transfer

The basic energy-transfer relation for all turbomachines is rein

tively simple and is only a form of Newton's Second Law of Motion

as applied to a fluid traversing a rotor. Figure 2-1 represents a rotor

of a generalized turbomachine, with 0-0 the axis of rotation and

the angular velocity. Fluid enters the rotor at point 1, passes through

the rotor by any path, and is discharged at point 2. The directions

of the fluid at points 1 and 2 are at any arbitrary angle, and points

1 and 2 are at any radii rl and r2. A condition of steady state is as-

sumed. Further, the velocity vectors at the inlet and the outlet are

regarded as representing the average values for the mass of flow

being considered.

The inlet and outlet velocity vectors can be resolved into the three

mutually perpendicular components discussed previously. The change

in magnitude of the axial velocity components through the rotor gives

rise to an axial force, which must be taken by a thrust bearing. The

change in magnitude of the radial velocity components gives rise to

a radial bearing load. Neither the axial nor the radial velocity compo-

nents have any effect on the angular motion of the rotor (except for

the effect of bearing friction). It is the change in magnitude and radius

of the tangential components of velocity that corresponds to a change

in angular momentum of the fluid and results in the desired energy

transfer.

Net rotor torque is equal to the difference between the inlet and

outlet products of tangential force times radius, or

r:(F_r)_--(F,,r)2 (2-7)
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where

net torque, N-m; lb-ft

F_ tangential force, N; lb

r radius, m; ft

Applying equation (1-34) in the tangential direction, integrating from

V=O at t=O to V=V at t=t, and setting w=m/t yields

_w_ Vu
F,,--g

where

w rate of mass flow, kg/sec; lb/sec

g conversion constant, 1; 32.17 (lbm) (ft)/(lbf)(seC)

Substituting equation (2-8) into (2-7) then yields

(2-8)

W w V,.2r2 g (V_.lrt--V_.2r2)T =-- Yu, lrl _ =-g (2-9)

Power (rate of energy transfer) is equal to the product of torque and

angular velocity:

p_r_ w _(rlV_ 1--r2V_ 2)
J -gJ . ,

where

P net power, W; Btu/sec

angular velocity, rad/sec

J conversion constant, 1; 778 (ft)(lb)/Btu

Since
roo:V

we can write

But

p=W
gj (UIV_.,-U2V,.2)

(2-10)

(2-11)

(2-12)

P=whh' (2-13)

where h' is total enthalpy, in J/kg or Btu/lb. Substituting equation

(2-13) into equation (2-12) yields

(2-14)

J t

where Ah' is here defined as hi--h2.

Equation (2-14) is the basic work equation for all forms of turbo-

machines and is called the Euler equation. All the energy transfer

between the fluid and the rotor must be accounted for by the difference

between the two UV_ terms. The way equation (2-14) is stated, it
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can be seen that Ah' must be positive for a turbine. This is consistent

with the energy balance, equation (1-46), where work done by the

fluid is defined as positive.

It is useful to transform the Euler equation into another form. This

will be done with the aid of figure 2-4, which shows an axial-flow

turbine blade section along with the velocity diagrams for the inlet

and outlet. The velocity diagrams are in axial-tangential planes.

There is assumed to be no radial component of velocity at either the

inlet or the outlet locations, although these locations are not neces-

sarily at the same radius. Actually, the following derivation also can

be made for a general three-dimensional case.

From equations (2-4) and (2-5), we get

and
Vx *: V 2- V= _ (2-15)

Wx_=W*--W,, _ (2-16)

Substituting equation (2-6) into (2-16) gives

Vx, 1 = Wx, 1

Wu, 1 Ul

Direction

of rotation''e*

V_. _z E'

,__i/_,,"- Vx, 2 = WX,2

u2 \
'-Vu, 2

FIGURE 2-4.--Rotor section with inlet- and exit-velocity-vector diagrams.
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W,_=W*-(V,,-U) 2 (2-17)

Since Vx= Wz, combining equations (2-15) and (2-17) yields

Therefore,

V 2- V,,2=W _- V,,2+2UV_ - U 2

UV,,= 1 (V_+U2-W 2)

(2-18)

(2-19)

Now, adding subscripts for inlet and outlet yields

U1V.,, 1 (V_+U2 W2 ) (2-20)

V 1U2 _ _:-2 (W+U_2-W_ _) (2-21)

Inserting these values into the Euler equation (eq. (2-14)) finally

yields

1 (V2 V2_+U__U2_+W2_ Wt2 ) (2-22)
Ah'--2gJ

Equation (2-22) is an alternative form of the basic energy-transfer

relation.

By definition,
, , Vl_ V__

Ah'=hl--h2=hl+-_--h2. 2gJ (2-23)

Therefore, comparison of equation (2-22) with equation (2-23)

shows that
1

Ah:h_--h2=_gj (UI2-U22 +W22-W_ 2) (2-24)

Thus, the U 2 and W 2 terms of equation (2-22) represent the change

in static enthalpy across the rotor, while the V 2 terms represent the

change in absolute kinetic energy across the rotor. These three pairs

of terms are sometimes referred to as the components of energy
transfer.

Blade Loading

As mentioned previously, it is the change in the tangential momen-

tum of the fluid that results in the transfer of energy from the fluid to

the rotor. The following discussion and figure 2-5 concern the cause

of this change in tangential momentum and the way in which the

energy is actually transferred to the wheel.

As the fluid flows through the curved passage between each pair of

blades, a centrifugal force acts on it in the direction of the pressure
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Stations

f
Flow

1 2

sur,_ceJ \\1
/- Suction "_

/ surface ]
I

Axial chord

Flow

m

pll

Pl

--P2

Suction surface--,'

Axial distance

FIGURE 2-5.--Blade row with surface static-pressure distribution.
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(concave) surface. Since the fluid is constrained and, therefore, not

free to move in the direction of the centrifugal force, a pressure force

must be established to balance the centrifugal force and turn the fluid

through its curved path. The pressure force is directed normal to

the flow and toward the suction (convex) surface. Thus, the pressure

in the passage is highest at the pressure surface and lowest at the

suction surface.

The resulting distribution of static pressure on the blade surfaces

is illustrated in figure 2-5, where pressure is plotted against axial

distance. At or near the blade leading edge there is a stagnation point

where the velocity becomes zero and the pressure reaches its stagna-

tion value. The stagnation point is the dividing point for the fluid

flowing around to the two sides of the blade. From the stagnation

point, the pressure along the blade surfaces decreases toward the blade

trailing edge. On the suction surface, the static pressure will often de-

crease below the exit pressure and then increase back up to the exit

pressure.
The pressure-distribution curve illustrated in figure 2-5 is called

the blade-loading diagram. The area between the curves represents

the blade force acting in the tangential direction.

Relative Conditions

Flow in a rotating passage can be analyzed in a manner similar to

flow in a stationary passage by considering conditions relative to the

moving passage. Let us first define relative total enthalpy in a manner

similar to the definition of absolute total enthalpy.

h"__h+2_ J (2-25)

where h" is relative total enthalpy, in J/kg or Btu/lb. Now let us

examine what happens to relative total enthalpy as the fluid flows

through the rotor. If in equation (2-24) we substitute for W 2 according

to equation (2-25), we get

U_-- UI_ (2-26)
h '2'-- h ','-- 2 gJ

Therefore, we see that the relative total enthalpy of the fluid flowing

through the rotor changes only if there is a change in the blade speed.

For purely axial flow, where there is no change in radius and, conse-

quently, no change in blade speed, the relative total enthalpy remains

constant for the rotor flow process.

We can also define a temperature that corresponds to relative total

enthalpy. This is called the relative total temperature, T". When

3O



BASIC TURBINE CONCEPTS

ideal-gas-law behavior and constant heat capacity can be assumed,

we can write

h"--h=%(T"--T) (2-27)
where

c_ heat capacity at constant pressure, J/(kg)(K); Btu/(lb)(°R)

T absolute temperature, K; °R

Combining equation (2-27) with equation (2-25) then yields

W 2

T" -= T _- 2gJc-_ (2-28)

From equation (1-51) and equation (2-28), we see that the absolute

and relative total temperatures are related as follows"

V__W 2
T'-- T"-- -- (2-29)

2gJc_

For the rotor flow process, we can write

h_'--h_'=cp(T_'-- T_') (2-30)

Combining this with equation (2-26) shows that

T_'-- T_'-- U_-- V12
2gJcp (2-31)

Therefore, relative total temperature, like relative total enthalpy,

depends only on blade speed and remains constant for purely axial

flow through a rotor.

Relative total pressure can be defined as the pressure of a fluid

brought to rest isentropically from a relative velocity W and a static

pressure p. Therefore,
]!

where

p" relative total pressure, N/m2; lb/ft 2

_, ratio of heat capacity at constant pressure to heat capacity at
constant volume

From this equation and equation (1-52), we also see that

p" (T"y/(-,-')
p' =\--_-;,T/ (2-33)

For the rotor flow process, relative total pressure can increase, de-

crease, or remain constant, depending on the change in relative total

temperature and on the losses. For purely axial flow, relative total
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pressure will remain constant only if the flow is isentropic; otherwise,

it must decrease.

We can define a relative Mach number Mr_ as

M,_= W (2-34)
a

and a relative critical velocity as

where

We,
act, ttt

R

Wct=a_.,_=_l gRT" (2-35)

critical velocity, m/sec; ft/sec

speed of sound at relative critical condition, m/sec; ft/sec

gas constant, J/(kg) (K) ; (ft) (lb) / (lb) (° R)

Then, in a manner similar to the way we derived equations (1-60)

and (1-64), we can get

T" 2--1T --1+ M_e_ (2-36)

and

T,,--1 3,+1 _ (2-37)

Reaction

The fraction of total energy transfer (change in absolute total

enthalpy) that is obtained by a change in static enthalpy is one im-

portant way of classifying a turbine stage. The change in kinetic

energy as a fraction of the exit kinetic energy is one important way of

classifying a blade row. The parameter used in both cases is the degree

of reaction, or more simply, the reaction. Reaction is used for classifying

types of velocity diagrams, and it is also an important parameter for

correlating losses.

Stage reaction.--Stage reaction is defined as the change in static

enthalpy across tile rotor as a fraction of the change in absolute total

enthalpy across the stage. Note that the change in absolute total

enthalpy across the stage is the same as the cha_lge in absolute total

enthalpy across the rotor, since total enthalpy remains constant

through the stator. According to the above detiIlition of stage reaction,

we can write

hl--h_ (2-38)
R_'_--hl' --hi

where R,tc is stage reaction, and the subscripts 1 and 2 refer to con-

ditions upstream and downstream of the rotor, respectively.
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The preceding equation for reaction can be expressed in terms of

velocities. Substituting equations (2-22) and (2-24) into equation.

(2-38) yields

(U?-U22) + (W 2-W ?)
R.,,-- V22)+ (U2 U22)+ (W22_W2) (2-39)

Reaction can be positive, negative, or zero, depending on the values of

(U_2--U_ 2) and (W2_--Wl_).

Zero reaction is one important value that characterizes a particular

stage design. If Rst0=0, there is no change in static enthalpy in the

rotor, and all the work done by the stage is a result of the change in

absolute kinetic energy across the stage. This stage is called an impulse

stage. In the general case where the fluid enters and leaves the rotor

at different radii, an impulse stage may result from having a change

of static enthalpy in one direction contributed by the centrifugal (U 2)

effect and an equal change in the other direction contributed by the

relative-velocity effect. For purely axial flow, any change in static

enthalpy must be caused by a change of relative velocity only. Thus,

an axial-flow impulse stage must have WI= W2.

Some people define impulse on the basis of no change in static

pressure in the rotor rather than no change in static enthalpy. This

definition in terms of static pressure is approximately the same as that

used herein. The difference is due to losses. For isentropic flow, the

definitions exactly coincide.

Simple examples of impulse turbines are the child's pinwheel, the

windmill, or the paddle wheel operated by the impingement of a fluid

from a stationary nozzle. A simple example of a reaction turbine is

the lawn sprinkler that ejects the water from nozzles, thus causing
rotation.

Blade-row reaction.--Blade-row reaction is defined as the kinetic

energy develol)ed within the blade row as a fraction of the kinetic

energy at the blade-row exit. These are the kinetic energies relative

to that blade row. For a stator or axial-flow rotor, the change in

kinetic energy corresponds to the change in static enthalpy. Therefore,

blade-row reaction represents an effect similar to that represented by

stage reaction.

For a stator blade row, reaction is defined as

R,, V1_-- V°2----1 V°2
V12 Vl 2 (2-40)

where Rs, is stator reaction. For a rotor blade row, reaction is defined
as
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R --W22--W1_= l W12 (2-41)
to-- W22 - W22

where R,o is rotor reaction. The subscripts 0, 1, and 2 refer to condi-

tions upstream of the stator, downstream of the stator, and down-

stream of the rotor, respectively.

In some literature, the blade-row reaction is defined in terms of

velocities instead of kinetic energies. This definition is similar to

equations (2-40) and (2-41) except that the velocities appear to the

first power rather than squared (i.e., V rather than V2).

Turbine Expansion Process

For all adiabatic expansion processes, the maximum energy trans-

formation (development of kinetic energy) or energy transfer (de-

velopment of mechanical work) for a given pressure ratio is obtained

when the process is isentropic. This can be proven from the previously

presented equations (but we will not do it here), and we will illustrate

this fact graphically a little later in this discussion. With the ideal-

gas-law and constant-heat-capacity assumptions, we have previously

shown that energies and energy changes can be represented by tem-

peratures and temperature changes. Therefore, with temperature,

pressure, and entropy all being variables of interest, we can con-

veniently represent the ideal (isentropic) and actual expansion

processes in a turbine by means of a temperature-entropy diagram.

The temperature-entropy diagram is a plot of temperature against

entropy for lines of constant pressure. Since entropy increases with

increasing temperature and decreasing pressure, as can be seen from

34

b.-

E

E

b--

Constant-entropy-

I
Entropy, s

Pl > P2 > P3

FIGURE 2-6.--Typical temperature-entropy diagram.



BASIC TURBINE CONCEPTS

the discussion of the coastant-entropy-1)rocess thermodynamics in

chapter 1, a temperature-entropy, or T-s, diagram looks like the

example shown in figure 2-6. A constant-entropy process is repre-

sented by a vertical line. At increasing values of temperature and

entropy, the pressure curves diverge; therefore, at increasing values

of constant entropy, the temperature difference between any two

given pressure curves is also increasing.

For the purposes of clarity, the turbine expansion process will be

divided into four steps, with each shown in a separate T-s diagram.

These four diagrams will then be combined into a single diagram.

The four diagrams represent the stator expansion process (fig. 2-7 (a)),

the relation between absolute and relative conditions at the stator

T_= T_

TO

T1

Tl, kJ

i.--

Ti' : T_'

_,,_Jc--

0
(a)

P()"P'Lid

NJCp

2gJcp >2gJCp

hl--_ CPl
T2 ....

(c) l

p_

/

Entropy, s

Ti

Tj'

T1

------7

(b)

p?
vl

T_'

T_

T2

/

(d)

P_'

P2

(a) Expansion process across stator. (b) Relation between absolute and

relative conditions at stator exit.

(c) Expansion process across rotor. (d) Relation between relative and

absolute conditions at rotor exit.

FIGURE 2-7.--Temperature-entropy diagrams for flow-process steps of an axial-

flow turbine.
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exit (fig. 2-7(b)), the rotor expansion process relative to the moving

blades (fig. 2-7(c)), and the relation between relative and absolute

conditions at the rotor exit (fig. 2-7(d)).

Figure 2-7(a) shows the expansion process across the stator. The

four constant-pressure curves represent the static and absolute total

pressures before and after the expansion. The kinetic energy at each

state is represented by the vertical distance between the static state

point and the total state point in accordance with equation (1-51). If

the expansion process were isentropic, the final state would be that

indicated by the subscript 1,id. The actual process proceeds from

state 0 to state 1 with a small increase in entropy, as indicated by

the small arrows. It can be noted that the kinetic energy developed

by the actual process is less than would be developed by the ideal

process.

As mentioned previously, we analyze flow through the rotor in

terms of relative conditions. Figure 2-7(b) shows the relation between
the absolute and relative total states at the stator exit. These states

are related isentropica]ly, and the absolute and relative kinetic en-

gies and total temperatures are indicated in the figure.

The expansion process across the rotor is shown in figure 2-7(c) in

terms of the relative conditions. The four constant-pressure curves

represent the static and relative total pressures before and after the

expansion. For simplicity, axial flow is assumed, so that T;'= T_'.

If the expansion were isentropic, the final state would be that indicated

by the subscript 2,id. The actual process proceeds from state 1 to

state 2, as indicated by the small arrows, with an increase in entropy.

Here again it can be noted that the relative kinetic energy developed

by the actual process is less than would be developed by an ideal

process.
The relation between the relative and absolute total states at the

rotor exit is shown in figure 2-7(d). These states are related isen-

tropically, and the relative and absolute kinetic energies at the stage
exit are indicated.

The four diagrams of figure 2-7 are now combined into one diagram

shown as figure 2-8. The static, absolute total, and relative total

state processes for the turbine expansion are indicated by the arrows

through the appropriate state points. For the time being, ignore the

enthalpy differences indicated on the right of the figure. Note that the

point (p_, T2._d), which is on the state ! constant-entropy line in

figure 2-7(c), is not the same point as in(licated in figure 2-8, where

it is on the state 0 constant-entropy line. In figure 2-7(c), the sub-

script 2,id refers to the ideal expansion across the rotor alone. In

figure 2-8, the subscript 2,id refers to the ideal expansion across the

entire stage (both stator and rotor). The l_,_t_fing of the subscript 2,id
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FIGURE 2-8.--Temperature-entropy diagram for a stage of an axial-flow turbine.

is, therefore, ambiguous but is commonly used in both senses. It is

obvious from figure 2-8 that the work obtained from the real turbine

process (as represented by T o- T_) is less than the work that could

be obtained from an ideal turbine process (as represented by

To-- T;. ,d).

Blade-Row Efficiency

Since turbine blade rows do not operate isentropically, we need a

parameter to express blade-row performance. One common parameter

used for this purpose is blade-row efficiency, which is defined as the

actual exit kinetic energy divided by the ideal exit kinetic energy of the

blade row. For the stator,

V_I (2-42)

where _ is stator efficiency. The relation between V_ and 2Vl._a is

indicated in figure 2-7(a). By applying equations (1-51), (1-52), and

(1-55), we get

L \pod (2-43)

For the rotor

Wi
_'°=W_, ,d (2-44)

where Vro is rotor efficiency. The relation between W_ and W_._d

is indicated in figure 2-7(c). For purely axial flow,
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W_,,d=2gJc_,T;' 1-\-_,/ j
(2-45)

Thus, with inlet conditions and efficiency known for a given blade row,

it is possible to calculate exit velocity for a specified exit static pressure.

Blade-row performance in terms of kinetic energy is sometimes

expressed as a loss rather than as an efficiency, as

e=l--n (2-46)

where e is the kinetic-energy loss coefficient.

Blade-row performance also can be expressed in terms of a loss in

total pressure. Several coefficients of this type have been used, each

differing by the normalizing parameter used to make the coefficient

dimensionless. Inlet total pressure, exit ideal dynamic head, and exit

actual dynamic head have all been used for this purpose as follows:

Stator: Axial rotor:

I t /I It

y, po--pl, YTo-_P-' --P2,, (2-47a)
Po PI

f f ff _f

v' Po--p___._ ' ,, (2-47b)
"--P;--Pl yT o__P, --P2p_ --p_

! ! I¢ t!

V" Po--Pl" Y"o P_ p2 (2-47c)
• 't--P--_--pl P2 --P2

where Y, Y', and Y" are total-pressure loss coefficients. Relations

between the kinetic-energy loss coefficient and the various total-

pressure loss coefficients can be derived. These relations are not simply

stated, and they involve a Mach number dependency.

Turbine and Stage Efficiencies

Turbine or stage energy transfer is maximum when the expansion

process is isentropic. Since the process is never isentropic, we need a

parameter for expressing turbine or stage performance. The parameter

that we use is the turbine or stage efficiency, which is defined as the

ratio of actual energy transfer to ideal (isentropic) energy transfer.

This efficiency is known as the isentropic or adiabatic efficiency. The

several different ways that we can apply the above definition are
discussed in the sections to follow.

Overall e_ciency.--Overall efficiency refers to the overall turbine or

stage process. It is the ratio of actual energy transferred in the turbine

or stage to the ideal energy transfer based on isentropic flow from

the turbine or stage inlet condition to the exit pressure. Note that

we are discussing aerodynamic efficiency and are not, at present,
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considering mechanical inefficiencies due to items such as bearing and
seal friction.

We will define actual energy transfer as the shaft work done by the

turbine. This definition is the one used by most people; occasionally,

however, actual energy transfer is defined as shaft work l)lus exit kinetic

energy. Actual energy transfer as defined herein is the decrease in

absolute total enthalpy across the turbine or stage, and this is indicated

in figure 2-8.

Now we must consider whether to define the ideal energy available

to do work on the basis of static or total conditions. At the inlet, the

total state is ahvays used because the inlet kinetic energy is available

for conversion to shaft work. At the turbine or stage exit., static

conditions are sometimes used and total conditions are sometimes

used. If the turbine exhaust-flow kinetic energy is dissipated, as in a

plenum, then the exit kinetic energy is just wasted. This wasted kinetic

energy could have been 1)ut to use if it could have been converted to

shaft work in the turbine. In such a case, we use the exit static state

for the computation of ideal work because it would be desirable to

expand down to the exit static state with zero exit. kinetic energy. In

this desirable ideal case, the exit total state would equal the exit
static state.

If we were considering a multistage turbine in tile above situation,

the kinetic energy from only the last stage would be considered as a

loss. The kinetic energies leaving the other stages are not wasted, but

are carried over to the next stage, where they may be converted to

shaft work. Thus, the last stage is rated on the basis of its exit static

condition, while the other stages are rated on the basis of their exit
total conditions.

In cases where the turbine-exit kinetic energy serves a useful pur-

pose, the entire turbine is rated on the basis of ideal work computed

from the exit total state conditions. The most obvious example of this

case is the jet-engine turbine. Here the gas must be expanded to a

high velocity before leaving the engine, and, therefore, a high velocity

leaving the turbine is not a waste.

The efficiency based on the ideal work available between the inlet

total and exit static ('.on(litions is culled the static efficiency. The

effi('iency based on the ideal work available between the inlet total and

exit total conditions is called tile total efficiency. The conditions

rel)resented by the ideal enthall)y decrease for each of these cases are

in(licated in figure 2-8. It can be seen that the ideal work based on

the exit total con(tition must be less (as long as there is some exit

kinetic energy) than that based on the exit static condition. Thus, total

efficien('y is always higher than static efficiency, with the difference

between the two increasing with increasing exit. kinetic energy.
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Overall turbine efficiency _ and stage efficiency _tg are defined by

similar equations. The subscripts in and ex are used to denote turbine

inlet and exit conditions, instead of the subscripts 0 and 2 used for the

stage. Overall turbine static efficiency can be expressed as

(2-48a)

For the ideal-gas-law and constant-heat-capacity assumptions, this

reduces to

T',.--T',_

V / p,, \(_-l)/_l (2-48b)
T;. J

Overall turbine total efficiency is expressed as

hh' h;.--h',_
_' = .-_-7-, =h' _' (2-49a)

For the ideal-gas-law and constant-heat-capacity assumptions, this

reduces to

._, _ T'_.--T',_

T_ [1 (P-_= _('-'>"] (2-49b)--\p_--_-/

Stage total and static efficiencies are similarly defined but with the

appropriate subscripts.

Relation of turbine e3_ciency to stage efficiency.--The overall turbine

efficiency is useful as a measure of the overall performance of the

turbine. However, it is not a true indication of the efficiency of the

stages comprising the turbine. There is an inherent thermodynamic

effect hidden in the overall turbine efficiency expression. If equation

(2-48b) or (2-49b) were written for a stage, it could be seen that for

a given stage pressure ratio and stage efficiency, the energy transfer,

which for a stage would be (To--T_), is prol)ortional to the teml)era-

ture of the gas entering the stage. For a turbine, as can be __een from

figure 2-8, the losses of one stage appear in the form of a higher tem-

perature gas entering the following stage (T_T2,_,). This following

stage is then capable of delivering additional work. Therefore, even

though all the individual stages may have the same stage efficiency,

the overall turbine efficiency still del)ends on the pressure ratio and

the number of stages.

This effect can be shown by means of a temt)erature-entropy dia-

gram, such as figure 2-9. The solid verticnl line O-2,id represents
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FIGURE 2-9.--Temperature-entropy diagram showing reheat effect in a multistage
turbine.

isentropic expansion from inlet pressure Po to exit pressure p_. The

dashed line 0-2 represents the process of overall turbine efficiency _'

taking place in three stages, each having the same stage efficiency _'sto.

The actual work obtained from each stage is ,7_tg Ah_,.stt, where

Ah_d. stg is the ideal work for a stage. As mentioned previously, the

difference of temperature between lines of constant pressure increases

with increasing values of entropy. Hence, for the second stage (p_ to

p_), the isentropic work represented by the line C-D is greater than

that represented by A-B. Thus, the isentropic work for this stage is

greater by virtue of the inefficiency of the previous stage an(l, for

constant stage efficiency, the actual work will be greater. Similarly,

E-F is greater than B-2,id. With lines 0-A, C-D, and E-F represent-

ing the ideal work for the three stages, and 2; Ahld. stt representing

the sum of these, it can be seen that Z Ah;dstg is greater than A-h_,

which is the turbine ideal work represented by the sum of 0-A, A-B,

and B-2,id.
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The total actual turbine work obtained from the expansion from Po

to P'2 can be represented by either 7' Ah',d or _tg Z Ah'_.,t,, and

these two values must be equal. Thus,

or

-'Ah' ' (2-50)

, z ah,_.,,, (2-51)
_-_ Ah'_

Since 2_ Ah'_d,s,g _Ah_d, the turbine overall isentropic efficiency is

greater than the stage isentropic efficiencies, or _' _tg.
This effect in turbines is called the "reheat" effect. This must not

be confused with the process of adding heat from an external source

between stages, which is also called "reheat".

The equation for calculating overall turbine efficiency for several

stages of constant stage pressure ratio p_/p_ and

efficiency _t_ is

-, I-- 1--_,t_ 1--\_-£] J)

_1 -- ( p i t nt(.y_ l)l_, ]
1 --\_oo/

constant stage

(2-52)

where n is the number of stages. The derivation of this equation can

be found in reference 1.

The fact that stage efficiency differs from turbine efficiency, depending

on the pressure ratio, raises an important consideration. A comparison

of turbine efficiencies of two machines of different pressure ratios is

not a true comparison of their aerodynamic behavior, as the one of

higher pressure ratio is helped by the reheat effect. It would be de-

sirable to be able to express a true aerodynamic efficiency for a turbine.

In order to eliminate all reheat effect, this would have to be the effi-

ciency of an infinitesimally small stage.

Infinitesimal-stage eff_ciency.--Starting from pressure p and

temperature T, suppose a gas is expanded to pressure (p--dp) and

temperature (T--dT), where d T is the increment of temperature for

an infinitesimal stage of isentropic efficiency vp. By using the isen-

tropic-efficiency definition, we write

and

d T = _pT E l --(ppdp ) (_- ' ) /_] (2-53)

dTT_ _1o[1--(I __)(_- z,l_] (2-54)
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These equations are not quite rigorously in accord with the isentropic-

efficiency definition. Some authors ignore the fact that the actual work

differential should be proportional to the total-temperature differen-

tial rather than the static-temperature differential. Other authors

make the assumption that there is no change in kinetic energy across

the infinitesimal stage, so that d T'----d T. However, it ahvays seems to

be the static temperature that is used in the infinitesimal-efficiency

expression.

Using the series expansion approximation (1-#x) n= 1 +nx for

evaluation of equation (2-54) yields

dT 7_1 dp (2-55)
T --_ 7 I'

Integrating between the turbine inlet and exit yields

Tfn

In _-

z/P--7-- 1 In p_"
"Y Pex

(2-56)

Equation (2-56) can be written as

The infinitesimal-stage efficiency _p is SUl)posedly the true aero-

dynamic efficiency, exclusive of the effect of pressure ratio. This

efficiency is also known as the l)olytropic efficiency. This name arises

from the method of expressing an irreversible process path as pv"=

constant, where n is called the polytropic exl)onent , and the process is

called a l)olytropic process. Substituting for v from the ideal gas law,

we get for the l)olytropic process

T,n {p,n'_ (n-l)/n

\p,,!
(2-5s)

Equations (2-57) and (2-58) are very similar, and if the turbine

process were to be expressed as a ])olytroi)ic process, then we couhl

relate l)olytropic efficiency and the polytrol)ic exponent as

n--1 -),--1 (2-59)
n ?

If we neglect inlet and exit, kinetic energies for the overall turbine
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process, we can relate turbine overall efficiency to polytropic effi-

ciency. Actual temperature drop could be expressed as

T_ _Te_='_T_, E1 (Pe_ y"-l)/_ 1--\_-_,/ J (2-60)

or

_1 (_-e_) _'{(_- 1)/_] k (2-61)
L -\_/ J

Equating (2-60) with (2-61) then yields

_=1--\_/ (2-62)

This relation is illustrated in figure 2-10. The two efficiencies ap-

proach each other as pressure ratio and efficiency each approach

unity. However, at higher pressure ratios, especially at lower effi-

ciency levels, the two efficiencies can differ signiticantly.

.9--
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---- .8 B

b---
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Turbine
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r_tio /.,///

1 I I I
.7 ,8 .9 1.0

Turbine poly_ropic efficiency, ffp

FIGURE 2-10.--Relation between turbine overall and polytropic efficiencies.

Specific heat ratio 7, 1.4.
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DIMENSIONLESS PARAMETERS

Dimensionless parameters serve to classify velocity diagrams,

classify turbine geometry, and correlate turbine performance. A

number of the more commonly used dimensionless parameters are

introduced and discussed in this section. The basis for the use of

dimensionless parameters is dimensional analysis.

Dimensional Analysis

Dimensional analysis is a procedure that allows a group of variables

comprising a physical relation to be arranged so that they throw some

light on the nature of the relation. It is a procedure for grouping the

variables into a smaller number of dimensionless groups, each con-

taining two or more variables. The number of such groups will be

the minimum necessary to include all the variables at least once and

to represent the physical relation between them. The basis of dimen-

sional analysis as a formal 1)rocedure is the 7r-Theorem, which states

that a complete physical equation may be expressed in the form of a

number of terms, each term representing a product of powers of

some of the variables and forming a dimensionless group. The formal

procedure for obtaining the dimensionless groups from the pertinent

variables is presented in many texts, including reference 1, which
served as the basis for this discussion.

Application of dimensional analysis to the general problem of fluid

flow yields considerable insight into the nature of the basic physical

relations. The resultant dimensionless terms represent ratios of

dimensions, ratios of forces, and ratios of velocities. The geometrical

term implies that shape (as a ratio of linear dimensions), rather than

the actual magnitude of each linear dimension by itself, is a con trolling

factor. Another term expresses the ratio of the force due to the change

of pressure in the fluid to the inertia force due to the motion of the

fluid. ]'his is a basic flow parameter characteristic of an analysis

based on an ideal fluid. There are other dimensionless groups, based

on various attributes of a real fluid, that modify the ideal relations.

These include the Reynolds number, which expresses the effect of

viscous forces; the Weber number, which expresses surface-tension

effects; an elasticity parameter (which for a gas reduces to the Mach

number), which expresses compressibility effects; and the Froude

number, which expresses gravitational effects. Of these terms ex-

pressing real fluid effects, in general, the Reynolds and Mach numbers

are the significant parameters for gas flow.

The concept of dimensionless groups as ratios of geometric, kine-

matic, and dynamic quantities leads _o the idea of similarity or

similitude. If two operating conditions are such that all the dimen-
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sionless terms have the same value, regardless of the individual values

of the separate variables, then exactly similar physical conditions are

obtained. Complete physical similarity implies (1) geometric similar-

ity, which means that the linear dimension ratios are everywhere the

same; (2) kinematic similarity, which means that the velocity ratios

are the same; and (3) dynamic similarity, which means that the ratios

of the different forces are the same. It is doubtful whether complete

physical similarity is ever attained, but for most practical purposes it

can be approached sufficiently closely to be of great utility. One use

of similarity is the operation of models of smaller linear scale so that

relatively inexpensive experiments can be performed with the results

applicable to the full-size machine. Another use of similarity involves

the operation of machines with the fluid at or near ambient conditions

rather than at some severe design condition.

Turbomachine Operational Parameters

Application of dimensional analysis to the general problem of fluid

flow results in the previously mentioned set of parameters. These

parameters are important for the detailed examination of flow within

the blade rows of turbomachines. In addition, dimensional analysis

has great utility in the analysis of the overall operational character-

istics. For any turbomachine, we are interested in the relation of head

(for compressible flow, this relates to ideal work), flow rate, and power

in conjunction _4th size, speed, and the properties of the fluid. The

following variables are used to demonstrate some of the more impor-

tant relations :

Volume flow rate, Q, m3/sec or ft3/sec

Head, H, J/kg or (ft)(lbf)/lbm

Power, P, W or Btu/sec

Rotative speed, N, rad/sec or rev/min

Characteristic linear dimension, D, nt or ft

Fluid density, p, kg/m 3 or lb/ft 3

Fluid viscosity, u, (N) (sec)/m _-or lbm/(ft) (sec)

Fluid elasticity, E, N/m 2 or lbf/ft 2

From these variables, five dimensionless groups can be formed. If we

drop the dimensional conversion constants in order to ease the manipu-

lation, the five dimensionless groups can be expressed as

_fcn _2_' p-N3D 5' u ' pN2D2/
(2-63)

The capacity, or flow rate, is exl)ressed il_ (limensionless form by

Q/ND 3, which is called the capacity coefficient. It can be further
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rel)resented as

Q VA VI) 2 V V
(2-64)

Thus, the capacity coefficient is equivalent to V/U, and a given value

of Q/ND 3 implies a l)articular relation of fluid velocity Io blade speed

or, in kinematic terms, similar velocity diagrams.

The head is expressed in dimensionless form I)v H/N21) ', whi(,h is

called the head coefficient. This can be rel)rcscnted as

H H
N 2D,_a: -_ (2-65)

Thus, a given value of t./N2D 2 iml)lies a particular rclatiol_ of hea_l

to rotor kinetic energy, or dynamic similarity.

The term P/pN3D 5 is _t power coefficient. It represents the actual

power And thus is related to the capacity and hea(t coefficients, as

well as to the efficiency.

The term pND2/u is the Reynolds number, or viscous effect coeffi-

cient. Its effect on overall turbine 1)erformance, while still iml)ortant,

can be regarded AS secondary. Ti_e Reynolds number effect will be

discussed separately later in this chapter.

The term E/aN2D 2 is the compressibility coefficient. Its effect

depends on the level of .XIach number. At low NIach number, where

the gas is relatively incoml)ressible, the effect is negligible or very

secondary. As NIach number increases, the compressibility effect

becomes increasingly significant.

Velocity-Diagram Parameters

We have seen that the ratio of fluid velocity to blade velocity and

the ratio of fluid energy to blade energy are inq)ortant factors required

for achieving similarity in turbomachines. Since completely similar

machines shouhl perform similarly, 'these factors become iml)ortanl as

a means for correlating performance. Since the fa('tor._ I_/'U aud

H/U z are rclatc(I to the velocity (liagrams, factors of this type ar(,

refcrrc(I to as velocity-diagram I)aramcters.

Several velocity-(liagram parameters are co,mnonly us(,_l ill t_,rt)illc

work. NIost of these arc ,ise(l I)rim'trily with rcsl)e('t to axial-ttox_

turbines. One of these parameters is the speed-work parameter

U 2
X::- (2-66

gJ/W

'Fh(_ re(:ipro('al of the sl)ce(l-work parameter is also oflcn use_l, aml it
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is referred to as the loading factor or loading coefficient

1 g JAb'
¢=X-- U 2 (2-67)

For an axial-flow turbine, we can write

(2-68)

Therefore, equations (2-66) and (2-67) can be expressed as

1 U
X=

¢--AV_
(2-69)

Another l)arameter often used is the blade-jet speed ratio

U

p _ "_fj
(2-70)

where V_ is the jet, or spouting, velocity, in m/see or ft/sec. The jet,

or spouting, velocity is defined as the velocity corresponding to the

ideal expansion from inlet total to exit st, atie (:onditions across the

stage or turbine. That is,

Vj2= 2gJ,_h,,_ (2-71)

Substitution of equation (2-71) back into equation (2-70) yields

U
_= -7-= (2-72)

_ 2gJAh,d

A relation between the blade-jet speed ratio and the speed-work

parameter can be obtained by use of equations (.2-66) and (2-72) and

the static efficiency definition

The resultant relation is

zXh'

n =Sh-_ (2-73)

v= _/_____ (2-74)

This shows that if efficiency is a funclion of ()ne of these parameters it

must also be a function of the other. While the speed-work parameter

is directh related onh to the actual veloc)tv diagram, the blade-jet

speed ratio is related to the velocity diagram and to the efficiency.

Another frequently used velocity-diagram parameter Is the flow
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factor, or flow coefficient

(2-75)

The flow coefficient can be related to the loading coefficient as follows:

v, / v,

By using equation (2-69) and the velocity-diagram geometry, we get

(V,,. ,'_ (2-77)
_=# cot al kAVu /

The term Vu. I/AV,, cannot be completely generalized. However, for

specific types of velocity diagrams, such as will be discussed in the

next chapter, this term becomes a function of loading coefficient alone

(a different function for each type of velocity diagram). Therefore, for

each of the different types of velocity diagrams, the flow coefficient

can be expressed in terms of the loadingcoefficient and the stator exit

angle.

It is thus seen that these four velocity-diagram parameters are

related to each other. In addition, efficiency can be related to these

parameters. This will be shown for an idealized specific case in the

next section and for a somewhat more general real case in the next

chapter. Where a particular type of velocity diagram is specified, only

one of the velocity-diagram parameters is required for correlating

efficiency. We at Lewis generally use the speed-work parameter

or the blade-jet speed ratio. For a more general efficiency correlation,

two of these parameters are required. One parameter must be the

flow coefficient, and the other is usually the loading coefficient.

Relation of Efficiency to Velocity-Diagram Parameters

We will now show for an idealized specific ease how static efficiency

can be related mathematically to the blade-jet speed ratio. Assume

that we have a single axial-flow (U_= U_) impulse (W_: W2) stage

with constant axial velocity (V_._=V_,2). A velocity diagram for a

stage of this type is shown in figure 2-11. Further assume that flow

through this turbine stage is isentropic (total efficiency _'= 1). The

only loss, therefore, is exit kinetic energy. The static efficiency

definition is

h'o-h'2 Ah'

,7-- h£--h2. ,_ --_h,_ (2-78)

Substitution of equation (2-68) into equation (2-78) yichts
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a 1

Vu,1j/
V2

Wu, 2

FIGURE 2-11.--Velocity-vector diagram for an axial-flow, impulse stage.

UAV,,

= gJAh,.,t

The change in fluid tangential velocity is

zxV,,=V_,,-V_,z

From the assumptions (Wl---- W2) and (W,._= W,.2)

convention we adopted,

W_. 2= --W_. 1

From equations (2-6), (2-81), and (2-80), we get

and

and

(2-79)

(2-80)

the sign

(2-81)

V,.2=W,.5+ U=-W,._+U=-(V,. 1- U) + U=- V_.I+2U

(2-82)

AV.=V..,I--V.,2=V..1--(--V..,+2U)--2V..I--2U (2-83)

From the velocity-diagram geometry

V_, 1= V1 sin m (2-84)

Since flow is isentropic and the turbine stage is of the impluse type

(h2, _d=h_=hl),

Vl=_ 2gJAh_e (2-85)

Substitution of equations (2-84) and (2-85) into equation (2-83)
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yields

AVe=2 sin al_/2gJAhia-2U (2-86)

Substitution of equation (2-86) back into equation (2-79) yields

4U sin al 4U _

_--4'2gJAh_a 2gJAh_ (2-87)

Now using the definition of blade-jet speed ratio from equation (2-72)

finally yields

n=4z, sin a,--4_3 (2-88)

Equation (2-88) shows that for this particular case and any constant

stator exit angle, static efficiency is a function of blade-jet speed ratio

only. The variation is parabolic and is illustrated in figure 2-12 for

an example with a stator exit angle of 70 °. A maximum efficiency of

0.88 is reached at a blade-jet speed ratio of 0.47. The optimum blade-

jet speed ratio can be found mathematically by differentiating equa-

tion (2-88) and setting the derivative equal to zero:

sin al
Vo_t-- 2 (2-89)

I I I I
.2 .4 .6 .8

Blade-jet speed ratio, v

1.0

FIGURE 2-12.--Effect of blade-jet speed ratio on static efficiency of an isentropic,

axial-flow, impulse stage. Stator exit angle, 70 °.
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Since the stator exit angle is normally in the range of 60 ° to 80 °, where

the sine of the angle does not vary greatly, the optimum blade-iet

speed ratio for most cases of interest with a turbine of this type would

be in the range of 0.4 to 0.5.

Equation (2-88) and figure 2-12 are, of course, very idealized and

specific. While the levels and values for a real case will differ from the

ideal case, the basic parabolic trend should remain the same; and,

indeed, it does. We find that for a real case, blade-jet speed ratio is a

very good correlating parameter for both static and total efficiency.

Likewise, so are the other velocity-diagram parameters.

Design Parameters

The operation of dimensional analysis on the variables relating to

turbomachines led to the dimensionless parameters shown in equa-

tion (2-63). This does not, however, exhaust the number of dimension-

less parameters that are possible. A parameter not having the linear

dimension D would be desirable because values of the remaining

variables would apply to a range of geometrically similar turbo-

machines of all sizes. Also, a parameter not having rotative speed N

would be desirable because, in this case, values of the remaining

variables would apply to a turbomachine at all rotative speeds.

Such parameters can be found by combining two of the previous

groups. The parameter that excludes D is known as the specific

speed N8 and is found as

/ Q \l/2/N2D2\3/4 NQI/2

When used for a turbine, the volume flow rate is taken at the

exit or turbine exit. Thus,
NE),/2

stage

(2-91)

The parameter that excludes N is known as the specific diameter

Ds and is found as

( H ,,_1/4 DH1/,
D_=\-_VD2] (V) 1/2- Q1/2 (2-92)

With the volume flow rate taken at the stage exit or turbine exit,

DH1/4 (2-93)
D,-- Qi/_x

Commonly, but not exclusively, the values for these parameters

are quoted with rotative speed N in revolutions per minute, exit
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volume flow rate Qe_ in cubic feet per second, ideal work, or head,

H in foot-pounds per pound, and diameter D in feet. With this set

of units, specific speed and specific diameter are not truly dimension-

less because the units are not consistent. The head H is usually taken

to be the total-to-total value (5h;_), but sometimes, for convenience,

it is specified as the total-to-static value (hh_).

Specific speed and specific diameter can be related to the previously

presented velocity diagram parameters. The blade speed is

_ND
U-- K (2-94)

where K is the dimensional constant (27r rad/rev or 60 sec/min). The
head is

(n) (2-95)H=JAh_d=J_d -_

Combining equations (2-91), (2-93), and (2-72) with equations

(2-94) and (2-95) yields

The ratio of total efficiency to static efficiency appears because of the

differing definitions of ideal work used in defining the various param-

eters. Some authors prefer to use the same ideal work definition in

all cases, thus eliminating the efficiency ratio from equation (2-96).

The parameter interrelation can be expressed in terms of the

speed-work parameter by substituting equation (2-74) into equation

(2-96)

NsD8 K -' :-- -v/g_'X (2-97)
"/l"

Specific speed and specific diameter can also be related to the flow

coefficient. The exit volume flow rate is

Qe_=A_V_ (2-98)

where A_x is the exit flow area, in m 2 or ft 2. Combining equations

(2-91), (2-93), (2-94), and (2-75) with equation (2-98) yields

NsD, 3=-- KD2 (2-99)
_'_A_

Since specific speed and specific diameter are related to the velocity-

diagram parameters, which can be used to correlate efficiency, then
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specific speed and specific diameter can also be used to correlate

efficiency.

Specific speed and specific diameter contain variables that the

velocity-diagram parameters do not. These are diameter and volume

flow rate, and their use leads to terms, such as D2/Aex appearing in

equation (2-99), that imply shape. Thus, specific speed and specific

diameter are sometimes referred to as shape parameters. They are

also sometimes referred to as design parameters, since the shape will

often dictate the type of design to be selected.

Overall Parameters

The dimensionless parameters that we have been discussing can

be applied to a stage or to the entire turbine. When applied to a stage,

these are the similarity parameters that represent similar conditions

for equal values and thus can be used to correlate efficiency. When

applied to the overall turbine, some of these parameters help identify

the type of design that might be most appropriate and serve as a

rapid means for estimating the number of required stages.

The following are the most commonly encountered overall

parameters:

Overall specific speed

Overall specific diameter

__ No1/2
N.----- ___e, (2-100)

H3/4

"_ D"_H1/' (2-101)

Overall speed-work parameter

gj_'_ ,

Overall blade-jet speed ratio

;= U..

(2-102)

(2-103)

The subscript av refers to some average condition, and the super-

script (--) refers to the value for the entire turbine.

Of these overall parameters, specific speed perhaps is most sig-

nificant because its value is almost always determined by application

considerations only, while the values for the other parameters gen-

erally depend on the nature of the evolved geometry. Equation (2-100)

for overall specific speed can be restated to show the considerations

that contribute to the value of overall specific speed. Let

Q,_=wv,_ (2-104)
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where ve_ is specific volume at exit, in m3/sec or ft3/lb. Also, let mass

flow rate be expressed as

JP
w----_ (2-105)

_'H

Then, substitution of equations (2-104) and (2-105) into equation

(2-100) yields

-_,=1_.7 / vex kll21 ,=\t  oo)

Thus, the overall specific speed can be expressed as the product of

three terms. The first term reflects expected performance, which can

be reasonably estimated. The second term depends only on the specified

gas and the thermodynamic cycle conditions. This second term is

useful for evaluating the effects that different fluids (in cases where a

choice is available) have on the turbine. The third term is dictated

by the application. Often, both rotative speed and power are specified ;

in other cases, the product N_/J__, rather than the individual values

of N and P, is established by the application.

The manner in which the overall specific speed influences the tur-

axial flow

One-stage, _'_ A
axial flow

flow

[ I I I I I I I I
.2 .3 .4 .5 .6 .7 .8 .9 1.0

Specific speed, Ns, dimensionless

I I I
1.1 1.2 1.3

I I I I I I I I I I I I I I I
20 30 40 50 60 70 80 90 100 110 120 DO 140 150 160

ft3/4 314 112)(ibf3/4Specific speed, Ns, ( )(Ibm )/(min)(sec )
t

FIGURE 2-13.--Effect of specific speed on turbine-blade shape.
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bine passage shape is illustrated in figure 2-13 for a radial-flow tur-

bine and for one- and two-stage, axial-flow, example turbines. The

ratio of hub radius to tip radius decreases with increasing specific

speed. For the axial-flow turbines, increasing the number of stages

decreases the radius ratio. Thus, the overall specific speed for any

application indicates the type or types of design that will be required.

The values of some of the overall parameters give us a rapid ap-

proximation of the number of stages required for a given application.

Dividing equation (2-100) for overall specific speed by equation (2-91)

for stage specific speed yields

N_ Qe_ 1/2
(2-107)

If we neglect the reheat effect, which is small, and assume equal head

change per stage, we can write

H=nH (2-108)

Further, if the expansion ratio is not too large, we can neglect the

compressibility effect and assume that Qe_:-Q_:._t_. Substitution of

these last two conditions into equation (2-107) and rearrangement

yields

n:(NsY/3 (2-109)
\NJ

Since stage specific speed is a correlating parameter for efficiency,

experience can tell us a reasonable value of stage specific speed to

assume in order to achieve a given level of efficiency. Thus, with stage

specific speed assumed and overall specific speed known from the

application requirement, equation (2-109) gives us an estimate for

number of stages. The effect of compressibility on this estimate is

discussed in reference 2, where a compressibility correction is presented.

A similar type of estimate for number of stages is often obtained

from the overall speed-work parameter and an assumed value for the

stage speed-work parameter. Knowledge of a value for the overall

speed-work parameter, however, requires a knowledge of the blade

speed. Often, a reasonable value of blade speed can be selected on the

basis of stress considerations. Or, blade speed may be varied para-

metrically if desired. Dividing equation (2-66) for stage speed-work

parameter by equation (2-102) for overall _peed-work parameter,

assuming a constant blade speed for the turbine (U2=U_v), and as-

suming equal work per stage,

ah' =n h' (2-110)
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yields

n==- (2-111)
),

Equations (2-109) and (2-111) are particularly useful for parametric

studies associated with preliminary system analyses.

Performance Specification Parameters

The turbomachinery parameters presented in equation (2-63) are

perfectly correct for compressible flow machines. Another choice of

variables, however, is often preferred for expressing nondimensional

performance. The mass flow rate w is preferred to the volume flow

rate Q because for any significant degree of expansion, Q changes

considerably throughout the turbine, while w remains constant.

Change of pressure expressed as pressure ratio is preferred to H,

which for compressible flow depends on both pressure ratio and initial

temperature. Instead of power P, the preferred term to express

actual work is the specific work or drop in total enthalpy Ah'. Since

ideal work depends on the initial temperature as well as on the pressure

ratio, we include initial temperature as another variable. Since Mach

number depends on temperature, introduction of temperature is

equivalent to introducing elasticity. Rotative speed N and a character-

istic dimension D are still of interest. The fluid properties are in-

eluded as gas constant R, which implies a molecular weight, and

viscosity #. For simplicity here, the specific heat ratio 3' is assumed
constant.

Now, operating with the variables

w=fcn(_h', p'_,, p_,, T'_,, N, D, R, #) (2-112)

dimensional analysis produces the following:

-, , )w_/RT,. . f Ah' ND p,.. w

P; D_ -- Icn_R-_n' _/RT,,,'_T"--7 'P_-_ (2-113)

If the specific heat ratio had not been assumed constant, there would be

some complicated, but second-order, terms modifying the flow, work,

and speed terms.

Let us operate on some of the above terms to see what significance

we can get out of them. The mass-flow parameter may be transformed

by using the continuity equation, the ideal-gas law, and the propor-

tionality AocD _, so that

RT . (2-114)
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Substitution of this relation into the mass flow parameter of equation

(2-113) yields

Thus, the mass flow rate is represented nondimensionally by the ratio

of actual mass flow rate to the mass flow rate when the velocity equals

the critical, or sonic, velocity.

The speed parameter may be transformed as

ND U U
oc ,-7-_,_, oc-- (2-116)

_]RT't,, _RT,_ ac,

Thus, the rotative speed is represented nondimensionally by the ratio

of rotor-blade velocity to critical velocity, which is a kind of rotor

Mach number. Division of the mass-flow parameter by the speed

parameter gives V/U, the kinematic condition of similarity. The

implication of this analysis is that for similarity, not only must the

fluid have a certain Mach number, but the rotor must also have a

certain fixed velocity with respect to the critical velocity. For a given

machine of fixed dimensions, therefore, the rotative speed is not a

singular variable as for incompressible flow, but becomes associated

with the temperature of the fluid. All variables must be expressed in

dimensionless form in order for the effect of varying inlet temperature
to be correlated.

For a given gas, the dimensionless parameters presented as equation

(2-113) can be expressed as

p_---_ -_-Icn _T-'
(2-117)

For a given gas in a given turbine, the parameters further reduce to

_=fcn _-r, --7' -r-, (2-118)

Depending on the particular case, the parameters presented in equa-

tions (2-113), (2-117), or (2-118) can be used to express turbine

performance.

Equivalent Conditions

It is very useful to report performance under standard conditions

of temperature and pressure and sometimes of fluid molecular weight

and specific heat ratio. This is done in order that results obtained at
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different conditions may be directly and readily compared and also

easily used to determine performance for any condition we desire. The

following are the standard conditions usually used: atmospheric pres-

sure, 101 325 N/m _ abs or 14.696 psia; temperature, 288.2 K or

518.7 ° R; molecular weight, 29.0; and specific heat ratio, 1.4. These are

known as NACA standard conditions, or NACA standard air. The

performance variables of flow, work, and speed expressed on the basis

of these standard conditions are known as equivalent conditions.

Let us use the parameters of equation (2-113) but with diameter

constant. With the subscript std denoting standard conditions and the

subscript eq denoting equivalent conditions, the similarity conditions

can then be expressed as

P !

P_. Pst_
(2-119)

ah' Ah'eq
RT_.--R_,. l_,d (2-120)

N N_q
/ , (2-121)

Rearrangement
conditions

of these equations then yields for the equivalent

p',.
w,q.=w taT' ta (2-122)

, ,
Ah_q-----,_h

RT',_ (2-123)

N_q= N 4R--_ta T:,a/ , (2-124)

As you may recall, we started off the discussion of these parameters

by assuming constant specific heat ratio for all conditions. This is not

always the case, since specific heat ratio can change with temperature

and fluid. Let us now add a specific-heat-ratio effect into the above

parameters. The specific-heat-ratio corrections that are commonly

used do not yield similarity under all conditions, but only at critical

(sonic) velocity. However, the terms that are left out depend on both

specific heat ratio and Mach number, are cumbersome to work with,

and have only a very small effect on equivalent conditions. With the

commonly used specific-heat-ratio terms, the equivalent conditions

are expressed as
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8q-- ---- tV_.v_,,.J \p,.:
(2-125)

_:,=t,h' ,,,_7 ) (2-126)

where

and, as you recall,

N_q_ Nj(V_'d.) ' (2-127)

.>,,S._2 V,;(,,,:,)
"\%,,+1/ (2-128)

_- .d__Ly<.,-,,
'\,y+ 1/

2 27
V<,--_-_l gRT'

(2-129)

Therefore, for constant specific heat ratio, equations (2-125) to (2-

127) reduce to equations (2-122) to (2-124).

Finally, we define

0=( Vc, )2 (2-130)
kYcr. 8ldl

and
#

.--_--P-_", (2-131)
Pstd

The equivalent conditions are then expressed as

w,q=w _ _ (2-132)

_kh #

_'_-- 0 (2-133)

N

Neq=_ (2-134)

One point that can be seen from these similarity equations is that

operation at temperatures greater than standard will cause a reduction

of both actual mass flow and equivalent speed. Both of these factors

reduce the output of a powerplant. A well-known example of this

effect is the reduction in takeoff performance of jet aircraft on hot days.

Reynolds Number Effect

The effect of viscosity in the form of Reynolds number was shown

to be one of the dimensionless parameters affecting turbomachine
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performance. While its effect is secondary, it is still important. The

effect of Reynolds number on turbine efficiency is usually correlated in

the following manner:

Expressing efficiency as

we can write

7' A ' ' Ah'
hh'_ 5h' (2-135)ld

_h J

, , ,o, (2-136)• -7 =

If we assume that the only loss is friction loss,

(2-137)

where f is the friction factor, and L is the characteristic flow-path

length. For turbulent flow,
1

fOCR--_0._ (2-138)

where Re is the Reynolds number. Substituting equations (2-138)

and (2-137) into equation (2-136) yields

1--_' 1 (2-139)

Adding subscripts for conditions 1 and 2 to equation (2-139) and

dividing the equation for condition 1 by the equation for condition 2

yield

Since for geometric similarity L_/DI--:L_/D2 and for dynamic mmilarity

V_/Ah_.,_-=V22/Ah '_,_d, equation (2-140) reduces to

1--7; (Re_'_ °'2
1--72 \Re1/

(2-141)

This is an ideal correlation. Actually, it has been found that the

exponent for this type of correlation is not 0.2, but usually varies in

the range of 0.1 to 0.2, depending on the machine. This occurs because

all the losses are not viscous losses, and the fraction of total loss

attributable to viscous loss varies between machines. In view of this,

another suggested type of correlation is
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1--v_--A {Re2"_ °_ (2-142)

where A and B are fractions such that A+B= 1. In equation (2-142)

the exponent is maintained at 0.2 to reflect the viscous loss exponent,

and the coefficients A and B serve to represent the fact that not all

loss is viscous loss. Recent turbine tests here at Lewis, as well as the

discussion presented in reference 1, indicate that values of about

0.3 to 0.4 for A and corresponding values of 0.7 to 0.6 for B seem to

be a good compromise for correlating Reynolds number effects.
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BASIC TURBINE CONCEPTS

SYMBOLS

flow area, m2; ft 2

Reynolds number correlation coefficient in eq. (2-142)

speed of sound, m/sec; ft/sec

Reynolds number correlation coefficient in eq. (2-142)

heat capacity at constant pressure, J/(kg)(K); Btu/(lb)(°R)

diameter, m; ft

specific diameter, dimensionless; (sec I/2) (lbfl/4) / (ft I/4) (lbm 1/4)

modulus of elasticity, N/m2; lb/ft 2

kinetic energy loss coefficient, defined by eq. (2-46)

force, N ; lb

friction factor

conversion constant, 1 ; 32.17 (Ibm)(ft)/(lbf)(sec 2)

head, J/kg; (ft) (lbf)/lbm

specific enthalpy, J/kg; Btu/lb

conversion constant, 1; 778 (ft)(lb)/Btu

conversion constant, 2_r rad/rev; 60 sec/min

characteristic length, m; ft

Mach number

rotative speed, rad/sec; rev/min

specific speed, dimensionless; (ft 3/4) (lbm 3/4)/ (rain) (sec 1/_) (lbf 3/4)

number of stages

polytropic exponent

power, W; Btu/sec

absolute pressure, N/m2; lb/ft 2

volume flow rate, m3/sec; ft3/sec

gas constant, J/(kg) (K) ; (ft) (lbf)/(lbm) (°R)
reaction

Reynolds number

radius, m; ft

absolute temperature, K; °R

blade speed, m/sec; ft/sec

absolute velocity, m/sec; ft/sec

ideal jet speed (defined by eq. (2-71)), m/sec; ft/sec

specific volume, mZ/kg; ft3/lb

relative velocity, m/sec; ft/sec

mass flow rate, kg/sec; lb/sec

total-pressure loss coefficient, defined by eqs. (2-47)

fluid absolute angle measured from axial or radial direction,

deg

fluid relative angle measured from axial or radial direction,

deg
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7

0

y

p
T

¢

ratio of heat capacity at constant pressure to heat capacity at

constant volume

ratio of inlet total pressure to NACA standard pressure

function of specific heat ratio, defined by eq. (2-128)

efficiency

squared ratio of critical velocity based on turbine inlet tem-

perature to critical velocity based on NACA standard

temperature

speed-work parameter, defined by eq. (2-66)

viscosity, (N)(sec)/m_; lb/(ft) (sec)

blade-jet speed ratio, defined by eq. (2-72)

density, kg/mS; lb/ft a

torque, N-m; lb-ft

flow coefficient, defined by eq. (2-75)

loading coefficient, defined by eq. (2-67)

angular velocity, rad/sec

Subscripts:

av average
cr critical condition (M---- 1)

eq equivalent
ex exit

/d ideal

in inlet

loss loss

opt optimum

p polytropic

r radial component

rel relative

ro rotor

st stator

std NACA standard condition

stg stage

u tangential component

x axial component

0 at stator inlet

1 at stator exit or rotor inlet

2 at rotor exit

Superscripts:

--_ vector quantity

-- overall turbine

' absolute total state

" relative total state
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BASIC TURBINE

GLOSSARY

The terms defined herein are illustrated in figure 2-14.

CONCEPTS

Tip-___

FLow_ I Blad_ _Hu b

Leading edge-/"

Pressure surface J/

I/-Suction surface

Axis-/

/
/

/

Tangent to camber /

line at leading edge 4.
\

\

Blade inlet angle 7 \...\
/

Axis-,, /

Flow inlet

angle-/

FIo_ /
I

Incidence angle J

Camber line-_

Chord

/-Trailing edge

_ Opening, l
or th roat

Spacing.
or pitch

Axial chord

Deviationant

/_-Tangent to camber
/ line at trailing edge

Flowexit angle

-Blade exit
angle

FIOURF 2-14.--Blade terminology.
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aspect ratio. The ratio of the blade height to the chord.

axial chord. The length of the projection of the blade, as set in the

turbine, onto a line parallel to the turbine axis. It is the axial length

of the blade.

axial solidity. The ratio of the axial chord to the spacing.

blade exit angle. The angle between the tangent to the camber line

at the trailing edge and the turbine axial direction.

blade height. The radius at the tip minus the radius at the hub.

blade inlet angle. The angle between the tangent to the camber line

at the leading edge and the turbine axial direction.
bucket. Same as rotor blade.

camber angle. The external angle formed by the intersection of the

tangents to the camber line at the leading and trailing edges. It is

equal to the sum of the angles formed by the chord line and the

camber-line tangents.

camber line. The mean line of the blade profile. It extends from the

leading edge to the trailing edge, halfway between the pressure

surface and the suction surface.

chord. The length of the perpendicular projection of the blade profile

onto the chord line. It is approximately equal to the linear distance

between the leading edge and the trailing edge.

chord line. If a two-dimensional blade section were laid convex side

up on a flat surface, the chord line is the line between the points
where the front and the rear of the blade section would touch the

surface.

deflection. The total turning angle of the fluid. It is equal to the dif-

ference between the flow inlet angle and the flow exit angle.

deviation angle. The flow exit angle minus the blade exit angle.

flow exit angle. The angle between the fluid flow direction at the blade

exit and the turbine axial direction.

flow inlet angle. The angle between the fluid flow direction at the

blade inlet and the turbine axial direction.

hub. The innermost section of the blade.

hub-tip ratio. Same as hub- to tip-radius ratio.

hub- to tip-radius ratio. The ratio of the hub radius to the tip radius.

incidence angle. The flow inlet angle minus the blade inlet angle.

leading edge. The front, or nose, of the blade.

mean section. The blade section halfway between the hub and the tip.

nozzle blade. Same as stator blade.

pitch. The distance in the direction of rotatioll between corresponding

points on adjacent blades.

pressure surface. The concave surface of the blade. Along this surface,

pressures are highest.

radius ratio. Same as hub- to tip-radius ratio.
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root. Same as hub.

rotor blade. A rotating blade.

solidity. The ratio of the chord to the spacing.

spacing. Same as pitch.

stagger angle. The angle between the chord line and the turbine axial

direction.

stator blade. A stationary blade.

suction surface. The convex surface of the blade. Along this surface,

pressures are lowest.

tip. The outermost section of the blade.

trailing edge. The rear, or tail, of the blade.
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CHAPTER3

VelocityDiagrams

ByWarrenJ. Whitneyand
WarnerL.Stewart

As indicated in chapter 2, one of the most important variables to

be considered in the design or analysis of turbines is the velocity of

the fluid as it passes from one blade row to the next. The absolute and

relative velocities and their relation to the speed of the blade row are

universally described through the use of velocity diagrams. Once the

overall design requirements of flow, work, and rotative speed are

established, the next step is the evolution of the velocity diagrams.

Their relation to the required blading geometry is very important in

that these diagrams specify the flow angles and velocities that the

blading is required to produce. In addition, the velocity diagrams

significantly affect the efficiency level expected from the turbine.

The general methods for constructing velocity diagrams and

relating them to the work and flow capacity of the turbine were dis-

cussed in chapter 2. Various dimensionless parameters associated with

the velocity diagram were also presented in chapter 2, and their

relation to turbine efficiency was illustrated by an idealized case. This

chapter is devoted entirely to the subject of velocity diagrams. The

first part of this chapter concerns a single diagram that can be con-

sidered representative of the average flow conditions for the stage.

Usually, the conditions at the blade mean radius are used. The

second part of this chapter is devoted to the radial variations in the

diagrams that result from the balance of forces in the radial direction

and from the variation in blade speed with radius. Only axial-flow

turbines are considered in this chapter.
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TURBINE DESIGN AND APPLICATION

MEAN-SECTION DIAGRAMS

In this section, the velocity diagrams occurring at the mean section

(halfway between hub and tip) are assumed to represent the average

conditions encountered by the turbine. The different types of dia-

grams, their relation to stage efficiency, and their selection when

staging is required are discussed.

In review, figure 3-1 shows an illustrative stage velocity diagram

indicating the vector relations described in chapter 2 and the nomen-

clature. Assuming no change in mean radius through the stage,

equation (2-14) can be written as

ah ' =--UA V_'
gj (3-1)

where

h' total enthalpy, J/kg; Btu/lb

U blade speed, m/see; ft/sec

V, tangential component of velocity, m/see; ftlsec

g conversion constant, 1 ; 32.17 (lbm) (ft)/(lbf) (sec 2)

J conversion constant, 1 ; 778 (ft) (lb)/Btu

This equation relates the stage specific work to the velocity diagram.

The axial component of the velocity vector is related to the flow

rate, state conditions, and the area by the relation

_0

Vz = P-_an

where

Vx axial component of velocity, m/see; ft/sec

w mass flow rate, kg/see; lb/sec

o density, kg/m3; lb/ft 3

Aan annulus area, mS; ft 2

(3-2)

Flow angles are key velocity-diagram parameters because they not

only link the axial and swirl velocities (the tangential component of

the absolute velocity is often referred to as the swirl velocity) but

also affect the expected efficiency and blading geometry. In addition,

dimensionless parameters are used in association with velocity-

diagram studies because the parameter values can be related to the

diagram shape. Such parameters were discussed in chapter 2 and

include the speed-work parameter, which can be expressed in several

ways, such as

U 2 U g JAb'

_=gJAh'--AV,,-- AV_ 2 (3-3)

The speed-work parameter is used in this chapter because diagram
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! I

WU,2

FIGURE 3-1.--Velocity-vector diagrams and nomenclature.

types are related to the swirl distribution and it is convenient to

normalize the diagram velocities by AV,.

Velocity-Diagram Types

After the overall design requirements are established, the velocity

diagrams can be evolved. Velocity diagrams have different sizes and

shapes depending on the diagram type and the value of the speed-work

parameter. Diagram type refers to some physical constraint imposed

on the diagram. Diagram shape determines the values of performance-

related parameters, such as stage reaction and swirl split between the

stator exit (V_._) and the rotor exit (V_._). The following three common

types of diagrams and their reaction and swirl characteristics are
discussed in this section:

(1) Zero-exit-swirl diagram (V_._---- 0)

(2) Rotor-impulse diagram (W, = W2)

(3) Symmetrical diagram (V_--W2 and V2:W1)

These three diagrams for several values of speed-work parameter are

shown in figure 3-2.

Zero-exit-swirl diagram.--In many cases, either the entire exit

velocity head or the swirl component thereof represents a loss in

efficiency. The zero-exit-swirl diagram, where

and

Vu., _ 1 (3-4a)
hVu--
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Speed-
work

parameter

O.25

0.5

1.O

Diagram type

Zero exit swirl Impulse Symmetrical

FIGURE 3-2.--Effects of speed-work parameter and diagram type on shape of

stage velocity-vector diagram.

V_.2_ 0
AV,-- (3--4b)

can be used to reduce such loss.

For an axial-flow rotor (UI= U2) having constant axial velocity

(Vz.1=Vz.2), the definition of stage reaction presented in equation

(2-39) reduces to
W2 W 2

_, 2-- u, 1 (3-5)
R.,-- 1- 2+W ,2-W .t

where

Rst_ stage reaction

W_ tangential component of relative velocity, m/sec; ft/sec

By using equation (2-6) and equations (3-3) and (3-4), equation

(3-5) can be expressed as

1
Rs,g= 1--_-_ (3-6)

This equation is plotted in figure 3-3(a). At _---1, the reaction is

0.5, which indicates a conservative diagram. At k=0.5, the reaction

is zero, which indicates an impulse rotor. Below _=0.5, negative

reaction is encountered. For example, at _,----0.33, the reaction is

--0.5, which, as can be shown, represents a substantial decrease in

velocity and increase in static pressure across the rotor. Because of
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1.0--

.o_

(a)

Symmetrical_
\

ZeroS,

_- Impulse

I / I 1 I

::3

N

,m

.5--

0

0

Zero exit swirl-,

(b)

I I . I 1
.25 .50 .75 1.0

Speed-workparameter, _,

(a) Reaction.
(b) Exit swirl.

FIGURE 3-3.--Effects of speed-work parameter and velocity-vector diagram type
on reaction and exit swirl.

potentially high losses, such high negative reactions are usually

avoided; therefore, zero-exit-swirl diagrams are seldom used for

X<0.5. Figure 3-2 presents the zero-exit-swirl diagrams for the

positive-reaction, impulse, and negative-reaction cases.

Impulse diagram.--For this case, WI=W2 and the equation for

stage reaction reduces to

Rst_=O (3-7)

From equation (2-6), equation (3-3), and the assumption of constant

axial velocity, the rotor inlet and exit swirl velocities can be expressed
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as

and

V_, _ X+0.5 (3-8a)
AVu--

Vu

_-_= _,--0.5 (3-8b)

The exit swirl characteristics are shown in figure 3-3(b). Positive

swirls are encountered at _ values greater than 0.5, and negative

swirls are obtained at _ values less than 0.5. At _=0.5, the impulse

and zero-exit-swirl cases coincide. These effects are illustrated in

figure 3-2. Because swirl velocity leaving a turbine is a loss and

because positive swirl decreases stage work, impulse diagrams are

seldom, if ever, used when _ is greater than 0.5.

Symmetrical diagram.--A third type of diagram commonly used is

one in which the stator-exit- and rotor-exit-velocity triangles are

specified to have the same shape. In terms of velocities,

and

V1 =W2 (3-9a)

V2=W, (3-9b)

Under this condition, the equation for stage reaction reduces to

1
R,tg=_ (3-10)

From equation (2-6), equation (3-3), and the assumption of constant

axial velocity, the swirl velocity components can be expressed as

and

Vu. 1 X+ 1
AV_ 2 (3-11 a)

Vu. 2 h_l
A-V_= 2-- (3-11b)

These reaction and swirl characteristics are shown in figure 3-3, with

typical diagrams illustrated in figure 3-2. The symmetrical diagram

is the same as the zero-exit-swirl diagram at _= 1. As the value of

decreases, the exit swirl increases, but the reaction remains constant

at 0.5. This good reaction is conducive to high total efficiency, making

this type of diagram attractive for stages where exit swirl is not a loss

(e.g., the front and middle stages of a multistage turbine).

Stage Efficiency

A significant aspect of a turbine design is the expected efficiency.
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The efficiency is an important function of, among other things, the

type of velocity diagram used and the pressure distribution on the

blade surface. Therefore, the diagram selection is greatly dependent

on the efficiency requirements of the intended application. Some

basic relations between diagram parameters and efficiency are pre-

sented and used herein to point up some of the more important

effects. References 1 and 2 are used as a basis for this development.

As presented in chapter 2, turbine stage static efficiency can be
written as

hh'

_--Ah_d (3-12)

where

Ah'

hh_

stage static efficiency

stage work, J/kg; Btu/lb

stage ideal work based on ratio of inlet total pressure to exit

static pressure, J/kg; Btu/lb

Expressing ideal work in terms of actual work plus losses yields

ah'

,hh' +Lot'-b Lro+ V22 (3-13)

where

Lst

Lro

y /2gJ

stator loss, J/kg; Btu/lb

rotor loss, J/kg; Btu/lb

stage leaving loss, J/kg; Btu/lb

The equation for total efficiency n' is the same except for the elimi-

nation of the stage leaving loss, V]/2gJ. Substituting equation (3-3)

into equation (3-13) yields

,1-- gJ(L,,TLro) 1 V2 2 (3-14)

In relating the stator and rotor losses to the diagram parameters,

it was assumed that the losses were proportional to the average

kinetic energy across the blade rows. That is,

and

L,,:K_, V°2-b V_2 (3-15a)
2gJ

L_o=K_o Wl2+W2_ (3-15b)
2gJ

where/4 is constant of proportionality.
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Equations (3-14) and (3-15) serve as the basis for estimating

efficiency. The exact nature of the assumptions and equations can

be found in references 1 and 2. Briefly, the procedure for estimating

efficiency is as follows:

(1) The velocities are expressed in terms of their tangential and

axial components.

(2) The tangential components are expressed in terms of the speed-

work parameter according to the diagram type being considered

(eq. (2-6) and eq. (3-4), (3-8), or (3-11)).

(3) The axial components are evaluated by means of an application-

related mass-flow assumption or by relating them to the tangential

components by an angle assumption.

(4) The values for the constant of proportionality are selected on

the basis of previous test experience.

(5) Efficiency curves can then be generated over a range of speed-

work parameter for the various diagram types.

The total- and static-efficiency characteristics as obtained from ref-

erence 2 by the above method are presented in figure 3-4. The curves

presented for the symmetrical diagram are actually for the diagram

that analytically )4elds maximum total efficiency. This diagram, as

determined in reference 2, approximates the symmetrical diagram, and

the associated efficiency characteristics are representative of those for

a symmetrical diagram. The curves for the zero-exit-swirl diagram

were not obtained for )_ values less than 0.5 because of the undesirable

negative reaction in that region.

The total efficiency characteristics are presented in figure 3-4(a).

For each diagram type, the highest efficiency occurs at a speed-work

parameter, },, value of 1. The s)_nmetrical-diagram efficiency is slightly

higher than the impulse-diagram efficiency for all values of _. The

zero-exit-swirl-diagram efficiency is equal to the symmetrical-diagram

efficiency at }_--1, is equal to the impulse-diagram efficiency at

_-_0.5, and, although not shown, becomes less than either of the

other two for }, values less than 0.5. Between _1 and },_0.5,

the efficiency curves are rather fiat. As h is reduced below 0.5, efficiency

decreases more rapidly.

High total efficiencies, therefore, are achievable with any of these

diagram types for _ values greater than about 0.5. Even where total,

rather than static, efficiency is the criterion of merit, however, the

designer must still consider aspects such as the previously discussed

exit swirls and the three-dimensional effects, to be discussed later in

this chapter, before a diagram type is selected.

The static efficiency characteristics are presented in figure 3-4(b).

The static efficiency" is substantially lower than the total efficiency

because the exit velocity head represents a loss. The highest static
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efficiency for h values less than 0.5 is obtained with the impulse

diagram, and for X values greater than 0.5, with the zero-exit-swirl

diagram. For the impulse diagram, the efficiency is a maximum at

_=0.5, where there is no exit swirl. For the symmetrical diagram,

1.0

.8

-u-

.6
e-

-%
.4

_6

.2

f,,_.._=--_'---

Diagram type

Zero exit swirl

Impulse
Symmetrical

(a)

I I I I I

(b)

/// //
/ /

//
/

I I I
0 .2 .4 .6 .8 1.0

Speed-work parameter, ;_

(a) Total efficiency.

(b) Static efficiency.

FIGURE 3-4.--Effects of speed-work parameter and velocity-vector diagram type

on efficiency. (Curves from ref. 2.)
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I J
75 8O

FIGURE 3-5.--Effect of stator exit angle on stage efficiency. Speed-work param-
eter X, 0.5. (Curves from ref. I.)

the efficiency is a maximum at X= 1, where there is no exit swirl.

The zero-exit-swirl-diagram efficiency is highest at _ = 1, but decreases

very little as _, is reduced to 0.5.

Efficiency is affected not only by the speed-work parameter and

diagram type but also by the velocity through-flow component V=,

which is related to the flow angles. An example of this effect can be

obtained from reference 1. Figure 3-5, which is taken from reference 1,

shows the total and static efficiencies as functions of stator exit angle.

It is evident that the best angle depends upon which efficiency is to be

maximized. If maximum total efficiency is desired, the stator exit

angle should be about 60 °. If maximum static efficiency is desired, a

stator exit angle of about 75 ° is indicated. However, complete freedom

of selection of this angle does not always exist since it affects the

through-flow component of velocity and, therefore, the annulus area.

The rotor stress level is also influenced by the annulus area and, hence,

could influence the angle selection.

It has been shown that at low values of speed-work parameter,

large exit swirls are encountered, with associated reductions in static

efficiency. One means of increasing the static efficienc:_ is through the

use of downstream stators, which remove the swirl and diffuse the flow

back to axial. The efficiency characteristics of such turbines (ref. 3)

are presented in figure 3-6. In this figure, the turbines with down-

stream staters are referred to as 1X-stage turbines. Figure 3-6(a)

shows that the total efficiencies of the l_-stage turbines are lower
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than those of the 1-stage impulse turbines. These lower total efficiencies

are due to the additional friction losses of the downstream stators.

Because of this additional friction loss, the l_-stage turbine achieves

no gain in static efficiency over that of the 1-stage turbine until the

value of X is below approximately 0.35 (fig. 3-6(b)). For X values

below about 0.35, substantial gains in static efficiency can be achieved

through use of downstream stators.

1. O0

Diagram type

1-Stage impulse

ll-St_e impulse

ll-Stage symmetrical

l_-Stage impulse (two

downstream stators}

o I I I I

¢.-

.60

.40

0 .i .2 .3 .4 .5

Speed-work parameter, h

(a) Total efficiency.

(b) Static efficiency.

FmuR_; 3-6.--Effect of downstream stator on efficiency. (Curves from ref. 3.)
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Multistage Turbine Efficiency

When the turbine requirements are such that the speed-work param-

eter is quite low and high efficiencies are still desired, multistage

turbines are used, and the required work is split amongst the various

stages.

t-

o_

ro

Turbinestages

2
2

ta_ I I I 1 I

7° I.!
o--

_ 50
N

•40 tb)
0

/ .f/..i

/ ,/,/"//,,,"
/,

I 1 I ] I
• 10 .20 .30 .ZlO .50

Overall speed-work parameter,

(a) Total efficiency•

(b) Static efficiency.

FIGURE 3-7.--Comparison of efficiencies of 1-, l_/r -, and 2-stage turbines. (Curves

from ref. 4.)
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Two-stage $urbines.--The addition of a second stage to a 1-stage

turbine results in about doubling the average stage X value through

the reduction of stage work. As shown previously, an increase in

stage _, is accompanied by an increase in stage efficiency. In addition,

with two stages it becomes possible to adjust the stage work split and

the exit swirls so as to maximize efficiency.

A study of the efficiency characteristics of 2-stage turbines is pre-

sented in reference 4. The efficiencies of 1-, 1Y2-, and 2-stage turbines

(from ref. 4) are compared in figure 3-7. At an overall speed-work

parameter, _, of 0.50, the 2-stage turbine has a 2-percentage-point-

higher total efficiency and a 9-percentage-point-higher static efficiency

than the 1-stage turbine. As _ is reduced to 0.15, the difference between

the 2- and 1-stage efficiencies increases to 5 percentage points for total

efficiency and 24 percentage points for static efficiency. The smaller

difference between total and static efficiencies for the 2-stage turbine

than for the 1-stage turbine occurs because the leaving loss for the

2-stage turbine is a much smaller fraction of the total work output.

The 2-stage turbine efficiencies presented in figure 3-7 are the

maximum values obtained by varying stage work split and exit swirl

while imposing good diagram criteria of no positive exit swirl and no

negative reaction. At _=0.5, efficiency is maximized with a 50:50

work split and symmetrical zero-exit-swirl diagrams for each stage.

As _ is reduced, maximum efficiency is achieved with zero exit swirl

maintained in the second stage and an increasing fraction of the work

produced by the first stage. At _=0.125, the optimum work split has

increased to 75:25. The associated diagram features impulse first and

second stages as well as an impulse second-stage stator. This type of

diagram is illustrated in figure 3-8 (a) and represents a type of turbine

kno_:a as velocity compounded. In general, a velocity-compounded

turbine is a two-stage (or three-stage) turbine in which all expansion

(fluid velocity increase) is achieved in the first stator and all subse-

quent blade rows merely turn the flow with no change in velocity.

As k is reduced below 0.125, the velocity-compounded condition is

maintained, but with increasing exit swirl and decreasing first-stage

work fraction.

Figure 3-8(b) illustrates the velocity diagram for another type of

two-stage turbine, the counterrotating turbine without a second-stage

stator. The diagram shown is again for the X=0.125 case with zero

exit swirl and with both blade speeds equal. A study of the efficiency

characteristics of this type of turbine was made in reference 5. Effi-

ciencies higher than those for conventional two-stage turbines were

obtained because of the elimination of one blade row. Because the

second-stage work depends upon the swirl leaving the first stage, the
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(a) fb)

(a) Velocity-compounded turbine. (b) Counterrotating turbine.

FIGURE 3-8.--Velocity-vector diagrams for special types of 2-stage turbines.
Overall speed-work parameter _, 0.125.

second stage, in general, would be a low-work stage (work split is

75:25 for the illustrated diagram). The efficiencies and work splits

are also functions of the blade-speed ratio. Because of their high

efficiency potential at low ), levels and their compactness due to the

lack of a blade row, counterrotating turbines are being utilized in such

advanced applications as direct-lift engines for V/STOL aircraft.

n-stage turbines.--In many applications the combination of work

and speed requirements dictates the use of turbines in which consider-

ably more than two stages are required. Such applications include

fan-drive turbines, vapor turbines used for power production, and

turbopump turbines for nuclear hydrogen rockets.

The efficiency characteristics of multistage turbines composed of

impulse stages (for _<0.5) cr zero-exit-swirl stages (for h>0.5) are

examined in reference 6. Equal stage work and constant stage blade

speed were assumed. Overall and stage speed-work parameters are

related (derived as eq. (2-111)) as

_,=_ (3-16)

where n is the number of stages. Total efficiency for a first stage

(stator-inlet velocity is axial) and total and static efficiencies for a

general stage (intermediate or last stage, where stator inlet velocity

is equal to stage exit velocity) were obtained as functions of X. Overall

efficiencies were then obtained from the stage efficiencies. For overall

static efficiency, neglecting the reheat effect discussed in chapter 2,
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where

Ah_, ,

n_' (3-17)
w

o+ ,

first-stage ideal work based on ratio of inlet total pressure to

exit total pressure, J/kg; Btu/lb

general-stage ideal work based on ratio of inlet total pressure

to exit total pressure, J/kg; Btu/lb

general-stage ideal work based on ratio of inlet total pressure

to exit static pressure, J/kg; Btu/lb

This equation neglects the reheat effect, which reference 6 shows to be

small. By using the stage-efficiency definition, equation (3-17) becomes

Tb

_-- 1,.4_n 2+1_ (3-18)

Overall total efficiency differs only in that the last stage is evaluated

on the basis of stage total efficiency. Therefore,

n

_'-- 1, f n--1, (3-19)

The multistage efficiency characteristics obtained in this manner

are presented in figure 3-9, which was obtained from reference 6.

Figure 3-9(a) shows total efficiency as a function of _. The limiting

efficiency (in this case, 0.88) is reached when all stages are at k----1.

This level of efficiency, as well as all those described herein, is a

function of many other factors (stator angle, Reynolds number, blade

aspect ratio, blade solidity, etc.) in addition to diagram shape and

may vary upward or downward from the indicated value. The vari-

ations in efficiency with varying diagrams are, however, the concern

here. This figure illustrates that at low _, values (0.1 or less), either

large increases in the number of stages are required to achieve high

total efficiencies or, if some restriction on the number of stages is

imposed, lower efficiencies must be expected. The static efficiencies

shown in figure 3-9(b) show similar trends, although at lower levels

because of the leaving loss.

Another commonly used method of presenting turbine performance

in terms of diagram parameters is to plot efficiency as a function of

overall blade-jet speed ratio. This parameter was described in chapter

2 (eq. (2-72)) as the ratio of the blade speed to a velocity correspond-

ing to the kinetic energy associated with the total-to-static pressure

ratio across the tubine. Blade-jet speed ratio is related to speed-work
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FIGURE 3-9.--Overall efficiency characteristics. (Curves from ref. 6.)

parameter and efficiency according to equation (2-74).

From the discussions in this section, it is clear that the selections

of the number of stages and velocity diagram type have an important

effect on the expected efficiency level and are very dependent upon the

specific work (actual or ideal) imposed and blade speed utilized. In an

actual design, the final selection of the turbine diagrams must represent

a compromise among such design goals as performance (dictated by

the cycle requirements), structural integrity (related to component

life), compactness, and weight.

RADIAL VARIATION OF DIAGRAMS

In the first half of this chapter, a single velocity diagram was

assumed to represent average conditions over the entire blade span.

In a turbine having a relatively high hub- to tip-radius ratio (about
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0.85 or greater), such an assumption is reasonable. In the case of

lower hub- to tip-radius ratios, however, substantial variations in the

velocity diagrams are encountered, and the mean-section diagrams

may or may not represent the average flow conditions for the entire

blade span. The radial variations in diagrams are due to the radial

variation in blade speed and the balance of forces that must exist in

the flow. The considerations that were described for the mean section

diagrams must also be applied to the end regions, which become very

important in the final diagram selection. This section will consider

the radial variations in flow conditions and their effect on the velocity

diagrams.

Radial Equilibrium

Consider an element of fluid in the turbine flow field, as in figure

3-10(a). When there is a tangential component of velocity, the re-

sulting circumferential flow (fig. 3-10(b)) must be maintained by a

pressure force. The pressure force serves to balance the centrifugal

force acting on the fluid and to keep the fluid moving along its curved

path. When the through-flow path (streamline) is curved (fig. 3-10(c)),

the force required to maintain the flow along this curved path

must be accounted for as part of the net pressure force. Any linear

acceleration of the flow must have an associated pressure force, part
of which is in the radial direction if the streamline is inclined from

horizontal. The balance of forces required to account for these factors

is termed radial equilibrium.

The radial equilibrium will now be formulated mathematically.

The pressure forces acting on an element of fluid are indicated in

figure 3-10(b). Fluid weight is neglected. If unit length is assumed

in the x direction, the net pressure force (directed radially inward) is

Fp.,et:(p+dp)(r+dr)dO--prdO--2 (p+?) dr

where

F_, n_ g

P

0

r

Neglecting higher-order terms

setting sin (d0/2)=d0/2 yields

net inward pressure force, N; lb

static pressure, N'm 2; lb/ft _

angle of rotation, rad

radius of rotation, m; ft

(product of three

F_. ,,, =rdpdO

sin dO
2

(3-20a)

differentials) and

(3-20b)

The mass m of the fluid being acted on by the pressure force is
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(a) Element of fluid in turbine flow field.

(b) Rotation plane (r-e). (c) Meridional plane (r-x).

FIGURE 3-10.--Radial equilibrium factors.

which reduces to

m=p[r(r+ dr)_--wr _] d_f0
2r

m=--prdrdO

(3-21a)

(3-21b)

The net pressure force results from the three factors mentioned

previously. To balance the centrifugal force associated with circum-

ferential flow, the radial pressure force is

F_,c--m Vu _ prdrd0 Vu 2_p V2drd 0 (3-22)
g r g r g
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The radial component of the pressure force required to balance the

centrifugal force associated with flow along the meridional streamline
is

FT, 0-----m V_, cos a,_= prdrdO V*. cos am_ (3-23)
g rm, g r_

where

V,_ velocity along meridional streamline, m/sec; ft/sec

r,_ radius of curvature of meridional streamline, m; ft

a,_e angle of inclination of meridional streamline, deg

The positive directions for streamline curvature and inclination angle

are as indicated in figure 3-10(c). The minus sign in equation (3-23)

indicates that the balancing pressure force is directed outward in this

case. The radial component of the pressure force required to produce

the linear acceleration along the meridional streamline is

Fv Z=--g dVme prdrdO dV,,_• dt " sin _---- g dt - sin a,_ (3-24)

Setting the net radial pressure force (eq. (3-20(b)) equal to the

various components (eqs. (3-22), (3-23), and (3-24)) yields

_gdp V_ V_, dVm_
cos a_e---- sin a,_e (3-25)

p dr-- r r_, dt

Equation (3-25) is the radial equilibrium equation and includes all

contributing factors. It is, however, not convenient to use in its com-

plete form. For axial flow (or near-axial flow), the meridional stream-

line curvatures (1/r,_) and inclination angles (am,) are both quite

small. Therefore, the last two terms on the right side of equation (3-25)

are small as compared to the first (rotational) term and can often be

neglected. Thus, we can write

gdp V_

pdr-- r
(3-26)

The approximation represented by equation (3-26) has become known

as "simple" radial equilib.rium.

Radial Variations in Velocity

In order to illustrate the nature of the radial variations in velocity,

those effects that are usually second order will be neglected, and certain

other simplifying assumptions will be made. If streamline slope is

assumed to be zero, there is no radial component of velocity, and the

total enthalpy definition (eq. (1-49)) can be written as
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" -- 2gJ-- 2gJ
(3-z7)

Differentiating with respect to radius and using equation (1-8) to

substitute for dh (and since p= 1/v) yields

dh' ds 1 dp 1 d(V_ 2) 1 d(Vx 2)

dr --T-_r-_ jp dr _ 2gJ dr -_ 2gJ dr (3-28)

If the flow entering the turbine is radially uniform, then the total

enthalpy at the first-stator exit is radially constant. Further, if the

stator loss is radially constant, then the entropy at the first-stator

exit is also radially constant. The rotor, as will be discussed later in

this chapter, may or may not have radially constant work (total

enthalpy) extraction and probably does not have radially constant

loss. At any place in the turbine, therefore, radial gradients in total

enthalpy and entropy depend on the uniformity of the inlet flow, the

gradients imposed by the various blade rows, and the gradient damping

due to radial mixing.

For simplicity, it is here assumed that the total enthalpy and the

entropy are radially constant. With these assumptions and with equa-

tion (3-26), the "simple" radial equilibrium expression, substituted

into equation (3-28), we get

v. 2 , 1 d(V. 2) 1
-_ 2 dr --I-_ dr --0 (3-29)

In order to solve this equation, it is necessary to independently

specify a relation between V_ or V_ and r or between V, and V_. Most

often, a variation of swirl velocity with radius has been specified as

V,,: Kr N (3-30a)

or, in terms of mean-section conditions,

v.
vZ:=,,E: (3-30b)

Substituting equation (3-30b) and its differential form into equation

(3-29) and then integrating between the limits of r,_ and r yields

V, {1--tan' ( i)rc,r ,lV,.,_-- am I_\_/ -- _I} (3-31)

where a_ is the absolute flow angle at the mean radius. Equation

(3-31) is not valid for the special case of N=0 (constant V_). For this
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special case, integration of equation (3-29) yields

r 71/2
v=V_=[1--2 tan _ _ In _.j (3-32)

A case of interest not covered by equation (3-30b) is that where

the absolute flow angle is radially constant. In this case, V,-=-V= tan a,

and equation (3-29) integrates to

Vu V=(r'_ -sin'a (3-33)

The radial variations in swirl velocity, axial velocity, and flow angle,

as computed from the above equations, are presented in figure 3-11

for a mean radius flow angle of 60 °. The radial variations in axial

velocity and flow angle are largely dependent on the specified swirl
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3-11.--Radial variations of velocity and flow angle. Mean-section

flow angle a,,, 60 °.
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velocity variation (value of N). As the swirl distribution exponent N

increases or decreases from a value of --1, the changes in axial velocity

and flow angle with changing radius become more pronounced. As

seen, the axial velocities and flow angles associated with certain values

of N cannot be obtained with all blade lengths. The range of N that

can be used for design purposes becomes larger as the blades become

shorter (values of rh/r,, and rt/rm closer to 1). The effects of the radial

variations illustrated in figure 3-11 on stage velocity diagrams are

discussed in subsequent sections of this chapter.

Free-Vortex Diagrams

When a value of -- 1 is used for the exponent N in equation (3-30a),

then

rVu=K (3-34)

This is the condition for flow in a free vortex, and a turbine designed

for such a swirl distribution is referred to as a free-vortex design,

or a free-vortex turbine.

The free-vortex design is used in the vast majority of axial-flow

turbines in which radial variation of the diagram is accounted for. If

this condition is specified at both the stator and rotor outlets, then

there is no radial variation in specific work, _x(UV_), because the

UVu products both entering and leaving the rotor are radially constant.

Thus, the specific work computed from the mean-section diagram is

valid for the entire flow. Further, if N=--I in equation (3-31), the

axial velocity Vx is radially constant. Thus, the radial variation in

mass flow per unit area (pV_) is small, and the mass flow rate obtained

from the mean-section velocity diagram can be used to represent the

entire flow within an accuracy of 0.1 percent in most cases. This

design simplicity is one of the main reasons for the wide use of free-

vortex designs for axial-flow turbines.

An example set of velocity diagrams for a free-vortex design is

shown in figure 3-12 for the hub, mean, and tip sections of a blade

with a radius ratio of 0.6. The radial variation in the diagram shape

is considerable. The mean-section diagram for this example is a

symmetrical zero-exit-swirl diagram having a speed-work parameter

)_m of 1. The associated hub diagram is nearly an impulse diagram

(_h=0.56), while the tip diagram is very conservative, with high

reaction (_t----1.56). Thus, for a free-vortex swirl distribution, the

hub section is the critical section from an aerodynamic standpoint

(lowest efficiency). Therefore, special care must be taken when

selecting the mean-section diagram, especially for low-radius-ratio

blades, in order to ensure satisfactory diagrams at the hub section. A
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45.30....

Hu_ section

Radius ratio,
rh/r t = O.6

Mean section

rm/r t ° O.8

rt/r t = 1.0

Tip section

FIGURE 3-12.--Radial variation of velocity-vector diagrams for free-vortex

flow. Stator mean-section exit angle a,,, 60°; mean-section speed-work param-
eter Xm, 1.

very high reaction tip diagram can also be troublesome because it

increases leakage across the blade tip clearance space.

Another potential problem is that of rotor-blade twist. There is a

considerable radial variation in rotor inlet angle. For the case illus-

trated in figure 3-12, the rotor inlet angle varies from 45 ° at the hub

to --38 ° at the tip, a variation of 83 °. This results in a blade having

an overhanging tip section, thus causing some fabrication problems and

bending stresses. The positioning of the hub and tip sections of such a

blade is illustrated in figure 3-13.
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FmURE 3-13.--Relative positioning of hub and tip sections of freeovorgex turbine.

Non-Free-Vortex Diagrams

Free-vortex designs are so commonly used that all other designs

are often classified under the common heading of non-free vortex. The

non-free-vortex designs are used in an attempt to alleviate some of the

potential disadvantages associated with the free-vortex design. Illus-

trated in figure 3-14 are the radial variations in diagrams for the cases

having the velocity variations illustrated in figure 3-11. The super-

vortex (N-------2) design, the constant-swirl (N=0) design, the wheel-

flow, or solid-rotation, (N=I) design, and the constar_t-flow-angle

design are compared with the free-vortex (N: --1) design. The mean-

section diagrams, which are at a radius ratio r/r,_ of 1, are the same

for all cases. Also shown are diagrams at radius ratios r/r,_ of 0.75,

0.889, 1.111, and 1.25. For a blade with a hub- to tip-radius ratio of

0.6, the r/r,_ values of 0.75 and 1.25 correspond to the hub and tip

sections, respectively. For a blade with a hub- to tip-radius ratio Gf

0.8, the r/r,_ values of 0.889 arLd 1.111 correspond to the hub and tip

sections, respectively. As the blade hub- to tip-radius ratio decreases,

any particular value of r/rm corresponds to a blade section relatively

closer to the mean section. There are, of course, no diagrams to show

in figure 3-14 for those particular cases for which, as shown in figure

3-11, no real values exist for axial velocity.

At any radius ratio, the rotor exit diagrams are the same for all

the swirl distributions. This is due to the selected mean-section diagram

having zero exit swirl (az._:0).

The constant-flow-angle diagrams are quite similar to the free-

92



VELOCITY DIAGRAMS

Ratioof

radius
to mean

radius,

rlr m

1. 250

1.111

1.flOf

O. 889

O.150

Radial swirl distribution

Super vortex
(N = -2)

(a)

Free vortex
(N = -l)

Constant swirl
(N = O)

(a)

Wheel flow

{N = 1)

(a)

(a)

Constant flow

angle

aNo real value for axial velocity.

FIGURE 3-14.--Radial variation of velocity-vector diagrams for various swirl
distributions.

vortex diagrams and, therefore, present the same problems of high

rotor-blade twist and low hub reaction. A possible advantage is that

the constant-flow-angle stator has no twist, while the free-vortex

stator has a small amount of twist (about 12°).

The super-vortex (N= --2) diagrams appear to have no advantage of

any sort. The blade twist is more severe than for the free-vortex

case. The radial variation of stator-exit axial velocity is large and can-

not be sustained (Vx becomes imaginary) on blades with hub- to tip-
radius ratios much below 0.8.

The constant-swirl (N=0) and wheel-flow (N--l) diagrams do

alleviate the blade-twist and hub-reaction problems of the free-vortex

design. However, here too the radial variation in axial velocity is

large and cannot be sustained on blades with hub- to tip-radius ratios

below about 0.70 for the constant-swirl (N=O) design and below about

0.85 for the wheel-flow (N= 1) design. In addition, the hub absolute

and relative velocities at the stator exit are higher for these designs

than for the free-vortex design. For relatively high Mach number

turbines, these higher flow velocities could cause higher losses than

those of a free-vortex design.
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FmURE 3-15.--Comparison of velocity-vector diagrams of free-vortex add non-

twisted turbines. (Diagrams from ref. 9.)
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A design procedure for rotor blades of constant inlet and exit angle,

termed a "nontwisted" design, is presented in reference 7. Such a

design completely eliminates twist in the rotor, which, therefore,

should be easy to fabricate. References 8 and 9 contain experimental

results comparing free-vortex designs with nontwisted designs. The

design velocity diagrams used for the study of reference 9 are shown

in figure 3-15. A large radial vaIiation in axial velocity at the stator

exit is also present in this nontwisted design. The stator-exit condi-

tions correspond closely to a swirl-distribution-exponent (N) value of

_. Although rotor twist is eliminated, stator twist has increased from

10 ° for the free-vortex design to more than 30 ° for the nontwisted

design. At the rotor exit, the swirl is negative at the hub and positive

at the tip. The relative blade-inlet Mach number at the hub is higher

for the nontwisted design (0.85) than for the free-vortex design (0.72).

However, the reaction at the hub of the nontwisted design is improved

over that of the free-vortex turbine. The two turbines have about the

same efficiency.

The non-free-vortex designs all feature radial variation in specific

work and, because of the radial gradient in axial velocity, radial varia-

tion in mass flow rate per unit area. Thus, the mean-section condi-

tions may not represent true average conditions, and considerable

error may occur if such a turbine is designed on the basis of the mean-

section flow conditions. A non-free-vortex turbine should be designed

by integrating the flow conditions between hub and tip in order to

compute work and flow rate. The proper design of a non-free-vortex

turbine is, therefore, much more complex than the design of a free-

vortex turbine. With computerized design procedures, however, this

additional complexity is no real disadvantage.

As seen from this discussion, the use of m_n-free-vortex designs to

alleviate the rotor-twist and hub-reaction problems associated with

free-vortex designs results in other problems such as higher hub

Mach numbers, increased stator twist, and increased design com-

plexity. It has been shown that large deviations from free-vortex

designs cannot be sustained over all blade spans. However, small

deviations from free-vortex designs, as reported in reference 10, have

been used to obtain improved turbine performance.

COMPUTER PROGRAMS FOR VELOCITY-DIAGRAM

STUDIES

This chapter has presented some of the basic aspects of velocity-

diagram selection, including diagram types, their relation to efficiency,

staging, and radial variations. It is evident that the determination of

the best diagrams and number of stages for a given application requires
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many considerations. If it is desired to include non-free-vortex

designs, meridional-streamline curvature effects, and radial variation

in efficiency, then such analyses are out of the realm of hand calcula-

tion. Therefore, computer programs have been evolved to perform
such tasks.

One such computer program is described in references 11 and 12.

The program includes consideration of streamline-curvature effects in

the radial equilibrium equation and radial gradients in enthalpy and

entropy in determining radial variations in flow. In addition, it not

only allows for blade loss as an input but also includes an internal loss

correlation using the information from reference 13 as a basis. This

program uses stator exit swirl distribution and rotor work (which

reflects rotor exit swirl) distribution as inputs. However, for many

values and combinations of these input specifications, either there is

no real solution for meridional velocity (Vme=V_/cos a,,_) or the

computer cannot find the solution because of a large variation in

dependent variable (meridional velocity) with small variations in

independent variable (swirl velocity). The existence of these condi-

tions is indicated by figure 3-11.

This problem has resulted in a program modification, as reported

in reference 14, wherein the radial variation in meridional velocity

instead ef swirl velocity is used as input. The modified program has

proven very successful and shows that valid turbine designs can be

generated with any reasonable variation in meridional velocity.
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SYMBOLS

flow area, m_; ft 2

pressure force, N; lb

conversion constant, 1 ; 32.17 (lbm) (ft)/(lbf) (sec 2)

specific enthalpy, J/kg; Btu/lb

conversion constant, 1;778 (ft)(lb)/Btu

proportionality constant

loss, J/kg; Btuflb

mass, kg; lb

swirl distribution exponent

number of stages

pressure, N/m_; lb/ft 2

reaction

radius, m; ft

specific entropy, J/(kg) (K) ; Btu/(lb) (°R)

temperature, K; °R

blade speed, m/sec; ft/sec

absolute velocity, m/sec; ft/sec

specific volume, mS/kg; ft3/lb

relative velocity, m/sec; ft/sec

mass flow rate, kg/sec; lb/sec

fluid absolute flow angle, deg

efficiency

angle of rotation, deg

speed-work parameter

density, kg/ma; lb/ft 3

Subscripts:

a

c

h

i

/d

1

m

me

net

r

ro

8

st

first stage

annulus

component due to circumferential flow

hub

general stage

ideal

component due to linear acceleration

mean section

meridional

net

radial component

rotor

component due to streamline curvature

stator

stage
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tip

tangential component

axial component
at stator inlet

at stator exit or rotor inlet

at rotor exit

Superscripts:

-- overall turbine

' absolute total state
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CHAPTER4

BladeDesign

By WarnerL.Stewartand
ArthurJ. Glassman

The design of a turbine consists of three major steps. The first is the

determination of the overall requirements of flow, work, and speed. These

are usually established by the particular application. The second step is

the evolution of velocity diagrams consistent with the desired efficiency

and/or number of stages. This was discussed in chapter 3. The third step

is the design of the blading that will produce the flow angles and velocities

required by the velocity diagrams. This step involves the determination of

the size, shape, and spacing of the blades.

This chapter covers some of the more important aspects of blade design.

The height of the blade is set by the overall requirements of flow, speed,

and inlet state conditions and the selected velocity diagram, which dictates

the fluid state conditions throughout the turbine. The blade chord is

usually selected to be a minimum value consistent with mechanical con-

siderations. The chord must be long enough to allow accurate fabrication

and assure structural integrity during operation. The selection of blade

spacing, which can be expressed nondimensionally as solidity (ratio of

chord to spacing) or axial solidity (ratio of axial chord to spacing), in-

volves many considerations that will be discussed in the first part of this

chapter. Blade profile design, which includes blade exit and inlet geome-

tries as well as the connecting surface profiles, is then discussed in the last

part of this chapter. Channel flow theory, which is the basis for the

analytical procedures used to accomplish the profile design, is discussed

in the next chapter.

_A_}l___ i_._f,9_i.(L Y _,. A_



TURBINE DESIGN AND APPLICATION

SOLIDITY

One of the important aspects of turbine blading design is the selection

of the blade solidity, which is the ratio of chord or axial chord to spacing.

A minimum value is usually desired from the standpoint of reducing

weight, cooling flow, and cost. However, chord reduction is limited by

mechanical considerations, and increased spacing eventually results in

decreased blade efficiency due to separated flow. This section will concern

itself with the aerodynamic factors affecting solidity selection. The dis-

cussion will include the effect of velocity diagram requirements on solidity

and the relation between blade loading and solidity. Also included will be a

description of advanced blading concepts that are being studied for use to

suppress separation and thereby reduce the permissible solidity.

Effect of Velocity Diagrams on Solidity

Figure 4-1 shows a typical set of blade inlet ai_d (,xit diagrams as well

as the static-pressure distribution around a blade. The velocities in this

figure are shown as absolute velocities. The discussion in this chapter

pertains to rotor blade rows as well as to stator bla(t(_ rows. When referring

to a rotor, we must use relative rather than absolute velocities in the

equations and figures. Since in this chapter we are concerned with blade

rows rather than with stages, the angle convention will differ slightly from

that used in previous chapters. The exit tang(_ntial-velocity component

and flow angle are taken as negative values. The inlet values are positive

if the inlet and exit tangential-velocity components ar_ in opposite direc-

tions, and negative if in the same direction.

If one considers the two-dimensional flow through a passage of unit

height between two blades, then the tangential force exerted by the

fluid as it flows from blade inlet (subscript 1) to exit (subscript 2) is

where

Fu

8

P

V_

Vu

1
F,, =- smV.,2( V,, ,_- V,_ ,_) (4-1)

g

tangential force, N; lb

conversion constant, 1; $2.17 (Ibm) (ft)/(lbf) (see 2)

blade spacing, m ; ft

density, kg/m'_; lb/ft s

axial component of velocity, m/see ; ft/s(,c

tangential component of velocity, m/see; ft/sec

This tangential forc_ exerted by the fluid must b(, _h(_ sam(, _s the force

due to the static-pressure distribution around t h(_ blade, as was discussed

in chapter 2. The lower part of figure 4-1 shows a typical static-pressure
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Vx, 1

P

13-

pl

Pl

surface-'" "_
/- Such'on'_--r-

--L y2_Vu, 2

.,_-_...._ C X--------_

P2.
"'" rs, mln

Axial distance

FIOUP, E 4-1.--Typical blade-row velocity diagrams and surface static-pressure
distribution.

distribution around the blade row as a function of axial distance. The area

between the two curves represents the total blade force acting on the

flow in the tangential direction. Thus,

L'F,, = c_ (pp- p_) d (4-2)

where

C_

Pv

P,

X

axial chord, m; ft

pressure-surface static pressure, N/m2; lb/ft 2

suction-surface static pressure, N/m2; lb/ft 2

axial distance, m; ft

The axial solidity, ¢z, is

{T x _- --

8

(4-3)
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Substituting equations (4-1) and (4-2) into equation (4-3) then yields

a_ = (4-4)

/0g d

At this point, we introduce two tangential loading coefficients that have

been used to relate the actual blade loading to an ideal blade loading. The

first is the widely used coefficient introduced by Zweifel (ref. 1). This

coefficient is based on an ideal loading that assumes (l) the static pressure

on the pressure surface to be constant and equal to the inlet total pressure

and (2) the static pressure oil the suction surface to be constant and equal

to the exit static pressure. In equation form,

t' (pp-- p.) d

_, = (4-5)
pl' -- p_

where

_Z

pl r

P_

Zweifel loading coefficient

inlet total pressure, N/m2; lb/ft 2

exit static pressure, N/m2; lb/ft 2

The second coefficient is similarly defined except that the assumed

constant static pressure on the suction surface is equal to the minimum

value of static pressure (see fig. 4-1) on that surface. This loading coeffi-

cient can never exceed a value of 1, and for all practical purposes, it must

ahvays be less than 1. The Zweifel coefficient, on the other hand, can ex-

ceed a value of 1. In equation form, this second loading coefficient _bis de-

fined as

/o(pp-- p_) d

pl p- ps ,min

(4-6)

where p,,m,, is the minimum static pressure on the suction surface in

N/m 2 or lb/ft2_ _.

The velocity components in terms of veloerity and flow angle are ex-

pressed as

V_ = V sin a (4-7)

and

V_ = V cos a (4-8)
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BLADE DESIGN

where

V

ot

fluid velocity, m/see; ft/sec

fluid flow angle, deg

Substituting equations (4-5) or (4-6), (4-7), and (4-8) into equation

(4-4) and using the trigonometric relation sin 2a = 2 sin a cos a yields

mVQ VQ

(K- 1) sin 2a2 (K- 1) sin 2a2 (4--9)

where K is the ratio of tangential velocity component (Vu.1) at the blade

inlet to that (V,.2) at the blade exit.

Derivation of incompressible-flow relations.--Relations involving solidity,

velocity diagrams, and loading are usually evolved by assuming incom-

pressible flow with no loss. With this assumption, density p is constant,

and Bernoulli's equation

1
P'= P-k--z pV 2 (4-10)

zg

can be used. Substituting equation (4-10) into equation (4-9) yields

(K-1) sin2a2 (K-1) sin2a_
- (4-11)

¢ ,,W,,

where V_ is the velocity on the suction surface where p = p_._,.

Let us now define a suction-surface diffusion parameter D, as

D_ = (4-12)
V_ 2

Many parameters of this type have been used to represent a measure of

the deceleration of the flow on the suction surface. This deceleration is an

indication of the susceptibility of the flow on the blade to separate. Using

this definition (eq. (4-12)) in equation (4-11) yields

(K- 1) sin 2a2 (K- 1) sin 2a2
_ = = (4-13)

Equation (4-13) shows that the solidity parameter a,_D, or a,_, is

constant for each particular velocity-diagram requirement. Since loading

coefficient _, which cannot exceed a value of 1, does not vary greatly, it

can be seen that decreasing solidity results primarily in increased suction-
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TURBINE DESIGN AND APPLICATION

surface diffusion (higher D,), the consequence of which will be discussed

later in this chapter. The solidity parameter is plotted against the tan-

gential velocity ratio K for several values of exit flow angle in figure

4-2(a). A value of K=0 represents a reaction blade with axial inlet, a

value of K=- 1 represents an impulse blade, and a value of K <- 1

represents a negative reaction blade. Positive values of K represent inlet

and exit tangential velocities in the same direction and are encountered

primarily in the tip sections of rotor blades. As seen from equation (4-13),

solidity parameter is equal to zero for all exit angles for K = 1. This repre-

sents the case where there is no turning of the flow. The solidity parameter

increases with decreasing K values. Thus, if excessive suction-surface

diffusion is to be avoided, solidity must increase as the velocity diagrams

move from reaction toward impulse. It can be seen that for any given

value of K, a xnaximum value of solidity parameter is obtained with an

exit angle of 45 ° .

Equation (4-13) can be modified to a function of the inlet and exit

angles to yield the equation derived in reference 1.

2 COS o_2

ax- sin (m-- a2) (4-14)
_z COS O/1

For brevity, this is expressed only in terms of the coefficient _,. Equation

(4-14) shows that the solidity parameter _ can be expressed in terms

of the flow angles only. Solidity parameter is plotted against exit flow

angle for several values of the inlet flow angle in figure 4-2(b). For a

given exit angle, solidity parameter increases with increasing inlet angle.

In the region of most interest (m> 0 °, a2 <-45°), solidity parameter for

each inlet angle decreases with decreasing exit. angle.

A third relation can be evolved, this one in terms of blade reaction R,

which was defined in chapter 2 as

Wl 2

R--l---- (4-15)
V= 2

Substituting equation (4-8) into equation (4-15) yields

R= 1-( c°s a2_ 2
\cos al/

(4-16)

for the two-dimensional, incompressible-flow case, where V,a=Vx,2.

Substitution of equation (4-16) back into equation (4-14) then yields

2
_=-- -x/l-Z- R sin Aa (4-17)

wkere Aa is m--a2.
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(a) Effect of tangential-velocity ratio and exit-flow angle.

(b) Effect of exit- and inlet-flow angles.
(c) Effect of reaction and turning angle.

FIGURE 4-2.--Effect of velocity diagrams on solidity.
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Equation (4-17) expresses the solidity parameter in terms of blade

reaction and turning angle. The solidity parametor is plotted against

reaction for several values of turning angle in figure 4-2(c). It can be seen

that, as indicated previously, the solidity parameter decreases with in-

creasing reaction. The solidity parameter is a maximum for a turning

angle of 90 ° and varies little with turning unless very high or very low

turnings are used.

Radial variation.--Chapter 3 discussed the radial variations in velocity

diagrams that must occur in order to satisfy both the varying blade speed

and radial equilibrium. Since axial solidity was shown to vary with

varying velocity diagrams, there will be a radial variation in the desired

value of axial solidity. The nature of this radial variation will be illustrated

by an example. Consider a single-stage turbine having axial inlet and exit

flows (zero inlet and exit swirls), constant axial velocities, a constant

hub-to-tip-radius ratio of 0.7, an impulse rotor hub with a stator-hub exit

flow angle of -70 °, and free-vortex swirl distribution. For this ease, the

flow angles at the hub and tip and the corresponding solidity-parameter

values computed from equation (4-14) are shown in the following table:

Inlet

angle,

deg

Stator

Exit

angle,

deg

Solidity

parameter,

ffx_z

Inlet

angle,

deg

Rotor

Exit

angle,

(leg

Solidity

parameter,

ffz_ z

54 --54

--2 --63

Hub 0 - 70 0.64 1.90

Tip 0 - 62 .83 .79

Note again that the angle convention being used in this chapter is some-

what different from that of previous chapters. Herein, stator exit angles

are negative. Assume that the loading coefficient _b_ is to be maintained

constant radially. This is a reasonably desirable condition, and the

assumption enables us to proportion solidity directly to the solidity

parameter.

Let us now determine how the hub and tip values of solidity parameter

shown in the preceding table can bc made physically consistent. The axial

solidity variation in any blade row must be inversely proportional to

radius (because blade spacing is directly proportional to radius) and
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directly proportional to axial chord. For the stator, the axial solidity

parameter at the hub is 0.64. If axial chord were held constant, then the

corresponding tip value of the axial solidity parameter would be

0.64X0.7=0.45, which is almost half of the desired value of 0.83. There-

fore, a considerable axial taper from tip to hub is often used so that the

axial chord can increase with radius and yield the higher solidities desired

at the tip.

In the case of the rotor, the axial solidity parameter at the hub is 1.90.

If axial chord were held constant, then the corresponding tip value of the

axial solidity parameter would be 1.90X0.7= 1.33, which is still larger

than the desired value of 0.79. Therefore, axial taper from hub to tip is

often used in rotor blades so that axial chord can decrease with increasing

radius and yield the lower solidities desired at the tip. Taper from hub to

tip in the rotor is not only aerodynamically desirable, but is also mechani-

cally desirable from the standpoint of reducing blade stress. To simplify

fabrication in many cases, especially for smaller turbines, axial taper is not

used, and there results a radial variation in loading coefficient. With the

axial solidity selected on the basis of the mean-section velocity diagrams,

this radial variation in loading cocfficient in many cases, especially those

where the blading is not highly loaded, will not have a severe effect on

turbine performance.

Effect of compressibility.--Thc term

pl r- p*,min

in equation (4-9) reduces to 1/D, for incompressible flow conditions, as

shown by equation (4-13). For a compressible flow case having the same

loading coefficient ¢ as for incompressible flow, division of equation (4-9)

by equation (4-13) yields

1

2g t_ V_D'
O"x

_*,inc plt-- Ps,,nin
(4-18)

where ax,,,c is the incompressible flow value as determined from an

equation such as (4-13), (4-14), or (4-17). By introducing the relations

between critical velocity ratio, density, and pressure (eqs. (1-3), (1-52),

(1-61), (1-63), and (1-64)) and using the definition of D, (eq. (4-12)),

equation (4-18) is modified to
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0"2:

O'X , inC

7'+1 V-c, 2

(4-19)

where

7 ratio of specific heat at constant pressure to specific heat at

constant volume

Vc. critical velocity, m/sec; ft/sec

Then, by using binomial expansion and by neglecting the secondary terms,

equation (4-19) can be approximated as

O" x

- 1 e (4-20)
a_,,._ _'+1 2(7+1)

The approximation represented by equation (4-20) is quite good for

( V� Vcr)_ values up to about 1. The solidity ratio _x/¢=._,_ is plotted against

suction-surface diffusion parameter for several values of critical velocity

ratio in figure 4-3. The compressibility effect becomes more pronounced

as D, either increases or decreases from a value of 2. At D, = 2, there is no

compressibility effect for any value of ( V� V,r) 2. For D, values of less than

2, the required solidity decreases with increasing values of (V/Vc_)_.

1.50 --

.__1. 25 -

O

.50

Exitcritical-velocity
ratio,

(V/Vcr)2

1.2

1.0.6

0

1 I
2 3

Suction-surfacediffusionparameter,Os
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For Do values of more than 2, a region that is only of academic interest

because it is beyond the limits of good design practice, the solidity ratio

increases with increasing (V/V_r)2. Experience has shown that D, values

should be maintained below about 2 to avoid excessive losses.

Relation of Loss to Solidity

It is well recognized that the loading of a turbine blade or of a com-

pressor blade is an important function of both solidity and reaction.

Correlation of blade loss with a compressor diffusion parameter was

described in reference 2 and is used widely within the compressor field.

This parameter includes two terms, one reflecting reaction and the second

reflecting turning and solidity. An analogous diffusion parameter was

evolved for the case of the turbine in reference 3, where an overall diffusion

parameter is defined as the ratio of the sum of the decelerations in kinetic

energy on the suction and pressure surfaces to the exit kinetic energy. If it

is assumed that the pressure surface minimum velocity is low enough to

neglect (Vp.,,i, =0), then the overall diffusion parameter is defined as

2

D- V,_.,- V22+ V12
V_2 (4-21 )

With the use of the definitions of D, (eq. (4-12)) and R (eq. (4-15)),

equation (4-21) reduces to

As seen from equation (4-13),

D=D,-R (4-22)

_ =_D_ (4-23)

Substitution of equations (4-23) and (4-14) into equation (4-22) then

yields

2 COS _2 .

D - sm Aa--R (4-24)
_z_ COS _1

This relation is like that for compressors, with the two terms involving

reaction and solidity.

Attempts have been made to correlate turbine blade loss with both

overall (ref. 4) and suction-surface (ref. 5) diffusion parameters. A

definite trend of increasing loss with increasing diffusion was established,

but complete correlation could not be obtained. Such a correlation of

blade loss with diffusion parameter alone would not be expected, since

different values of reaction and solidity giving the same value of D do

not give the same loss.

Consider first the effect of reaction on loss, as shown qualitatively in

figure 4-4(a). As reaction is reduced from a relatively high value near
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unity, there occurs a gradual increase in blade loss. Further reductions in

reaction to negative values cause the loss to increase rapidly. This varia-

tion in loss with reaction is caused by the change in boundary-layer

characteristics (which are discussed in chapter 6) as the nature of the

flow varies from highly accelerating to diffusing. The negative reaction

regime, although desired in many applications, is usually avoided because

of the high loss encountered when conventional blading is used.

The effect of solidity on loss is indicated in figure 4-4(b). A minimum

loss occurs at some optimum solidity. As solidity increases, the amount of

frictional surface area per unit flow is increasing. As solidity is reduced,

on the other hand, the loss per unit surface area is increasing because of

the increased surface diffusion required. A minimum loss occurs as a result

of these opposing factors. The value of the suction-surface diffusion

Reaction,R

o
.-I

(b)

Axialsolidity,ox

112

(a) Reaction.

(b) Solidity.
FIGURE 4-4.--Loss trend with reaction and solidity.
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parameter corresponding to the optimum solidity is a function of many

factors such as Reynolds number, shape of suction surface velocity dis-

tribution, and rate of turning. In gencral, as mentioned previously, values

not exceeding about 2.0 are used.

Selection of Optimum Solidity

Both analytical and experimental attempts have been made to identify

optimum solidity. According to reference 1, minimum loss occurs when the

Zweifel loading coefficient _b, is equal to 0.8. By using this value in equa-

tion (4-14), optimum axial solidity can be determined as a function of

the blade-row inlet and exit flow angles, and this is plotted in figure 4-5 (a)

for a wide range of angles. The dashed (long-short) curve represents the

locus of points for impulse blading.

In order to determine the optimum values in terms of actual solidity,

it is necessary to determine the stagger angle as, because

_X

_- (4-25)
COS as

An analytical blade model was used in reference 6 to relate stagger angle

to the flow angles and the axial solidity. Thus, optimum values of actual

solidity were obtained as a function of inlet and exit angles, as shown in

figure 4-5(b). The authors of reference 6 compared an optimum solidity

determined in this way with the data of reference 7, where efficiency was

measured with four different rotor solidities, as shown here in figure 4-6.

The solidity determined as optimum in reference 6 from a figure such as

figure 4-5(b) is seen to be quite close to that yielding maximum efficiency
for this case.

Loss coefficients based on cascade data are presented in reference 8 as a

function of pitch/chord ratio (inverse of solidity) and exit angle for

reaction blades (al = 0) and impulse blades (al = - a_). These coefficients,

in relative terms, are replotted here in figure 4-7 against solidity for

various exit angles. These curves indicate the importance of selecting

optimum solidity. For the larger (more negative) values of exit angle, the

curves are rather flat in the region of minimum loss, and some deviation in

solidity from optimum does not cause any significant increase in loss. As

the exit angle gets smaller, the minimum loss region becomes more pro-

nounced and the loss penalties become more severe as solidity departs

from the optimum value. It must be recognized that curves such as those

of figure 4-7 are usually obtained by using a given blade shape and varying

the spacing. Thus, the blade shape and resultant velocity distribution

cannot be optimized for each solidity, and the significance of such a

correlation is somewhat clouded.

113



TURBINE DESIGN AND APPLICATION
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FIGURE 4-5.--Effect of inlet and exit angles on optimum solidity. Zweifel loading
coefficient _= =0.8.
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FIGURE 4-7.---Effe(:t of solidity and exit angle on blade-loss coeffi(.ient.

The optimum solidities obtained from the cascade results shown in

figure 4-7 are plotted against exit angle in figure 4-8 and are compared

with those obtained analytically and shown in figure 4-5(b). It is obvious

that agreement between the experimental and the analytical results is

not good for most exit-angle values. Although the experimental and the

analytical curves do cross each other for both the reaction (c_ = 0) blading

and the impulse (al = -a_) blading, the indicated variations in optimum

solidity with exit angle are just not similar. All that can be said at this

time is that the analytical results involve many assumptions, the experi-

mental results pertain to one particular blade profile, and there are many

factors that act to determine optimum solidity in a manner that we do
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FIGURE 4-8.--Comparison of optimum solidities.

not yet fully understand. Analytical results, such as those of figure 4-5,

are more frequently used to determine optimum solidity than are experi-

mental results, such as those shown in figure 4-7. Current design practice

is to use ¢, values of 0.9 to 1.0, which is slightly higher than the 0.8

recommended in reference 1.

Ultralow-Solidity Blading

In the past, the limitation to reductions in solidity has been separation

occurring on the suction surface of the blade. To achieve lower solidities,

some modification in blade concept must })e utilized such that separation

is suppressed and the associated high losses do not occur.

The treatment of the boundary layer in the region of separation is one

approach to reduced solidity. Such treatments could include removing the

boundary layer by suction, energizing the boundary layer by blowing, or

increasing the turbulence of the boundary layer by use of turbulators on

the blade. Certain of these concepts have been explored with marginal

success. Two alternate blade concepts that have, perhaps, better potential

are the tandem and jet-flap blades, which are illustrated in figure 4--9.

Studies applying the boundary-layer treatment concepts as well as the

alternate blade concepts to stator blades and rotor blades are summarized

in references 9 and 10, respectively. Cascade tests of low-solidity plain,

tandem, and jet-flap blades are presented in references 11 to 14. Turbine

test results with low-solidity tandem and jet-flap rotors are presented in

references 15 and 16, respectively.

The tandem blade operates on the principle that, although a high value

of suction-surface diffusion is utilized (perhaps 2), the front foil is ter-

minated at about the point of separation. The remaining diffusion then
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Tandemblades Jet-flapblades

FIGURE 4-9.--Low-solidity blading concepts.

DESIGN

takes place on the rear foil with a clean boundary layer and with perhaps

20 to 30 percent of the mainstream air going through thc slot.

The jet-flap blade operates with a secondary air stream jetting out the

trailing edge perpendicular to the main stream. This jet moves the rear

stagnation point around the trailing edge, thereby substantially increasing

the lift. In addition, the jet delivers some force to the blade througl_ its

own momentum. Figure 4-10 shows experimental velocity distributions
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.-._- -O..[:r _,
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FIGURE 4-10.---Jet-flap experimental velocity distributions.
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around one such blade with the jet off and on. With the jet on, there is no

longer a requirement for the velocities on the suction and pressure surfaces

to be equal at the blade trailing edge. The loading diagram now approaches

a rectangular shape, with the load coefficient _ more closely approaching

unity. Also, the diffusion on the suction surface is substantially reduced,

thus suppressing the tendency to separate.

Both the jet-flap-blade and the tandem-blade concepts offer the poten-

tial for solidity reductions. The jet flap, however, will probably be con-

sidered only for applications where a secondary air flow is required for

other purposes, such as blade cooling.

BLADE-PROFILE DESIGN

After the blade chord length has been selected and the blade spacing

determined from solidity considerations, the blade itself must be designed.

This involves determination of the inlet and exit geometries and the

connecting surface profiles. The inlet and exit parts of the blade must be

designed to provide a smooth, efficient transition between the blade

channel and thc free stream. The surface profiles connecting the inlet and

exit must provide the required flow turning with minimum loss.

Exit

Consideration of the blade exit section includes the trailing edge, the

throat, and the suction surface between the throat and the trailing edge.

Trailing edge.--In the design of turbines, it is wise to utilize the smallest

trailing edge consistent with mechanical considerations. As shown in

reference 17, an increase in trailing-edge thickness causes an increase in

the blade loss. This effect is discussed further as part of the turbine-loss

discussion in chapter 7. In addition, trailing-edge thickness also has a

significant effect on the flow blockage in the blade exit region.

Consideration of the blockage effect will be made with the use of figure

4-11, which shows example blade sections with the nomenclature used. A

new exit-velocity diagram is constructed at station 2a, which is located

just within the blade trailing-edge region. The reduced area due to the

trailing-edge blockage results in a higher velocity at station 2a than at

station 2, which is located just beyond the blade trailing-edge region.

The equations that have been used to obtain this "within-the-blade"

diagram at 2a include conservation of tangential momentum:

and continuity :

V,,.2, = V,,,2 (4-26)

(p _)_ (4-27)
S COS or2
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0

$

FIQU_E 4-11.--Blade section and nomenclature.

where t is the trailing-edge thickness, in meters or feet. The flow angle asa

is determined from equations (4-26) and (4-27) by assuming the flow

between stations 2a and 2 to bc either incompressible (since the changes

are usually small) or isentropic. The blade must be designed to have an

exit angle of a2a in order to produce a velocity-diagram angle as at station
2 outside the blade row.

The Mach number at station 2a can also be determined from the

preceding equations and assumptions. Because the angle as is often large

(65 ° or greater) and the flow 3Iach number at the blade exit (station 2)

is often specified to be in the high subsonic region, the trailing-edge

blockage can cause station 2a to become choked. It is, therefore, important

to determine whether choking inside the blade row will occur such that

the design flow rate cannot be obtained.

Throat.--Since, in general, a turbine blade row operates as a nozzle, with

the flow accelerating up to the throat, or minimum area, the determination

of the throat opening o (see fig. 4-11) becomes a rather critical aspect of

the design procedure. One technique used successfully to give this dimen-

sion makes use of the "inside-the-trailing-edge" velocity diagram. If one

assumes no change in flow conditions and a straight suction surface
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between the throat and station 2a, then the throat dimension can be

obtained from the velocity diagram at station 2a by using the following

equation:

o(= 1 cos a:_ (4-28)
8 cos (T2a

where o is the throat opening, in meters or feet.

If it is assumed that the velocity and loss do not change between the

throat and the "free-stream" station 2, then

0

-= COS q2 (4-29)
8

When this method is used, the effect of trailing-edge thickness changes

the angle of the throat position but not its length. Both methods (cqs.

(4-28) and (4-29)) give similar throat dimensions. Reference 8 compares

measured exit-flow angles with those predicted by equation (4-29). This

comparison indicates close agreement at exit angles greater than 60 ° and

deviations of up to 5 ° for exit angles down to 35 ° . This deviation could be

due to lower solidities as well as larger gradients that would occur across

the throat.

The throat-opening dimension as determined from equation (4-28)

or (4-29) applies to the case wherc the blade-row exit flow is subsonic.

If the flow within the blade row expands to a supersonic velocity, then

this computed throat dimension must be modified to account for expansion

from the sonic condition at the throat to the supersonic condition at the

exit. For exit 5[ach numbers greater than about 1.3, the choking section

(throat) must be located back within the channel such that a convergent-

divergent passage is obtained. For low supersonic i\[ach numbers (up to,

perhaps, 1.3), it has been found that satisfactory performance can be

achieved if the throat is still located at the exit of the channel, and the

additional flow expansion occurs downstream from the throat. In this

case, the required channel exit dimension o would be computed by the

following equation:

(4-30)
o = o_ \A _}

where

058

Act

A,,

throat opening computed from equation

supersonic velocity, m; ft

flow area for sonic flow, m2; ft 2

flow area for supersonic flow, me; fC"

(4-28) or (4-29) for
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FIGUttE 4-12.--Variati(m ill flow area with supersonic flow Mach munl_er.

This area correction, with assumed isentropic flow between throat and

exit, is shown in figure 4-12.

Suction surface downstream from throat.--The selection of the type of

surface between the throat and trailing edge on the suction surface must

be made from such considerations as structural integrity in the trailing-

edge region, 5[ach number level and associated losses, desired level of

suction-surface diffusion (D_), and blade surface area resulting from the

design.

A "straight back" design is used when low values of D, (approximately

unity) are specified and long trailing edges are permissible. High subsonic

or transonic blading, as would be indicated by the discussion in the next

paragraph, uses this type of surface in order to prevent flow acceleration

on the tail of the blade and keep the associated losses low. Principal

problems with a straight surface are that the low D, values preclude low-

solidity designs and the long trailing edge can become structurally flimsy.

5lost conventional gas-turbine blading utilizes some amount of curva-

ture between the throat and trailing-edge region. This permits some dif-

fusion and additional h)ading on the tail of the blade, and it adds consider-

ably to the structural integrity ()f the blade by introducing a wedge angle

at the exit. If eonv(,ntionally loaded blading is used, the effect of this

curw'd surface on loss is not great. As indicated t)y figure 4-13 (which is

from ref. 8), if the exit-flow 5Iach number is less than 0.8, the curvature

effect is small. At higher (,xit Mach numbers (greater than 0.8), the effect

on loss can become severe. Therefore, design curvatures should be lower in

the higher 5[ach number regions. The type of curvature selected for the

suction surface between the throat and trailing edge has an effect on the

suction-surface velocity distribution. In general, the velocity distribution

is improved if the curvature decreases from throat to trailing edge instead

of remaining constant.
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FIauR_ 4-13.--Variation of profile h)ss with Math numl_er and surface curvature

between throat and exit (from ref. _).

Inlet

The leading-edge geometry of a turbine blade row is usually less critical

than the exit-region geometry. At the blade inlet, a relatively large

leading-edge radius earl usually be used, because the .\lach number is gen-

erally low at the inlet and then increases through the blade row. The lead-

ing edge bccomes a serious concern for low-reaction blading and high 5 [ach

number blading. In the case of low-reaction binding, excessively high

velocities in the inlet region can lead to high values of suction-surface

diffusion and a tendency toward i:_creased losses. With high inlet 5[ach

numbers, care must be taken that the area contraction is not so severe as

to choke the blade at the inlet. Equations (4-26) and (4-27), which were

used for thc bIade exit, can also be used to det('rmin(' a blade-inlet opening

and "within-the-blade" flow angle and 5[aeh number to check for blade-

inlet choking.

Although circular leading edges arc usually specified, this is arbitrary

and could limit the freedom of velocity-distribution selection in the

leading-edge region. The large curvatures associated with circular leading

edges can result in undesirable velocity peaks on both the suction- and

pressure-surface portions of the leading edge. Other geometries, such as

ellipses, which permit variations in curvature around the leading edge, can

be used to minimize or eliminate the velocity peaks.

Blade-Surface Profile

Once the leading- and trailing-edge geometri('s have been selected, the

task remaining is t:o join them with a profih_ that, yields the required flow
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turning and a satisfactory velocity distribution around the blade. The

desigu procedure must describe the flow conditions through the blade rows

to an accuracy sufficient to impose design controls (e.g., diffusion limits).

Two of the major flow considerations arc illustrated in figure 4-14.

Velocity gradients occur across the channel from the suction to the

pressure surface as a result of the static-pressure difference required to

turn the flow. Radial variations in streamlinc position and, therefore,

velocity occur as a result of radial-equilibrium considerations. Since both

of these factors influence the blade-surface velocity distribution, the design

procedures used should be at least of a quasi-three-dimensional nature.

The channel flow analysis theory that serves as the basis for these design

procedures and the computer programs available to perform the com-

putations are discussed in the ncxt chapter.

Pressure _Suction
surface7 _su rface

(a)

..-Pressure Suction
surface surface_..

Cross-channel distance

__ , 'lEi.:_.i:!_._.:._::..::::::_i_!|Tip
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_ NN
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(b)

°--
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/
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(a) Cross-channel variation.

(b) Radial variation.

FIGURE 4-14.--Turbine blade-row velocity variations.
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SYMBOLS

flow area, m_; ft 2

chord, m; ft

diffusion parameter

force, N; lb

conversion constant, 1; 32.17 (Ibm) (ft)/(lbf) (sec 2)

ratio of inlet to exit tangential components of velocity ( V_ ._/V,._)

throat opening, m; ft

absolute pressure, N/m2; lb/ft _

reaction

blade spacing, m; ft

trailing-edge thickness, m; ft

absolute velocity, m/sec; ft/scc

axial distance, m; ft

fluid absolute angle from axial direction, deg

blade stagger angle from axial direction, deg

ratio of specific heat at constant pressure to specific heat at

constant volume

density, kg/m'_; lb/ft a

solidity

loading coefficient defined by equation (4-6)

loading coefficient defined by equation (4-5)

Subscripts"

cr critical

inc incompressible

max maximum value

rain minimum value

opt optimum

p pressure surface
s suction surface

ss supersonic

u tangential component

x axial component

1 blade row inlet

2 blade row exit

2a within trailing edge of blade row

Superscript"

' absolute total state
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CHAPTER5

ChannelFlowAnalysis

ByTheodoreKatsanis

The design of a proper blade profile, as indicated in the last section of

chapter 4, requires calculation of the blade-row flow field in order to

determine the velocities on the blade surfaces. This chapter presents the

analysis theory for several methods used for this calculation and also

discusses associated computer programs that were developed at NASA

Lewis Research Center.

The actual velocity distribution throughout a blade-row flow field

cannot be calculated at this time because of the extreme complexity of

nonsteady, viscous, three-dimensional flow through geometrically complex

passages. To calculate a theoretical velocity distribution, therefore, certain

simplifying assumptions must be made. The three-dimensional flow is

simplified to flow on or through various two-dimensional surfaces. Such

surfaces are illustrated in figure 5-1 for the case of a radial-inflow turbine.

Similar surfaces are used for an axial-flo(v turbine. A flow solution on the

mean hub-to-shroud stream surface (commonly called the meridional

surface), shown in figure 5-1 (a), does not yield blade-surface velocities

directly, but provides information required for the blade-to-blade surface

(fig. 5-1 (b)) and orthogonal surface (fig. 5-1 (c)) solutions, which yield

the desired blade-surface velocities.

There are two parts to a method of analysis to obtain a velocity dis-

tribution over one of these surfaces. The first part is the mathematical

formulation of the problem, and the second part is the numerical solution

of the mathematical problem. For the mathematical formulation of the

problem, we will discuss stream- and potential-function methods and

velocity-gradient (stream-filament) methods. The stream- and potential-
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Hub-to-shroud
stream surface -_

|

Blade-_,-blade

surface]
I

(a) 0_)

,- Ortho_nm

(c)

(a) Hub-to-shroud stream surface. (b) Blade-to-blade surface.
(c) Orthogonal surface across flow passage.

FIOURE5--1.--Surfaces used for velocity-distribution calculations.
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function methods will be described relative to the blade-to-blade surface

solution. A similar type of analysis can be made for the meridional surface.

The velocity-gradient equation to be presented is general and can be used

for solutions on any of the surfaces.

The following assumptions are made in deriving the various methods

of analysis discussed herein:

(1) The flow is steady relative to the blade. This means that the

surface velocity at any given point on the blade does not vary with time.

Thus, if the blade is rotating, the flow would not be steady relative to a

fixed coordinate system.

(2) The fluid obeys the ideal-gas law

p=pRT (5-1)

where

p absolute pressure, N/m_; lb/ft 2

p density, kg/m_; lb/ft S

R gas constant, J/(kg) (K); (ft) (lbf)/(lbm) (°R)

T absolute temperature, K; °R

or is incompressible (p = constant).

(3) The fluid is nonviscous. A nonviscous fluid has no boundary layer.

The blade-surface velocity is calculated, therefore, as if the free stream

extends to the blade surface.

(4) The fluid has a constant heat capacity.

(5) The flow is isentropic.

(6) The total temperature and total pressure are uniform across the
inlet.

(7) For the stream- and potential-function analyses, the additional

assumption is made that the flow is absolutely irrotational. Therefore,

curl Y = VX V =0 (5-2)

where Y is the absolute velocity vector. Intuitively, this means that

particles do not change their absolute orientation with time, although

their shape may change. For example, figure 5-2 shows a hypothetical

particle at times t and t-t-At. In the absolute frame of reference, the

particle changes its location and shape at a later instant of time, but the

net rotation is zero. Of course, in a frame of reference relative to the

blade, the particle has rotated, because the frame of reference has rotated.
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Direction of rotation

Time = t

r-l
LJ

Time-t+At I I

(Absolute frame of reference)

Time=t + At

(Relativeframeofreference)

FIGURE 5--2.--Absolutely irrotational flow.

Some numerical techniques for solving the mathematical equations will

also be discussed. However, it must be emphasized that there are many

techniques for solving these equations, and we will discuss only a few. An
excellent theoretical discussion of flow in two-dimensional cascades is

given in Chapter IV of reference 1.

STREAM- AND POTENTIAL-FUNCTION ANALYSES

Stream-Function Method

The stream function can be defined several ways, but perhaps the

simplest is in terms of streamlines. Suppose we consider two blades of a

cascade as shown in figure 5-3. It is assumed that there is two-dimensional
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FIGURE 5-3.--Streamlines for a stator cascade.

axial flow here, so that the radius r from the centerline is constant and

there is no variation of the flow in the radial direction. There may be
rotation about the centerline.

Shown in figure 5-3 are a number of streamlines. The mass flow between

the blades is w. The number by each streamline indicates the fraction of w

passing between the upper surface of the lower blade and the given stream-

line. Thus, the upper surface (which is a streamline) has the value 0, and

the lower surface of the upper blade has the value of 1, while the remaining

streamlines have values between 0 and 1. Note that a value can be asso-

ciated with any point in the passage. This value is called the stream-

function value and can be used to define the stream function.

It will be recalled that mass flow can be calculated for a one-dimensional

(or uniform) flow by

w= pVA (5-3)
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where

W

V

A

rate of mass flow, kg/sec; lb/sec

fluid absolute velocity, m/sec; ft/sec

flow area normal to the direction of the velocity V, m2; ft _

This can be extended to a varying flow by using an integral expression:

w= f a pV dA (5-4)

Since this stream-function analysis applies to both stationary and rotating

cascades (blade rows), the fluid velocity will be expressed in terms of

relative velocity W, which for a stationary blade row reduces to absolute

velocity V. We will assume that our cascade has a uniform height b. Then,

the mass flow wl._ between any two points QI and Q2 in the passage (see

fig. 5-4) can be calculated by

QI

wl._ --/Q _ pW,,b dq
(5-5)

-'_Q1 •
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where Wn is the relative velocity component in the direction of the right-

hand normal of the line going from QI to Qt. This sign convention means

that wl.t will be negative if Qs is below a streamline passing through Q1.

The integral is a line integral between the points Q_ and Q2 and is in-

dependent of path for steady flow relative to the cascade.

With the use of equation (5-5), an analytical expression can be written

for the stream function u at a point (x, y) :

/Q(_'Y) pWnb dq
o

u(x, y) =
W

(5-6)

where Qo is any point on the upper surface of the lower blade, and the

integral is taken along any curve between Qo and (x, y). This is indicated

in figure 5--5.

Since the integral in equation (5-6) is independent of path, it is rela-

tively easy to calculate the partial derivatives of u. For example, we will

calculate Ou/Ox at the point (x, y). Let Xo<X such that the point (x0, y)

is still in the flow passage, as shown in figure 5-6. Then

/c_ pWnb dq-}- fc ffipW_b dq

u(x, y) -
W

(5-7)

FIGURE 5-5.--Curve joining (x,y) with a point on the upper surface of the lower blade.
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(Xo.Y)ff c2 (x,y}

FIGURE 5--6.--Curve joining horizontal line through (x,y) with a point on the upper
surface of the lower blade.

where C_ is an arbi'_rary curve between Qo and (x0, y), and C2 is a hori-

zontal line between (Xo, y) and (x, y). The integral along C_ does not

depend on x. Along C2, we have W, = -W_ and dq = dx. Hence,

Ou (x, y) = -- pW_b dx
Ox o w

or

Ou aW,,b

Ox w

In a similar manner, we can calculate

(5-8)

(5-9)

Ou_ pW_b (5-10)
Oy w

Now we will make use of the fact that the flow is absolutely irrotational.

From the definition of the curl operator and the above assumption,

curlV=fOV. OV=_ i [OV= OV._ +(OV_ OV,_'_k=O (5-11)
\or \ox ov/

wherei, j, and k are the unit vectors in the x, y, and z directions, respec-
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tively, and Vx, V_, and V, are the absolute velocity components (in

m/sec or ft/sec) in the x, y, and z directions, respectively. Since we are

considering two-dimensional flow only,

V.=O (5-12)

and

OVa_ OV:,=O (5-13)
Oz Oz

Hence, equation (5-11) requires only that

OV_ OVx

Ox Oy
(5-14)

Since

and

V_= W_ (5-15)

Vu-- W_+_r (5-16)

where _ is the angular speed (in rad/sec) and the radius r is constant,

equation (5-14) can be expressed in terms of relative velocities as

OW3, OW_

Ox Oy
(5-17)

Actually, the flow is irrotational with respect to the moving coordinates

in this particular case. Now, from equations (5-10) and (5.9),

w 0_t
W_ - (5.18)

pb cOy

w Ou
= (5.19)

pb Ox

Substituting equations (5-18) and (5-19) into equation (_-17) yields

0 (1 0u\ 0 (10u_= 0 (5-20)cox; ; oy/
since w and b are both constant.

For incompressible flow, p is constant, and

0_U 02U

(5-91)

which is Laplace's equation. Any function satisfying Laplace's equation is

called a harmonic function. There is a great deal of theory concerning
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harmonic functions that is related to the theory of analytic functions of

complex variables.

The important thing to know here is that there are a tremendous

number of functions that satisfy equation (5-21), and we must find a

solution that satisfies certain boundary conditions. The solution to either

Laplace's equation (5-21) or equation (5-20) will be determined by

specifying two things: (1) a finite region, and (2) a boundary condition

along the entire boundary of the region.

The first thing that must be specified is the solution region. A typical

two-dimensional cascade is shown in figure 5-7. Since the flow is the same

in every passage, we can consider a finite solution region as shown in

figure 5-8. It is assumed that AH is sufficiently far upstream so that the

flow is uniform along this part of the boundary and that the flow angle

/_ is known. Similarly, it is assumed that the flow is uniform along

DE, and that the flow angle _0,_ is known. From the way the stream

function was defined, we can specify boundary conditions on the entire

boundary ABCDEFGHA. Along BC, u--0; and along FG, u= 1. Along

AB, HG, CD, and FE, a periodic condition exists; that is, the value of u

along HG and FE is exactly 1 greater than it is along AB and CD. Along

AH and DE, Ou/O_ is known, where _ is the distance in the direction of

the outer normal.

yl

Wx

x
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FIGURE 5-8.--Finite solution region.
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Consider the differential of u in the direction of the velocity W:

du = OxO'-udx+_ dy -- 0 (5-22)

The differential is 0 because the stream function is constant along a

streamline, and the velocity vector must be tangent to a streamline.

Along AH,

Ou 8u

Or - 8x (5-23)

and substitution from equation (5-22) yields

Ou_ Ou dy (5-24)
07 Oy dx

However,

du
-"-- tan _ (5-25)
dx

Further, Ou/Oy is constant along AH, since it is assumed that the flow is

uniform there. Therefore,

Ou [u(H)-u(A)'] 1
.... (5-26)
8y s s

where s is the blade spacing in the y direction. Substituting equations

(5-25) and (5-26) in equation (5-24) gives along AH

ia 8

(5-27)
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Similarly, along DE, one can calculate

o,,, = s (5-28)

We now have a boundary condition along the entire boundary of the region

shown in figure 5-8. These boundary conditions will always determine a

unique solution to Laplace's equation (5-21). For compressible flow (eq.

(5-20)), a unique solution is always determined if the flow is strictly

subsonic throughout the region.

There are numerous techniques for solving equation (5-20) or (5-21).

After the stream function is obtained, blade-surface velocities and velocities

throughout the passage can be obtained by differentiation of the stream

function. This is what is known as the direct problem. A method of solving

this problem will be discussed later. The indirect, or inverse, problem is to

specify a desired velocity distribution on the blade surface and from this

determine a blade shape that will give this velocity distribution. This will

not be discussed here.

Potential-Function Method

For two-dimensional irrotational flow, a potential function can be

defined. If lines of equal potential are drawn, they will be orthogonal to

streamlines. The potential function will not be defined in the same detail

as the stream function, but the main properties and relations will be given.

If the potential function ¢ exists (i.e., the flow is irrotational), then it can

be defined so that

and

-- = Vx (5-29)
Ox

- Vv (5-30)
Oy

We will refer to absolute velocities here, since we must have flow irrota-

tional relative to the coordinate system used. This, coupled with the

assumption of absolute irrotational flow, implies that the coordinate

system does not rotate. This does not exclude use of the potential function

for pure axial flow, since the rotation has no effect if there is no change in

radius; that is, the flow is actually irrotational with respect to the blades,

as we saw in the discussion of the stream function.

From the continuity relationship for steady flow,

o(pvx) +o(pv,) =o
Ox Oy

(5-31)
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Substituting equations (5-29) and (5-30) in equation (5-31) yields

0(oo,o()
If the flow is incompressible, p is constant, and

a_ a2_

=0 (5-33)

So, the potential function satisfies Laplace's equation. Thus, for incom-

pressible, irrotational flow, both the stream function and the potential

function satisfy the same differential equation (Laplace's equation). The

difference lies in the boundary conditions.

We can consider the same solution region shown in figure 5-8. We can

specify boundary conditions over the entire boundary as follows: Along

BC and FG,

- V, = 0 (5-34)
0_

where V, is the velocity normal to the blade surface. Along AH,

(5-35)

and along DE,

oue

The inlet and outlet axial velocities are given by the equations

W

(v_) ,. - (5-37)
p_nbs

and

W

(V_) o_t- (5-38)
po_tbs

Along AB, GH, CD, and EF, a periodic condition exists. Since the flow is

uniform along AH,

(0yy_),.,= [_(H)- _(A)Is - (V_) _, (5-39)

Substituting

V_ = V: tan/_ (5-40)
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into equation (5-39) yields

_(H) =¢(A)q-s(Vx)_, tan _,, (5-41)

Because of the periodicity, ¢ is exactly s(Vz)_,_ tan _, greater along HG

than along AB. Similarly, at the outlet,

O(E) = ¢(D) +s(Vx)o,,, tan #o_, (5-42)

Equation (5-42) gives the difference in ¢ along the lines FE and CD.

This completes the boundary conditions for equation (5-32) or (5-33).

The boundary conditions, however, do not determine a unique solution,

but only a solution within an arbitrary additive constant. If the value of

¢ is specified at one point, these boundary conditions will determine a

unique solution to equation (5-33) for incompressible flow, or to equation

(5-32), for strictly subsonic compressible flow throughout the region.

As for the stream function, there are numerous methods for solving

equation (5-32) or (5-33) subject to the preceding or equivalent bound-

ary conditions. A method for solving the inverse problem of specifying

the velocity distribution to determine the blade shape is described in

references 2 and 3.

Choice of Stream- or Potential-Function Method

If the flow is steady, irrotational, and incompressible, there is little to

choose between the stream function and the potential function. In this

case, the choice is made on the basis of ease of solution for the boundary

conditions (the differential equation is the same: Laplace's equation).

However, if any of the three assumptions (steady, irrotational, or incom-

pressible flow) is not applicable, then we may be restricted as to the

choice of stream function or potential function.

The existence of the stream function is proven from the continuity

equation. For the stream function to be defined, the mass flow crossing

a line between two points must be independent of path. This requires

that the flow be either incompressible or steady. Some additional assump-

tion is necessary for the flow to be unique. We used the assumption that

the flow was absolutely irrotational, which turned out to be irrotational

relative to the blade for the axial-flow case considered. However, other

assumptions could be made for other problems. Another restriction on

the stream function is that it can be defined only for two-dimensional flow.

This can easily be seen since the stream function is defined as a percentage

of mass flow between two points, and this is meaningless in three

dimensions.

The existence of the potential function can be shown if the flow is

irrotational relative to the given coordinate system. This is necessary
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because we must have equality of mixed second partial derivatives; that

is, if

02_ 02&
m

OxOy OyOx
(5--43)

then

0 V ----_ V. (5-44)
Ox _-Oy

and the flow must be irrotational. A similar situation exists in three-

dimensional flow; that is, the potential function exists only if the flow is

irrotational with respect to the coordinate system being used. Finally,

an assumption must be made to assure a unique solution. This can be

done by using the continuity equation.

Finite-Difference Solution for Stream-Function Method

As stated before, there are many ways of solving various problems

posed by stream-function or potential-function theory. We will consider

in further detail the finite-difference solution of the direct problem for the

stream function for the simplest case of steady, incompressible, irrotational

flow. In this case, we must solve Laplace's equation subject to the bound-

ary conditions discussed in the section on the stream function. The method

of solution for the potential function is quite similar, but with a lower

rate of convergence for the finite difference solution.

The first step is to establish a rectangular grid of mesh points in the

region shown in figure 5-8. A typical grid is shown in figure 5-9. Then a

finite-difference approximation to Laplace's equation (eq. (5-21)) can be

written at each mesh point where the stream function is unknown. A

typical mesh point with four neighboring mesh points is shown in figure

5-10. The point in consideration is labeled 0, and the four neighboring

points are labeled 1 to 4, as shown. The distance between points 1 and 0 is

denoted hi, and similarly, the other distances are h2, h3, and h4 as indicated

in figure 5-10. The value of u at points 0 to 4 are labeled u0 to u4, respec-

tively. With the use of a Taylor series expansion for u in the x- and y-direc-

tions, equation (5-21) can be approximated by using only values of u at

mesh points. (Further explanation of this is given in ch. 6 of ref. 4.)

When this is done, the following expression is obtained:

2ul 2u_h_(h_Th2) 4-h2(h_+h2)
2Uo] [ 2U3 2U4 2Uo ]

+h_(h_+h4) _j=O

(5-45)
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Solving equation (5-45) for u0 yields the expression

4

UO= E aiui (5--46)

i-1

where

h 3+ h4

al= a0h--_ (5-47)

h3--_- h4
= -- (5-48)

aoh_

hi+h2
a3 -- (5-49)

aoh3

hl+h_
a4 - (5--50)

aoh4

1 1 1 1

ao=(h3Th4)(_T_)+(h.+h,)(_+-_,) (5-51)

Equation (5-46) holds at every interior mesh point. If one of the neigh-

boring points is on a blade surface, then the value of u at that point can be

used. At other points along the boundary, equation (5-46) cannot be used,

but the boundary conditions can be used to obtain alternate equations at

these points. For example, along the upstream boundary AH in figure 5-9,

Ou/O_ is given by equation (5-27). If point 0 is on line AH, then, a finite

difference approximation gives

Uo= u4+h4 (tan-Bin) (5-52)

Similarly, if point 0 is on line DE,

Uo= u3- h3 (tans-_°"' ) (5-53)

For the points along AB and CD, equations can be derived by using

the periodic boundary condition. If the point 0 (fig. 5-11) is on the

boundary between A and B, the point I is outside the boundary. However,

it is known that ul=ul.s-1, where the point 1,s is a distance s above

point 1 in the y-direction, as shown in figure 5-11. Substituting this
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FIGURE5-11.--Mesh point on line AB.

condition in equation (5-46) gives

4

uo=alui..-I- _, aiui--al (5-54)
i--2

This equation holds along CD (fig. 5-8) also.

The points along HG need not be considered, since they are just 1

greater than the corresponding point along AB. The equation for the first

mesh line below HG, therefore, must be modified, since point 2 is on line

HG. In this case, us=u_._._-l, where the point 2,-s is a distance s

below point 2 in the negative y-direction, as indicated in figure 5-12.

Substituting this condition in equation (5-46) gives

Zto = alltl-_ a_Na ,_. -_- aaus _ a4u4 -{- as (5-55)

This equation also applies to the first mesh line below FE (fig. 5-8).

One of equations (5-46) or (5-52) to (5-55) can be applied to each

mesh point for which the stream function is unknown in the region of

interest to give the same number of linear equations as there are un-

knowns. These points where the stream function is unknown will be

referred to simply as unknown mesh points.

Suppose that there are n unknown mesh points. We then have n equa-

tions in n unknowns. The points can be numbered consecutively from I to

n. The values of u will then be ui at the first point, us at the second point,

and so forth up to un at the last point. At each point, one equation will

apply. The equation at a typical point, i, could be written
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FIGURE 5-12.--Mesh point on first line below HG.

_"_aijuj _-ki (5--56)

The values of the aij are determined by one of equations (5-47) through

(5-55). All but five, at most, of the aij are zero, and the aii = --1. The

value of ki is always zero, except for the outermost unknown points

around the boundary. It can be shown that the aij matrix is always non-

singular; hence there is always a unique solution for the uj.

A numerical solution to equation (5-56) can be obtained by iterative

techniques. These techniques are particularly valuable in solving systems

of linear equations of this type; that is, where there are a large number of

unknowns, but few terms in each equation. Storage requirements are

small, and roundoff error is minimized with iterative methods. To start

the iteration, an initial estimate of u at every unknown mesh point is

required. The simplest iterative procedure is relaxation. This consists of

changing the estimated value of u at each point in succession so as to

satisfy the equation for that point. After this is done at every point, the

procedure is repeated until there is negligible change in the values of u.

The procedure is simple and it always converges for this problem. How-

ever, the convergence rate is extremely slow, so that exci_ssive computer

time is required. The convergence can be accelerated greatly by increasing

the change in u at each iteration by a factor _, called the overrelaxation

factor. When w= 1, the procedure is straight relaxation, and when _:> 1,

it is overrelaxation. It is proven in reference 4 that overrelaxation (or

underrelaxation) is convergent if 0 <:_ <2. However, the greatest rate of

convergence occurs when 1 < _ < 2. In fact, there is an optimum value of
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between 1 and 2 which gives the most rapid convergence. This optimum

overrelaxation factor can be calculated as explained in reference 4.

To give an explicit expression for the overrelaxation procedure, we will

use a superscript on the ul. That is, ui m is the m th iterate of ui. The initial

estimates are denoted ui ° and may be any value. For example, an initial

estimate of ui°=0 is satisfactory. Then, if ui m is known for all i, we can

calculate ui re+l, for i = 1, 2,..., n in succession by

uim+l-_-_ uim-_-0J -- Z aijui re+l- aij_J m'gf-]gi- uim

j-I j-i-i-1

(5-57)

After a solution for u is obtained by overrelaxation (or any other

method), it is necessary to calculate the velocities with the use of equa-

tions (5-9) and (5-10) as

w(OZ)
Yz-

pb
(5-58)

and

o
W_ = (5-59)

pb

The partial derivatives au/ax and au/Oy must be estimated from the

calculated discrete values of ui. This can be readily done, either by finite

differences, or by fitting a smooth curve, such as a spline curve, through

the points. The resultant velocity is calculated from the two components

at unknown mesh points. On the blade surface, the velocity is calculated

from one component and the blade tangent angle.

Computer Programs for Stream-Function Analyses

As can be seen, the solution of Laplace's equation and the calculation

of velocities is a lengthy calculation procedure which is best done by com-

puter. Several computer programs have been written at the NASA Lewis

Research Center for the analysis of flow through turbomachine blading

by stream-function methods. Most of these programs are for blade-to-

blade analysis (region shown in fig. 5-9). The program called TURBLE,

which is described in reference 5, can be used to analyze axial, radial, or

mixed flow. In aqcordance with the constraints associated with the

stream-function method, the flow must be subsonic throughout the entire

solution region. The TSONIC program, described in reference 6, super-
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sedes TURBLE in that it performs all the same calculations and, in

addition, extends the solution to transonic (local supersonic velocities)

flow problems. Transonic solutions are obtained by using a velocity-

gradient equation of the type described in the next section to extend a

preliminary (lower mass flow rate) subsonic stream-function solution. A

program called TANDEM, which is described in reference 7, can be used

to analyze flow in tandem or slotted blade rows or blade rows with

splitters. Another program, called MAGNFY and described in reference

8, obtains a detailed solution in the leading- or trailing-edge regions of any

blade or in the slot region of tandem or slotted blades. The TANDEM

and MAGNFY programs are restricted to subsonic flow.

Flow in the meridional plane (mean hub-to-shroud flow surface, as

indicated by fig. 4-14(b) or fig. 5-1(a)), of any axial- or mixed-flow

turbomachine can be analyzed by a program called _IERIDL, which is

described in references 9 and 10. Transonic solutions can be obtained by

the use of a velocity-gradient equation to extend a preliminary subsonic

stream-function solution.

VELOCITY-GRADIENT ANALYSIS

As indicated previously, the stream-function and potential-function

methods of analysis are limited to solutions that are entirely subsonic

within the computation region. By use of a velocity-gradient equation and

additional assumptions, however, the subsonic solution can be extended to

give an approximate solution in the transonic flow regime. It is also

possible to use a velocity-gradient method of analysis alone to obtain sub-

sonic, transonic, or supersonic solutions without assumptions other than

the basic ones indicated earlier. The velocity-gradient analysis is often

called a stream-filament analysis because the velocity-gradient equation

involves the streamline, or stream-filament, curvature and position.

A velocity-gradient method of analysis can only give solutions within a

guided passage; that is, a passage where both ends of all streamline

orthogonals intersect a solid boundary. Therefore, the usefulness of this

method depends on the degree of flow guidance provided by the turbine

blades. For a well-guided passage (high solidity and/or small angles),

such as shown in figure 4-11, most of the suction surface is within the

guided region, and the associated surface velocity distribution can be well

defined. On the other hand, for a low-solidity blade row, such as that

shown in figure 5-9, less than half of the suction surface is within the

guided region, and surface velocities can be computed only on the front

half of the suction surface. In this latter case, the stream-function analysis

must be used if better definition of the suction-surface velocity distribution

is required.
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Method

The idea of a velocity-gradient method can be demonstrated by con-

sidering a simple case. Suppose we have two-dimensional flow through a

narrow passage as shown in figure 5-13. We assume the height of the

passage to be b, and the width d. If the mass flow is known, the average

velocity can be calculated approximately from continuity by

W
W.,o - (5-60)

pbd

However, there is a variation in velocity across the width of the passage,

and in turbomachinery it is this velocity difference we are interested in.

With a force-equilibrium equation, by balancing centrifugal force against

the pressure gradient as was done in chapter 3 for consideration of radial

equilibrium, it can be shown that

dW W

dq ro
(5-61)

where q is the distance from the suction (convex) surface, and re is the

radius of curvature for the streamline. The sign convention for rc is

important; rc is positive if it is concave upward, and negative if it is con-

cave downward. For the simple case shown in figure 5-13, equation (5-61)

can be integrated along a radial line by assuming the streamline radius of

curvature to be equal in magnitude to the passage radius. There results,

for integration from the inner radius to any point in the passage,

W ro (5-62)
Wo r

Row

FIGURE 5-13.--Flow through a curved passage.
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where

Wa

r.

r

relative velocity on inner, or suction, surface, m/sec; ft/sec

radius of inner, or suction, surface, m; ft

radius of passage, m; ft

The mass flow through the passage is expressed as

rm+dw--- pWb dr (5-63)
rl

and substitution of equation (5-62) into (5-63) and integration, with

constant density assumed, yields

w

w. = (5-64)

In a similar manner, the outer, or pressure, surface velocity can be com-

puted as

W

- (5-65)

Thus, an estimate of the blade-surface velocities can be obtained simply

by using equation (5-62), which is a velocity-gradient equation. We are

not necessarily restricted to two-dimensional flow. If there were some

variation of velocity in the height of the passage, a velocity gradient could
be calculated in that direction also.

We will now consider a very general velocity-gradient equation. Since

we are interested in turbomachinery, we will use a rotating cylindrical

coordinate system with radius r, angle 0, and axis x, as shown in figure

5-14. Also indicated are the velocity components, W,, W_, and We. The

meridional component W_ is the resultant of W, and W_. The meridional

plane is a plane containing the x axis. Also shown in figure 5-14 are a, the

angle between W_ and the x axis, and/_, the angle between W and the

meridional plane. The following relations hold for the components:

Ws= W sin/_ (5--66)

W,_ = W cos/_ (5-67)

Wr = W_, sin a (5-68)

W_ = W_ cos a (5-69)
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W

FIGURE 5-14.--Cylindrical coordinate system and velocity components.

In addition to the r-, 0-, and x-coordinate, it is convenient to use an

m-coordinate. The m-coordinate is the distance along a meridional stream-

line, as shown in figure 5-15. The m-distance is less than the true stream-

line distance if the angle _0. The meridional streamline is the projection

of a streamline in the meridional plane; that is, the 0-coordinate is

neglected. The curvature of the meridional streamline is 1/rc, where r_ is

the radius of curvature of the meridional streamline. The sign of rc is

positive if the streamline is concave upward.

We want the velocity gradient along an arbitrary curve. Let q be the

distance along this curve. For the case of constant total temperature and

constant angular momentum (rV_,) at the inlet,

dW dr dx dO

d--q=a jq+b dq +c--dq (5-70)

where

W COS ol COS 2
a-

rc

W sin _ dW,n
/_+sin a cos _ -----2_ sin _ (5-71)

r dm
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FIGURE 5-15.--The m-coordinate.

b = - W sin a cos 2 _+cos a cos/_ dW_______ (5-72)
re dm

c=Wsinasin[3c°s[3+rc°s_(ddWWm +2_sina). (5-73)

These equations are derived as equations (B13) and (B14) of reference 11.

In using any velocity-gradient equation, it is necessary to solve a differ-

ential equation involving streamline-geometry parameters, such as cur-

vature, a, and 8. These are not known precisely in advance. However,

for a guided channel, these parameters can be estimated reasonably well.

A great number of special cases can be obtained from equations (5-70)

to (5-73). For example, suppose we have an annular passage with no

blades, as shown in figure 5-16, and no velocity component in the tangen-

tial (0) direction (into page). We can calculate dW/dn, where n is the

distance normal to the streamline. Let q=n in equation (5-70). Since

We=0, then dO/dn=O and l_=0. Further, from figure 5-16, it can be

Outerwall--,

Meridional
streamline-,

Llnner wall

FIGURE 5--16.--Annular passage with no blades.
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seen that dr/dn = cos a and dx/dn = - sin a. Then, from equations (5-70)

to (5-73),

dW_ W (5-74)
dn rc

Thus, for this case, equation (5-70) reduces to the simple form of equa-

tion (5--61).

Computer Programs

Several computer programs for the analysis of flow through turbo-

machine blading by velocity-gradient methods have been written at the

NASA Lewis Research Center. One that was used for many years is the

CTTD program, which is described in reference 12 and is limited to axial-

flow turbines. This program has now been superseded by the more general

and easier to use CHANEL program, which is described in reference 13.

The CHANEL program can be used to analyze axial-, radial-, or mixed-

flow turbines or compressors. Velocity-gradient equations are used to

determine velocity variations both from hub to tip along meridional-

streamline orthogonals and from blade to blade along hub-, mean-, and

tip-streamline orthogonals. This results in a flow solution for an orthogonal

surface, as illustrated in figure 5-17, which satisfies a specified mass flow

rate. Computations are made for a number of these surfaces along the

blade passage. This program can also be used to compute the maximum

(choking) mass flow rate for the channel. The program gives good results

for medium- to high-solidity blading. As indicated previously, more

definition than can be provided by this program may be needed for low-

solidity blading, because solutions can only be obtained for fully guided

sections of the passage.

Velocity-gradient methods have also been used to obtain meridional-

plane and blade-to-blade plane solutions. The basic method for a meridi-

onal-plane analysis for mixed-flow centrifugal impellers is presented in

reference 14, which uses the velocity-gradient equation along streamline

orthogonals. Since the orthogonal lengths are not known in advance, it

was more convenient to base a computer program on the use of the

velocity-gradient equation along fixed straight lines, which were called

quasi-orthogonals. Such programs for meridional-plane analysis are

presented in reference 11 for a radial-inflow turbine impeller and in

reference 15 for backward-swept or radial impellers and vaned diffusers of

centrifugal compressors. A program for a blade-to-blade plane analysis

that uses quasi-orthogonals for a radial-inflow turbine impeller is described
in reference 16.

A further use of the velocity-gradient equation, as mentioned pre-

viously in this chapter, is to extend a subsonic stream-function solution to
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obtain local supersonic velocities. The subsonic solution is used to obtain

the flow angles and streamline curvatures required for the velocity-

gradient equation. Programs for transonic-flow solutions based on this

method are presented in references 9 and 10 for a meridional solution and

in reference 6 for a blade-to-blade solution.

Orthogonal j,f

su Hace _/
/

su rface

Tip
orthogonal

.-Suction

I surface

Mean

Parallel to axis
of rotation-_

i

Hub

T

f
Midchannel

stream line--,
i

FIGURE 5-17.--Turbine blades with three-dimensional orthogonal surface across

flow passage.
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SYMBOLS

flow area, mS; ft 2

coefficients for equation (5-46)

cascade height, m; ft

passage width, m; ft

distance between mesh points, m; ft

constant in equation (5-56)

distance along meridional streamline, m; ft

distance normal to streamline, m ; ft

absolute pressure, N/m2; lb/ft 2

distance along arbitrary curve, m; ft

gas constant, J/(kg) (K); (ft) (lbf)/(lbm) (°R)

radius, m; ft

blade spacing, m; ft

absolute temperature, K; °R

time, sec

stream function

absolute velocity, m/see; ft/sec

relative velocity, m/see; ft/sec

mass flow rate, kg/sec; lb/sec

fluid absolute angle of inclination from axial direction in the

meridional plane, deg

fluid flow angle, relative to blades, out of the meridional plane

(in the tangential direction), deg

distance in direction of outer normal to cascade boundary, m; ft

angular distance in direction of rotation, rad

density, kg/m3; lb/ft a

potential function

angular velocity, tad/see

verrelaxation factor

Subscripts:

c curvature

in inlet

m meridional component

n component normal to streamline

out outlet

p pressure surface

r radial component

s suction surface

x axial component

y component in y-direction

z component in z-direction

155



TURBINE

8

o 1
1, 2, I3, 4

DESIGN AND APPLICATION

tangential component

mesh-point designations

156



CHAPTER6

Introductionto Boundary-
LayerTheory

ByWilliamD.McNally

As shown in chapter 2, the pressure ratio across a turbine provides a

certain amount of ideal energy that is available to the turbine for pro-

ducing work. The portion of the ideal energy that is not converted to

work is considered to be a loss. One of the more important and difficult

aspects of turbine design is the prediction of the losses.

Before losses can be predicted, it is necessary to understand their

causes. The primary cause of losses is the boundary layer that develops

on the blade and end-wall surfaces. Other losses occur because of shocks,

tip-clearance flows, disk friction (windage), flow incidence, and partial-

admission operation. This chapter gives an introduction to boundary-

layer theory, which is used to calculate the parameters needed to estimate

viscous (friction) losses. _Iethods for determining the basic viscous loss

and the associated trailing-edge and mixing losses are presented in the

next chapter.

NATURE OF BOUNDARY LAYER

When a real fluid (such as air) flows past a turbine blade at normal

velocities, the influence of viscosity on the flow is confined to a relatively

thin layer in the immediate neighborhood of the blade. This layer is called

the boundary layer. At the outer edge of this layer the flow is frictionless,

and conditions there agree with those calculated with the use of ideal

(frictionless, nonviscous) flow assumptions. At the wall, on the other

hand, thc velocity of the fluid is zero in all directions (no-slip condition).
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It is the frictional, or viscous, forces in this thin layer that reduce the fluid

velocity from its free-stream, frictionless value to zero at the wall.

A boundary layer on a turbine blade is illustrated in figure 6-1. The

boundary layer develops from a small finite thickness at the stagnation

point at the leading edge of the blade and grows along both the suction

and pressure surfaces. The initial portion of the boundary layer is always

laminar. In a laminar boundary layer, fluid layers parallel to the blade

surface slide over each other. Any minute local fluctuations in velocity are

sufficiently damped so that they have negligible influence on the smooth-

ness of the overall flow. The velocity at a point is either steady with time

or changes in some smooth way, as figure 6-2(a) indicates.

Most flows being ducted to a turbine, or entering it from a combustor,

are turbulent in nature. The fuctuating components of velocity have a

significant influence in this type of flow. With this overall flow, the

boundary layer on the blades cannot remain laminar for any great dis-

tance. It usually passes through a transition region and becomes a tur-

bulent boundary layer. In the transition region, weak disturbances in the

flow are amplified, and this leads to the random fluctuations in velocity

that are characteristic of turbulent flow. In the turbulent boundary layer,

as in turbulent flow, the velocity at any point oscillates in a random

fashion about a mean value, as figure 6-2 (b) indicates.

Figure 6-1 also shows a separated region in the turbulent boundary

layer. Separation can likewise occur in the laminar boundary layer. When

a boundary layer separates, the fluid moves away from the blade surface.

The manner in which this happens is illustrated in figure 6-3. As the free-

stream velocity decreases along the rear portion of the suction surface of

a turbine blade, static pressure correspondingly increases. This positive

_-Transition r-Turbulent

Laminar _ region / boundary
boundary layer
layer --....

__ Separated

_, -,,_,,a, lull _' _Z////'_ \ region-t
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Steady

Steady

t t

I Unsteady

t t

(a) Laminar flow. (b) Turbulent flow.

FxovaE 6-2.--V_riation of velocity with time at a point.

FIoUrtE 6-3.--Boundary-layer separation.

pressure gradient (adverse pressure gradient) retards the flow in the

boundary layer and causes it to lose energy. The flow in the boundary

layer can be retarded to such a degree that very closc to the wall it moves

in a direction opposite to that of the mean flow passing the blade. This is

separation. The point at which the flow reverses itself is the separation

point. The laminar boundary layer at the leading edge of a turbine blade

can also separatc and immediately reattach itself to the surface as a

turbulent boundary layer. This is illustrated in figure 6-4.

Finally, it should be noted that both laminar and turbulent boundary

layers can be either incompressible or compressible, depending on the

lew_'l ()f the Mach number. Just as there are different equations to repre-

sent laminar and turbulent boundary-layer flow, there are different

equati()ns for the incompressible and compressible variations of each.
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Turbulent

boundary

Separat ion layer 7

Laminar bubble;, _

boundary ,Z__...1-f_.rrt_ II I I __I __' ' .....
layer_

c Stagnation
point

FIGURE 6-4.--Laminar separation and reattachment.

Boundary layers should be considered compressible if the free-stream

relative Mach number exceeds values of 0.3 to 0.4. The boundary-layer

equations for these various cases are derived and solution methods are

discussed in this chapter.

DERIVATION OF BOUNDARY-LAYER EQUATIONS

The general equations of motion of viscous fluids are called the Navier-

Stokes equations. In normal coordinate systems, there are three such

equations, one for each of the coordinate directions. The boundary-layer

equations can be derived from the Navier-Stokes equations. The Navier-

Stokes equations themselves can be derived by applying the law of con-

servation of momentum to a fluid element. This exercise is lengthy, and

will not be repeated here. References 1 and 2 both have the complete

derivation, in two somewhat different forms.

There are various forms of the Navier-Stokes equations, depending on

what assumptions are made during their derivation. The following equa-

tion represents the Navier-Stokes equations combined into vector form

for a compressible fluid with constant viscosity:

du gf_g__ Vp+_U V2u+ __ V(V.u) (6-1)
dt p p p

where

u

t

g
f

general velocity vector, m/sec; ft/sec

time, sec

conversion constant, 1;32.17 (lbm) (ft)/(lbf) (sec _)

general body force acting on a unit mass of fluid, N/kg; lbf/lbm
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P

P

/z

density, kg/mS; lbm/ft s

static pressure, N/m2; lbf/ft 2

dynamic viscosity, (N) (see)/m 2; Ibm/(ft) (see)

In this equation, u represents a general velocity vector with components

u, v, and w in the three coordinate directions x, y, and z, respectively.

u=uiTvj+wk (6-2)

where i, j, and k are the unit vectors in the three coordinate directions.

The total, or substantial, derivative of u is du/dt. In any of the coordinate

directions,

d 0 0 0 0

Oz (6-3)

In equation (6-1), the Laplacian operator V2 is applied to the vector u

rather than to a scalar function. If the term V2u is expanded into simple

vector quantities, equation (6-1) becomes

du _ g _ 1
-_=g'--p VP+U-o V(V.u)--p [VX(VXu)-]+_ p- V(V.u) (6-4)

Expressing the V operator in terms of gradients, curls, and divergences,

which may be more familiar to the reader, equation (6-4) becomes

du gf-'q grad p-f-_- grad(div u) -_- curl(curl u) 1 _l
d--/= p P p +_ P grad (div u)

(6-5)

In order to derive the boundary-layer equations, equation (6-1) has

to be expanded into three scalar equations, one for each of the coordinate

directions. The three resulting equations are

Ou Ou Ou Ou Op __u /O_u 02u 02u\
_z-z=g f . .... t0_-t- _y2+0-_) +U x+V y+W gpox p

l u 0 [Ou Ov Ow\

Ov Ov Ov Ov

-_-t- u -_x-k-v -_y + W oz = gf u ....
g Op __u_/O2v 020 02v\

l u 0 [Ou Ov Ow\
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aw aw _ + w aw
g Op. tt [CO2w. O_w. COho'_

1 tt cO[cOu cOy cow\

+5-_ t,_+_+_)(6-s)
P

where f,, fv, and f, are the components of the body force f.

Laminar Incompressible Boundary Layer

In order to derive Prandtl's boundary-layer equations for laminar

incompressible flow, the following assumptions will be made:

(1) Viscosity is a constant. This has already been assumed in the

writing of the preceding equations.

(2) Flow is incompressible. Since for incompressible flow the con-

tinuity equation is

/cOu cOy cOw\

V. u=div u=t_x+_yy+_z )=0 (6-9)

the final terms in equations (6-6) to (6-8) can be eliminated.

(3) Flow is two-dimensional. This eliminates equation (6-8) from

consideration, as well as all terms involving w or O/cOz in equations (6-6)

and (6-7).

(4) Flow is steady. This eliminates cO�Or terms.

(5) Body forces are negligible in relation to inertia and viscous forces.

Thus, f, andf_ can be discarded from equations (6-6) and (6-7).

With these assumptions, the Navier-Stokes equations reduce to the

following two equations for the x- and y-directions:

COu cOu 00p ___ /O_u CO'u\u_+v _= __ ,,_,_+_) (6-_0>

COy COy g__cOp + __ / cO_v cO2v\u_+__: . _ . t,_+_)
Likewise, the continuity equation becomes

(6-11)

cOu cOy

_x+_yy=0 (6-12/

In order to make equations (6-10) to (6-12) suitable for the analysis of

boundary-layer flow, the equations are traditionally made dimensionless,

and an order-of-magnitude check is performed on the various terms to

show that some are negligible with respect to others. Figure 6-5 shows the

velocities and coordinate directions pertinent to the boundary layer.

162



INTRODUCTION TO BOUNDARY-LAYER THEORY

U = u u_5
uO_ _ full Trailing

y

x L

FmURE 6-5.--Boundary-layer velocities and dimensions.

The following dimensionless parameters are defined:

X
X =-

L
(6-13a)

(6-13b)

u

U0
(6-13c)

Uo
(6-13d)

where

X

L

Y

U

u0
V

Re = o.L
Uo

dimensionless x-coordinate

characteristic length (in this case, the blade chord), m; ft

dimensionless y-coordinate

dimensionless velocity in x-direction

free-stream velocity upstream of blade, m/see; ft/sec

dimensionless velocity in y-direction

(6-13e)

(6-13f)

163



TURBINE DESIGN AND APPLICATION

P dimensionless pressure

Re Reynolds number

From figure 6-5, we see that since x is proportional to L, X is of order 1.

And since y is proportional to the boundary-layer thickness _/,u, Y is of

order $r,m/L = _, a quantity much less than 1. Likewise, since u is of order

U0, U = u� Uo is of order 1. And V = v� Uo is of order _, since velocities in

the y-direction in the boundary layer are much smaller than those in the

x-direction.

In order to put equations (6-10) to (6-12) in terms of dimensionless

quantities, equations (6-10) and (6-11) are multiplied by L/Uo _, and

equation (6-12) is multiplied by L/Uo. The resulting dimensionless

equations are

OU OU OP 1 /O_U 02U\

OV OV OP 1 [02V O2V\

u +v ..... (6-15)

OU OV

_--_+_-_ = 0 (6-16)

The order of magnitude of the various terms in these equations can now

be compared with each other. Since X and U are of order 1, and Y and V

are of order e,

OU 1
-- =-= 1 (6-17a)
OX 1

OU 1
----- (6-175)
OY

oV
- = _ (6-17c)

OX 1

OV
--=-= 1 (6-17d)
OY

O_U 1
-- =-- = 1 (6-17e)
OX 2 1.1
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a2V e
---- -- E (6--17g)

0X _ 1.1

02V _ 1
-- - (6-17h)

OY _ _.e e

Furthermore, the change in P with respect to X is of the same order of

magnitude as the change of U with respect to X, so that OP/OX is of

order 1.

Relating these orders of magnitude to the terms in equations (6-14)

to (6-16) yields

OU OU OP 1 /02U 02U\

v v o-T= i3-X + (6-18)

(1) (1) + (e) (!) = -- 1 + (_) (1+_)

OV OV OP 1 /02V 02V\

v + v oT= or + ) (6-19)

(1) (_) + (E) (1) = -_+ (t2) (_+!)

OU OV

(6-20)

1+1

By examining equations (6-18) to (6-20), the following conclusions

can be reached:

(1) In boundary-layer theory, it is assumed that the viscous terms

1/Re[(O2U/OX 2) + (02U/OY 2) -] are of the same order of magnitude as the

inertia terms U(OU/OX)+V(OU/OY). For this to be true in equation

(6-18), 1�Re must be of order d, since 02U/OY 2 is much larger than

02U/OX 2 and dominates the two terms in parentheses. Therefore, the

Reynolds number must be relatively large.

(2) In equation (6-19), with l/Re of order _ and with 02V/OY 2.

dominating 02V/OX _, the terms are of order e. Therefore, unless OP/OY

is to dominate, it too must be of order e or less. Therefore, OP/O Y is much

smaller than OP/OX, and P can be considered a function of X alone. There-

fore, P=P(X) or p=p(x), and OP/OX=dP/dX or Op/Ox=dp/dx. This

allows us to assume that the pressure across the boundary layer in the
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y-direction is essentially constant. It can be assumed equal to the potential

flow pressure existing at the outside of the boundary layer.

(3) Since the first equation is of order 1, and the second equation is of

order _, the second equation can be neglected completely.

(4) In equation (6-18), 02U/OX _ can be neglected because it is so

small in comparison with 02U/OY 2. This leaves the following dimension-

less equations:

OU OU dP 1 02U (6-21)
U _ T V O----Y= - d--X -{-Re 0 Y_

OU OV

OX +-_=O (6-22)

These are Prandtl's boundary-layer equations in dimensionless form.

The boundary-layer equations in this form are useful in determining

the influence of the Reynolds number on the size of the boundary layer

for different fluids. From equation (6--21) we see that as Re increases in

magnitude, the viscous-force terms (1�Re) (02U/O y2) will get smaller and

smaller. The boundary-layer thickness will correspondingly decrease. So,

as Re increases, _i_u decreases. Furthermore, increasing Re corresponds to

decreasing viscosity if pL Uo is constant. So, as a general rule, the thickness

of the boundary layer decreases as the viscosity decreases.

The boundary-layer equations can be put in terms of dimensional

variables by multiplying equation (6-21) by Uo2/L and equation (6-22)

by Uo/L. The resulting equations are

Ou Ou g dp _ 02u
u --+v - _t (6-23)

Ox Oy p dx p Oy 2

Ou Ov
--+--=0 (6-24)
Ox Oy

These are Prandtl's boundary-layer equations for two-dimensional,

laminar, incompressible flow. Density and viscosity arc assumed constant

and known. The pressure gradient along the blade surface, dp/dx, is also

known from an ideal-flow solution. The remaining unknowns are u and v,

and equations (6-23) and (6-24) are sufficient for their calculation.

It should be noted that the boundary-layer equations arc not valid in

the presence of shock waves (i.e., where instantaneous adverse pressure

gradients of large magnitude occur). Just as flow phenomena in the

boundary layer depend on mainly the Reynolds number, conditions in a

shock wave depend on primarily the Mach number. Since the influence of

Mach number is not included in the boundary-layer equations, they tell

us nothing about the interaction of shock waves and boundary layers.
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The boundary-layer equations are net completely reliable as separation

is approached. One of the assumptions used in their derivation is that the

velocity v is much smaller than u. Very close to the separation point, the

boundary layer grows rapidly, and v begins to be of the same order as u.

Nonetheless, the boundary-layer equations are generally used in cal-

culations right up to the separation point, since the region where V is

significant is very small, and little error in the location of the point of

separation is incurred. However, these equations should not be used for

detailed calculations in the neighborhood of a separated flow region.

The Navier-Stokes equations (6-6) to (6-8) used in the development

of the boundary-layer equations were derived for an orthogonal system

of coordinates in which the radius of curvature of each of the coordinate

axes is quite large (i.e., where curvature effects are negligible). The

question arises as to how the boundary-layer equations would change for

flow over a curved wall. If a curvilinear orthogonal coordinate system

(fig. 6-6) is introduced wherein the x-axis is in the direction of the curved

wall and the y-axis is normal to it, a new set of Navier-Stokes equations

can be derived for flow in such a system. These equations are given in

reference 1. The terms in the equations arc very dependent on the radius

of curvature r at a position x along the blade surface. The relative orders

of magnitude of the individual terms can be estimated in the same manner

as was done previously. With the assumption that the boundary-layer

thickness is small compared with the radius of curvature of the wall, and

for the case where no large variations in curvature occur, so that dr/dx ._ l,

the same boundary-layer equations result as were obtained for fiat walls.

Therefore, the fiat-plate boundary-layer equations may bc applied to

curved walls as well, provided there are no large variations in curvature,

such as would occur near sharp edges.

y

x x

Y

FIGURE 6-6.--Curvilinear coordinate system on a blade.
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Laminar Compressible Boundary Layer

An order-of-magnitude analysis can also be performed to derive the

equations for a compressible boundary layer. In the incompressible case,

viscosity and density were assumed constant, temperature variations were

neglected, and the energy equation was not used. For the compressible

case, density is no longer constant, viscosity is considered a function of

temperature, the equation of state is used to relate pressure and density to

temperature, and, if the process is not isothermal, some form of the energy

equation is required. The boundary-layer equations for compressible,

nonisothermal, variable-viscosity flow will involve three parameters which

can be related to temperature. These are viscosity, specific heat, and

thermal conductivity.

There are several relations for viscosity as a function of temperature.

The most common is probably Sutherland's relation (rot. 1)

z [T_3/2To+S
_=\-_o] T÷S

(6-25)

where

_o

T

To
S

dynamic viscosity at the reference temperature To, (N) (sec)/m_;

Ibm/(ft) (sec)

absolute static temperature, K; °R

reference temperature, K; °R

a constant, K; °R (for air, S= 110 K or 198 ° R)

A less complicated, but also less accurate, temperature-viscosity relation

is the power law

_o= \_o/ 0.5<oo<1.0 (6-26)

where _ is a constant. For air, _0 is approximately 0.65.

Specific heat and thermal conductivity can be related to temperature

by least-squares polynomial-curve fits for the particular gas and tem-

perature range involved. With these variables related to temperature,

the unknowns in the compressible-boundary-layer problem reduce to u,

v, p, and T. The four equations relating these variables will be the con-

tinuity cquation, one component of the momentun_ equation, the state

equation, and the energy equation.

The order-of-magnitude analysis of the continuity and momentum

(Navier-Stokes) equations for compr,.ssible flow is almost identical to

that for incompressible flow. For con,pressible flow with nonconstant

viscosity, the equations analogous to _()-10) to (6-12) are the following:
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Ou Ou Op, 0 [

pu _+ pv oy--= -g _-v_ L2" ----ou 2 [Ou Ov\l O [ IOu Ov\l

(6-27)

Ov Ov

pu _xx+P, Oy g Op. 0 [ Ov 2 /Ou Ov\l a [.lay au\l

(6-28)

O(pu)
+O(pv) =0 (6-29)

Ox Oy

If an order-of-magnitude analysis is performed on these equations similar

to that for the incompressible-flow equations, the following boundary-

layer equations result:

pu -_x-{-pv --=--g -d-x-t--_y _ (6-30)Oy

o(pu) o(pv)
+ -0 (6-31)

Ox Oy

The equation of state is also required for the solution of compressible

boundary-layer flow. The state equation is

p=pRT (6-32)

where R is the gas constant, in J/(kg) (K) or (ft) (lbf)/(lbm) (°R).

The final equation required besides the continuity equation, the

momentum equation, and the equation of state, is the energy equation.

The energy equation for a compressible boundary layer is derived from

the energy equation for a perfect gas by means of another order-of-

magnitude check. The following is the energy equation for compressible,

two-dimensional steady flow of a perfect gas, written in full:

pc, U_xxTV_yy =_xx-i-_Oyy.Oxx k_-x)T_yy k_yy)+_j_ (6-33)

where

Cp

J

k

specific heat at constant pressure, J/(kg) (K); Btu/(lbm) (°R)

conversion constant, 1 ; 778 (ft) (lbf)/Btu

thermal conductivity, W/(m) (K); Btu/(sec) (ft) (°R)

and

j (6-34)
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If an order-of-magnitude check is performed on the above equations, the

following boundary-layer energy equation results:

(6-35)

Equations (6-30), (6-31), (6-32), and (6-35) are the laminar boundary-

layer equations for nonisothermal, two-dimensional, compressible flow of

a gas obeying thc ideal gas law.

Turbulent Boundary-Layer Solution Methods

It is desirable to have a turbulent boundary layer over the major portion

of turbine blades. If the boundary layer is not turbulent, separation will

probably occur on the blades, with a resulting decrease in their per-

formance. Turbulent flow has irregular fluctuations (mixing or eddy

motions) superimposed on the main fluid motion (see fig. 6-2). These

fluctuations are so complex that closed-form solutions are not feasible at

present. Yet,, the mixing motion is very important, since the stresses in

the fluid due to fluctuating components of velocity are often of greater

magnitude than those due to the mean motion.

There are two approaches to the solution of turbulent boundary-layer

flow. The first is the exact solution of the time-dependent, three-dimen-

sional, Navier-Stokes equations. The three-dimensional equations arc

required, since two-dimensional calculations could never represent the

stretching of eddies, which is a prime mechanism of turbulent flow. How-

ever, even the largest computers available at the present time cannot

handle three-dimensional solutions of these equations on a small enough

mesh to represent the fluctuating components of velocity of turbulent

flOW.

The second approach is to write the equations of continuity, momentum,

and energy in terms of mean and fluctuating components of pressure,

density, temperature, and velocity. In this approach, the time average

of the u component of velocity, for example, is denoted by _ and the

velocity of fluctuation by u'. So the velocities, density, pressure, and

temperature are written as follows:

u = _+ u' (6-36a)

v=_+v' (6-36b)

p = _ + p' (6-36c)

p = p + p' (6-36d)

T= T+ T' (6-36e)

The fluctuations in viscosity, thermal conductivity, and specific heat are
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negligible and are not considered. So these three parameters are calculated

as functions of the time-averaged value of temperature.

If the flow properties listed in equations (6-36) are substituted into the

continuity, momentum, and energy equations for incompressible and

compressible flow, a new set of stress terms arises in thees equations.

These are called the "apparent" turbulent stresses, or Reynolds stresses.

They are of the form pu '_ and pu'v', where u'v' is the average over time of

the product of u r and v'. These new terms in the equations add additional

unknowns to the boundary-layer problem for which additional equations

are not presently available. For this reason, empirical expressions or

approximations are substituted for the Reynolds stress terms before th_

turbulent boundary-layer equations can be solved.

Turbulent Incompressible Boundary Layer

Substituting the relations of equations (6-36) into equations (6-10),

(6-11), and (6-12), and then performing an order-of-magnitude analysis

yields the following equations for turbulent, incompressible, boundary-

layer flow:

(6-37)

(6-a8)

These equations are analogous to equations (6-23) and (6-24) for laminar

flow. Notice, however, the presence of the Reynolds stress term in the

momentum equation. This adds a new unknown (u'v') to the original two

(_ and _), thereby making three unknowns with only two equations.

Turbulent Compressible Boundary Layer

Substituting the relations of equations (6-36) into equations (6-27),

(6-28), (6-29), (6-32), and (6-33) and then performing all order-of-

magnitude analysis yields the following equations for turbulent, com-

pressible, boundary-layer flow:

o(_) . o(_,) , o(p'v')
ox + -o (6-39)

(6-40)

/5 =_RT (6-41)
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1 0 _ k 0_ 0 (6-42)

where T, is the absolute total temperature, in K or °R, and is defined as

T,= + (6--43)

We have now derived the basic boundary-layer equations for two-

dimensional, laminar and turbulent, incompressible and compressible

boundary-layer flow. We should note at this time that this is really only

the starting point as far as boundary-layer solutions are concerned.

These equations are only the basis for the many, many methods which

presently exist for obtaining boundary-layer solutions under various

circumstances.

SOLUTION OF BOUNDARY-LAYER EQUATIONS

After velocity profiles are discussed and the important boundary-layer

parameters defined, some of the solution methods will be discussed.

Included will be the flat-plate, incompressible solution, as well as com-

pressible methods.

Velocity Profiles

One of the principal results obtained from most boundary-layer solu-

tions is a description of the velocity profile in the boundary layer along

the blade surface (fig. 6-7). The velocity profile describes mathematically
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FIauaz 6-8.--Laminar and turbulent velocity profiles.

the dimensionless velocity u/ue as a function of the dimensionless distance

y/5:,,, from the blade. The velocity u is the velocity in the boundary layer

at a distance y from the surface, and the velocity u, is the external free-

stream velocity at a distance equal to the boundary-layer thickness,

_],m, from the surface. Alternately, _:_, is often defined as that distance

from the blade where the velocity differs by 1 percent from the external

velocity, u,.

Velocity profiles for laminar flow (fig. 6-8(a)) tend to be parabolic in

shape, while those for turbulent flow are blunted (fig. 6-8(b)). A com-

monly used mathematical expression for u/ue in laminar flow is that

originated by Pohlhausen (sec ref. 1) :

( ,_y+ ( ."__Y+ ( :,y
u-a _-}-b c (6-44)

The constants a, b, c, and d are defined in terms of a dimensionless shape

parameter

u dx (6-45)

wherc

},

a = 2 +-6 (6-46a)

k
b = -- - (6-46b)

2

X

c= (6-46c)
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FIGURE 6-9.--Laminar veh)city profiles.

d = 1 --- (6-46d)
6

Velocity profiles for various values of _ are shc, wn in figure 6-9.

Velocity profiles for turbulent flow are often represented by the power

law

--= _ (6-47)
Ue kS/,,H/

Pipe-flow experiments show that the exponent n is a mild function of the

Reynolds number and varies from 4 up to about 10. The value of n= 7

is most appropriate for boundary-layer flow on a fiat plate. The exponent

n can be related to other boundary-layer parameters, namely the dis-

placement thickness _fand the momentum thickness 0, which are described

in the next section.

Definitions of Important Boundary-Layer Parameters

Solutions of the two-dimensional boundary-layer equations are most

often obtained in terms of three important parameters. These are the dis-

placement thickness 5, the momentum thickness 0, and the form factor H.

In order to define these parameters, it is necessary to first define the

thickness of the boundary layer, 8/,,n. The definition of boundary-layer

thickness is rather arbitrary, since transition from the velocity inside the

boundary layer to that outside it takes place asymptotically. This is of

little importance, however, because the velocity in the boundary layer

attains a value which is very close to the external velocity at a small

distance from the wall. It is possible to define the boundary-layer thick-
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ness as that distance from the blade where the velocity differs by I percent

from the external velocity u,.

The displacement thickness 5, for compressible boundary-layer flow,

can be defined with the help of figure 6-10. As seen from figure 6-10(a),

the decrease in mass flow within the boundary layer due to the influence of

friction is given by

t/=81u.ll_[ass defect = (p,u.- on) dy (6-48)

where pe is the density, in kg/m 3 or lbm/ft 3, in the free stream outside of

the boundary layer. This integrated mass defect can be represented by a

distance 5, the displacement thickness, as shown in figure 6-10(b). It is

the distance by which the external potential field of flow is displaced

outward as a consequence of the decrease in velocity in the boundary

layer.

As figure 6-10 shows, the distance _ can be defined by the equation

[.y=Sfutt

(p.U.--pU) dy (6-49)
y--O

Solving for _ gives

1 [_-,s.,, J_:z"':"u (Pp-_u_)= -- (p.u.-- pu) dy = I 1 -- dy
peue _u-O 0

(6-50)

The displacement thickness for incompressible flow reduces to

1 f_,=_, `n f.=',,<,, (_)_=-- (u.--u) dy= 1-- dy
Ue _ y--O _ _0

(6-51)

The loss of momentum in the boundary layer due to the presence of

friction is given by
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y= I/ulll"

Momentum defect = I pu( u,-- u) dy (6-52)
d

y=0

This momentum defect from the momentum of purely potential flow

can be represented by a distance 0, defined by the equation

Y=PJfullp,u,20 = pu (u,-- u) dg (6-53)
" y=0

Solving for 0 in this equation gives the definition of the momentum thick-

ness for compressible boundary layers as

0=-- pu(u_--u) dg= 1-- dg (6--54)
Pe LIe2 _ y=0 _ y=0 pc_le

The momentum thickness for incompressible flow reduces to

0=-- u(u,--u) dy= ] -- 1-- dy (6-55)
/_e2 y=0 " y=0 l"/e

The form factor H for both compressible and incompressible flow is

defined as the ratio of displacement thickness to momentum thickness:

5
H =- (6-56)

0

There are many other boundary-layer parameters besides _, 0, and H for

two-dimensional, and especially for three-dimensional, boundary layers.

These three, however, are the principal parameters used in general

boundary-layer studies.

Physical Interpretation of Separation

When separation of flow from a blade or a casing occurs, some of the

retarded fluid in the boundary layer is transported away from the surface

toward the main stream. When a region with an adverse pressure gradient

exists along a surface, the retarded fluid particles cannot, in general,

penetrate too far into the region of increased pressure because of their

small kinetic energy. Thus, the boundary layer is deflected away from the

surface and moves into the main stream. In general, the fluid particles

behind the point of separation follow the pressure gradient and move in a

direction opposite to the external stream. The point of separation is

defined as the limit between forward and reverse flow in the layer in the

immediate neighborhood of the wall. At separation,

_yy/_=0=0 (6-57)

Figure 6-11 illustrates separation occurring along a surface.
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FIOURE 6-11.--Velocity gradients as flow undergoes separation.

By examining Prandtl's boundary-layer equations and considering the

relation between pressure gradient dp/dx and velocity distribution u(y),

it is possible to infer that separation in a steady flow will occur only in

the presence of an adverse pressure gradient (i.e., decelerated flow),

dp/dx>O. From equation (6-23), with the boundary conditions at the

surface being u = v = 0, we have

dp (6-58)
\Oy_/__o = g dx

We can now relate velocity profiles to Ou/Oy, O_u/Oy _, and finally to

dp/dx through equation (6-58). The cquation indicates that in the

immediate neighborhood of the wall, the curvature of the velocity profile,

02u/Oy 2, depends only on the pressure gradient, dp/dx, and the curvature

of the velocity profile at the wall changes its sign with the pressure

gradient.

Figure 6-12(a) shows a velocity profile that would exist in a boundary

layer subjected to a decreasing pressure. For such a profile, figure 6-12 (b)

y

(c)

(a) Velocity (b) Velocity (c) Velocity-
profile, gradient, profile

curvature.

FIGURE 6-12.--Velocity distribution in a boundary layer with pressure decrease.
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indicates that Ou/Oy is positive for all y and decreases as y increases.

Furthermore, figure 6-12(c) indicates that 02u/Oy _, which is the slope of

Ou/Oy, is negative for all y. From equation (6-58), we know that negative

02u/Oy _ corresponds to negative dp/dx. Consequently, a boundary layer

subjected to a decreasing pressure (negative dp/dx) will have velocity

profiles which are not indicative of impending separation (the form of

fig. 6-12(a)).

Figure 6-13(a) shows a profile which would exist in a boundary layer

with decelerated flow due to an increasing pressure (adverse pressure

gradient). Here, figure 6-13 (b) indicates that Ou/Oy has a positive slope

near the blade surface; that is, O_u/Oy _ is positive (fig. 6-13(c)). This

corresponds to positive dp/dx. However, since in all cases O_u/Oy 2 must

be less than zero at some distance from the surface, there must exist a

point for which 02u/Oy_= O. This is a point of inflection of the boundary-

layer velocity profile. It follows that in a region of retarded potential flow

(a|

• j
Y :::_/-Point of

inflection

TRY-
(b)

_y2 .

(a) Velocity (b) Velocity (c) Velocity-
profile, gradient, profile curvature.

FIOURE 6-13.--Velocity distribution in a boundary layer with pressure increase.

Stagnation

Sudion

-_'_"_Adve rse gradient
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(positive dp/dx), the velocity profile in the boundary layer will have a

point of inflection. Since the velocity profile at the point of separation

(with 8u/Oy = 0 at the surface) must have a point of inflection, it follows

that, with the assumptions used in deriving equation (6-23), separation

can occur only when the potential flow is retarded (i.e., in regions of

adverse pressure gradient).

Figure 6-14 indicates a typical pressure distribution on the surface of a

turbine blade. The danger zone, as far as separation is concerned, is

readily seen to be the rear portion of the suction surface, where the major

part of the blade diffusion is taking place.

Laminar Incompressible Boundary Layer on a Flat Plate

Prandtl's boundary-layer theory was first reported in 1904 in Germany.

It was later translated and published in 1928 as an NACA Technical

Memorandum (ref. 3). The first mathematical solution of Prandtl's

equations to be published was the fiat-plate solution of Blasius in 1908.

This German work was also later translated by NACA (ref. 4).

On a fiat plate with steady flow at zero incidence, the velocity from the

potential solution is constant. Therefore, p(x) is constant and dp/dx ffiO.

The boundary-layer equations, therefore, reduce to

8u 8u 82u

u _+v o_ oy= (6-59)

where v is the kinematic viscosity ,/p, in m'/sec or ft'/see, and

0U ¢9V

(6-e0)

The following are the boundary conditions:

u=v=O at y=O

U=Ue at y= oo

(6--61)

With the use of a stream function _b, Blasius transformed the partial

differential equation (6-59) into the following ordinary differential

equation:

f d2f+2 daf=0 (6-62)
dy 2 dy 3

where f is a normalized stream function

f(,)-
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which depends on the dimensionless y-coordinate, n, where

Y
= (6--64)

This equation has the following boundary conditions:

f=_--fy=O at n=O

df
_=1 at _= oo
dy

(6-65)

Equation (6-62) cannot be solved exactly. Blasius obtained an approxi-

mate solution in the form of a power series expansion about 71= 0 and an

asymptotic expansion for ,1 = _, the two solutions being joined at a suit-

able point. More recently, Howarth (ref. 5) solved the Blasius equation

(6-62) with a high degree of accuracy, and provided tabular values for f,

df/dy, and d2f/dy _ as functions of 7. Since df/dy = u/u_, the solution gives

the velocity profile of figure 6-15. This profile possesses a very small

curvature at the wall and turns rather abruptly further from it in order
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to reach the asymptotic value. At the wall itself, the curve has a point of

inflection, since for y = O, O_u/Oy _= O.

From the order-of-magnitude analysis performed to obtain Prandtl's

boundary-layer equations, we had the relation

(6-66)

For a semi-infinite flat plate, the Reynolds number can be expressed as

Rez- u,x (6-67)
p

In order to make equation (6-66) dimensionally correct, we can say

(6-68)
x 2 Rez

or

_is.u ¢c (6-69)

The constant of proportionality can be obtained from Howarth's numerical

solution and is equal to 5. So, for a semi-infinite flat plate at zero incidence

in laminar flow, we obtain the useful relation for the boundary-layer

thickness

(_s_zz=5.0 v/_ (6-70)

With the use of Howarth's solution to the Blasius equations, the follow-

ing relations for other important boundary-layer parameters for laminar

flow on a flat plate can also be obtained:

= 1.72 v_ (6-71)

0=0.664 v]_ (6-72)

gr,, 0.332
= 0.332 _/"-:--

pUe 2 _U_g =
(6-73)

1.328
D = _ b _¢/-_plu2 (6-74)

g
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1.328
CI = 1.328 _-_

"uJ
(6-75)

where

I"W

D

b

l

Cf
Re_

shear stress on the surface, N/m_; lbf/ft _

total drag on both sides of fiat plate, N; lbf

width of fiat plate, m; ft

length of fiat plate, m; ft

dimensionless drag or skin friction coefficient for fiat plate

Reynolds number based on plate length l

It should be noted that all of these relations are valid only for laminar

flow; that is, they are valid only where Rez < 106, a value that is indicative

of laminar flow over the entire length of the plate. For Re_ > 106, transition

to turbulent boundary layer will probably occur, and the expressions in

equations (6-71) to (6-75) will be valid only from the leading edge of the

plate to the transition point. If transition to turbulent boundary layer does

occur, then the drag will be larger than that calculated by equation

(6-74).

Integral M_thods for Solving the

Laminar-Boundary-Layer Equations

The two principal means of solving the laminar-boundary-layer equa-

tions are by integral methods and by finite-difference methods. Both

means provide approximate solutions, since exact solutions are extremely
cumbersome.

Integral methods are based on yon Khrm_n's momentum integral

formula. Von K_rm_n's original work was published in 1912 in Germany

and was later translated by NACA (ref. 6). Von Khrm_n realized that it

was not necessary to satisfy the boundary-layer equations for every fluid

particle. Instead, he satisfied the boundary-layer equations close to the

wall and in the region where external flow is approached by satisfying the

boundary conditions. In the remaining region of fluid in the boundary

layer, only a mean over the differential equation is satisfied. Such a mean

is obtained from the momentum equation (eq. (6-23) or (6-30)) by

integration over the boundary-layer thickness. If equations (6-23) and

(6-30) are integrated from y=O to y=_/,,n, and if the definitions of dis-

placement thickness (eq. (6-50)) and momentum thickness (eq. (6-54))

are introduced, the following equations result. For laminar, incom-

pressible flow,

dO+ (20+,_) u. du. = gr._.._.
u2 dx d'---x p

(6-76)
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For laminar, compressible flow,

d_ du, = pT._2_ (6-77)uJ + (20+_-MJ0) u, d--_ p,

where the subscript e denotes conditions at the outer edge of the boundary

layer.

Equation (6-76) or (6-77) leads to an ordinary differential equation

for the boundary-layer thickness, provided that a suitable form is as-

sumed for the velocity profile, u/u,. This allows us to calculate the dis-

placement thickness, 6, the momentum thickness, 0, and the shearing

stress at the wall, T_. Pohlhausen was the first to use equation (6-76) to

obtain a solution for incompressible boundary layers. His work was

published in 1921 (refs. 7 and 1). The velocity profile assumed by

Pohlhausen was discussed earlier in this chapter, under "Velocity Pro-

files." Although Pohlhausen's solution is probably the simplest, it is known

to give poor results in regions of rising pressure. As a result, various authors

have tried to improve and extend his method by assuming different

families of velocity distributions.

A famous work among those which followed Pohlhausen's was that of

Thwaites (ref. 8). Thwaites collected and compared all known velocity

distributions from exact and approximate solutions for laminar incom-

pressible flow. Thwaites' method does not require the solution of ordinary

differential equations. He relates the wall shear, its derivative at the wall,

and the form factor to one another without specifying a type of velocity

profile. To do this, nondimensional forms of these quantities were defined

and evaluated with the use of exact solutions for the laminar boundary

layer. It developed that a nearly universal relation existed among these

quantities for favorable pressure gradients. For adverse gradients,

Thwaites selected a single representative relation. A unique correlation

was chosen that reduced the solution of an incompressible problem to the

evaluation of a single integral. Thwaites' method was extended to com-

pressible fluids by Rott and Crabtree (ref. 9). They recognized that when

heat transfer is negligible, and the Prandtl number is equal to 1, a trans-

formation proposed by Stewartson (ref. 10) could be used to relate

compressible to incompressible boundary-layer solutions.

One of the best integral methods to appear to date for the solution of

laminar boundary layers is that of Cohen and Reshotko (refs. 11 and 12).

Their method applies to compressible or incompressible flow over two-

dimensional or axially symmetric surfaces. It handles arbitrary free-

stream pressure distribution and performs well in areas of adverse pres-

sure gradient. A surface temperature level may be specified, and heat

transfer is calculated. Cohen and Reshotko's method is based on Thwaites'

correlation concept. Stewartson's transformation (ref. 10) is first applied
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to Prandtl's equations. The resulting nonlinear, first-order differential

equations are expressed in terms of dimensionless parameters related to

the wall shear, the surface heat transfer, and the transformed free-stream

velocity. Then Thwaites' concept of a unique interdependence of these

parameters is assumed. The evaluation of these quantities is then carried

out by utilizing the exact solutions of reference 11. With the resulting

relations, methods are derived for the calculation of all the important

boundary-layer parameters. In 1960, Luxton and Young published a

method (ref. 13) which is as general as Cohen and Reshotko's, but which

allows the Prandtl number to have values slightly different from 1.

Finite-Difference Methods for Solving the

Laminar-Boundary-Layer Equations

Finite-difference methods for solving the boundary-layer equations

have recently come into prominence because of the development of

digital computers. Smith and Clutter have done a considerable amount of

work in developing this technique (refs. 14 and 15). Another recent

reference of interest is that of Krause (ref. 16). These methods give very

good results with relatively short running times on the computer.

Eddy-Viscosity and Mixing-Length Concepts in

Turbulent Boundary-Layer Flow

Before referencing any of the current methods for solving turbulent

boundary-layer flow, the concepts of "eddy viscosity" and "mixing

length" should be discussed. These approximation concepts have been

used in many of the methods developed to date to relate the Reynolds

stresses produced by the mixing motion to the mean values of velocity

components. By this means, the Reynolds stresses are given a mathe-

matical form which, upon substitution into the governing equations,

leads to differential equations containing only mean values of density,

velocity, and pressure. These transformed differential equations con-

stitute the starting point for the calculation of the mean boundary-layer
flow.

Boussinesq first worked on this problem in 1877. In analogy with the

coefficient of viscosity in Stokes' law for laminar flow

t_ Ou
r,- (6-78)

g Oy

where rz is the laminar shear stress, in N/m s or lbf/ft 2, he introduced a

mixing coefficient, A,, for the Reynolds stress in turbulent flow by putting

A, 0_
r_ - (6-79)

g 0y
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where rt is the turbulent shear stress, in N/m _ or lbf/ft _. In 1880, Reynolds

introduced the concept of eddy, or virtual, viscosity, _, where

AY

, =-- (6--80)
p

Thus, the eddy viscosity is analogous to the kinematic viscosity p= u/p.

Turbulent stress can then be expressed as

paa -Pu'v' (6--81)
g Oy g

With the use of this concept, terms in equations (6-37) and (6-40) such as

can be written as

A similar concept can be applied to the energy equation where an eddy,

or a virtual, conductivity can be defined. The difficulty with applying the

eddy-viscosity method is that A, and hence _ depend on velocity. It is,

therefore, necessary to find empirical relations between these coefficients

and the mean velocity.

In 1925, Prandtl introduced a completely different approximation for

the Reynolds stresses, His argument is called Prandtl's mixing-length

hypothesis, since the mixing length is somewhat analogous to the mean

free path in the kinetic theory of gases. The main difference is that kinetic

theory concerns itself with the microscopic motion of particles, whereas

Prandtl's concept deals with the macroscopic motion of large clusters of

fluid particles. Deriving Prandtl's expression for shear stress requires a

good deal of discussion of his physical model of turbulent flow, all of which

is contained in reference 1. His final expression is

p Ida da
rt =- l 2 --= --P- U'V'

g }-_y dy g
(6-82)

where l is the mixing length, in m or ft.

On comparing Prandtl's expression (eq. (6-82)) with that of Boussinesq

(eq. (6-81)), it appears that little has been gained. The unknown eddy

viscosity _ of the first expression has merely been replaced by the unknown

mixing length l of the second expression. However, Prandtl's equation

(6-82) is generally more suitable for the calculation of turbulent motion

than is equation (6-81). Turbulent dra_: is roughly proportional to the
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square of velocity, and the same result is obtained from (6-82) if the

mixing length is assumed to be independent of the magnitude of velocity.

So, mixing length is a purely local function, although we cannot say it is a

property of the fluid. It is far simpler to make assumptions about the

mixing length 1 than about the eddy viscosity _, and this constitutes the

superiority of Prandtl's expression over that of Boussinesq.

Integral Methods for Solving the

Turbulent Boundary-Layer Equations

Just as with the laminar-boundary-layer equations, there are both

integral methods and finite-difference methods for solving the turbulent

boundary-layer equations. Both of these provide approximate solutions,

since exact solutions for turbulent flow are now impossible.

Gruschwitz was the first to propose a method for solving the equations

for an incompressible turbulent boundary layer. His work was published

in Germany in 1931. A rash of works followed, most of them making

improvements to the calculational technique and empirical data used by

Gruschwitz. Ludwieg and Tillmann, whose work was published in Ger-

many in 1949 and was translated by NACA in 1950 (ref. 17), proposed an

empirical relation for the skin-friction term in the momentum integral

equation. This relation is still used in many current methods. Stewartson's

transformations (ref. 10) are likewise used in many methods for solving

the turbulent-boundary-layer equations.

Maskell, in 1951 (ref. 18), proposed an improved method for incom-

pressible turbulent boundary layers. He replaced the momentum equation

by an empirically determined approximation which is directly integrable

and thus determines the momentum thickness. A profile parameter is

obtained from an empirical auxiliary differential equation. The Ludwieg-

Tillmann skin-friction formula is used to calculate the skin-friction dis-

tribution and to determine a separation point for flows with adverse

pressure gradient.

Truckenbrodt, whose work was published in Germany in 1952 and was

translated by NACA in I955 (ref. 19), proposed solutions for both laminar

and turbulent incompressible boundary-layer flows. The method is simple

and, like Maskell's method, does not use the momentum integral equa-

tion. It applies to both two-dimensional and rotationally symmetrical

flows. Because of its simplicity and relatively accurate results, Trucken-

brodt's method is still used for incompressible turbulent boundary layers.

Compressible turbulent boundary layers were first treated adequately

with the use of integral methods by Reshotko and Tucker in 1957 (ref.

20). Prior to their work, the K_irm_tn momentum integral equation had

been utilized with an assumed boundary-layer velocity profile, usually the

power law, and one of several empirical skin-friction relations. When
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pressure gradient was present, an auxiliary equation, usually the moment-

of-momentum equation, was used. (This equation is obtained by mul-

tiplying the integrand of the momentum integral equation by a distance

normal to the surface and then integrating with respect to that distance.)

The momentum integral equation and the auxiliary equation were then

solved simultaneously.

Reshotko and Tucker's method, applicable to compressible flow with

heat transfer and pressure gradient, also uses the momentum and moment-

of-momentum integral equations. These are expressed in incompressible

form and are uncoupled with the use of Stewartson's transformation

(ref. 10) and the results of Maskell (ref. 18). The Ludwieg-Tillmann

skin-friction relation is used in a form suitable for compressible flow with

heat transfer through application of Eckert's reference-enthalpy concept

(ref. 21). An approximation for the shear-stress distribution through the

boundary layer and the power-law velocity profile are used to simplify the

moment-of-momentum equation. Separation is located as the point where

the skin friction, when extrapolated, becomes zero. This method, until

several years ago, was the best available for compressible turbulent

boundary layers. It is still widely used in many computer programs today.

One of the best integral methods available today for compressible

turbulent boundary layers is that of Sasman and Cresci (ref. 22). It is

simply an extension of the Reshotko-Tucker method. It uses somewhat

the same analysis, but no attempt is made to uncouple the momentum

and moment-of-momentum integral equations. These equations are solved

simultaneously after introduction of boundary-layer shear-stress dis-

tributions obtained from recent numerical results of equilibrium turbulent

boundary-layer analysis. The Sasman-Cresci analysis is better than that of

Reshotko-Tucker at predicting separation in regions of adverse pressure

gradient. McNaUy (ref. 23) has developed a computer program based on

the Cohen-Reshotko (refs. 11 and 12) and Sasman-Cresci (ref. 22) tech-

niques. An additional source of information on compressible turbulent

boundary-layer analysis is the work of Herring and Mellor (ref. 24).

Finite-Difference Methods for Solving the

Turbulent Boundary-Layer Equations

Finit_difference methods for solving the turbulent boundary-layer

equations have recently begun to appear. Cebeci and Smith have done a

large portion of this work to date (refs. 25, 26, and 27). Bradshaw, Ferriss,

and Atwell have also developed methods for the turbulent boundary layer

(refs. 28 and 29) based on the use of the turbulent energy equation.

Patankar and Spalding have developed still another method for handling

the turbulent boundary-layer equations (refs. 30 and 31). A great deal of

work is going on in this field at the present time, and no method is yet
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clearly superior to any of the others. Two relatively recent publications

(refs. 32 and 33) compare many of the most prominent methods, both

integral and finite difference, for solving the turbulent boundary layer.

CONCLUDING REMARKS

The selection of a method of solution suitable to a particular boundary-

layer problem requires some familiarity with the various methods avail-

able. This can be achieved by studying some of the more recent references

that have been mentioned herein. The present discussion of the methods

of solution has been intended to show the historical development of

solution techniques, the variety of methods available, and the complexity

of the whole boundary-layer problem, especially where turbulent flows

are involved.
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INTRODUCTION TO BOUNDARY-LAYER THEORY

SYMBOLS

turbulent flow mixing coefficient, (N) (sec)/m_; lbm/(ft) (sec)

constant in eq. (6-44)

fwidth of flat plate, ft
m;

constant in eq. (6-44)

skin-friction coefficient for a flat plate

constant in eq. (6-44)

specific heat at constant pressure, J/(kg)(K); Btu/(lbm)(°R)

total drag on flat plate, N; lbf

constant in eq. (6-44)

Blasius dimensionless stream function defined by eq. (6--63)

general body force vector, N/kg; lbf/lbm

component of body force f in x-direction, N/kg; lbf/lbm

component of body force f in y-direction, N/kg; lbf/lbm

component of body force f in z-direction, N/kg; lbf/lbm

conversion constant, 1; 32.17 (Ibm) (ft)/(lbf) (sec _)

form factor, defined by eq. (6-56)

unit vector in the x-direction

conversion constant, 1 ; 778 (ft) (lbf)/Btu

unit vector in the y-direction

thermal conductivity, W/(m) (K); Btu/(sec) (ft) (°R)

unit vector in the z-direction

characteristic length (e.g., the blade chord), m; ft

Prandtl mixing length, m; ft

length of flat plate, m; ft

Mach number external to the boundary layer

exponent on the turbulent velocity profile, eq. (6-47)

dimensionless pressure, defined by eq. (6-13e)

static pressure, N/m2; lbf/ft 2

gas constant, J/(kg) (K) ; (ft) (lbf) / (lbm) (°R)

Reynolds number based on L and U0, as defined by eq. (6-13f)

Reynolds number based on l, as defined in eq. (6-75)

Reynolds number based on x, as defined by eq. (6-67)

radius of curvature of blade surface, m; ft

constant in eq. (6-25), K; °R

absolute static temperature, K; °R

absolute total temperature, K; °R

reference temperature used in eq. (6-25), K; °R

time, sec

dimensionless velocity in x-direction, defined by eq. (6--13c)

free-stream velocity upstream of blade, m/sec; ft/sec

component of general velocity vector u in the x-direction, m/sec;

ft/sec
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general velocity vector, m/sec; ft/sec

free-stream velocity at the outer edge of the boundary layer,

m/sec; ft/sec

dimensionless velocity in y-direction, defined by eq. (6-13d)

component of general velocity vector u in the y-direction, m/sec;

ft/sec

component of general velocity vector u in the z-direction, m/sec;

ft/sec

dimensionless x-coordinate, defined by eq. (6-13a)

x-coordinate, m; ft

coordinate parallel to boundary surface, m; ft
dimensionless y-coordinate, defined by eq. (6-13b)

y-coordinate, m; ft

coordinate perpendicular to boundary surface, m; ft

z-coordinate, m; ft

displacement thickness, m; ft

boundary-layer thickness, m; ft

eddy viscosity defined by eq. (6-80), m2/sec; ft2/sec

a dimensionless quantity much less than 1
Blasius transformed y-coordinate defined by eq. (6-64)

momentum thickness, m; ft

dimensionless shape parameter defined by eq. (6-45)

dynamic viscosity, (N) (sec)/m 2; lbm/(ft) (sec)

dynamic viscosity at reference temperature To, (N)(sec)/m_;

Ibm/(ft) (sec)

kinematic viscosity, m2/sec; ft2/sec

density, kg/m _; lbm/ft 3

free-stream density external to the boundary layer, kg/mS;

lbm/ft a

laminar shear stress, N/m2; lbf/ft 2

turbulent shear stress, N/mS; lbf/ft _

shear stress at the wall, N/m_; lbf/ft 2

function defined by eq. (6-34)

Blasius stream function, m2/sec; ft_/sec

constant in eq. (6-26)

Superscripts"

t

time average

fluctuating component
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CHAPTER7

Boundary-LayerLosses

By HermanW.Prust,Jr.

The primary cause of losses in a turbine is the boundary layer that

builds up on the blade and end-wall surfaces. In particular, these losses

are the friction loss resulting from the flow of the viscous fluid over the

surfaces, the pressure-drag loss resulting from the flow of fluid past the

blade trailing edge, and the loss downstream of the blades resulting from

the mixing of the low-velocity boundary-layer fluid with the high-velocity

free-stream fluid. Chapter 6 presented an introduction to boundary-layer

theory, by means of which the surface boundary-layer buildup can be

analytically described. This chapter covers analytical and experimental

methods for determining the friction, trailing-edge, and mixing losses

associated with the boundary layer. The theory presented herein refers

primarily to two-dimensional blade-section boundary layers. Methods for

obtaining three-dimensional blade plus end-wall losses from the two-
dimensional results are also discussed.

A fundamental objective in blade-row design is to minimize the energy

loss resulting from the flow of fluid through the blade row. Therefore, the

final expressions for loss developed in this chapter are in terms of kinetic-

energy loss coefficients. These coefficients express the loss in fluid kinetic

energy as a fractional part of the ideal kinetic energy of the actual flow

through the blade row. Efficiency based on kinetic energy can be obtained

by subtracting these coefficients from unity, and this is consistent with

the blade-row efficiency definition used in chapter 2.

Before proceeding with the discussion of boundary-layer parameters

and loss coefficients, the blade-row station locations and associated

pressure and velocity distributions will be introduced with the aid of figure

7-1. These pressure and velocity distributions and the associated dis-
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cussion refer to an attached boundary layer only. A separated boundary

layer, with its associated reversal of flow at the surface, is thicker, yields a

higher loss, and cannot be analyzed in the same manner, if at all.

Figure 7-1 (a) indicates the four station locations that will be referred

,_---- $ --.--_

(a)

Station

0

r la
r"

'-1

Station 0

Total pressure
.... Static pressure

-- Velocity

I'--'--'I
_-r] rq

v,,,,,
.1| !,/

Station la

Station i

Station 2

(b)

(a) Station locations.

(b) Pressure and velocity distributions.

FIovr_ 7-1.--Station locations and associated press_Ire and velocity distributions.
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to in this chapter. Station 0 represents the inlet to the blade row. At this

station, a uniform total pressure po' is assumed, as indicated in figure

7-1 (b). Station la is just within the trailing edge of the blade. The

boundary layers developed on the blade surfaces result in velocity and

pressure profiles as shown in figure 7-1 (b). Velocity varies from the free-

stream value V:,.I,_ to zero at the blade surfaces. There is, of course, no

flow through the region of the solid trailing edge. Total pressure varies

from the free-stream value P']8.1,,= po' to the static pressure pl_ at the blade

surfaces. This static pressure is assumed constant across station la, as is

the flow angle a_o. At station la, only the surface friction loss has occurred.

Station 1 is just beyond the blade trailing edge, where the boundary-

layer fluid has filled the void, but where little mixing with the free stream

has occurred. This is indicated in figure 1 (b) by the station-1 profiles

showing flow throughout the entire wake region. Here too, static pressure

and flow angle are assumed constant across the station. Between stations

la and l, the trailing-edge loss occurs. Station 2 is located at a distance

sufficiently downstream of the blade row that complete mixing, with the

associated mixing loss, has taken place. The velocity and total-pressure

profiles are again uniform.

In order to simplify analysis and discussion, a number of variables

have been assumed constant across the various stations. Uniformity of

inlet conditions is a universal convenience that usually can be approached

in component tests but seldom exists in actual applications. Experiments

have shown that static pressure and flow angle do vary somewhat across

both free stream and boundary layer at stations la and 1. In some in-

stances, which will be later identified, this variation can be accounted for.

Although some downstream mixing of the flow does take place, a com-

pletely uniform downstream state is merely a hypothetical convenience.

BOUNDARY-LAYER PARAMETERS

When a real fluid flows over a surface, a loss results due to both friction

between the fluid and the surface and friction between the layers of fluid

in the region adjacent to the surface. As shown by figure 7-2, the fluid

velocity in the boundary-layer region varies from zero velocity on the

surface to free-stream velocity V:, at the full boundary-layer height

_:,u. To describe the losses in flow, momentum, and energy resulting from

the presence of the boundary layer, certain parameters are used. Some of

these (displacement thickness, momentum thickness, form factor) were

introduced in the last chapter and will be reviewed here; in addition, others

specifically used for obtaining the desired kinetic-energy coefficients will

be introduced and defined.
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¢////////.4,

Free-streem velocit L

Vfs =i

W)odty, v =;/

Surface

,- Full boundary

layer height. _full

_'//////////_

FmuRz 7-2.--Typical boundary-layer velocity profile.

The displacement thickness 5, which is indicative of the loss in mass

flow, is defined by

 (0V)s,=L

where

$

V

P

Y

()f.

_lul!(pV) f. dY- (pV) dY (7-1)
_0

displacement thickness, m; ft

boundary-layer thickness, m; ft

fluid velocity, m/sec; ft/sec

fluid density, kg/m3; lb/fP

distance in direction normal to boundary layer, m; ft

free-stream (ideal) conditions

Equation (7-1) states that the loss in mass flow of the fluid in the bound-

ary layer is equal to the ideal flow which would pass through a length

(or an area) equal to the displacement thickness. Solving for _ yields

['/"u dy_ fo_:=u pV...... dY (7-2)
=-o (pV):.

The momentum thickness O, which is indicative of the momentum

loss, is defined by

fs:.u dy_ fo_,,u pV 2O(pV_):.=Jo (pVV/,) dY (7-3)

where 0 is the momentum thickness, in m or ft. Equation (7-3) states that

the loss in momentum of the fluid in the boundary layer is equal to the
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ideal momentum of the ideal flow which would pass through a length (or

an area) equal to the momentum thickness. Solving for 0 yields

fa'"' pV fo s_'"
8= dY- PV_ dY (7-4)

- o (pV)t. (pV )i.

The loss in kinetic energy can be similarly expressed in terms of an

energy thickness defined by

_ _b(pV_)/,=_ (pVV_,) dY- (pV 3) dY (7-5)
_0 _0

where ff is the energy thickness, in m or ft. Equation (7-5) states that

the loss in kinetic energy of the fluid in the boundary layer is equal to the

ideal kinetic energy of the ideal flow which would pass through a length

(or an area) equal to the energy thickness. Solving for ff yields

[6/.,, ,V dy_ fo sf"'z ,V 3 dY (7--fi)=-o (pV3)s.

Ratios of the aforementioned thickness terms are also used as basic

boundary-layer parameters. The form factorH isdefined as

H= -_ (7-7)

Substituting equations (7-2) and (7-4) into equation (7-7) and defining a

dimensionless distance y as

Y
y- (7-8)

_futt

yields

1 1

(pV)I,
H = (7-9)

1

(or)f, (or'),,,

An energy factor E is defined as

E= _- (7-10)
8

Substituting equations (7-6), (7-4), and (7-8) into equation (7-10)

yields
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ff pV fo 1 pV 3(pV)/, dy- -- dy(pV3)I.
E= (7-11)

fo pV f[(pV)j, dy-- pV2 dy(pV_)1.

Velocity profiles for turbulent flow are often represented by a power

profile of the type

V
_yn (7-12)

where the value of the exponent n is most often between 0.1 and 0.25.

Note that this power profile is here expressed as yn, while the same

profile in chapter 6 (eq. (6-47)) is expressed as yl/n. The exponent ex-

pressed as 1In is consistent with general boundary-layer theory usage.

The exponent expressed as n, however, is consistent with reference 1,

wherein the equations that follow are derived. Therefore, the specific

numerical value to be used for n will depend on the form being used for

the exponent.

With this velocity profile, equations (7-9) and (7-11 ) can be integrated

in series form, and the form and energy factors for turbulent flow can be

expressed in terms of the exponent n and the free-stream critical velocity

ratio V/Vcr. The resulting equations derived in reference 1 are

1 3A f, 5A_.
--4 { F'--
n+l 3n+l 5n+1

H= (7-13)

and

E.__

1 A/, A_,
+ +

(n+l)(2n+l) (3n+l)(4n+l) (5n+1)(6n+l)
-_--Jl*

2 (n_l_l)(3n_q_l)--I- (3n+l)(5n+l)+(5n+l)(7n+l)

where
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and _, is the ratio of specific heat at constant pressure to specific heat at

constant wlume, and Vc, is the fluid velocity, in m/sec or ft/sec, at the

critical (Mach 1) flow condition. For incompressible flow, where V/V,r

approaches zero, equations (7-13) and (7-14) reduce to

and

H_.c=2n+l (7-16)

2(2n+1)
E_._ = (7-17)

3n+l

Values of the form and energy factors for turbulent compressible flow

are shown in figure 7-3 for V/V_r varying from 0 to 1.4 and n varying

from 0 to 1.5. It can be seen that the form factor varies much more than

does the energy factor. For any constant exponent n, the energy factor

is almost independent of V� V¢r.

The boundary-layer parameters just presented are general and can

refer to a boundary layer on any type of body. They are directly useful in

certain aerodynamic work. For instance, the drag of a body can be ob-

tained directly from the momentum thickness. In turbine work, however,

where the flow is confined to the physical boundaries of the blade row, it is

simpler and more meaningful to express the losses as a fractional part of

the ideal quantities that could pass through the blade row. The thickness

parameters so expressed are herein termed "dimensionless thickness

parameters" and are defined on the basis of zero trailing-edge thickness.

2.2

hJ

L=

1.8

E"

1.4

Free-stream
critical-

velocity
ratio,

(VNcr)fs

f-0
//-0.6

-V/21.o
,,,, _ 1.4-7 ,-0

-\\\ \

I I
2 3 4 5

Formfactor. H

Powern
usedin
velocity
equation

VNfs =yn

rL00 r].25
1 ' _LS0

6 7

FIGURE 7-3.--Effect of compressibility on variation of energy factor with form factor.

(Data from ref. 1.)
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"%..\
t 8

Station _ _'_'_ ____-_ _ J Ys

_cos ala

FIGURE 7-4.--Nomenclature for trailing-edge region.

These dimensionless thickness parameters must represent the sum of the

suction- and pressure-surface thicknesses.

With the assumption that flow conditions in all channels are the same,

the dimensionless thickness parameters are obtained by dividing the

losses in flow, momentum, and energy for a single blade-row channel by

the corresponding ideal quantities that could pass through one blade-

row channel. The total losses for one channel, as indicated in figure 7-4,

are composed of the suction-surface loss plus the pressure-surface loss, or

Stot=$,A-_p (7-18)

Otot-- O,-.FOp (7-19)

q/tot= _,A-_ (7-20)

where the subscripts tot, s, and p denote total value, suction-surface value,

and pressure-surface value, respectively. Thus, in terms of the previously

defined boundary-layer thicknesses, the dimensionless boundary-layer

thicknesses are expressed as

($*= - (7-21)
s cos a(pV)I, s cos a

e,o,(pV2)i. O,o,
0* = - (7-22)

S COS ot(pU2)$, 8 cos c_
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where

0*

8

O_

dimensionless displacement thickness

dimensionless momentum thickness

dimensionless energy thickness

blade spacing, m; ft

fluid flow angle from axial direction, deg

Equations (7-21), (7-22), and (7-23) express the losses in flow, momen-

tum, and energy, respectively, as fractions of their respective ideal quanti-

ties for the blade row if the trailing-edge thickness is assumed to be zero.

These equations can be subscripted to apply at either station la, within

the trailing edge, or station 1, beyond the trailing edge.

BLADE-ROW LOSS COEFFICIENTS

As mentioned previously, the losses are to be expressed in terms of

kinetic-energy loss coefficients. In this section, methods for evaluating the

friction, trailing-edge, and mixing losses and expressing them in terms of

the kinetic-energy loss coefficients will be presented.

Surface-Friction Losses

The kinetic-energy loss coefficient _la, defined as the loss in kinetic

energy as a fraction of the ideal kinetic energy of the blade-row actual

flow, can be expressed in terms of the boundary-layer dimensionless

thicknesses as

_11a8 COS O_la(pWa) fs,la

_1_= (s cos oq_--_*_s cos axe--t) (pV3)i, aa (7-24)

where t is the blade-row trailing-edge thickness, in m or ft. (Refer to fig.

7-4 for the nomenclature in the region of the trailing edge of the blade.)

Since this coefficient is referenced to station la, just within the blade-row

trailing edge, it represents only the surface-friction loss. If a trailing-edge

dimensionless thickness is expressed as

t
t* - (7-25)

S COS _la

equation (7-24) reduces to

ela -- 1 -- _*_-- t* (7-26)

In order to evaluate the loss coefficient _ from equation (7-26), it is

necessary to know the values of the dimensionless energy thickness _b_*
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and the dimensionless displacement thickness $1". These can be evaluated

either experimentally or analytically, as will be discussed herein.

Experimental determination.--In determining experimental loss values,

it is impractical to measure the density and velocity directly. Instead,

pressure data are taken, and the density and velocity are related to

pressure functions. The pressure data required for computing the friction

loss consist of (see fig. 7-1) the upstream total pressure po', the blade-exit

static pressure p,,, and the total-pressure loss survey data p0'- P'lo for one

blade space. Since the dimensionless boundary-layer thicknesses express

the losses of the blade row as a fractional part of the ideal quantities which

could pass through the blade row, the dimensionless displacement thick-

ness can be expressed in terms of the flow across one blade pitch as

8

s cos ,._.(pV)i.,1o-t*s cos a,a(pV)s,,,_- cos a_of0 (pV)_odu

_i*.--- (7-27)
s cos _o(pV)_,,_.

where u is the distance in the tangential direction, in m or ft. Equation

(7-27) simplifies to

_l_a = I--t*-- fo pV ,. d (7-28)

In a similar manner, the dimensionless momentum and energy thick-

nesses can be expressed as

01*=
(pV2)1o,1,,

1 V pV

= fo [1-(V-_f,),,] (_),d (u)

¢l_a --
(pf.V}.),.

pVd

and

(7-29)

(7-30)

Assuming that the total temperature T' and the static pressure p_, in
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the boundary layer are the same as in the free stream, the density ratio

(p/p/,) l, can be related to the pressure ratio P'ljPo' as follows: From the

isentropic relation,

p (p_V.T

I.,1=- --7 (7-32)\p 1_,.,.,

Since ps,.l==po' and ' ' ' '' plJp/.a==plJpo (from the ideal gas law, with

T'I,=T_o.la=To'), division of equation (7-31) by equation (7-32) yields

-P_s,/,. - \po' ] (7-33)

The velocity ratio (V/Vs,)la can be related to the pressure ratios

(p/p') 1,,and pl=/po' as follows: From the total-temperature definition and

isentropic relation, equations (1-51) and (1-52) of chapter 1, we can
write

V _ T fp_C.y-_>/v
2gJcj, T'- 1--_-_ = 1-\_/ (7-34)

where

g
J

Cp

conversion constant, 1;32.17 (lbm) (ft)/(lbf) (sec 2)

conversion constant, 1; 778 (ft) (lb)/Btu

specific heat at constant pressure, J/(kg)(K); Btu/(lb)(°R)

Subscripting equation (7-34) once for station la and again for free-stream

values at la, dividing the first of these equations by the second, and

recalling that P,_oa,,= Po' and T_°aa = T_= yields

pin _ (v-l)/v
1-- ---7"

\Pla]V
(7-35)

With the density and velocity ratios expressed in terms of the measured

pressures by equations (7-33) and (7-35), it is now possible to integrate

equations (7-28), (7-29), and (7-30) and evaluate the dimensionless

boundary-layer thicknesses. Then, the kinetic-energy loss coefficient $1=

can be computed from equation (7-26).

The kinetic-energy loss coefficient thus determined is a two-dimensional
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coefficient; that is, it is based on data either from a two-dimensional

cascade or from a constant radius of an annular cascade. (The annular

cascade can be, and often is, the full stator or rotor from a turbine.) In

order to obtain a three-dimensional loss coefficient for a blade row, data

are taken at a number of radii sufficient to adequately cover the annulus,

and the two-dimensional dimensionless boundary-layer thicknesses are

calculated as shown previously for each radius. Three-dimensional bound-

ary-layer thicknesses are then obtained by radial integration from hub

to tip:

ff' $*_(pV)I.,I,, cos alo r dr
h

(7-36)

"' (pV)/°jo cos al. r dr
k

cos. , r dr

Ol*.a_ - (7-37)

" (pV2)f.,1,, cos alo r dr
h

_la,|D

d/_,,(pV3)i.,h cos al. r dr

"* (pV3)s..I. cos al_ r dr
k

(7-38)

In terms of the measured pressures, these integrals are expressed as

L:i,_o(pia)i/'y[l__(P"_(_-')i'_l'l' j COSalo r dr

5" (7-39)Ia,SD -_"

S,:'<,,->"'[\p-_41 j cos al. r dr
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O*a(Px_}l/v [ \po'] j cosaz_rdr

\p-_0' ] j cos a,_ r dr

(7-4O)

\p0'] j cos ax, r dr

&:_,_ = (7-41)

\-_ / j cos a,a r dr

The three-dimensional kinetic-energy loss coefficient is then obtained

in a manner similar to equation (7-26) :

_/la,SD

_1_,3_ = 1 -- _*o.aD-- t_* (7--42)

where t_* is the trailing-edge dimensionless thickness at the mean radius

and is used to represent the average value for the blade row.

Analytical determination.--The kinetic-energy loss coefficient _1_ can

also be evaluated with the use of analytically determined boundary-layer

thickness parameters. While not as reliable as experimental values, ana-

lytical values are much less costly and time consuming to obtain. Ana-

lytical methods for calculating the basic boundary-layer parameters are

discussed and referenced in chapter 6. The boundary-layer solutions are

not simple, and the better methods require computer solution. Boundary-

layer computer programs currently in use at the NASA Lewis Research

Center include one (ref. 2) based on an integral method solution and
another based on the finite difference method of reference 3.

An equation used in the study of reference 4 to compute turbulent

boundary-layer momentum thickness was

0.231
01a _---

, \_ccrlfa, la

× (7-43)
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where

X

l

parameter defined by equation (7-15)

distance along blade surface from forward stagnation point, m; ft

blade-surface distance from forward to rear stagnation point,

m; ft

viscosity, (N) (sec)/m_; lb/(ft) (sec)

The development of this equation is presented in reference 4. It is as-

sumed that the boundary layer has a power-law velocity profile. In

reference 4, the exponent n was obtained from the referenced equation

, 1
n L\-_-Iy. xj (7-44)

Equation (7-43) must be evaluated for both the suction and pressure

surfaces of the blade. The free-stream velocities and densities required for

equktions (7-43) and (7-44) are those free-stream values adjacent to the

blade-surface boundary layers. These can be obtained by any of the

channel flow analysis techniques discussed in chapter 5.

Values of the form factor H as required in equation (7-43) and of the

form factor Hla and energy factor Ela at station la for each surface can be

obtained from equations (7-13) and (7-14). With 01a, Hla, and E_ known

for both the suction and pressure surfaces, the various boundary-layer

thickness parameters and the kinetic-energy loss coefficient $_ can be

evaluated from the equations presented earlier in this chapter. For the

turbine stator blade studied in reference 4, the analytical values, as

calculated from equation (7-43), of the boundary-layer momentum

thickness for the blade and for the two surfaces individually were reason-

ably close to the experimental values. In general, however, results ob-

tained from equation (7--43) will not be as accurate as those obtained

from the computer programs of references 2 and 3.

Three-dimensional boundary-layer parameters could be calculated

directly from equations (7-36) to (7-38). The two-dimensional thickness

parameters would have to be analytically determined at a number of radii

sufficient to establish the variation over the blade length and would also

have to be determined, somehow, over the end-wall surfaces. Such a

procedure would require considerable effort, so the simplified method of

reference 5 for predicting three-dimensional losses from two-dimensional

mean-section losses is commonly used. Results obtained by this method

have shown good agreement with experimental results.

In the method of reference 5, the following assumptions are made:

(1) The average momentum loss for the blade surface can be represented

by the dimensionless momentum thickness at the blade mean section;
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Approximate area

o{one end wall
sccosas)7

t

Approximate F/:iiii::iilfi:,i::iiiiiii::::i::ili::f|iiiiii::iiiildirection
[ ]!{i]_[i][]]]_]]]_][:i]i[]i][][]]]]]]]][]i]i][__]]i]i]_]![i]i]i!1

s_de of blade __:_;_i_;;_i_!_i_ _I_i_::_]_;_
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::×::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::i::::::::::::::::::::::::::::

:':':"::_i_''"' " "::::_!:i:i:_:

• =============================.....

_%%_,_.• :::::::::::::::::::::::::::: • _''" _

I------ s-----

FIGURE 7-5.--Schematic diagram of equivalent two-dimensional blade used to calcu-

late the effect of end-wall area on blade loss.

(2) the momentum loss per unit area on the inner and outer end walls is

the same as the average momentum loss per unit area on the blade surface;

and (3) the blade configuration can be satisfactorily approximated by an

equivalent two-dimensional blade, as shown in figure 7-5, having a con-

stant cross section, spacing, and stagger angle equal to those at the mean

section of the given blade.

(see fig. 7-5) is

where

Ab

The surface area of one equivalent blade

Ab = 2ch (7-45)

C

h

The inner and outer end-wall area for one passage is

Aw=2sc cos a,

where

Aw

total surface area (sum of suction-surface and pressure-surface

areas) of one blade, m_; ft 2

blade chord, m; ft

blade height, m; ft

(7-46)

total surface area of passage end walls (sum of inner and outer

end-wall areas), m2; ft _

blade stagger angle, deg

Now, taking the average momentum loss O'a.,,, over the blade radial length
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and modifying it to include the end-wall losses yields

01"3D=0" fAb-t-Aw_-O* (1_ sc°sa') (7-47)

The three-dimensional energy and displacement thickness parameters

are then calculated as

* * (7-48)_la,3D _ Ela ,mOla,3 D

and

5" = Hla m01*o3D (7-49)la,3D , ,

Mean-section values are used for the energy and form factors. Although

the energy and form factors were originally defined in terms of individual

boundary-layer thicknesses, it is indicated in reference 4 that they can be

satisfactorily used as is done in equations (7-48) and (7-49). The three-

dimensional kinetic-energy loss coefficient is then obtained from equa-

tion (7-42).

Trailing-Edge Loss

The kinetic-energy loss coefficient _te that represents the loss associated

with flow past the blade trailing edge can be determined either experi-

mentally or analytically.

Experimental determination.--Experimental values of blade trailing-

edge loss coefficient _te are obtained from differences between experimental

two-dimensional loss coefficients _1, which include both surface-friction

loss and trailing-edge loss, and loss coefficients _1_, which include only the

blade surface-friction loss. Thus,

e,e= :1- e_. (7-50)

Loss coefficients _1_, which include only surface-friction loss, are ob-

tained as described previously. Loss coefficients :1, which include both

surface-friction loss and trailing-edge loss, are determined in exactly the

same manner except that the total-pressure loss and static pressure are

measured at different locations. The surface-friction loss coefficients were

based on data obtained just within the blade trailing edge at station la,

where the trailing-edge loss has not yet occurred. To determine the loss

coefficients which include both surface-friction loss and trailing-edge loss,

the measurements must be made at a location just downstream of the

blade row, corresponding to station 1 in figure 7-1, where the trailing-edge

loss, but little mixing, has occurred.

Analytical determination.--In reference 6, experimental drag coefficients

are presented for a large number of surface discontinuities. Included in

the reference are experimental data for sheet-metal joints of different
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T
¥I _u11

FIGURE 7-6.--Schematic diagram of body in boundary layer.

geometry, bolt and rivet heads of different geometry, and airfoil trailing

edges. It is indicated that the pressure-drag loss due to the discontinuity

behaves similarly regardless of the flow direction over the discontinuity.

Therefore, the loss due to flow past a trailing edge will be treated ana-

lytically as if the loss were due to a body placed in the path of a boundary

layer.

As indicated in reference 6, the drag of a small body of height h, equal

to or less than the full boundary-layer height 6y=u, placed in a turbulent

boundary layer, as shown in figure 7-6, corresponds approximately to the

effective dynamic pressure of the part of the boundary layer equal to the

height of the body. Thus,

D = q_IihCD (7-51)

where

D

h
drag on body, N/m; lb/ft

height of body, m; ft

drag coefficient

and the effective dynamic pressure q_f_ is expressed as

qell=h J o 2g dY
(7-52)

Drag is related to momentum thickness as

D= O(pV_)I° (7-53)
g

Therefore, a dimensionless momentum thickness e*, representing the

trailing-edge loss is obtained by combining equations (7-51) and (7-53)

with a properly subscripted form of equation (7-22) :

209



TURBINE DESIGN AND APPLICATION

q,LrhCo
8",- (7-54)

(pV2)fs
8 COS 0_1 --

g

The flow angle a, is related to the angle ala as discussed in chapter 4 (eqs.

(4-26) and (4-27)).

Before equation (7-54) can be evaluated, the effective dynamic pres-

sure must be determined. The ratio of the effective dynamic pressure to

the free-stream dynamic pressure is equal to

- dr (7-55)
ql, h

For turbulent flow, the variation of velocity in the boundary layer can be

expressed with the use of the simple power profile presented previously.

Combining equations (7-8) and (7-12) yields

V/. (7-56)

Assuming that the total temperature and static pressure in the boundary

layer and free stream are the same and using the ideal gas law and equa-

tion (1-64) of chapter 1 gives

P/*

To' 7 + I _ I,

To' "y+ 1

(7-57)

Substituting equations (7-56) and (7-57) in equation (7-55) and using

the parameter A _, defined by equation (7-15) yields

1- A fs \_u/l/

Performing a binomial expansion and integrating then gives

qy!=(l_A/, ) [( h ) 2" 1 ( h _4'_ A,.
qy, L\ (i/,, ,z/ 2 n -l---_l-I- k _. zt/ (4n+l)

(h_y _ A_ ]+ \(_f.../ (6n+l) +.-- (7-59)
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Substituting equation (7-59) in equation (7-54) and using trailing-edge

thickness t in place of body height h finally yields

tCD (l_As,) +
0"- 2s cos a_ L\_-_-! 2n+l _, (4n+ 1)

+ (6n+l) +"" (7-60)

The boundary-layer thickness _f_u to be used in equation (7-60) should

be the sum of the suction- and pressure-surface values.

Equation (7-60) is for compressible flow. In many cases, at least when

n is not well known, the following simplified equation, which assumes

incompressible flow and n=l/_ (commonly used for turbulent flow),

is adequate:

0",=0.375_- t ted (7-61)
_futZ S COS oq

The information in reference 6 indicates that the drag coefficient C9 can

be set equal to 0.16 for a rounded trailing edge and 0.22 for a square

trailing edge. The corresponding values reported in reference 7 and con-

verted to the same basis as equation (7-61) are 0.14 for a rounded trailing

edge and 0.22 for a square trailing edge. Frequently, 5to, instead of _i/_,

will be available. In such a case, for incompressible flow,

and for compressible flow,

(7-62)

6full -- (7-63)

1 , A/. , A_, ,
1 - (1 -- Ay.) (n--_-t-_ t 5-_-t- • • ")

Equations (7-60) and (7-61) give the fractional loss in blade-row

momentum due to the blade trailing edge. To find the corresponding

kinetic-energy loss coefficient, it is necessary to find the fractional losses

in flow and kinetic energy. As a simple approximation, the form and energy

factors, evaluated from equations (7-13) and (7-14) for compressible

flow and from equations (7-16) and (7-17) for incompressible flow, are

used to obtain

and

5*, = He*, (7-64)

d/*, = EO*, ( 7-65 )
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At station 1, which is just downstream of the blade trailing edge, fluid has

flowed into the area behind the trailing edge and there is no longer a void

due to trailing-edge blockage. Therefore, a kinetic-energy loss coefficient

is obtained as

* (7-66)

This loss coefficient expresses the loss in kinetic energy as a fraction of the

ideal kinetic energy of the flow that would exist if the trailing-edge loss

were the only loss. The trailing-edge kinetic-energy loss coefficient for

incompressible flow is plotted against trailing-edge thickness in figure 7-7

for several values of the ratio of trailing-edge thickness to boundary-layer

thickness. This figure is based on the momentum loss as expressed by

equation (7-61). The flow loss associated with blade-surface friction is

not included in equation (7-66). Therefore, this trailing-edge kinetic-

energy loss coefficient is approximately, but not rigorously, additive with

the surface-friction loss coefficient. Expression of the combined friction

and trailing-edge loss in terms of a kinetic-energy loss coefficient is dis-
cussed in the next section.

. O2O

i .015

_ .olo

_ .005

Ratioof

trailing-edge
thickness to

boundary-layer
height,

U_ul;

1.O

.5

.!

0 .05 .10 .D

Dimensionlesstrailing-edge thickness, t*

FIGURE 7-7.--Effect of trailing-edge blockage on kinetic-energy loss coefficient. Form
factor H--1.3; energy factor E-1.8; drag coefficient Cv--0.16.
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Combined Friction and Trailing-Edge Los

As stated in the discussion of the trailing-edge loss, the boundary-layer

thickness parameters and a kinetic-energy loss coefficient expressing the

combined friction and trailing-edge loss can be obtained by making the

experimental measurements at a location corresponding to station 1,

which is just downstream of the trailing edge. In this way, we obtain

experimental values of &*, 01", and _1" from appropriately subscripted

versions of equations (7-28), (7-29), and (7-30). The value of _1 is then

obtained as

- (7-67)
1--61"

Analytically, the boundary-layer thickness parameters at station 1 are

obtained by adding the surface-friction loss to the trailing-edge loss.

Before the friction and trailing-edge boundary-layer thickness parameters

can be added, they must be expressed on the basis of the same ideal flow.

The friction-loss dimensionless thicknesses at station la (61", 01*a, _l*a) are

expressed in terms of an ideal flow without trailing-edge blockage. How-

ever, there is a trailing-edge blockage at station la, where the ideal flow

with blockage must be comparable to the ideal flow at station 1, where

there is no blockage. Therefore, the friction-loss boundary-layer thickness

parameters are adjusted to account for the true (with blockage) ideal

flow as follows:

_* _*(s s c°s al" ) (7-68)1,/_ la COS Ola--t

and

0* 0* (s sc°sal" (7-69)

, ,( scosa_ ) (7-70)_bl'! = _bx_ s cos al_-- t

where the subscript f refers to the loss due to surface friction. Adding the

friction and trailing-edge loss parameters then yields the combined loss

parameters at station 1 :

6x* = _I.IA-_ t.

and
01"= Ox,/A-O t,

_ll* -- IY l,f 'fire

And the value of _1 is then obtained from equation (7-67).

(7-71)

(7-72)

(7-73)
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After-Mix Loss

The after-mix loss is the total loss that includes the surface-friction loss,

the trailing-edge loss, and the mixing loss. The after-mix loss coefficient

$2is determined as described in this section, and the mixing loss, if desired,

is obtained by subtracting the previously determined _1 from $_.

To determine the after-mix loss experimentally would require that the

pressure measurements be made downstream of the blading where com-

plete mixing has occurred. This is impractical for several reasons: (1)

The length for complete mixing, while quite long, is unknown; (2) the

after-mix loss would have to be corrected for side-wall friction for the

mixing length, thus leading to possible error; and (3) after the flow had

mixed, values of after-mix po'-p2' would be constant and small enough

that the possibility of measurement error would be relatively large. For

these reasons, values of after-mix loss are obtained analytically with the

use of either experimentally or analytically determined before-mix

(station 1) loss parameters.

The basic equations for determining the after-mix conditions are

those for conservation of mass, momentum in the tangential direction,

and momentum in the axial direction during mixing. Equating the mass

flow rate before mixing (station 1) and after mixing (station 2) yields

o1o(pV)1 cos d =cos a2(pV)2 (7-74)

From conservation of momentum in the tangential direction we get

f0 (pV2)l sin al cos al d =sin a2 cos a_(pV2)_ (7-75)

and from conservation of momentum in the axial direction we get

'g fo p_ d + (oV 2) cos 2 al d = gp_+cos _ a2(oV2)_ (7-76)

Although these equations are subscripted for two-dimensional flow, they

can also be applied to three-dimensional flow by integrating radially.

If experimental survey data were available at station 1, the integrals in

the above equations could be directly evaluated even with variations in

static pressure and flow angle. These conservation equations could be

written for any before-mix location at which data were available, and then

used to evaluate the after-mix loss coefficient. In the case where the

before-mix station is not station 1, it would not be possible to determine
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the mixing loss completely by experimental means. In most cases, how-

ever, it is only the final after-mix loss that is desired, and survey measure-

ments are usually made a little farther downstream of the trailing edge,

where angle and pressure variations have somewhat damped out.

If static pressure and flow angle are constant across station 1, it is

possible to express equations (7-74) to (7-76) in terms of the previously

used boundary-layer parameters, as was done in reference 1. The analysis

herein differs from that of reference 1 only in that the before-mix station

used in reference 1 corresponds to station la herein. Equation (7-28)

subscripted for station l, where there is no trailing-edge void, can be

written as

1fo (pV)ld =(1--Sl*)(pV)l.a (7-77)

Subscripting equation (7-29) for station I and combining it with equation

(7-77) yields

(pV2)l d = (1-8,*-01") (pY_)l..l (7-78)

Substituting equations (7-77) and (7-78) into equations (7-74) to

(7-76) yields the following equations for conservation of mass and

momentum in terms of the boundary-layer parameters previously deter-
mined:

COS oq(1--81") (pV)f,,1-- cos a2(pV)2 (7-79)

sin al cos al(1 --81"--01") (pV2)s0a = sin a_ cos a_(pV2)_ (7-80)

gpl+cos 2 al(1-81"-01") (pV2)ioa=cos _ a2(pV2)_Wgp_ (7-81)

These equations, along with the ideal gas law and the conservation-of-

energy equation (TI'= T_'), can be solved simultaneously as shown in

reference 1 to obtain _, the after-mix kinetic-energy loss coefficient,

for both compressible and incompressible flow.

For incompressible flow, the solution for _2 is

sin 2 al (1 - _l*-- 01"\ _ 2)+co 
_2=1--

1+2 COS 20t1[-(1--_1*) 2- (]--81*--01*)_

(7-82)

For compressible flow, no explicit solution was found, and the following

steps are required to obtain _:
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(1) The parameters C and D are computed from

?+1 (V)'(1--As.a) --_-7 +cos_ at(X--*t*-01*) _ y.,t

C-

D V (l-_x*-0,*_
=(V-f_,)t,,tsinal\ ]_-_1" /

(2) The quantity (V,/Vc,)2 is obtained from

(___,.)_ .yC X/(.yC )'_l+(.y-1)D,,+1 - 7-4-i/ 7-;il
(3) The density ratio (o/p'): is obtained from

(_)---_1 ('),--I'_[- ,V_,\:]'I''('-')

(4) The total pressure ratio p2'/po' is obtained from

j.,_.-7_.,cos _x(1- _,*)
i0_I P c,

,o,
\O gc,l_

(5) The pressure ratio (p/p')_ is obtained from

p p v

(6) Finally, _2 is obtained from

(p,'_(',-"/,-- 1
\pi /

(7-83)

(7-84)

(7-s5)

(7-86)

(7-87)

(7-8s)

(7-89)

Values of _ include all the blade-row loss; that is, the frictional loss of

the blade row, the trailing-edge loss, and the mixing loss. Values of $1
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include all the blade-row losses except mixing loss. Therefore,

_miz = &-- _ (7-90)

where _m;z is the fractional loss in available energy due to mixing.

BLADE-ROW LOSS CHARACTERISTICS

In this section, experimentally and analytically determined losses of

the various types considered will be presented and compared, and the

effect of blade-row geometry on losses will be discussed

Distribution and Comparison of Losses

Figure 7-8, taken from reference 8, compares experimentally and

analytically determined values of kinetic-energy loss coefficients at three

different angle settings for a given stator and at three stations repre-

senting different losses. The loss coefficient $1,.m, obtained just within the

blade trailing edge, represents the surface-friction loss at the mean

(arithmetic mean radius) section; the coefficient _1._, obtained just

beyond the trailing edge, represents the friction loss plus trailing-edge loss

at the mean section; and the coefficient _2.3D represents the total loss for

the annulus including blade and end-wall friction, tra_ling-edge drag, and

mixing. In general, agreement between the experimental and analytical

loss coefficients is reasonably good.

.04

_" .0:

!
g_

¢-

?
t_

.0:
¢-
,m
v

__ 0 Experimental results
t'3 Analyticalresults

O-
e2.3D"

ela. m

o I I
70 100 Do

Percentstatorareasetting

Mixing and
end-v/all losses

Trailing-
edgeloss

Mean-section
bladesuf/ace
friction loss

FIOURE7-8.--Comparison of experimental and analytical loss coefficients for different
stator area settings. (Data from ref. 8.)
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FIGURE 7-9.--Variation of loss coefficients with velocity. (Data from ref. 9.)

Figure 7-8 gives some idea of the distribution of losses in a stator blade

row, but does not separate the mixing and end-wall losses. Figure 7-9,

taken from reference 9, shows the variation in loss coefficient with ve-

locity. Loss coefficient is seen to decrease slightly with increasing velocity.

This figure also shows separately the mixing and end-wall losses, as well

as the other blade-row losses.

In this particular case, the friction loss was about 2 percent of the stator

ideal energy and about one-half of the total stator loss. The trailing-edge

loss was about one-quarter of the total loss. In general, the trailing-edge

loss will vary with trailing-edge blockage as was shown in figure 7-7.

The end-wall loss, which was about 15 percent of the total loss for this

case, will vary with the design, depending primarily on radius ratio and

spacing. The mixing loss made up the remaining 10 percent of the total

loss. The loss breakdown will, of course, vary with the stator design, but

the comparison does indicate that each of the losses may be of con-

sequence.

Effect of Blade-Row Geometry on Losses

A study of the effect of turbine geometry on turbulent-flow boundary-

layer loss is presented in reference 10. In that study, the assumption was
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made that the momentum loss per unit blade surface varies as the inverse

of the chord Reynolds number to the m power:

--_Re7 _ (7-91)
C

where Rec is a Reynolds number based on blade chord c. Expanding

equation (7-91) by multiplying and dividing by like terms, substituting

into equation (7-22), and then using equation (7-47) to express the

three-dimensional effect yielded an equation of the form

0,*¢¢ (_)m _1 +cos a._ (O,ot_ (_)1-_Re__,,, (7-92)

fC.),(",,)
where Reh is a Reynolds number based on blade height h. As indicated,

the three-dimensional momentum thickness parameter can be expressed

as a function of the geometric variables--height-to-spacing ratio h/s,

blade solidity c/s, and height Reynolds number Reh. The reference value

of O,,,/c, as explained in reference 9, is based on the minimum loss for a

given solidity and, therefore, becomes a function of solidity. The ex-

ponent m is set equal to _/_ in the analysis.

In reference 10, the derivative of the dimensionless momentum thick-

hess 08* with respect to each of the geometric variables was obtained in

order to find the minimum-loss value of each variable in terms of the other

variables (there is no minimum for height Reynolds number). With the

optimum values known, the relative variations in momentum loss around

the minimum values were then determined. The results of the analysis

from reference 10 are shown in figures 7-10, 7-11, and 7-12. Also shown in

each figure is the nature of the geometry variation associated with the

change in each variable.

Figure 7-10 shows that a wide variation (50 percent or more) in h/s

value around the optimum causes little increase in momentum loss. This

results from the two counteracting effects of changes in chord Reynolds

number and end-wall area. Figure 7-11 shows that the solidity of a blade

may be varied considerably from optimum with some, but not excessive,

loss. Comparison of the results in figures 7-10 and 7-11 shows that the

loss is more sensitive to solidity than to the height-to-spacing ratio. The

curve shape of figure 7-11 reflects also the counteracting influences of

chord Reynolds number and end-wall area.
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ratio. (Data from ref. 10.)

Figure 7-12 shows the variation of momentum-thickness ratio with

height Reynolds number ratio. While the figure indicates a change in

Reynolds number due to change in geometry, the change in Reynolds

number could also result from change in inlet flow conditions. The curve

shape, then, results from the loss being inversely proportional to the

Reynolds number to the m=_ power. These results show that an in-

crease in height Reynolds number results in improved performance. The

height Reynolds number is sometimes used in correlating the performance

of different turbomachines.
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SYMBOLS

Ab

,41,

A.

C

C

Cp

D

E

g
H

h

J

l

m

n

P

q

Re_

Reh

r

8

T

t

U

V

X

Y

Y

(x

o_m

3_

surface area of one blade, m2; ft 2

parameter defined by equation (7-15)

surface area of end walls for one passage, m2; ft _

parameter defined by equation (7-83)

drag coefficient

blade chord, m; ft

specific heat at constant pressure, J/(kg) (K) ; Btu/(lb) (°R)

drag, N/m; lb/ft

parameter defined by equation (7-84)

energy factor

kinetic-energy loss coefficient

conversion constant, 1; 32.17 (lbm) (ft)/(lbf) (sec _)

form factor

blade height, m; ft

height of body placed in boundary layer, m; ft

conversion constant, 1 ; 778 (ft) (lb)/Btu

blade surface distance from forward to rear stagnation point,

m; ft

exponent in equation (7-91)

turbulent boundary-layer velocity profile exponent

absolute pressure, N/m2; lb/ft _

dynamic pressure, N/m_; lb/ft 2

chord Reynolds number

height Reynolds number

radius, m; ft

blade spacing, m; ft

absolute temperature, K; °R

trailing-edge thickness, m; ft

distance in tangential direction, m; ft

fluid velocity, m/sec; ft/sec

distance along blade surface from forward stagnation point,

m; ft

distance from surface normal to boundary layer, m; ft

distance from surface normal to boundary layer expressed as

fraction of boundary-layer thickness

fluid flow angle from axial direction, deg

blade stagger angle from axial direction, deg

ratio of specific heat at constant pressure to specific heat at

constant volume

boundary-layer displacement thickness, m; ft

boundary-layer thickness, m; ft
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0

P

boundary-layer momentum thickness, m ; ft

viscosity, (N) (see)/m2; lb/(ft) (sec)

density, kg/m3; lb/ft 3

boundary-layer energy thickness, m; ft

Subscripts:

cr critical flow conditions

eft effective

f friction

fs free stream

h hub

i ideal

inc incompressible
m mean section

min minimum

mix mixing

opt optimum

p pressure surface

ref reference

s suction surface

t tip

te trailing edge
tot total

x axial component

0 blade-row inlet

1 just beyond trailing edge of blade row

la just within trailing edge of blade row

2 downstream uniform state

3D three dimensional

Superscripts:

t absolute total state

* dimensionless value
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CHAPTER8

MiscellaneousLosses

ByRichardJ. Roelke

In the last chapter, the boundary-layer losses associated with the flow

process in the blade channel were discussed. To determine the overall

design-point efficiency of a turbine, other losses must also be considered;

these include tip-clearance loss and disk-friction loss. In some instances,

these losses represent a very small part of the turbine output and may be

neglected; however, in other instances, these losses can be of such mag-

nitude as to influence the selection of the turbine design point. The sum

of these losses normally comprises all the losses that are considered in the

design of a full-admission axial-flow turbine. If, however, a partial-

admission turbine is being considered, there are additional losses that

must be included. The partial-admission losses usually considered are the

pumping loss in the inactive blade channels and the filling-and-emptying

loss in the blade passages as they pass through the admission arc. Finally,

a loss that occurs at off-design operation of any turbine is the incidence

loss, which will also be covered herein.

TIP-CLEARANCE LOSS

Because a turbine must operate with some clearance between the tips

of the rotor blades and the casing, some fraction of the fluid leaks across

the tips, thus causing a reduction in turbine work output. This leakage

loss is affected, first of all, by the nature of the tip geometry; that is, by

the amount of radial clearance, by recesses in the casing, and by tip

shrouds. For a given tip geometry, the amount of blade reaction affects

the leakage loss, since a large pressure difference across the tip (high

reaction) causes more higher-kinetic-energy flow to leak through the tip

225



TURBINE DESIGN AND APPLICATION

gap from the pressure side to the suction side of the blade. With an un-

shrouded blade, this leakage flow not only causes a loss due to its own

reduced work, but also causes an unloading of the blade, primarily in the

tip region. Analytical evaluation of the drop in turbine efficiency caused

by tip-clearance leakage is inherently difficult because of the complex flow

problem. Several empirical expressions for clearance loss have been

developed, and some of these are summarized in reference 1; however,

they are rather complicated, and the author states that none is entirely

satisfactory.
A number of tests have been made at the NASA Lewis Research Center

to determine the effect of tip clearance and tip geometry on axial-flow

impulse and reaction turbines. An examination of some of the results of

these tests helps to obtain a better understanding of the tip-clearance

loss. Figure 8-1 shows the angle traces at the blade exit of a 5-inch single-

stage turbine (ref. 2). Two things to be noted from the angle traces are

that the flow in the clearance space and near the tip was not fully turned,

2'
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4_
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-2O

-4C
.5

Tip clearance,

percent of

passage height Axial ,,

0 1 2 direction =

1:3 5.0
o 8.0•

lTr +,, Oo,+rw.,,I I I I,
.6 .7 .8 .9 1.0

Ratioof hubradiusto tip radius

FIGURE 8-1.--Variation of exit flow angle with radius ratio for four rotor tip clearances.

(Data from ref. 2.)
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FIGURE 8-2.--Effect of tip clearance on efficiency.

even at the smallest clearance tested, and that underturning of the flow

increased with increasing tip clearance, and this effect occurred all the

way down to the hub. This underturning of the flow unloads the blade

aerodynamically and results in lower turbine output and efficiency. The

decrease in efficiency for this turbine, as well as for two others, is shown

in figure 8-2.

The solid lines in figure 8-2 represent test results from single-stage

(ref. 2) and two-stage (ref. 3) reaction turbines and from a single-stage

impulse turbine (ref. 4). All turbines were unshrouded. The importance

that the level of reaction plays in the clearance loss is clearly evident from

the figure. For the same ratio of tip clearance to blade height, the losses in

efficiency for the reaction turbines were about double that for the impulse

turbine.

The dashed lines in figure 8-2 are estimates of the efficiency losses for

the two single-stage turbines (refs. 2 and 4) as obtained from the curves

published in reference 5 (as fig. 1.6) and reproduced here as figure 8-3.

Extrapolation of the experimental data of figure 8-2 shows that figure 8-3

gives satisfactory estimates of tip-leakage loss for small tip clearances.
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FIGURE 8-3.--Tip-clearance correlation for unshrouded blades• (Data from ref. 5.)

Reviewing the results shown in figures 8-2 and 8-3, it is apparent that the

loss in efficiency increases with increasing reaction, and for moderate to

large ratios of tip clearance to blade height, the loss is appreciable•

In addition to reducing the tip clearance, methods for reducing the tip-

leakage losses include recessing the casing above the blade tip while in-

creasing the blade height, and adding a tip shroud. These loss-reduction

schemes can be used either individually or in combination. The single-

stage impulse turbine of reference 4 was tested at several ratios of tip

clearance to blade height, both without and with the recessed casing and

the tip shroud• Figure 8-4 shows the three general configurations tested

in reference 4, and the turbine-performance results are shown in figure 8-5.

A clearer understanding of the performance characteristics is possible if

the loss mechanisms are considered. The factors affecting turbine work

for the reduced blade-height configuration as compared to a zero-clearance

configuration consist of (1) reduced blade loading area, (2) clearance-gap

leakage flow, (3) mixing of the leakage flow with channel throughflow,
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FmvaE 8-4.--Tip-clearance configurations investigated for impulse turbine (ref. 4).

and (4) blade unloading (as a result of flow going from the pressure side

to the suction side). With the recessed-casing configuration, the blade

extended to the passage outer radius and was of constant height as the

clearance gap was changed by varying the amount of casing recess. There-

fore, the reduced blade loading area was eliminated, and the leakage flow

was reduced because of the indirect leakage path. With the shroud added

to the blade, the blade unloading was eliminated, and the leakage flow was

further reduced. Note from figure 8-5, however, that at tip-clearance
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FIGURE8-5.--Effect of tip-clearance configurations on turbine efficiency. (Data from
ref. 4.)

fractions below some value, about 0.035 in this instance, the shroud no

longer provides an increase in efficiency. This can be attributed to an

increasing friction loss between shroud and casing as the clearance gap

is decreased.

The comparative results shown in figure 8-5 for different blade-tip

geometries are dependent upon that particular design and may not apply

to other turbines. This is particularly true of the shrouded blade, since

the leakage flow depends not only on the clearance span and pressure

difference but also on the number of seals used. With respect to the

recessed-casing configuration, it should be noted that the blade should not

extend into the recess. If it does, the overlapping section will just be

churning stagnant fluid and creating additional losses.

In summary, tip-clearance loss presents a complicated flow problem

influenced by many factors and is not easily predicted with consistent

accuracy. The clearance gap required for a turbine depends primarily on

diameter (larger clearance for larger diameter) and, as seen previously,

the loss increases as the ratio of clearance gap to blade height increases.
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For any given diameter, therefore, the tip-clearance loss increases with

increasing hub- to tip-radius ratio. It becomes increasingly diffacult to

maintain a desired small ratio of clearance gap to blade height as the

turbine, and hence the blade height, becomes smaller. For a given radius

ratio, therefore, the loss is more severe for small turbines and less severe

for larger turbines. If tip leakage is considered to be a problem in a

particular case, it might be worthwhile to carry out tests to evaluate the

leakage effects.

DISK-FRICTION LOSS

The disk-friction loss (or windage loss) is due to the skin friction and

circulation of fluid between the rotating disk and the stationary casing. In

addition, some turbines for hot applications, for example aircraft engines,

have a small steady stream of lower-temperature gas that bathes and cools

the rotor disk. This cooling gas flows along the rotor-disk surface from

near the engine centerline outward to the base of the blades. The qualita-

tive nature of the flow patterns around rotor disks without and with

throughflow of cooling gas are shown in figure 8-6. Equations for es-

timating the associated losses are presented herein.

No Throughflow

For the case with no throughflow, as in figure 8-6(a), the thin layer of

fluid close to the rotating surface is thrown outward by centrifugal action

7//A//////////_

(a_ (b)

(a) Without throughflow. (t)) With throughflow.

FmuaE 8-6.-- Flow patterns for rotating disks.
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and returns via the stationary wall to the inner radius, thereby building

up a continuous circulatory effect. Consider an element of area on one

side of the disk

dA = 2,rr dr (8-1)

where A is the area, in m 2 or ft 2, of one side of the disk, and r is the radius,

in m or ft, of the area element dA. The fluid shear stress r, in N/m 2 or

lb/ft _, acting over this area at the radius r produces a resisting torque to

the disk rotation of

dMo
- r2rr 2 dr (8--2)

2

where Mo is the resisting torque, in N-m or lb-ft, for both sides of a disk

in the case of no throughflow. The shear stress can be expressed as

C/

(8-3)

where

C!

9

P

v.

fluid shear-stress coefficient

conversion constant, 1;32.17 (Ibm) (ft)/(lbf) (sec 2)

density, kg/ma; lb/ft _

tangential component of fluid absolute velocity, m/sec, ft/sec

At the disk surface, the fluid tangential velocity is

V_ = too (8-4)

where w is the angular velocity, in rad/sec. By substituting equation (8-4)

into (8-3), the total torque for both sides of the disk can be written as

Mo = fo a 2__#Cip_2r 4 dr (8-5)

where a is the disk rim radius, in m or ft. Performing the integration yields

w2a 5
Mo=CM,op -- (8-'6)

2g

where CM,o is a torque coefficient for the ease of no throughflow. The disk-

friction loss expressed as power is then the torque times the angular

velocity:

Mow pwaa 5
Pd$ -- -- CM,o --- (8-7)

J 2gJ

where Pd/is the disk-friction power loss, in W or Btu/sec, and J is a
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conversion constant (equal to 1, or 778 (ft)(Ib)/Btu). The form of

equation (8-7) that is found in most handbooks is

Pdl = KdlpNaDr 5 (8--8)

where

Kd!

N

Dr

disk-friction power-loss coefficient

rotative speed

disk rim diameter

A number of investigators have published values of the constant Kds in

equation (8-8) to be used for different circumstances, while others have

made small changes to the exponents to better fit the available data. The

wide assortment of semiempirical equations used to predict this loss is, no

doubt, due to variations of the test-apparatus geometry, the somewhat

oversimplified model from which equation (8-7) is derived, and the

existence of different types of flow that can occur in the space between the

rotor and the casing. One thing that can be noted from equation (8-7)

or (8-8) is that for a given blade speed, lower loss is obtained by having

a smaller diameter and a higher rotative speed.

An extensive investigation has been conducted (refs. 6 and 7) to deter-

mine the effect of chamber proportions on disk friction and to present a

clearer picture of the several modes of flow that may exist. In general,

four modes of flow, or flow regimes, can exist in the axial space between the

casing and the rotating disk, depending on the chamber dimensions and

the flow Reynolds number. The torque coefficient CM.o was evaluated

both theoretically and experimentally in each regime. A description of

each regime and the associated equations for the torque coefficient are as
follows:

Regime I: Laminar Flow, Small Clearance. Boundary layers on the

rotor disk and casing are merged, so that a continuous variation in

velocity exists across the axial gap s. Figure 8-7(a) indicates the nature

of the variations in the radial and tangential components of fluid velocity

at a given radius in the gap. The best equation for torque coefficient, both

theoretically and empirically, is

211-

CM.o- (s/a)i _ (8-9)

where s is the axial distance, in m or ft, between disk and casing, and R is

the Reynolds number defined as

wa 2p
R = -- (8-10)

where u is the dynamic viscosity, in (N) (sec)/m 2 or lb/(ft) (see).
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FIGURE 8-7.--Velocity patterns around rotating (links without throughflow.

Regime II: Laminar Flow, Large Ch,arance. The combined thick-

ness of the boundary layers on the rotor and on the casing is less than the

axial gap, and between these boundary layers there exists a core of rotat-

ing fluid in which no change ill veh)city occurs. Figure 8-7(i)) shows

the variations in the radial and tangential velocity components for this

case. The best theoretical and empirical equations for torque coefficient

arc

CII
CM.o-- (8-11)

1_ 112

where CII is a function of (s/a), as shown in figure 8-8(a), and
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FIGURE8-8.--Evaluation of torque coefficients. (Data from ref. 6.)

3.70 (s/a) 1/1o
CM.o -- (8--12)

R 1/2

respectively.

Regime III: Turbulent Flow, Small Clearance. The turbulent

counterpart of Regime I. The best theoretical and empirical equations

for torque coefficient are

0.0622

CM,o-- (s/a) V4RV4 (8-13)

and

0.080

CM,o-- (s/a)1/6R1/4 (8-14)

respectively.
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Regime IV: Turbulent Flow,

counterpart of Regime II. The

tions for torque coefficient are

Large Clearance. The turbulent

best theoretical and empirical equa-

Civ

C_,O-RI/5 (8-15)

where Civ is a function of (s/a), as shown in figure 8-8(b), and

O.102(s/a) 1/l°
C_,o - (8-16)

RII5

respectively.

The particular flow regime that exists at any Reynolds number can be

determined by plotting torque coefficient against Reynolds number from

equations (8-9), (8-11), (8-13), and (8-15), as shown in figure 8-9 for

several values of s/a. The discontinuities (changes in slope) in the lines

of figure 8-9 indicate transition from one regime to another. In this figure,

the flow regimes are determined by matching the slopes of the lines with

Slopeofcurve Flow Description
regime

' I Laminarflow;merged
boundarylayers

II Laminarflow; separate
boundarylayers

_'_ III Turbulentflow;merged

•, \ _ boundarylayers
_10 -2 \ _ IV Turbulent flow; separate

_'- \ \ _ boundarylayers
_,\_,,

I "\\ _\ Ratioofaxialgap
lOI--- '_ \\ to disk rim radius,

,L - --00,
"_ %_ - _ ,05

:_- I I I I I I [ ["1
1o2 lo3 I@ lo5 lo6 ld I@ I@ lol° lon

Reynolds number, R

FmuRE 8-9.--Theoretical variation of torque coefficient with Reynolds number for no
throughflow. (Data from ref. 6.)
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those shown in the insert in the figure. Torque-coefficient values (ref. 6)

determined experimentally with a 50.8-centimeter (20-in.) disk rotated in

water and oil for several values of s/a verify the theory.

Throughflow

For the case of the rotating disk with throughflow, as in figure 8--6(b),

the friction torque increases with the throughflow. This problem has been

analyzed for low values of throughflow with regime-IV flow. In this case,

it is assumed that the fluid enters the chamber near the centerline with no

angular velocity and leaves at the rim with some angular velocity K_a.

The symbol Ko represents the ratio of the angular velocity of the rotating

core of gas to the angular velocity of the disk. The increase in torque,

AM, over that without throughflow is the rate of change of angular

momentum of the fluid flowing through the system:

AM=2p Q- (gowa)a=2p Q K_a 2 (8-17)
g g

where Q is the volumetric throughflow rate, in m$/sec or fP/sec, in the

clearance space on one side of the disk. The total torque for the through-

flow case is then

M = Mo+AM - CM'°pw2aS+2 p QKowa 2 (8-18)
2g g

The value of Ko is approximately 0.45 for s/a ratios from 0.025 to 0.12.

An assessment of the power loss can be obtained by calculating the

friction torque of the throughflow case compared to that of the no-

throughflow case:

M 2pQK_a _
--=It -1+
Mo 1

-_ C M,op_a 5

4Ko Q

CM ,o wa 3

(8-19)

Substituting equation (8-16) for CM,o yields

M KoR 1/5 Q Ko
= 1 +39.2 T (8-20)

--_-o= 1 + o.0255is/a)l/l ° we _ (s/a)m o

where T is a dimensionless throughflow number defined as

V = _ R m (8-21)
wa

According to the data of reference 7, equation (8-20) predicts values

that are somewhat high; moreover, the effect of s/a is not accurately
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Ratio of axial gap
to disk rim radius,

sla
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_ 1.2--

g
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0 .01 .02 .03 .04 .05

Throughflow number. T

FIGURE 8-10.--Empirical variation of torque with throughflow number. (Data from

ref. 7.)

given by (s/a) m°. Empirically, the test data are represented to within

+ 5 percent by the relation

M T
- 1 + 13.9Ko (8-22)

Mo (s/a) 1/8

Equation (8-22) is plotted in figure 8-10 for several s/a values.

PARTIAL-ADMISSION LOSSES

Full-admission axial-flow turbines are used for most applications;

however, unusual conditions sometimes arise for which a partial-admission

turbine may be a better choice. If, for example, the design mass-flow rate is

so small that a normal full-admission design would give very-small blade

heights, then it may be advantageous to use partial admission. The losses

due to partial admission with long blades may be less than the leakage

and low Reynolds-number losses of the full-admission turbine having short

blades. In addition, for a given rotative speed, partial admission allows the

freedom of larger diameter and higher blade-jet speed ratios. Also, the

use of partial admission may be a convenient way to reduce power output
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of an existing full-admission turbine (physically block some of the stator

passages). In general, partial-admission turbines have high specific-work

output and low volumetric-flow rates.

As mentioned previously in this chapter, the partial-admission losses

are the pumping loss in the inactive blade channels and the filling-and-

emptying loss encountered as the blades pass through the active sector.

This latter loss has been referred to as expansion, scavenging, or sector

loss. The mechanisms of partial-admission losses are not clearly or fully

understood, but they do result in a decrease in output power and efficiency

when compared to the same turbine operating with full admission.

The pumping loss is that loss caused by the inactive blades rotating in

a fluid-filled casing, and expressions for it are somewhat similar in form to,

and often combined with, the expression for the disk-friction loss. These

expressions all seem to trace back to reference 8, where the results of

several experimental investigations are summarized. The equations for

estimating pumping-power loss that resulted from these investigations

showed that the effects of blade height and diameter on the pumping-

power loss are quite uncertain, as evidenced by variations in the exponents

on these terms. Further, the nature and location of obstructions (adjacent

blade rows, casing wall, etc.) or lack of such in the vicinity of the three

open sides of the blade channel were accounted for only by differences in

the empirical loss coefficient. Therefore, it appears that a generally

applicable expression for pumping-power loss is yet to be found.

The one equation perhaps most often used is

where

Pp

K_

u.
l

D,,

E

Pp = KpoU,,,al l'sD,,, ( 1 - _) (8-23)

pumping-power loss, W; (ft) (lb)/sec

pumping-power loss coefficient, 1/m_/_; (lbf) (seO)/(Ibm) (ft 3n)

blade mean-section speed, m/sec; ft/sec

blade height, m; ft

blade mean-section diameter, m; ft

active fraction of stator-exit area

The value of the coefficient Kp as reported in reference 8 and converted

to the units used herein is 3.63 l/m _/2, or 0.0105 (lbf) (sec2)/(lbm) (fts/2),

for an unenclosed rotor. For the same rotors enclosed, the coefficient

values were one-quarter to one-half of the above values. More recently,

the combined disk-friction and pumping losses for a single-stage rotor

enclosed by the turbine housing were reported in reference 9. If a disk-

friction loss estimated by equation (8-7) is subtracted from the combined

losses of reference 9 and if the remaining loss is converted to the form of

equation (8-23), the coefficient Kp is found to be 5.92 ]/m _/_, or 0.0171

(lbf) (sec _)/(Ibm) (ft3n). This is significantly higher than the coefficients
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reported in reference 8, and the difference is attributed to primarily the

lack of an adequate loss model.

The other partial-admission loss shall herein be called the sector loss.

Imagine a blade channel as it just starts to enter the active sector. It is

filled with relatively stagnant fluid that must be pushed out by the high-

momentum fluid leaving the nozzle. This scavenging will continue until

the blade channel is completely within the active sector. As the blade

channel passes out of the active sector, a second sector loss occurs. As the

inlet to the blade channel is cut off from the nozzle active arc, less and

less high-momentum fluid enters the channel. Since this fluid has the

entire blade channel area to flow into, it is rapidly diffused as it flows

through the rotor. These losses cause an overall decrease in the momentum

of the fluid passing through the rotor, thus decreasing the available energy

of the fluid. It was reported in reference 10 that this decrease in momen-

tum may be found by multiplying the rotor-exit momentum by a loss

coefficient

where p is the rotor-blade pitch, in m or ft, and f is the nozzle active arc

length, in m or ft. Effectively, K, is a rotor velocity coefficient that ac-

counts for the sector loss.

The effect of the sector loss on turbine efficiency is determined as

follows. With the use of equations (2-6) and (2-14), from volume 1, and

the associated velocity diagram geometry, we can express the specific
work of an axial-flow turbine as

where

Ah'

Wu

W

0

g_ UmAh' = ( W_ a- Wu ,2) = _ ( Wl sin 01- W2 sin 02)
(s-25)

turbine specific work, J/kg; Btu/lb

tangential component of relative velocity, m/sec; ft/sec

relative velocity, m/sec; ft/sec

fluid relative angle measured from axial direction, deg

The subscripts 1 and 2 refer to the rotor inlet and exit, respectively. For

an impulse turbine (which most partial-admission turbines are), where

01= -02,

Um

Ah' = _-_ W, sin Ox(1 +K,_) (8-26)

where K_ is the rotor relative-velocity ratio W2/W_ for the full-admission

turbine. For the partial-admission turbine, applying the sector loss
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coefficient yields

W_ = KwK,WI

So, for the partial-admission turbine,

Ah'r_=-_ Wt sin _I(1+K_K,)
qJ

Since efficiency is

(8-27)

(8-28)

hh'
(8-29)

- Ah_a

where Abed is the turbine ideal specific work, in J/kg or Btu/lb, the ef-

ficiency of the partial-admission turbine with respect to that of the full-

admission turbine is

nm Ahrro
(8-30)

into equation (8--30) then

Ah'

Substituting equations (8-26) and (8-28)

yields

I+K,,K, (8-31)
_=n 1 -I-K_

The efficiency penalty expressed by equation (8--31) accounts for the

sector loss only; the pumping loss discussed earlier will reduce the overall

efficiency further. Equation (8-24) indicates that a partial-admission

turbine rotor should have closely spaced blades to reduce the sector loss;

however, as more blades are added to the rotor, the blade profile loss will

increase. Also, the effect of the number of rotor blades on the pumping

loss is not known. Therefore, the complete optimization of a partial-

admission design cannot be done analytically at present.

In the study of reference 9, the efficiency of a small axial-flow turbine

was determined over a range of admissions from 12 to 100 percent. The

total loss due to partial-admission operation was taken as the difference

between the full- and the partial-admission efficiencies. The blade pumping

and disk-friction losses were measured separately and were subtracted

from the total partial-admission loss to give what was called other partial-

admission losses. These other losses include the sector loss and any loss

due to leakage from the active sector to the inactive sector. The partial-

admission losses of reference 9 are plotted against admission-arc fraction

in figure 8--11. The combined pumping and disk-friction loss increased

with decreasing arc fraction, while the other losses remained nearly con-

stant over the range of arcs tested.

Predicted cfficiencies (from ref. 10) are plotted against blade-jet speed
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Fmuam 8-12.--Design-point performance of partial- and full-admission turbines.
(Data from ref. 10.)

ratio (see discussion in vol. 1, ch. 2) in figure 8-12 for a particular turbine

operating with full admission and with three different amounts of partial

admission. The expected reduction in peak efficiency with reduced arc of

admission is seen. The important thing to note from this figure is the

reduction in optimum blade-jet speed ratio as admission arc is reduced.

Aerodynamic efficiency is a maximum at a blade-jet speed ratio of 0.5,
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irrespective of admission arc, and decreases with decreasing blade speed.

Blade-pumping and disk-friction losses, which decrease with decreasing

blade speed, become a larger part of the gross aerodynamic power as

admission arc decreases. Therefore, as admission arc is reduced, the

maximum net output power (aerodynamic power minus blade-pumping

and disk-friction power) is obtained at lower blade speeds. Thus, for the

design of a partial-admission turbine, the partial-admission losses must be

factored into the design before an optimum or near-optimum blade-jet

speed ratio can be selected.

INCIDENCE LOSS

The incidence loss is that loss which occurs when the gas enters a blade

row (either stator or rotor) at some angle other than the optimum flow

angle. Flow incidence would normally only occur at off-design conditions,

since, theoretically at least, all gas and blade angles are matched at the

design condition. The nomenclature used when speaking of incidence is

shown in figure 8-13. The dashed line running through the blade profile

is the camber line and defines the blade inlet angle. The incidence angle
is defined as

i = a -- ab (8-32)

where

i incidence angle, deg

fluid flow angle from axial direction, deg

ab blade inlet angle from axial direction, deg

The fluid flow angle must be the absolute angle for stators and the relative

angle for rotors. The incidence angle may be positive or negative, as

indicated in figure 8-13. The sign of the incidence angle is important
because cascade tests have shown that the variation of loss with incidence

angle is different for positive and negative angles.

Axial
direction

IB,

Vp

/
i -a - ob

FIOuRE 8-13.--Blade incidence nomenclature.
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Low-reaction _/_
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Incidence angle, i

FIGUaE 8-14.--Characteristics of blade incidence loss.

FiauaE 8-15.--L(ical flow separation on blade surface.

The general nature of the variation of incidence loss with incidence angle

is shown by figure 8-14, which represents a summary of cascade test

results. The loss curve is not symmetrical about the zero incidence angle,

but shows a loss that is larger for positive incidence than for negative

incidence. This may be due to some local separation on the suction surface

at large positive incidence, as indicated in figure 8-15, and the lack, or

smaller area, of separation at the same value of negative incidence. Also,

blades in which the mean acceleration of the gas flow is large (high-

reaction blades) have a wide range of incidence over which loss is low,

whereas low-reaction blades have higher losses for the same incidence

range.
Another thing to be noted from figure 8-14 is that the minimum loss

does not occur at zero incidence, but at some small amount of negative

incidence. This may be explained by the sketch of figure 8-16. The stag-

nation streamlines for two inlet flow angles are shown; one at zero in-

cidence and the other at some small negative incidence with respect to

the blade inlet angle. Both tests and theory show that the stagnation

streamline curves upward as the flow impacts on the blade leading edge,

and the true zero incidence occurs when there is some negative incidence
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a<o

ab

F[aua_ 8-16.--Curvature of stagnation stre,_mline at blade inlet.

relative to the free-stream flow. The incidence angle at minimum loss is

usually -4 ° to -8 °. Because of this, some turbine designers design their

blades with a small amount of negative incidence, while others do not

because of the small difference involved.

The magnitude of the incidence loss takes on importance when the

off-design performance of a turbine must be predicted. A method for

determining incidence loss based on test data is described in reference 11.

An analytical method is described here with the aid of figure 8-13. The

inlet velocity V_ can be resolved into a component V. normal to, and a

component Vp parallel to the blade inlet direction (camber line at inlet).

If it is assumed that the parallel component passes through the blade row

without any entry loss and that the normal component is entirely lost.,

the recovered kinetic energy is

V_ 2 VI' (V,_ 2 V_'
2gJ-2gd \-_J =2_ c°s_ i (8-33)

and the kinetic-energy loss due to incidence is

Li- V12
-2_ (1--cos 2i)

(8-34)

In order to account for the differences in loss variation with positive

and negative incidence, the effect of blade-row reaction, and the minimum

loss not occurring at zero incidence, equation (8-34) has been generalized
to

V12

L,=_ I-l--cos" (i-io7,_)"1
zg,I

(8-35)

where ion, is the optimum (minimum-loss) incidence angle. This type of

equation has proved satisfactory when used in off-design performance
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prediction methods such as that of reference 12. Where specific incidence-

loss data are lacking, values of n = 2 for negative incidence and n = 3 for

positive incidence have been used satisfactorily.
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SYMBOLS

area on one side of rotor disk, m2; ft 2

disk rim radius, m; ft

coefficient used to evaluate Ci.o in regime I I by equation (8-11)

coefficient used to evaluate Ci,o in regime IV by equation (8-15)

fluid shear-stress coefficient

torque coefficient with no throughflow

diameter, m; ft

nozzle active arc length, m; ft

conversion constant, 1;32.17 (Ibm) (ft)/(lbf) (seC)

turbine specific work, J/kg; Btu/Ib

turbine ideal specific work based on ratio of inlet-total pressure

to exit-static pressure, J/kg; Btu/lb

incidence angle, deg

conversion constant, 1; 778 (ft) (lb)/Btu

disk-friction power-loss coefficient

ratio of rotating-core angular velocity to disk angular velocity

pumping power loss coefficient, 1/mY2; (lbf)(seC)/(lbm)(ft 'v2)
sector loss coefficient

rotor velocity coefficient for full-admission impulse turbine

incidence loss, J/kg; Btu/lb

blade height, m; ft

frictional resistance torque for both sides of rotor disk, N-m;
lb-ft

rotative speed, tad/see; rev/min

exponcnt in equation (8-35)

disk-friction power h)ss, W ; Btu/sec

pumping power loss, W; Btu/sec

rotor-blade pitch, m; ft

volumetric throughflow rate, m_/sec; ft'_/scc

Reynolds number

radius, m; ft

axial distance between rotor disk and casing, m; ft

blade speed, m/see; ft/sec

absolute velocity, m/see; ft/sec

relative velocity, m/sec/ft/sec

fluid flow angle from axial direction, deg

blade inlet angle from axial direction, deg

fluid relative angle measured from axial direction, deg

active fraction of stator exit area

turbine static efficiency

dynamic viscosity, (N) (sec)/m2; lb/(ft) (see)

density, kg/m'_; lb/ft 3
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T

T
fluid shear stress, N/m_; lb/ft _

throughflow number defined by equation (8-21)

angular velocity, rad/sec

Subscripts:

m mean section

n component normal to blade inlet direction

o no throughflow

opt optimum

p component parallel to blade inlet direction

pa partial admission

r disk rim

u tangential component

_rotor inlet
1 ],blade-row inlet

2 rotor exit
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CHAPTER9

SupersonicTurbines

ByLouisJ.Goldman

A supersonic turbine stage is defined as one that operates with a

supersonic relative velocity entering the rotor. Supersonic turbines

have potential application in systems where high-energy fluids (those

having low molecular weights and', consequently, high expansion

velocities) are used and/or where high pressure ratios are available.

They have been used by NASA in rocket turbopump systems and

have been studied for use in open-cycle auxiliary-power systems

for space.

Supersonic turbines have the potential for large specific work out-

puts because of the high pressure ratio. For a given power level, this

type of turbine would require a small amount of driving fluid and a

small number of stages. It would, therefore, be light-weight and rel-

atively simple. Because of high jet velocities, however, supersonic

turbines generally operate at low blade-jet speed ratios (often less

than 0.2). As indicated in chapters 2 and 3 (vol. 1), low blade-jet

speed ratios correspond to low static efficiencies, primarily because of

high exit-kinetic-energy losses. For systems where the primary design

criteria are a minimum number of stages along with minimum fluid

consumption, the ideal work available from the high pressure ratio

could more than offset the lower turbine efficiency and may result in a

supersonic turbine being the optimum design choice.

To keep the efficiency of supersonic turbines at the highest possible

level, proper design methods must be used. Both supersonic stators

and rotors are designed by the method of characteristics. In this

chapter, supersonic turbine design and performance are discussed

under the following headings: (1) method of characteristics, (2) design
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of supersonic stator blades, (3) design of supersonic rotor blades, and

(4) operating characteristics of supersonic turbines.

METHOD OF CHARACTERISTICS

The method of characteristics is a general method for solving a

certain type (hyperbolic) of partial differential equation. The equa-

tions of motion for the two-dimensional supersonic flow of a perfect

gas are of this type. Only this type of flow will be discussed in this

chapter. Other types of supersonic flow (i.e., axially symmetric and

certain non-steady flows) also can be handled by this method (see

ref.1).

The method of characteristics can be developed in two ways: (1)

by formal mathematical methods and (2) by simple dynamical con-

siderations. The derivation based on dynamics stresses the physical

processes involved. It will be the only one presented here. The math-

ematical derivation is useful in extending the method to other similar

equations. Both developments are given in references 1 and 2.

Flow Along a Single Wall

The simplest supersonic flow field that satisfies the equations of

motion (other than uniform parallel flow) is the flow through a single

vanishingly weak standing wave. These waves, called Mach waves,

can be considered to be very weak oblique shock waves. The entropy

change through the wave is essentially zero. Examples of weak ex-

pansion and compression waves are shown in figure 9-1. As will

be shown subsequently, an expansion wave is produced when the
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wall bends away from the flow, and a compression wave is produced
when the wall bends toward the flow.

The bend (of angular magnitude dO) in the wall can be considered

as a disturbance which produces the wave, which is required if the flow

is to follow the wall. The bend in the wall may also be considered as

a boundary condition to which one solution is a standing Mach wave

with uniform flow fields on both sides of it. The importance of this

solution can be appreciated when it is realized that any curved surface

may be considered to be made up of a finite number of straight sections.

The flow along a curved surface can, therefore, be approximated as

the flow through a series of Mach waves. The dynamics of the flow

through a weak expansion wave will now be discussed.

Consider the standing Mach wave included at an angle _ to the di-

rection of initial velocity V as shown in figure 9-2. The conservation

of mass requires that

A= p V,, = (p+dp) (V. +dV.) = constant (9-1)

where

w mass flow rate, kg/sec; lb/sec

A flow area along Mach wave, m_; ft 2

p density, kg/m3; lb/ft a

V. velocity component normal to Mach wave, m/sec; ft/sec

Neglecting second-order terms (i.e., dp dV.) gives

 V.+V dp=o (9-2)

Conservation of momentum in the tangential direction gives

pV.V ,= (p k- do) ('[7. + dV.) (V ,+ dV ,) (9-3)

t

Ma¢,//
wave/ Z_Z_ n

+ dV
p p +dp

U//////////////////_
•. _ /////,

dO

FIGURE 9-2.--Flow through a weak expansion wave, and associated nomenclature.
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where Vt is the velocity component tangent to the Mach wave, in

m/sec or ft/sec. Substituting equation (9-1) into equation (9-3)

gives

y,,V,= pV,,(V,+dVt) (9-4)

or

dV,=o (9-2)

This means that the tangential component of velocity remains con-

stant as the flow crosses the wave. Consequently, the velocity change

dV is equal to dV, and is directed normal to tile Mach wave.

Conservation of momentum in the normal direction gives

gp--b pV,,Z=g(p + dp) --b (p--b dp) (V,,--b dV,) _ (9-6)

where

g conversion constant, 1 ; 32.17 (lbm) (ft)/(lbf) (sec 2)

p absolute pressure, N/m2; lb/ft 2

Substituting equation (9-I) into equation (9-6) and expanding yields

O=g dp.-}-pVn dVn (9-7)

Eliminating dV,_ by using equation (9-2) results in

V.--g (9-8)

Equation (1-57) of chapter 1 (vol. 1) states

a---- _/g (_)s (9-9)

where a is speed of sound, in m/sec or ft/sec. Since the differential

process being considered here is isentropic, substitution of equation

(9-8) into equation (9-9) shows that

V,,:a (9-10)

Therefore, the component of velocity normal to the Mach wave must

be equal to the speed of sound. Noting from figure 9-2 that

Vn=V sin tt (9-11)

gives

V, a 1
sin _V-V M (9-12)

where M is the Mach number. The angle ft is called the Mach angle

and has meaning only for M> 1.
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Mach

wa ve

V _" _ "-- -.... du 713

/ v+dv

FIGURE 9-3.--Velocity diagram for flow through a weak expansion wave.

The relation between change in flow angle dO and velocity change

dV can be found from the velocity relations shown geometrically in

figure 9-3. In the limit (dO-*0),

and

where

du

dv

du=dV (9-13)

dv=Vdo (9-14)

du dV

tan B= _-_= _ (9-15)

component of dV parallel to initial velocity V, m/sec; ft/sec

component of dV normal to initial velocity V, m/sec; ft/sec

Since, as can be determined from equation (9-12),

1

tan/_=_/_-1_ 1

equation (9-15) becomes

(9-16)

dV do

V -- 4_-1 (9-17)

It is more convenient if dV/V is expressed in terms of the critical

velocity ratio M*=V/VcT rather than Mach number M. The critical

velocity Vcr is equal to the speed of sound at the critical condition

(M=I) and can be evaluated from equation (1-63) of chapter 1

(vol. 1). The relation between M* and M is given by the equation
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/ 2 M, _

M= / _+i (9-18)

V 1 7--1 M, _

where 7 is the ratio of specific heat at constant pressure to specific

heat at constant volume. Since Vc, is constant (because the total

temperature is constant),

dV dM*
V M* (9-19)

Substituting equations (9-18) and (9-19) into equation (9-17) gives,

finally,

M .2-1 dM*

dO: - (9-20)
1 7--1 M, _ M*

7+1

This is the differential relation between a change in flow angle and a

velocity change through a single weak expansion wave. A similar

relation could have been obtained for a single weak compression

wave, except that equation (9-20) would have a minus sign.

Let us now consider the flow along a curved (convex) surface, as

shown in figure 9-4. Assume that the surface is composed of a number

of small bends, each producing a Mach wave. The relation indicated

by equation (9-20) will be satisfied through each Mach wave provided

the changes in 8 are small. The combined flow field will, therefore, be a

solution to the equations of motion for infinitesimal values of dO.

This type of flow is called Prandtl-Meyer flow, or simple wave flow.
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FmURE 9-4.--Representation of flow along a convex wall.
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If the number of segments approaches infinity, the flow field becomes

continuous. Integration of equation (9-20) gives

•0= _1_I/4/_--4-1arc_ sin [(3,-- 1 )M*_-- _¢]+ 1 arc sin _,_-_ -- 3,) + constant/'_ -4-1 \

(9-21)

If the constant is chosen such that 0=0 when M*=I(M=I), the

angle given by equation (9-21) is called the Prandtl-Meyer angle,

and it is tabulated in many references (e.g., ref. 1). The Prandtl-

Meyer angle is the angle through which the flow must turn in going

from Mach 1 to the required Mach number and is often given the

symbol _ (or u). Therefore,

/,-451
_r sin "_ 1E2-arcI_ _A- arc [(_--1 )M*_--_] J --_ sin

(9-22)

Note that the change in flow direction (50) in going from V1 to V2 is

given by the change in the respective Prandtl-Meyer angles. That is,

(9-23)Oz-- 01: 50: _2-- _I

The derivation has been for expansion waves. For compression

waves, there would be a minus sign in equation (9-17). Therefore,

the velocity decreases (M decreases) for flow through a compres-

sion wave. This means that the Mach angle _ increases for flow

along a concave wall, shown in figure 9-5. The Mach lines, there-

hock

Machwaves  ,,4/

_\\\\\\\\\\_\\\\\ \"r.... _o2

d61

FIGURE 9-5.--Representation of flow along a concave wall.
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fore, converge and form a shock as shown in the figure. The derived

relations, of course, would be invalid in the shock region because of

the entropy increase.

FIGURE 9-6.--Hodograph characteristic curves.
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The relation between the flow angle 0 and the critical velocity

ratio M* (eq. (9-21)) can be plotted on a polar diagram, as shown

in figure 9-6. This type of diagram is called a hodograph plot. The

curves of this plot are characteristic of the flow around any two-

dimensional convex surface and are called hodograph characteristics.

The value of the constant of equation (9-21) has been varied to gen-

erate these curves. The curves passing through M*= 1 at 0----0 represent

the variation of Prandtl-Meyer angle with critical velocity ratio as

expressed by equation (9-22).

An important property of the hodograph characteristics is that the

normals to the characteristics are parallel to the corresponding

Mach wave in the physical plane. This allows the flow field to be

constructed graphically and is best explained by a simple example.

Consider the flow along a curved wall. After the wall is divided into

a finite number of segments (fig. 9-7(a)), the initial point PI is located

on the characteristic curve (fig. 9-7(b)) corresponding to V1 (line

OP_ parallel to V1). Point P_ is located in the hodograph diagram by

drawing the line OP2 parallel to Ur2 (or wall segment S_). Note that

/)2 must lie on the expansion characteristic curve through P1. The

Mach wave separating V1 and V2 is found by drawing the normal

(shown as N1 in the figure) to the characteristic segment P_P2. This

direction is parallel to the Mach wave direction in the physical

plane. The preceding process is continued through the additional

segments.

The graphical procedure is, at best, cumbersome to use. The pro-

cedure may be made entirely numerical if it is recalled that the direc-

_ Math waves

lo_-,___.._/ / /

-15,-J \ \,

Cb_

(a) Phy,_ical plane. (b) Hodograph plane.

FIGURE 9-7.--Flow along convex wall.
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/ '_,]dC h waves

0

cai (hi

(a) General case. (b) Limiting case.

FIaURE 9-8.--Flow along convex wall with Math waves intersecting at one

point.

tion of the Mach wave is given by the Math angle _. Since finite

changes occur in the solution of practical problems, it is usually

assumed that the waves lie at the Mach angle corresponding to the

average speed between the two points, measured relative to the average

direction of the flow between the two points. The flow past a wall

may now be constructed completely numerically. The hodograph

diagram, though, is still useful for visualization.

A special case of flow along a single wall occurs if the wall is so

shaped that the Mach lines pass through a common point, as shown

in figure 9-8(a). Now imagine that the wall approaches the common

point 0. The limiting case is represented by figure 9-8(b), where it is

seen that a single large bend has replaced a number of small bends.

This type of flow is often called corner-type flow, or flow around a

corner, and as will be seen later, is important to the design of super-

sonic nozzles with sharp-edged throats. Equation (9-21) is still valid
for this case.

Flow Between Two Walls

The method of solution used for the flow along a single wall can be

generalized to handle the flow between two walls. Consider the initially

uniform parallel supersonic flow bounded by two walls as shown in

figure 9-9. Suppose that both walls are deflected outward the same

amount. The flow is symmetric about the centerline of the channel.

As before, the flow will be constructed by dividing the walls into a

finite number of straight line segments, denoted here by S_ and S'_, S_

and S'_, and $3 and S'3. The initial parallel flow field in region 1 is

represented by the point P_ in the hodograph diagram. The line OP_

represents the direction and magnitude of the velocity V_. The flow
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(a) Physical plane. (b) Hodograph plane.

FIOUR_ 9-9.--Flow between two walls.

in regions 2 and 2' (points P2 and P'2 in the hodograph diagram) can

be determined, as before, for the flow through a weak expansion wave.

The lines OP2 and OP'2 are parallel to V2 and V'2, respectively.

The problem now is to determine what happens to the flow after the

two initial Mach waves intersect. Flow fields 2 and 2' must be sep-
---4

arated by another flow field, since V2 and V'2 are not in the same

direction. Consider that the flow field 3 is separated from 2 and 2' by a

continuation, in modified form, of the initial Mach waves M, and M'I.

A jump from region 2 through any wave can satisfy the equations

of motion only if the end point lies on a characteristic through P2; that

is, C1 or C'2 (since these curves represent eq. (9-21) graphically).

Similarly, a iump from region 2' must lie on characteristic C'L or C2.

To satisfy both sets of conditions, the end point of the jump represent-

ing the flow field 3 must be either point P3 or P1 in the hodograph plane

The end point being P, can be ruled out because this would mean that

the extensions of the expansion waves are compression waves, which

makes little physical sense. The end point being P3 in the hodograph

plane makes sense because it represents further flow expansion. The

direction of the extensions M_ and M'2 of the initial Mach waves are

given by the normals to the segments P'2P3 and P2P3, respectively,

in the hodograph plane. Because of the assumed symmetry of the

flow, the velocity V3 is parallel to V_. These procedures can be used to

construct the flow field piecemeal until one of the waves advancing

across the channel strikes the wall. A new type of solution is now

required.

259



TURBINE DES,IGN AND APPLICATION

Consider the flow in field 4, which is parallel to the wall segment

Sa. The flow in field 5 is not parallel to the wall. Therefore, field

5 cannot extend the wall, and a new field 6 must separate it from the

wall. The flow in field 6 is parallel to the wall and, therefore, point

P_ in the hodograph plane must lie on the extension of line OP4,

because the flows in fields 4 and 6 are in the same direction. Also, P_

must lie on one of the characteristics through Ps, that is, C_ or C'3.

According to arguments similar to those used before, these conditions

require that P8 be located as shown in the hodograph diagram, where

the wave between P5 and P6 is an expansion wave. In general, an

expansion wave striking a solid boundary reflects as an expansion
wave. The construction of the flow in the interior of the channel

proceeds as before.

As seen from the foregoing discussion, the flow in the channel may

be approximated by a number of small quadrilateral regions in each of

which the velocity is constant. The sides of the quadrilaterals are the

Mach waves. The equations of motion are satisfied in finite form

across each wave and, therefore, are approximately satisfied through-

out the entire flow field. This type of procedure is called the "field

method," since the stream properties are found in small regions, or

fields. Another calculation procedure, known as the "lattice-point

method," is often used in supersonic flow problems. In this procedure,

the stream properties are found at the intersections, or lattice points,

of the Mach net. Both methods are, for most practical situations,

identical. The "lattice-point method" will not be discussed further.

Both methods are described in reference 1.

Summary of Elementary Flow Solutions

The flow solutions previously discussed, as well as others that are

used for the design of supersonic stator and rotor blade sections, are

summarized in figure 9-10. For each case, the physical situation is

shown along with the hodograph solution. Figures 9-10(a), (b), and

(c) show the previously discussed cases of a weak expansion wave, the

intersection of expansion waves, and the reflection of an expansion

wave from a solid boundary, respectively. In figure 9-10(c), the re-

flected wave is at a slightly smaller Mach angle than is the incident

wave because of the higher Mach number associated with the flow
across the reflected wave.

Figure 9-10(d) shows the cancellation of an expansion wave at a

solid boundary. A bend at the proper location in the top wall is made

in the same direction and of the same magnitude as the flow deflection

produced by the wave. The boundary conditions are, therefore, satis-

fied without any additional (reflected) waves.
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Figure 9-10(e) shows the solution for the flow field beyond the inter-

section of an expansion wave and a compression wave. The hodograph

point representing region D must lie on the intersection of character-

istic curves passing through B and C, as shown. Therefore, each wave

continues unchanged in type beyond the intersection.

6

(al

6

/

b

OD BA

?//'//_}i"///d ;:P; ;,, .¢; ; ;4,:,_/_

_c_

(a) Weak expansion wave.

(b) Intersection of expansion waves.

(c) Reflection of an expansion wave from a solid boundary.

FlovRs 9-10.--Elementary flow solutions.
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A _on wave

(fl

(d) Cancellation of expansion wave at solid boundary.

(e) Intersection of expansion and compression waves.

(f) Reflection of expansion wave from a free boundary (constant pressure).

FIGURE 9-10.--Concluded.

A case that is not encountered in the design of supersonic blade

sections, but may be of general interest, is shown in figure 9-10(f).

This is the reflection of an expansion wave from a constant-pressure

free boundary. The boundary condition requires that the pressure be
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constant along the outside streamline. Since the flow is isentropic, the

velocity magnitude of all the flow fields lying along the boundary must

be equal. Therefore, field C must be as shown in the hodograph plane.

In general, an expansion wave reflects from a free boundary (constant

pressure) as a compression wave.

DESIGN OF SUPERSONIC STATOR BLADES

One of the most important uses of the method of characteristics

is its application to the design of a channel to produce uniform, parallel

flow at supersonic speeds. This is the basis of the design of two-

dimensional nozzles for supersonic wind tunnels. This type of nozzle

also has application to supersonic-turbine stator blades, since it is

desired to have uniform parallel flow entering the rotor. Only the

design of a stator based on this type of nozzle will be discussed here.

Nozzles Producing Uniform Parallel Flow

A supersonic nozzle that produces uniform, parallel flow is shown

in figure 9-11. Since it is required that the flow be parallel and super-

sonic, the wall must first curve outward (AD) and then curve in again

(DE), so that at the exit, the wall is again parallel to the initial flow.

Point D is the point where the wall has its maximum slope. It is usually

assumed that the flow at the throat is uniform, parallel, and sonic

(M----1). Because of the nozzle symmetry, the nozzle axis is a stream-

line and may, for design purposes, be replaced by a solid boundary.

Therefore, only one half of the nozzle need be designed.

The flow region ABCDA is called the expansion zone. The curved

wall AD generates expansion waves which reflect off the centerline.

The calculation procedure is the same as was discussed in the section

[

B ¢

FIGURE 9-11.--Supersonic nozzle producing uniform, parallel flow.
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"Flow Between Two Walls." The region DCED is called the straighten-

ing section, and the wall in this section is curved so that the incoming

expansion waves are cancelled. The method of cancelling waves was

seen in the section "Summary of Elementary Flow Solutions." The

flow past CE is uniform, parallel, and supersonic. The final Mach

number depends on how much expansion occurs between A and D.

For large exit Mach numbers, a nozzle of this type may be too long

for supersonic turbine applications. In these cases, a limiting form of

this type of nozzle is used.

A nozzle with a sharp-edged throat, shown in figure 9-12(a),

produces uniform, parallel flow in the shortest possible length. It is a

limiting form of the nozzle described previously (fig. 9-11), where

points A and D coincide. The flow expands around the sharp edge

(corner flow), producing waves that are reflected by the centerline.

Cancellation of the reflected waves is again used to obtain uniform

parallel flow at the exit. The hodograph diagram (fig. 9-12(b)) shows

that one half of the expansion occurs as a result of the corner flow,

and the other half as a result of the reflected waves. Therefore, the

wall bounding region 2 is set at an angle equal to the Prandtl-Meyer

angle _, which is half of the design exit Prandtl-Meyer angle _.

A computer program has been written (ref. 3) to design supersonic

nozzles with sharp-edged throats by the method of characteristics.

Only the supersonic portion of the nozzle is designed by the program.

The input to the computer program includes the desired exit Mach

number and the specific-heat ratio 7 of the working fluid. The program

output gives the coordinates of the nozzle. The program of reference

3 does not account for any flow losses.

A,D _ [ _,_

I 3

/
_,5" ]

181 I1);

(a) Physical plane. (b) Hodograph plane.

FIGURE 9-12.--Nozzle with sharp-edged throat.
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Stator Nozzles

The sharp-edged-throat nozzle just discussed serves as the basis

for the design of minimum-length (chord) supersonic stators. Addi-

tional considerations for a stator as compared to the nozzle previously

Ideal nozzle -_
t

/

Displacementth ickness-,
\

\
\

Straight sectior_

Diverging
section-'-.

/
/

/
/
/

/
/

/
/

/

/_ozzle

angle

Converging
section-_

\

Tangential
direction

t_
Axial _Trection

FIow_

FIGURE 9-13.--Design of supersonic stator nozzle with sharp-edged throat.
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discussed are the flow turning and the desire to include flow and

energy losses.

A supersonic-turbine stator blade and channel section of the type

being discussed herein is shown in figure 9-13 and will be referred to

as a stator nozzle. The stator nozzle consists of three sections: (1) a

converging (subsonic) section, (2) a diverging (supersonic) section,

and (3) a straight section on the suction surface. The converging

section accelerates the flow to sonic speed and can be designed by

the methods of chapter 5 (vol. 2). In order to minimize losses, the

converging section is designed to produce all of the turning of the

flow. The diverging section accelerates the flow to the desired free-

stream Mach number at the exit. This section is designed by the

method of characteristics as previously discussed. The straight section

on the suction surface completes the nozzle profile, and its length is

determined by the required nozzle angle.

A computer program for the design of sharp-edged-throat super-

sonic stator nozzles, including a correction for losses, is presented in

reference 4. An ideal (no loss) nozzle profile, indicated by the dashed

lines in figure 9-13, is first designed by the method of characteristics.

Boundary-layer parameters (displacement thickness, momentum

thickness, etc.) are then computed for the ideal profile by methods

discussed in chapter 6 (vol. 2). The final profile is then obtained by

adding the local displacement thicknesses to the ideal nozzle coordi-

nates as indicated in figure 9-13. The nozzle efficiency is obtained from

the boundary-layer parameters as described in chapter 7 (vol. 2).

DESIGN OF SUPERSONIC ROTOR BLADES

Two methods that have been proposed for the design of supersonic

rotors are discussed herein. Both design methods use the method of

characteristics. The channel is designed to prevent any shock forma-

tion caused by the convergence of compression waves. The flow

entering the rotor passage is assumed to be uniform and parallel.

Corner-Flow Method

One method of designing supersonic rotor blades is given by Shapiro

(ref. 1). A typical blade of this type is shown in figure 9-14(a). The

entering uniform, parallel flow (region I) undergoes a comer-type

compression, resulting from flow along the concave lower (pressure)

surface of the blade. The upper (suction) surface is curved so as to

cancel the incoming compression waves. In region 2, parallel hori-

zontal flow (0=0) is obtained. This parallel flow then undergoes a

corner-type expansion, with waves being cancelled by the concave
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surface, until uniform parallel flow of the desired Mach number occurs

at the blade exit. Straight-line segments on the upper surface, parallel

to the inlet and outlet flow directions, complete the blade profile.

For an impulse blade (as shown in fig. 9-14(a)), only one half of

the blade needs to be designed, since it is symmetrical. The specifica-

tion of comer flow makes this type of blade particularly easy to design,

since only waves of one kind are present in any region. The hodograph

diagram for this blade is shown in figure 9-14(b). Shown in figure

9--14(c) is the theoretical blade-surface velocity distribution, which is

quite unusual. This type of velocity distribution is not very desirable,

because the loading becomes zero in the middle of the blade. Another

drawback of this design method is that for a given inlet Mach number,

rParallel flow
I

t

t

Parall ,_

Parallel flow -_
(a)

M*

Inlet

Distance alon9 chord

Outlet

_b) (c)

(a) Blade and passage.

(b) Hodograph diagram. (c) Blade loading diagram

FIGURE 9-14.--Supersonic rotor design by the corner-flow method.
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the amount of flow turning is limited. The velocity in region 2 must be

sonic (Mach 1) or higher. The maximum amount of flow turning is,

therefore, equal to the sum of the inlet and exit Prandtl-Meyer angles.

For reasonable Mach number levels (1.5 to 3.0), large amounts of flow

turning (120 ° to 150 °) would be impossible.

Vortex-Flow Method

Another method of designing supersonic rotor blades is described

in reference 5. This method is based on establishing vortex flow within

the passage. In a vortex-flow field, the product of velocity (also, therefore,

critical velocity ratio M*) and streamline radius is a constant through-

out the field. A typical blade and passage designed by this method is

shown in figure 9-15(a).

The blades consist essentially of three parts: (1) inlet transition

arcs, (2) circular arcs, and (3) outlet transition arcs. The inlet tran-

sition arcs (lower and upper) convert the uniform parallel flow at the

passage inlet into vortex flow by means of the compression waves

generated by the lower transition arc and the expansion waves gener-

ated by the upper transition arc (see fig. 9-15(a)). The vortex-flow

field begins where the compression and expansion waves first inter-
sect. The concentric circular arcs turn and maintain the vortex flow.

The outlet transition arcs reconvert the vortex flow into uniform

parallel flow by cancelling the remaining waves generated by the cir-

cular arcs. Straight-line segments on the upper surface and parallel

to the inlet and outlet flow directions complete the blade profile.

A hodograph diagram for this type of design is shown in figure

9-15(b). The flows along the blade surfaces are shown, with the

letters corresponding to the locations indicated in figure 9-15(a).

The constant-velocity flows along the circular arcs of the blade

surfaces are represented by the circular arcs IK and BF on the hodo-

graph diagram. In this type of design, there is no limit to the amount

of flow turning obtainable in the rotor, because the circular arcs can

provide any necessary degree of turning. The surface velocity distri-

bution is shown on the blade-loading diagram, figure 9-15(c). This

blade is seen to be quite highly loaded, especially as compared to the

corner-flow design shown in figure 9-14.

A computer program for designing rotor blades of this type by the

method of characteristics is presented in reference 6. The computer

program input includes the inlet and outlet flow angles, the inlet,

outlet, and surface Mach numbers, and the specific-heat ratio of the

gas. The output includes the rotor blade coordinates and a plot of

the blade shape. An approximate method for obtaining the transition

arcs without using the method of characteristics is described in

268



SUPERSONIC TURBI_,ES

references 7 and 8. In this procedure, the vortex flow is established
by making the curvature of the transition arcs one-half the curvature

of the circular arcs. For very small curvatures, this method is correct.

In this blade design, the lower- and upper-surface Mach numbers

are specified. This permits blades of various shapes to be designed for

Region

Vortex flow

transition

AB and FG Straight lines
BCand EF Upper transition arcs
HI and KL Lower transition arcs
CDEand1JK Circular arcs

(a)

M*..- _H,B

X'x// )
mh_7,F

Ib)

C

A,H

\
I

E

/
K

L,G

Inlet Outlet

Distance along chord

(c)

(a) Blade and passage.

(b) Hodograph diagram. (c) Blade loading diagram.

FIGURE 9-15.--Supersonic rotor design by the vortex-flow method.
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ta)

AA Circular arc
AB Uppertransition arc
BD Straight line
CC Circular arc
CD Lowertransition arc

k
D/ (b!

\

A A

B B

D

A

B B

D

A A

B B

(a) Lower-surface Prandtl-Meyer an-

gle, 0 ° (M = 1) ; upper-surface
Prandtl-Meyer angle, 59 ° (M = 3.5) ;

total flow turning angle, 130 °.

(c) Lower-surface Prandtl-Meyer an-

gle, 18 ° (M---- 1.7) ; upper-surface

Prandtl-Meyer angle, 59 ° (M = 3.5) ;
total flow turning angle, 130 ° .

(e) Lower-surface Prandtl-Meyer an-

gle, 21 ° (M-- 1.8) ; upper-surface
Prandtl-Meyer angle, 59 ° (M---- 3.5) ;

total flow turning angle, 120 ° .

(b) Lower-surface Prandtl-Meyer an-

gle, 12 ° (M=l.5); upper-surface
Prandtl-Meyer angle, 59 ° (M = 3.5) ;

total flow turning angle, 130 °.

(d) Lower-surface Prandtl-Meyer an-

gle, 18 ° (M----1.7) ; upper-surface
Prandtl-Meyer angle, 104 ° (M-----

10.7) ; total flow turning angle, 130 °.

(f) Lower-surface Prandtl-Meyer an-

gle, 21 ° (M---- 1.8); upper-surface

Prandtl-Meyer angle, 59 ° (M = 3.5) ;

total flow turning angle, 140 ° .

FIGURE 9-16.--Turbine blade shapes at inlet Mach number of 2.5 (inlet Prandtl-

Meyer angle of 39 °) and specific-heat ratio of 1.4.
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a given inlet Mach number. A number of blades designed by the

program of reference 6 for an inlet Mach number of 2.5 axe shown in

figure 9-16. From the figure, it is seen that the upper-surface Mach

number (cf. figs. 9-16(c) and (d)) has little effect on the blade shape,

whereas the lower-surface Mach number (cf. figs. 9-16(a), (b), and

(c)) and the flow turning (cf. figs. 9-16(e) and (f)) have significant

effects. Guidance in the selection of a blade design is obtained by

consideration of flow separation and supersonic starting problems,

both of which will be discussed later in this chapter.

The previously discussed "method of characteristics" design

procedure is only for the case of ideal (isentropie) flow. A computer

program for the design of supersonic-turbine vortex-flow rotor sections,

including a correction for losses, is presented in reference 9. The ideal

(no loss) passage profile, indicated by the dashed lines in figure 9-17, is

first designed by the method of characteristics. Boundary-layer param-

eters are then computed, and the final profile is then obtained by add-

ing the local displacement thicknesses to the ideal profile as indicated

in figure 9-17. Rotor profile loss coefBcients are determined from the

boundary-layer parameters as described in chapter 7 (vol. 2).

.... _ ._ Displacement

_-- --'__/'x " thickness

/__/ _,. _ ,--Loss-free passage

i/ \

Z \

\

FIOURE 9-17.--Design of supersonic rotor blade section.
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As seen from figure 9-15, adverse pressure gradients exist along

transition arcs HI and EF within the rotor blade passages. The

boundary-layer calculations give an indication of whether the pressure

gradients are severe enough to cause flow separation. Flow separation

results in large losses. If it is possible, it would be desirable to prevent

separation. The separation criterion places limitations on the choice

of the upper- and lower-surface Mach numbers.

OPERATING CHARACTERISTICS OF SUPERSONIC

TURBINES

Supersonic Starting

Problems occur in the starting of supersonic diffusers because
the diffuser must be able to swallow the shock that forms at the inlet

140

120

Lowe r-s u rface

PrandtI-Meyer
angle,

o)/,
de3

,/_--- 120
ll5

llO
105

9O
85
8O
75
7O
65
6O
55
5O
45
40

3O

___------------ 75
2O

15

10

20

0 20

t 1 1 t 1 I I
40 60 80 l O0 120 140

Upper-surface Prandtl%_eyer an(jl¢, '%, deg

FIGURE 9-18.--Maximum Prandtl-Meyer angle for supersonic starting. Specific-

heat ratio, 1.4.
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during startup. Since the rotor blade passage is convergent-divergent

in shape, similar problems would be expected to occur in the starting

of supersonic turbines. As a first approximation, it is assumed that

a normal shock spans the rotor blade passage at the instant of start-

ing. The permissible contraction of the blade passage is set by this

condition, since the passage must be large enough to permit the shock

wave to pass through.

For specified flow Mach numbers along the circular-arc segments of

the blade surfaces (often expressed in terms of the corresponding

Prandtl-Meyer angles w_ and wz), there exists a maximum value of the

inlet Mach number (or inlet Prandtl-Meyer angle) for which supersonic

flow can be established. The calculation procedure for determining

this maximum value is given in reference 6. In figure 9-18, the maxi-

mum inlet Prandtl-Meyer angle for supersonic starting of vortex-flow

rotor blades is plotted as a function of the blade-surface Prandtl-Meyer

angles. In the usual design problem, the inlet Prandtl-Meyer angle

is known from the velocity diagram, and the surface Prandtl-Meyer

angles must then be determined in order to obtain the rotor blade

8O

k
E

_ _o
&

r_

•_ 4o

g
&

c 20
5
E

r_

o 1
30 110

Lower-surface

- Prandtl-Meyer
angle,

39

I __e_, o,io,S90
F_,...'_, 7" ,'_7,_97._/'/77"7"//'77/'I

,// , ,' , , , / ' , /,

I I
- i_oo l_°l

I I
lJ 1 _ l L I ,,

50 70 90

Upper-surface PrandtI-Mever angle, wu, deg

FIGURE 9-19.--Supersonic starting criterion applied to example turbine. Inlet

Mach number 2.5; inlet Prandtl-Meyer angle, 39°; inlet flow angle, 65 °.
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and passage profiles. To assure satisfactory starting for the given inlet

conditions, the point representing the surface Prandtl-Meyer angles

in figure 9-18 must lie on or above the ordinate corresponding to the

inlet Prandtl-Meyer angle. In general, the supersonic starting condi-

tion places a severe restriction on the permissible design values of

surface Mach numbers. This restriction is best seen from an example.

Suppose a blade is to be designed for the following conditions:

(1) _=1.4; (2) M,,=Mex=2.5 (_,.=_,x=39°); and (3)0,.----0,_=65 °.

It is first noted that _ can vary from 0 ° to 39 °, and that _, can vary

from 39 ° to 104 °. The 0 ° limit on _z is due to the fact that the flow

must remain at least sonic; the 104 ° limit on w, is due to the fact

that the inlet transition turning cannot exceed the inlet flow angle

of 65 ° (39°+65°= 104°). In figure 9-19, the maximum inlet Prandtl-

Meyer angle w_,. ,,_ is plotted as a function of _, for this example.

For clarity, only the bounds of w_ and _, discussed previously are

shown. The dashed line represents _,=39 °, and the region shown

crosshatched would not be permissible for design purposes because

of supersonic starting considerations. Flow separation consideration

will, in general, limit the maximum value of w_ to much lower values

than the limit indicated in the figure.

Supersonic Turbine Performance

Experimental performance data for supersonic turbines are re-

ported in references 10 to 14. The variation in supersonic-turbine

efficiency with blade-jet speed ratio (blade speed divided by ideal

velocity corresponding to turbine inlet-total- to exit-static-pressure

ratio) is illustrated in figure 9-20, which presents the data for the

partial-admission turbine of reference 14. For any given speed,

efficiency is maximum at about design pressure ratio and falls off

rapidly as pressure ratio is decreased. The variation in maximum

efficiency (circles in fig. 9-20) with blade-jet speed ratio is similar

to that for a subsonic turbine. If this were a subsonic turbine, the

efficiencies at the lower pressure ratios would have fallen on the

envelope curve. The decrease in supersonic-turbine efficiency at the
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to turbine-exit
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0 .04 .08 .12 .16 .20 .24

Blade-jet speedratio

F,GuR_. 9--20.--Static efficiency of turbine as function of blade-jet speed ratio

for conseant speeds.

lower pressure ratios is due to the shocks occurring in the under-

expanded stator nozzles.

The variation in static pressure throughout the stator nozzle of

the turbine of reference 14 is shown in figure 9-21. The formation

of the shock waves in the underexpanded nozzle is readily apparent.

It can alsobe seen from thisfigurethat at pressure ratiosnear design,

the divergent section of the nozzle performed as expected, but the

pressure did not remain constant in the straight section. There was

some overexpansion followed by some compression. This same be-

havior was found in the data of reference 10.
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FIGURE 9-21.--Variation of nozzle pressure ratio with axial distance in nozzle

for constant ratios of nozzle exit static pressure to inlet total pressure.
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SYMBOLS

A

a

g
M

M*

P

V

V

Y)

0

p

P

flow area along Mach wave, mS; ft _

speed of sound, m/sec; ft/sec

conversion constant, 1;32.17 (lbm)(ft)/(lbf)(sec _)

Mach number

critical velocity ratio (V/Vc,)

absolute pressure, N/m_; lb/ft _

component of velocity parallel to initial flow direction,

m/sec; ft/sec

velocity, m/sec; ft/sec

critical velocity (M-- 1), m/sec; ft/sec

component of velocity normal to initial flow direction,

m/sec; ft/sec

mass flow rate, kg/sec; lb/sec

Mach angle, deg

ratio of specific heat at constant pressure to specific heat at
constant volume

small change in flow direction, deg

flow angle, deg

Prandtl-Meyer angle, deg

density, kg/m 3; lb/ft 3

Prandtl-Meyer angle, deg

Subscripts

e_

in

l

ITI4IZ

7"

8

t

rotor exit

rotor inlet

lower surface of blade

maximum

normal direction with respect to Mach wave

relative

isentropic

tangential direction with respect to Mach wave

upper surface of blade
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CHAPTER10

Radial-lnflowTurbines

ByHaroldE.Rohlik

Radial-inflow turbines are suitable for many applications in aircraft,

space power systems, and other systems where compact power sources

are required. Turbines of this type have a number of desirable charac-

teristics such as high efficiency, ease of manufacture, sturdy construc-

tion, and reliability. There is a substantial amount of information on

radial-inflow turbines in the literature. References 1 to 6 are general

in nature and cover most areas of the design and performance of these

machines. In this chapter, the radial-inflow turbine is described, and

its features are compared with those of an axial-flow turbine. In

addition, design geometry and performance, blade design, and off-

design performance are discussed.

Figure 10-1 shows a section through a typical radial-inflow turbine.

The flow enters the stator radially and leaves the rotor axially. This

turning of the flow takes place in the rotor passage, which is relatively

long and narrow. In axial turbines, the blade aspect ratio, which is

the ratio of blade height to chord, varies from about 1 to as much

as 8. Radial turbine rotor and stator blades, on the other hand,

generally have aspect ratios from 0.1 to 0.5.

A torus, which is a doughnut-shaped plenum, or a volute (shown in

fig. 10--2), which is a spiral flow passage, usually surrounds the stator

inlet. The torus is fed by a radial inlet pipe, while the volute is fed

by a tangential inlet pipe. In the case of a volute, a prewhirl (tan-

gential component of velocity) is imparted to the gas before it enters

the stator blade row. This results in stator blades with little or no

camber. It can be seen from figure 10-2 that the overall diameter of a

radial-inflow turbine is considerably larger than the rotor diameter.
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Stator
blade -

Station

:, 0

1
2

Rotor blaue

FIGURE 10-1.--Schematic cross section of radial-inflow turbine.

At the rotor inlet, where the flow velocity relative to the rotor has

little or no tangential component (W_=O), the rotor blades are

usually straight and radial. This straight section of the rotor blade

generally is rather highly loaded, since angular momentum rV, (where

r is the radius, and V_ is the tangential component of absolute velocity)

here varies with the square of radius. (Since W_=O, V,,=U_r,

where U is the blade speed. Therefore, rV,,a:r2.) At the rotor exit,

the blades are curved to turn the flow, so that the exit absolute

velocity has little or no whirl.

Figure 10-3 shows the blading more clearly. The stator blade shape

shows that prewhirl is developed in the inlet volute. Also, the low

solidity (ratio of chord to spacing) and low aspect ratio that are

generally used in the stators of radial turbines can be seen. The

turbine shown here has splitter, or partial, blades between the full

blades in the rotor. They are used in the radial part of the flow passage
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Stator

Volute

/- Rotor
/

C-72323

FIGURE 10-2.--Radial-inflow turbine.

to reduce the blade loading. Splitter blades are discussed further in
the "BLADE DESIGN" section.

The expansion process in a radial turbine differs appreciably from

that in an axial turbine because of the radius change in the rotor.

The relative total temperature and pressure decrease with decreasing

radius, as was discussed in chapter 2 of volume 1 (see eq. (2-31) and

associated discussion). This is a distinct advantage for the radial

turbine because it permits the use of a lower velocity level for a given

overall expansion. This can be seen from the temperature-entropy

diagram in figure 10--4, which shows the expansion through the rotor

of a radial-inflow turbine. Tile change in relative total temperature

T" and the corresponding change in relative total pressure p" are

_hown for the expansion. If this were an axial turbine (T['=T_'),

tile p_' line would be only slightly below the p_' line (as shown in

fig. 2-8 of ch. 2), because the difference between p[' and p_" is due

only to rotor losses. For the radial turbine, as shown in figure 10-4,

the p;' line is farther removed from the p't' line because the difference

is due to both the rotor losses and the change in radius. Therefore,
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Rotor

splitter
blade--

Stator
blade--.

/
Rotor /
full /
blade t

C-?1863

- . _gak-

FIGURE 10-3.--Turbine stator and rotor assembly.

expansion from the same rotor inlet total pressure p'_' to the same

exit static pressure p_ would require a higher relative velocity W= at

the rotor exit in an axial turbine than in a radial turbine (larger

vertical distance between p_" and p= for an axial turbine.) Since fluid

friction losses in a rotor increase approximately with the square of

the relative gas velocity, the advantage of a lower level of velocity
is clear.

A radial-turbine velocity diagram is shown in figure 10-5 for a

turbine with prewhirl in the inlet volute and a mean diameter ratio

(exit-mean to inlet) of about 0.5. The difference between the blade

speeds U_ and Us is very evident. For a typical zero-exit-whirl velocity

diagram, the relative kinetic energy W] leaving the rotor would be

approximately three times as high if U2 equaled UI, as in an axial
turbine.
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FIGURE 10-4.--Temperature-entropy diagram for a radial-inflow turbine rotor.

V0

W]

W2 / p2-.

U2

FIGURE 10-5.--Velocity diagram.
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OVERALL DESIGN CHARACTERISTICS

Optimum Incidence

Since the blades are radial at the rotor inlet, the inlet flow angle fll

shown in figure 10-5 is an incidence angle. There is some incidence

angle that provides optimum flow conditions at the rotor-blade leading

edge. This angle has a value sometimes as high as 40 ° with a radial

blade. This optimum incidence condition is analogous to the "slip"

factor in a centrifugal compressor, and is associated with the unloading

of the blade near the tip and the distribution of mass flow in the rotor

passage. Before the flow is influenced by the rotor blades, it is circum-

ferentially uniform. Blade loading then produces a large static-pressure

gradient across the passage, so that there is a streamline shift toward

the suction surface. Stream-function flow analyses of this flow condition

show that the streamline pattern properly locates the inlet stagnation

point when there is an "optimum" angle _1. This pattern is shown

schematically in figure 10-6. Note that the flow at the stagnation point

is approximately radial. If this were not so, the flow would tend to

separate from the suction surface near the leading edge, causing exces-

sive loss. The relation between V_._ and U1 has been studied analyti-

cally and experimentally in both compressors and turbines. It has

Pressure
surface ;uction /urface

FIGURE 10-6.--Streamline flow at rotor inlet.
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been determined that there is an optimum ratio of V,. 1 to U_. This

optimum ratio depends on blade loading and, consequently, blade

number and is often expressed as

V_"=1---2 (10-1)
U, n

where n is the number of blades (total of full blades plus splitter

blades).

Effect of Specific Speed on Design Geometry and Performance

The specific speed parameter N_ (derived and discussed in ch. 2 of

vol. 1) is given by the equation

NQ21/2
N_-- H314

where

N

Q2
H

(10-2)

rotative speed, rad/sec; rev/min

volume flow rate at turbine exit, m3/sec; ft3/sec

ideal work, or head, based on inlet and exit total pressures, J/kg;

(ft) (lbf)/lbm

In its most commonly used form (with the stated U.S. customary

units), it is not truly dimensionless. Specific speed is independent of

size and may be considered as a shape parameter that expresses

geometric and velocity-diagram similarity.

Analytical study.--The effect of specific speed on efficiency may be

examined by substituting for N, Q2, and H as follows:

N KUI (10-3)
=

Q2=_-D2h2V2 (10-4)

H=Vj2 (hh'_ (10-5)

where

K

D1

D2

h2

V2

v,

g

dimensional constant, 2_ rad/rev; 60 sec/min

rotor inlet (tip) diameter, m; ft

rotor-exit mean-section diameter, m; ft

rotor-exit passage height, m; ft

rotor-exit fluid velocity (assumed to be in axial direction),

m/sec; ft/sec

ideal jet speed, based on inlet-total to exit-static pressure

ratio, m/sec; ft/sec

conversion constant, 1 ; 32.17 (lbm) (ft)/(lbf) (sec 2)
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Ah_ ideal work based on inlet-total and exit-total pressures, J/kg;

Btu/lb

Ahid ideal work based on inlet-total and exit-static pressures, J/kg;

Btu/lb

These substitutions and some manipulation result in the following

expression for specific speed:

y.
N,=(Constant)\_-7]u \-_j/ \U], \D,] \D.]2 (10-6)

The terms of equation (10-6) are related to velocity-diagram charac-

teristics and overall geometry. Any specific speed value can be achieved

by an infinite number of combinations of these ratio terms. A large

number of these combinations were examined analytically in reference

7 to determine optimum combinations over a wide range of specific

speed.

The analysis of reference 7 related losses to mean-diameter flow

properties, neglecting hub-to-shroud variations. The losses considered

were those caused by the stator and rotor boundary layers, blade-to-

shroud clearance, windage on the back of the rotor, and the exit

kinetic energy. The number of rotor blades was varied with stator-

exit flow angle al (in degrees) according to the equation

n:0.03 (a_--57)_T 12 (10-7)

in order to provide the minimum number that would avoid separation.

This was the total number of blades (full plus splitter) used in equa-

tion (10-1) to establish the rotor incidence angle. Other assumptions

included a favorable reaction (W_:2W_), zero exit whirl (V_,2:0),

a maximum limit of 0.7 for Dt.2/D_, and a minimum limit of 0.4 for

(nh/D,)2.

The effects of geometry and velocity-diagram characteristics were

examined by calculating the previously mentioned losses for a large

number of combinations of stator-exit flow angle a_, stator-blade-

height to rotor-inlet-diameter ratio hdD_, and rotor-exit to rotor-inlet

diameter ratio D,.2/D_ at three rotor-tip critical velocity ratios (U/

Vc,)_. The static efficiency was then plotted against specific speed.

For the range of values used in the study, all of the calculated points

fell in the shaded areas shown in figure 10-7. Stator-exit flow angle is

seen to be a prime determinant of efficiency, which falls into a small

region for each stator-exit flow angle. The boundaries of each region

are set by the extreme values of input variables and by the assumed

geometric limits. For any given value of specific speed, there can be a

large variation in static efficiency, as much as 45 to 50 points for some

values. The dashed curve is the envelope of all the computed static
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10-7.--Effect of specific speed on computed design-point efficiency.

(Data from ref. 7.)

efficiencies, and the solid curve above it represents the corresponding

total efficiencies. The computed values of efficiency do not necessarily

represent achievable values, because there are many assumptions

associated with the loss model used in the study of reference 7. The

primary concern of that study, however, was to determine the opti-

mum geometry and velocity ratios.

Most of the geometric and velocity ratios vary continuously along

the envelope curves. The optimum values of some of these ratios as

functions of specific speed are presented in figures 10-8 to 10-11. Fig-

ure 10-8 shows that the optimum stator-exit flow angle is large at low

specific speed and decreases (opens to a larger flow area) with increasing

specific speed. Figure 10-9 shows that the optimum ratio of stator-blade

height to rotor-inlet diameter is small at low specific speed and in-

creases with increasing specific speed until a maximum is reached at
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some value of specific speed depending on the overall level of velocity

in the turbine. The only effect that compressibility has on the opti-

mum geometric and velocity ratios is also shown in figure 10-9, where

it is seen that higher velocity levels result in smaller ratios of stator-

blade height to rotor-inlet diameter at any given specific speed.

Figure 10-10 shows that the optimum ratio of rotor-exit tip diam-

[]

qb_

(a) Specific speed, 0.23; 30 (ft 3/_)(lbm 3z_)/(min)(sec _tZ)(lbf 3/_). Stator-exit

flow angle, 81 °.

(b) Specific speed, 0.54; 70 (ft 3/_)(lbm 3/_)/(min)(sec l!Z)(lbf air). Stator-exit

flow angle, 75 ° .

(c) Specific speed, 1.16; 150 (ft 3/_)(lbm 3/4)/(min)(sec l/2)(lbf 3/4). Stator-exit

flow angle, 60 ° .

FmURE 10-12.--Sections of radial turbines of maximum static efficiency.

(Data from ref. 7.)
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eter to rotor-inlet diameter is small at low specific speed and in-

creases rapidly with increasing specific speed until the imposed limit

of D,2/DI_-0.7 is reached. It is seen from figure 10-11 that the

optimum blade-iet speed ratio UI/Vj varies with specific speed in a

manner similar to the variation of static efficiency.

The optimum values shown in figures 10-8 to 10-11 can be used for

the design of radial-inflow turbines. Sections of turbines with optimum

geometries are shown in figure 10-12 for three values of specific speed.

These sections show that specific speed is largely an index of flow

capacity.

The design study of reference 7 also indicated the variation in the

different losses along the curve of maximum static efficiency. This is

shown in figure 10-13 for the range of specific speed covered. For low

values of specific speed, the stator and rotor viscous losses are very
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FIGURE 10-13.--Loss distribution along curve of maximum static efficiency.

(Data from ref. 7.)
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large because of the high ratio of wall area to flow area. Also, the

clearance loss is large because the blade-to-shroud clearance is a

relatively large fraction of the passage height. The windage loss,

which depends on primarily the diameter and rotative speed, is also

large at low specific speed because of the low flow rate. As specific

speed increases, the stator and rotor losses, clearance loss, and windage

loss all decrease because of the increased flow and area. The exit

kinetic-energy loss becomes predominant at high values of specific

speed.

C-/I-159 C-69q816

{a) ib_

C-?0-3533

to)

(a) Design rotor. (b) Rotor with exducer extension.

(c) Cut-back rotor.

FIGURE 10-14.--Rotor configurations used in specific-speed study of reference 8.
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Experimental study.--In order to determine experimentally the

effect of specific speed on turbine efficiency, a turbine was modified

(ref. 8) to accept a series of stator blade rows with different numbers

of blades and different blade angles. The rotor was fitted with an

extension for reduced area operation and was also cut back for in-

creased area operation. These modifications were used to vary the

stator throat area from 20 to 144 percent of the design throat area and

to vary the rotor throat area from 53 to 137 percent. This allowed the

turbine to be operated over a large range of specific speed. Figure 10-14

shows the rotor as designed, with the reduced-area extension, and cut

back. Details of the geometry, test results, and internal velocity

calculations are given in reference 8.

Performance was determined experimentally for 13 combinations

of stator area and rotor area. Figure 1 0-15 shows the envelopes of the
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FIGURE 10-15.--Experimental variation of efficiency with specific speed. (Data
from ref. 8.)
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design-speed efficiency curves obtained with each rotor configuration,

as well as the overall envelope curve. Specific speed for each stator-

and-rotor combination was varied simply by varying overall pressure

ratio at design speed. Note that total efficiencies over 0.90 were

measured for specific speeds from 0.37 to 0.80 (48 to 103 (ft 3/4)

(lbm314)/(min)(seO a)(lbf3/4)). Maximum efficiencies were obtained

when the ratio of stator throat area to rotor throat area was near the

design ratio. Maximum static efficiencies of about 0.90 were measured

in the specific speed range of about 0.4 to 0.5 (51 to 65 (ft 3/4) (lbm31_)/

(min) (seC/2) (lbf3/4)).

The investigation of reference 8 showed that a particular basic

design could be used for a variety of applications (different specific

speeds) and, even though the distribution of internal velocities is

considerably off design, still yield high efficiency. Further, a radial

turbine might be used to advantage in applications requiring variable

stators. In this investigation, the volume flow rate varied by a factor

of nearly three, with total efficiency remaining over 0.90. In addition,

the parallel endwalls of the stator blade row minimize the potential

for leakage.

Effect of Blade-to-Shroud Clearance

Clearance between the blade and the shroud must be adequate to

avoid contact during speed and thermal transients, but it must be

minimized to avoid loss of work due to flow bypassing the blades,

generation of turbulence, and blade unloading. The efficiency loss
due to blade-to-shroud clearance was one of the losses included in the

previously discussed specific-speed analysis. For the losses shown in

figure 10-13, the clearance loss was based on an average clearance
as determined from constant values of rotor-inlet and rotor-exit

clearance-to-diameter ratios.

The effects of blade-to-shroud clearance at the rotor inlet and at

the rotor exit on radial-inflow turbine efficiency were determined

experimentally in the study of reference 9. The results of these studies

are presented in figure 10-16, which shows the effects of both inlet

clearance and exit clearance. Increasing exit clearance causes a

significantly greater loss in turbine efficiency than does a comparable
increase in inlet clearance. It is the exit clearance that determines

the fraction of the flow that is fully turned to the exit blade angle.

Since it is the turbine stator that produces the rotor inlet whirl,

design flow turning can be achieved even with a relatively large inlet

clearance. With equal inlet and exit clearances (in terms of percent

of passage height), there was about a 1-percent loss in efficiency for

each percent increase in clearance.
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FIGURE 10-16.--Effects of inlet and exit clearances on total efficiency. (Data

from ref. 9.)

An axial-flow turbine with the same flow conditions as a radial-

inflow turbine would have a larger relative clearance (percent of rotor-

exit passage height) than would the radial-inflow turbine. The larger

rotor-exit diameter of the axial-flow turbine would result in a larger

absolute clearance (since required clearance is largely a function of

diameter) and a smaller passage height (in order to have same annulus

area). This may be one of the reasons, along with the lower kinetic-

energy level previously discussed, for the efficiency advantage of a
radial-inflow turbine over a small axial-flow turbine for the same

application.

BLADE DESIGN

The curves (figs. 10-8 to 10-11) relating turbine geometry and

velocity ratios to specific speed are useful in preliminary design studies

for a particular turbine problem. They can be used to determine tur-

bine size and shape, as well as the design velocity diagram. The next

part of any design problem involves the examination of internal flow

in order to determine the best stator and rotor blade profiles. The

methods and computer programs discussed in chapter 5 (vol. 2) are

used for this purpose.

Internal Flow Analysis

Stator.--Stator blade aerodynamic design is relatively straight-

forward. Typically, the blades have relatively little camber, long

chords, and parallel endwalls. A long chord is usually specified because

large blade profiles are easier to machine and because the small number
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of blades (long chord means large spacing for a given solidity) means

lower cost. Also, long chords are desirable because the stator blades

serve as structural supports for the shroud. The aerodynamic penalty

associated with the added endwall area (over that of short-chord

Pressure

.9--

Suction

Pressure
su rface

.... Free-stream

velocity
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FIGURE l()-17.--Stator blades with surface-velocity distributions.
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blades) is small because of the high reaction and the resultant favorable

boundary-layer conditions.

A two-dimensional flow analysis may be used for the stator because

of the parallel or near-parallel endwalls. The stream-function method

described in reference 10 provides satisfactory subsonic and transonic

solutions. Input information for the computer program includes flow

rate, fluid properties and conditions, inlet and outlet flow angles, and

a complete specification of blade geometry. The calculated blade-

surface velocities are examined for smooth acceleration and magnitude

and rate of local decelerations. Successive trials are made with varying

solidity, blade number, and distribution of blade curvature until

satisfactory velocity distributions are obtained for the pressure and
suction surfaces.

Figure 10-17(a) shows the stator blade and passage profiles for a

radial-inflow turbine in which the flow entering the stator has no

prewhirl. The calculated suction-and pressure-surface velocities are

shown in figure 10-17(b). Except for a small deceleration at the

pressure-surface leading edge, the flow accelerates continuously on

both surfaces. The calculated velocities near the trailing edge may be

used to determine whether the blade row can accomplish the design

turning. If the suction and pressure surface velocity curves remain

open at the trailing edge, the input value for the free-stream exit flow

angle specifies more turning than the blades can provide. Conversely,

if the curves cross before the trailing edge, the blades will provide

more turning than is specified by the input flow angle.

Rotor.--The design of rotor blading is appreciably more difficult

than that of stator blading because of adverse pressure gradients

(decelerations) encountered and because of the three-dimensionality

of the design. The computer program of reference 11 is particularly

suitable for screening various combinations of shroud contour, hub

contour, number of blades, blade thickness distribution, and blade

curvature. This approach, which was developed specifically for radial-

inflow turbines, uses the velocity-gradient method, with integration

of directional derivatives along fixed arbitrarily located straight lines

(called quasi-orthogonals) that intersect all streamlines in the meridi-

onal plane. A meridional-plane section with several of these quasi-

orthogonals is shown in figure 10-18. A complete meridional solution

of velocities and streamlines is obtained. Blade-surface velocities are

then calculated approximately in the program of reference 11 with an

equation based on irrotational absolute flow and a linear velocity

distribution between blades. These blade-surface velocities are used

to evaluate the various geometries primarily on the basis of obtaining

smooth accelerations and avoiding severe decelerations.
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FIGURE 10-18.--Meridional section through radial-inflow turbine.

Blade-surface velocity distributions, as calculated from the merid-

ional-plane solution of reference 11, at the hub, mean, and shroud
sections of a radial-inflow turbine rotor are shown in figure 10-19.

"In figure 10-20 are shown the velocity distributions for the same

blading, but as calculated by the stream-function method of reference
10. The surface velocities calculated from the meridional-plane

solution agree fairly well with those of the stream-function solution

over most of the blade. It can be seen, however, that an appreciable

difference between solutions occurs at the leading and trailing edges.

The linear velocity variation used in the meridional-plane solution

method does not reflect the blade unloading that actually occurs in

these regions. The stream-function method determines the blade

surface velocities in a more rigorous manner. However, the meridional-
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FIGURE 10-19.--Rotor-blade surface-velocity distributions.from merEdional-plane
solution.

plane program (ref. 11) is easier and quicker to use than the stream-

function program (ref. 10) and, thus, provides a better means for
rapid screening of the many design variables. A lesser difference occurs

in the intermediate portion of the blade passage. In the meridional-
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FZGURE 10-20.--Rotor-blade surface-velocity distributions from stream-function

solution.

plane analysis, the flow is assumed to be circumferentially uniform,

and the mean stream surface between the blades follows the prescribed

mean blade surface. The stream-function solution considers blade-to-

blade variations in the flow and defines a mean stream surface between

blades that deviates from the mean blade surface. The distribution

of blade loading, then, is also somewhat different.

Figures 10-19 and 10-20 illustrate the hub-to-shroud variations

in the surface velocities and the blade loading, as well as the variations

along the flow path. The blade is more heavily loaded along the shroud

than elsewhere because of the lower solidity and the shorter flow path.

Also, the shroud is a region of high flow. Therefore, the shroud is

generally considered the most critical region and is examined most
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carefully for favorable blade-surface velocity distributions. The

loading near the rotor inlet, where the flow is nearly radial, is con-

siderably higher than the loading near the rotor exit, where the flow

is nearly axial. The high loading at the inlet is due primarily to the

previously discussed rapid change in angular momentum (rVu _ r _)

in that section. This high loading near the inlet could be reduced by

50 percent through the use of splitters, which are discussed in the

next section. The rear part of the hub surface shows a very low blade

loading. This results principally from the long flow path and the great

decrease in blade spacing from inlet to exit at the hub section. In this

particular turbine, the blade spacing decreased by about 75 percent.

Splitter Blades

As indicated previously, the blade loading is highest at the rotor

inlet, where the flow is radially inward. If this loading is excessive,

as indicated by negative velocities calculated for the pressure surface

and/or large decelerations on the suction surface, it can be reduced

by using partial blades between the full blades in the radial part of

the rotor. Such partial blades are shown in figure 10-3 and are com-

monly called splitter blades. When splitter blades are used, the

reduced loading results in decreased boundary-layer losses per unit

of surface area. However, there is now the additional surface area of

the splitter blades to offset the reduced loss per unit area. A judgment

must be made, therefore, as to whether the use of splitter blades will,

on balance, be beneficial.

The effect of splitter blades on turbine performance was examined

experimentally in the study of reference 12. A turbine designed with

splitter blades was built and tested. The splitter blades then were

removed, thereby doubling the blade loading in the upstream half
of the rotor. Channel velocities were calculated for both cases. When

the splitters were removed, calculated negative velocities on the

pressure side of the blade indicated a reverse-flow eddy extending

from the hub almost to the meridional 50-percent streamline, and a

large increase in loading upstream of what had been the splitter

trailing-edge location.

Turbine performance data (ref. 12) taken over a range of speed and

pressure ratio showed very little difference in efficiency between the

splitter and the no-splitter cases. The loss increase due to the loading

increase when the splitters were removed was apparently offset by

l l_e reduced surface area. This result and the previously discussed

effect of blade-shroud clearance indicate an insensitivity of efficiency

to poor flow conditions near the rotor leading edge. The low inlet

velocity and favorable rotor reaction in a radial-inflow turbine pro-

vide an appreciable margin of tolerance toward such conditions.
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OFF-DESIGN PERFORMANCE

The performance characteristics of radial-inflow turbines are slightly

different from those of axial-flow turbines. In an axial-flow turbine at

all rotor speeds, the flow rate becomes zero only when the turbine

pressure ratio (inlet-total- to exit-static-pressure) is one. In a radial-

inflow turbine, however, this is only true at zero speed, as illustrated

in figure 10-21. With rotation, the centrifugal force on the fluid

within the rotor must be balanced by a pressure gradient directed

radially inward. Therefore, there is some small pressure ratio across

the turbine even with no flow (see fig. 10-21). This zero-flow pressure

ratio increases with speed because of the increasing centrifugal force.

The variation of efficiency with blade-jet speed ratio, illustrated

later in this section, for a radial-inflow turbine is very similar to that

for an axial-flow turbine. The efficiency decrease as blade-jet speed

ratio varies from the peak-efficiency point is slightly more rapid in

the case of the radial-inflow turbine.

Prediction techniques for off-design performance are valuable in

many situations. Estimated performance data can be useful in system

studies to examine start transients and various operating conditions

before any hardware is built. They can also be used to help select

design modifications where system components may not be matched

or to study the use of variable geometry. The approach in these

off-design calculation methods is somewhat different from that used

in design studies. In the off-design calculations, the geometry is
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fixed, the working-fluid inlet conditions are fixed, and the variables

are blade speed and pressure ratio. Losses calculated for the stator and

rotor depend on loss coefficients selected to force agreement between

calculated and experimental or design values at the design operating

point. Additional losses considered for subsonic flows are the rotor

incidence Joss and the exit kinetic-energy loss.

A radial-inflow turbine off-design performance calculation method

developed at the NASA Lewis Research Center is described in ref-

erence 13, and the associated computer program is presented in

reference 14. Figures 10--22 and 10-23 illustrate results obtained

from a modified version of this computer program by presenting

calculated performance over a range of speed and pressure ratio and

comparing this with experimental performance. The mass flow esti-

mation in figure 10-22 shows an accurate representation of the ex-

perimental variation of mass flow rate with pressure ratio. Total and

static efficiencies plotted against blade-jet speed ratio are shown

in figure 10-23. The calculated efficiencies are generally within 1 per-
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FIGURE 10-22.--Comparison of calculated and experimental flow rates for off-
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cent and at most 2 percent of the experimental values. The calcu-

lations are sufficiently accurate to provide a valuable tool in the

examination of overall system performance prior to fabrication and

testing of the various components.
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SYMBOLS

specific heat at constant pressure, J/(kg) (K) ; Btu/(lb) (°R)

diameter, m; ft

conversion constant, 1; 32.17 (lbm) (ft)/(lbf) (see _)

ideal work, or head, based on inlet and exit total pressures,

J/kg; (ft) (lbf)/lbm

passage height, m; ft

ideal work based on inlet-total and exit-static pressures,

J/kg; Btu/lb

ideal work based on inlet-total and exit-total pressures,

J/kg; Btu/lb

conversion constant, 1 ; 778 (ft) (lb)/Btu

conversion constant, 2r rad/rev; 60 sec/min

rotative speed, rad/sec; rev/min

specific speed, dimensionless; (ft a/4) (lbma/4)/(min) (sec 1/_)

(lbP '4)

total number of blades (full plus partial)

absolute pressure, N/m 2 ; lb/ft _

volume flow rate, mS/see; ftS/sec

radius, m; ft

absolute temperature, K; °R

blade speed, m/see; ft/sec

absolute velocity, m/see; ft/sec

ideal jet speed, based on inlet-total- to exit-static-pressure

ratio, m/see; ft/sec

relative velocity, m/see; ft/sec

fluid absolute flow angle measured from meridional plane,

deg

fluid relative flow angle measured from meridional plane,

deg

Subscripts:

b'r

h

t

U

0

1

2

critical flow condition (sonic velocity)

hub

tip

tangential component

at stator inlet

at stator exit or rotor inlet

at rotor exit

Superscripts"

' absolute total state

" relative total state
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CHAPTER11

TurbineCooling,

ByRaymondS.Colladay

The trend towards higher compressor pressure ratios and turbine-

inlet temperatures to increase thrust and cycle efficiency has led to the

necessity of cooling turbine blades, vanes, and end walls to meet life

requirements. In this chapter, the term "vane" refers to a stator air-

foil, while the term "blade" refers to the rotor airfoil. The hot com-

bustor discharge gases enter the first vane row at peak temperatures

frequently in excess of 1644 K (2500 ° F). In order to preserve the

integrity of the turbine components in this hostile environment, air

bled from the compressor is routed through the internal passages of the

airfoils for cooling and then is dumped into the main gas stream at

discrete locations around the blade or vane. This inevitably results in

losses, both across the turbine and in the overall cycle thermodynamic

efficiency. Consequently, very effective cooling schemes which utilize

a minimum of air are required.

GENERAL DESCRIPTION

]n any turbine cooling design, one must make a complete energy

balance on the blade (or vane, or end wall) to arrive at a cooling

configuration which meets a given metal temperature limit. The

analysis can be broken up conceptually into three parts: (1) The

prediction of the heat flux to the blade from the hot gas stream. This

requires an understanding of the boundary-layer development over

the airfoil, the location of the transition from laminar to turbulent

flow, the potential-flow velocity distribution, and the temperature

profile (pattern factor) of the gas leaving the combustor (or other heat
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source). (2) A steady-state or transient heat-conduction analysis to

provide a detailed map of metal temperatures for blade-stress predic-

tions. And, (3) the prediction of complex internal coolant flow paths

for convection-cooling calculations. To maintain closure on the energy

balance, the entire heat transfer process--convection from hot gas to

blade, conduction through the blade wall, and convection from blade

to coolant--must be treated simultaneously.

Let us for a moment oversimplify the problem by considering a one-

dimensional model of a turbine-blade wall on the suction or pressure

surface (see fig. 11-1). The heat flux to the blade can be expressed as a

product of a hot-gas-side heat-transfer coefficient and the temperature

difference between the gas and the wall. The gas temperature is ex-

pressed as an effective gas temperature, which for convection cooling

is the adiabatic or recovery temperature (the temperature the surface

would reach if there were no cooling). For purposes of this illustration,

let the adiabatic wall temperature be the total gas temperature.

Therefore,
q=he(Tg'--Tw, o) (11-1)

where

q

hz

Tg!

T_.o

heat flux, W/m_; Btu/(hr)(ft _)

heat-transfer coefficient of hot gas, W/(m 2) (K); Btu/(hr)(ft _)

(°R)

totaltemperature of hot gas,K; °R

temperature of wall outer surface,K; °R

TW, 0

Tw, i

FIOURE 11-1.--Simplified one-dimensional model.
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The heat removed from the wall, expressed in the same manner, is

q=h_(T_._--TJ) (11-2)
where

he

w, i

T'
C

The temperature drop through the wall is given by

k dT k_
q=- -dy=-[ (T_. ,--T_. ,)

where

heat-transfer coefficient of coolant, W/(m _) (K); Btu/(hr)(ft 2)

(OR)

temperature of wall inner surface,K; °R

totaltemperature of coolant, K; °R

(11-3)

kw thermal conductivity of wall, W/(m)(K); Btu/(hr)(ft)(°R)

y coordinate normal to wall surface, m; ft

1 wall thickness, m; ft

The second equality holds only for constant thermal conductivity.

As is frequently done in a first-order design, let the heat-transfer

coefficient he be approximated by a correlation for flow over a fiat

plate. For a turbulent boundary layer, the fiat-plate local Nusselt

number Nu is given by

Nu,= __gx__ 0.0296Re_" 8Prl/3

where

(11-4)

Re, Reynolds number based on distance z

Pr Prandtl number

The Reynolds number is defined as

Re_ = pugx
la

where

distance along surface from leading edge of flat plate, m; ft

(11-5)

P

_tg

_t

density, kg/ma; lb/ft 3

component of hot-gas velocity in x direction, m/sec; ft/sec

viscosity, (N) (sec)/mS; lb/(ft) (sec)

and the Prandtl number is defined as

(11-6)

where
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K

C_,

For an ideal gas, equation (11-5)

(11-4) to yield

h =_ (0.0296)Pr '/3 FPz' -/ _'g,

" x k yW ,

dimensional constant, 1; 3600 sec/hr

specific heat at constant pressure, J/(kg)(K); Btu/(lb)(°R)

can be substituted into equation

Mx T s

I T--1 2\(v+l)/2('_-Dm j#

(11-7)

where

p',
T

g
R

M

total pressure of hot gas, N/m2; lb/ft 2

ratio of specific heat at constant pressure to specific heat at

constant volume

conversion constant 1 ; 32.17 (lbm) (ft)/(lbf) (sec 2)

gas constant, J/(kg) (K) ; (ft) (lbf)/(lbm) (°R)

Mach number

On the coolant side, a number of cooling schemes can be used, but in

general,

h_=CRe/,"Pr"=C( w'_" "]"Pr" (11-8)

where

C

Re f

We

J

constant dependent on coolant-passage geometry

Reynolds number based on characteristic length___

coolant mass flow rate, kg/sec; lb/sec

characteristic length for coolant passage, m; ft

coolant-passage flow area, m2; ft 2

For turbulent convection cooling, m-----0.8 and n-----l�3. Since efficient

cooling is desired, internal laminar flow (m=0.5) should be avoided.

Now, consider the temperature profile through the blade wall, as

depicted in figure 11-2, when the pressure p_' and temperature Tg' of

the hot gas are increased and the wall outer temperature Tw.o is kept

constant (going from state 1 to state 2 in fig. 11-2). From equations

(11-7) and (11-1), the heat flux to the blade increases with pressure to

the 0.8 power and it increases with increasing gas temperature. The

increased heat flux raises the temperature drop through the wall (i.e.,

decreases T_._ for a fixed wall outer temperature T,_.o). At the same

time, the compressor bleed air temperature increases (higher compres-

sor pressure ratio), so the temperature difference (Tw._-Tc') available

for convection cooling is sharply reduced. The heat flux q must be

removed, otherwise the outer wall temperature will increase. Therefore,

310



WPURBINE COOLING

i

Tg

_ kw /
_- (Tw,o - Tw, i I

1
/ C

hg(T_ - Tw,o)

FIGURE 11-2.--Gas temperature and pressure effect on temperature drop through
the wall.

h, must be increased by increasing the coolant flow we. The limiting

case, as seen from figure 11-2, is state 3, where the inside wall tempera-

ture and coolant temperature are equal; therefore, he must be infinite,

and an infinite coolant flow is required. Of course, this condition is

impossible to achieve.

Because of limited internal passage size and the restriction on the

quantity of cooling air available and on its supply pressure, a limit to

the capabilities of plain convection cooling is apparent. Figure 11-3

from reference 1 shows the highly nonlinear increase in cooling air

required for convection cooling as pressure and temperature increase.

The limit in the application of advanced convection cooling is about

1644 K (2500 ° F) hot-spot turbine-inlet temperature and about 20

atmospheres pressure. To exceed these gas conditions while main-

taining reasonable operating blade-metal temperatures, cooling

designs must incorporate film or transpiration cooling. Figure 11-3

shows the potential savings in cooling air with the use of transpiration

cooling or combined film and convection cooling as compared to

convection cooling only. Figure 11-4 illustrates the basic methods for

air-cooling turbine components (figs. l l-4(a) to (e)), and it also shows

examples of blades cooled by one or more of these cooling methods

(figs. l l-4(f) to (i)).

Film cooling is an effective way to protect the surface from the hot

gas stream by directing cooling air into the boundary layer to provide

a protective, cool film along the surface. The effective gas temperature
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Turbine-inlet

pressure,

Pg, in,
atm

3 4O 20
lO

Convection cooling
Film and convection

cooling
-- -- -- Transpiration cooling

I [ I
1400 1600 1800 2O00 22O0

Turbine inlet temperature, T_, in, K

I I I t
2OOO 25OO 3O0O 35OO

I

Turbine inlet temperature, Tg, in, oF

FIou]_. l l-3.--Effect of turbine-inlet pressure and temperature on coolant

flow requirements.

in equation (11-1) becomes the local film temperature, and the heat
flux to the blade is then

q=hg(T's_.,-- T,,,,.) (11-9)

where T_,z_ is the total temperature of the gas film, in K or °R. It is

frequently assumed that the heat-transfer coefficient in this equation

is the same as in the non-film-coo|ed case.

The injection of film air into the boundary layer causes turbine aero-

dynamic losses which tend to reduce some of the advantages of using

higher pressures and temperatures. The aerodynamic and heat-

transfer designs must be integrated to achieve an optimum configura-

tion which ensures blade metal temperatures consistent with long-life

objectives yet minimizes the loss in turbine efficiency.
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Transpiration cooling of a porous blade wall is the most efficient air-

cooling scheme available, but it has significant drawbacks which

currently limit its use to advanced designs operating under extreme

heat-flux conditions. For efficient transpiration cooling, the pores

should be small, which leads to problems of blockage due to oxidation

and foreign contaminates. Also, the aerodynamic losses can be severe

because of normal injection of cooling air into the boundary layer.

To offset this latter point, however, it must be recognized that trans-

piration cooling requires less cooling air than other cooling schemes.

A typical transpiration-cooled blade is shown in figure 11-4(i). Full-

coverage film cooling from an array of discrete holes, as illustrated in

figure l l-4(h), is an attempt to draw on some of the advantages of

transpiration cooling without paying the penalties mentioned.

Cooling air Zn _ Xn __

(aJ (bt

o c:_ c>xE//Ej

(d)

J JJ

(e)

(a) Convection cooling. (b) Impingement cooling.

(c) Film cooling. (d) Full-coverage film cooling.

(e) Transpiration cooling.

FmuaE 11-4.--Methods for turbine blade cooling.
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Radial outward airflow into chamber1,

Film cooled--_ i_f//
\ 1/// .

Convection \_ /.//// / f-Convection

L Impingement inlet
cooled airflow

(fl

/_\lmpingement cooled Convection

cooled

(g)

(hl

_Transpiration cooled /- Wire-form
i, / porous sheet

(il

(f) Convection-, impingement-, and film-cooled blade configuration.

(g) Convection- and impingement-cooled blade configuration.

(h) Full-coverage film-cooled blade configuration.

(i) Transpiration-cooled blade configuration.

FIGURE I I-4.--Concluded.

HEAT TRANSFER FROM HOT GAS TO BLADE

Boundary-Layer Equations

General equations.--The transfer of heat to the blade is confined to

the boundary-layer region very near the surface, where large velocity
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and temperature gradients are present. Consequently, to describe the

heat-transfer process, the following boundary-layer equations,

introduced in chapter 6 (vol. 2), must be solved:

Conservation of mass

where

o O (pv+
0%(pu)

()'

()

Conservation of momentum

Ou . _-7=7..,_Ou dp 0

pu 6-_+(pv+p v ) -_=--g -_+g -_ r-t-gpB_

where

(11-10)

time-average value of velocity component in y direction,

m/sec; ft/sec

fluctuating component

time-averaged quantity

T

B.

Conservation of energy

OH . _ OH 0 / 1 ur\

(11-11)

where

H

J

Q

local shear stress, N/m2; lb/ft 2

component of body force in the x direction, N/kg; lbf/lbm

total enthalpy, J/kg; Btu/lb

conversion constant, 1; 778 (ft)(lb)/Btu

heat-generation term, W/m3; Btu/(see) (ft z)

(11-12)

The dependent variables p, u, v, and H are time-average values (i.e., _,

u, v, and H, as denoted in ch. 6), with the overbar being understood.

The solution of these equations requires appropriate expressions

for the shear stress and heat flux through the hydrodynamic and

thermal boundary layers. The laminar contribution to molecular

diffusivity of heat and momentum is straightforward, but our limited

understanding of turbulent flow requires the use of various assump-

tions in describing the turbulent counterpart. One such assumption,

which bears little physical resemblance to the structure of turbulence

but has persisted because of its simplicity and success in predicting

turbulent transport processes, is Prandtl's mixing-length hypothesis

for eddy diffusivity of heat and momentum. The shear stress and

heat flux are expressed as the sum of the laminar and turbulent
contributions"

315



TURBINE DESIGN AND APPLICATION

and

where

p/ Ou _--_..,\ (11-13)

{ 0/_ _) (11-14)q=Ko[ aL_jj-

yr, laminar c()mponent of momentum diffusivity (kinematic viscos-

ity), m2/sec; ft2/sec

aL laminar component of heat diffusivity, m2/see ft2/sec

,4 static enthalpy, J/kg; Btu/lb

The turbulent shear stress u'v---; and heat flux _ are assumed propor-

tional to tile respective gradients in tile mean flow variable; that is,

'tt'v' = -- vr _-ff (11-15)
and

O,4

v-'_g_' = -- O_r _-_ (11-16)

where the subscript T denotes the turbulent (:omponent of momentum

and heat diffusivity.

Equations (11-13) and (11-14) can then be written as

p 0u p 0u
(t1-17)

and

0_'. O/ (ll-lS)
q=-Ko(aL+ar) _-_-- Koa

The preceding boundary-layer equations as_u me t e lnperature-variable

properties and compressible, turbulent flows (inclusive of laminar

flow where both ,r and ar approach zero). If the variation in specitic

heat cp is neglected and there is no intern,d heat generation, the energy

equation reduces to equation (6-42).

If temperature-variable properties arc assumed at the onset, of the

analysis, all boundary-layer equations must be solved simultaneously.

However, constant properties are freq_)ently 'tssumed, and experi-

mental data are usually taken under approximately isothermal condi-

tions. The final results are then corrected to account for temperature-

variable properties. These corrections will be considered in a later

section.

Integral equations.--As we saw in chapter 6 (vol. 2) with the momen-

tum equation, it is often convenient to solve the boundary-layer

equations from an integral approach in term_ of integral parameters
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such as momentum and displacement thicknesses rather than in terms

of discrete velocity profiles. Just as the displacement and momentum

thicknesses derive their meaning from the integral momentum equa-

tion, so the enthalpy thickness is a significant boundary-layer param-

eter for the integral energy equation. The enthalpy thickness z_ is

defined as follows:

/_= fo¢* pu( H-- H,)dY

p,u,(H,,,.o--H,) (11-19)

Note that the subscript g refers to the free-stream value denoted by

the subscript e in chapter 6. For low-velocity, constant-property flow,

A=fo_*u(T'--T',)dy
u,(T_,.o--T,') (11-20)

The enthalpy thickness is a measure of the eonveeted energy decre-

ment caused by the boundary layer.

The integral energy equation can be derived either by integrating

equation (11-3) or directly by balancing the transport of energy

across the boundary of a control volume containing the hydrodynamic

and thermal boundary layers (for details see ref. 2). In either case,

the resulting integral energy equation for compressible flow with

temperature-variable properties and mass transfer at the wall is

q -F PgU,c
Kp,u,(H,.

dh _ 1 du, d o--11,)]= ____t_A [ (l_Mg) __d__ q_ 1(H,_.°--Ht)dx (H'*'
(11-21)

Note that if we make restrictive assumptions of constant properties,

zero pressure gradient, low-speed flow (incompressible), no mass

flux at the wall, and constant temperature difference (T,,.o--Tz')

with _, then equation (11-21) reduces to its simplest form,

q dA (11-22)
Kpu, c_,(T_,, o--T,')= d--x

If a local heat-transfer coefficient h,,x is defined as

then,

q (11-23)
h'.'=(T..,--T,')

h,., da Stz (11-24)
Kpu, c_,=d-x=
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The group of variables on the left side is dimensionless and is called

the local Stanton number Sty, which is also equal to

S Nu,

t_--R_p r (11-25)

Notice from equations (6-72) and (6-75) that with similar assump-

tions, the integral momentum equation resulted in

CI'_--dO (11-26)
2 dx

For compressible flow, there is dissipation of kinetic energy into

thermal energy by viscous shear within the boundary layer. This is

characterized by an increase in the static temperature near the wall

as shown in figure 11-5. The effective gas temperature Tt.,, or adiabatic

wall temperature T,_,o, is the temperature the wall would reach if it

were uncooled and is, therefore, a measure of the viscous heating in

the boundary layer. This dissipation of kinetic energy is related to

the recovery factor r defined by the following equation:

Tg,=T,o.=t,+r ug2 (11-27)
' ' 2gJcp

where tz is the hot-gas static temperature, in K or °R. For laminar

flow, the recovery factor can be approximated by Pr 11_, while for a

turbulent boundary layer, r is assumed to equal Pr z_. It is not surpris-

ing that the Prandtl number has an effect on the adiabatic wall

temperature. The Prandtl number is the ratio of the viscosity (re-

sponsible for energy dissipation) to the thermal diffusivity (mechanism

allowing heat to escape from the boundary layer). This would suggest

that for a given free-stream kinetic energy, a high Prandtl number

should lead to a high adiabatic wall temperature, and vice versa.

tg / u 2 Ii Tg,e

_'_ r 2g-_jCp---I _

Thermal _ // I q " 0

FZOUR_ l l-5.--Temperature distribution in a high-velocity boundary layer.
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The heat flux to the blade is proportional to the temperature gradient

(either effective or static gas temperature) at the wall:

Ot OT, _ h
q=--]¢' Nlv=0 =-k_ -_ v=0---- g.:`(T,.e--T,_.o) (11-28)

As we have already seen, it is convenient to express the heat flux in

terms of the heat-transfer coefficient h,., and the gas-to-wall tempera-

ture difference. The gas temperature in this case must always be the

effective gas temperature, or the adiabatic wall temperature.

The problem in determining the heat flux to the blade is to find a

suitable expression for the heat-transfer coefficient hg.:`. The objective

is to design a cooling configuration which will yield a constant outer-

wall temperature. In reality, however, the surface temperature is

never constant. The effect that the actual varying surface temperature

has on the thermal boundary layer can be accounted for in more

refined design stages.

Solutions to Boundary-Layer Equations

First-order approximation.--The simplest approach to the solution

is to assume that the heat-transfer coefficient on the suction or

pressure side of the blade is approximated by a fiat-plate correlation

faired into a heat-transfer coefficient distribution around a cylinder

in a crossflow for the blade leading-edge region. Though the fiat-

plate expression pertains, in a strict sense, only to zero-pressure-

gradient flow, the results are accurate enough for a first-order ap-

proximation. In fact, often the fiat-plate correlation yields results

surprisingly close to those of more sophisticated analyses, primarily

because the Stanton number St is relatively insensitive to pressure

gradient.

For laminar flow over a fiat plate with the thermal and the hydro-

dynamic boundary layers both beginning at the leading edge, the

energy equation can be solved directly by means of the Blasius

similarity solution discussed in chapter 6 for the velocity profile.

With the wall temperature assumed to be constant, the result is

h_.,=0.332 _ Re:,'12pr'z3 (11-29)
X

The turbulent counterpart is given by

hz.,=0.0296_Re °" Spr'/a (11-30)

The local velocity u_. x is used in the Reynolds number.

For the heat-transfer coefficient he. ,, in the leading-edge region,

the following correlation is frequently assumed:
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h,,'_=a E1" _\ _]14k" (p'u' _D'_'/_pro.,(l__)]

where

a

D

--80°_¢_80 °

(11-31)

augmentation factor

diameter of leading-edge circle, m; ft

velocity of gas approaching leading edge, m/sec; ft/sec

angular distance from leading-edge stagnation point, deg

The bracketed term is the heat-transfer coefficient for a cylinder of

diameter D (see fig. 11-6) in a cross-flowing, laminar free stream.

Ug,_ == x /

FIGURE 11-6.--Blade leading-edge geometry.

The term a is an augmentation factor used to adjust the coefficient

to account for the highly turbulent mainstream flow approaching

a vane or blade leading edge. Various magnitudes of the factor a,

from 1.2 to 1.8, have been used. This amplification of heat flux 'is

uniquely associated with large, favorable-pressure-gradient flows.

The highly accelerated flow at the stagnation region stretches vortex

filaments oriented with their axes in the direction of flow, thereby

increasing the turbulent fluctuating velocities within the boundary

layer. Kestin (ref. 3) has studied this phenomenon in detail, but as

yet, no general correlation of stagnation heat transfer with turbulence

scale and intensity is available.
Transition from laminar to turbulent flow will occur when the

Reynolds number becomes sufficiently high to allow instabilities in

the boundary layer to grow. For a fiat plate with zero pressure gradi-

ent, it can generally be assumed that transition will take place in the

Reynolds number range of 200 000 to 500 000, depending on free-

stream turbulence and surface roughness. However, a Reynolds hum-
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ber based on the distance, x, from the leading edge (boundary-layer

origin) is not a practical transition criterion, because it is not a local

parameter. It is more convenient to use the momentum thickness, 0,

as the characteristic length in the Reynolds number for determining

transition, because the critical Reynolds number at a given point is

then independent of the history of the boundary layer; that is, it is

immaterial how the boundary layer developed in getting to the given

state. For a strongly accelerated flow, the boundary layer never be-

comes turbulent. This fact is consistent with the use of 0 but not with

the use of x. A value of Reoccur=360 is a "universal" critical Reynolds

number corresponding to Rex=300 000 for a flat plate and ReD= 2000

for pipe flow. For flow over a turbine blade with very high free-stream

turbulence, a conservative value of Ree.cr_t=200 can be assumed.

An approximate expression for the momentum thickness variation

on a turbine blade can be derived from the integral momentum equa-

tion from chapter 6 (eq. (6-76)) by making suitable assumptions as to

the functional form of the local velocity profile through the boundary

layer (see ref. 2). Upon integrating equation (6-76), the laminar

momentum thickness as a function of a variable free-stream velocity

is given by

OL__O.67vO. 5 / Fx \o. 5
tJo U,Sdx) +0,,_. (11-32)Ug 3

where x is the surface distance measured from the stagnation point, in

meters or feet. The momentum thickness 8,t_s at the stagnation point

of a cylinder of diameter D in a crossflow with an approach velocity

ug_ is

0.1D (11-33)

°.'..- ?..o,5
¥ 2_

Turbulent or transitional flow, then, exists when the value of 0 is

such that (ouz0/u)_200. The value of x where this occurs is denoted

as T,cr_ t.

The turbulent momentum thickness is obtained in a similar manner

by the equation

0T-- 4. I1 _g _x-r-t,L._ti,----_e ] (11-34)L _/,g ,,,..

This assumes an abrupt transition from laminar to turbulent flow.

Integral method.-- The solution of the integral equations of momen-

tum and energy to obtain the heat flux to a blade is a more refined and

accurate approach than the "fiat-plate approximation" previously

discussed. The penalty for more accuracy is, of course, the increased

complexity of the computation. In many cases, the more sophisticated
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methods are not warranted in the early stages of design. The integral

method accounts for free-stream velocity variation more realistically,

and the effect of a nonconstant surface temperature on h=._ can also

be included. However, some assumptions must still be made in order

to solve the integral equations.

Consider the integral energy equation (eq. (11-21)) with constant

specific heat and no mass transfer across the wall boundary.

_p,u,cp ax _ _ u, dx _- (T_.o--T,') dx (T=.o--T,')

(11-35)

Ordinarily, the integral momentum equation would first have to be

solved in order to evaluate the enthalpy thickness 5 in equation

(1i-20). Ambrok (ref. 4), however, proposed an approach whereby

equation (11-35) could be solved independently of the momentum

equation by making use of the fact that experimental data show the

Stanton number to be a very weak function of pressure gradient. He

proposed that the Stanton number can be written as a function of a

local Reynolds number based on enthalpy thickness as the character-

istic length, and that this function is independent of pressure gradient.

Stx----f(Re_) ( 11-36 )

If ] is independent of pressure gradient, then the flat-plate solution

should give us the functional form.

For turbulent flow over a flat plate, combining equations (11-4)

and (11-25) yields

St_=0.0296 Re-_ °2 Pr - 2/3 (11-37)

Recalling from equation (11-24) that for a flat, plate

dA
Stx=-_ (11-38)

the local Stanton number can be expressed in terms of the enthalpy

thickness by combining equations (11-37) and (11 38) so as to obtain

St_ = (0.0296 Pr-2/3) 1"25(0.8 Rea) - 0.2_ (11-39)

Hence, the function f from equation (11-36) is given by equation

(11-39) for turbulent flow and_ by assumption, for any arbitrary

free-steam velocity variation. (The same argument holds for laminar

flows.) Substituting equation (11-39) into equation (11-35) and

integrating yields

Sty- rT hg'_ --0.0296 Pr-2/3( T ' T _o.z_/-o._ (11-40)
l"kpe'_=C p
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where

I =-: ]_*.... u.f p?I_(T_'--T.,o)' 25 • . ['0.SRe_(T/-- T_ o)71"25J,=,....
(11-41)

The integration is performed numerically for hg._, with the critical

enthalpy-thickness Reynolds mnnber being ewduated from the

laminar-boundary-layer equation. For further details, see reference 2.

IGnite-difference solution.--The most accurate metho(1 of calculating

the heat flux to a turbine blade is to solve all the boundary-layer

equations simultaneously by a finite-(lifference approach. There

are several good numerical programs available to do this. One of these

was developed by W. M. l(ays an<l uses the numerical procedure of

Spalding and P'ttankar (ref. 5). In addition to the equations for the

censervation of mass (eq. (11-10)), momentum (eq. (11-11)), and

energy (eq. (11-12)), a fourth conservation equation, that of turbulent

kinetic energy .._is also solved simultaneously with the others.

Conservation of turbulent kinetic energy ix given by

°z/+lo,.,+¢,.'t (o,y+ o az" -9
0z -_.v=p_ \0v/ Ov P(_+_) 0.v

(11-42)

wheref/r is a turbulent dissipation term, in W/m s or Btu/(ft a) (sec).

The turbulent kinetic energy is defined as

.j//_ 1
2gd (u'2+v'2+w'2) (1 1-43)

where w' is the fluctuating component of velocity, in m/sec or ft/sec,

in the direction perpendicular to the x-y plane. By including the

turbulent-kinetic-energy equation, the mixing length ix calculated

locally in the boundqry layer. Also, the effects of fi'ee-stream turbu-
lence can be accounted for.

All properties are evaluated locally through the boundary layer

with no restrictive or approximating assumptions made on the varia-

lion of surface temperature m' velocity l)rotile..Mass transfer at the

wall (transpir'ttion cooling) an(I local film cooling are also handled

in a slraightforwar(I manner.

I;igtll'e 11 7 presents example results from computer plots showing

the tlcxihilitv of the mmwrical apI)roa<:h for the case of a high-

temperature, high-pressure turbine wine. The free-stream velocity

protile is given in figure l l-7(a). The initial profiles through the

bound'n'v l,Jyer must be supplied as a boundary condition to get, the

integration started (fig. ll-7(b)), but, from then on, profiles can be
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(a) Surface velocity profile.

(b) Initial profiles for finite-difference numerical boundary-layer program.

Free-stream reference velocity, 30.87 m/see or 101.28 ft/sec; free-stream

reference enthalpy, 1.0447)< 106 J/(kg)(K) or 249.7 Btu/(lb)(°R).

FIGURE l l-7.--Boundary-layer development over a high-t_mperature, high-

pressure turbine vane.
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calculated through the boundary layer at discrete x locations. The

boundary-layer thickness, momentum thickness, momentum-thickness

Reynolds number, and heat-transfer coefficient are shown in figures

11-7(c) to 11-7(f), respectively. Notice that just upstream of the
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(c) Pressure-side boundary-layer thickness.

(d) Pressure-side boundary-bayer momentum thickness.

FIGUaE 11-7.--Continued.
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20-percent surface distance location on the vane, the boundary-layer

thickness (fig. 11-7(c)) and the momentum thickness (fig. ll-7(d))

increase rapidly and then decrease slightly over a short distance

before continuing to increase. This "blip" is caused by the rapid

2400--
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ii '°1000
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"T"

-7- 600

4OO

le)

I 1 I I I

1600--

v 8.6_
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2.2 I
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Perceni surface distance

(e) Pressure-side momentum-thickness Reynolds number.

(f) Pressure-side heat-transfer coefficient.

FIGURE 11-7.--Concluded.
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Btu/(lb) (°R).

(b) Three slot-widths downstream of slot. Free-stream reference velocity, 610.8

m/sec or 2004 ft/sec; free-stream reference enthalpy, 4.8189X 106 J/(kg)(K) or

1151.75 Btu/(lb) (°R).

FIGURE 11-8.--Boundary-layer profiles along adiabatic wall with film cooling.
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deceleration and acceleration of the mainstream flow resulting from

the adverse-pressure-gradient region aft of the leading edge on the

pressure side. Transition from a laminar boundary layer occurs at

about the 10-percent location. Very little of the boundary layer is

in a transitional state, as can be seen from figure 11-7(f).

Initial velocity and enthalpy profiles illustrating an example of

film cooling are given in figure 11-8(a). About 3 slot widths down-

stream, the profiles have changed to the shapes shown in figure 11-8 (b).

Temperature-Dependent Fluid Properties

The relations involving the dimensionless parameters Re, Pr, Nu,

and St, discussed in earlier sections, contain gas properties p, k, u, and

c_, which all vary with temperature. The temperature dependence of

these transport properties causes a change in the velocity and tem-

perature profiles (and, therefore, in the heat-transfer coefficient)

compared to results obtained if properties were constant. Since large

temperature variations occur across the boundary layer, at what

temperature are the properties to be evaluated? Usually, constant-

property analytical solutions (except in the finite-difference method)

or the experimental data obtained with small temperature differences

are corrected to account for property variation. Two schemes are in

common use for the correction of constant property results; namely,

the temperature-ratio method (for gases) and the reference-tempera-
ture method.

In the latter method, all transport properties are evaluated at the

reference temperature :

Tre.,':O.5 Tw.o+0.28 tg+0.22 Tg,_ (11-44)

The temperature-ratio method assumes

Nu St (T_e'_"{ t_ "_"
N---_ce--Z-_c_=\ _] \T-_.J (11-45)

The subscript CP refers to constant properties evaluated at the

free-stream static temperature. For laminar flow, n=0.08 and

m=0.12. For turbulent flow, n=0.4 and m:=0.6, a much greater

influence than in laminar flow.

CONDUCTION WITHIN THE BLADE WALL

Once the local heat-transfer coefficients on the hot-gas side and

coolant side are known, the heat-flux boundary conditions for the

heat-conduction problem are available. The blade or vane is broken

up into a number of finite elements, as shown, for example, in figure
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FIGURE 1 l-9.--Typical node breakdown for a turbine-blade conduction analysis.
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FIGURE l l-10.--Typical boundary element for heat-conduction analysis.

11-9, and an energy balance is written for each element. The result is

a system of algebraic finite-difference equations, with the number of

equations equal to the total number of elements. All equations must

then be solved simultaneously by means of a high-speed, digital

computer. Once such a conduction analysis is completed, a detailed

temperature distribution throughout the blade is available for use in
thermal-stress calculations.

Consider a typical boundary element from figure 11-10. Accounting
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for all the energy transfer between the given element (the jth element)

and those adjacent to it (elements j-l-1 to j+5), including the fluid

boundary, leads to the following algebraic equation (see fig. 11-10).

)m+ k_Aj T _ k_42
Ac (Tj--Tc' (Tj-- j+l) +--_-- (Tj--Tj+2)"dc 1

+ +_s 5 (Tj--T_+5)"-- pc_,Vj• " • A(time) (T']+I--TT')

where

A_

44

(11-46)

surface area between jth element and element or boundary de-

noted by subscript i, m s ; ft _

distance between jth element and element or boundary denoted

by subscript i, m; ft

volume ofj th element, m 3 ; ft s

The superscript ra denotes time step n or n+ l, depending on whether

an explicit or implicit transient scheme is used.

A similar equation for every volume element must be written. The

calculation may be either transient or steady-state, depending on how

the equations are structured. If the element is allowed to reduce to an

infinitesimal size, the energy balance at a point yields the familiar

heat-conduction equation

0T
(11-47)

Pcp0(time)

where x, y, and z are the coordinate direction_.

COOLANT-SIDE CONVECTION

There can be many internal flow geometries used to promote heat

transfer by convection to the coolant, and for that reason, it would be

impossible to discuss each convection-cooling scheme• Essentially,

the problem is to determine the heat-transfer coefficient, he, and the

local coolant temperature, T_, in the previously shown equation

q----hc(T,_._-- T'c) (11-2)

This is not, however, as simple as it sounds. The coolant flow path

can be very complex, and the internal flow and pressure distribution

must be known before the heat-transfer coefficient can be determined.

An internal flow network is established, and conservation of momentum

equations that describe the internal pressure distribution are solved
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to determine the flow split between various parts of the blade. Since

there is interaction between each of the three heat-transfer steps

discussed (convection from hot gas to surface, conduction through

the surface, and convection from surface to coolant), an iterative cycle

between the three calculations must be made. After the percentage of

air available for cooling a given region of the blade has been deter-

mined, empirical correlations for the particular convection scheme

considered must be used to determine he.

Various methods are used to enhance coolant-side convection heat

transfer. Fins can be added to the cooling passages to act as "turbu-

lators" to keep the flow highly mixed and the boundary layers thin.

They also help by increasing the convection surface area. One of the

most effective convection methods is impingement cooling (fig.

11-4(b)), where small jets of cooling air are directed toward the inside

wall of the blade, as seen in figures 11-4(b) and (g). One representative

correlation from reference 6 for impingement cooling gives

/,._ \0.091

NUD, irap-_-_lq_2ReDraprl/S (k_)

Zn

D

The

both

(11-48)

impingement-cooling Nusselt number based on hole diameter

as characteristic dimension

distance between hole and wall, m; ft

hole diameter, m; ft

power m on the Reynolds number and the coefficient _1 are

functions of the impingement-hole array geometry and the

Reynolds number. A least-squares-curve fit of the data in reference 6

gives
Xn 2 Xn

m----a_(-_) +b,(,)+c, (11-49)

and

=expEa2 xn 2 x. (11-50)

where x, is the center-to-center distance, in meters or feet, between

holes in the direction of flow, and the coefficients a, b, and c are given

in table 11-I as functions of ReD. The coefficient _o2 is an attenuation

factor to account for crossflow caused by the accumulation of fluid

from multiple rows of impingement jets. It can be expressed as

1

_o2 1 +a3_b_3 (11-51)

where aa and ba are given in table 11-I, and _b for the i th row of
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TABLE ll--I.--IMPINGEMENT-CooLING CORRELATION COEFFICIENTS

Coefficient

al

bl

¢1

a2

b2

c2

a3

b3

Reynolds number range,
300 to 3 000

-- 0.0015

.0428

•5165

0. 0126

--.5106

--.2057

0.4215

.580

Reynolds number range,
3 000 to 30 000

--O.0025

•0685

.5070

0.0260
--. 8259

• 3985

0.4696

•965

impingement holes is defined as

Go! Zn

where

Gcr

Gh

crossflow mass flux, kg/(sec) (m 2) ; lb/(hr) (ft 2)

impingement-hole mass flux, kg/(sec) (m 2) ; lb/(hr) (ft 2)

(11-52)

FILM AND TRANSPIRATION COOLING

As turbine-inlet temperature and pressure increase, it becomes ap-

parent that convection cooling must be augmented by film cooling to

reduce blade metal temperatures and conserve cooling air (as shown

in fig. 11-3). The importance of combining both film and convection

cooling in a given design is shown in figure 11-11. Here, blade surface

temperatures are given for convection cooling only, film cooling only,

and combined fihn and convection cooling, all for the same hot-gas

and cooling-air conditions and the same percent coolant flow rate.

Except in the immediate region of the film injection hole, the combined

cooling yields a significantly lower wall temperature than does either

film or convection cooling alone. Notice also that the average wall

temperature for film cooling only is about the same as for convection

coo]ing, but the wall temperature gradients arc much higher because

of the rapid decay of the protective film.

First, localized film cooling from rows of holes or slots will be dis-

cussed, then transpiration cooling and full-coverage discrete-hole film
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FIGURE l l-ll.--Effect of combining film and convection cooling. Constant
coolant flow rate.

cooling. To successfully analyze and model film cooling, the "non-

film-cooled" heat-transfer coefficient must be known. Hence, the

film-cooling analysis builds on the preceding discussion. In the follow-

ing expression for the heat flux to the surface, the effective gas

temperature becomes the film temperature T),_m:

q=_hg._(T'.,,_=--Tw.o) (11-53)

where h,.x is the heat-transfer coefficient without film cooling, and

(he, x)I,,,_ (11-54)
e -- hg, x

Very near the point of injection, the heat-transfer coefficient is altered

somewhat by the injection itself, and _ is included to account for this.

However, the effect is usually damped out rapidly, so _ is frequently

assumed to be unity. The film temperature is sometimes called the

adiabatic wall temperature with film cooling, because it is obtained

from experimental data under adiabatic wall conditions (i.e., it is the

temperature of an uncooled wall having a buffer film layer of cool a'r

between it and the hot gas (see fig. 11-12)). The film temperature is

correlated in dimensionless form by the film effectiveness nl, z_:

T.,.--T_.,,, (11-55)
_'"'"= Tg..-- T', o

where T_, o is the injected film temperature (coolant temperature at

outer wall). The film effectiveness decays from a value of 1, at the
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FIGURE ll-12.--Experimental determination of film temperature.
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FIGURE ll-13.--Film-cooling effectiveness for slots.

slot, to zero, far downstream. Figure 11-13 gives experimental values

of film effectiveness for film injection from slots as determined by a

number of investigators. The distance downstream from the slot

(x--x_) is normalized by the slot width s and the mass-flux ratio F

between the film air and the hot-gas stream. The indicated injection

angle is with respect to the surface (0 ° is parallel to the surface, and

90 ° is perpendicular). As seen, the film effectiveness decreases with

increasing injection angle.

The following expressions (from ref. 7) correlate turbine-blade slot

film cooling reasonably well:
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I -0. 2 _s O.

_I'z'_=exp k --2.9 k,p-_2] \p_u_s/

for small values of (z--z,), and

(11-57)

for large values of (z--x,), where z8 is the location of the downstream

edge of the slot, in meters or feet, measured from the stagnation point.

Values for the coefficient C and the exponent n are C----2.7 and n----0.21

for a 30 ° injection angle, and G= 1.95 and n----0.155 for a 15 ° injection

angle.

Film effectiveness as a function of the downstream and lateral

distances from the injection hole is presented in figure 11-14 (from

ref. 8) for film cooling from a single hole and from a row of holes. For

small lateral distances, up to about 1 hole diameter in this case, film

effectiveness decreases with downstream distance, as previously shown

Dimensionless
lateral distance

from injection hole,• 50 --
hole diameters

o o
°

.40-- A .50

1.00

30i_ xji_ Plain s,,ymbolsdenote single hole
' "-_.,-'="_ at 35v injection angle

"_ " _ ."__ Tailed symbolsdenote single rowE

u:. 20-- , _ of holes

I l I I I i I I
O 10 20 30 40 50 60 70 80

Dimensionless distance downstream from injection hole, hole diameters

]
9O

FIGURE l l-14.--Film-cooling effectiveness as function of dimensionless down-

stream and lateral distances from injection holes. Mass-flux ratio, 0.5; injection-

hole diameter, 1.18 cm or 0.464 in.; gas velocity, 30.5 m/sec or 100 ft]sec;
Reynolds number, 0.22X 10 s.
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for slots, and the same values are obtained for single holes as for a row

of holes. For larger lateral distances, effectiveness initially increases

with downstream distance as a result of the spreading of the injected

flow, and the values for the row of holes are larger than for the single

hole because of the interaction of flows from adjacent holes. Notice also

that _mm is not unity at the injection hole. This is due to entrainment

of hot gases underneath the film jet as the jet separates from the

surface. Very limited data are available for a staggered row of film-

cooling holes. Frequently, the slot data are used for this case, with

an effective slot width s defined such that the total area of the holes

equals the area of the slot.

Figure 11-15 (from ref. 8) shows the spreading of a film layer from a

single hole at various angles of injection. For a 35 ° injection angle in

the direction of the main gas stream, the film spreads less than 2 hole

diameters, giving very local film coverage. A compound angle of

injection gives more lateral coverage, but the film does not persist as

far downstream.

Transpiration cooling of a porous wall is one of the most effective

methods of cooling available. With mass transfer from the wall into

the boundary layer, it combines film cooling with efficient convection

cooling. The porous wall serves as a very effective heat exchanger,

where the heat conducted into the wall from the hot gas stream is

continuously transferred to the coolant in counter flow as it passes

through the small pores. However, there are problems in applying

this method of cooling to turbine blades. The pores tend to be

extremely small and, therefore, are subject to blockage due to oxida-

tion or contaminants in the air. Also, from an aerodynamic-loss

standpoint, a penalty is paid, since the film air is injected into the gas

stream essentially normal to the boundary.

In order to alleviate these problems yet still obtain some of the

characteristic advantages of transpiration cooling, full-coverage film

cooling is used. In full-coverage film cooling, the cooling air issues

from a large number of small, closely-spaced, discrete holes in the

surface. This type of cooling lies in the spectrum between pure trans-

piration cooling on the one end, with essentially a continuous mass

flux over the surface, and localized film cooling on the other end. The

amount of heat transferred by convection to tile cooling air flowing

through the wall depends on the tortuosity of the internal flow pas-

sages. The wall may be constructed of simple, straight-through holes,

with a low resultant convection effectiveness, or it may consist of a

maze of interconnected flow passages, with a relatively high convection

effectiveness.

Convection effectiveness v_o,v is a term borrowed from heat-

exchanger theory and is a measure of the ability of the wall (or blade
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FIGURE ll-15.--Lines of constant film-cooling effectiveness for single-hole
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acting as a heat exchanger) to transfer heat to the cooling air by
convection.

f !

T c.o--T c.,. (11-58)

Since an optimum design utilizes as much of the heat sink available
in the cooling air as possible for convection cooling, ,7_o,, values
approaching the limit of 1 are desirable. However, the convection
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effectiveness is usually limited by the cooling-air supply pressure

available. As Vco,v increases, so does the pressure drop through the wall.

Consider a one-dimensional model of the porous or perforated

turbine blade wall in figure 11-16. An energy balance can be written

on the solid metal matrix and on the cooling-air flow through the wall

(see ref. 9). The resulting differential equations for local metal tem-

perature through the wall, Tw, and local coolant temperature in the

wall, T'c, are

d3Tw hv d2T,_ ' hv dTw 0 (11-59)
dy 3 _ Go% dy _ kw.e dy

and

where

T'_=Tw kw'ed_T'_
hr. dy 2 (11-60)

hv

effective thermal conductivity of the porous wall, W/(m)(K) ;

Btu/(hr) (ft) (°R)

internal volumetric heat-transfer coefficient, W/(m 3) (K) ; Btu/

(hr) (ft 3) (°R)

The boundary conditions are

edTw
h_(Tw.,--T'e,_.)=kw, @-_=o

and

(11-61)

G_cp(T_ ,--T" _,)=kw e dTw (11-62)
' ' " dy _=o

In this case, as seen from figure 11-16, G_ is the mass flux per unit

of surface area.

An overall energy ba]ance gives, as a third boundary condition for

the heat flux to the wall,

q=Gccp(T' o-- T_,_.)=Gc%_co._,(Tw,o-- T:,_.) (11-63)

Typical wall and coolant temperature profiles are shown in figure

1,1-16. They are both nonlinear with opposite signs in the second

derivative, which is a consequence of the interaction of the coolant

and matrix heat transfer.

The heat flux to the wall can also be written in terms of a hot-gas-

side heat-transfer coefficient:

q=h,,_( Tz,e-- Tw.o) (11-64)

This is somewhat different from the heat flux expression with local
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Typical element

FmuRE 11-16.--Porous-wall temperature profile model.

OODLIN(_

film cooling in that the acual recovery gas temperature and a "re-

duced" heat-transfer coefficient ht._ due to blowing are used rather

than the film temperature and the solid-blade heat-transfer coefficient

hg,Z"

Consistent with the local one-dimensional model of the blade

wall, which incidentally gives good results if the pressure gradient is

not too large, we can write

F

ht_ Stt_ Str_ .
_:;--_=eF/__ 1 J (11-65)

where the correction factor] is a function of convection effectiveness

as shown in figure 11-17 (from ref. 10), and Fis the ratio of the coolant

mass flux (surface averaged) to the hot-zas mass flux:

F -(pu)_ (11-66)
(pu) 

339



TURBINE I_E_IGN AND APPLICATION

1. E

o

o

k_

.7

Convection

effectiveness,

11cony

0.9

• 7j
J

J
JJf

J
f

.6
0 1 2 3 4

Blowing parameter, FtStcj '

FIGURE l l-17.--Correction to equation (11-65) for wall convection effectiveness.

SIMILARITY

It is often of economic necessity to evaluate the heat-transfer

performance of turbine components at conditions other than the

actual engine environment. Generally, initial tests are conducted

to evaluate heat-transfer and aerodynamic performance with actual-

size prototype hardware at lower gas temperatures and pressures

than the actual application. This practice raises a valid question as

to whether a cooled blade configuration meeting design specifications

at the test conditions will behave similarly under actual engine

co_lditions. To answer this question, the various similarity parameters

which are important in relating test performance to engine per-
formance of an actual-size film-convection-cooled turbine blade

are discussed.

The Mach number distribution and momentum-thickness Reynolds

number distribution around the vane must be the same between

engine and test conditions. Similarity in these two parameters is
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essential to ensure the same relative distributions of heat-transfer

coefficient and adiabatic wall temperature and the same point of

transition from laminar to turbulent boundary layer.

Let superscript (t) refer to test conditions and superscript (e) refer

to engine conditions. To ensure that the local Mach number distribu-

tion does not change between the two conditions, the equivalent mass

flow must be the same in both cases. Therefore,

w(.,, p;,. /(RT')_,r(. ,,
wy'--p'_ 'e' _(-R-_)g(" ry' (11-67)

where F is an approximate correction (from eqs. (2-128) and (2-129))

for the variation of specific heat with temperature given by

/ _ \(_+t)/2(_-t)

F-- _f_ _--_) (11-68)

Since the local momentum-thickness Reynolds number must also

remain unchanged between (t) and (e) conditions,

o;,,.:., /(,r.);.,r,,,# /z s __

(p_),',-o;., .;') _"- ,".;',p';" _,.,-1 (11-69)
\--_/z

If the local film effectiveness is to remain unchanged between

engine and test conditions, the coolant to hot-gas mass-flux ratio

(ou)J(Cu)z , the coolant to hot-gas momentum ratio (pu_)¢/(pu_)=

(or density ratio 0Jo_), and the momentum-thickness to film-ejection-

hole-diameter ratio OJD must be the same in both cases. Since actual-

size hardware is presumed, then

-- --1 (11-70)

(_)(,, o;,,

and equation (11-69) becomes

_':' _","___,,"'-'"'e_I(_T_)',', r;"
#g(t) w_" ,(,,p,(,, _/(R-_)z(,, Fg(,,--1 (11-71)

Equation (11-71) shows that the gas flow rate must vary directly

with the viscosity and gives the functional relation between gas

pressure and temperature which will provide the same Reynolds

number and Mach number distributions for test and engine conditions.

Parametric curves of equation (11-71) are shown in figure 11-18
for air.

341



TURBINE I_E_IGN AND APPIAC_TION

4O

E 30

_ 20
l-

eD

a_ i0

0
250 500 150 1000 1250 1500 1750 2000 2250

i

Temperature,Tq, K

I I I I I 1 I I
0 500 1000 1500 2000 2500 3000 3500

, oFTemperature,lg,

J
25OO

I

FIGURE ll-18.--Similarity curves of constant Mach number and momentum-

thickness Reynolds number distributions around a turbine vane for air properties.

The cooling-air flow rate and temperature are then set by the

coolant-to-gas mass-flux ratio and momentum ratio. Requiring

implies

and it is necessary that

(7 ,J - L(--#u-),j (11-72)

Wg/
(11-73)

to ensure equality of test and engine momentum ratios, since pc.o=p_.

Neglecting conduction in the plane of the wall compared to that

in the direction normal to the wall, the film ejection temperature

T_,o is related to the supply coolant temperature by

(He, o--He, ,,)(t>_q(,) _,(_) (11-75)
(Hc.o--H_, ,n) (_) q(C) u_"

where the viscosity ratio here represents the mass flow ratio (see eq.

(11-71)). Satisfying equations (11-71) to (11-75) ensures that the

hot-gas-side heat-transfer coefficient distribution around the vane will
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have the same shape for both test and engine conditions. The heat-

transfer coefficient in dimensionless Stanton number form is

St(,'):St(, *) {'Pr(')Y/a (11-76)

Since the Prandtl number cannot be set independently if all other

similarity conditions discussed are met, the departure of the Stanton

number ratio from unity depends on the Prandtl number ratio in

equation (11-76).

On the coolant side, the heat-transfer coefficient in dimensionless

Nusselt number form is given by

(') (*' / _'* _'*' °_ (11-77)Nuc =Nuc

where m is the power on the Reynolds number for coolant-side convec-

tion. The viscosity factor in equation (11-77) is the test-to-engine

coolant Reynolds number ratio. As with the Prandtl number, this

factor cannot be set independently, although its departure from unity

is small. In fact, if the viscosity over the full temperature range tg(') to

t ct)¢.ocould be approximated by a power law

cc t_ (11-78)

then, by equation (11-74), the test-to-engine coolant Reynolds number

ratio (based on the film-cooling bole diameter and the ejection tem-

perature) would be 1. The same coolant Reynolds number for actual

and simulated conditions is important to ensure the same pressure

drop through the internal cooling air passages for the two conditions.

If the cooled blade is to perform the same during a test as it does

in the engine, there must be some normalized outer wall temperature

which remains invariant between test and engine conditions. The

most convenient dimensionless wall temperature includes only those

temperatures which are known, namely the coolant supply tempera-

ture T_, _, and the effective gas temperature Tf._. Hence, the dimen-

sionless wall temperature _, defined as

T_.,--T_.o (11-79)

or some similar grouping of these three temperatures, is commonly

used as a measure of the cooling performance of a given blade design.

Strict equality in _ for test and engine is, however, impossible with

actual hardware, since the temperature drop through the wall is not

scaled properly because of the lower heat flux at reduced temperature

and pressure. It is easier to cool the blade at the reduced conditions,

because the driving potential for convection cooling (T_._--T/) is

proportionately greater than at high temperature and pressure. How-

343



TURBINE I)E,SIGN AND APPI.JCATION

ever, for properly scaled test conditions, the difference between _(t)

and _(e) is well within the range of experimental accuracy in most

cases.

An example of similarity states generated by solving equations

(11-71) to (11-77) simultaneously is given in table 11-II for a high-

pressure, high-temperature gas-turbine-engine environment. Air

properties were used rather than those for a given fuel-air ratio gas.

For a test condition using ambient cooling air, the dimensionless wall

temperature _(_) is 1 percent higher than what it would be in the

actual engine.

Radiation can be a significant component of the total heat flux to a

blade under high-temperature and high-pressure conditions and is

not directly affected by film cooling with air. Since radiation cannot be

conveniently simulated at the low-temperature and low-pressure

test conditions, it must be accounted for in the heat-flux ratio q(')/q(e)

in equation (11-75).

TABLE ll--II.--SIMILARITY STATES

(a) Takeoff condition

Gas total temperature

K

_2200

oF

_3500

Gas total

pressure,
atm.

'33. 7

Coolant temperature

367

478

589

700

758

811
922

1033

1144

1255

1367

1478
1589

1700

1811
1922

2033

2144

200
400

600

800

905
1000

1200

1400

1600
1800

2000

2200

2400

2600
2800

3000

3200

3400

4.3

6.0

7.7

9.4

10. 3

11.1

12. 9
14.6

16.4

18. 2

19. 9

21.7

23. 5

25. 3

27. 1

28. 9
30. 9

32. 8

145
188

23O

273

294
315

357

399

442
485

528

571

613

656

699
743

786

828

--199

--122

--45

31

70

107

182

259

335

413

490

568

644

721

799

878

955

1030

1.04

1.03

1.02
1.01

1.01

1.01

1.00
1.00

1.00

1.00

I. 00

1.00

1.00

1.00

1.00

1.00
1.00

1.00

' Reference condition.
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(b) Cruise condition

TURBINE (X_LING

Gas total temperature

K

12200

367

478

589

700

799

811
922

1033

1144

1255

1367
1478

1589

1700

1811
1922

2033

2144

oF

' 3500

2O0
4OO

6OO

8OO

978

1000

1200

1400
1600

1800

2000
2200

2400

2600

28OO

3000

3200

3400

Gas total

pressure,
arm.

'13.8

1.7

2.5
3.2

3.9

4.5

4.6

5.3

6.0

6.7

7.4

8.2

8.9
9.6

10.4

11.1

11.8

12.7
13.4

Coolant temperature

!
K °F

1801 1983

139 --209

180 -- 136
220 --64

259 7

294 70

299 78

338 148
378 220

417 ! 291
458 364

498 437

539 510
579 582

619 ! 655

660 , 729
702 804

743 878

782 ! 948

_( t)/ _o(e)

1.03

1.02
1.01

1.01

1.01

1.01

1.00

1.00
1.00

1.00

1.00

1.00
1.00

1.00

1.00

1.00

1. O0
1. O0

I Reference condition.
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SYMBOLS

surface area of one side of volume element, m2; ft 2

coolant-passage flow area, m2; ft z

augmentation factor, eq. (11-31)

coefficients in eqs. (11-49) to (11-51)

body-force component in x direction, N/kg; lbf/lbm

coefficients in eqs. (11-49) to (11-51)

constants in eqs. (11-8) and (11-57)

friction coefficient., eq. (11-26)

specific heat at constant pressure, J/(kg)(K) ; Btu/(lb)(°R)

coefficients in eqs. (11-49) and (11-50)

diameter of leading-edge circle, impingement hole, or film-

injection hole, m ; ft

dissipation term in eq. (11-42), W/m3 ; Btu/(ft 3) (see)

distance between volume elements (see fig. 11-10), m ; ft

ratio of coolant mass flux to hot-gas mass flux

correction factor used in eq. (11-65)

mass flux, kg/(see) (m _) ; lb/(hr) (ft 2)

conversion constant, 1 ; 32.17 (lbm) (ft)/lbf) (see 2)

total enthalpy, J/kg; Btu/lb

heat-transfer coefficient, W/(m 2) (K) ; Btu/(hr) (ft 2) (°R)

internal volumetric heat-transfer coefficien't, W/(m3)(K);

Btu/(hr) fit s) (°R)

static enthalpy, J/kg ; Btu/lb

term defined by eq. (11-41)

conversion constant, 1 ; 778 (ft) (lb)/Btu

dimensional constant, 1 ; 3600 sec/hr

turbulent kinetic energy, J/kg; Btu/lb

thermal (:onductivity, W/(m) (K) ; Btu/(hr) (ft) (°R)

eo()l'mt-passage characteristic length, m; ft

wall thickness, m; ft

Xlach number

exponents used in eqs. (11-8), (11-45), and (ll-4S)

Nusselt number

exponents used in eqs. (ll-S), (11-45), (11-56), and (11-57)
Prandtl number

pressure, N/me; lb/ft"

heat-generation term, W/ma; Btu/(sec)(ft a)

heat flux, W/m_; Btu/(hr)(fC)

gas constant, J/(kg) (K) ; (ft) (lbf)/(lbm) (°R)

Reynolds number

recovery factor, eq. (11-27)

Stanton number
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8

T

t

%

V

'tO

X

Xn

Y

Zn

F

,h

7/

0

tt

l,t

P

T

slot width, m; ft

temperature, K; °R

gas static temperature, K; °R

component of gas velocity in direction along surface (z-

direction), m/sec; ft/sec

volume of jth element, m3; ft 3

component of gas velocity in direction normal to surface

(y-direction), m/sec; ft/see

mass flow rate, kg/sec; lb/sec
component of gas velocity in direction perpendicular to the

boundary layer plane (x-y plane), m/sec; ft/sec

distance along surface from leading edge, m; ft

center-to-center distance between impingement holes in

the direction of flow, m; ft

coordinate distance normal to surface, m; ft

distance between impingement holes and blade inner wall,

m; ft

heat diffusivity, m2/sec; ft2/sec

specific heat ratio correction factor, eq. (11-68)

ratio of specific heat at constant pressure to specific heat at

constant volume

enthalpy thickness, m; ft

ratio of heat transfer coefficient with film cooling to heat

transfer coefficient without film cooling

cooling effectiveness

momentum thickness, m ; ft

viscosity, (N) (see)/m2; lb/(ft) (sec)

momentum diffusivity (kinematic viscosity), m2/sec; ft2/,_ec

density, kg/m3; lb/ft 3

local shear stress, N/mS; lb/ft _

angular distance from leading-edge stagnation point, deg

dimensionless wall temperature

coefficients in eq. (11-48)

term defined by eq. (11-52)

exponent in eq. (11-78)

Subscripts:

a

CP

C

COlbY

crit

adiabatic

constant property

coolant

CFOSSflOW

convection

critical, referring to transition from laminar to turbulent flow
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apl)roaching leading edge
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(e) engine condition

(t) test, ('mid ition

, ] total stale (referring to T anti p)

/ flu(:tuating component (referring to p, v,/, u, and w)
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CHAPTER12

ExperimentalDeterminationof
AerodynamicPerformance

ByEdwardM.SzancaandHaroldJ.Schum

The preceding chapters have been concerned with primarily the

theoretical aspects relating to turbines and turbine design. A great

deal of consideration has been directed toward turbine blading, since,

aerodynamically, the blading is the turbine. Associated hai'dware for

the entire turbine assembly (rotor disks, shafting, bearings, casings

etc.) is designed on the basis of mechanical criteria. Once the turbine

is designed and built, it must be determined whether or not the aero-

dynamic design goals have been met. Only by testing the turbine can

this be determined.

In addition to the overall performance of a turbine, a breakdown

of the separate losses contributing to the overall loss is often desired.

The stator loss can be obtained readily from experimental measure-

ments, as discussed in chapter 7 (vol. 2). Rotor losses cannot be

obtained easily from direct measurements; they are usually obtained

indirectly from the stator loss and the overall performance

measurements.

In developing a test facility and program, the researcher must

determine which performance parameters he is interested in evaluat-

ing. The nature of the test facility, the instrumentation necessary to

obtain the desired stator and/or overall performance parameters, and

the manner in which these parameters vary with turbine operating

conditions are the subject of this chapter.
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TEST FACILITY AND MEASUREMENTS

The manner in which stator performance is expressed and computed

is discussed in detail in chapter 7 (vol. 2) and will not be discussed

herein. The parameters generally used to define turbine overall

performance are mass flow rate, torque, specific work, and efficiency.

These parameters are usually determined for ranges of rotative speed

and pressure ratio in order to fully define the performance of the tur-

bine. The mass flow rate, torque, rotative speed, inlet and exit pres-

sures, and inlet temperature (needed to determine efficiency) are

measured directly in the turbine test facility. Specific work is then

calculated from the equation

where

rN
Ah'-_K -- (12-1)

dw

,_h' turbine specific work, J/kg; Btu/lb

K conversion constant, 1; _/30 (rad)(min)/(rev)(sec)

F torque, N-m; lb-ft

N rotative speed, rad/sec; rev/min

J conversion constant, 1; 778 (ft) (lb)/Btu

w mass flow rate, kg/sec; lb/sec

Efficiency is obtained by dividing the actual work hh' by the ideal

work. Ideal work is a function of the turbine inlet total temperature

and the pressure ratio across the turbine, as shown by equation

(2-48b) or (2-49b) of chapter 2 (vol. 1). The inlet pressure is always

the total pressure. The outlet pressure used to define ideal work,

however, depends on the particular efficiency desired. Total efficiency

is based on outlet total pressure and is most meaningful where all

of the outlet velocity is useful or recoverable. Static efficiency is

based on outlet static pressure and is most meaningful where all

of the outlet velocity is lost. Rating efficiency is based on a pressure

corresponding to the recovery of only the axial component of outlet

velocity and, accordingly, is most meaningful where only the axial

component of the outlet velocity is useful. Rating efficiency is not as

commonly used as are the total and static efficiencies, which were

discussed in chapter 2 (vol. 1).

In this section, a representative test facility will be described, and

the types of devices generally used to make the required measurements

will be discussed. Data acquisition and reduction systems will not be

discussed in this chapter. These can vary from visual reading of

manometers and gages with slide-rule computations to completely

automatic electroaic data acquisition with on-line computer process-
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ing. A general discussion of data measurement, acquisition, trans-

mission, and recording systems can be found in texts such as ref-

erence 1.

Description of Test Facility

A turbine test facility consists of the research turbine, a gas supply,

an exhaust system, associated piping with control valves, a power

absorber, and the instrumentation needed to make the desired meas-

urements. A schematic diagram of a turbine test facility at the NASA

Lewis Research Center is shown in figure 12-1. This facility, a photo-

graph of which is shown in figure 12-2, is used to test single-stage or

multistage turbines of about 76 centimeters (30 in.) in diameter. It is

generally representative of most turbine test facilities and is used here

as an example for this discussion. In such a facility, removal of the

turbine rotor gives the room necessary to place survey instrumentation

behind the stator and, thereby, transforms the rotating rig into a
stator annular cascade.

Most turbine component testing is conducted with air at ambient
temperature or slightly heated. This is commonly called cold-air

Burst-disc Vent to

Laboratory safety valve -. roof

,_i_air system Venturi Sonic valve • ",

acilit isolation Isolation,'

valve valves • _ /kl

I- .... --I

Gas supply .f- L LBurner_j_,,,

Bypass control
valve -,

"@

Expansion

Main exhaust joint - _ -=

control valve -, "-_
/

@ _,- Facility isolation

valve

f Laboratory exhaust
system

Main control.-

valve

FIGURE 12-1.--Flow schematic of a turbine test facility.
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ductim

:FIGURE 12-2.--Turbine test facility.

testing. Performance parameters are reported in terms of equivalent

values based on standard sea-level conditions of pressure (10.133

N/cm 2 or 14.696 psia) and temperature (288.2 K or 518.7 ° R). This

was discussed in chapter 2 (vol. 1). Using turbine-inlet test conditions

of pressure and temperature near the standard values results in lower

flow and power levels than would be encountered in an actual appli-

cation and thereby facilitates testing. Yet, the model turbine velocity

diagrams are similar to and the Mach numbers are the same as those

of the actual turbine. Only Reynolds number, then, can present a

dissimilarity; however, for the larger turbines, this effect of Reynolds

number on turbine performance was found to be negligible. For

smaller turbines, where Reynolds number effects are more important,

turbine inlet pressure can be varied to obtain the proper Reynolds

number.

Referring to figure 12-1, air for the turbine is supplied by the 27.6-

N/cm2-gage (40-psig) air system of the laboratory. A ca}ibrated

venturi meter is located in a straight section of the 40.6-centimeter

(16-in.) air-supply line for the purpose of metering the air flow. This
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piping is sized (as was all piping) such that the air velocities will not

exceed 61 meters per second (200 ft/sec). Location of the air-metering

device in the high-pressure supply line affords a relatively constant

upstream pressure and may minimize the number of metering devices

required for a range of flows. A further discussion of air-metering

devices is presented in a subsequent section.

Downstream of the venturi meter is an isolation valve controllable

by the turbine operator. A 30.5-centimeter (12-in.) sonic valve pro-

vides a high pressure drop to facilitate burner operation and automatic

inlet-pressure control. A burst-disc safety valve and vent line provide

protection from excessive pressure. Further downstream is the 50.8-

centimeter (20-in.) main control valve used to establish the desired

turbine-inlet pressure (for the example turbine, this was 76.2 cm

(30 in.) of Hg absolute). The 15.2-centimeter (6-in.) bypass control

valve permits fine control of the turbine-inlet pressure. The air then

diverts into two 50.8-centimeter (20-in.) lines to provide dual entry

of lower velocity air to the turbine entry plenum. (These lines can

be seen in fig. 12-2.)

After passing through the turbine, the air is discharged to the

altitude exhaust system of the laboratory through a 121.9-centimeter

(48-in.) main control valve and a 40.6-centimeter (16-in.) bypass

control valve. These valves permit the turbine operator to vary the

pressure ratio acrossthe turbine while the turbine-inlet pressure is

maintained constant by automatic control. This type of pressure-
ratio control has been most successful with small turbines. With

large turbines, however, there is a slower response because of the

large pipe volume between the turbine and the inlet control valve.

A burner installation is shown (in fig. 12-1) in phantom, because

its use is optional. The purpose of the burner is to elevate the turbine-

inlet temperature so as to avoid icing problems at the turbine exit.

In this facility a single commercial jet-engine burner can, modified

for operation with natural gas, is used. Some of the high-pressure air is

bypassed to the burner and the heated air is then mixed with the

remaining air. The desired turbine inlet temperature is maintained by

controlling both the amount of bypassed air and the fuel flow. This

particular burner has the capability to heat a maximum air flow of

23.6 kilograms per second (52 lb/sec) from ambient temperature to

422 K (300 ° F).

In general, burners using gasoline, jet fuel, or natural gas provide

a relatively simple and inexpensive means of heating the air. However,

combustion products are added to the air, and these must be accounted

for in the performance calculations. Electrical heaters provide clean

heat, but are generally used only where flow rates are low, because of

the cost and complexity of large installations.
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All turbines and test facilities must be designed with safety features.

The following are some of the potentially unsafe conditions that must

be guarded against by constant monitoring:

(1) Low supply of turbine and dynamometer lubricating oil

(2) Low pressures of turbine and dynamometer ]ubricating oil

(3) High temperature in bearings

(4) High temperature of dynamometer outlet water

(5) Low pressure of dynamometer water supply

(6) High temperature of turbine inlet gas

(7) High (or low) temperature of turbine exit gas

(8) High pressure of turbine inlet gas

(9) High pressure of turbine exit gas

(10) Overspeed of turbine rotor

(11) Reduced clearance between rotor and casing

(12) Excessive rig vibration

(13) Excessive shaft orbit

Interlocks on some of the monitoring systems prevent turbine

starting. Some monitors provide for only an audible alarm during

operation. Others provide a signal to rapidly shut the valves in the

inlet air line as well as in the heater gas system. This quickly stops

rotor rotation in order to prevent damage to the turbine and facility.

Research Turbine

A schematic diagram of one of the research turbines used in this

test facility is presented in figure 12-3. An enlarged view of the test

section with instrumentation stations indicated is also shown. As

stated previously, the air enters a plenum from two sides; the plenum

was designed with as much volume as feasible to provide for minimum

velocity and minimum pressure distortion. A screen is shown located

upstream of a converging section to further ensure a symmetrical

circumferential pressure distribution to the turbine blades. This screen

has an approximate 50 percent effective area, giving a pressure drop

of 2 dynamic heads.

A short, straight, annular passage is provided between the converging

inlet section and the first row of blades for the purpose of installing

turbine-inlet pressure and temperature measurement devices. The

inlet measuring station (station 0 of fig. 12-3) is located about 1/_

blade chords upstream of the stator blades. Since the inlet velocity is

low, the insertion of probes does not significantly disturb the flow

entering the blading.

A straight, annular flow passage is also provided downstream of the

turbine blades to measure the turbine-outlet air state (measuring

station 2, fig. 12-3). Measurements are made about 2 blade-chord
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FIGURe: 12-3.--Schematic diagram of turbine test section.

]engths downstream of the rotor, where the exit air is relatively sta-
bilize(1 and uniform

Both the inlet and outlet sections of the test turbine are somewhat

idealized as compared to an actual jet-engine turbine installation.

The latter has a burner immediately preceding the turbine inlet,, and a

tail cone immediately following the last row of blades. Flow-passage

diameters vary. Also, for the sake of engine weight s_,ving, minimum

axial length is required. Accurately measuring the state conditiolls

before aml after the turbine blading in varying area passages is ex-

tremely diflicult, aml this is the reason for the use of straight, annular

flow passages in the test turbine.

Flow-Property Measurements

The flow-property measuring stations are loe,_ted in the uxia!

positions indicated in figure 12-3. There are numerous types and
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x Temperature rake
o ]-otal-pressure probe
• Static-pressure tap
E_ Angle probe

Measuring stations 0 1 2

FIGURE 12-4.--Schematic diagram of turbine instrumentation.

variations of probes available to make the desired measurements. We

will discuss primarily the instruments used in the example research

turbine to obtain the desired measurements of pressure, temperature,

and flow angle. The instrumentation located at the turbine inlet and

outlet, as well as at the stator exit, is shown in figure 12-4.

In general, all turbine experimental investigations, irrespective of

turbine size or number of stages, require the same overall data. The

size of the turbine determines whether duplication of research instru-

mentation can be afforded. For large turbines, the relative size of the

probes with respect to the flow passages can be considered negligible.

In small turbines, the presence of the various probes with their associ-

ated blockage could have an effect on the turbine expansion process,

and, therefore, on the values being measured. This consideration

usually limits the number and size of probes.

Static pressure.--At each measuring station, as shown in figure

12-4, there are four static-pressure taps, diametrically opposed and

90 ° apart, on both the inner and outer walls. This multiplicity pro-

vides a check on the circumferential pressure distribution. In order

to minimize the amount of instrumentation and data, multiple

taps are often manifolded to provide a single reading. If the individual

pressures differ, however, some flow circulation occurs and the ob-

served pressure reading may not be the true average of the individual

pressures.

As part of the stator performance test, it is often desired to de-

termine the static-pressure distribution along the blade surface.

As explained in a subsequent section, this information is used to

calculate the blade surface velocities. Static-pressure taps are installed
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along the hub, mean, and tip sections of the blade. If the number of

tubes that can be installed in any one blade is limited by the size of

the blade, then the desired taps can be divided among two or more

adjacent blades. For the research turbine being discussed, the blades

are hollow and fairly large; thus, installing the taps presented no

major problem. The pressure-tap hole size used is approximately

0.0254 centimeter (0.010 in.) in diameter. A small hole is desirable

so as not to disturb the flow; however, too small a hole results in a

long response time.

Inlet total pressure.--Four shielded total-pressure probes, 90 °

apart, are located at the inlet measuring station (see fig. 12-4) and

are all immersed to the area center of the flow passage. One such

probe is shown in figure 12-5(a). The shielding, which is about 0.48

centimeter (0.19 in.) in diameter and twice that in length, is such

that pressure readings are relatively insensitive to yaw for some 40 ° .

The unshielded probe shown in figure 12-5(b) is also commonly

used for total-pressure measurement. This probe has an insensitivity

to yaw for about 20 ° .

Flow I I Flow

ia_ tb_

(a) Shielded probe. (b) Unshielded probe.

FZ(_URE 12-5.--Total-pressure probes.

The turbine-inlet total-pressure readings serve as a check on the

circumferential pressure distribution and are used during turbine

testing to establish and maintain a constant turbine-inlet total pres-

sure. However, the turbine-inlet total-pressure value that is often

used to define pressure ratio when reporting turbine performance is a

value based on experimental measurements of mass flow rate, static
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pressure, and total temperature and obtained by the following equa-

tion, with the flow angle a assumed to be zero at the turbine inlet:

[-i, V T'"-"
&s%j (12-2)

where

p'

P

5'

total pressure, N/m2; lb/ft 2

static pressure, N/mg; lb/ft 2

ratio of specific heat at constant l)ressure to specific heat at

constant volume

g conversion constant, 1; 32.17 (lbm)(ft)/(lbf)(sec 2)

Aan annulus area, m2; ft 2

R gas constant, J/(kg) (K) ; (ft) (lbf)/(lbm) (°R)

T' total temperature, K; °R

flow angle measured from axial direction, (teg

This calculated value of turbine-inlet total pressure is thought to be

more rel)resentative of the true aver'_ge value than is the experimental

value.

Inlet temperature.---Two thermoeouple rakes, spaced 180 ° apart,

are located at the turbine inlet measuring station (see fig. 12-4).

These rakes, which are of a type siinilar to that shown in figure 12-6(a),

contain a number of thermocouples situated ,_1 the area center radii

of equal annular areas. The particular rake shown in figure 12-6(a)

was used to determine the temperatures at the center, the area-mean

radius, and the wall of the outlet duct of a radial-inflow turbine.

Provisions are made for individual readings a.s well as for the average

of all the readings. The latter facilita.tes testing with the burner in

operation, where a constant inlet temI)erature is maintained. Auto-

matic fuel regulation to the burner is I)rovided for this tmrl)ose.

Measurement of temperature at low Reynolds number can present

a problem due to heat conduction effects. This problem did not exist

for the large research turbine being used as an example herein, but

was encountered in testing some small turbines as discussed in ref-

erence 2. A large amount of bare thermocouple wire must be exposed

to the flow in order to make the conduction error negligible. The

conventional thermocouple shown in figure 12-6(a) has a ratio of

exposed wire length to diameter of about 12, whictl is inadequate for

good accuracy at low Reynolds number. The modified thermocouple

shown in figure 12-6(b) has a wire length-to-diameter ratio of about

170. This modified probe gives excellent results.
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(a) Conventional type. (b) Modified type.
FIGURE 12-6.--Thermocouple rake configurations.

Stator outlet.--During turbine testing, the only measurement made

at the stator outlet is the previously mentioned static pressure. For

stator performance testing, the rotor is removed, and a total-pressure

survey probe is installed. Although it is desirable also to obtain stator-

outlet radial and circumferential static-pressure surveys, the problems

associated with conventional wedge probes, especially the effect of

probe blockage on the value being measured, make such measurements
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FIGURE 12-7.--Total-pressure survey probe installed in test facility.

unreliable. The required static pressures are obtained by interpolation

from the values measured at the hub and tip wall taps. The total-

pressure probe used in the test facility is shown in figure 12-7. This

probe is fixed at an angle previously determined to be the average

flow angle. Note that the probe has two sensing elements; these are

required to obtain measurements at both the inner and outer walls.

The total-pressure survey equipment is shown in figure 12-8. The

actuator provides for radial movement of the probe, and the motor-

driven outer-wall saddle provides for circumferential movement. The

probe shown in this figure does not have the same stem configuration

as the previously shown probe (fig. 12-7) that wa_ used in the example

facility. Considerations regarding the effects of stem blockage, sensing
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FIGURE 12-8.--Total-pressure survey equipment.

C-06-2250

element diameter, and measurement distance behind the blade trailing

edge are discussed in reference 3.

Although not used in the particular facility serving as the discussion

example herein, optical laser techniques have recently come into

use for directly measuring velocity magnitude and direction. A laser

Doppler velocimeter, such as described in reference 4, allows the

velocity measurements to be made without the use of flow-disturbing
probes.

Turbine outlet.--Combination probes, with the type of sensing head

shown in figure 12-9, capable of measuring total pressure, temperature,

and flow angle are located at the turbine exit. Figure 12-4 shows that

five of these combination probes are distributed circumferentially at

measuring station 2. Each probe is located at the area center radius

of one of five equal annular areas. In general, turbine size influences

the number of probes permissible.

Measurement of flow angle is accomplished by means of a conven-

tional self-balancing probe system. The probe shown is of a 3-tube

design, with the center tube used to measure total pressure. The two

side tubes are symmetrically located with respect to the center tube

and are exposed to a pressure that ranges between the total pressure

and the static pressure. The openings in the side tubes are in planes

making an angle of 45 ° with the center tube. These side tubes are

connected to the two sides of a diaphragm in a balance capsule. A
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FIGURE 12-9.--Combination-probe sensing head.

differential transformer in the capsule is actuated by the diaphragm,

so that an error signal is generated when the pressures in the side

tubes of the probe are unequal. A servo-system operates to reduce

the error to zero by pointing the probe into the flow.

Exit total-temperature and total-pressure measuremertts are

generally not used for the primary determirtation of turbine efficiency,

but they are used to determine values in order to check for gross

discrepancies. It has been found that measurement of torque and use

of equation (12-1) provides more reliable values of specific work

than does measurement of exit total temperature. This is especially

true if the temperature probe is in a fixed position and large variations

in flow angle occur over the range of operating conditions. Even with

a self-balancing probe, the exit passage wouhl have to be surveyed

and the results integrated in order for the specific work to be deter-

mined accurately.

Exit total pressure, which is used for the calculation of ideal work,

is usually determined from equation (12-2). When the exit flow angle

is small, use of equation (12-2) yields more reliable values of exit total

pressure than does direct measurement. When the exit flow angle is
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large, the radial variations in pressure and angle in the exit passage

become large. In this case, unless integrated values can be obtained

for use in equation (12-2), the choice between calculation and measure-

ment of exit total pressure is not clear-cut.

Mass-Flow Measurement

Flows are usually measured with variable-head meters, which de-

pend on the pressure differential caused by a constriction in the fluid

pipe. The primary element is a restriction such as a venturi, nozzle, or

orifice placed in the pipe through which the fluid is flowing. The

secondary element may be a simple U-tube manometer or an intricate

pressure recording device. Each of these meters has certain advantages

and disadvantages, and the selection of any particular meter depends

on the requirements and constraints of the particular application.

All of these variable head meters have the same basic equation for

the computation of the rate of flow:

W= AtMCEY_/2gp.,(p.,--pt) (12-3)

where

A, flow area of meter throat, m2; ft _

M approach velocity factor

C discharge coefficient

E thermal expansion factor

Y compressibility factor

p_n density at meter inlet, kg/m3; lb/ft 3

p_. static pressure at meter inlet, N/m2; lb/ft _

Pt static pressure at meter throat, N/mS; lb/ft 2

The approach velocity factor is

1
M:- (12-4)

1 D, 4

where D is diameter, in m or ft.

The discharge coefficient C accounts for the difference between the

actual flow rate and the theoretical flow rate and is significantly dif-

ferent for each type of meter. Although good approximations for

dis<.harge coefficients can be made from published data, a direct cali-

bration of the meter should be made to assure accurate results. The

thermal expansion factor E accounts for the fact that the meter

throat area is usually determined from measurements obtained at

room temperature, which usually is not equal to the temperature of the

fluid flowing through the meter.
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The compressibility factor for nozzles and venturi meters is

(12-5)

The derivation of equation (12-5), along with curves showing Y as a

function of pJpt_ and D#D,, is presented in reference 5. For most

concentric orifices having (Ap/p_,)<0.3, the value of Y can be

determined from the following empirical equation from reference 5:

y --_ l -- [ O.41q- O.3 5 ( _-_--_/.)' ] ! P2_-_/ ' ) (12-6)

Ventur4, tube.--Figure 12-10 shows the important features of a

venturi tube, which consists of a cylindrical entrance section, a con-

verging section, a cylindrical throat section, and a diffuser section. The

tubes are usually cast and have machined internal surfaces. The dif-

fuser section usually is made with an included angle of about 7 ° with

the object of accomplishing a maximum recovery of kinetic energy

while minimizing friction loss. The total pressure loss from the venturi-

tube inlet to exit is from 10 to 20 percent of the differential pressure

between the inlet and the throat. The venturi tube has disadvantages

in that it is bulky, difficult to construct (particularly so as to provide

reproducibility), more expensive than other head meters, and requires

a long, straight run of piping.

F low

"v_" Pressure taps

FIGURE 12-10.--Venturi tube.

Flow nozzle.--Figure 12-11 shows the shape of a commonly used

flow nozzle. The flow nozzle approaches, to some extent, the venturi

tube without the diffuser section. The high pressure recovery obtained

with the venturi is thus lost, and the nozzle has a pressure loss of 30
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FIGURE 12-11.--Flow nozzle.

percent or more, depending on area ratio, of the differential pressure

between the inlet and the throat. The flow coefficient (product of

approach factor M and discharge coefficient (7) for a nozzle is about
0.98.

Orifice.--The sharp-edged orifice (fig. 12-12) is probably the most

widely used of the various head meters. Because of the inward flow of

the streamlines on the upstream side of the plate, the minimum stream

area occurs downstream from the orifice edge. This minimum area is

known as the vena contracta, and it is at this area that the minimum

pressure is obtained. The orifice has a pressure loss somewhat greater
than that for a flow nozzle. The flow coefficient for an orifice is about

0.65. This low value is due to the effective minimum area being at the
vena contracta rather than at the orifice itself.

It is possible to make, in most machine shops, an orifice with which

published coefficients may be used. If the hole is carefully made ac-

cording to specifications, a high degree of reproducibility of flow con-

ditions is possible. The upstream edge must be sharp, and the axial

length of the cylindrical portion must not exceed 5 percent of the in-
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FIGURE 12-12.--Sharp-edged orifice.

side diameter of the pipe. Because it is possible to construct two or

more orifices which will have the same coefficients when calibrated,

the orifice is extensively used.

Torque Measurement

In turbine-component tests, an accurate measurement of torque

produced by the turbine is of prime consideration in evaluating turbine

performance. The devices mos_ commonly used to determine turbine

torque are cradled absorption dynamometers. Simply, the absorption

dynamometer converts the energy supplied by the turbine into heat.

This heat, in turn, is dissipated to the surroundings, where it generally

serves no useful purpose. The dynamometer provides a load for the

turbine, and this is used as the turbine speed controller.

Absorption dynamometers to be discussed in this section include

(1) hydraulic, or fluid-friction, brakes; (2) electromagnetic brakes;

(3) electric generators used as brakes; and (4) airbrakes. In addition,

methods for measuring dynamometer force and types of torque meters

other than absorption dynamometers are discussed.

Hydraulic dynamometer.--These units are frequently called water

brakes, since the fluid is almost always water. A typical water brake

is shown in figure 12-13, which shows clearly the cradle mounting

generally used in dynamometer installations. The shaft is coupled
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FIGVRE 12-13.--Hydraulic dynamometer. (Courtesy of Murray Iron Works Co.)

directly to the test turbine and transmits the developed torque to the

housing through the shaft bearings, the packing glands, and fluid

friction on the disk. The housing is supported in the pedestal bearings

so that it is free to rotate, _thin limits. As the shaft rotates, the

housing tends to rotate with it. A scale attached to an arm on the

housing permits determination of the turning moment, and the power

absorbed may be computed.

Water fed into the disk compartment is thrown by centrifugal force

to the periphery of the disk, where it forms a ring. As the discharge

valves are closed or the inlet valves opened further, the water ring

depth is increased; this results in greater frictional resistance between

the disk and the housing, and a consequently increased absorption ca-

pacity of the brake. The amount of water circulated should be suffi-

cient to prevent the formation of steam at any point, since such
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action would cause momentary unloading. With a constant water

level, the power-absorbing capacity of this brake varies almost a_

the cube of the speed. This characteristic (i.e., increase of torque with

increase of speed, and vice versa) is typical of all fluid-friction and

electrical-type dynamometers and makes them particularly desirable

for testing nongoverned engines.

Some water brakes are provided with through-holes in the disk near

the outer periphery. This tends to further increase the friction, and

can increase power absorption by as much as an order of magnitude.

Care must be exercised, however, because erosion of the disk can occur,

particularly in the vicinity of these holes. Another way to increase

power absorption capability is by staging; that is, by using more than

one disk.

Eddy.current dynamometer.--The eddy-current dynamometer is

shown in the two views of figure 12-14. In this device, the stator is

supported on the pedestal bearings so that any torque may be trans-

mitted by means of the torque arm and measured by the scale. The

rotor is mounted on the shaft, which is supported in the starer in

bearings. The starer carries a coil, which, when energized with direct

current, magnetizes the stator and rotor. On the rotor are teeth with

ends machined to produce a small air gap between them and the oppos-

ing face of the stator. The lines of force enter the rotor principally

through the ends of the teeth, so that as the rotor is moved by the

device being tested, the lines of force are caused to sweep through the

/- Stator
I

I
c_:Q(_-_I Water passages-,,

/_ /'// ....'K ' It

___ OCilile ', L ],Shaft

bearing-_ _k_--7-_:_-i'---'_; /-Shaft / o

-:--_: i

I

itator

Scale

,lorquearm-

FIGURE 12-14.--Eddy-current dynamometer. (Courtesy of Mid-West Dyna-

mometer and Engineering Co.)
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iron of the stator. The magnetic attraction between the rotor and the

stator causes the stator to try to turn with the rotor. The lines of

force sweeping through the stator induce currents therein; this energy

is dissipated to cooling water flowing tluough passages in the stator.

The dynamometer shown in figure 12-14 is called a dry-gap type,

because the coolant water does not contact the rotor. A wet-gap eddy-

current dynamometer is also commonly used. The wet-gap type has a

cylindrical iron-core rotor, and the water flows from passages in the

stator directly onto the rotor. Eddy-current dynamometers can be

connected in series to give any required power absorption capability.

dc dynaraometer.--A dc electric motor-generator, with frame or

stator cradled, provides the most versatile dynamometer. It can be

used to measure the power required to drive a device (testing a pump

or a compressor) as well as to absorb the output of a prime mover

(a turbine or a reciprocating engine). When it is driving, the unit acts

as a motor; when it is absorbing energy, the unit acts as a generator.

The driving capability permits the researcher to determine bearing,

seal, and windage losses by removing the turbine rotor, driving the

shaft, and measuring the torque as a function of speed. This frictional

torque is then added to the torque measured during the turbine tests

in order to obtain the true turbine torque. For the smaller turbines,

the friction losses may represent an appreciable percentage of the

total turbine power. For the larger jet-engine type turbines, these

losses are generally small when compared to the total torque output,

and hence, they can often be neglected.

Airbrake dynamometer.hThe airbrake dynamometer is a type of

power absorber that was developed at the NASA Lewis Research

Center. It is used extensively for testing small turbines (less than

about 19 kW (25 hp)). A cross-sectional view of the airbrake dyna-

mometer is shown in figure 12-15. The airbrake consists of a throttle

valve, an inlet collector, a stator, a rotor with either a paddle wheel

or airfoil type blading, and flow straighteners to ensure axial entry

and discharge of the air. After the air enters the inlet collector of the

airbrake in an axial diiection, it is accelerated through the stator,

which gives it tangential momentum in a direction opposite to the

direction of rotation of the rotor. The rotor removes tangential

momentum from the air and, thereby, absorbs the research turbine

power output. After leaving the rotor, the air passes through flow

straighteners and is discharged from the airbrake in an axial direction.

Therefore, the torque on the iotor is equal to the torque on the casing.

The casing is cradled in air bearings, which are designed for radial

and axial loads. A torque arm is attached to the casing for measure-

ment of torque.
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FIGURE 12-15.--Airbrake dynamometer.

It can be noted from figure 12-15 that the stator consists of two

sections, an outer and an inner blade row, with independent valving

for each blade row. This stator system is well adapted to measure

extremely small turbine outputs at low inlet pressures. For example,

a stator configuration can be used where one blade row can impart

tangential momentum in the same direction of rotation as the rotor

while the other stator blade row imparts tangential momentum in

a direction opposite to the direction of rotation of the rotor. For this

case, the rotor is of the paddle-wheel type design. Thus, the aiIbrake

can be used to absorb turbine power or to drive the turbine. This

driving capability, as was the case for the (It dynamometer, permits

the measurement of bearing and seal frictional losses.

Measurement of dynamometer force.--The dynamometer force

measurement can be obtained most simply by a spring-balance scale.

Such a scale can be used because the displacements of the power

absorber torque arm are very small. Because these scales indicate

forces acting vertically, the torque arm should and does remain

relatively horizontal, regardless of the magnitude of the force involved.

The disadvantages of a spring-balance scale are that the reading is not

readily remotely observable (low-power telescopes have been used),

and available scales may not have the proper force range.
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Hydrostatic devices with either a liquid (e.g., mercury) or a gas

(e.g., air) as the fluid have been used to measure force. The principle

of operation is that the force to be measured is impressed on the fluid,

with the fluid being held in a confined space. The greater the force on

the fluid, the greater becomes the pressure on the fluid. This fluid

pressure can be calibrated in terms of the load or force required to

produce it.

Most current turbine test facilities are equipped with calibrated

strain-gage load cells to measure torque. These devices provide an

electrical output signal which, with appropriate electronics, can

provide direct torque readings on a digital voltmeter. This signal is

particularly suitable for automatic digital data recording.

Strain-gage torquemeter.--Sometimes, in turbomachinery component

testing, it is impractical to cradle the equipment as required for

conventional torque measurement. The situation may arise wherein

the turbine rotative speed is higher than the capability of the ab-

sorber, which would necessitate the use of an intermediate gear box.

To circumvent this problem, a high-speed, strain-gage torquemeter,

which operates on the principle that shaft torque and shaft surface

strain are proportional, can be used. A bonded wire strain gage is

mounted on the shaft, between the turbine and the power absorber.

The fine wire has the property that its resistance is very nearly a

unique function of the strain applied. Readings are transmitted

through slip rings, onto brushes, and to appropriate electronic equip-

ment, where the shaft torque is indicated. Problems encountered

with this type of torquemeter include short brush life and the

occurrence of induced voltages that interfere with the measurements.

Optical torquemeter.--An optical torquemeter basically consists of

a shaft with polished parallel and fiat reflecting surfaces at each end.

A stationary optical unit measures the twist of the shaft. The optical

system projects the illuminated image of a slit, by successive reflection

from each of the reflecting surfaces on the shaft, onto two photocells

separated by a hairline gap. Shaft twist produces unbalanced illum-

ination on the two photocells. A servomechanism thereupon repositions

the photocells to restore tile null-balance condition. Photocell position

is a measure of shaft twist.

Experience has indicated that the reflecting surfaces of the optical

torquemeter must be kept highly polished to maintain accuracy.

This may be difficult, because these surfaces are usually close to the

turbine bearings and/or gearbox bearings and oil mist tends to cloud

these surfaces. A higher intensity light source, such as a laser beam,

may possibly facilitate accurate torque readings. The design of both the

optical and the strain-gage torquemeters must provide for adequate

torsional twist under load. Both systems have been operated in con-
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junction with dynamometers, with good correlation. There are other

types of torquemeters that are commercially available that also

could be used for turbine testing.

Rotative-Speed Measurement

One of the simplest and most accurate measurements in turbine

testing is that of rotative speed. The electric tachometer can be used

to give a continuous indication of speed. Adc generator, with a per-

manent magnetic field and a rotating armature, is driven by the

shaft the speed of which is to be measured. Since the field is constant,

the voltage output of the generator is proportional to its speed. The

usually remote indicator is a voltmeter graduated to read rotative

speed.

For greater accuracy in speed measurements, a positively driven

revolution counter should be used. A means is provided for engaging

and disengaging it simultaneously with a timer. Commercial units,

called chronotachometers, are available. These units are advantageous

because they yield an average rotative speed for a given time (usually

1 minute).

The currently most accepted method of measuring speed is through

the use of an electromagnetic or electronic pulse counter. It is particu-

larly suited for high-rotative-speed machines. For this method, a

sprocket with a given number of teeth is secured to the turbine shaft.

An electronic pickup accurately counts the teeth (or impulses) for a

given time and displays the count directly as rotative speed.

Rotative speed varies somewhat during turbine tests when the air

supply pressure varies. Since mass flow rate and, therefore, power are

directly proportional to pressure, an increase in supply pressure tends

to drive the turbine faster. The absorber tends to correct for this, and

there result accelerations and decelerations within the accuracy of

the control system. It is, therefore, ideal to have a steady air supply

to provide greater accuracy when taking data.

TURBINE PERFORMANCE

The performance characteristics of turbines are usually presented

by means of performance maps. Such a performance map shows, on

one figure, the turbine flow and work as functions of the operating

conditions of speed and pressure ratio. Also shown on the map are

contours of efficiency. The flow, work, and speed are shown in terms

of equivalent conditions so that the map can be readily used for any

inlet conditions of temperature and pressure. The concept and nature

of equivalent conditions are discussed in chapter 2 (vol. 1).
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and

In brief review, the equivalent conditions are

w.q=w --_ e (12-7)

_h'
ah;q= 0 (12-8)

N

Ne,= (12-9)

where the subscript eq refers to the equivalent condition. The cor-

rection factors are defined as

o=( V_,,o ) _\Vc_. ,,a/ (12-10)

_=p,'0 (12-11)
Ps,a

and

( 2 "_%,_/(,.ta-_)

e--%'a \_-_-t_+ 1/ (12-12)

( 2 y,(,-,,

where the square of the critical velocity Vc, is

V_r= 2----Z-_gRT' (12-13)
3,-t-1

The subscript std refers to the standard sea-level air conditions of

pressure (10.133 N/cm _ or 14.696 psia), temperature (288.2 K or

518.7 ° R), molecular weight (29.0), and specific heat ratio (1.4).

An example performance map is presented in figure 12-16. Equiva-

lent specific work is plotted against the product of the equivalent mass

flow and the equivalent rotative speed. This product conveniently

spreads out the data because, as will be shown in the discussion to

follow, there may be little or no variation in the mass flow rate With

variations in rotative speed. Lines of constant pressure ratio (total

pressure ratio in this case) and constant speed are presented on the

map. Also, contours of efficiency are included for completeness.

Although a great deal of information can be obtained from the

performance map, a better understanding of the turbine performance

can be obtained if some of the performance parameters are plotted

independently as functions of pressure ratio for a range of speed. The

curves of this type to be presented in the following sections are not
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FIGURE 12-16.--Turbine performance map.

for the same turbine whose map is shown in figure 12-16. but were

selected to illustrate certain points.

Mass Flow

Variations in mass flow rate with turbine pressure ratio and speed

are shown in figures 12-17 and 12-18 for a single-stage turbine oper-

ated with two different stators. Figure 12-17 was obtained with a

stator having a large stagger angle (small stator-throat area), and

figure 12-18 was obtained with a stator having a small stagger angle
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(large stator-throat area). For both cases, the stator blades were

identical, and the same rotor was used.

In both figures it can be seen that for a given speed, the mass flow

rate increases as the pressure ratio increases until some maximum

value is reached. A further increase in pressure ratio produces no

increase in mass flow. The reason for this maximum in mass flow is

that either the stator or the rotor has choked.

In figure 12-17, which is for the small stator-throat area, the maxi-

mum value of mass flow rate is unaffected by the rotational speed;

this indicates that the stator is choked. In figure 12-18, the maximum

mass flow rate is influenced by the rotational speed, which indicates

that the rotor is choked. For the case of the choked rotor, the maxi-

mum mass flow rate increases with decreasing rotational speed. This

is the usual behavior and is due to an increase in the rotor inlet rela-

tive total pressure with decreasing speed. In some cases, however, the

occurrence of very ]arge incidence losses causes a decrease in maxi-

mum flow with decreasing speed.

The foregoing discussion has been for the case of a single-stage

turbine. In a multistage turbine, the flow variation shown in figure

12-17 would indicate a first-stage stator choke. A flow variation of

32 14.5_

31 14.0_ f_ .%_ .... _---__30 _ 13.5_

3 i _: _ _spee_

12.o}- /F o 4o

E ! _ II.5- o 60

•_ 24 ._

I, __ t i I _ i I_ I l_i I 1 I _

23! I0.5 o II0
l

22t i0.0!
21 9.5 '

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8

Ratio o1'inlet-total to exit-total pressure, pb/p_

FIGURE 12-17.--Variation of equivalent mass flow with total-pressure ratio
for turbine with small stator-throat area.
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FIGURE 12-18.--Variation of equivalent mass flow with total-pressure ratio for

turbine with large stator-throat area.

the type shown in figure 12-18 would indicate choking in some

downstream blade row, either a rotor or a stator. To determine

exactly where this choking occurred, static-pressure measurements
between the blade rows would have to be obtained. Such data are

illustrated in figure 12-19, where the variation in hub static pressure

with turbine pressure ratio (at constunt speed) is shown for each

blade row exit of a two-stage turbine. As the turbine pressure ratio

increases, choking in any given blade row is indicated by the static

pressure upstream of that blade row remaining constant while the

downstream static pressure continues to decrease. For the particular

case illustrated in figure 12-19, choking occurs first in the second

stator at a turbine pressure ratio of about 3.2. As turbine pressure

ratio continues to increase, the second rotor then chokes at a turbine

pressure ratio of about 3.7. It is, of course, the first choke that es-

tablishes the maximum flow rate for the turbine.
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FIGURE 12-19.--Effect of turbine total-pressure ratio on hub static pressure in a

two-stage tu_rbine.

Torque

As indicated by equation (2-9) of chapter 2 (vol. 1), the torque

should vary directly with the mass flow rate and with the change in

tangential component of absolute velocity (hV_) between rotor inlet

and exit for any constant radius. The manner in which torque varies

experimentally with turbine pressure ratio and speed is shown in

figure 12-20. For a given speed, increasing tbe pressure ratio in-

creases the torque due to a higher mass flow rate and higher values

of AVu resulting from the high velocities and increased turning

(absolute) in the rotor. At a given pressure ratio, the torque decreases

with increasing speed. This is due to a decrease in the amount of

tuining in the rotor (exit absolute flow angle becomes more positive

as speed increases) and a possible decrease in mass flow rate.
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FIGURE 12-20.--Variation of equivalent torque with turbine pressure ratio and

speed.

Figure 12-20 shows that as the pressure ratio increases for a given

speed, the torque tends to level off and reach a maximum value.

Above this limit, any further increase in pressure ratio results in no

additional torque. This phenomenon is termed "limiting loading"

and is indicated on a performance map by the lines of constant

pressure ratio converging to yield a maximuin value of equivalent

specific work for each speed. In figure 12-16, limiting loading is being

approached but has not been reached. Limiting loading occurs when

the annulus area at the turbine exit is choked; that is, when the exit

axial Mach number is unity.

The mass flow and torque curves just discussed can be plotted from

measured data. These curves are then used to construct the turbine

performance map. The usual procedure in constructing a performance

map is to select the mass flow and torque at even increments of pressure

ratio for the various speeds. Specific work, ideal specific work, and

efficiency are then calculated, and the performance map can be drawn.

Efficiency

Another convenient and widely used method of presenting turbine
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performance is to plot efficiency as a function of blade-jet speed ratio

_, which is given by the equation

U
(12-14)

_/2gJ,_h_

where

U blade mean-section speed, m/sec; ft/sec

Ah_ ideal specific work based on ratio of inlet-total to exit-static

pressure, J/kg; Btu/lb

This was discussed in chapter 2 (vol. 1), where a correlation was shown

mathematically for an idealized case. For that case, efficiency was

shown to vary parabolically with blade-jet speed ratio.

Experimentally obtained static efficiencies are plotted against blade-

jet speed ratio in figure 12-21 for a two-stage axial-flow turbine over a

_q
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___ <_ 50

_ 30

/
/

/
/

/
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I 1 I I I I I I
.1 .2 .3 .4 .5 .6 .7 .8

Blade-jet speed ratio, v

FIGURE 12-21.--V_riation of efficiency with blade-jet speed ratio.
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wide range of speed and pressure ratio. The total efficiencies for this

turbine, because of the two stages and very low exit velocities, were

only very slightly (1 or 2 percent) higher than the static efficiencies

and are, therefore, not presented. Figure 12-21 shows that the blade-

jet speed ratio serves very well to correlate turbine efficiency in a

generalized manner for a real turbine as well as for an ideal turbine.

It should be noted, however, that the correlation is not always as good

as for the turbine represented by this figure. For operating conditions

where limiting loading is approached, the speed lines tend to separate

somewhat, especially at the lower blade-jet speed ratios.

Flow Angles

Although flow angles are not considered as turbine performance

parameters, we should understand how they vary over the turbine
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FIOURE 12-22.--Variation of rotor incidence angle with turbine pressure ratio

and speed.
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operating conditions. The direction of the flow entering each blade

row determines the incidence loss, which is an important contributor

to off-design losses, as discussed in chapter 8 (vol. 2). The rotor

incidence angle, which is defined as the difference between the rotor-

inlet relative flow angle and the rotor blade inlet angle, was calculated

over a range of speed and pressure ratio for a typical single-stage

turbine, and the resultant values are presented in figure 12-22. Flow

angles are herein defined as being positive when the tangential com-

ponent of the velocity vector is in the same direction as the blade

velocity. The following generalized observations can be made from

this figure: (1) a large variation in incidence angle occurs over the po-

tential operating range of a turbine, (2) the change in incidence angle

o
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FIGURE 12-23.--Variation of outlet flow angle with turbine pressure ratio and

speed.
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with pressure ratio becomes greater as speed increases, and (3) the

rotor incidence angle becomes more positive as the pressure ratio

increases and speed decreases.

The turbine outlet flow angle is important with respect to the design

of whatever component may be downstream of the turbine or to the
amount of thrust that can be obtained from the outlet flow. Outlet

flow angle is plotted over a range of speed and pressure ratio in figure

12-23 for the same single-stage turbine referred to in the last para-

graph. The trends observed and generalizations made for the incidence

angle also apply to the outlet flow angle, the only difference being that

the change in outlet flow angle with pressure ratio and speed is in the

direction opposite to that for rotor incidence angle.

Stator Loss

Stator loss is directly measurable in terms of total pressure by

means of a total-pressure probe and survey equipment such as that

previously shown in figures 12-7 and 12-8. A typical circumferential

total-pressure loss survey taken at one radius just behind the stator

trailing edge is shown in figure 12-24. It can be plainly seen that all

of the loss occurs in the wake region. A composite of many such

circumferential traces yields contours of stator total-pressure ratio

such as shown in figure 12-25. The majority of the traces were concen-

trated near the hub and tip regions, where measurements were greatly

affected by the end-wall boundary layers. The increased pressure loss

with increasing critical velocity ratio (and flow) and the end-wall

boundary-layer buildup can be noted. The total-pressure loss data can

be converted to kinetic-energy loss coefficients as described in chapter

7 (vol. 2). Integration of the losses over the area of one full passage

gives the total loss for the stator. Once the turbine and stator perform-

it)
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FIGURE 12-24.--Typical total-pressure loss survey data at blade exit.
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ratio from stator annular surveys.

ance have been obtained experimentally, a turbine loss breakdown

can be made.

Surface Velocity

An important part of the blading design is the selection of the blade

surface profiles that yield favorable surface velocity distributions.
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Analytical methods for calculating surface velocities were discussed in

chapter 5 (vol. 2). During the test program, it is of interest to deter-

mine whether the "designed for" surface velocities were actually

achieved. To obtain the velocity distribution along a blade surface,

static-pressure measurements are made along the blade surfaces in the

manner discussed previously in the section on static-pressure measure-

ments. With the static pressure distribution along the blade surfaces

known, the velocity distribution can be determined from the relation

v-f_'+i[-1 ( P']'"-"'"7"lr"
Vc, L_--1L-\p_-/ jj (12-15)

Figure 12-26 shows the experimentally determined surface velocity
distributions for two stators tested under similar conditions. The dis-

tribution shown in figure 12-26(a) is considered to be a desirable one.

Acceleration on the suction surface to the maximum velocity is

smooth, and the maximum velocity is maintained subsonic. There are

no large flow decelerations (diffusions) on either surface. The loading

(force on blade) is well distributed along the blade.

Figure 12-26(b), on the other hand, shows a velocity distribution

considered to be undesirable. Flow on the suction surface accelerates
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FIGURE 12-26.--Experimental surface velocity distributions.
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to a supersonic velocity (V/Vcr=l.2) and then undergoes a rapid

deceleration back to a subsonic velocity. Such a deceleration causes a

thickening of the boundary layer with an associated increase in loss

and could possibly lead to separation of the flow off the suction sur-

face. A deceleration is also observed on the pressure surface, but this

is not as critical, because it is followed by an acceleration that would

result in reattachment of any separated flow. In general, velocity

distributions with sharp peaks and valleys should be avoided when the

blades are being designed.
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SYMBOLS

area, m2; ft 2

discharge coefficient

diameter, m; ft

thermal expansion factor

conversion constant, 1;32.17 (lbm)(ft)/(lbf)(sec 2)

ideal specific work based on ratio of inlet-total to exit-static

pressure, J/kg; Btuflb

turbine specific work, J/kg; Btuflb

conversion constant, 1; 778 (ft)(lb)/Btu

conversion constant, 1 ; 9/30 (rad) (min)/(rev) (sec)

approach velocity factor, defined by eq. (12-4)

rotative speed, rad/sec; rev/min

absolute pressure, N/m S; lb/ft 2

gas constant, J/(kg) (K) ; (ft) (lbf)/(lbm) (o R)

absolute temperature, K; °R

blade mean-section speed, m/sec; ft/sec

absolute gas velocity, m/sec; ft/sec

change in tangential component of absolute velocity be-

tween rotor inlet and exit, m/sec; ft/sec

mass flow rate, kg/sec; lb/sec

compressibility factor, defined by eq. (12-5) or (12-6)

absolute flow angle, measured from axial direction, deg

torque, N-m; lb-ft

ratio of specific heat at constant pressure to specific heat at

constant volume

ratio of turbine-inlet total pressure to standard sea-level

pressure

function of specific-heatratio, defined by eq. (12-12)

squared ratio of critical velocity based on turbine-inlet

temperature to critical velocity based on standard

sea-level temperature, defined by eqs. (12-10) and (12-13)

blade-jet speed ratio, defined by eq. (12-14)

density, kg/m 8; lb/ft 3

Subscripts"

an

cr

eq
in

std

t

0

annulus

critical condition (at Mach 1)

equivalent

meter inlet

standard sea-level condition

meter throat

measuring station at turbine inlet
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1 measuring station at stator outlet

2 measuring station at turbine outlet

Superscript:

' absolute total state

PERFORMANCE
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