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Abstract

An algebraic formulation of quantum mechanics is presented. In this formulation, opera-
tors of interest are expanded onto elements of an algebra, G. For bound state problems in v

dimensions the algebra G is taken to be U(v + 1). Applications to the structure of molecules

are presented.

1 Introduction

The development of new experimental techniques is giving rise to a wealth of information on com-

plex systems. This information needs to be understood in terms of theoretical models which can,

on one side, describe the observations and, on the other side, make predictions for other experi-

ments. In view of the accuracy of the experiments, one needs new and more accurate mathematical

models. For quantum mechanical problems, a natural framework is provided by the SchrSdinger

equation. In complex systems, the direct solution of the multiparticle SchrSdinger equation be-

comes rather difficult and one many seek alternative methods. In this note, an alternative method,

called algebraic theory, will be introduced and discussed briefly. The method will then be apphed

to the study of the structure of molecules. Problems of current interest in this field are, among

others, the substitution of atoms in a large molecule leading to a lowering of symmetry, the poly-

merization process in which dimers, trimers, ... are formed from the original molecule, the study

of new molecules, such as the cage fuUerene molecules, 6'6o;..., and, particularly important, the

study of molecules at high excitation energy. An example of the latter will be presented.

2 Algebraic Theory

The logic scheme of algebraic theory is as follows:

Quantum mechanical problem

Algebraic Structure
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Spectra
Transitions
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In the first step, all quantum mechanical operators of interest are mapped onto the elements

of an algebra, G. For example, the Hamiltonian operator is written as

H = Eo + ¢oG, + +... , ao a (1)
a t_D

The algebra _ is called the spectrum generating algebra (SGA) and H is in the enveloping algebra

of _.

In some cases, it may happen that the Hamiltonian H contains only certain elements of G, the

invariant Casimir operators of _ and of one of its subalgebra chains, _ D _t D _" D ... ,

H = f(C,) (2)

This case, called a dynamic symmetry, plays a special role in algebraic theory, since then the

eigenvaJues of H can be obtained in closed analytic form in terms of the quantum numbers char-

acterizing the representations of _ D _t D ....

Dynamic symmetries and spectrum generating algebras have been used in various contexts for

more than 30 years [1]. As a result of the systematic investigation and use in the context of nuclear

and molecular physics, initiated with the introduction of the interacting boson model [2] in 1974

and of the vibron model [3] in 1981, it has become clear that all quantum mechanical problems

in u space dimensions can be mapped onto the algebra U(u ÷ 1) and all its states assigned to the

totally symmetric representation [N] of U(u ÷ 1)[4]. Examples of this mapping are given in the

following section.

3 One dimensional'problems

To begin with, consider the single case of one space dimension, v = 1. A trivial application

of algebraic theory is provided here by the harmonic oscillator. The Schr6dinger (differential)

equation
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1(d2 )H= _ -_-_--Sz2+x 2 , H¢,,=ECm

1
with eigenvalues En = (n + _), and eigenfunctions

E, l-l(_.(_) = ,_2 n! •- _ _-_

(the Hermite polynomials), can be mapped into

._-(a_o+_),
with the same eigenvalues Em = (n + ½) and eigenstates

In >= (,_!)-_(a*)nI0 >

(3)

(4)

(5)

(6)

V(r)
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=1
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FIG. 1. The Morse potential V(r).

Here

The algebra is

1( d),o 1(d)a=_ z+_ - v_ :r-d-_x ; [a'aJ]=l

H(2) = a, aq, l,aJa ,

(7)

(8)



called the Heisenberg, quantum mechanical or oscillator algebras [5]. The mapping produces a

great simplification both in the evaluation of the matrix elements of operators which are integrals
in the differential formulation

and algebraic functions in the algebraic formulation

Inn' =< n't f(a,a f) In > (10)

A slightly more complicated problem is provided by the anharmonic Morse oscillator [6], Fig.1.

The Schrfdinger equation with

h 2 d 2
H .... + V(:r), V(z) = D[1 - ezp(-/3x)] = , (11)

2# dz 2

with eigenfunctions

= =2 Lo (z)Cv(ag ) gsZtT-v e--z-+tx/3 2r/-2v-1

_V_/_ 1 (12)z = 2r/e -ax , r/= D ,v = 0,1,...,r/ 2 '

and eigenenergies

1 lh2_2 1E(v) -- 2h_ (v+ i) i _ (_+ 3) (13)

can be mapped onto the algebra _ = U(2) with elements F+,F_,Fo, N and corresponds to the

dynamic symmetry U(2) 3 0(2) of this algebra. The Hamiltonian is

with eigenenergies

_H= AC , C= F2o - N 2 (14)

E(m) = A(m 2- N2); m= N,N - 2,..., lor0 (N = oddor even) . (15)

The eigenvalues can be brought into the standard vibrational form introducing v = (N - m)/2 ,

N N 1

E(v) -4A(Nv v2); v 0,1,.. 2(= - = . --or N = evenorodd) . (16)
' 2 2

With some small changes this is seen to correspond to Eq.(13). The eigenstates can be written as

[ N, v > and observables calculated as

< N,v'IT(G) IN, v > , (17)

where 7' (G) is the appropriate operator built from the elements of G. By making use of the

algebraic method, all results of the anharmonic Morse oscillator can be found easily. (Note that in



the associationof the Morseoscillator with U(2) D 0(2) only the positive branch of O(2),m > 0,

has been used.)
As a third simple case, consider the anharmonic Pbshl-TeUer oscillator

D

V(z) - cosh2a z

This potential can also be associated with U(2) D 0(2) and Hamiltonian [7]

(18)

H = AC (19)

with eigenvalaues

E(v) = -4A(Nv- v 2) (20)

One can see from (16) and (20) that the Morse and Pbshl-Teller potentials have the same bound

state spectrum (isospectral potentials). (This statement is not true in r, = 2, 3,... dimensions.)

The Morse and Pbshl-TeUer potentials in 1 dim belong to a class of potentials called exactly

solvable since their eigenvalues can be written in explicit analytic form. All exactly solvable

potentials in 1 dim have been classified.

The overall algebraic structure of 1 dim problems can be written as

U(2) D 0(2) _ U(1)

H(2) D 0(2) _ U(1) (21)

In this equation, the arrow with a c denotes a contraction of the algebra of U(2). (In addition

to the contraction U(2) :_ H(2), _here is another one U(2) _ E(2), where E(2) is the Euclidean

algebra not discussed here.)

4 Multidimensional problems

In more than one dimension, the connection between the Schrbdinger equation and the corre-

sponding algebraic equation is not so straightforward, with the only exception of the harmonic
oscillator and Coulomb problem. It is here that algebraic methods are particularly useful, since by

formulating directly the problem in an algebraic framework one can construct the spectrum and

calculate observables without reference to a specific form of the potential. The algebraic structure

of three dimensional problems can be written as [4],[8]

v(3) D 0(3) 0(2) (i)
/

U(4)

\ (22)
0(4) D 0(3) D 0(2) (II)

J

H(4) D U(3) D 0(3) D 0(2) (III)
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The chain (I) corresponds to Schrbdinger problems with Pbschl-Teller-like potentials, the chain (II)

corresponds to Morse-like potentials, while the chain (III) corresponds to the harmonic oscillator
in 3 dim.

In general, in v dim one has

u(,) _ ...

u(,+l) _ ...
\

c_ O(v+l) D ...

H(v+I) D V(v) D ...

(23)

where now additional chains may appear in the reduction of U(v + 1). The five dimensional case,

v = 5, has been extensively investigated in the context of nuclear physics [9]

5 Algebraic Theory of Large Molecules

The algebraic approach of Sect. 2 can be used to study molecular structure. For reasons that will

be mentioned in the subsequent section, it is convenient to separate large molecules from small

molecules (large here means molecules with more than 4 atoms). In large molecules each degree

of freedom, x,y,z, is quantized with U(2) and the total spectrum generating algebra is taken to be

= _; _Ui(2) [10]. A calculation of spectral properties proceeds then as follows: In step 1, all

atoms are numbered, Af; in step 2, three coordinates are assigned to each atom for a total of 3 A/';

in step 3, each coordinate is quantized with U(2) D 0(2), thus being treated as an anharmonic

oscillator; in step 4, the oscillators are coupled with Hamiltonians

3A/" 3.,V"

H= y_hi+ __, wij (24)
i=1 i>_j=l

The structure of the Hamiltonian (24), when written in terms of the elements of the algebra _ is

hi = _o,+ A,(_o,- g,) 2 ,_,j = _i,(P+iP-j + P-i&s) (25)

The hi terms are diagonal in the basis Ui(2) D Oi(2) characterized by the quantum numbers

]Ni,vi > discussed in Sect. 3, while the wij are given in Ref. [10],[11]. In the final step 5, the

spurious species corresponding to overall rotations and vibrations, are identified and removed by
diagonalizing the Har_liltonian

H'=H+A'P , (26)

where 7) is a projection operator into the spurious species and A is taken to be a large number

such that the spurious species are moved to a large energy. The removal of the spurious species
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leaves3Af - 6 non spurious vibrations. This procedure produces the vibrational spectrum of the

molecule.

H
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H

FIG. 2. Schematic representation of benzene ( C6H6 ).

In a similar way one can compute intensities of transitions. There are two types of transitions

of importance in mo}_ecules, infrared (IR) and Raman (R) transitions. For infrared transitions,

the appropriate operator is a vector. Each component x,y,z of this vector ks written in terms of

elements of G, i.e.

3x

_x = _ ,_,,xi, , i, = e-_'(_+'+_-') , ... (27)
i=1

The matrix elements of the operator (27) (and Tv , T_) are then evaluated algebraically. For

Raman transitions, the appropriate operator is a symmetric quadrupole tensor. The six compo-

nents of this tensor, x _, y2, z 2, xy, xz,yz , are also written in terms of G and their matrix elements

evaluated algebraically.

As an example of vibrational analysis of large molecules, consider the case of benzene, C6H6.

The benzene molecule has the geometric structure shown in Fig. 2. A problem which arises in

large molecules is that of the discrete symmetry of the molecule. In the case of benzene, the



appropriate symmetry is :Doh. The discrete symmetries of molecules can be simply implemented

in the algebraic framework. For example, consider the six stretching vibrations of the hydrogen

atoms in benzene. AU hydrogen atoms are equivalent. The Ha_uiltonian (24) which describes

those vibrations
6 6

H = __. A,C, + _., _,jM, j, (28)
i=1 i(j=l

where Ci and Mij axe a short-hand notation for the terms in (25), must be such that one cannot

distinguish the equivalent atoms. Thus, all Ai's must be equal, Ai = A. In the interaction term,

there are three contributions, first, second and third neighbor interactions. These too must be

equal, A!_) : A(I), "',_!II)= A(II) and Aij(m) = A(m). The Hamiltonian H thus becomes

H = AC+ A(I)s (I) -_- )t(ll)s(lI) + ,_(III)s(III) , (29)

and is characterized by a smaller set of parameters. The operators C, S (I), S (II), S (III) are ap-

propriate linear combinations of the Ci's and Mij's. A corollary of the algebraic method is that

certain linear combinations of the operators Mij are symmetry adapter operators of _D6h and the

irreducible representations of/)6h are obtained automatically by diagonalizing them [10],[12].

Using the algebraic method discussed above it has been possible to study the complete spec-

troscopy of benzene [13]. This molecule has 12 atoms and thus 36 degrees of freedom, 6 of which

are spurious. The 30 non spurious species are shown in Table I.

TABLE I: Coordinates and symmetry species of benzene.

Coordinates

CH stretch

CC stretch

CH in plane bend

CH out of plane bend

CC in plane bend

CC out of plane bend

Number

6

6

6

6

3+3

3+3

Species

E2g + Blu + EI_ + AI_

Alg + B2,, + Elu + E29

Elu + B2u + E2g + A2g

A2u + B2g + Elg + E2u

Blu + E2g

B2a + E2g

Spurious

The calculation describes the observed vibrational states not only in the low excitation energy

region, fundamental vibrations, but also in the high excitation energy region, overtones. An

example is shown in Fig. 3. This region cannot be described in the harmonic approximation and

thus the use of algebraic methods based on the anhaxmonic Morse or PSschl-TeUer oscillators are



crucial for an accurate description of the observed spectra.
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FIG. 3. (a) Opto-thermal spectrum in the region of the Av = 3 overtone of the

stretching CH mode of benzene. The full-line is a low-resolution experiment. (b) The

spectrum calculated by means of algebraic theory. From Ref.[14].



6 Algebraic Theory of Small Molecules

For molecules with a number of at'ores less or equal to four, it is possible to quantize each vector

degree of freedom, F - (x,y,z), directly in terms of U(4). When quantized in this way both

rotations and vibrations are simultaneously included.

(b)

(o) (c)
Y X

0 .._ _

x z o.47z', v
Y

FIG. 4. Bond variables for small molecules.

It is also convenient to treat as vector variables the bond degrees of freedom, Fig.4, rather than the

coordinates of the individual atoms, thus avoiding the problem of spurious states. The quantization

scheme is thus here (7 = _i @U;(4). This scheme has been extensively used to treat diatomic

molccules with U(4), triatomic molecules with U(4)@ U(4) [15] and four atomic molecules with

U(4) _ U(4) ¢ U(4) [16]. It has also been possible recently to study high order interactions such

as rotation-vibration couplings.

7 Conclusions

Algebraic methods have been used in recent years in the study of molecular structure. When

apphed to this system, algebraic theory offers two main advantages: (i) The use of Lie algebras to

describe the interaction (Morse, PSschl-Teller, ...) allows one to extend the traditional harmonic

analysis to anharmonic analysis. One can thus deal easily with highly excited states of molecules

where anharmonicities play a crucial role (a subject of current experimental interest especially in

connection with intramolecular relaxation and energy transfer.) (ii) The use of algebraic operators

to couple the individual modes of a molecule allows one to construct symmetry adapted states in

a simple way. One can thus deal with complex molecules where discrete symmetries play a crucial
role.

The algebraic method can be used in molecules in two ways:

A) With rotation and vibrations treated separately. In this case the spectrum generating algebra
is

10



g = _ROT _ gVIB

= eu,(2) (3o1
i

B) With rotations and vibrations treated simultaneously. In this case the spectrum generating

algebra is

G = _ @U_(4) (31)
i

The latter case is more complete, but more difficult to treat than the former, since one has to deal

with the Racah algebra of U(4).

In view of its simplicity, the method is particularly well suited for a studLy of complex systems

such as macromoleculqs, clusters, polymers, .... Work in this direction is in progress. An account

of the algebraic theory of molecules is given in Ref.[17] and the mathematical formalism of Sects.

5 and 6 is reviewed in Ref.[18].
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