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Abstract

Aircraft performance can be optimized at the flight condition by using available redundancy among

actuators. Effective use of this potential allows improved performance beyond limits imposed by

design compromises. Optimization based on nominal models does not result in the best performance

of the actual aircraft at the actual flight condition. An adaptive algorithm for optimizing performance

parameters, such as speed or fuel flow, in flight based exclusively on flight data is proposed. The algo-

rithm is inherently insensitive to model inaccuracies and measurement noise and biases and can opti-

mize several decision variables at the same time. An adaptive constraint controller integrated into the

algorithm regulates the optimization constraints, such as altitude or speed, without requiring any prior

knowledge of the autopilot design. The algorithm has a modular structure which allows easy incorpo-

ration (or removal) of optimization constraints or decision variables to the optimization problem. An

important part of the contribution is the development of analytical tools enabling convergence analysis

of the algorithm and the establishment of simple design rules. The fuel-flow minimization and veloc-

ity maximization modes of the algorithm are demonstrated on the NASA Dryden B-720 nonlinear

flight simulator for the single- and multi-effector optimization cases.

Nomenclature

A

ACC

C D

C D
u

Ca 6

D

E
p

FC

G

a(s)

h

J

K

L

m

M

MAW

PI

PLA

PSC

q

excitation amplitude, deg

adaptive constraints controller

drag coefficient

C D sensitivity with respect to Mach number

C D sensitivity with respect to a generic decision variable

total drag, lb

potential energy

flight condition (weight, center of gravity, altitude, winds, true airspeed)

transfer function gain

transfer function

altitude, ft

optimized function

optimizer adaptation gain

lift, lb

mass of the aircraft, slugs

pitch moment, lb • ft

mission adaptive wing (F-111 program)

performance index

power-lever angle, deg

performance-seeking control
,)

dynamic pressure ( 1/2p V')



R¥

S

s(t)

S

T

T o

Treq

U

U,M,N,P,,Q

V

fl, x

F

Sail

Sc

_)e l

sI,
S,

S surf

S(t)

So

"q (t)

t.t

P

tp

o._
O

v-rotation matrix

Laplace variable

excitation signal

wing surface area (2433 fi2)

thrust, lb

period of excitation signal, sec

thrust required, lb

control signal

adaptive magnitudes of adaptive constraints controller

true airspeed, ft/sec

angle of attack, deg

parameters of envelope equivalent system

curvature of optimized function J or performance index

flightpath angle

aileron deflection, deg

decision variable

elevator deflection, deg

flap deflection, deg

probing signal

generic surface deflection

total input on decision variable

initial value of decision variable

trigonometric vector

adaptation gain of adaptive constraints controller

air density, slug/ft 3

phase angle, rad

perturbation signal frequency, rad/sec

Introduction

Increasing competition among airline manufacturers and operators worldwide has spawned a recent

all-out effort to reduce direct operating costs. Because an airline's net profit is the difference between

two large numbers (revenues and costs) measured in percentage of the costs, a small reduction in direct

costs can have considerable leverage in an industry with a profit margin of about 5 percent (ref. 1).

After ownership costs (approximately 50 percent of direct operating costs), the second major driver of

costs is fuel consumption, which accounts for approximately 18 percent (ref. 1). The effect of aircraft

performance on an operator's profitability can be crucial because production costs are not usually



undertheoperator'scontrol.Improvedperformancecanresultinlessrequiredthrustandcanbenefit
enginewear.Thisimprovementcanincreaseenginelifeandfurtherreducemaintenanceanddirect
operatingcosts.

NASAconductedresearchinthelate1970'sand1980'sthataimedtoward improving aircraft perfor-

mance. This effort was part of the aircraft energy efficiency and advanced fighter technology integra-

tion programs. (Ref. 2 surveyed past attempts to apply active controls to improve aircraft perform-

ance.) The F-111 mission adaptive wing (MAW) program (ref. 3) showed the potential for applying

the variable wing camber concept to transport aircraft. Standard wing and wing configuration point

designs, by necessity, represent the result of major compromises among numerous design consider-

ations and flight conditions. By adapting the wing configuration to the particularities of the flight, vari-

able wing cambering allows those design compromises to be overcome. The MAW program clearly

demonstrated the effects of this technology on performance improvements. Two modes of the F- 111

MAW are applicable to transport aircraft: the cruise camber control mode, which was designed for

real-time adaptive optimization with drag reduction, and the maneuver camber control mode, de-

signed to maximize lift-to-drag ratio (L/D).

Recent extensive wind-tunnel testing and flight experiments with wide-body transports, performed by

the German company Messerschmitt-Bolkov-Blohm (now Deutsche Aerospace, a member of the Air-

bus Consortium), show that continuous camber variations can improve the efficiency of the most

advanced wings, even at their best design points: a clear consequence of transcending the point design

compromises (ref. 4). Besides drag improvements (potentially a 3- to 9-percent increase in L/D is

reported in ref. 4), camber control may also improve other aspects of the aircraft design. For example,

an increase of the maximum lift coefficient for the wing buffet onset (a 12-percent increase has been

reported in refs. 4 and 5) or root bending moments alleviation is possible (ref. 6). The same team

showed that coordinated deflections of flaps, ailerons, elevators, stabilator, and (possibly) leading-

edge devices can induce variable wing cambering without the penalty of a new wing box design or a

significant weight increase (refs. 4, 5, and 6). The team has not yet reported on any in-flight adaptive

optimization scheme for performance improvement. Only prescheduled camber repositioning has

been considered.

The performance-seeking control (PSC) program is NASA Dryden Flight Research Center's most

recent attempt to develop an in-flight performance optimization algorithm. PSC was developed for

optimizing the propulsion system of the F-15 highly integrated digital electronic control (HIDEC)

research aircraft in quasi-steady state. PSC encompasses the following optimization modes: (a) mini-

mum fuel flow at constant thrust, (b) minimum turbine temperature at constant thrust, and (c) maxi-

mum thrust. Both subsonic and supersonic flight testing of the PSC algorithm has been concluded and

reported by NASA Dryden (ref. 7). The PSC program demonstrates that performance can be accrued

beyond the design point with in-flight optimization; however, as an open-loop optimization scheme

(no direct measure of a performance index (PI) is used), it relies heavily on a priori models. Model

errors may, therefore, influence considerably the optimization process, especially when only low-level

performance improvements are expected. Measurement biases also impact the estimation of the cur-

rent engine parametrization used subsequently to feed the optimization model in PSC. (Refs. 8 and 9

analyzed the influence of measurement biases over the estimation process of PSC.) To accommodate

the above problems, reference 7 suggested a closed-loop technique based on a direct measurement of

a PI.

Such a technique should take into account the particularities of actual flight conditions without being

sensitive to model changes or model uncertainties. The MAW program pioneered that type of



approachforitsCCCmodeusingatrial-and-erroralgorithm,whichworksforlargedragchanges(i.e.,
5to10percent)butfailsforlow-leveldragchanges(i.e.,1to2percent).Thus,boththePSCandMAW
approachesforin-flightoptimizationareunsuitableforthelow-leveldragimprovementexpectedin
transportaircraft,albeitfordifferentreasons.Accordingly,thedevelopmentofarobustandefficient
algorithmforin-flightaircraftperformanceoptimizationisinorder.

This paper proposes a perturbational technique (reL 10) for the adaptive optimization of an aircraft's

performance through excess thrust improvements. The algorithm, called adaptive performance optimi-

zation, estimates, online, the correlations between periodic perturbations introduced on the decision

variables and their effects on a measured PI. The estimated correlations are then used to decide average

changes on the decision variables that (locally) improve the PI. The optimization technique can be

viewed as belonging to the gradient-type family, but, instead of signal differentiation, it uses averaging

and signal integration. This characteristic gives the algorithm its strong robustness with respect to sig-

nal measurements' noise and biases.

For the application at hand, the optimization is performed using the available redundancy among sur-

face effectors. The measured performance index (PI) includes the contributions coming, simulta-

neously, from the airframe and the engines to the overall performance changes.

Sensors and instrumentation are, undoubtedly, important elements in any flight performance optimiza-

tion research program. The issues, however, related to those elements are beyond the scope of this

report, which focuses on the methodological aspects of the inflight optimization technique.

Following a general discussion of the aircraft performance optimization problem, the working princi-

ple of the proposed optimization technique is described. Then, a design procedure is suggested for the

speed-maximization mode at constant altitude and power lever angle (PLA). The deflections of the sur-

faces involved (i.e., symmetric outboard ailerons and elevator) are linked by the constant altitude con-

straint. This link between the surfaces transforms the problem into a single decision variable (or single-

surface) optimization. First, the control of the optimization constraint is left to the autopilot, which

attempts to keep the net pitch moment equal to zero and the altitude constant. Up to this point, the

paper closely follows that of Espafia and Gilyard (ref. 11). Discussed here for the first time are some

limitations of that approach when fast perturbation signals are used. It is shown that, if no provisions

are taken, with a practical (nonideal) autopilot, the perturbations signals may induce oscillations on the

constraints that steer the algorithm away from the optimum values for the decision variables. A solu-

tion to this problem, based on an adaptive oscillation canceller technique, is then proposed and tested

in simulation.

A fuel-flow minimization mode is next considered for constant altitude and speed. It is shown that a

natural extension of the algorithm for the speed-maximization mode at constant altitude is able to take

into account the extra constraint of the fuel-flow minimization mode. The algorithm also compensates

for the effects of nonideal altitude- and velocity-hold functions of the autopilot.

Both modes (velocity maximization and fuel-flow minimization) are then tested in simulation using

more than one degree of freedom by optimizing simultaneously with respect to outboard ailerons and

outboard flaps (multisurface optimization) while keeping the elevator as the compensating effector for

pitch and altitude control. The testbed used was the B-720 nonlinear flight simulator at NASA Dry-

den's Simulation Laboratory. The simulations assume full precision of all variables used in the feed-

back control laws.



Aircraft PerformanceOptimization

Most aircraft have a significant redundant control effector capability (i.e., more than one means of

trimming out the forces and moments to obtain a steady-state flight condition). The challenging task

of taking advantage of such capability for an aircraft adaptive in-flight performance optimization is

the subject of this report.

Control Effectors

Drag minimization potential exists for the entire spectrum of subsonic transport aircraft. Aircraft man-

ufacturers recognize the potential for performance improvements based on available control effectors

and have implemented some fixed-point reriggings based on flight test results.

Figure 1 illustrates the controls or variables that show potential for optimizing the performance of

current-generation aircraft. These variables include elevator, horizontal stabilizer, outboard aileron,

inboard aileron, flaps, slats, rudder, and center of gravity. Spoilers are not an option for performance

optimization, although spoilers may be a viable controller for drag modulation. Potential selected con-

trol variable tradeoffs are possible between:

• Symmetric aileron or flap (leading edge and trailing edge), or both, and horizontal stabilizer or

elevator

• Inboard and outboard symmetric aileron or flap, or both

• Elevator and horizontal stabilizer

• Inboard and outboard elevator

• Center of gravity and horizontal stabilizer

• Rudder and differential thrust

• Sideslip and rudder deflection

Elevetol
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Figure 1. Typical subsonic transport control effectors.



OptimizationStrategies

Inthefollowinganalysis,twooptimizationmodes that take advantage of an increase in excess thrust

at constant altitude cruise flight are considered: velocity maximization with constant PLA and fuel-

flow minimization at constant speed. In the velocity-maximization mode, an excess thrust increase is

sensed as an instantaneous acceleration increase. In this mode, the acceleration, aircraft speed, or both,

is used as a PI (subject to the altitude constraint). When altitude and velocity are both constrained,

excess thrust changes are reflected in thrust and fuel-flow changes. Constant velocity and altitude con-

straints are achieved by the autopilot through an inner control loop with respect to the optimizing con-

trol law. When only the altitude is held, the autopilot commands the elevator exclusively. When both

altitude and velocity are held, the autopilot also sets the PLA.

Aircraft Model

The simulation results were obtained with a simulated B-720 at the nominal cruise flight condition:

altitude 30,000 ft, Mach number 0.80, standard atmospheric day, total weight 200,000 lb. The original

model was designed for low-speed flight conditions; drag characteristics of the control surfaces were

not modeled or even available. Some modifications were required to conduct performance optimiza-

tion algorithm design-evaluation at cruise flight conditions. Adding quadratic drag effects as a function

of aileron and flap deflection (i.e., CD8 ) incorporated realistic drag characteristics into the model. In

addition, a term representing drag increases with Mach, C D , was included. Fuel burn and aeroelastic
u

effects were not considered. All simulation control laws used the full precision and accuracy of the

variables for feedback control. All variables required for feedback were assumed to be available. No

gust, turbulence, or noise effects were simulated.

Periodic Perturbation Extrema-Searching Technique

Adaptive optimization techniques with periodic perturbation and direct feedback of a measurable PI

allow for direct optimization of the PI without requiring a model (refs. 10 and 12).

Working Principle

The technique, first proposed in reference 12, consists of using sinusoidal probing signals superim-

posed on each of the decision variables of the optimization problem. A separate probing signal fre-

quency is assigned to each decision variable. Online estimation of the correlations between the sinus-

oidal perturbations and PI are used to approximate the components of the local gradient of the PI with

respect to the decision variables. The gradient thus estimated is then used as the search direction in the

decision variable space to improve the PI value. The basic principle of the algorithm is better described

for a quadratic single-input PI, here indicated by J.

For positive constants K and F, consider the unconstrained optimization of the function J(') of a single

decision variable 8 (F will be referred as to the curvature of J):

1 (8-8*)2 (1)J (5) = J (_i*) + jr'

* Inpractice,forsubsonicaircraftat cruise conditions,the maincontributionto performance increasecomes from airframe drag
reduction.However(technically,at least), the magnitudebeing optimizedis the excess thrustdefinedas thrustminus drag.This
allows foramore generalalgorithmperspective.



Theoptimization algorithm is given by the equations (ref. 10):

8(0= 8c(t) +ks(t); ks(t) = Asin(toot) (2a)

_c = -KJ(8(t))Asin(Oot-CP); 8c(0) = 50 (2b)

where 8c is the decision variable with initial value 8o and optimal value/i*. The probing signal/i s is

superimposed on/ic to give the total input/i (t). The phase angle tO is a design parameter whose inter-

est will become clear later. The differential equation (2b) links, in a way that is discussed later, the

search speed with the input-output correlation of function J.

Given its nonlinear character, an exact analytical description of equations (1) and (2) is a complicated

task. An approximated analysis is based on the assumption that 8 c (t) changes much more slowly

than the sinusoidal probing signal/is and J (t). This slow variation is ensured by choosing a suffi-

ciently small integration gain K, also a design parameter. The analysis technique (see, for example,

ref. 13, chap. 6) consists of substituting the right-hand side of equation (2b) by its time average over a

receding horizon of time with length equal to the period T O = 2n/to o .

For an arbitrary function f (t), the T O-averaged function f (t) is defined as

t

.7"(0 := avgif(t)} := _oo f('Od'c
1-

0

(3)

where x is the integration variable. The following first-order approximation around/ic (t) of expres-

sion (1) is also used:

J (A sin (tOot) +/ic (t)) ---J (8 c (t)) + F (8 c (t) -/i*) A sin (tOo t) (4)

With approximation (4) and definition (3), the averaged right-hand side of equation (2b) is calculated

as

KF (_c (t) - 15") A2avg { sin (tOot) sin (tOot - Ip) }

= _Kr" (_c (t) -/i*) A2avg { cos (_0) - cos (2tOot- q_)}

(5)

where, by assuming that/ic (t) remains almost constant during a time interval T O , 8 c (t) is approxi-

mated by the T O-averaged function _c (t).

From equation (5), the solutions of the nonlinear and time-varying differential equation (2b) are ap-

proximated by those resulting from the averaged linear and time-invariant differential equation (it can

be easily shown using definition (3) that _c = 8c ):

gc =--_KI" (_c - 5*) A2cos (tp) (6)



Whenever _0e (-_/2,n/2), 5c converges exponentially to the optimum value 8* with time constant

2/[KA2Fcos (_0) ]. Two important properties can be derived from the above analysis:

PI: In the average, 8c tends exponentially toward its optimal value 5" for wide ranges of cp,

K, and F.

P2: In the average, biases on the measurements do not affect this result because, from

equations (3) through (5), their averaged effect on equation (6) is zero.

To obtain the next result, we now assume that, for a large enough time t', (practical) convergence has

already been achieved, and thus, ifn is an integer such that t = nT o > t', then 8c (t) = 8c = 8 c.

From equation (2b), we now can write

t

t'

Thus, the following necessary condition for convergence follows:

t

corr {J,e-J_Ss} := lim t-_t,jJ(x)Asin(tOoX-_p)dx = 0 (8)
t-.._ oo

t'

Equation (8) shows that the algorithm attempts to adjust the value of 8c so that the correlation of the PI

and the excitation signals is zero. This correlation interpretation of the algorithm, and the fact that sinu-

soidal signals of different frequencies have zero correlation, explain another important property of the

algorithm; namely,

P3: The effects that an additive measurement noise on PI have on the average of 8c are

negligible unless the noise power spectrum is concentrated around the excitation

frequency co° .

Control Law Structure: Analysis and Design

Figure 2 shows a block diagram of a practical extremum-searching system with a single-decision vari-

able (for the application addressed in this paper the decision variable 8 will be a control surface deflec-

tion). The plant's PI measurement process is represented by the nonlinear static characteristic J ( •) in

5 o

- Plant

5© M

951_7.'I

Figure 2. A single-dimensional e×tremum-searching algorithm.



serieswithalinear filter Gp (s) representing possible sensor dynamics. The transfer functions Gf

and G a are, respectively, a signal-shaping filter used to eliminate undesired frequency components at

either side of to o , and a low-pass filter. All transfer functions are assumed to have unitary gains. The

tandem (M, Ga) in figure 2 acts as a demodulator, eliminating most of the too -harmonics remaining

in the feedback loop (mainly the 2to o term; see eq. (5)). As an exponentially weighted time average of

the product 7t, the output of G a (the convolution between the low-pass impulse response and ;t) is seen

as an estimate of the current correlation between the inputs to the multiplier M. The cascaded block

G.fGp (s) introduces a phase angle too at the frequency too"

For design and analysis purposes, only the information contained in the low-frequency components

of the signals in the circuit is of interest. For that reason, following the guidelines of reference 10,

chapter 9, the system in figure 2 is transformed into an equivalent low-pass network. Figure 3 shows

the corresponding equivalent network for a quadratic J as in equation (1).

Under each block of figure 3 is indicated, in parentheses, the originating block from figure 2. In the

same figure, _c represents the low-frequency component average of the feedback signal 6c" The

parameters of the equivalent system are calculated (see ref. 10 and the example in appendix A) as

OtoP(to) co_p = IGp(Jto°)]; XP - ato = to
O

= lGf(J%)[; xf= atof(to)oto_=to (9)
0

where [G (Jtoo) [ and to (too) indicate, respectively, the module and the phase angle of the transfer

function G at Jtoo" The equivalent network in figure 3 is used for the stability analysis and design

purposes of the adaptive optimization algorithm. The designer has at his disposal the gain K, the phase

compensation (p, the perturbation signal amplitude A, and the frequency too" The transfer functions

of the filters Gf and G a can also be used to refine the design. For K sufficiently small (as we saw,

a small K is also required for the validity of our analysis), Xp > O,x/> 0 (which is the case in prac-

tice), and to selected such that to - too e (-_/2,7t/2). The integrator on the feedback path ensures the

exponential convergence of _c to its optimal value 5" under wide changes of the open loop gain

(i.e., G,_f,_p, etc.).** The convergence to the optimum is, thus, a robust property of the algorithm.

_w

d

Plant

(J(*)) (%)

Figure 3. Envelope equivalent circuit.

950074

**This can be concluded from the diagram of figure3 using standard linear techniques(e.g.. root locus).



Single-Surface Velocity Maximization Mode

For the sake of clarity, we first consider the speed-maximization mode. The fuel-flow minimization

mode, proposed later, is seen as a natural extension of the speed-maximization mode.

Design Approach With Ideal Altitude-Hold Assumption

This mode makes use of an altitude hold with the PLA kept at a constant position. From the three-

degrees-of-freedom longitudinal flight equations of motion (ref. 14),

mI;' = - D - mgsinv + Tcos_ (lOa)

m V 51 = L-mgcos'y+Tsino_ (10b)

IyyL1 = M (lOc)

/_ = Vsin_' (10d)

The wind component of the acceleration is given by

I? = _1 [T (_, FC) cosct - q (V,p) SC D (_, FC) - mgsin'/]
m

(11)

Flying conditions (FC) includes all the uncertainties and unmodeled effects of changing factors, such

as weight, center-of-gravity position, winds/aircraft velocity, altitude, and aging engines and surfaces.

The expression T (_, FC) corresponds to the unknown actual (as opposed to nominal) engine static

characteristics relating thrust with the FC at constant PLA. The vector _ in equation (11) is a generic

vector of independent decision variables. The dependence of T on _ emphasizes possible effects of the

surface configuration on the net engine thrust during the optimization (mainly because of airspeed

changes in magnitude and direction). Two decision variables, the deflections of outboard ailerons

(Sail) and outboard flaps (S f/), are considered in this report. This section considers only one inde-

pendent surface deflection denoted generically as Ssurf ( _ {SaiI,Sfl}) The other surface is assumed

at its nominal deflection, typically S = 0. The elevator deflection Set is a dependent variable and,

thus, does not explicitly appear in equation (1 1). The deflection Sel is implicitly determined by Ssurf

and the given level flight condition.

We designate as optimal the surface configuration that maximizes the excess thrust: T - SqC D . With

the assumption of an ideal altitude hold, i.e., _/ = 51 = 0, it is seen from equation (11) that the opti-

mum corresponds to an extremum of k'. This latter variable can thus be used as the measurable PI for

the optimization. In practice, the velocity V may be a better parameter than 12 in terms of available

sensor resolution. For this purpose, Espafia and Gilyard (ref. 11) suggested an algorithm modification

that allows the use of V (instead of 12) as the measurable PI. That modification will not be considered

in this report, whose focus is on more general methodological issues.

10



The optimal deflection 8surf must satisfy the necessary condition for optimality:

surf

= m 8Osurf surf
= 0 (12)

Figure 4 shows the autopilot and optimizer loops for a single surface optimization (Ssurf); h, h, and

hD are, respectively, the altitude, its time-derivative, and the engaged (desired) altitude; _is =
ap

A sin (COot) is the excitation or probing signal; Set is the elevator command generated by the altitude

hold (autopilot); 8c is the surface command generated by the optimizer; _io is any initial estimate of

the optimal deflection.

The frequency coo of the sinusoidal excitation 8 s , as well as its amplitude A, is chosen small enough

that the dynamics of the aircraft in closed-loop operation with the autopilot can be neglected. Such a

choice is required to ensure the validity, in practice, of the ideal autopilot assumption. For the design,

the sensor dynamics (fig. 3) are also neglected by assuming 13p = 1 and xp = 0.

The effects of configuration changes on the engine's net thrust are not taken into account for design

and analysis purposes. The underlying approximation allows for a simplified design procedure as well

as a deeper insight into the qualitative and quantitative aspects of the performance optimization algo-

rithm. Nominal aero data are used to determine the trim-drag characteristic for the nominal flight con-

ditions as a function of the independent surface 8surf varying in its admissible range. (At each point

of the characteristic, the dependent variable Be! takes the value necessary to compensate for moment

changes.)

The (nominal or measured) trim point characteristic relating 8surf with CD (trim drag coefficient) is

fitted with a second-order polynomial from which the characteristic's average curvature FeD is deter-

mined (eq. (1)). Now, from the incremental relationship,

av = sac°q (13)
m

PLA (constant)

t Optimizer _1

Figure 4. Autopilot and external optimizer loops.

950076
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obtained from equation (1 1), the average curvature for the PI (_' in this case) is determined as (eq. (1)):

Facc = qFcD S/m. Notice that, given the algorithm's convergent properties, discussed in the previous
section, the above constants need only be known approximately. For simplicity, the mass is assumed

constant in this paper (no fuel burn). In practice, the mass value used in equation (13) could be updated

periodically with an estimate of the fuel consumed. As stated before, changes in the actual Facc will

only affect the convergence dynamics of the algorithm, not the final value.

To keep the design simple, Gf and G a in figure 2 are chosen as the first-order transfer functions:

s c°l
Gf = _; G a = _ (14)

$ + 03h $ + 031

Given the roles of G a and G f, 030 has to be simultaneously on the band pass of Gf and out of the

band pass of G a . For this purpose, the simple choice (admittedly, somewhat an arbitrary one) is adop-

ted: 03h = 03t = 030/2. The phase angle induced by Gf at 03o can be shown to be Of = 26.5°.

Because the dynamics of the aircraft have been neglected, we choose, in figures 2 and 3, O = • o = Of.

From equations (9), we then have

I]f =

xy-

03O

2 2 1/2
(030 + 03h)

- 2/4_

03h 2

2 2 5030
(_o + 03h)

(15)

From equations (14) and (15), the open-loop transfer function poles of the equivalent system in figure 3

are 0, 030/2, 5030/2. After normalizing by 03o' the open-loop transfer function results in

s/03 ° (s/03 o + 1/2) (s/03 o + 5/2) '

G A2_KIqSFcDI

0

(16)

where G is the combined (nondimensional) gain of the blocks J,Gf,M,G a , and K/s of figure 3 put in

cascade. The normalized dynamics of the performance optimization algorithm are characterized by the

closed-loop poles of the transfer function (16)• Those poles can be conveniendy placed by an appropri-

ate choice of the normalized gain G. The critical normalized gain for a deadbeat response can be

shown to be Gc = 0.1408, with a corresponding pair of coincident normalized dominant closed-loop

poles at --0.24 and a single normalized fast pole at -2.52. With the above choice of G, the normalized

closed-loop response enters the 5-percent band around the final value at approximately 20 sec. As a

consequence, the optimizer with excitation frequency 030 is expected to reach the 5-percent band of the

optimum at 20/03 o sec. The algorithm's gain K is calculated from equation (16) after appropriate con-

stants substitutions• This completes the algorithm design. Equation (16) also gives a way to schedule K

with the dynamic pressure q (28 1 lb/ft 2 for the nominal flight condition, i.e., altitude 30,000 ft, Mach

number 0.8). Notice that for a given design criterion (a critical design criterion is chosen in this report),

the adaptation gain, the corresponding closed-loop poles, and consequently, the convergence speed of

the algorithm are all proportional to the excitation frequency 03o •
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Effects of Constraint Violation

To search for the optimal condition, the adaptive performance optimization algorithm uses estimated

correlations between the PI and sinusoidal probing signals applied to the decision variables. For the

velocity maximization mode with fixed throttle position, the horizontal acceleration (measurable PI) is

a direct measure of the excess thrust only if the ideal altitude-hold assumption (namely, h = 0 or

y = _/ = 0 ) is satisfied. In practice, however, the latter condition is satisfied only approximately, and

the altitude's derivative features remnant oscillations of frequency too . Those oscillations may have a

determinant effect on the algorithm convergence properties. In fact, appendix B shows that the differ-

between the final value 8surf attained by the algorithm and the optimum 8_urf is approximatedence

by

8surf-8_urf =- 2mgcorr{h/V,k.}
FD Az

(17a)

2
=_ _ _corr {Ep, ks} (17b)

FDV**AZ

where, by definition, FD-= qSFcD ; corr{.,. } indicates the temporal correlation between the sig-

nals inside the brackets; V** is the average final velocity; and Ep is the aircraft's potential energy. The
offset with respect to the optimum, indicated in equations (17), cannot be compensated for unless a

detailed mathematical description of the aircraft is known beforehand. This is precisely what the opti-

mization methodology intends to avoid. Given the low level of performance improvement expected

and the direct influence of the total aircraft weight (rag in eq. (17a)), those deviations may be signifi-

cant for large transport aircraft. Moreover, the offset may be magnified in multivariable optimization

because a superposition of the effects of the individual loops could be expected in this case.

Equation (17b) gives an energy interpretation of the optimization offset. If the altitude is varying, an

excess thrust change is not necessarily spent totally into a kinetic energy change but also into a poten-

tial energy rate-of-change that goes undetected by the measured PI (I/). Interestingly, changes in Ep

induced by changes in environmental conditions (such as gusts, winds, and air density changes), un-

correlated with respect to k s , will not produce, on the average, any optimization offset. This is inher-

ent to the correlation approach used to estimate the gradient, given that only those changes correlated

with k s are weighted by the online correlator.

We now denote by G 7 (s) the transfer function between k s and the path angle ywhen the altitude hold

is in the loop. Recalling that k s (t) = Asin (toot) , equation (17a) is transformed into (appendix B)

. 2mg

kf,,,..f- k ,,r.f= r,° (1/iGy (j%)l) cos (% (Jtoo)) (18)

where [G 7 (Jtoo)[ is the module, and q_V(Ytoo) is the phase angle of G.r (s) at Jtoo" The factor

1/[G T (Jtoo) [ is the disturbance rejection at too provided by the altitude hold over the path angle.

The altitude hold is typically designed so as to make 1/1% (J%) [ big at very low frequencies (in-

tegrator in the loop). For increasing frequencies, the autopilot rejection capability deteriorates, thus

increasing the optimization offset. Consequently, because low excitation frequencies correspond to

slow algorithm convergence (see comments following eq. (16)), the algorithm imposes a compromise

between convergence speed and accuracy. The next section proposes a solution to this compromise.
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Adaptive Constraints Control: An Adaptive Noise-Canceling Approach

To resolve the compromise just mentioned, the constraint control function of a practical autopilot may

need to be enhanced. However, because the autopilot design requirements are specific to the type of

aircraft and mission, a method that requires the redesigning of the autopilot to fit the needs of the opti-

mizer is not desired in practice. The compromise is solved by using an adaptive constraint control tech-

nique that leaves the autopilot untouched and, even more interesting, does not require any a priori

knowledge of the autopilot.

Adaptive noise-canceling techniques are particularly effective for eliminating undesired disturbances

with known frequency spectra. The technique was pioneered for the discrete time case by Widrow and

others (refs. 12 and 13). In appendix C, the continuous time version of the algorithm, suited for the ap-

plication at hand, is derived using current adaptive theory tools.

In our problem, we seek to eliminate the coo-frequency oscillations present in/_ (or at least to decorre-

late them with respect to the probing signal 8s; see equations (17)). Synthesizing a sinusoidal elevator
$

command signal 8el with adequate phase and magnitude can compensate for the excitation signals

introduced on the optimizing surface (the aileron in this case).

We assume, for the moment, that superposition can be invoked to decompose/i in the following way

(linearity assumption):

• $

li = h b+h s+ hs = hb+ti s+Gel(Jcoo) Set (19)

where/i s is the aircraft-autopilot/i -response to the probing signal 5 s applied to the ailerons' com-
. • . . $ •

mand; h is the effect on h caused by the compensating signal gel ; hb is the basic h component
$

not reflecting the effects of 8$ a_d 8el; and Gel (Jcoo) is the transfer function between the elevator
and/i. We now define S,TI _ 91 as

S T T:= IX, Y], _ (t) := [cos (coot), sin (COot)] (20)

With an adequate choice of the vector S, any sinusoidai signal s (t) of known frequency to o can be

written as

s (t) = Xcos (coot) + Ysin (coo t) = sTTI (t) (21)

In particular, the (unknown) compensating elevator's signal command is expressed as

8_t(t) = or_ (t) (22)

where 0 T : = [ _, 2_] is the parameter vector, to be determined by the adaptive algorithm, such that

/_ + h s _ 0. Now, for [Get (J%)l and _/(Jcoo), respectively, the magnitude and phase angle of the

transfer function Gel (jCOo), we can also express /_s as

hs (t) = IGel(jCOo)l (/f/cos (COot + V) +/_/sin (tOot+ _t) )

= IGet(j%)]OTRvn (t)

(23)
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where R_ indicates the v-rotation matrix. Following the results of appendix C for lae:0 < ge _ 1, f-/

can be adapted with the algorithm:

A

U = -_teh_ (t) (24)

The transfer function Get relates aerodynamic forces/moments (proportional to the elevator's deflec-

tion) with a mechanical speed. In consequence, as a simple mechanical argument shows, Get has a

dominant pole at the origin, implying a phase shift of approximately -7t/2. Under these conditions,

the use of the modified version

A

U = -_tetiRvo'q (t) (25)

is recommended in appendix C, where the rotation matrix R¥ is introduced into the algorithm to im-

prove stability and convergence speed when an estimate Xgo o°f_ is available.

Summarizing, for _o = -/t/2, the adaptive velocity maximization algorithm with adaptive con-

straints controller (ACC) is given by the following set of equations (A c (s) and rl (s) denote, respec-

tively, the Laplace transforms of 8c (t) and 7t (t)):

/t (t) = Al/sin (mot- Ip) (26a)

KG a (s)
_FI (s) (26b)A c (s) = s

$ai I = 8c + asin (tOot) (26c)

A

M = -gehcos (toot-n�2) = -_tehsin (too t) (26e)

N = -laehSin (tOot-n�2) = lae/iCos (too t) (26f")

8 5el (t) = /f/cos (tOot) +/¢sin (tOo t) (26g)

Figure 5 depicts the resulting block diagram of ACC (adaptive disturbance rejection on the h signal).

The changes in the interconnections for the diagram of figure C-2 of appendix C account for the

-7t/2 rotation required on 1"1(t).

Arguments similar to those leading to equation (8) allow us to interpret equations (26e) to (26g)

as an adaptive mechanism to decorrelate the fundamental tOo-harmonic in/i with respect to

Ss (= A sin (tOot)). From equation (17a), this is the necessary condition to suppress the bias in the

optimization (higher harmonics of tOo are decorrelated with the fundamental tOo)' Because
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convergence only requires decorrelation between (the fundamental harmonic of) h and 8 s (equivalent

to/_/ = 0 in equation (26e)), we conclude that the assumption of linearity between the effectors and h

is not needed (i.e., higher harmonics do not affect the convergence process) for the optimizer combined

with ACC to reach the optimum.

Consequently, the algorithm (26) is expected to work well with actuators involving such nonlinear ele-

ments as position or rate saturations, hysteresis, dead bands, and nonlinear time delays. Equation (26f)

shows that, upon convergence, fi is also uncorrelated with respect to cos (COot). This is not necessary

for convergence of the optimizer, but, given that 8 s and cos (COot) are orthogonal signals, this fact has

as a consequence the (theoretical) annihilation of the COo-oscillations in ft.

Results of Simulated Experiment

For purposes of demonstration, the aileron deflection, 8ai I , is selected as the active surface. Calculat-

ed from the trim point characteristics at the nominal flight conditions, the optimal _)ail deflection has

an approximated value: 8ai I = 3 ° • From the aerodata the average curvature, g'CD is estimated as

FCD = 7.32E - 05 [deg -2] , giving for the PI average curvature the value: Fac c = q.FcoS/m =

8.0E - 03 [ ft.sec-2.deg-2]. Following the design criterion mentioned previously, from equation (16)

we have

4COoG c 32(0 o

Kai I = 4[-_A2Facc A 2

(27)

The amplitude of the excitation signal was chosen as A = 1°. Two excitation frequencies, with

a ratio 1:3, were selected to investigate the effects of the coo parameter. The lower value, o_o = 0.025,

was set low enough, through a trial-and-error process using the simulation, to ensure good enough

rejection, by the altitude hold, of the/i -oscillations. For this case, it corresponds with Kai I =

0.79 [ sec3/ft], and only small differences in the PI with and without ACC are expected.

Figures 6(a) to 6(h) display the results. Figure 6(a) shows the corresponding increase of the true air-

speed caused by an increase of the net thrust provided by the optimizer. Figure 6(b) shows the

+ 8,,_ fi

Adaptive correlation canceller

Figure 5. Adaptive constraints controller: 8 sel signal synthesizer.

sin(toot )

95o077
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corresponding reduction of C D .As seen by comparing the curves with and without ACC, differences

in the velocity for very low excitation frequencies are only minor. From figure 6(b), however, the

average C D is slightly smaller with ACC. For the chosen too , the optimizer is expected to attain the

5-percent band of its final value at approximately 20/to ° = 800 sec, which is in total agreement with

the plot in figure 6(c). This fact is in good agreement with the dynamic predictions provided by the

analytical tools introduced previously in the Design Approach section.

The steady-state (final) aileron deflection, however, does not coincide with the optimum value deter-

mined from the characteristics (i.e., 3.8 °) when ACC is not used. As shown, this lack of coincidence is

the result of the constraints violations caused by the invalid assumption of an ideal autopilot (notice

the +90 ft oscillations in the altitude shown in fig. 6(e) without.ACC). On the other hand, figure 6(c)

shows that, with ACC, _ail converges to the optimal value: _)ait = 3"8°" In this case, however, the

dynamic cannot be predicted using the results of the Design Approach section, which do not assume

the presence of ACC.

The overall dynamic now depends on the newly incorporated ACC module whose dynamic is implic-

itly determined by the adaptation gain, _e" The latter gain was chosen as I.te = 0.001 for these exper-

iments. Figure 6(g) displays the time history of the/f/ and N parameters. Figure 6(f) illustrates the

real effect introduced by ACC; namely, a dramatic reduction in the oscillations of h after the adapta-

tion period. While this adaptation is performed, notice how the surface deflections with ACC depart

from those without ACC (fig. 6(c) also displays the corresponding 8el deflections for both with and

without ACC cases).

Notice, comparing figures 6(c), 6(f), and 6(g), how the correction towards the final (optimal) value

5ai I parallels the convergence of ACC and corresponding asymptotic elimination of the oscillations in

/_. The effects on l? shown in figure 6(d) are also of interest. The algorithm with ACC reduces the

oscillations on 15' mostly eliminating the first harmonic. The fact that only the second harmonic sub-

sists in 12 and CO (fig. 6(b)) is a direct result of attaining an extremum for the acceleration coincident

with drag minimization. From the plots shown in figures 6(h), the product,/isin (toot) has a nonzero

average without ACC, indicating correlation between both signals. This correlation, as predicted, is

responsible for the optimization offset. The curves with ACC demonstrate, on the other hand, how

ACC asymptotically eliminates this correlation. Figure 6(e) shows the effects of ACC on the altitude

oscillations.

The effects of a lack of an appropriate constraint control are accentuated when higher excitation fre-

quencies are used. Figures 7(a) through 7(h) show simulated results for too = 0.075 and correspond-

ing gain Kai l = 2.4 [ see3/ft]. In particular, figures 7(a) and 7(b) show that, without ACC,

performance may even be degraded (decrease in V, net increase in C o ) with respect to the nonopti-

mized case. This degradation results from a large offset between the optimum and the actual conver-

gence value of the optimizer, as figure 7(c) shows. Notice, nevertheless, in figure 7(c) that, without

ACC, the 5-percent convergence time is approximately equal to 20/0.075 = 266 sec, showing that

the dynamic behavior is still, as theoretically predicted, three times faster than with too --- 0.025.

As stated before, the increase in convergence speed is not apparent when the ACC is adapted simulta-

neously with the optimization. By starting the ACC with pretuned parameters, the effects of ACC

dynamics on the optimization are sensibly reduced. Under these conditions, the predicted dynamic

(from the Design Analysis section) comes closer to the actual results (the bold lines in figs. 7(a) to (c)),

featuring three times faster responses of the surface deflections (compare fig. 7(c) with 6(c)). For this
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experiment, however, in comparing the optimizer that has pretuned ACC with that with zero ACC ini-

tial parameters, we notice that the airspeed improves only slightly within the time horizon shown.

We now make an important distinction between attaining the optimal surface configuration and attain-

ing the maximum speed. In fact, even after the configuration has been optimized, the newly available

excess thrust causes the aircraft to continue to accelerate. Dynamic pressure and Mach number effects

later stop the speed increase. The slow diminution in C D , seen after the optimization, parallels a slow

average diminution in the angle-of-attack speed increase (more speed, more lift, and thus less ct and

CD ) not shown in the figures.

The rest of the plots in figures 7(a) through 7(h) are similar to those in figures 6(a) through 6(h). Com-

paring both sets of figures, we see that the increase in too produced larger h oscillations (fig. 7(e)) and

a stronger correlation between h and Sai I (fig. 7(h)); both effects are responsible for the larger deflec-

tion offset when ACC is not used.

This simulated experiment shows that the proposed approach may improve the optimization conver-

gence speed (through a faster excitation) without degrading the accuracy. Similar significant improve-

ments were obtained with experiments involving symmetric flaps as the decision variable or the

combination stabilator-elevator as the pitch-compensating actuator. In the latter case, the stabilator

was driven by a constant-speed motor with a dead band in its control loop. In spite of these nonlineari-

ties, the algorithm featured a perfect convergence to the optimal stabilator/aileron configuration.

Single-Surface Fuel-Flow Minimization Mode

In the fuel-flow minimization mode, the constraints are the engaged altitude and speed. Excess thrust is

kept constant (at zero) while reducing simultaneously the aerodynamic drag and engine thrust. Similar

to that for the velocity maximization mode, the optimal surface configuration is such that small

changes around it keep the excess thrust almost unchanged (excess-thrust extremum). Because the

thrust T is affected by both PLA and the surface configuration, we assume, for small configuration

changes, that it may be decomposed as T = Tp (PLA) + T_ (Ssurf). For the velocity optimization

mode, this distinction was not needed because PLA was unchanged.

Using a correlation interpretation, a necessary condition for the optimum is that corr{ T 6 - D,Ss} = 0

(as before, 8 s is the small sinusoidal perturbation applied to the actuator chosen as decision variable).

This condition is also sufficient for the unimodal case, which is the typical case in practice for the prob-

lem at hand. Using the fact that Tp (PLA) is a monotone function of PLA, from the velocity equation

of the longitudinal flight motion, equation (11), the optimality condition, is satisfied if simultaneously

corr { 12,/Ss} = 0 (28a)

corr{h, Ss} = 0 (28b)

corr {PLA, 8s} = 0 (28c)
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Foridealaltitudeandvelocityholds (h = 12 = 0 ), the first two conditions (28) are automatically sat-

isfied. As was already discussed, however, an actual practical autopilot implementation may not

totally cancel the oscillations in h and I2. Similarly, as with the velocity optimization case, those con-

ditions are achieved by superimposing a set of (adaptively synthesized) signals on the commands gen-

erated by the autopilot. The resulting PLA and Set commands are thus

PLA = PLA ap + PLA s (29a)

gap + _s (29b)
Set = Vel Vel

As before, the superscripted 's' indicates the synthetic signals. The superscripted 'ap' identifies the

magnitudes generated by the autopilot. The degrees-of-freedom for the constrained optimization are

8surf, PLA s, and 8_1. The magnitude k sel is used to impose condition (28b), as in the velocity optimi-

zation case, by means of the algorithm depicted in figure 5. Two alternatives are left for _sury and
PLA s :

(1) PLA s is used to ensure that corr { l;',Ss}

face (Ssurf) such that corr { PLA, Ss}
PLA as the measured PI.

= 0 while the optimizer searches for the sur-

= 0. This alternative is equivalent to choosing

(2) PLA s is used to impose corr { PLA,_is} = 0, while the optimizer searches for the sur-

face configuration such that corr { 12'fis} = 0. In this case, I;' plays the role of the PI.

The second alternative uses the same PI (f') as the velocity optimization mode uses, and thus, both

modes share the same optimizer. This alternative allows us to design and tune the optimizer for only

one mode, preferably for the simplest one (i.e., the velocity maximization mode), and use the same

design for both modes. Given this attractive characteristic, the second alternative was retained.

The adaptive constraints controller, which is used to ensure the condition corr { PLA,_ s} = 0, is

easily obtained from the diagram of figure C-2 of appendix C by identifying PLA with Yra' u with

PLA s and letting the transfer function of channel C equal 1. The resulting structure corresponds to

the original adaptive noise canceller proposed by Widrow et al. (ref. 12).

Summarizing, the adaptive fuel-flow minimization algorithm with adaptive constraints controller is

given by the set of equations (26a) to (26g) combined with the following:

PLA = PLA ap + PLA s (26h)

PLA s = Pcos (tOot) + 0.sin (tOot) (26i)

P = _tpPLAcos (tOo t) (26j)

Q = _tpPLAsin (tOo t) (26k)
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whereptp: 0 < I_p _ 1. Figure 8 depicts the diagram corresponding to equations (26).

Results of Simulated Experiment

We now consider the results of the simulation tests performed for the fuel-flow minimization mode,

this time using symmetric flaps deflection (instead of ailerons) as the decision variable. The nominal

trim point characteristics at the given flight condition indicate that the optimal symmetric flap deflec-

tion is 8//= 3 °. From the aero data, FCD was esum_ed as FCD = 1.4E - 05 [deg ], and the corre-
• -2 -2 . •

sponding Facc as Fac c = 15.3E- 03 [ft.sec .deg ]. In this expenment, e0o was chosen to equal

0.0975 rad/sec. Similarly as in the aileron optimization case, the excitation amplitude was taken as

A=I °

Choosing the same algorithm design as for the velocity maximization mode, i.e., Gc = 0.1408, we

calculate K// = 1.62 [sec3/ft]. The expected convergence speed of the algorithm is characterized by
the estimated rise-time to the 5-percent band: 20/0.0975 = 205sec. As with the velocity maximiza-

tion mode, the elevator is used to compensate for pitch moment changes. The altitude and the velocity

holds were both activated. The signals synthesized by the ACC were added to those generated by the

autopilot.

As discussed before, ACC for the fuel-flow minimization has two parts. The part common to the veloc-

ity maximization mode, represented in figure 5, is called here ACC 1. The other part, specific for the

fuel-flow minimization mode, is called ACC2 and is described by equations (26h) to (26k). Figure 9(a)

shows a significant difference in the averages of the PLA (only deviations with respect to the trim

value of PLA are indicated in the figure) between the cases with and without ACC.

The differenceintheaverageisalsonoticeablebetween thecasesACC Ialoneand ACC I+ACC2.

Note,particularly,fortheACCI+ACC2 case,how thefirstharmonicsinPLA and CD (fig.9(b))are

totallyeliminated.Thisfact,togetherwiththevisiblepresenceofthesecondharmonics,signalsthe

convergenceoftheaverageflapdeflectiontotheoptimum value.Thisresultiscorroboratedby

figure9(c),which shows thatonlytheACCI+ACC2 optiontendstothea pr/on estimatedoptimum

(8// = 3°),althoughwithACCI only,theconvergenceerrorisstillconsiderablysmallerthanwith-

outACC. As expected,theACC leliminatestheoscillationsin/_(fig.9(d)).Thisresultisinagreement

PLA': P.sin(_ot ) + Q.$1n(O_ot)

P co,( ot)
÷

°i@.t)

ACC
95O094

Figure: 8. A6aptive constraints controller: PLA s signal synthesizer.
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with those obtained for the velocity maximization mode. No further improvement is obtained in this

sense with ACC2.

Figures 9(e) and 9(f) show the positive effects of Ace on the regulation of, respectively, velocity

and altitude. Figures 9(d) and 9(h) demonstrate the clear-cut effect of ACC in compensating for the

remnant oscillations in potential and kinetic energies. Finally, figure 9(g) shows the time evolution

for the adaptive parameters, for ACCI and ACC2. The adaptation gains for algorithms ACC 1 and

ACC2 were arbitrarily made 10 times higher than the one chosen for velocity maximization, i.e.,

I.te =ktp = 0.01. The intention was to show, on one hand, what effects these gains have on the adap-
tation speed (notice the time-scale change between figs. 9 and 6 through 7) and, on the other hand,

that the choice of their value is not critical for design purposes.

Multisurface Optimization

In this section, we use the algorithm developed in previous sections to optimize, simultaneously, more

than one decision variable. The decision variables considered are symmetric ailerons 8ai I and sym-

metric flaps 8ft. As before, the elevator deflection and the PLA are dependent variables used to en-
sure the optimization constraints. Figure 10 shows the general structure of the multidecision variable

optimization.

Two frequencies, toail = 0.075 and (of/ = 0.0975, are used for the independent excitation signals

5sl and 5s2' respectively, added to the command signals _ail and 8ft. The ratio tofl/toail = 1.3 is

chosen to avoid possible low harmonic resonances. Each optimizer loop has its corresponding set of

ACC1 and ACC2 modules. Each loop is designed independently, following the guidelines presented
3

in the previous sections. The corresponding adaptation gains are Kai I = 2.4 [st /ft] and Kfl =

1.62 [sec3/fi]. The gains forACCs in both loops are selected as/.t e = I.tp = 0.005.

Velocity Optimization Mode: Results of Simulation Experiment

Figure 11 shows the results for the multisurface velocity optimization mode. Two cases are consid-

ered: (1) with pretuning of ACC parameters (i.e., the initial condition of adaptive ACC parameters set

Figure 10. Multivariable optimizer.

950103
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With
pretuning

.... Without
pretuning

equal to the final values of a previous optimization), _/]ail and _ail for the aileron loop and _/fl, and

_fl for the flap loop; (2) without pretuning of the ACC parameters, (i.e., all initial conditions are set

equal to zero and the ACC parameters are adapted simultaneously with the optimization).

As can be seen from figures 1 l(a) and 1 l(b), the difference between both cases in the airspeed and total

C D coefficient is almost unnoticeable. Compared with the single-surface optimization cases, a higher

final speed and lower C D coefficients are attained in the multivariable case. Figures 1l(c) and 1 lid)

show the time history of the surface deflections. The deflections appear to converge to approximately

the same values as those in the single-surface optimization case, suggesting only a fight coupling

among the optimization variables. With pretuned ACC parameters, the surface deflections show better

transient behavior. Thus, a smoother transient on the magnitudes is depicted in figures 11(e) to ll(g).

The same figures show, consistent with the algorithm's expected asymptotic behavior, that, indepen-

dently of the initial condition, the time history of both cases tends to converge toward each other.

Finally, figures 1 l(h), and 110) show the time history of the ACC parameters with and without pretun-

ing.

Fuel-Flow Optimization Mode: Results of Simulation Experiment

Figure 12 shows the corresponding results for this mode. Figures 12(a) and 12(b) show a PLA reduc-

tion along with a reduction in the total C D coefficient As expected, the transient behavior is improved

when the ACC parameters are pretuned. This improvement is also reflected in a sensible reduction

of the excursions in the decision variables _)ail' and 8f/ (figs. 12(c) and 12(d)) and an improved tran-

sient behavior for the variables shown in figures 12(e) through 12(h). Again, only the transient behav-

ior is affected with pretuning, while, asymptotically, the pretuned and nonpretuned cases are

indistinguishable.

Figures 12(i) to 12(1) show the adaptive parameters 2f4, _, _b, and Q. Notice how the learning period

of these constants approximately coincides with the bad transient period in figures 12(e) through (h).

This fact justifies the use of prelearned values of the/f/,/_', P, and Q stored in memory as future ini-

tial conditions for the optimization algorithm. Those values, taken from a previous optimization (or

resulting from a purely in-flight identification trial without optimization) at the given flight condition,

are considered the best available characterizing the actual aircraft and flight condition.
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Concluding Remarks

An adaptive perturbational technique for in-flight performance optimization of a transport aircraft is

proposed and demonstrated for a simulated B-720 aircraft. The technique is simple and easy to design

and implement in an onboard computer. When applied to the combined system autopilot-aircraft as an

external loop, the technique requires no a priori knowledge of the autopilot design. The aircraft may be

optimized at its actual flight condition, characterized by altitude, speed, weight, center-of-gravity posi-

tion, actual engine characteristics, and aircraft age.

The algorithm is robust with respect to any apriori information used for its design as well as changing

flight conditions. Noise, external disturbances (such as those coming from changing atmospheric con-

ditions), and measurement biases are naturally rejected by the algorithm whose working principle is

based on online cross-correlation measurements between decision variables and a performance index.

The same index (i.e., the horizontal acceleration) is used for the speed-maximization mode and for

fuel-flow minimization mode; this is because both modes are particular cases of an excess-thrust maxi-

mization problem. Both modes share a major part of the algorithm. Moreover, the speed-maximization

mode algorithm is a submodule of the fuel-flow minimization mode. This fact adds modularity and

alternative ways to check the same algorithm.

The effects of the probing disturbances on the optimization constraints are compensated with an adap-

tive feed-forward loop called an adaptive constraints controller (ACC). The ACC allows for a faster

optimization than was possible previously by using the autopilot as the only constraint controller

device. More importantly, it prevents offsets with respect to the optimal decision variables. With the

ACC complementing the autopilot's constraints-control capabilities, the optimizer takes full advantage

of the autopilot's action, but without requiring any information on the autopilot design.

A straightforward extension of the single-variable design was used for multivariable optimization. The

multisurface optimization problem that was simulated seems to be somewhat decoupled. This fact

favors the convergence and dynamic properties of the steepest-descent type of algorithm used. Were

the problem at hand more coupled, an upgrade of the present version to a second-order one, such as a

quasi-Newton method, would help the convergence speed in the multivariable optimization case. More

research is necessary to ascertain whether this path is necessary, for instance, in an integrated airframe

propulsion optimization context. The good results obtained so far for the multivariable case encourage

a pursuit of that avenue with the proposed algorithm.

The theory developed is sound, and the resulting algorithm exhibits good dynamic and convergence

properties. Moreover, the simulation results show the algorithm's potential for handling complex mul-

tivariable performance optimization problems. The algorithm is a suitable candidate for in-flight inte-

grated airframe-engine optimization. However, to apply the proposed approach requires a deter-

mination of small sensitivity levels under realistic cruise flight conditions of transport aircraft. The

continued development of this technology requires algorithm evaluation in a high-fidelity simulation

(similar to those used for FAA-certified pilot training), followed by a flight test program validation of

the technology. A successful flight demonstration of the technology is required before potential users

and beneficiaries will commit resources to implement the technology in new aircraft designs or retrofit

programs.
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Appendix A

Sample Calculation of an Envelope Equivalent Transfer Function

As a sample calculation of an envelope equivalent transfer function, the calculations corresponding to

the first-order system are

K
Gfs) = _ (AI)

s+p

The parameters for the envelope equivalent system are calculated as

= io(j%) t = r
p(1 +e2o /pX)l/2

(A2)

_(03) = -arctan (03/p) _ "c -
3q_ (03) I3tO to=to

0

1

p(1 +0320 /p2)

(A3)

This gives the following equivalent transfer function:

G e (s) =

1/2
K(1 +4 /p2)

s+p(1 +4 /p2)
(A4)
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Appendix B

Optimization Offset Caused by Constraints Violations

To show equation (17a), we start from the equations of the longitudinal flight motion:

ml)' = Tcoso_- D-mgsiny (B1)

/i = Vsiny (I]2)

As seen in the discussion of property P3 (eq. (7)), if 8 s is the periodic excitation signal (i.e., 8 s =

A sint0ot ), the necessary condition for convergence of the optimizer algorithm in the velocity mode is

corr { V, 8s} = 0 (B3)

When the constraint is satisfied,/_ = 0 from (BI) we have the desired result, i.e.,

corr { Tcos (ct) - D, 8s]. = 0 (B4)

However, if the constraint is not satisfied, instead of equation (B4) we have the condition

corr { f',Ss} = 0

corr {Tcos (a) - D,Ss} = corr {mg h/V,Ss}

that we approximate by (see footnote on p. 6)

= con" {Ep/V, 8 s }
(B5)

corr (D, 8s} =_.-corr.EJv, 8 s (B6)

On the other hand, assuming for D the expression:

F D
D = D O + -_- (8- fi*) 2 (BT)

with F D := qSFcD, and following a development similar to that used in the Design Analysis section

to obtain equation (6), the left-hand side of (B6) turns into

corr {8 s, D} AeFD
= --T-- (8- 5*) (B8)

Equations (17) are thus obtained substituting (B8) into (B6).
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Now,usingtheapproximation valid for almost leveled flight: sin (_0 = Y, between (B2) and (B6) we

have

8**-8*_-- 2mgcorr {y, 8s}

FD A_

(B9)

Besides, by definition of G 7 (Jtoo)' the coo -component of y (t) is I% Utoo)IAsin (too t + tp_,(Jtoo) ) '

which, correlated with k s (t) = Asin (COot), gives

5 *_- 5" = -_Dg [G_t (Jtoo) Ic°rr { sin (tOot), sin (tOo t + q)_,(JtOo)) }
(B10)

From (B 10) follows equation (18) using a standard result of correlations between sinusoidal signals

(see expression (5) in the main text).
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Appendix C

Adaptive Rejection of a Sinusoidal Disturbance

The problem of a disturbance rejection from a measured physical magnitude of interest is posed as fol-

lows. In figure C-l, y is the useful signal perturbed by the disturbance d. From the available measure-

ment Ym' it is desired to remove the effects of d and thus recover the original signal y. For this ob-

jective, an independent input u, going through the channel C, is available. C is assumed to be linear

but with unknown transfer function G(s). The signal d is a sinusoidal signal with known frequency too

but unknown phase and amplitude. It is assumed that too does not lie in the spectrum ofy. The objec-

tive is to design the adaptive signal synthesizer block that generates the required signal u so that d has

the appropriate phase and magnitude to cancel out the effects ofd on Ym" Using notation introduced in
the main text we write

u (t) = _cos (too t) +/Vsin (toot) = _l"rl (Cla)

d(t) = Acos (tOot) + Bsin (tOot) := Dr_ (Clb)

(t) = IG (JtOo) ] (Mcos (tOo t + V) + _/sin (tOo t + V) ) , (Clc)

Equation (Clc) can also be written in the more compact form:

T
_t(t) = JG(Jtoo) l(l Rvn(t) = IG(JtOo) I(R_v(J)T1](t), (C2)

where

Rv := [cos(V)-sin(v)]
Lsin (V) cos (V)J

(C3)

y(t)

u(t) _1 c I

/
Adaptive signal ]synthesizer

[
Figure C-1.

d(t)

+ ++_^ Ymlt)

Id(t)

950125

Adaptive disturbance rejection scheme.
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isthe_F-rotationmatrixandR_V its inverse (or transpose given its orthogonality). We now define:

_ 0 Te := d+d = (D+IG(jc%)IR _/O(t))Trl(t) := (t)13(t) (C4)

O(t) := D+ IG(jCOo)lR_vO(t) (C5)

We are looking for 0 (t) such that 0 (t) _ 0 (and consequently e (t) _ 0). Accordingly, we first

define the matrix Q and the function L as

1

L<,)=  oT<,)Qe 0, Q= ic<J 0o)lR (C6)

For IG (jco o) I_ o, Q > o, if and only if W _ (-lt/2,x/2) (rotation less that 90 °) and L(t) is thus a

strictly positive function of time. From (C5) and (C6) we now calculate

l.(t) = O(t) TQO(t) = oT_(t) (C7)

and letting

A

u (t) = -l.terl(t) (C8)

with Is a positive constant we have

L (t) = -txe 2 < 0 (C9)

Because rl is, by definition, a bounded continuous function, from (C3), (C6), and (C9) we necessarily

have e _ 0 and 0 --_ 0 _ 0 (t) --_ _1G(jOo) 1-1RvD.

For I_/l -- n/2, small changes in W may prevent Q to be Q > O. This fact can make the adaptation algo-

rithm (C la), (C8) marginally stable, or cause a very slow convergence. If an estimate Wo of _/is avail-

able, (C8) may be substituted by

U (t) = -IxeR_/orl (t) (CIO)

which, it can be shown, corresponds to Q = ( 1/IG (JCOo)l) R¥o_ v" For Wo = W, Q > 0, ensuring
stability and faster convergence.

Because e (t) is not directly measurable, in practice we use Yra (t) instead of e (t) in (C8) or (C10).

In fact, we show that both signals produce asymptotically the same result. Consider the algorithm:

l t t t

O=-_t_Ymrl(X)dx=-tx_yrl(x)dx-M.;erl('c)dx , _0_ la;erl ('O dx

0 0 0 0

(Cll)
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where the last limit results from the assumption that coo is not in the spectrum ofy and the well-

known property of orthogonality of sinusoids of different frequencies.

The adaptation gain _t is somewhat arbitrary as long as it remains positive. In practice, however, it is

chosen small to ensure a smooth evolution of the adapted parameters. Given the averaging effects

shown in (C11), a small g also helps to reduce the effects of noise in the measure of Yra"

The block diagram of the algorithm (Cla), (C8), with e substituted by Yra' is displayed in figure C-2.

d(t)

ylt) + _ Ym(t)

u(t) >I C

Adaptive algorithm

Figure C--2. Adaptive disturbance rejection algorithm.
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