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Abstract

This survey paper assesses the status of compressible Euler and Navier-Stokes solvers on unstruc-

tured grids. Different spatial and temporal discretization options for steady and unsteady flows are

discussed. The integration of these components into an overall framework to solve practical problems

is addressed. Issues such as grid adaptation, higher order methods, hybrid discretizations and parallel

computing are briefly discussed. Finally, some outstanding issues and future research directions are

presented.
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1 Introduction

Computational Fluid Dynamics (CFD) has evolved rapidly as a discipline and is increasingly being used

to complement the wind tunnel, especially in preliminary design [50]. Based largely on the mathemat-

ical foundations laid among others by Lax [88] and Godunov [52], the field has come into its own in

the last decade. Great advances have been made in the areas of spatial discretization, grid generation

and solution strategies. Tremendous advances in computer architecture and networking speeds have

contributed to the field significantly as well. By the mid 80's, many different groups around the world

were able to compute three-dimensional flows over simple realistic aerodynamic configurations. The

grids employed were of the body-fitted or structured grid type. One-dimensional models were extended

to deal with multiple dimensions in a natural way because of the structure by using the so-called gener-

alized coordinates [161]. However, the task of generating structured grids about complex configurations

presented a serious challenge. The widely-used multi-block structured grid approach solves this problem

by tessellating the domain between the body and the far-field into simple logically rectangular blocks,

so that structured grids can be generated easily within each block [173, 81]. The automation of the

blocking and the grid generation process are difficult tasks that are continually being refined. Another

powerful approach uses overlapping or chimera grids [19, 110]. Here, structured grids generated about

the different components, are allowed to overlap. Automation of blocking, grid generation and the

preprocessing required for deriving the interpolation operators are continually being improved.

The desire to compute flows over complex configurations also spawned a surge of activity in the

area of unstructured grids. The term "unstructured grids" will be used primarily in this paper to mean

grids composed of simplices, which are triangles in two dimensions and tetrahedra in three dimensions.

Unstructured grids have always been used in finite element circles, but have become popular in the

finite volume community only fairly recently. They provide fle.,dbility for tessellating about complex

geometries and for adapting to flow features, such as shocks and boundary layers. An underlying

premise is that unstructured grid generation is far more automatable than are the tasks associated with

multi-block structured grid generation.

It should be mentioned that the flow solver only constitutes a part of the overall solution method-

ology. Other tasks, such as grid generation, interfacing with geometry packages, visualization and

post-processing are equally important, and demand considerable skills and resources. The outline of

this survey paper on unstructured grid flow solvers is as follows. Section 2 presents the governing

equations in integral form. Section 3 reviews some popular finite volume spatial discretization schemes.

Section 4 reviews the finite element approach for spatial discretization. Section 5 reviews the turbulence

models in vogue for unstructured grid computations. Section 6 presents the various alternatives avail-

able for time-discretization for steady and unsteady problems. Section 7"addresses the important topic

of grid adaptation. Sections 8 and 9 examine higher order accurate schemes and hybrid discretizations.

Section 10 briefly examines parallel computing issues. The paper concludes with a listing of issues to be

resolved and some future research directions. In addition to the papers cited in this article, the reader is

encouraged to read, especially regarding spatial discretization, the AGARD Report [1] on unstructured

grid methods for advection dominated flows.

2 Governing equations

The equations governing compressible fluid flow in integral form for a control volume V(I) with boundary

8(t) are given by

0 Iv Wdv+_ [F(I,I,n,s)-G(ll,';VIl_n)]da=O, (1)
0-7 (0 (t)

where

= [p,pv, p ]r



a(lt, vtt; n) = [0, t, - q.n]r,

t = n.T

= [(-f + 0)7+

In the formulas given above p is the density, V is the velocity vector with Cartesian components l,}, e is

the specific total energy, n is the outward unit normal vector of the boundary S(t) and s is the velocity

vector of the boundary. Also, p is the molecular viscosity, A is the bulk viscosity_ related to p by Stokes'

hypothesis, )_ = -2/3/L, _ is the identity tensor, T is the stress tensor and D is the deformation tensor

given by
1 .

= + (2)

where l._,j denotes the partial derivative of the ith component of V with respect to the Cartesian

coordinate x j, i.e. l'_,j = 0_--7"°v_(9 stands for the divergence of V given by. l,]-,{ with the usual summation

convention, q is the heat flux given by Fourier's law

q = -I(VT, (3)

where K is the thermal conductivity of the fluid and T is the temperature.

augmented by the equation of state, which for a perfect gas is given by

p = ("r- 1)(pe- 2PlVl

These equations are

(4)

Eqn. (1) represents the conservation laws for the mass, momentum (the Navier-Stokes equations) and

energy. It. holds for any volume and in particular, holds for a specific volume associated with each grid

point, termed the control volume.

3 Finite volume spatial discretization

It is assumed that a grid about the geometry of interest has been generated by some suitable method.

The various grid generation techniques in use are reviewed in the survey papers by Thompson and

Weatherill [166] and Mavriplis [106]. On a given grid, one has at least two choices as to where to locate

the variables, giving rise to the cell-vertex and the ceil-centered approaches. In the cell-vertex approach,
the variables are stored at the vertices of the grid, whereas in the cell-centered approach they are stored

at the centroids of the cells. There is yet another approach that stores only the averages associated

with control volumes. If the scheme possesses second order spatial accuracy or less, this approach is no

different than a cell-centered approach; the higher order scheme is covered briefly in Section 8.

The concept of using arbitrary control volumes to solve numerically the conservation laws was es-

tablished by the late 70"s, at least in theory [89]. Jameson and Mavriplis [73] reported some of the

earliest results from solving the two-dinlensionat Euler equations on regular triangular grids that were

obtained by subdividing quadrilateral grids. In a cell-centered setting, they extended much of what was

established for finite volume schemes on structured grids [74, 67] to triangular grids. This included the

constructions of central-difference-like approximation for the convective terms and a blend of dissipative

terms to suppress odd-even decoupling and to capture discontinuities, and the incorporation of multi-

grid ideas. Solutions and convergence rates of comparable quality to structured grids were obtained.

Second order accuracy was demonstrated by using a sequence of uniform grids. In 1986, Jameson et

al. [72] presented their paper dealing with inviscid transonic flow over a complete aircraft. The pa-

per's contributions included grid generation for complex geometries using the Delaunay triangulation

approach and the development of a cell-vertex flow solver. The control volume for each vertex in the

tetrahedral grid was taken to be the union of all tetrahedra sharing that vertex. They also showed



the correspondencebetweenthis and a Galerkinfinite elementprocedurewith piecewise-linearbasis
functions. The nondissipativeapproximationwasaugmentedwith dissipativeterms. In addition, the
paperalsopresenteda first discussionona schemewith positivecoefficientsfor triangles,althoughthe
proposedschemewasonly first orderaccurate.Figure1 showsthe surfaceMachcontoursfor inviscid
transonicflowovera Boeing747-200takenfrom the paperof Jamesonet al. [72].The flow conditions

are M_ = 0.8 and a = 2.73 °. The mesh used for the calculation contained 12,038 nodes (57914 tetra-

hedra) and the calculation took about 25 minutes on a Cray XMP computer. Since this seminal effort,

tremendous advances have been made in grid generation and vectorization of the flow solver and are

outlined in the sequel [71].

In 1973, Boris and Book [25] introduced the Flux Corrected Transport (FCT) scheme that converted

a first order accurate monotone scheme to a higher order scheme by adding limited amounts of anti-

diffusive flux to prevent spurious oscillations. Harten [54] developed a mathematical fornmlation that

gave rise to the Total Variation Diminishing (TVD) schemes which also added limited amounts of anti-

diffusive fluxes to a first order scheme to achieve monotonicity. Van Leer [169] independently devised the

concept of limiting when designing monotonicity preserving schemes for conservation laws. He devised

the Monotonic Upstream-centered Scheme for Conservation Laws (MUSCL) schemes which relied on a

piecewise-polynomial reconstruction procedure that enforced monotonicity principles by using nonlinear

functions called limiters. The jumps at the interfaces were resolved by using a Riemann solver, much like

Godunov's scheme. Since the Riemann problem for the Euler equations requires a.n iterative procedure

and is expensive, the quest was on for approximate Riemann solvers. Roe [142, 143] and Osher [120]

constructed two such schemes that proved to be particularly good in concert with the MUSCL approach

on structured grids. For an excellent discussion on the development of upwind schemes, see the text by

Leveque [91]. By the mid 80's, MUSCL schemes were being used by a number of groups to compute

aerodynamic flows on structured grids [164, 160]. These schemes were gradually being extended to deal

with unstructured grids.

Desideri and Dervieux [40] devised cell-vertex finite volume schemes for unstructured grids using

MUSCL ideas. Given pointwise values at the cell vertices of a triangulation, they employed a recon-

struction procedure that made use of gradients in neighboring triangles. The flux was constructed using

Osher's appro_mate Riemann solver. Limiters were used in a one-dimensional fashion but a multi-

dimensional monotonicity principle was not satisfied. Nevertheless, respectable results were obtained

for many inviscid computations. L6hner et al. [95] tested a FEM-FCT scheme for Euler and Navier-

Stokes equations. Fezoui and StouffIet [45] proposed and tested a class of implicit upwind schemes

that utilized various upwind approximations. Whitaker et a.1. [185] constructed a similar scheme using

Roe's flux-difference splitting scheme and obtained results for many transonic and supersonic flows.

Venkatakrishnan and Barth [176] constructed an upwind scheme for cell-centered triangular grids that

also employed MUSCL ideas as did Batina [16], Knight [84] and Frink [47]. However, none of these

efforts really guaranteed the absence of oscillations in the multi-dimensional case.

Barth and Jespersen [15] made a radical departure from one-dimensional thinking for satisfying

monotonicity principles. They enunciated a monotonicity principle in nmltiple dimensions similar to

that employed by Van Leer [169] and Spekreijse for structured grids [160], namely that the reconstructed

distribution in the control volume be bounded everywhere by the values of the neighbors (including

the vertex representing the control volume) and satisfied the principle by constructing a truly multi-

dimensional limiter. They employed Roe's approximate Riemann solver for the evolution phase. As

an ultimate test, they computed oscillation-free solutions for transonic flow over an airfoil on a highly

irregular mesh. They obtained solutions of comparable accuracy with both cell-centered and cell-vertex

schemes. This MUSCL approach has been adopted since by other researchers [5, 7, 51]. The multi-

dimensional limiter in [15] may be thought of as a generalization of the min-mod limiter and as such,

leads to convergence difficulties. Venkatakrishnan [174] has analyzed this problem and has proposed

modifications that ameliorate the situation at the expense of monotonicity. Aftosmis et al. [3] have

found that the modifications proposed in [174] significantly improve the convergence as well as solution



accuracyin testproblems.Shu[153]hasproposedthe TotalVariationBounded(TVB) schemeswhich
weakenthe TVD property by allowingfor small-scaleoscillationsalthoughthe motivationhereis to
avoidclippingsmoothextrema. Theeffectof TVB modificationonconvergencehasnot beenstudied
yet.

Frink et al. [47,49] developed an upwind cell-centered three-dimensional flow solver. They employed

a weighted averaging procedure that interpolated variables from the centers of tetrahedra to the vertices
and used these vertex values to compute the gradients within each tetrahedron. These gradients were

used to interpolate the variables to the centers of the faces of the tetrahedra. This was followed by the

use of Roe's approximate Riemann solver. The reconstruction procedure was linear and therefore, not

monotonicity preserving. Nevertheless, the averaging procedure seemed to introduce enough dissipation

that good transonic flow solutions were obtained without using limiters. The reconstruction procedure
has since been modified to be linearity-preserving [48] based on the work of Holmes and Connell [61].

Laminar viscous capability has been been added to this code. Figure 2a depicts the surface grid and

"oil flow" pattern for laminar flow over a delta wing at Mcc = 0.3, a = 20.5 °, ReL = 0.9 × 10 6.

The flow has been computed by Frink using the methodology described in [48]. The grid containing

730,454 tetrahedral cells was generated by the Advancing-Layers Method [132] which produces thin-

layer tetrahedral grids suitable for computing viscous flows. Evidence of primary, secondary and tertiary

vortices may be seen in Figure 2a. Figure 2b shows the pressure profiles at four chord stations and the

comparisons with the results from the structured grid code CFL3D [164] and the experimental data of

Hummel [66].

Barth [11, 12] presented extensions of the schemes of [15] to three-dimensional inviscid and viscous

flow computations. The main contributions of these papers included the discretization of the viscous

terms using a finite element procedure and the use of edge-based data structures for discretizing the

inviscid and viscous terms. In addition, least-squares and data-weighted procedures for the construction

of gradients were outlined. Mavriplis [102, 105, 101] developed an explicit vertex-based finite element

multigrid scheme for the two- and three-dimensional Euler and Navier-Stokes equations. Ite also pre-

sented edge-based data structures. In [11,105, 98, 97] a case is made for using cell-vertex approximations

and edge-based data structures in three dimensions by examining the computational complexity and

storage.
The issue of cell-vertex vs cell-centered approximations is still an open one, particularly in three

dimensions. In two dimensions the ratio of the number of cells to the number of vertices is 2 whereas

in three dimensions this ratio could be arbitrarily large, although it is typically between 5 and 6 for

nice tetra hedralizations. In the case of tetrahedral grids, the flux computations in a cell-vertex scheme

can be cast as loops over edges whereas in a cell-centered scheme they are loops over triangular faces.

The ratio of the number of faces to the number of edges in a typical tetrahedral grid is roughly 2.

Therefore, it is true, as argued in [11,105] that on a given grid, the cell-centered approximation incurs

considerably more computational effort and memory requirements. However, there is some evidence

that on a given grid, the solution quality of a cell-centered scheme is superior to that of a cell-vertex

scheme [134]. This is more than likely due to the fact that for triangular/tetrahedral grids the control
volumes in a cell-centered scheme are smMler than those in a cell-vertex scheme. It is not clear whether

the cell-vertex scheme requires a grid that has as many vertices as the number of tetrahedra employed

by a cell-centered scheme to achieve the same level of accuracy. If this is the case, the cell-centered

scheme will prevail because it requires much smaller grids to be generated. However, it appears that a
cell-vertex scheme is better suited to computing the viscous fluxes, especially when the triangulations

become highly irregular. As discussed later in this section, the viscous terms in a cell-vertex scheme

are typically discretized using a Galerkin finite element approach, whereas a finite-volume viewpoint

is adopted in a cell-centered scheme. It has been shown [11, 90] that a finite element discretization

of a diffusion operator with linear basis functions obeys the discrete maximum principle if a Delaunay

triangulation is used. This result is true only in two dimensions and does not hold in three dimensions.
On the other hand, the finite volume discretization of the diffusion operator in a cell-centered setting



doesnot guaranteea discretemaximumprinciple in twoor threedimensions.It is interestingto note
that the centroidalcontrolvolumesthat areusedwith cell-vertexschemesarenot necessarilyconvex
and can assume rather odd shapes, especially in the case of highly stretched grids. One alternative is

to use the Voronoi cells, which are guaranteed to be convex [86], but this approach requires care at the

boundaries.

Significant developments have also taken place in the area of positive schemes. These require that

the semi-discrete scheme be expressible in the form

dui
(5)

jE..t_

where the Cij's are non-negative, and .k_ denotes the set of neighbors of i. As observed in [72], if the

Cij's are constants, the scheme is linear and hence only first order accurate. Higher order versions

of such schemes have been developed [42, 33, 69, 70]. These may be regarded as generalizations of

TVD schemes to conservation laws in multi-dimensions. Durlofsky et al. [42] have developed a cell-

centered scheme that makes use of gradients in auxiliary triangles similar to the scheme of [176], but

incorporates a multi-dimensional limiter to prevent oscillations. Both the schemes have the drawback

of requiring nice triangulations, since the au_liary gradients could be ill-defined on highly nonuniform

meshes. Jameson [69] has developed a theory for Local Extremum Diminishing (LED) and Essentially

Local Extremum Diminishing (ELED) schemes leading to Symmetric and Upstream Limited Positive

(SLIP and USLIP) schemes. He has also presented an analysis for schemes to resolve shocks with one

interior point [70]. A simple scheme that meets the conditions is termed a Convective Upwind and Split

Pressure (CUSP) scheme, which is closely related to the AUSM scheme of Steffen and Liou [92]. The
schemes have been tested on structured grids for inviscid and viscous flows [162].

A different avenue to realizing upwinding on unstructured grids is provided by the fluctuation-

splitting schemes [39, 121]. In multi-dimensions, the weak link in the MUSCL formulation is the use of

a directionally-split Riemann solver. This approach is routinely adopted, but can misinterpret features

not aligned with the grid. To overcome this problem, various multi-dimensional Riemann solvers have

been proposed in the literature [38, 125, 148, 146], but have not gained widespread acceptance. Rather

than adopt the approach of reconstruction followed by an approximate Riemann solver to bring in

the upwinding, fluctuation-splitting schemes consider the average time evolution of a complete cell (a

triangle or a tetrahedron) with the unknowns located at its vertices, and then update the values at

the vertices by the effect of linear wave solutions evolving the piecewise linear data over a cell. If the

distribution formulas are unbiased, this leads to the well-known Ni's scheme [i19], a centered scheme

which requires the addition of dissipative terms. Several uwpind fluctuation-splitting schemes for scalar

advection equation have been developed; these are compared in [121]. Extension of fluctuation-splitting

schemes to systems of equations relies on the decomposition of flux divergence into scalar waves. The

decomposition is not unique, and several strategies such as characteristic decomposition [38] and simple

wave models [144, 125] have been investigated. Some of the advantages of the fluctuation-splitting

approach are that they result in compact stencils and that they do not use ad-hoc dimensionally-split

Riemann solvers. Some of the disadvantages include the fact that the scheme is only second order

accurate at steady state, and that the)' bind the user to using a decomposition technique. Recently, a

positive linearity-preserving fluctuation-splitting scheme has been constructed for the multi-dimensional

scalar advection equation using limiters [155]. It differs from the other approaches in that a purely

algebraic (not geometric) viewpoint is adopted. This approach has enabled Sidilkover [154] to devise a

fluctuation-splitting scheme for the Euler equations that may be viewed as a genuine multi-dimensional

extension of Roe's scheme without having to resort to decomposition into scMar waves. A unique

property of this scheme is that a nonlinear Gauss Seidel procedure can be used as a relaxation scheme.

In finite volume schemes, a spatial (possibly monotonicity-preserving) approximation for the inviscid

terms is combined with a centered approximation for the viscous fluxes. A basis for this "operator-

splitting" approach is furnished by Roe[145] who showed by means of elegant analysis in one dimension



how a monotonicity-preservingdiscretizationfor the inviscidterms when-combinedwith a centered
approximationfor the viscoustermssuppressesspuriousmodesandalsoyieldsanonoscillatorysolution
for all cell Reynoldsnumbers.On unstructuredgrids, theviscousfluxesarediscretizedby usingeither
finite volumeor finite elementapproaches.In the case of cell-centered discretizations Frink et al. [48]

compute the first, derivatives at the vertices of the triangulation, which are then averaged to obtain the
viscous fluxes at the faces. In the case of cell-vertex schemes, the viscous terms are usually derived by

adopting a Galerkin finite element approach [147, 11,101], although there is an equivalent finite volume

interpretation. This fornmlation results in a compact stencil involving only the nearest neighbors, and

also exactly reproduces the gradient of a linear function. A simpler formulation has been proposed in

[98]. Here, the viscous fluxes are computed by averaging the cell-vertex gradients, which are available

from the reconstruction procedure for the inviscid terms. However, this method results in a larger

stencil for the viscous terms compared to the finite element discretiza.tion and could be more diffusive.

4 Finite element discretizations

Finite element method (FEM) merits a separate discussion since its evolution in CFD has taken place in

parallel with finite volume schemes. The rigorous treatment adopted in FEM has important implications

for global error estimation and grid adaptation. Many researchers have shown the equivalence between

finite volume and finite element approaches when piecewise-linear approximations are employed for the

solution vector and the fluxes [147, 72, 11, 150].

The most powerful method in finite elements is the Galerkin method. Here, the solution is first

expanded in a set of basis functions and the residual is made orthogonal to a set of test functions. When
the basis and the test functions are the same, the method is termed a Galerkin method; otherwise it

is called a Petrov-Galerkin method. The standard Galerkin method leads to a centered scheme and is

unconditionally unstable for hyperbolic problems when combined with forward Euler discretization in

time. Therefore, artificial viscosity has to be added in some form to stabilize the procedure.

In contrast, with the finite volume methods, finite element, practitioners have always preferred cell-

vertex schemes since the global function is usually expressed as a summation of trial functions multiphed

by the values at the vertices. These trial functions are typically assumed to be 1 at a vertex and zero at

all other vertices. Bristeau et al. [28] computed many low Reynolds number compressible flows using a

finite element method. Angrand and Dervieux [8] investigated several first and second order accurate

explicit schemes. They added Lapidus-type artificM viscosity to a. Galerkin method. Donea [41] derived

the important Taylor-Galerkin family of schemes for the linear advection equation. Adopting an FEM

approach, he showed how a Galerkin scheme (a centered scheme) could be stabilized by using a Taylor-

series expansion for the time derivative 0_ sinfilar to the procedure used to derive the Lax-Wendroff,-57,
scheme. He demonstrated that the resulting schemes had good phase error and dissipation properties

and that they couht be easily extended to multi-dimensions. L6hner et al. [96] developed and tested a

two-step Taylor-Galerkin finite element method for the solution of the Euler equations. Since the use

of artificial viscosity spread the discontinuities over several cells, they also employed an adaptive grid

algorithm using local refinement.
While there are finite difference/volume equivalents to most of the finite element techniques des-

cribed in the previous paragraph, a very important class of schemes has been derived in the finite element

community that has no obvious counterpart in the finite difference/volume approach. Included in this

class are the Strea.mwise Upwind Petrov Galerkin (SUPG) or the Streamwise Diffusion (SD), and the

Galerkin Least Squares methods. SUPG, devised originally by Hughes and Brooks [63] for the steady

scalar advection-diffusion equation, and Galerkin least squares [64] methods have subsequently been ex-

tended to deal with the compressible and incompressible Navier-Stokes equations [62]. To the Galerkin

discretization, they add terms proportional to the residual (unsteady residual for time-dependent prob-

lems) to introduce dissipation. Unlike conventional artificial viscosity, this form of artificial viscosity

does not compromise the order of accuracy of the scheme since the exact solution yields zero dissipation.



Tile globalerror ill L2 norm can been shown to vary as h p+1/2 for the advection-dominated case and as

h p+I for the diffusion-dominated case, where p is the degree of piecewise-polynomial basis function [62].

Another method that has been extensively analyzed is the discontinuous Galerkin method [77, 33, 22].

Johnson et al. [78] have analyzed the SUPG scheme and have extended it to deal with time-dependent

problems by adopting a discontinuous Galerkin procedure in time. A review and analysis of these and

other finite element methods may be found in the text by Johnson [76]. All these methods are linear and

are not suitable for capturing discontinuities. Hughes and Mallet [65] have proposed a shock-capturing

operator that locally reduces the order of accuracy near discontinuities. Three-dimensional viscous flow

over the canopy of a Hermes computed by Chalot et al. [32] is presented in Figures 3(a-b). The flow

conditions corresponding to reentry are altitude of 60 km, Moz = 20, angle of attack o = 30 ° and Re/m

of 120,890. The laminar solution was computed using equilibrium real gas hypothesis by the SUPG

finite element method by an iterative implicit method that employs a block-diagonal preconditioned

GMRES procedure. The mesh contains nearly 1 million tetrahedra. Figure 3a displays the surface grid

and Figure 3b depicts the skin friction lines, illustrating the complex flow structure.

5 Turbulence modeling

In order to compute practical flows at large Reynolds numbers, turbulence has to be modeled. Some of

the most popular turbulence models in use in structured grids such as the BaldwimLomax [10] become

quite difficult to implement on unstructured grids because of their nonlocal nature, although this has

been done [147, 104]. The trend is away from algebraic models and towards simple one and two equation

field models, k - ¢ turbulence models have been used with unstructured grids either by integrating the

model to the wall [168] or by using a two-layer model [116, 32], where the two equation k - e model is

replaced by a one equation model near the wall region. Marcum and Agarwal [100] have implemented

two versions of k - e models in an unstructured grid code to compute turbulent, flows over an ONERA

M6 wing. They tested a low Reynolds number model that is integrated to the wall and a high Reynolds

number model that is combined with wall-functions. Two fairly new one-equation models have become

very popular, particularly for unstructured grid applications. These are the Baldwin-Barth [9] and the

Spalart-Allmaras [159] models. The Baldwin-Barth model is derived from a simplified form of the k - e

turbulence model. The Spalart-Allmaras model, on the other hand, is derived "from scratch" through

dimensional analysis and intuition. Both the models have been tested extensively and are being used

routinely. The cell-vertex finite volume scheme with a Galerkin procedure for computing the viscous

terms has been used to compute viscous flows about high-lift configurations in conjunction with these

turbulence models [6, 168]. In Figure 4, the surface pressure distributions and velocity profiles a.t three
stations on the flap are displayed. The results are taken from the paper of Anderson and Bonhaus [6].

They use an implicit cell-vertex MUSCL scheme with the Spala.rt-Allmaras turbulence model, where the

linear system at. each time step is sohed by a Gauss Seide! relaxation method. The results are compared

with experimental data at two Reynolds numbers 5 x 106 and 9 x 106 with M_ = 0.2 and angle of

attack, a = 16°. The surface pressure profiles show excellent agreement with the experimental data,

while the velocity profiles show good agreement except for the wake regions far downstream, where the

grid resolution is inadequate. These and other quantitative comparisons with experimental data [168]

indicate the level of maturity of unstructured grid technology.

6 Time Discretization and Solution Strategies

6.1 Steady-state solution techniques

After discretizing Eqn. (1) in space, the following system of coupled ordinary differential equations is

obtained: d(VMW)
+ R(w) = o. (6)

dt



Here W is the vector of unknowns over the mesh points for a vertex-base_ formulation and over the

cells for a cell-based formulation. V is the volume of the polyhedral control volume associated with

the vertex/cell. In the case of a cell-vertex scheme storing pointwise quantities at the vertices, M is

the mass matrix which represents the relationship between the average value in a control volume and

the values at the vertices (the vertex representing the control volume and its nearest neighbors). It is

only a function of the mesh and hence, a constant matrix for a static mesh. If a steady state solution

is sought, time-accuracy is not an issue and M can be replaced by the identity matrix. This technique

known as mass-lumping yields the following system of ordinary differential equations for the vector of

unknowns W :

i. dW
+ R(W) = 0. (7)

Cell-centered schemes (up to second order accuracy) and schemes dealing strictly with cell-averages (to

any order of accuracy) do not yield a mass matrix and thus lead to Eqn. (7) for steady and unsteady

problems.

Eqn. 7 may be solved explicitly with linear multi-step methods of the forms described in [67,

170]. The coefficients for these Runge-Kutta schemes are derived by considering a model problem and

optimizing the coefficients to yield a large CFL number and good damping properties. Local time

stepping, enthalpy damping (for Euler equations) and residual averaging are employed to accelerate

convergence [74]. Even with this methodology, the convergence to steady state is usually unacceptably

slow. Therefore, either multigrid methods or implicit schemes are required to accelerate the convergence.

6.1.1 Multlgrid methods

The multigrid method has been demonstrated as an efficient means for obtaining steady-state solutions

to the compressible Euler and Navier-Stokes equations on unstructured meshes in two and three dimen-

sions. In this approach, convergence acceleration is achieved by time-stepping on successively coarser

meshes. The principle behind this algorithm is that the errors associated with the high frequencies

are damped by a carefully chosen smoother (e.g. a multi-stage Runge-Kutta scheme) while the errors

associated with the low frequencies are damped on the coarser grids where these frequencies manifest

themselves as high frequencies. In the case of structured grids, coarse grids are easily derived from a

given fine grid by omitting alternate grid lines in each coordinate direction. In the case of unstructured

grids, three different approaches can be adopted.

The first approach begins with a coarse mesh definition and generates finer grids by refinement

[1.31, 35]. The advantage is that the inter-grid operators become simple because of the nesting of grids.

Another advantage is that this set-up can be utilized to advantage in an adaptive procedure, where the

fine meshes are formed by adaptively refining the coarse meshes [35, 127]. The principal disadvantage of

this approach is the dependence of the fine grid distribution on the coarse levels. The second approach

uses non-nested unstructured grids either with a subset of fine grid points comprising the coarse grids

or with completely independent coarse and fine meshes. This has been shown to be successful in both

for inviscid and viscous flow computations [105, 101, 129, 24]. Both the approaches outlined above

share a common problem, that of generating coarse grid levels. For complex geometries, especially in

three dimensions, generating coarse grids that faithfully represent the complex geometries can become

a difficult proposition. The requirement to generate not just one grid but multiple grids that preserve

the geometry places too much of a burden on a user. The third approach circumvents this problem

by generating coarse grids through agglomeration or fusing of fine grid control volumes, resulting in

polyhedral coarse grid control volumes. This method was developed in [87] for cell-vertex schemes and

in [158] for cell-centered schemes. This method has been further refined to deal with inviscid and viscous
flows past complex configurations in both two and three dimensions [85, 177, 108, 109]. In Figures 5 (a-e)

the results from using the agglomeration multigrid strategy are presented. Figure 5a depicts the surface

grid employed to compute inviscid flow about a low-wing transport configuration [177]. The mesh

contains 804,056 vertices and approximately 4.5 million tetrahedra. Figure 5b displays the computed



surfaceMachcontoursfor transonicinviscidflowusinga seven-levelagglomerationmultigrid strategy.
The freestreamconditionsfor this caseare M_ = 0.77 and 1.116° incidence. Figure 5c shows the

surface mesh employed for computing turbulent viscous flow over a partial span-flap wing experimental

configuration [109]. The fine grid contains nearly 2.3 million vertices and nearly 13.6 million tetrahedra.

The freestream conditions for this case are .,lI_ = 0.2, incidence of 10 °, and Reynolds number of 2

million, corresponding to an approach condition. The solution obtained with a six-level agglomeration

multigrid strategy is shown qualitatively in Figure 5d in the form of Mach contours on the wind-tunnel
wall and density contours on the wing surface. Figure 5e shows the convergence histories for these two

cases. Tile deterioration in convergence of the Navier-Stokes case is mainly due to the use of stretched

meshes and indicates that the efficiency of Navier-Stokes solvers is far from satisfactory.

6.1.2 Implicit schemes

hnplicit schemes for the compressible Euler and Navier-Stokes equations have been developed in order

to accelerate the convergence to steady state. If the time derivative in Eqn. (7) is replaced by:

dW W TM - I'V'_

dt - At '
(8)

an explicit scheme is obtained by evaluating R(W) at time level n. An implicit scheme is obtained by

evMuating R(W) at level n + 1. In the latter case, linearizing R about time level n, we obtain

(V OR)+ = (9)

AII_ - (IV TM - W'_)i. (10)

(9) represents a large nonsymmetric linear system of equations for the updates of the vectorEqn.
of unknowns and needs to be solved at each time step. As AI tends to infinity, the method reduces

to Newton's method. Direct solvers have been used solve Eqn. (9) yielding quadratic convergence,

but these entail prohibitive costs and memory requirements and are impractical for three dimensional

applications [176, 157]. Typically, due to storage considerations, only a lower order representation of the

left-hand side is employed and the system is solved by iterative means. As a result of this approximation

Eqn. (9) can never approach Newton's method (with its associated quadratic convergence property)

due to the mismatch of the right and left hand side operators.

Thareja et al. [163] and Hassan et al. [58] have utilized point-implicit iterative procedures. Fezoui

[45], Batina [17], Anderson et al. [.5, 7] and Slack et al. [157] have used a Gauss-Seidel relaxation

technique. It is also possible to use more sophisticated techniques for the solution of the linear system,

such as GMRES [149] and QMR [46]. Preconditioning of the matrices is critical to achieving good

convergence with these methods. Some of the typical preconditioners are block-diagonal, symmetric

successive over-relaxation (SSOR) and Incomplete LU factorization (ILU) preconditioners [111]. GM-

RES with diagonal preconditioning has been used by Shakib et al. [1.51] to solve the linear systems

arising out of a finite element discretization of the Euler equations. Slack et al. [157] and Whitaker [184]

have also used GMRES with diagonal preconditioning in two and three-dimensional applications. Slack

et al. [157] have observed when solving the two-dimensional Euler equations that the preconditioned it-
erative methods perform better than the other methods as the number of elements in the mesh increases.

Venkatakrishnan and Mavriplis [178] tested a family of implicit schemes for solving the two-dimensional

compressible Navier-Stokes equations on unstructured meshes. They concluded that GMRES with ILU

preconditioning (GMRES/ILU) was superior to other implicit schemes over a range of problems sizes
and flow conditions and was competitive in terms of CPU time with multigrid methods. Luo et al.

[99] used GMRES/ILU to compute two- and three-dimensional flows. A drawback of all the methods

based on linear algebra is that the memory requirements become severe which seriously limits the sizes

of the problems that can be solved, especially in three dimensions. It is possible to implement GMRES



in a matrix-freeform [29]wherethe nlatrix-vectorproductis replacedby a-finite differenceexpression
involvingresidualevaluations.Anotheradvantageof the matrix-freeapproachis that the higherorder
discretizationcanbeemployedfor the left-handsideandthematrix-vectorproduct[30].The drawback
of this approachis that powerfulpreconditionerslike SSORandILU cannotbeusedsincethey require
the matrix to beexplicitly available.A compromiseis to settlefor a matrix-freeform of GMRESwith
diagonalpreconditioningasdonein [75].

Anotherimplicit methodthat hasbeeninvestigatedis basedon theuseof linelets[59].Thekeyidea
is to coverthe domain with a set of lines and tile scheme is made implicit along these lines. Thus tri-

diagonal systems need to be solved which can be accomplished efficiently. A drawback of this method

is that the convergence is sensitive to the orientation of the linelets with respect to the direction of

strongest coupling.

6.2 Unsteady Problems

While the solution techniques for computing steady flows have evolved to a high degree, those for dealing

with unsteady flows have lagged behind. This is partly due to fact that prediction of aerodynamic

properties in steady transonic flow (cruise conditions) has been the driving force, with the unsteady

effects being important only in extreme conditions, such as flutter and stall. It is anticipated, however,

that unsteady time-accurate simulations will provide the next great challenge for CFD.

Recall that after discretization in space, a system of coupled ODE's results (Eqn (6)). If we assume

that the system is decoupled i.e. M -= I, the simplest way to solve the system of ODE's is to use an

explicit scheme. Low-storage Runge-Kutta methods [67, 170] and various predictor-corrector schemes

fall under the category of explicit schemes. These schemes typically require only simple updates. They

place restrictions on time step due to the CFL condition, which become severe in the case of semi-

discrete schemes satisfying monotonicity principles. However, explicit schemes may be the schemes of

choice for certain unsteady applications when the time scales of interest are small or more precisely,

that they are comparable to the spatial scales. The grid should be clustered only in regions of interest;

otherwise, the size of the explicit time step could be unnecessarily small. The situation can be improved

by the use of time-step sequencing [83, 138], where different cells take varying number of local time

steps to get to a particular time level.
When the mass matrix is present, even the explicit schemes require a matrix inversion. Often, either

the mass-matrix is lumped for convenience or at best a few Jacobi iterations are carried out [124, 36].

Neither approach is entirely satisfactory, especially if large time steps, permitted by multi-stage explicit

schemes and implicit schemes, are used. Donea [41] realized that the presence of the mass matrix in

his formulations will make it unattractive and proposed a simple two-pass procedure. While he proved

that the formal order of accuracy remained the same, he also showed that the dissipation and dispersion

properties were somewhat compromised. Recently, it has been observed [179] that the mass matrix can

be lumped without adverse consequences if the cell-vertex scheme possesses only second or lower order

accuracy.
When an implicit scheme is used to solve for unsteady flows, the linear system Eqn.(9) is modified

by replacing the diagonal matrix V by the matrix MY where M is the mass matrix and _" is the volume
of the cell. However, it is not enough to solve this linear system. One has to drive the unsteady residual

to zero or at least to truncation error. This is usually done by employing inner iterations [139, 136]. It

is the role of these inner iterations to eliminate errors due to the factorization (if any is carried out),

linearization, and errors arising from employing a lower order approximation on the implicit side. The
number of inner iterations required may be large depending on the flow situation and the size of the

time step employed.
Brennis and Eberle [27] and Jameson [68] have advocated a different approach for deriving an

efficient implicit scheme for unsteady flows.The idea is to define an unsteady residual, following a

backward difference approximation to the time derivative and then use either a relaxation strategy or a

multigrid technique to drive the unsteady residual to zero. The significant advantage of this approach
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whenmultigrid is usedto solvethenonlinearproblemis that it incursnosiorageoverheadsassociated
with traditional implicit schemes,and is particularlyattractivefor unstructuredgrid computationsin
threedimensions.It allowsthe time stepto be determinedsolelybasedon flowphysics.This method
hasbeenusedto computetwo- and three-dimensionalflowsoverairfoilsand wings[68-,112,4] using
structuredgrids. Vassberg[172]hasappliedthis methodto computeflow solutionsoveroscillating
airfoilsusingunstructuredgrids. This approachhasalsobeenusedin [179]in conjunction with the

agglomeration multigrid strategy to solve two-dimensional unsteady flows where the inversion of the

mass matrix is accomplished indirectly during the multigrid procedure.

7 Adaptive grids

Solution adapted grids are increasingly being used to compute complex unsteady and steady flows.

There are three distinct ways the grid can be adapted to the solution. These are r-refinement, h-

refinement and p-refinement. In r-refinement, the nodes are simply redistributed so that regions of

importance are better resolved. In h-refinement or mesh-enrichment, the cells are locally subdivided

or merged or in some instances, a complete remeshing is done to reduce the grid spacing in regions of

interest. In p-refinement, the degree of the basis function is adjusted locally to match the variation

in solution. For a survey on adaptive mesh refinement techniques, the reader is referred to the review

article by Powell et M. [135].

R-refinement is probably the simplest in concept, but is burdened with practical difficulties in multi-

dimensions especiMly when dealing with highly stretched grids. For a survey of mesh point movement

methods, see the review article by Hawken et al. [60]. The difficulties include skewness, crossing of

lines, arbitrarily small cell volumes etc. Some progress has been made in dealing with these issues

at least for inviscid flows, where the cell-aspect ratios are not too severe [122]. The advantage of r-

refinement is that if a valid grid results from it, all that is required is the interpolation of variables from

the old to the new grid. This could be done in a conservative manner if desired. A way to avoid the

interpolation, which introduces errors that could accumulate, is to introduce the grid movement terms

in the governing equations Eqn. (1). These terms need to be discretized carefully so that freestream

is preserved. The Geometric Conservation Law (GCL) [165, 186] formalizes this procedure. Recently,

r-refinement has been used to great advantage with Roe's upwind scheme [143] to obtain "fitted" shock

resolution by Paraschivoiu et al. [123], Parpia and Parikh [126], and van Rosendale [171] by aligning

edges of the triangulation with discontinuities. The "fitting" is done in a shock-capturing framework

by utilizing that property of Roe's scheme which allows isolated discontinuities aligned with the mesh

to be captured exactly.

II-refinement is by far the most popular means of adaptation in compressible flows. This is especially

true for inviscid flows dominated by interactions of shock waves where p-refinement techniques are of

limited value. In the Adaptive Mesh Refinement (AMR) approach, h-refinement is employed with body-

fitted structured grids to adapt to the flow solution [20, 138]. Instead of body-fitted grids, Cartesian

meshes can be used to adapt to complex geometries in addition to adapting to flow features [21, 37, 137].

Since some of the approaches, e.g. [37, 152] do not make use of any structure and employ indirect

addressing, these methods may be classified as unstructured. The AMR framework has been used

to compute many complex inviscid unsteady flows that exhibit disparate spatial and temporal scales.

Unstructured grids, composed of triangles or tetrahedra, are also particularly suited for h-refinement. In

the case of both AMR and unstructured grids, the regions of interest are first identified either through

a combination of heuristic criteria such as density gradients (undivided) or through estimation of the

truncation error. In the case of AMR, typically cells are subdivided in some fixed ratio, and these are

sometimes grouped into logically rectangular patches. In the case of unstructured grids, the regridding

procedure is more involved. If a Delaunay triangulation is used as the initial grid, one can use Watson's

incremental algorithm [183] to obtain a new Delaunay triangulation. Other procedures such as edge-

swapping may also be used to restore the Delaunay triangulation. In the case of other triangulations,
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cellsaresubdividedandsmoothedusinga fewpassesof a Laplacian-typesmoother.Peraireet al. [130]
advocatetheregenerationof thegrid by theadvancingfront methodfor steadystateapplicationsafter
identifying regionsof interestby error estimation. In the case of nodal schemes in three dimensions,

when edges are tagged and the cells are to be refined or derefined based on these tagged edges, the

possibilities are numerous [79]. It helps to use some rules to limit the cases [35]. Several investigators

have employed multigrid procedure for steady state computations using the grids generated by solution

adaptation [102, 127, 35, 26]. Figure 6a shows the initial surface grid for an isolated engine inlet.

The initial grid contained 3536 nodes. After three adaptive refinement cycles, the final mesh shown in

Figure 6b was obtained. The final mesh contained 61,002 nodes. This computation done by ConnelI

and Holmes [35] utilized tile adaptive multigrid procedure. When adapting grids to flow features, a

problem that may occur is that certain regions are overly resolved at the expense of other regions,

resulting in seemingly sharp but incorrect solutions. Warren et al. [182] have proposed and tested a

simple modification to the error indicators that alleviates this problem.

In the case of transient problems, adaptation is performed much more frequently and therefore the

regridding process is required to be efficient. While this is easily accomplished efficiently by subdivision

of cells in the AMR framework, the problem is more involved in the case of unstructured grids [94, 141].

The problem of flow past bodies in relative motion has also been addressed in the literature [93, 167,

5/', 82, 31]. Typically, mesh point movement and efficient mesh restructuring are employed to obtain

valid, good-quality grids about the moving bodies. Figures 7(a-c) show the results from the simulation

of store separation from F-117. The freestream conditions are Moo = 0.84 and incidence of 2.73 °.

The projectiles are forcibly ejected at different velocities. This multi-body problem was computed by

Baum et al. using the Arbitrary Euler Lagrangian adaptive unstructured methodology developed in

[18]. Because of symmetry, the motion of only two of the projectiles is simulated. Figures 7a and 7b

show the Math contours from two different perspectives and Figure 7c displays the pressure contours

at a particular instant of motion. The complex shock patterns emanating from the projectiles and their

signatures on the plane of symmetry may be observed in Figure 7c.

8 Higher order methods

The use of methods possessing higher than second order accuracy for solving the compressible Navier-

Stokes equations on unstructured grids is not yet commonplace and is a topic of active research. The

finite element method achieves higher order accuracy by the use of higher order elements. Bey and

Oden [22] have used a discox!tinuous Galerkin method to obtain up to 4th order accuracy for smooth

flows using structured adaptive grids. In the finite volume community, Barth and Fredrickson [14]

derived general conditions for a scheme to be higher order accurate that involve the reconstruction

of variables satisfying the properties of conservation of mean, k-exactness and compact support, k-

exactness refers to the property of being able to reconstruct exactly polynomials of degree < k. The

key idea is to extend the support of the scheme to enable the coefficients in the polynomial to be

determined. They also proposed a minimum-energy reconstruction that used a larger support and

utilized a least-squares method to evaluate the coefficients. By combining this reconstruction procedure

with higher order quadrature, the)" demonstrated the effectiveness of both h- and p-refinements in

reducing the errors in smooth flows. More recently, Chakravarthy et al. [31] have proposed a similar

approach to achieving higher order accuracy. Equivalent to requiring k-exactness, they propose that

the mean be conserved in a neighborhood of the point in question. Mitchell [115] has proposed a quasi-

quadratic reconstruction procedure that appears to yield better results than those obtained with linear

reconstruction. Harten and Chakravarthy [55] have proposed a framework for applying Essentially

Nonoscitlatory (ENO) schemes [56] on unstructured meshes. They present two techniques for adapting
the stencils during the reconstruction procedure, which also give preference to a centered stencil in

smooth regions. The first technique considers several candidate.stencils and picks the one that represents
the function the smoothest. The second technique is a hierarhical one that incrementally augments the
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stencilasderivativesare requiredduringthereconstructionprocedure.Abgrall [2] hasalsoproposeda
hierarchicalENO schemeand hastestedit by computinga varietyof inviscidcompressibleflows.

A problemwith thereconstructionmethodsdescribedaboveis that sincethe supportgrowswith the
orderof thescheme,computationalcostandboundarytreatmentbecomesignificant.Halt and Agarwal
[53]haveproposedandtestedtwomethodsfor realizinghigherorderaccuracywhilekeepingthesupport
compact.Thesetechniquesarebasedonderivingequationsfor eitherthe derivativesor the moments
of the governingequations.They demonstrateup to 4th orderaccuracywith both thesemethodsfor
smoothflows.Theyconcludethat themethodbasedonmomentsismoresuitablefor dealingwith shocks
andboundaryconditions.Barth [13]hasalsoproposeda differentquadraticreconstructionprocedure.
Similarto afiniteelementprocedure,additionaldegreesoffreedomareplacedat the mid-pointsof edges
in a triangulation. The gradientand Hessianrequiredfor quadraticreconstructionareagainobtained
by a least-squaresprocedure.Figures8(a-d),providedby Barth[13],illustratetheresultsobtainedwith
variousdiscretizationsfor the circularadvectionproblem:

u_ + (yu)_: - (xu)v -- O. (11)

Discontinuous initial data is specified along an interior cut line. The exact solution is a solid body

rotation of the cut-line data. The triangular grid is displayed in Figure 8a. Solutions obtained with

the finite volume scheme employing piecewise-constant, piecewise-linear and piecewise-quadratic recon-

structions are depicted in Figures 8 (b-d). Tile significant improvement with higher order reconstruction

is apparent. Barth [13] also states that quadratic reconstruction is about 7 times as expensive as linear

reconstruction; of this a factor of 4 arises from the introduction of grid points at the mid-points of the

edges. This "h-refinement" contributes in part to the improvement realized with quadratic reconstruc-

tion.

9 Hybrid discretizations

While triangulations in two and three dimensions offer flexibility in adapting to complex geometries,

it is not clear if they are needed near the wall regions. Steger [161] when introducing the "thin-

layer" approximation in 1978 stated, "One does not generally have sufficient computer to resolve the

viscous terms except in a thin-layer near the body". This statement holds true even today for practical

aerodynamic computations. Thus highly stretched triangulations are required in the near-wall regions.

They can be generated by employing a mapping procedure [103] where a Delaunay triangulation is

performed in the mapped plane which is then mapped back to the physical space to yield the desired

stretched triangulation. This method has also been used for adaptation in viscous flows [181]. Aftosmis

et al. [3] have addressed the important issue of element shapes by examining the accuracy obtained

on test problems by using various triangular element shapes and quadrilaterals. They conclude that

using stretched triangulations near the body does not yield any improvement in solution accuracy

over using quadrilaterals, and is therefore inefficient because of the extra edges in the triangulation.

They recommend a method that removes unnecessary edges (diagonals) from boundary la_er regions.

Rather than adopt this two-step procedure, where the triangular grid is first generated followed by the

elimination of unnecessary edges, the hybrid method eliminates the need for stretched triangulations

all together. This method makes use of a structured or a semi-structured grid in the near-wall regions.

In two dimensions, a structured body-fitted grid is used near the body whereas in three dimensions

a prismatic grid is used since the surface grid is triangular. Nakahashi et al. [117, 118], Kallinderis

et al. [80, 128], Connell and Braaten [34] have advocated this approach. The generation of prismatic

elements requires careful marching away from the surface so that lines do not cross. Melton et al. [113]

have used a prismatic grid with a background Cartesian mesh to compute three-dimensional flows. The

structure afforded could be effectively used to tailor line-implicit algorithms, although this requires that

the various elements be processed separately. Ideally, one data structure (edge-based) should be able to

process all elements regardless of their shapes for an automatic procedure. Figure 9a shows the surface
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grid for an adaptedhybrid prismatic-tetrahedralgrid about a hemisphere.-The initial grid contained

3000 triangular faces on the wall and 20 layers of prisms and 70,000 tetrahedra. The freestram conditions

for supersonic laminar flow are Moo = 1.4 and Re = 1000. After the dual adaptation procedure, where

the prisms are directionally refined with the normal resolution unaltered and the tetrahedra are divided

into either 2,4, or 8 tetrahedra, the final grid contains 7000 triangular faces and 20 layers of prisms and

225,000 tetrahedra. The signature of the directional refinement of the prisms may be observed on the

hemispherical surface. Figure 9b displays the surface Mach contours on the symmetry plane for this

flow. These figures have been provided by Parthasarathy et al. [128]. The explicit solver also makes

use of an adaptive multigrid procedure.

10 Parallel computing

Computational fluid dynamics as its name implies is inevitably linked to computing issues. Among

these are processing power, memory technology, networking and accessibility. Ability to compute the

solutions to problems in finite time always being the goal, CFD has benefited immensely from the rev-

olution that has taken place in the last 15 years in these areas. Vector supercomputers have provided

much of the computing power that has been harnessed to compute complex three-dimensional flows.

It is anticipated that distributed-memory parallel computers will offer the next cost-effective leap for-

ward in terms of computing power. _luch research has been carried out in the area of unstructured

grid computations on parallel computers. Some of the issues that arise are partitioning of the grid,

message patterns, data structures and design of parallel algorithms. Partitioning of unstructured grids

for parallel computing has been investigated by a number of researchers. The methods can be broadly

classified into geometry-based [23, 114, 44] and graph-based [133, 156] algorithms. It appears that the

graph-based algorithms, in particular, the spectral bisection technique of Pothen et M. [133], while

being computationally more expensive, yield much better partitions. Unstructured grid flow solvers

have been implemented on various machines [180, 107, 75, 43, 140]. These studies have shown that

good performance may be obtained by paying careful attention to the issues listed above. Regarding
the flow solver, explicit schemes and point Jacobi implicit schemes possess almost complete parallelism,

except for communication at the inter-processor boundaries. Multigrid methods appear to have ade-

quate parallelism for coarse-grained parallel computers; impressive performances have been reported by

Mavriplis et al. [107]. Johan et al [75], Ramamurthi et al. [140] and Venkatakrishnan [175] have shown

that implicit schemes can be carefully designed to yield good performance when soMng unstructured

grid problems on parallel computers. While a matrix-free GMRES with nodal block preconditioner

that has almost complete parallelism except for the communication at the inter-processor boundaries

is used in /75], methods that are implicit within processors but explicit across processors are used in

[140, 17.5]. Thus, as the number of processors increases, the latter methods exhibit a degradation in

convergence. In /17.51 it is demonstrated that convergence rate of such a method can be improved by

using in addition a global coarse grid approximation, where each processor is represented by one grid

point. In general, it appears that the best parallel algorithm is also the best serial one, with some

possible loss in convergence in the case of implicit schemes in a multi-processor environment.

11 Conclusions

In this paper, unstructured grid flow solvers for the compressible Navier-Stokes equations have been

surveyed. Significant progress has been made in the areas of spatial and temporal discretization, adaptive

and parallel algorithms. Newly developed field equation turbulence models seem to mesh nicely with

the unstructured grid framework. Based on these developments, it is safe to say that unstructured

grid technology is almost on par with structured grid technology, although encumbered with additional

memory and computational costs. This overhead has to be balanced with the ability to compute flows

over complex geometries and the ease of adaptation.
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Theareasthat requirefurtherresearcharethusthesameasin structured-grids.Theseincludebetter
and fasterimplicit/multigrid flowsolversthat are insensitiveto cellaspectratiosandgrid stretching,
improvedhigherorder discretizationtechniques,better a priori or a posteriori error estimates and

parallel algorithms. The status of unsteady flow solvers is far from satisfactory either for structured or

unstructured grids. The use of hybrid meshes needs to be explored further to utilize data structures

that can handle any type of tessellation. As unsteady flows and aeroacoustics are emerging as areas

of interest, nondissipative schemes that also minimize dispersion have to be designed to be applicable

to unstructured grids, which are nonuniform in general. In this respect as well as in the areas of error

estimation and higher order schemes, there should be more interaction between finite volume and finite
element communities.
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Figure 1. Machcontoursfor inviscidtransonicflowoverBoeing747-200usingan unstructuredtetra-
hedralgrid (M_ = 0.8,a = 2.73°) [72].
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Figure 2. Laminar flow over a delta wing (3Ix; = 0.3, c__ = 20..5 °, R_ = 0.9 x 106) [48]. (a) Surface grid

and "oil-flow '_ pattern (b) Pressure profiles a_ four chord stations.
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(a)

(b)

Figure 3. tIypersonic flow over the canopy, of a ttermes [32]. (a) Surface grid.

oll tile surface.

(b). Skin friction lines
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Figure 5. Computations done using the agglomeration multigrid strategy [177, 109]. (a) Surface grid for

the low wing transport (LWT) case. (b) Mach contours on the surface for inviscid transonic flow over

the LWT. (c) Surface grid for the partial span-flap experimental configuration. (d) Mach contours on

the wind-tunnel wall and density contours on the surface for turbulent flow. (e) Convergence histories

for the inviscid and the viscous cases.
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(a)

(_

Figure 6. (a) Initial surface grid for an engine izzlet.[35].

(b) Grid obtained th_'ough adaptive refi_en_ezzt
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(a)

\

(b)

Figure 7. Store separation from F-117 [1,q]. Solution at a particular instant in time. (a) Mach contours

from outside. (b) Mach contours from inside the bay. (c) Pressure contours illustrating the shock wave

patterns about the projectiles.
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Fig. 7c.
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Figure 8. Comparison of various discretization methods for the circular advection problem [t3]. (a)
Grid used for the two-dimensional advection equation. (b) Piecewise-constant finite-volume solution.

(c) Piecewi,_e-linear finite-volume solution. (d) Piecewise-quadratic finite-volume solution.
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(a)

(b)

Figure 9. (a) Adapted hybrid prismatic-tetrahedral grid aboul a hemisphere. (b) Surface Mach contours

on the symmetry plane for supersonic laminar flow (3I..< = 1.4, Re = 1000) [12g].
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