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ABSTRACT

The goal of damage mitigating control in reusable rocket engines is to achieve high
performance with increased durability of mechanical structures such that functional lives of the
critical components are increased. The major benefit is an increase in structural durability with no
significant loss of performance. This report investigates the feasibility of damage mitigating
control of reusable rocket engines. Phenomenological models of creep and thermo-mechanical
fatigue damage have been formulated in the state-variable setting such that these models can be
combined with the plant model of a reusable rocket engine, such as the Space Shuttle Main Engine
(SSME), for synthesizing an optimal control policy. Specifically, a creep damage model of the
main thrust chamber wall is analytically derived based on the theories of sandwich beam and
viscoplasticity. This model characterizes progressive bulging-out and incremental thinning of the
coolant channel ligament leading to its eventual failure by tensile rupture. The objective is to
generate a closed form solution of the wall thin-out phenomenon in real time where the ligament
geometry is continuously updated to account for the resulting deformation. The results are in
agreement with those obtained from the finite element analyses and experimental observation for
both Oxygen Free High Conductivity (OFHC) copper and a copper-zirconium-silver alloy called
NARIloy-Z. Due to its computational efficiency, this damage model is suitable for on-line
applications of life prediction and damage mitigating control, and also permits parametric studies
for off-line synthesis of damage mitigating control systems. The results are presented to
demonstrate the potential of life extension of reusable rocket engines via damage mitigating control.
The control system has also been simulated on a testbed to observe how the damage at different
critical points can be traded off without any significant loss of engine performance. The research
work reported here is built upon concepts derived from the disciplines of Controls, Thermo-
Fluids, Structures, and Materials. The concept of damage mitigation, as presented in this report, is
not restricted to control of rocket engines. It can be applied to any system where structural
durability is an important issue.
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NOMENCLATURE

English

A area or valve position, cross sectional area, constant in viscoplastic model

a deviatoric back stress

a,, b, d;, coefficients in stiffness matrix

b, c constant in fatigue damage model

B back stress

C constant, constant in fatigue damage model

C, constant pressure specific heat

C, constant volume specific heat

d thickness of the core of sandwich beam

d,, d, distance between the centroids of the thin faces to the beam mid-plane in the
sandwich beam model

D diameter, damage measure, drag stress

D, material constant

E Young's modulus

f friction coefficient

F function in viscoplastic model

g gravity

G G, function or material constant in viscoplastic model

h inelastic material constant -

h, convective heat transfer coefficient

H enthalpy, inelastic material constant

Hpmp pump head

Head pump pressure head

I moment of inertia

I, square of ¢, norm of the deviatoric back stress

I, square of ¢, norm of the effective stress

k specific heat ratio, heat conductivity, Boltzmann constant

K, K, function or material constant in viscoplastic model

K material parameter in fatigue damage model

1 half length of the beam

I, m,n,p,r, dimension s of vectors and matrices

L length, limiting value of the back stress

m material parameters

M Mach number, bending moment,

M,R,Q,S weighting matrices

n, n material parameters

N tensional force, total number of steps in the optimization problem

MR O, / H, mixture ratio

p distributed force per unit length
P pressure
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structural output vector of the structural model
volume flow rate, activity energy

heat flux rate

recovery function in the viscoplastic model
characteristic gas constant

effective area ratio

turbopump speed, deviatoric stress, material constant
time

absolute temperature

axial displacement

input vector of the plant model

velocity

~ damage state vector

power, volume

mass flow rate

mid-plane radial deflection, weight in fatigue damage model
Cartesian coordinate

state vector of the plant model

torque

output vector of the plant model

Zener- Hollomom parameter

coefficient of thermal expansion, back stress
natural upper bound of the valve position

damage rate constraint vector

material parameter

damage, linear fatigue damage

radial deflection of the two faces of the ligament

normal strain
parameter in nonlinear fatigue damage model

function

curvature angle in the sandwich beam
efficiency, dummy variable in the integration
mid-plane curvature

thickness of each face in the sandwich beam
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actual thickness of the coolant channel ligament
density

averaged density

damage accumulation constraint vector
stress

effective stress
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CHAPTER 1
INTRODUCTION

The concept of Damage Mitigating Control (DMC), also known as life extending control
(Lorenzo and Merrill, 1991a), has been recently introduced by Ray et al. (1994a, 1994b), and
Ray and Wu (1994a) for structural durability of complex thermo-mechanical systems such as
spacecraft, aircraft, and power plants. The key idea of this DMC concept is extension of the
service life of critical plant components while simultaneously maximizing the plant performance.
Potential benefits of DMC include the following:

+ Plant performance enhancement without overstraining the mechanical structures;
+ Life extension of the plant with increased reliability, availability and durability;
» Reduction of plant operational cost via predictive maintenance and diagnostics;

* Risk reduction in the integrated control-structure-materials systems design.

However, the traditional approach to decision and control systems synthesis for thermo-
mechanical systems, which is often based upon the assumption of invariant damage
characteristics of materials, may lead to either of the following events:

» Less than achievable performance due to overly conservative design;
« Unexpected failures and drastic reduction of the useful life span due to over-straining of
mechanical structures.

For example, the original design goal of the Space Shuttle Main Engine (SSME) was specified
for 55 flights before any major maintenance, but the current practice is to disassemble the engine
after each flight for maintenance (Lorenzo and Merrill, 1991b). A major concern in the control
systems design and plant operations is to assure reliable and satisfactory long term performance.
From these perspectives, damage mitigating control systems need to be synthesized by taking
performance, mission objectives, service life, and maintenance and operational costs into
consideration in order to achieve high performance and extended service life. A major goal of
the control system is then to achieve an optimum trade-off between performance and structural
durability of the critical plant components. The challenge here is to characterize the thermo-
mechanical behavior of structural materials for life prediction in conjunction with dynamic
performance analysis of the thermo-fluid process, and then utilize this information in a
mathematically and computationally tractable form for synthesizing algorithms of robust control,
diagnostics and prognostics, and risk assessment in complex mechanical systems.

Although a significant amount of research has been conducted in each of the individual areas
of structural and thermo-fluid analysis, life prediction of materials, and synthesis of decision and
control systems, integration of these disciplines for optimal design of complex thermo-
mechanical systems has not apparently received much attention. As the science and technology
of materials continue to evolve, methodologies for analysis and design of thermo-mechanical
systems must have the capability of easily incorporating an appropriate representation of material
properties, structural behavior, and thermo-fluid dynamics in the control systems analysis and
synthesis procedure. In view of integrated structural and flight control of advanced aircraft, Noll
et al. (1991) have pointed out the need for interdisciplinary research in the fields of active control
technology and structural integrity, specifically fatigue life assessment and aero-servo-elasticity.
This report attempts to formulate a unified methodology for damage mitigating control systems
synthesis for reusable rocket engines such as the SSME. However, this concept of damage
mitigation is not restricted to reusable rocket engines; it can be applied to any system where
structural durability is an important issue.



1.1 Literature Review

This section presents the literature review for each of the following interdisciplinary
research areas, namely, thermo-fluid dynamic modeling of rocket engines including the SSME,
structural and damage modeling of the main thrust chamber, and synthesis of damage mitigating
control systems.

1.1.1 Dynamic Modeling of a Reusable Rocket Engine

Finite-dimensional modeling has been recognized as a valuable tool for predicting dynamic
performance of complex thermo-mechanical systems such as rocket engines, turbojet or turbofan
engines, and electric power plants at a macroscopic level. For complex process dynamics, it is
important to have a plant model which is computationally tractable and predicts transient
performance with sufficient accuracy for the purpose of control systems synthesis. Both wide-
range nonlinear models and piece-wise linear models are useful for different applications.

A nonlinear model representing the dynamic characteristics of the Space Shuttle Main
Engine (SSME) has been developed by Rockwell (1989). Due to its size and complexity,
however, this nonlinear model is not readily adaptable for synthesis of control and diagnostics
systems. Linear dynamic models of the SSME at several different operating points were
generated by Duyar et al (1990, 1991) using system identification techniques. However,
applications of piece-wise linear models are limited in the sense that these models are only
accurate in the vicinity of the operating points. The interpolation or extrapolation away from
these operating points may yield unacceptable inaccuracy and possible discontinuity leading to
performance degradation or instability of the control system.

To circumvent the difficulties of the above two approaches, namely, complexity of a high
order nonlinear model and the narrow operating range of a linear model, a reduced order
nonlinear model of a reusable rocket engine is formulated to synthesize a damage mitigating
control system. This model is computationally less complex than the high order nonlinear model
of Rockwell (1981) and yet remains valid over the operating conditions of 1200 psi to 3000 psi
of the main thrust chamber pressure. The model equations and the underlying assumptions for
major components of the rocket engine are presented in Chapter 2,

1.1.2 Structural and Damage Modeling of Reusable Rocket Engines

The critical components, under consideration, of a rocket engine such as the SSME are the
fuel and oxidizer turbine blades and the main thrust chamber coolant walls. A literature review
on fatigue failure of turbine blades is presented in the earler NASA report (Ray and Wu, 1994a).
In this section, only the literature pertinent to life prediction of the main thrust chamber is
reviewed.

1.1.2.1 Life Prediction of the Main Thrust Chamber

Hannum et al. (1976) conducted a test program including 13 rocket combustion chambers
with oxygen-free high-conductivity (OFHC) copper and a copper-zirconium alloy (~99.85% Cu
and ~0.1% Zr) called Amzirc. Quentmeyer (1977) investigated low-cycle thermal fatigue for 22
cylindrical rocket thrust chambers with OFHC copper, Amzirc, and a copper-zirconium-silver
alloy (~96.5% Cu, ~3.0% Ag, and ~0.15% Zr) called NARloy-Z. It was revealed that the
progressive deformation indicated by incremental bulging-out and thinning of the ligaments
occurs before the development of a fatigue failure. This is especially true for OFHC copper
during the heating and cooling processes associated with each cycle of engine operation. As
thermo-mechanical loading cycles continue, the inelastic ratcheting strains induce incremental
bulging-out and progressive thinning of the ligament down to the critical value, and eventually
lead to failure by tensile rupture. Both Hannum et al. (1976) and Quentmeyer (1977) identified
the prime cause of coolant wall failures to be the creep rupture enhanced by ratcheting. In their
opinion, fatigue is not the dominant mechanism for ligament failure.



1.1.2.2 Structural Modeling of the Main Thrust Chamber

For the purpose of damage mitigating control, the basic requirements of the structural and
damage model of the main thrust chamber ligament are:

« Numerical efficiency of the model;
« Continuity of the time derivative of the damage with respect to time.

Nonlinear finite element approaches have been reported in literature for analyzing inelastic
structures of complex geometry such as the coolant channel ligament under cyclic loading.
Armstrong (1979, 1981) reported inelastic structural analysis of three cylindrical thrust
chambers, constructed from different copper alloys using a nonlinear finite element analysis
method. Kasper (1984) presented structural analysis and life prediction of the coolant channel
ligament, made of NARloy-Z, for a typical mission of the SSME. In these studies, a structural
model based on inelastic nonlinear finite element analysis was used to determine the cumulative
plastic deformation leading to thin-out and tensile rupture. The results indicated that the cyclic
creep phenomenon is significantly accelerated at elevated temperatures. However, for the
purpose of damage mitigating control and on-line life prediction of reusable rocket engines, the
finite element approach is not practicable because of the exceptionally large requirements of
computational resources.

An attempt was made by Porowski et al. (1985) to formulate a structural model of the
coolant channel ligament as a rectangular beam for life prediction of the main thrust chamber. In
this model, the incremental bulging-out and progressive thinning at the center of the coolant
channel ligament were approximately calculated based on the elasto-plasticity theory which does
not account for the interactions between creep and plasticity. Although this approach permits
approximate life prediction of the thrust chamber coolant channel ligament at the end of each
complete firing cycle, it can not provide the incremental bulging-out and thinning of the ligament
at each instant of time within a firing cycle, which is necessary for damage mitigating control
[Ray et al., 1994c].

Since the above approaches do not satisfy the requirements for damage mitigating control of
reusable rocket engines, it is necessary to develop a new structural and damage model for the
main thrust chamber ligament such that this model is suitable for control and on-line life
prediction. The proposed analytical model is built upon the concepts of sandwich beam
approximation (Robinson and Amold, 1990) and viscoplasticity (Freed, 1988), and is capable of
representing the phenomenological effects of inelastic strain ratcheting, progressive bulging-out
and incremental thinning in the coolant channel ligament. The proposed model also considered
progressive changes in the ligament geometry and the nonlinear effects of creep and plasticity
interactions which are important for calculation of inelastic stress-strain relations and also for life
prediction. A major feature of this structural and life prediction model of the coolant channel
ligament is its numerical efficiency, which allows real-time damage monitoring and control.

Control Input Plant State Load ' Damage
Vector Plant Vector Vector [ Damage Vector
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Figure 1.1 The damage prediction system

1.1.3 The Damage Mitigating Control System

The motivation and concept of damage mitigating control have been introduced by Ray et al.
(1994c, 1994d). Fig. 1.1 shows a conceptual view of the damage prediction system, which is an
essential ingredient of the damage mitigating control system. The plant states are inputs to the
structural model which, in turn, generates the necessary information for the damage model. The



damage model is constructed in continuous-time such that the process and damage dynamics can
be simultaneously incorporated within the framework of the control system in the state-variable
setting. A major objective is to quantitatively evaluate the effects of damage rate and damage
accumulation on structural durability under time-dependent thermo-mechanical loading. The

damage state vector v(t) indicates, for example, the level of creep and fatigue damage

accumulation at one or more critical points, and its time derivative v(t) indicates how the
instantaneous load is affecting the structural components (Ray and Wu, 1994b).

1.2 Objectives and Synopsis of the Report

The discussions above evince the need for interdisciplinary research in the fields of thermo-
fluid dynamics, structural dynamics, thermo-mechanical fatigue and creep, and robust control
and decision for enhancement of structural durability and performance of rocket propulsion
systems (Ray et al., 1994d). Fig. 1.2 shows a schematic representation of a damage mitigating
control system which is constructed by integrating the above four interacting disciplines to
achieve optimized trade-off between the system performance and structural durability of a
reusable rocket engine . The procedure for synthesizing a damage mitigating control system for
rocket engines is partitioned into the following four tasks:

Task 1: Modeling of the process dynamics of the rocket engine for control system synthesis and
damage evaluation;

Task 2: Modeling of the structural dynamics and damage dynamics of the critical components
such as blades of the fuel and oxidizer turbines and the coolant channel ligament in the
main thrust chamber;

Task 3: Analysis and synthesis of a feedforward control policy for open loop control of up-
thrust transients of the rocket engine;

Task 4:  Analysis and synthesis of a feedback control to track the desired open loop trajectory.

The model formulation in Task 1 and Task 2 involves thermal-fluid-structure-materials
systems interactions and must satisfy the following two criteria:

* The model must be sufficiently accurate for damage prediction, plant performance
analysis, and control systems synthesis;

* The governing equations must be mathematically and computationally tractable to
generate feasible solutions for integrated systems optimization.

In essence, the model must be accurate and numerically efficient for systems analysis and control
synthesis and, at the same time, provide the necessary information for life prediction and plant
performance evaluation. Task 3 optimizes the plant dynamic performance while maintaining the
damage of critical components of the rocket engine within the prescribed limits. Task 4
compensates for external disturbances and uncertainties in modeling of plant dynamics and
damage dynamics. ,

The research work in this report focuses on the first three tasks in which a damage
mitigating control methodology has been formulated for structural durability and performance
enhancement of reusable rocket engines such as the SSME. A unique feature of the proposed
damage mitigating control is that a substantial gain in service life and maintenance cost can be
achieved with no significant reduction in engine performance. The trade-off between service life
and performance is obtained by integrating the plant model with the damage model which
provides the fatigue/creep damage information for control analysis and synthesis.

A finite-dimensional state-space model of the thermo-fluid propulsion dynamics has been
formulated based on the fundamental principles of fluid flow and thermodynamics. The critical
plant components that are prone to failure include the fuel and oxidizer turbine blades, and the
main thrust chamber coolant wall. Inputs to the structural models are time-dependent plant



variables such as turbopump rotational speed and torque, main thrust chamber pressure and
coolant wall temperature. The output of the structural model is the load vector which may
consist of time-dependent variables such as stress and strain at the critical components, namely,
blades of the fuel and oxidizer turbines and the coolant channel ligament in the main thrust
chamber. The structural model of the coolant channel ligament captures the thermo-elastic-
viscoplastic material behavior under both temperature and pressure variations in the main thrust
chamber. The creep damage in the coolant wall is predicted based on the bulging-out and
progressive thinning phenomena due to creep ratcheting and plastic strain. Based on the
integrated model of plant, structural and damage dynamics, an optimal open loop control policy
is synthesized in the feedforward control module via nonlinear programming for given user
specified damage constraints on the critical components. Synthesis of a robust feedback control
law is being pursued as an ongoing effort and is not addressed in this report. However, all four
aspects of the damage mitigating control shown in Fig. 1.2 have been simulated on a multi-
computer testbed to demonstrate feasibility of the proposed damage mitigating control concept
for reusable rocket engines.
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Figure 1.2 Schematic diagram of the damage mitigating control system



1.3 Contributions of the Reported Research Work

This report presents a unified methodology for damage mitigating control systems analysis
and synthesis where the objective is to achieve optimized trade-off between the system
performance and structural durability of reusable rocket engines such as the SSME. The
proposed methodology integrates the disciplines of thermo-fluid dynamics, mechanical
structures, and mechanics of materials along with control and optimization of dynamic systems.

The major contribution of this report is the formulation of a new structural and damage
model of coolant channel ligaments of the main thrust chamber for both on-line life prediction
and damage mitigating control of reusable rocket engines. The structural and damage model is
developed based on the theories of sandwich beam and viscoplasticity. This structural model has
proven to be numerically much more efficient than other finite element analysis models, and is of
comparable accuracy. To the best of the authors' knowledge, no other structural and damage
model of the main thrust chamber wall is suitable for both control systems synthesis and on-line
life prediction of rocket engines.

Besides rocket engines, the proposed methodology of damage mitigation and life prediction
is directly applicable to any thermo-mechanical process such as stream-electric power plants,
land-based gas turbines, and aircraft engines where structural durability is a critical issue.

1.4 Organization of the Report

This report is organized into six main chapters including the introduction. Chapter 2
presents a simplified nonlinear model of the thermal-fluid dynamics of a rocket engine, similar to
the SSME, which is the plant under control. The results of steady state solutions and transient
responses are discussed. The first part of Chapter 3 presents a brief review of the structural
model and the continuous-time fatigue damage model of the turbine blades, which are based on
linear finite element analysis and nonlinear strain-life approach. In the second part of Chapter 3,
a new structural and damage model of the coolant channel ligament is developed based on the
theories of sandwich beam and viscoplasticity. By comparison with the nonlinear finite element
analysis reported by other investigators, Chapter 4 validates the proposed structural and damage
model of the coolant channel ligament for two different materials, namely, oxygen-free high-
conductivity (OFHC) copper and a copper-zirconium-silver alloy called NARloy-Z. A series of
parametric studies have been conducted corresponding to different design factors of the main
thrust chamber coolant wall, such as ligament materials and configurations, thermo and
mechanical loading, and loading cycle duration of the rocket engine. Chapter 5 discusses the
procedure of the damage mitigating control synthesis, and formulates an optimal policy for
feedforward control of up-thrust transients of rocket engines. Results of simulation experiments
and parametric studies are presented for different damage constraints and different initial damage
of the critical components. Chapter 6 summarizes and concludes the report along with the
direction for future research and potential technology transfer.



CHAPTER 2
THERMO-FLUID DYNAMIC MODELING OF THE REUSABLE ROCKET ENGINE |

This chapter presents a nonlinear dynamic model of the thermal-fluid dynamics in a reusable
rocket engine. The purpose of this model is to represent the overall dynamic performance and
component interactions with sufficient accuracy for control synthesis and damage prediction.
The governing equations used in the model are based on the fundamental principles of physics as
well as on the experimental data under a variety of plant operating conditions. The model is
formulated in the state-variable setting via nonlinear differential equations with time-invariant
coefficients.

The operating principles of the rocket engine under consideration are briefly described in
Section 2.1. Section 2.2 presents the development of the nonlinear dynamic model equations
using lumped parameter approximation. Section 2.3 discusses the results of simulation
experiments for model evaluation where the transient responses of the plant state variables due to
independent step disturbances in the control inputs are presented.

2.1 Description of the Reusable Rocket Engine

The reusable bipropellant rocket engine, under consideration in this report, is similar to the
Space Shuttle Main Engine (SSME). Fig. 2.1 shows a functional diagram for operations and
control of the rocket engine. The propellants, namely, liquid hydrogen and liquid oxygen, are
individually pressurized by separate turbopumps. Pressurized liquid hydrogen and oxygen are
pumped into individual high-pressure preburners which feed the respective turbines with fuel-
rich hot gas. The exhaust gas from each turbine is mixed in the common manifold and then
injected into the main combustion chamber where it burns with the oxidizer to make most
efficient use of the energy liberated by combustion. The oxygen flow into each of the two
preburners is independently controlled by the respective servo-valve while the valve position for
oxygen flow into the main thrust chamber is held in a fixed position to derive maximum possible
power from the engine. The plant outputs of interest are O, / H, mixture ratio and combustor
pressure which are closely related to the rocket engine performance in terms of thrust-to-weight
ratio and engine efficiency. The liquid hydrogen is used as a regenerative coolant for the walls
of the combustion chamber and thrust nozzle where structural integrity is endangered by the high
temperature environment. The pressurized liquid fuel is circulated through the coolant jackets to
absorb the heat transferred from the hot reaction gases to the thrust chamber and nozzle walls.

2.2 Development of Plant Model Equations

Standard lumped parameter approaches have been used to model the thermo-fluid dynamics
of the engine in order to approximate the partial differential equations describing mass,
momentum, and energy conservation by a set of first-order differential equations with time as the
independent variable. The plant model is constructed via causal interconnection of the primary
subsystem models such as the main thrust chamber, preburners, turbopumps, valves, fuel and
oxidizer supply headers, and regenerative cooling systems. Fig. 2.2 shows a model solution
diagram (Ray, 1976 and Ray and Bowman, 1978) of the engine corresponding to the functional
diagram in Fig. 2.1. Each block in Fig. 2.2 represents a physical plant component or subsystem.
The governing equations for the lumped parameter model of the plant dynamics are described in
the following sections. In addition to the basic assumption of the lumped parameter approach,
other pertinent assumptions are stated while describing the models of the individual subsystems.

2.2.1 Fuel and Oxidizer Turbopump Subsystems

The rocket engine has two sets of turbopumps, namely, low pressure and high pressure, for
each of the two propellants. A simplified representation of the dynamic characteristics of the



rocket engine is developed by lumping the low pressure and high pressure turbopumps into a
single subsystem for each of the fuel and oxidizer propellants as shown in Fig. 2.1. On the
oxidizer side, however, two pumps are modeled to obtain two sources of oxygen at different
pressures. Model equations for the fuel and oxidizer turbopumps are given in Table 2.1 and
Table 2.2, respectively.

Models of the hydraulic pump subsystems are derived based on the following assumptions:

(a) The pump head which is proportional to the difference between static pressures at the
suction and discharge is derived based on the assumptions of: (i) one-dimensional steady
incompressible flow with negligible heat transfer; (ii) identical fluid velocities at the suction and
discharge section of the pump; and (iii) no change in potential energy

(b) The static performance of the pump is based on empirical characteristics (Rockwell,
1989) where the pump head APpyp, power Vpyp, and efficiency mMpyp are modeled as
functions of the ratio of mass flow rate, Wpyp, to pump speed S:

APpypp o< S2®1(0); Vpp o S ®(©); and Tippp < SP3(O) 2.1

where © = Wppp / S, and the functions @, ®,, and ®; are obtained from Rockwell (1989).

Therefore, the outputs of the pump model, namely, pump discharge pressure, temperature,
enthalpy, and torque, can be obtained from the pump characteristics and thermodynamic state
relations.

The governing equations for the turbine model are formulated under the following
assumptions:

(c) The working fluid in the turbine is a perfect gas and the expansion process in the turbine
is adiabatic. For the ideal frictionless process, the following relationship holds:

k-1)/k
Tin / Touideal = (Pin / Pout )( ) (2.2)

where T is the absolute temperature, P is the pressure, the subscripts "in" and "out" respectively
indicate the inlet and the outlet of the turbine, the subscript "ideal" stands for the idealized
isentropic condition, and k is the ratio of the specific heats at constant pressure and temperature,
which is assumed to be a constant within the operating range of turbine.

(d) No loss of pressure and enthalpy occurs between the preburner outlet and turbine inlet.
That is,

Ppgr = P1rp in; @nd Hppr = H1gp in (2.3)

(¢) Flow through the turbine is assumed to be choked, and the kinetic energy of the fluid in
the preburner chamber is negligible such that the stagnation pressure and temperature, P* and

T", are respectively identical to the static preburner pressure and temperature, P and T.
Therefore, the mass flow rate WTRrp through the turbine can be expressed as:

PTRBin Pper Ppar
WTRB = C " - = C“—*— = C = (2.4)
:] T1rB,in VTpgr V Tppr
where the coefficient C is calculated from the steady-state data.

(f) The turbine efficiency and the output torque are obtained from the empirical
characteristics of the turbine (Rockwell, 1989) as:
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where ideal (i.e., isentropic) enthalpy drop AH;4.,; is given as:
k-1

Tout ; Poutideal | k
AHideal — CpTin(l _ 01;\[t‘,1dea1 J - CpTin 1 _( out,ldeal) (2.6)
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The outputs of the fuel and oxidizer turbine models, namely, turbine pressure, temperature,
enthalpy, flow rate, and output torque are obtained from thermodynamic relations as delineated
in Tables 2.1 and 2.2, respectively.

The state variables in the fuel and oxidizer turbopump subsystems are respectively the shaft
speeds Spyp and Sgpyp- The power delivered by each turbine is equal to the sum of the power

required by the propellant pump, and power losses in the bearings, gears, seals, and wear rings.
Therefore, the dynamics of shaft speed in each turbopump are given in terms of the difference in
torque as:

ds
IE = (XTRB - XPMP) (27)

where I is the moment of inertia and X indicates the torque.

2.2.2 Preburner Fuel and Oxidizer Supply Header Subsystems

The model equations of the preburner fuel and oxidizer supply header subsystems are listed
in Table 2.3. The equations of fuel flow to each preburner are approximated to simplify the
complexity of flow boundaries. The fuel flow to the two preburners accounts for the mixture of
the coolant flow from the primary nozzle cooling region and the primary nozzle bypass. The
governing equations of the fuel flow through the preburner header are derived under the
following assumptions:

(a) The preburner fuel supply pressure Pgpg is proportional to the fuel flow pressure at the
main fuel valve.

(b) Two coolant flows, namely, main chamber coolant flow ( W ~gr) and primary nozzle
coolant flow (Wyozg ), varies in proportion to the total fuel flow (Wpyp). Since the coolant
control valve position is held fixed, it is treated as fully open. Accordingly, the fixed nozzle
bypass flow Weypp is obtained by subtracting the main chamber coolant flow and the nozzle
coolant flow as:

Wemsr = ComerW pmp (2.82)
Wnozr = CnozeWemp (2.8b)
Wenep = Wemp — Wemer — Wrozr : (2.8¢)

By neglecting the dynamics due to fluid inertance in the flow passages, the above simplifications
(a) and (b) reduce four differential equations of momentum conservation into four algebraic



equations. This approximation only affects the model accuracy at high frequencies because of
relatively small fluid inertance.

(¢) For one dimensional, incompressible uniform flow through a pipeline or valve and
neglecting the body force, the friction pressure drop through a pipeline or valve is expressed as:

2
AP = f.I'_'Egz_ = CM}Y_, C= fLLZ , for pipeline (2.9a)
D2A p D2A
2
AP = f£29_ = [WW , C=f L 1 R, = é for valve (2.9b)

D 2pAZ’ A
The state variables of the preburner fuel and oxidizer supply headers are:

* Wyppy and Wyppo (fuel mass flow rates into the fuel and oxidizer preburners);
* Woppy and Woppo (oxidizer mass flow rates into the fuel and oxidizer preburners).

The derivatives of the above four state variables are obtained from conservation of linear
momentum over a control volume of a pipeline,

[WIW

d
E;(W) =C;(Pip —Pout —C (2.10)

where p is the average fluid density and Cy is the inverse of equivalent fluid inertance.

2.2.3 Main Chamber Fuel Injector Subsystem

The fuel injector mixes the two branches of fuel-rich exhaust hot-gas from the two turbines
and a small amount of fuel from the combustion chamber coolant path. Model equations for the
preburners, main thrust chamber, and fuel injector are listed in Table 2.4. The governing
equations of the fuel injector subsystem are derived under the following assumptions:

(a) The flow of an incdmpréssible workinrgi fluid at a low Mach number (e.g., M< 03) is
governed by the following relation (Blackburn et al., 1960) by assuming that the subsonic
velocities exist throughout the orifices:

Q=vA= C'dA\/ 2P —Pou)/ P (volumetric flow rate) (2.12a)
W =Qp=Cy+2(Pi; — Pout)P (mass flow rate) (2.12b)

where P is the average density which is approximated as the gas density PcMB at the combustor.

(b) The flow into the fuel injector manifold is the sum of two turbine exhaust flows, Wgrp
and W g, and main combustion chamber coolant flow W ¢ygp. The manifold pressure Pppny
is derived form Eq. (2.12b) as:

2
(Worg + W +W )
PFINJ - TRB ZOTR CMBEF + PCMB (2.13)
CapPcmB

(¢) The mixed gas temperature at the fuel injector manifold is obtained as a weighted
average of the two turbine inlet temperatures, Tpggr and Topg, and the main chamber coolant
flow temperature, TCMBF' That iS, TFINJ =C0TPBR +C1T0PB+C2TCMBF where the
coefficients, Cy4, Cy, C;, and C, are obtained from the steady-state data under normal operating
conditions.
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2.2.4 Oxygen Control Valve Subsystem

The nonlinearities of control valves are compensated by inducing the inverse characteristics
of valves (Rockwell, 1989) in the control signal such the valve command becomes proportional
to the valve area under steady-state operations. The oxygen control valve subsystem model has
two state variables, namely, fuel and oxidizer preburner valve rotary positions. The dynamics of
each valve are represented by a first order lag as:

d A -U
d_( Agppy ) = —REEY__FPV (2.15a)
t TFPV
d A -U
—5_ ( AROPV ) = ROPVY OPV (2 1 Sb)
t Topv

where Ugpy and Ugpy are the commands to the oxygen control valves, and Agppy and Agopy

are the effective areas of the oxidizer control valves, and 7 is the time constant of the respective
valve.

In solving the nonlinear optimal open loop control problem, the two commands Ugpy and

Ugpy correspond to the decision variables in the nonlinear programming which are bounded
above and below via specified constraints.

2.2.5 Preburner and Combustion Subsystems

The dynamic equations for the combustion process are developed by employing the
principles of conservation of mass and energy with following assumptions.

(a) Conservation of momentum is satisfied by assuming that gas pressure and temperature
in the combustion chamber are spatially uniform although they are time-dependent, and the
kinetic energy due to gas velocity in the chamber is negligible. This assumption is valid for a
low-frequency dynamic representation, and precludes the process of high-frequency acoustic
propagation.

(b) One-dimensional unsteady flow in the combustion chamber is represented by a first
order differential equation of the rate change of mixture gas density which is related to the mass
flow into and out of the chamber via conservation of mass.

Loy =Yin= Wou 2.16)
where Vg is the volume of the combustion chamber.
(c) The conservation of energy equation yields:
d
E(CVVPT) =X Wi Hjp =X Wo, Hoy + FW02 — Qheat (2.17)

where F is the energy liberated by per unit mass of oxygen from a macroscopic point of view of
the chemical process where the reaction dynamics is assumed to be instantaneous. Qj.,, is the
heat transfer rate from the control volume to the coolant channel wall.

(d) Based on the thermodynamic relationship of the perfect gas law, the average gas
temperature in the combustion chamber is given as: Ty = Peomp / (Pcmp R) where R is the

characteristic gas constant. Therefore, the derivative of the main chamber pressure is obtained
by rewriting the energy Eq. (2.17) as:
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d
'a—t(PCMB) = (WensHreng + WemsoHor2e — WrozHems

+WempoF — Qemew) / (CvVems / R)
(e) The flow through the nozzle throat is choked.

The model equations of the preburner and combustor are given in Table 2.4. The six state
variables in two preburners and main combustion chamber are:

(2.18)

» Ppgp and Rppg: (Fuel preburner chamber gas pressure and density);
» Popp and Rgpp: (Oxidizer preburner chamber gas pressure and density);
e Pcyg and Reyp: (Main thrust chamber hot gas pressure and density).

The governing equations in preburners are similar to those in the main chamber because of
the similarity of the physical processes.

2.2.6 Main Thrust Chamber/Fixed Nozzle Cooling Subsystems

The basic relations governing the thrust chamber performance, such as specific impulse,
combustion temperature and pressure, are calculated based on the thermodynamic principles of
ideal rocket propulsion systems (Sutton, 1992). The following assumptions are used to derive
the governing equations of heat transfer in the coolant channel wall.

(a) The hot-gas velocity, pressure, temperature, and density are uniform across any Cross-
section normal to the nozzle axis.

(b) No shock waves or discontinuities exist in the flow through the convergent-divergent
nozzle, and the boundary layer effects are neglected. The energy equation applied across the

nozzle throat and nozzle exit yields the exit temperature T, as a function of the throat
temperature, T, and exit Mach number M.

I S
k-1
1+ ——M?
2
where the exit Mach number M can be obtained as a function of the throat/exit pressure ratio,

P, / P, and throat/exit area ratio, A; / A, by combining the energy and continuity equations:

' 2
I N _ AP
M=-— 1+\ﬂk 1)(1<+1)(A > J +1 (2.20)

T, = T, (2.19)

- ele

In the simplified model of the main thrust chamber coolant channel subsystem in Fig. 2.3,
heat transfer rates and wall temperatures are derived using a lumped parameter model with two
nodes. The model equations of the main chamber and nozzle regeneration cooling heat transfer
subsystems are listed in Table 2.5. The heat transfer process is characterized by three different
mechanisms, namely, convective heat flux from the hot gas to hot-side of the coolant wall, the
conductive heat flux through the wall from the hot-side to the cold-side, and the convective heat
flux from the cold-side of the wall to the liquid coolant as shown in Fig. 2.3.

(c) The conduction heat transfer rate is expressed in terms of a constant thermal
conductivity of the coolant wall material and the temperature difference between the hot and cold
sides as:
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Quk = (%)(Tw2 -Tw1) (2.21)

where k is the coefficient of thermal conductivity, and A is the area of heat transfer.

(d) Convective heat transfer is associated with the mass transfer in a fluid boundary layer
over a fixed wall. In Fig. 2.3, the rates of convective heat transfer Q,,, and Q¢ are given as:

Qgw =h A(T; -T,,;) from the hot gas to hot-side wall (2.22a)
Qur =hiA(T,, - T¢) from the cold-side wall to coolant (2.22b)

where h, is the convective heat transfer coefficient, T,,, and T,,; represent hot-side and cold-

side wall temperatures, respectively, and T; represents the bulk temperature of the liquid

coolant. The convective heat transfer coefficient is described as a function of the fluid mass flow
rate W and other system parameters at specified operating conditions using the following
empirical correlation (Rockwell, 1989):

h, o W08 from the hot gas to hot-side wall (2.23a)
h, o< (1+CT;)WO?8 from the cold-side wall to coolant (2.23b)

For a thermal system composed of a material of density p, specific heat Cp, and a constant
volume V, the energy balance equation takes the following form:

pch% = Qin () = Qoy () + Qgen () + 8“(’1—?* (2.25)

where Q;, or Q,,, is the heat flux entering or exiting the control volume, Qgen is the rate of heat

generated within the control volume, and 6Work / dt is the time derivative of the work done
upon the control volume.

Two wall temperatures at the two nodes on the hot and cold sides of the coolant channel
wall, Tcypw and Teypww, and hydrogen coolant temperature, Toypwr, are the three state
variables in the heat transfer model of the thrust chamber coolant channel. In reality, these state
variables correspond to wall temperatures at the throat location where the heat flux is the highest
and failure is most likely to occur. In contrast, the thrust chamber nozzle is relatively less prone
to failure because of lower temperature. One lumped heat transfer node with two state variables
is used to model the heat transfer through the nozzle coolant channel. The five state variables in
the heat transfer model of the combustion and nozzle walls are:

* Temwi and Tepwo are the cold-side and hot-side temperatures of the combustor wall.
* Tcmpwr and Tyozwe: are coolant fluid temperatures in the combustor and nozzle.

* Tnozw is the average wall temperature of the nozzle.
Derivatives of wall temperatures, Tcoywi, Temwz, and Tyozw, are obtained via Eq. (2.25) as:
d

E(TCMWI) = (Qcmeww — Qemewr) / Compwe (2.262)
d .

@ (Temw2) = (Qcemew — Qemeww )/ Cemawe (2.26b)
d

3t Temwr) =[Qcmpwr + Wemsr Ce n, (Tempe ~ Tomsr)l/ Comere (2.26¢)
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The cold-side and hot-side temperatures, Tcywi and Topw2 . of the combustor wall are denoted
as T and T, for brevity in the creep damage model in Chapter 3.

2.3 Simulation of Transient Responses of the Rocket Engine

In the thermo-fluid-dynamic model of the rocket engine derived above, the plant state vector
consists of twenty state variables, two control inputs, and ten output variables as listed below:

State Variables:

Fuel Turbopump shaft speed Oxidizer Turbopump shaft speed

Main thrust chamber hot-gas pressure Main thrust chamber hot-gas density

Fuel preburner oxygen flow valve position Oxidizer preburner oxygen flow valve position
Fuel preburner hot-gas pressure Oxidizer preburner hot-gas pressure

Fuel preburner hot-gas density Oxidizer preburner hot-gas density

Fuel flow rate into the fuel preburner Fuel flow rate into the oxidizer preburner
Oxygen flow rate into the fuel preburner Oxygen flow rate into the oxidizer preburner
Hot-side coolant wall temperature Oxidizer flow rate into the main thrust chamber
Cold-side coolant wall temperature Nozzle cooling tube wall temperature

Main thrust chamber coolant temperature Nozzle coolant temperature

Control Inputs:

Fuel preburner oxidizer valve position Oxidizer preburner oxidizer valve position
Output Variables for Life Prediction and Plant Control:

Main thrust chamber pressure (0, / H,) mixture ratio

Fuel turbopump shaft speed Oxidizer turbopump shaft speed

Fuel turbopump torque Oxidizer turbopump torque

Hot-side coolant wall temperature Cold-side coolant wall temperature

Main thrust chamber coolant temperature Main thrust chamber coolant pressure

2.3.1 Steady State Response Simulation

A comparison of the steady-state data between the present nonlinear model and a more
detailed model (Rockwell, 1989) is given in Table 2.6 for the engine combustion pressure of
3000 psi at the rated power level (i.e., thrust = 470,000 ¢bf). The steady-state performance data
are obtained in the range of 120% to 40% of the rated main thrust chamber pressure. The model
performance was found to be gradually degraded below this range. This is mainly due to the fact
that the characteristics of some of the components (e.g., pump and turbine) used in the model
exceed the valid range in the curve fitting or table-lookup of the experimental data.

2.3.2 Transient Response Simulation

Simulation experiments were conducted to generate a series of transients from the nonlinear
dynamic model of the rocket engine for independent step disturbances in the two control input
variables at the rated pressure. Figs. 2.4 to 2.12 exhibit typical results of simulation experiments
to represent the dynamic responses of 25 process variables for the following three cases:

« Case A: 5% step increase in the fuel preburner oxygen valve (FPOV) area;
+ Case B: 5% step increase in oxidizer preburner oxygen valve (OPOV) area;
« Case C: 5% step increase in both FPOV and OPOV areas.

14



Items (a), (b), and (c) correspond to the cases A, B and C in each of Figs. 2.4 to 2.12 where all
parameters are normalized and expressed as the fractional deviations from the nominal operating
condition. The step disturbances were applied at time t=0.05 second to display the steady state
before initiating the disturbances. Dynamic responses were observed for a period of 1.0 second.

Pressure transients at the discharge of the fuel pump and two oxidizer pumps are shown in
Fig. 2.4 for the three cases, in which the discharge pressures increase to higher steady-state
values. However, the percentage magnitudes are different for the three different cases. Fig. 2.5
shows the dynamics of turbine torque and pump torque for both the fuel and the oxidizer
turbopump subsystems. An increase in the hot-gas flow through each turbine results in a higher
turbine torque and increased power for all three cases. As long as the turbine torque exceeds the
pump torque, each of the turbopumps accelerates as seen from the turbopump speed transients in
Fig. 2.6 and then settles down to a higher steady state value. A small initial overshoot in the
transients of the oxidizer turbine torque in Fig. 2.5b for Case B is directly related to the increase
of energy generated by oxidizer preburner where the turbine torque varies with the hot-gas flow
rate and the turbine inlet temperature.

The dynamics of oxygen flow rate into the fuel preburner, oxidizer preburner and main
thrust chamber for all three different cases of input excitation are shown in Fig. 2.7. In Fig. 2.7a,
an increase in the fuel preburner valve area promptly increases the oxygen flow into the fuel
preburner, which causes an increase in the fuel turbine torque. Consequently, the fuel turbopump
speed increases resulting in a larger fuel flow which eventually increases the oxidizer turbine
torque. Hence, oxygen flow into the oxidizer preburner is also increased although its valve area
is not changed. The initial dip in oxygen flow into the main thrust chamber in Fig. 2.7a is caused
by a small pressure drop in the high pressure oxidizer pump discharge as seen in Fig. 2.4a.

Pressure and temperature transients in the preburners and main thrust chamber pressure are
shown in Figs. 2.8 and 2.9, respectively. Higher steady state values of the chamber pressure are
related to the increased energy liberated by combustion. The small initial dip in the main
combustion pressure dynamics in Fig. 2.8a is caused by the dip in oxygen flow into the main
thrust chamber as seen in Fig. 2.7a. The dynamics of 0, / H, mixture ratio is shown in Fig. 2.10,
in which opposite trends are observed for the Case A and B. The lower steady-state value of the
mixture ratio in Fig. 2.10a is due to increased fuel flow resulting from higher fuel pump
discharge as seen in Fig. 2.4a. In contrast, Fig. 2.10b shows s a higher steady-state value in
mixture ratio due to increased oxygen flow. The oscillations in Fig. 2.10c are a consequence of
the combined dynamic effects of Case A and Case B.

Transients of heat flux through the main thrust chamber regenerative cooling channel wall,
consisting of convective heat flux from the hot gas to the wall, conductive heat flux within the
wall, and convective heat flux from the coolant side wall to the coolant fluid, are shown in Fig.
2.11. In each case, the fuel-rich hot-gas flow through the main thrust chamber increases causing
a boost up in the heat flux through the wall. In Case A, liquid hydrogen flow increases due to
increase in the speed of the fuel turbopump and therefore more energy is absorbed from the
chamber wall. The initial transients show an opposite trend in Case B because the fuel flow
initially decreases as a result of an increase in the fuel preburner pressure. Three temperature
transients, namely, hot-side wall temperature, cold-side wall temperature, and coolant fluid
temperature are presented in Fig. 2.12. A reduction in the steady-state value of all three
temperatures are observed in Fig. 2.12a because more energy is absorbed due to the increased
fuel flow. In contrast, a higher steady-state temperature as seen in Fig. 2.12b is due to increased
heat flux generated in the combustion chamber resulting from a higher mixture ratio in the fuel-
rich environment. These two opposing effects are almost balanced as seen in Fig. 2.12¢.
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Table 2.1 The fuel turbopump model equations

Fuel Pump Model Equations

Fuel Turbine Model Equations

Semp = J§Spmp(t)dt + Sppp(0)

Spmp = (X1RB — XPMP) / CoMPMI

Wpmp = (1+ Cpmpw (WapBH + WopBH)
Gpmp = Cpmprg Wemp / Spmp

Gpmpp = Prmpp(Gpmp)

Gpmpp = CpmppSiMpGrMpP

Ppmpe = Pemps + GpmpeD

Vemp = WpMpGpmpD / Rpmepr

Xpmp = Veme / Spmp

Wpmp Y (WPMPR)

SpMp  SPMPR

Epmp = EpmprPpMmPE (GPMmPE)

Vemp (___l__ -1
WpMmp MpmP

GpmpE = (

Hpmpe = CpH, Trmps +

Tempe = Hpmpe / Cp H,

PpER
RpsrRCrU
Hrrpr = Cp pBRTTRBI
_ PrrBE _ PAvg

Prrer  Pper

Tppr = = T1RBI

) A

TTRBE, ideal = CTRBTITTRBI X (GTRBP
PTRBI
WrrB = CTRBW3
v TTRBI

GrreH = 4/Cp, TRB(TTRBI — TTRBE, ideal)

S
GtrBX = CTRBXS A EMP
TRBH
X1RB = C1RBX5W TRBOTRBH
X ®rex (GTRBX)

V1rB = XTRBSPMP

Spmp Yz SpPMPR )
GtreH  GTRBHR
Etrp = ETRBRPTRBE(GTRBE)

G1rBE = (

2
H1reg = HtrBr — GTRBHETRB
Ttree = HTrBE / Cp, TRB
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Table 2.2 The oxidizer turbopump model equations

Oxidizer Pump2 Model Equations

Oxidizer Pump3 Model Equations

Wwo =1+ Corrrw)

X (Wemso + Waeso + WopBo)

Gor2 = Cor26Wwo / Sopmp
Gor2p = Popmpr(Gop2)
2
Gor2p = Cor2pSoPMPGoP2P
Pop2pE = Popmps + Gop2ap
Gor2x = Pop2x(Gop2)
2

Xor2 = Cop2xSopmpGor2x
Vor2 = Xop2Sopmp
Wwo )/ ( Wwor )
SopMP  SopPMPR
Eop2 = Eop2r®Pop2E(Gop2E)
Hop2g = Cp,0, ToPmPs

+ Vopz (__1__ -1

Wwo Mop2

Top2e = Hop2e / Cp 0,

Gopag =(

Wop3 =(Wyppo + WopBo)
Gop3 = CoprzgWor3 / Sopmp
Gopzp = Popmpr(Gop3)

2
Gor3p = Cop3pSopmpGop3p
Poprape = Popmps + Gopap
Gopr3x = Pop3x(Gop3)
2
Xop3 = Cop3xSopmrGop3x
Vor3 = Xor3Sopmp
- Yores, ; FopiR
SopMp  SOPMPR
Eor3 =Eop3rPopr3e(Gop3g)
Hop3g =Cp,0,Top2E
+ VOP3 ( 1 -1
Wop3 Mop3
Topsg =Hop3e /Cp o,

Gor3g

Oxygen Turbine Model Equation

Sopmp = JoSppp (1At + Sopmp(0)

Sopmp = (Xorr — Xop2 — Xop3)/ Copmpr

Por

= Torrr
RopeR Crpy

Tops =

Hotrr = Cp,opsTotrI
Porre _ Prv
Porri  Pors

GOTRP =

A
TorrE,ideal = CorrTITOTRICOTRP

Potri
Worr = Corrws J;—
OTRI

GotrH =+/Cp,0TR (ToTRI — TOTRE, ideal)

S
GtrBX = CTRBX4 GOPMP
OTRH
XTRB = CtrRBX3WOTRGOTRH
X Porrx (GoTRX)

V1rB = XTRBSPMP

SopMmP | ; (SoPMPR
) ( )

GotrRe  GOTRHR

EoTtr = EOTRRPOTRE(GOTRE)

Gotre =(

2
Hotre = Hotri —~ GOTRHEOTR
Totre = Hotre / Cp,0TR

17




Table 2.3 Prebumner fuel supply header model equations

Preburner Fuel Supply
Header Model Equations

Preburner Oxidizer Supply
Header Model Equations

WHPBH = I(SWHPBH (t)dt + WHPBH (O)

Woppn = Jo W opgy (14t + Worsn (0)

Pmrvp = Pempe — ComprvWeme|Wenp
Pgps = CprpsPMFVD

Wemsr = ComrW pmp

Wrorr = CnorrWemp

Wenep = Wemp — Wemsr — Wozr
Hnozee = Cp.n, TNozF

Hgps = (WnozeHnozre + WrnepHpmpE)

/ (Wyppy + WorsH)

Wpen = Crrwo(Pers — Peer

|W ppr|W HpBH )

= Chuwi
Rpps

Wopen = Conwo(Pprs — Pops

|Wopen|W opsn )

- Conwi R
Rprs

Wipso = Jo W ppo (D4t + Wrpso (0)
Woppo = Jo W gppo (Dt + Wopso (0)
Wemso = Jo W onpo (D4t + Wempo (0)

Agrppv = CrpvaRAPPY
Aropv = CopvarAopPv

Agrmov = 1.0
Wurso = Chowo(Pop3pe — Prer
- Crow1|Wppo|WapBo)

|W peo|W HPBO )

- Chow2 e
RFPV

Worso = Coowo(Porspe — Pops

— Coowi|Wopso|Wopso)

C |W opeo|W oprBo
—Coow2 3 )
ARopv

Wemeo = Compwo(Pop2re — Poms

~ Cemawi|W HpBo| WHPBO)

C |W tpeo|W HpBO
—ComBw2 A2 )
RMOV
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Table 2.4 Valve, preburner, combustion, and fixed nozzle model equations

Oxygen Control Valve Model Equations

Appyv = JoAppy (DAt + Agpy (0)
Aopy = JoAgpy (DAt + Agpy(0)

Agpy = (Uagpy ~ Appy)/ Crpya
Aopy = (Upopy = Aopv)/ Copya
Fuel Preburner Model Equations

RPBR = j(; RPBR (t)dt + RPBR (0)

Ppar = JoPppg ()t + Ppgg (0)

Rppr = (Wpsr + Whpso — Wrrs) / Cpery

Pper = (WxpsnHmix + WrpsoHopsg |
= WirsH1rer + WHpBoCPBRF) / CPBRL

Oxidizer Preburner Model Equations

ROPB = I(t) ROPB (t)dt + ROPB (O)

Popp = JoP opg (1)t +Popg (0)

Rops = (Wops + Wopso — Wrrg) / Coppy

Pore = (WopHmix + WopsoHop3g
~ WorrHotri + WopsoCopsr) / CopaL

Main Combustion Model Equations

Rems = IéRCMB (t)dt + Rcemp (0)
PcMB = I§P oy (DAt + Peyp(0)
PcmB

ReMBCR eMeCrBU

Heme = Cp.emeToMB

MR = YcmBo +Wops

WpMmp

Rems = (WemNg + WemBso = Wroz)
/ CcmBv

Peme = (WengHENg + WeMBoHop2E
- WnozHcMms - QemBw
+WeMBoCemBr) / ComBL

Tems =

Fuel Injector Model Equations

Prmg = (W1rs + Wotr + WeMmsr)?
2
/ (Cd PCMB) +Pcms

Ty = CoTppr +CiTops + C2TemBF
Hemg = Cp,1RBTFING

PEmg

TrNy

Wemg = Crngw

Fixed Nozzle Model Equations

Wnoz = Cnozw TcmB
vTcmB
CM ACH = 11
TeMms

Tnoz =
K-1
(1+ (T)CMACHz]
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Table 2.5 Main chamber and fixed nozzle regenerative cooling model equations

Main Chamber Regenerative
Cooling Model Equations

Fixed Nozzle Regenerative
Cooling Model Equations

Temwi = 16 Teppw (04t + Temwi(0)
Temwz = 1§ Toppwa (D4t + Temw2(0)
Temer = 6T oppr(Ddt + Temer(0)

Qcmew = Comwr(TemB — Temw2)
0.8
X|Wcms|
Qcemeww = Comer (Temw2 — Temwi)
Qcemewr = Compra(1+ CemBQiTeMBE)

X (Temwi — TemsF )IWCMBFIO.B

Temwz = (Qempw — Qemsww) / ComBwe
Temwi = (Qempww — Qemewr) / ComBwe
Tcemer = (Qemewr + WeMBrCr H,

X (TpmpE - TeMBE)) / CcMBEC

TNOZW = J(t)TNOZW(t)dt + TNOZW ()]

Trozr = 1§ Tyoze(Vdt + TNoze (0)

Qnozw = Cnozwh(Tnoz — Tnozw)
08
x|Wnoz|
Cnozra = Cnozru (1 + CnoziTnozr)
Qnozwr = Cnozr (TNnozw — TnozF)

X IWNOZFlO'S

Tnozw = (Qnozw — Qnozwr) / CNozwe
Tnozwr = (Qnozwr + WNozFCP H,
x (TpmpE - Tnozr)) / CNozFC
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Table 2.6 Steady state model results

Process Variables Symbol | Unit 100% Load
(State Variables) gégg;ls Heat
Balance
Fuel turbopump shaft speed SPMP | rad/sec | 3570.74 3577.6
Oxidizer turbopump shaft speed SOPMP | rad/sec | 2917.49 28494
Main thrust chamber hot-gas pressure PCMB psi 3000.0 3006.0
Main thrust chamber hot-gas density RCMB | Ib/in.3 | 1.3358d-04 | 1.2673d-04
Fuel preburner hot-gas pressure PPBR psi 4831.0 4938.7
Oxidizer preburner hot-gas pressure POPB psi 4854.09 5003.5
Fuel preburner hot-gas density RPBR | Ib/in.3 | 4.7846d-04 | 5.4478d-04
Oxidizer preburner hot-gas density ROPB | Ib/in.? | 6.4924d-04 | 6.7526d-04
Fuel flow rate into the fuel preburner WHPBH | Ib/sec 82.1055 78.18
Fuel flow rate into the oxidizer preburner WOPBH | Ib/sec 76.1259 67.78
Oxidizer flow rate into the fuel preburner WHPBO | Ib/sec 38.5659 35.1
Oxidizer flow rate into the oxidizer preburner | WOPBO | Ib/sec 20.665 23.67
Oxidizer flow rate into the thrust chamber WCMBO | Ib/sec 809.656 801.77
Coolant side chamber wall temperature TCMWI1 R 1240.43 /
Hot-gas side chamber wall temperature TCMW2 | °R 1457.45 /
Main thrust chamber coolant temperature TCMBF °R 483.341 469.1
Coolant side nozzle wall temperature TNOZW | °Rr 1078.21 1260.0
Nozzle coolant temperature TNOZF °R 433.145 466.1
Fuel preburner oxygen flow valve position AFPV / 0.7813 0.7812
Oxidizer preburner oxygen flow valve position| AOPV / 0.6387 0.6388
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CHAPTER 3
STRUCTURAL AND DAMAGE MODELS OF THE REUSABLE ROCKET ENGINE

The critical components of the reusable rocket engine under consideration, which could
significantly reduce its service life, include (see Fig. 2.1):

o Blades of the fuel turbine;

» Blades of the oxidizer turbine;

« Main thrust chamber coolant channel ligaments cooled by liquid hydrogen;
 Rocket nozzle coolant channel ligaments cooled by liquid hydrogen;

» Injector tubes carrying the turbine exhaust gas into the combustion chamber.

The fatigue failure in the injector tubes, originally caused by thermal stresses, has been
solved by appropriate selection of materials in the later versions of the Space Shuttle Main
Engine (SSME). Therefore, the injector tube is not included as a critical point in the present
study. The failure of coolant channel ligaments (i.e., walls of the coolant channel) in the main
thrust chamber and rocket nozzle is caused by creep and creep ratcheting due to plasticity at high
temperatures (for example, in the vicinity of 1200°R). Since the heat flux through the coolant
channel ligament at the throat section of the main thrust chamber is higher than that at other
sections of the nozzle, the damage control of the coolant channel ligament in the main thrust
chamber is expected to protect the nozzle coolant wall. Therefore, the first three components,
namely, blades of the fuel turbine, blades of the oxidizer turbine, and coolant channel ligaments
at the main thrust chamber are selected as the critical points for damage mitigating control. The
damage model is a representation of:

« Fatigue at the roots of the fuel and oxidizer turbine blades, and
» Creep and creep ratcheting of the coolant channel ligaments at the throat plane of the
main thrust chamber.

3.1 Structural and Damage Model of the Turbine Blades

The structural model in each of the fuel and oxidizer turbines calculates the cyclic
mechanical stresses at the root of a typical blade which is presumed to be a critical point in this
dissertation. The blade model for each of the two turbines is represented by a three-node beam
model with six degrees of freedom at each node while the first node at the root is fixed. The load
on each blade model is assumed to consist of two components, namely, the (time-dependent)
drive torque, and the oscillatory load on the blade as it passes each stator. It is the second
component that causes high cycle fatigue at the root of the blade while the first component is
largely responsible for the mean stress. The resulting stiffness matrix, mass matrix, and force
vector are used to obtain a model solution for the displacements. In the last step, the stress-
displacement relations from the linear elastic finite element analysis are used to predict the
stresses at the critical point(s) of the blade structure.

The development of this fatigue damage model is reported in detail by Ray et al. (1994a)

and Ray and Wu (1994a, 1994b) by assuming the damage rate dd/dt is obtained as the
weighted average of the elastic and plastic damage rates such that

dé
-d—8-=wdse +(1-w)—F
dt dt dt 3.1)
where the weighting function, w, is selected as the ratio of the elastic strain amplitude and total
strain amplitude. Since the turbine blades are subjected to loads of varying amplitude, the linear
damage is modified via a nonlinear damage rule as follows:
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D = (5)"®> D (3.2)

where D and & are the current states of nonlinear and linear damage accumulation, respectively,
and o, is the stress amplitude. It follows from a crack propagation model such as the Paris
model (Paris and Erdogan, 1963) that the crack growth rate is dependent not only on the stress

amplitude but also on the current crack length (Ray and Wu, 1994b). An approach to evaluate y
at selected discrete levels of stress amplitude by interpolation based on the experimental data of
Swain et al. (1990) for the material AISI 4340 steel are reported by Ray and Wu (1994a, 1994b).

3.2 Structural Model of the Coolant Channel Ligament

The structural model of the coolant channel ligament is based on the experimental prototype
of the cylindrical thrust chamber by Quentmeyer (1977), which was designed to emulate the
operating conditions of the SSME. The cross-sectional dimensions of the thrust chamber
configuration are geometrically similar to those of a full scale thrust chamber of the SSME even
though the diameter and length of the nozzle are reduced. An enlarged view of one of the 72
coolant channels described by Quentmeyer (1977) is represented in Fig. 3.1, where the ligament
connects two consecutive ribs forming the inner wall of the thrust chamber. The ligament is
constructed from oxygen-free high-conductivity (OFHC) copper or a copper-zirconium-silver
alloy called NARIoy-Z, and the closeout wall is made of electroformed copper.
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Fig. 3.1 Schematic view of a coolant channel ligament

3.2.1 Formulation of an Equivalent Sandwich Beam Model

To focus on the interactions between the structural response and temperature dependence of
the coolant channel ligament, the governing equations for the structural model of the ligament
are derived using Bernoulli's assumption based on the small deflection theory and by neglecting
deformations due to shear. The coolant channel ligament of rectangular cross-section in Fig. 3.1
is represented by an idealized sandwich beam model (Robinson and Arnold, 1990) as seen in Fig.
3.2. The coordinates of the sandwich beam model and its loading conditions are shown in Fig.
3.2 where x, y and z coordinates correspond to the circumferential (hoop), axial, and radial
directions of the ligament, and the subscripts 1 and 2 denote the cold and hot side of the
ligament, respectively. The sandwich beam model (Dai and Ray, 1994a) consists of two thin
faces with identical thickness 8, which are separated by an incompressible core of thickness
dy +d; —28. Consequently, the local bending stiffness of each thin face is neglected, the

normal stresses 6; and G, are assumed to be constant throughout the faces, and the core is
assumed to be rigid in shear and bear no normal stresses. The ligament is exposed to the hot
gases on one surface and the liquid hydrogen coolant on the other surface. The surfaces are also
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subjected to hydrostatic pressure which exerts distributed force on the wall in the radial (z)
direction. The time-dependent temperature and pressure are denoted as T;(t), Py(t) on the cold-
side of the ligament, and as T,(t), Pp(t) on the hot-side of the ligament. The uniformly
distributed force per unit length of the beam is denoted as p(t) = [Py () =P (1)]/ (24) in the
circumferential (x) direction, where 2¢ is the actual length of the ligament in x direction.
Although the ligament temperature does not vary along the x-direction because of geometrical
symmetry, there exists a temperature difference across the wall thickness in the radial (z)
direction. Due to the symmetric loading and geometric configuration, only a half-beam model is
considered,

For the sandwich beam structure to be equivalent to the ligament structure with rectangular
cross-section in terms of identical deformation in the hoop and radial directions at the mid-plane,

the parameters d;, d,, A; and A, (shown in Fig. 3.2) of the sandwich beam are chosen such

that the cross-sectional area and moment of inertia of the rectangular beam are preserved (Arnold
and Robinson, 1989) as:

L

di+dy=d=—4

1 2 \/g

where B is the true thickness of the rectangular beam (i.e., the actual coolant channel ligament

thickness), d; and d, are the distances from the outer fibers of the two faces to the mid-plane,

A; and A, represent the cross-section areas of cold-side and hot-side of the ligament for unit
length in the y-direction, respectively.

and A=A, = % for unit thickness in the y-direction (3.3)
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Fig. 3.2 Sandwich beam model of the coolant channel ligament

3.2.2 Kinematic Assumptions
Based on the symmetric geometry of the sandwich beam model in Fig. 3.3a, the expressions
for the strain-displacement relation are as follows:
g(x,1) =€°(x,1) = djx(x,1); Ex(x,t) = e2(x,t) + dox(x,t); and w(x,t) =w(x,t) (3.4)

where u®(x,t) and w°(x,t) denote the displacement and deflection at the mid-plane z=0,

respectively. The mid-plane strain €° and mid-plane curvature x are defined as:

2w(x,t)

ou’(x,t) |
ox?

cand x(x,t)=- (3.5)
ox

e’(x,t) =
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Fig. 3.3 Loading conditions on the sandwich beam model

3.2.3 Constitutive Equations

The viscoplastic theory has been adopted for modeling the nonlinear inelastic material
properties at high temperatures because of its ability to represent both rate-dependent creep and
rate-independent plastic behavior (Freed, 1988). The viscoplastic model serves as the
constitutive law with a single kinetic equation and two types of internal state variables, namely,
the tensorial anisotropic back stress and the scalar isotropic drag stress. In addition to the
assumptions of small displacements and deformations, and the absence of coupling between the
static and dynamic recovery terms in the viscoplastic model, the major assumptions on the two
thin faces of the sandwich beam model in the present analysis are as follows:

(i) The modified version of the viscoplastic constitutive equations is presented only for the
two thin faces of the sandwich beam structure where t,, =0 and ¢, =0;
(i) ~Stress components in the axial (y) direction are negligible (i.e. o,,1,,.7,, =0);

(iii) The total strain ¢, is assumed to be the sum of elastic, inelastic, and thermal strains, €°,
e and €™ on each of the cold and hot faces, i.e.,
gi(x,0) = ef (x,) +eP (x,) + e (x, 1) i=1.2 (3.6)

(iv) for the one-dimensional loading problem in the sandwich beam, the hoop stresses in the
cold and hot faces are obtained by combining Eqgs. (3.5) and (3.8) as:

oy =E(e°-djx) —E;ef —~Eje]" and 5, = E,(e° +d,K)~ Epe] — Eef (3.7)
where plastic strain € is obtained from the viscoplastic model as described in Section 4.4.

3.2.4 Equilibrium Equations

The stress resultants, N and M, shown in the free body diagram in Fig. 3.3b, are obtained by
integrating the stress over the sandwich beam cross section as:

d

i
N(x,t)= [ 0,(x,z,t)dz = 6, (X,)A; + G, (X,1)A, (3.8)
_d2
d,
M(x,0) = [6,(x,2,)2dz = 0,(x,1)Ad, — 6,(x,0)Ad, (3.9)
_d2
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where the hoop force N(x, t) and bending moment M(x, t) of the ligament as shown in Fig. 3.3b
are obtained from the equilibrium conditions as follows:

p(t)x
2

N(x,t) = =N, (t); and M(x,t) = Mg (t) + p(t)¢x - (3.10)

2
M(x,t) = M (1) + p(t)£x — % (3.11)

The unknown reaction bending moment, M,, and hoop force, N,,, at the junction of the ligament
with the rib (i.e., at x=0) are to be determined from the boundary conditions in this statically
indeterminate structure.

3.2.5 Governing Equations

Combining Egs. (3.8), (3.9), (3.10) and (3.11), the stress and moment resultants yield the
following constitutive relations for the sandwich beam in the matrix form:

NY [an by ) (N") (NP
(M]_[bn dl]}[KJ—[Mm)—(MP (3.12)

where the extensional, flexural-extensional coupling, and bending stiffness coefficients, a;;, by,
and dy, are defined as: '

an d i AIEI + A2E2
by |= | E@)] z [dz=| Ayd3E; — AdiE, (3.13a)
dll —4 Z2 Aldlel + Azd%E2

and the thermal and plastic "pseudo-force” and "pseudo-moment” quantities are defined as:

N } _ [ AEel + AjEel } G.13b)

LMth A2d2E2£t2h - A1d1E18§h
NP AEeP + A,E €8
N — 1=1 lp 2252 ] (313C)

Since the temperatures at the faces 1 and 2 are significantly different (e.g., about 200°F), the
elastic modules which is a function of the temperature varies in the z-direction in the event of
thermo-viscoplasticity. This causes by in Eq. (3.13a) to be nonzero implying the existence of a
flexural-extensional coupling effect which is similar to that in a laminated composite material.

Substitution of €° and x from Eq. (3.5) into Egs. (3.12) and (3.13), and a rearrangement
yield the following pair of coupled nonlinear partial differential equations with respect to x as the
independent variable:
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ou’(x,t) 1

2 -2

ox A{ALEE5(d; +d
1d2 1E2(dy +dp) ) (3.142)
2 th p 1 th p
+ ——1&; (X, )+ (X, t)]+———[&5 (X, 1) +E5(X,t
(d,+d2)[‘( )+ Ef(X,1)] (d,+d2)[2( ) +€5(x,1)]
9%w(x, t -1
aiz ) _ PWRTSTE [(A101E; - AydyE) )N, + (A E, +A2E2)M(x,t)]

R
(d; +dy)

At a fixed instant of time, t, the above partial differential equations can be solved for known
plant variables, chamber pressure, coolant pressure, and wall temperatures on both hot and cold

|datef" (x, 0+ eP(x, 01— dy 5 (x,1) + £5(x,1)]]

sides, and the inelastic strains ef and 85 with x as the independent variable, along with the
boundary conditions derived in the next section.

3.2.6 Boundary Conditions

Five boundary conditions are needed for solving the third order differential Eqs. (3.14a) and
(3.14b) with respect to x, and two unknown variables, namely, reaction moment M, and force

N, at each instant of time t.

dw(x,t) _

0, atx=0 (3.15a)
dx
awx,t) =0, atx =/ (3.15b)
dx
w(x,t) =0, atx=20 (3.15¢)
ul(x,t) =—feg atx=0 (3.15d)
u(x,t) =0, atx =/ (3.15¢)

where the closeout wall strain €g is given as:
eg =ogTg —a,T, (3.151)

where T and op are the closeout wall temperature and linear coefficient of thermal expansion,
respectively; T, is the known reference temperature of the closeout wall; and x=1/¢

corresponds to the center section of the ligament. Eq. (3.15d) implies that the boundary
constraint is affected by the displacement of the closeout wall.

3.2.7 Closed Form Solution of the Sandwich Beam Model Equations

Applying Eq. (3.11) and the boundary conditions in Eq. (3.15) into the governing equations
(3.14), the time-dependent reaction force N, and moment M, are obtained as:
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1 2BC ., s B .
N (t) = ==z )02 +CTh () + ——— Tt
olt) Bz—AC{ 3 p(t) r(® (d1+d2)2()
. i (3.16a)
- C .+ e
—Cea®)+=[{TP(x,t)dx -——— £ TP(x,1)d
s() EIOI( ) l(d1+d2)jo 3 ( )dx}
1 Bp)# 1 gz
Mo () =z 5z (Bl + 1" (0 —ep(0+ [p P (. dx]
P X ) (3.16b)
- A .
+ 202+ —2 i) -——m— £ 1P(x,0)d
3 PO a5,y Y 7, +d,) 0 04K
where
- Ad}E;+A,d3E, o
A= 5 (3.172)
A AE Ep(d) +d3)
B = AL@lEl*AzdzEzz (3.17b)
Al A2E1E2(d1 +d2)
o= MBI AR (3.17c)
A ArE Ep(d) +d3)
h h
o _(Gael'+dy ) (3.17d)
! (d; +d,) '
- d,eP +d;eb
11p=( 28 +41€) (3.17¢)
(dy +dy)
P = - (3.17f)
1§ = (€5 —e) (3.17g)

Then the hoop stresses on the two thin faces of the sandwich beam, which are the inputs to
the viscoplastic model for computation of the respective inelastic strains, can be obtained in
terms of the force and moment from Eq. (3.10) as:

_ dy N(x,t) = M(x,t)

o100 == (3.18a)
_dy N(x, 1) + M(x,1)
Gy (x,t) = A ey (3.18b)

A closed form solution of the radial deflection w(x, t) at the mid-plane of the ligament can
be obtained by substituting the boundary conditions, Eq. (3.15) and Egs. (3.16) to (3.17) into the
governing differential equations (3.14) as:
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2 .2 B g2
=l X Cx Bpf® = 1 z+p
w(x,t) =B =Ny - ——— +1" —ep+-], IPd
0 [2 ° 2(B2—AC)( 3t et gl Ids

(3.19)

-m| X2 2B? - AC AC%2 , Ct 5 € 4
+1; X ——5—— Pl =3 =Xt —Xx ——x
(dy+dy) 2(B“-AC) 6(B“ - AC) 6 24

1 2 s
_ [m( JX[X1P dg dn - ’2‘7 o1 d&,ﬂ

The first term on the right hand side of Eq. (3.19) represents the deflection components

solely due to the coupling effects, B, of extension and bending. Stubstad and Simitses (1987)
pointed out that this coupling effect is a result of temperature difference in the radial direction
and temperature dependence of the elastic modules. The temperature transients also cause
thermally induced bending of the beam element, which is represented by the second term of Eq.
(3.19). The third term represents the deflection component solely due to the bending induced by
the pressure difference acting on the ligament. The deflection calculated by the first three terms
vanish in absence of any pressure and temperature difference across the ligament thickness when
the cycle is completed. The fourth term represents the irreversible deflection resulting from the
inelastic strain ratcheting induced by thermo-mechanical loading, which contributes to the
irreversible bulging-out of the ligament. This inelastic strain ratcheting-induced bending is
caused by the pressure difference across the ligament wall and the temperature difference
between the hot ligament and the closeout wall. In essence, the irreversible phenomena of creep
ratcheting and inelastic strains are responsible for permanent bulging-out and progressive
thinning of the coolant channel ligament. The last term in Eq. (3.19) is defined as the irreversible

or permanent deflection w'(x,t) at the mid-plane of the ligament,

2
1 X"t
wi(x,t)=—————| [*[*(eF —eP)dEdn— [ (e} - €P)d 3.20a
This irreversible deflection w'(x,t) in the radial direction is more significant than the first three
terms in Eq. (3.19). Differentiating the above equation twice with respective to x, the inelastic
bending moment M'(x,t) which causes the permanent deflection due to creep ratcheting is
obtained as:

92w (x,1) __ 1

M!(x,t)=-
(=) 9%x (dy +dj)

[(8‘2’ —e}’)—%Ig (8 —8{’)d§] (3.20b)

3.3 Thinning Model of the Coolant Channel Ligament

Experimental studies by Hannum et al., (1976) show the evidence of incremental bulging-
out and progressive thinning at the center of the ligament after each firing cycle for the oxygen-
free high-conductivity (OFHC) copper material. Porowski et al., (1985) proposed a relationship
for linear variations in the thickness of the coolant channel ligament, shown in Fig. 3.4, based on
experimental observations of the deformed shapes, popularly known as the "doghouse"
(Quentmeyer, 1977). The total area of cross-section of the ligament, shown in Fig. 3.5, is
conserved under inelastic deformation because the ligament length does not change in the axial
(y) direction and the principle of volume conservation holds under plastic deformation.
Following the details reported by Porowski et al., (1985), a simple geometric relationship for the
incremental permanent deflection is derived as:
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1 R DYINEIN PR SR
S8, (D =2+ W (D) S+ D8O (3.21)

where 8, and 8, are denoted as the respective deflections of the cold-side face and hot-side face
at the center of the ligament; and a is the rib width in the coolant channel. The time-dependent

thinning, T(t), of the ligament at its center is obtained as:

(1) =8y(1) - 82() = %:—g—a (3.22)
and the normalized thinning, T(t), relative to the initial ligament thickness, 9, is obtained as:

T(t)=1(t)/ Oy (3.23)
and the creep damage of the coolant channel ligament is defined as:

D, () =Tt/ T (3.24)

where 1" is the critical thinning at which the bulging process becomes unstable leading to tensile
rupture. The critical thinning of the ligament, t*, is different for different material. For

example, T* is about 0.37 for OFHC copper (Porowski et al., 1985) and is in the range of 0.05 to
0.08 for NARIloy-Z (Kasper, 1984).
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Figure 3.4 Linear thinning model of the coolant channel ligament

The instantaneous thickness of the deformed beam is updated by subtracting the time-
dependent thinning from the original thickness:

B(t) =0y — (1) (3.25)
Following Fig. 3.5, this information is fed back to the sandwich model in Eq. (3.3).
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3.4 Viscoplastic Model for the Coolant Channel Ligament

Most of the studies for structural analysis of the coolant channel ligament use the classical
technique of inelastic strain analysis in which interactions between time-independent plasticity
and time-dependent creep at elevated temperatures are neglected. However, the experimental
results on hot section components have demonstrated that these interactions have significant
effects and therefore cannot be ignored (Pugh and Robinson, 1978). Unified viscoplastic
analysis is capable of predicting the inelastic behavior of materials at elevated temperatures (for
example, thirty percent or higher of the melting point temperature), in which inelastic strains
resulting from creep, plasticity, relaxation, and their interactions are accounted for as a single
time-dependent quantity.

A sizable body of literature exists on phenomenological constitutive equations for the strain-
rate and temperature dependent plastic deformation of metallic materials. Almost all of these.
unified theories are based on small strain assumptions. More than ten unified constitutive
theories have been reviewed by Chen et al. (1984). Allen and Beek (1984) reviewed and
clarified the general theory of internal state variables for application to inelastic metals in
elevated temperature environments. McDowell (1992) extended the concept of nonlinear
kinematics hardening model for multiple back stress under thermo-mechanical cyclic loading.

The viscoplastic theory has been adopted for modeling the nonlinear inelastic material
properties at elevated temperatures because of its ability to represent both rate-dependent creep
and rate-independent plastic behavior. The general theory of a multiaxial viscoplastic model is
reported by Freed (1988), and the associated model parameters are given by Freed and Verrilli
(1988) for the main thrust chamber coolant chamber wall with OFHC copper. Robinson and
Swindeman (1982) have reported another viscoplastic model, and the material functions and
parameters of a copper-zirconium-silver alloy NARloy-Z are specified by Arnold (1987) for the
SSME main thrust chamber coolant chamber wall. For the sake of completeness, these two
viscoplastic models are presented in the next sections.

3.4.1 Freed's Viscoplastic Model for OFHC Copper

Freed's viscoplastic model serves as the constitutive law with a single kinetic equation and
two types of internal state variables, namely, the tensorial anisotropic back stress B;; and the

scalar isotropic drag stress D. The static and dynamic recovery terms in the model are assumed
to be uncoupled.

The deviatoric stress S;; and the effective stress Z;; at the two faces of the sandwich beam

are defined as follows:
S Gij -1/ 3Gkk8ij; and ZU = S'J - B‘J (3.26)

ij =
Flow law:
The inelastic hoop strain rate relations at the two faces of the sandwich beam are given by
the flow law as:
g =OZ—I (3.27)
where ||Z[, = ,/1/ 2%;;Z;; is the £;-norm of the effective stress tensor. The thermal-diffusivity

function © and Zener-Hollomon parameter are defined as:
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exp(-Q/ kT) T20.5T,, Apn e

O Yexp) 22 1n| and Z = (3.28)
exp{ kT: [ln(ﬁ-) + l]} T<0.5T, {A exp[n(F-1)] F=1

where Q is the activation energy, k is the Boltzmann constant; T is the absolute temperature; T,
is the melting point of the material; A and n are material constants; and F = |Zll, / D.

Evolutionary laws:
The evolutionary laws provide equations for the internal state variables, namely, the back
stress Bj; and the drag stress D as:

8, ozl i -Li) aa D=no(Z
i = ——— |;and D=hO|=-1(G) (3.29)
J, L G
where H, L, and h are inelastic material constants, and the recovery function r is defined as:
0 D=D,
1(G)={AG""! D>Dy and G<l1 (3.30)

Aexp[n(G-1]/G D>Dg and G21

and G= —L——, where S and D, are material constants. The following inequality condition of

dissipativity must be satisfied at all instants of time for the viscoplastic theory to be
thermodynamically admissible (Freed, 1988):

2
rzz[é—z(m%}] | (3.31)

3.4.2 Robinson's Viscoplastic Model for NARloy-Z

Robinson's model incorporates internal state variables in terms of the components of the

back stress tensor, Qij, which accounts for kinematic hardening, and the constant drag stress, K,
which represents isotropic hardening of the material. This model employs a dissipation potential
to derive the flow and evolutionary laws for the inelastic strain and internal state variables. The
nonisothermal multiaxial inelastic constitutive equations are given, in terms of the stress tensor

components, Gij, and the material constants, A, n, m, B, H, R, G,, K and K, as follows:

Flow law:

AFTZ; F>0 and S;Z;>0
=", >0 and 545 > (3.32)
0 ; F<0 or F>0 and S;Z;<0
where the components of the deviatoric and effective stress tensors are:
Sij = Gij -1/ 3Gkk6ij; and ZU = S‘J —aij (333)
and  J,=1/25;Z;;and F=1, /K% -1 (3.34)
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Evolutionary laws:

m-f
(—EQP—&&-; G>G, and S;a.:>0
By y 0 ij4ij
. _JG Vi
4= g RGP (3.35)
@agm——\/‘l’_z—aij; G<G, or G>G, and Sja;<0
(L O
where
a5 = Q5 =1/3048;:; I, = 1/2aijaji; and G=1, /Kg (3.36)

3.5 Model Solution Approach

The partial differential equations (3.14) are approximated via spatial discretization as a set of
ordinary differential equations where the number of nodes is selected to be 11 for half of the
ligament. Fig. 3.5 illustrates a concept for simultaneously solving the structural and creep
damage model equations of the coolant channel ligament. A causal relationship exists between
the partial differential equations with respect to the spatial variable x in the Sandwich Beam
Model and those with respect to the temporal variable t in the Viscoplastic Model as seen in Fig.
3.5. As explained in Section 3.2.7, the tensile force, bending moment and stresses in the coolant
channel ligament are generated from the Sandwich Beam Model for given boundary conditions,

plant variables, and inelastic strain ef’(x,t) and 85 (x,t) at each instant of time. The plastic

strains at each node are obtained from the Viscoplastic Model as shown in Fig. 3.5 at each instant
of time in terms of the initial conditions of the plastic strains and internal state variables, and
stresses at each node. These partial differential equations with respect to time are derived in
Section 3.4 following the Freed's or Robinson's viscoplastic model.

A closed form solution of the mid-plane deflection of the coolant ligament is derived at each
node in the spatial direction through the Sandwich Beam Model and fed into the Thinning
Damage Model in Fig. 3.4. The damage measure, which is defined in Eq. (3.24) as the thickness
reduction of the coolant channel ligament normalized with respect to the original thickness, is
calculated and feed back to the Sandwich Beam Model to update the geometric deformation at
each instant of the time during the operating cycles. These calculation can be easily performed
for on-line life prediction and damage mitigating control process. The time-dependent coolant
wall temperature and fluid pressure acting on the ligament, generated from the nonlinear Plant
Dynamic Model, are the inputs to the Sandwich Beam Model and Viscoplastic Model. The sets
of ordinary differential equations are solved by numerical integration in both the Sandwich Beam
Model and Viscoplastic Model. In contrast to the common practice of finite element analysis,
the proposed life prediction model for the coolant channel ligament has been proven to be
computationally much more efficient than the finite element models with comparable accuracy
on damage prediction. Details are given in Chapter 4.
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CHAPTER 4
VALIDATION OF STRUCTURAL AND DAMAGE MODELS OF THE REUSABLE ROCKET ENGINE

The structural model of the coolant channel ligament, developed in Chapter 3, is verified
through comparison with a finite element model of the main thrust chamber coolant wall for two
different materials, namely, oxygen-free high-conductivity (OFHC) copper and a copper-
zirconium-silver alloy, known as NARloy-Z. In the proposed model, structural geometry of the
ligament and displacement of the closeout wall are used to obtain the required boundary
conditions. The data reported in open literature are available for OFHC copper using Freed's
viscoplastic model (Freed and Verrilli, 1988) and for NARIloy-Z using Robinson's viscoplastic
model (Arnold and Robinson, 1989). These models are briefly described in Chapter 3. The
model results are compared with the respective finite element analyses of the main thrust
chamber coolant wall for both OFHC copper and NARIloy-Z. Finally the results of parametric
studies for the creep damage of the main thrust chamber coolant wall are presented.

4.1 Validation of the Thrust Chamber Life Prediction Model for OFHC Copper

The life prediction model of the main thrust chamber wall, derived in Chapter 3, in which
structural geometry of the ligament and displacement of the closeout wall are used to obtain the
required boundary conditions, is verified by comparison with a finite element model (Armstrong,
1981). The temperature-dependent material parameters (e.g., coefficient of thermal expansion
and modulus of elasticity) for OFHC copper have been taken from Hannum et al. (1976), and the
material constants of the viscoplastic model reported by Freed and Verrilli (1988) are listed in
Table 4.1. The geometrical dimensions of the cylindrical thrust chamber coolant channel with 72
channels (Quentmeyer, 1977) are listed in Table 4.2. These data are used for comparing the
proposed model with the finite-element model of Armstrong (1981) for OFHC copper.

Table 4.1. The OFHC copper material constants for Freed's viscoplastic model

PARAMETERS UNIT VALUE
Young's modulus E MPa 165 000-125T
o oc-! 15x10710 +5x107° T
Poisson's ratio v / 0.34
A ! 50,000,000
D, MPa 1.5
Inelastic material constant h MPa 500
Inelastic material constant H MPa 5,000
Limiting value of back stress at kinematic saturation L | MPa 25 exp(-T/300)
n / 5
Activation energy Q J/mole 200 000
S MPa 14.3
Melting Point Tm K 1356

Table 4.2 The geometrical dimensions of the OFHC copper cylindrical thrust chamber ligament

CHANNEL DIMENSION UNIT 72 Channels

Ligament length 27 inch / mm 0.0664 / 1.686
Ligament height O inch/ mm 0.03570.889
Rib Iength a inch/ mm 0.05/1.27
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Fig. 4.1 shows the time history of the process variables, namely, cold-side wall temperature
(T,), the hot-side wall temperature (T,), closeout wall temperature (Tg), and the pressure load
acting on the ligament for a typical firing cycle having a duration of 3.5 seconds. These process
variables excite the structural and damage model as discussed in Chapter 3. The time period of
3.5 seconds includes start-up and heating, referred to as the hot phase of a cycle, and shut-down
and cooling, referred to as the cold phase of a cycle.

4.1.1 Single Cycle Behavior

Both temporal and spatial responses of the ligament structure are investigated for a typical
single cycle (i.e., the 3rd cycle in this simulation). Time histories of stress and strain of the
sandwich beam model are presented in Fig. 4.2 for one firing cycle. As the temperature is
rapidly increased corresponding to the transient heating part of the firing cycle, the hoop stress
changes from tension to large compression due to the restricted expansion of the hot ligament
imposed by the relatively cool closeout wall which exhibits elastic behavior. Thus, during the
heating process, large plastic compressive strains are induced in the ligament. The stress
overshoot occurs at the instants of t=0.27 sec and 2.07 sec corresponding to the maximum
temperature difference between the ligament and closeout wall during the cycle. For the cooling
process, a similar situation occurs except that the closeout wall is at a higher temperature than the
coolant ligament which is subjected to the maximum tensile stress. As the temperature
difference between the ligament and the closeout wall diminishes in the cold phase of the cycle,
which follows the minimum temperature difference attained during the shut-down process, the
tensile stress induced by the inelastic strain in the ligament reduces from its maximum level.

During the hot phase of the cycle, the compressive stress generally decreases or relaxes after
the peak and then tends to keep constant. When the ligament is exposed to a higher temperature
environment, the stress relaxation phenomenon becomes more significant. This behavior is
characterized as the transition from "primary creep” to "secondary" or "steady" creep, and can be
explained in terms of the constitutive equations of viscoplasticity as discussed by Stubstad and
Simitses (1987). An examination of the flow model of viscoplasticity described in Chapter 3
reveals that the inelastic strain rate is determined by the effective stress, i.e., the difference
between the actual stress and the back stress. The inelastic strain rate changes whenever the rate
of the actual stress differs from that of the back stress. In some situations, however, the rates of
actual stress and back stress tend to have a constant difference, and the rate of inelastic strain
stabilizes to a constant value which is known as the secondary creep.

The shape of the predicted hoop stress and strain at the cold-side and hot-side ligament are
shown in Figs. 4.3 and 4.4 at two specific instants of time, namely, t=1.7 and 3.4 sec
corresponding to the end of the hot and cold phases of a typical cycle. The stress is tensile
throughout the ligament during the chill-down part of the cycle and compressive during the
heating-up part as mentioned earlier. The shape of the predicted hoop stress distribution on the
hot-side ligament is different from that on the cold-side as seen in Fig. 4.3. This difference is
more pronounced during the hot phase of a cycle (at t=1.7 sec) than that during the cold phase (at
t=3.4 sec) because of a larger temperature difference between the ligament and the closeout wall.
At the end of the cycle, the predicted tensile hoop stress difference in the radial direction is less
than about 8 MPa throughout the ligament length. The maximum hoop stress occurs at the center
of the hot-side ligament, which is in agreement with the results of finite element analysis
reported by Arya (1992). The shape of the predicted inelastic strain distribution in the hoop
direction on the hot-side is different from that on the cold-side in Fig. 4.4. The maximum
effective strain range occurs on the hot-side at the center of the ligament. This is in agreement
with the experimental results reported by Hannum et al. (1976). The effective strain range
distribution in the hoop direction can be calculated by taking the difference of the maximum and
minimum inelastic strain within one firing cycle.
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In order to closely examine the failure mechanism of the coolant channel due to incremental

bulging-out, Figs. 4.5 and 4.6 show the irreversible deflection wl(x,t) defined in Eq. (3.20a)
which is normalized with respect to the initial thickness of the ligament, ¥, and the inelastic

bending moment MI(t,x), defined in Eq. (3.20b), at the two instants t=1.7 and 3.4 sec
corresponding to the hot and cold phases of a cycle. Since the shape of the distribution of the
inelastic strain difference between the hot and cold sides of the ligament is always convex as

seen from Fig. 4.4, the shape of MI(t,x) profile in Fig. 4.6 is also convex by virtue of the
relationship in Eq. (3.20b). This bending moment distribution implies progressive bulging-out of
the coolant channel ligament in Fig. 4.5 during both hot and cold phases.

Time history of the associated normalized thinning T at the ligament center, defined in Eq.
(3.23a), is shown in Fig. 4.7 for a typical cycle where progressive thinning is observed. The
rapid increase in ligament thinning occurs during the heat-up and chill-down transients. During a
thermo-mechanical loading transient, the back stress lags behind the actual stress. This results in
large rate of change in the inelastic strains which eventually causes a rapid increment of the
ligament bulging-out thinning as defined in Eq. (3.20a). The inelastic strains during the
temperature and pressure transients change more rapidly than those in the steady state conditions
when the thermo-mechanical loading is nearly constant.

4.1.2 Multi-Cycle Behavior

Fig. 4.8 shows profiles of the hoop stress and inelastic strain at the ligament center, averaged
over the thickness, from the 2nd cycle to the 20th cycle. The stress profile remains practically
unchanged after two or three transient cycles, and the inelastic strain increment per cycle
becomes nearly constant. The first two or three cycles of the hoop stress exhibit work hardening
because its magnitude increases at both hot and cold phases of the cycle as seen in Fig. 4.8a.
Since the viscoplastic process is memory-dependent, the average hoop inelastic strain is initially
compressive due to the initial chill-down. As the cycling continues, the inelastic strain becomes
tensile even at the hot phase of the cycle due to strain ratcheting. Fig. 4.9 shows that, after the
first two or three cycles, the stress-strain hysteresis loops are repetitive with a constant average
ratcheting rate of about 0.06% per cycle. Both the effects of non-zero mean stress resulting from
unequal tensile and compressive loading, and incomplete stress-strain loops due to temperature
cycling are observed in Fig. 4.9. This thermo-mechanical creep ratcheting phenomenon, also
discussed by Kasper (1984), is a consequence of cyclically varying mean stress and ligament
temperature.

Figs. 4.10 and 4.11 depict the hoop stress and inelastic strain distributions versus cycle on
both hot-side and cold-side of the ligament at the instants, t=1.7 and 3.4 sec in each cycle,
respectively. The profiles of hoop stresses on the coolant side for both hot and cold phases of a
cycle keep on changing during the first few loading cycles, and then tends to stabilize. In
contrast, the hoop stress on the hot-side of the ligament remains practically unaltered. These
characteristics of stress redistribution at the end of each cycle are in agreement with the results of
finite-element analysis reported by Arya (1992). The distribution of the hoop inelastic strain at
the end of each cycles is shown in Fig. 4.11 for both the hot-side and cold-side of the ligament.
The shape of the inelastic strain distribution is convex on the hot-side of the ligament and
concave on the cold-side for all cycles. The distribution of the inelastic strain range, averaged
over the ligament thickness, is shown in Fig. 4.12 for several cycles where the maximum strain
range occurs at the ligament center and the shape of the distribution remains unchanged after the
first a few cycles.

The distributions of the inelastic deflection wI(x,t) , normalized by the initial thickness of
the ligament 3,, and the inelastic bending moment M!(t,x) for different cycles are shown in
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Figs. 4.13 and 4.14 at the end of each cycle. As the cycles continue, the difference between the

maximum and minimum values of M'(t,x) distribution increases and the shape becomes more
convex. This implies progressive bulging-out of the coolant channel ligament as seen in Fig.
4.13 as discussed earlier for the single-cycle case.

The available experimental results did not provide sufficient information for direct
comparison of the ligament thinning at the end of each firing cycle. However, Armstrong (1981)
reported the simulation results of ligament thinning at the end of each cycle for 200 cycles using
a nonlinear finite element model. Fig. 4.15 compares the results of progressive thinning
predicted by the sandwich beam model with those reported by Armstrong (1981) for OFHC
copper. Considering the simplicity of the life prediction model presented in this report, the close
agreement between this model and the finite element model is very encouraging. One of
important features of the proposed life prediction model is its numerical efficiency. For example,
one typical firing cycle takes about 0.35 hours on an IBM main frame computer for the finite
element model given by Armstrong (1981), and about 0.5 second on a Silicon Graphics computer
for the proposed model presented in this report. The thinning rate predicted by the proposed
model increases gradually for the initial cycles (i.e., Iess than 250 cycles), and the grows rapidly
after 250 cycles, indicting the approach of the ligament failure. This is qualitatively comparable
with the experimental data of the life of the main thrust chamber coolant channel wall in the
range of 55 to 220 cycles [Quentmeyer (1977)]. The analytically predicted life is somewhat
longer than the experimentally observed life possibly due to the fact that the analytical model is
based on uncertain parameters and several simplifying assumptions. These assumptions include
absence of local stress concentrations, environmental corrosion effect, preexisting material
defects, and fatigue effects.

4.2 Validation of the Thrust Chamber Life Prediction Model for NARloy-Z

The life prediction model of the main thrust chamber wall, derived in Chapter 3, is verified
for a copper-zirconium-silver alloy, namely, NARloy-Z by comparison with a finite element
model (Kasper, 1984). Table 4.3 lists the temperature-dependent material parameters (Hannum
et al., 1976) and the material constants of the viscoplastic model (Robinson and Arnold, 1990)
for NARIloy-Z. The geometrical dimensions of the main thrust chamber of the SSME with 390
coolant channels are listed in the Table 4.4. These data are used for comparing the proposed
model with the finite element model of Kasper (1984) for life prediction of the NARloy-Z
ligament.

Fig. 4.16 shows the time history of the process variables, namely, the cold-side wall
temperature (T,), the hot-side wall temperature (T,), the closeout wall temperature (Tg), and the
pressure load acting on the ligament for a typical SSME operating cycle having a duration of 408
seconds. These process variables are inputs to the structural and damage model as discussed in
Chapter 3. The time period of 408 seconds includes start-up and heating, referred to as the hot
phase of a cycle, and shut-down and cooling, referred to as the cold phase of a cycle. The start-
up and heating cycle represents the actual conditions under which the SSME is operated.
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Table 4.3. The NARloy-Z material constants for Robinson's viscoplastic model

PARAMETERS UNIT VALUE
Young's modulus E MPa 147 000-70.5T
o oc! 15x10710 +5x107°T
Poisson's ratio v / 0.34
A s”! 1.60x1078
n / 4
m / 8.73
B / 2.3
(Bingham-Prager) threshold stress K MPa 6.89
Inelastic material constant H MPa 1.46x107
Inelastic material constant R MPa/s L.06x10~7
single inelastic state variable at threshold &, MPa 14.3

Table 4.4 The geometrical dimensions of the NARIloy-Z cylindrical thrust chamber ligament

CHANNEL DIMENSION UNIT 390 Channels
Ligament length 2¢ inch / mm 0.04/1.016
Ligament height %o inch/ mm 0.028/0.711

Rib length a inch / mm 0.045/1.143

Time histories of average stress and inelastic strain in the structural model of the coolant
channel ligament are presented in Fig. 4.17 for the first operating cycle. As the temperature is
rapidly increased during the heating part of the operating cycle, the hoop stress changes from
tension to large compression due to the restricted expansion of the hot ligament imposed by the
relatively cool closeout wall. Thus, during the heating process, large plastic compressive strains
are induced in the ligament. The stress overshoot occurs at the maximum temperature difference
between the ligament and closeout wall during the cycle. In the hot phase of the cycle, the
magnitude of the compressive stress relaxes to a lower steady state after reaching the peak.
When the ligament is exposed to a higher temperature environment and longer time period, the
stress relaxation phenomenon would become more prominent.

Fig. 4.18 shows the profile of progressive thinning 7 at the ligament center, defined in Eq.
(3.23a), for a typical cycle. The rapid increase in ligament thinning occurs during the heat-up
and chill-down transients can be explained following the rationale presented in Section 4.2 for
the OFHC copper material.

Fig. 4.19 shows the stress-strain hysteresis loops from the Ist cycle to the 3rd cycle, and
they are repetitive with a constant average ratcheting rate of about 0.055% per cycle. Since the
viscoplastic process is memory-dependent, the average hoop inelastic strain is initially
compressive due to the chill-down. As the cycling continues, the inelastic strain becomes tensile
even at the hot phase of the cycle due to strain ratcheting. Fig. 4.19 exhibits incomplete stress-
strain loops in the creep ratcheting phenomenon due to cyclically varying thermo-mechanical
loading. This process occurs at almost zero mean stress for NARloy-Z in contrast to a similar
process in Fig. 4.9 at non-zero mean stress for OFHC copper.
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Kasper (1984) presented thinning of the NARloy-Z ligament for 150 cycles using a
nonlinear finite element analysis. Fig. 4.20 compares the results of progressive thinning
predicted by the present life prediction model with those reported by Kasper (1984). The close
agreement with the finite element model indicates that the proposed model can capture the failure
mechanics (i.e. creep rapture) of the main thrust chamber wall by calculating the mid-plane
deflection of the ligament. This model is numerically much more efficient than the finite
element model with comparable accuracy. Validation of this numerically efficient model for
both NARIloy-Z and OFHC copper materials establishes its credibility of proposed life prediction
model of the main thrust chamber coolant channel ligament. To the best of the author's
knowledge, this model is the only available one which is suitable for both on-line life prediction
and damage mitigating control of reusable rocket engines such as the SSME.

4.3 Parametric Studies

This life prediction model is capable of providing general information for better
understanding of the failure mechanism and nonlinear structural behavior of the main thrust
chamber wall, and allows the design optimization with less computational cost. Specifically, this
model can be used to investigate the impact of several factors of the main thrust chamber coolant
wall, such as materials selection and mechanical design, thermo-mechanical loading conditions
and their duration, on structural durability. This section briefly discusses the impact of the
following factors on the life of the main thrust chamber wall. '

« Different materials, namely, OFHC copper and NARloy-Z,;
+ Different ligament dimensions, namely, the number of coolant channels being 390 and 540;
» Different mechanical loading acting on the ligament;

» Different thermal loading acting on the ligament; and

» Different operational cycle duration, namely, a short cycle of 3.5 sec and an extended cycle
of 485 sec.

Simulation experiments were conducted to investigate the above five cases one at a time.

4.3.1 Effects of Materials (OFHC Copper and NARloy-Z)

This section presents the results of analyses for two different ligament materials, namely,

oxygen-free high-conductivity (OFHC) copper and a copper-zirconium-silver alloy called
NARIloy-Z, under identical channel dimension, thermo-mechanical loading, and operational
cycle duration. The time history of the thermo-mechanical process variables including
temperatures at the hot-side (T,), cold-side and closeout wall (T,), closeout wall temperature
(Tg), and the pressure acting on the ligament are shown in Fig. 4.1 for a typical experimental test
cycle having a cycle duration of 3.5 seconds (Armstrong, 1981). The geometric dimensions of
the coolant channel ligament are listed in Table 4.2, which correspond to the experimental test
specimen given by Quentmeyer (1977).

Profiles of the average cyclic stress/strain hysteresis loop at the ligament center are plotted
in Fig. 4.21 for OFHC copper and NARloy-Z during the first three cycles. Even though both
OFHC copper and NARIoy-Z are subjected to thermal ratcheting caused by incomplete strain
reversal, the stress/strain response for these two materials are quite different. The cyclic mean
stress of the NARIloy-Z is close to zero since the cyclic loading in tension and compression are
almost symmetric. In contrast, the mean stress for the OFHC copper is tensile due to unequal
loading in the tension and compression as seen in Fig. 4.21. Secondly, NARIoy-Z seems to have
higher stress relaxation rate than OFHC copper during both tensile and compressive holding
periods. The stresses for the OFHC copper exhibit a few cycles of transitions due to the initial
stress hardening whereas the stresses for NARloy-Z is almost perfectly periodic during the entire
cyclic loading. Since OFHC copper is more ductile than NARloy-Z, the initial compressive
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plastic strain of OFHC copper is more pronounced than that of NARloy-Z. The creep ratcheting
is about 0.06% per cycle for OFHC copper and about 0.055% per cycle for NARloy-Z.

Once substantial bulging occurs, the thermal and structural characteristics in the vicinity of
the bulging region changes because of the deformation in geometry. Since this deformation of
the ligament is updated at each instant of time in the life prediction model, the resulting effects
on creep ratcheting are more severe for the OFHC copper than those for NARloy-Z.
Consequently, OFHC copper suffers from a larger bulging-out as shown in Fig. 4.22. The plastic
flow and bulging-out of the inner wall for NARloy-Z are smaller than those for OFHC copper.
This prediction is consistent with the damage observed in actual test chambers as reported by
Hannum et al. (1976). The thinning of OFHC copper ligament is about ten times larger than that
of the NARIloy-Z chamber as seen in Fig. 4.22. Both simylation results and experimental
observations demonstrate that NARloy-Z materials show an improvement in cyclic life over the
OFHC copper under the identical thermo-mechanical loading.

4.3.2 Effects of Ligament Dimensions (Number of 390 and 540 Channels)

This section presents the results of analyses for different number of coolant channels under
identical thermo-mechanical cyclic loading and duration for both OFHC copper and NARloy-Z.
The time histories of the chamber wall temperatures and pressure are displayed in Fig. 4.1.
Geometric dimensions for different configurations of the coolant channel are listed in Table 4.5.

Table 4.5 Different geometrical configurations for the main thrust chamber ligament

CHANNEL DIMENSION Unit 390 Channels 540 Channels
Ligament length 2¢ inch / mm 0.04/1.016 0.029/0.7338
Ligament height B, inch / mm 0.028/0.711 0.028/0.711

Rib length a inch / mm 0.045/1.143 0.0325/0.8255

Profiles of the average cyclic stress/strain hysteresis loops at ligament center are plotted in
Figs. 4.23 and 4.24 for OFHC copper and NARloy-Z, respectively, for the first three cycles. Fig.
4.23 shows almost identical stress and plastic strain for different ligament dimensions for
NARIoy-Z material under identical thermo-mechanical loading. In contrast, the average plastic
strains of OFHC copper ligament, as seen in Fig. 4.23, are different for the two different ligament
dimensions. The rationale is that OFHC copper is more ductile than NARloy-Z and thereby
suffers from larger inelastic deformation which, in turn, influences the structural model by the
geometric updating process.

Figs. 4.25 and 4.26 show the normalized thinning, 7, of the ligament for both OFHC copper
and NARIloy-Z materials, respectively, for the two different ligament configurations. For OFHC
copper, T is about ten times larger than that of NARloy-Z due to the different material
characteristics as discussed in Section 4.4.1. If the ratio of the length to height is made larger as
seen in Table 4.5 for 390 channels, the ligament becomes more flexible resulting in increased
bulging-out. Therefore, for both materials, thinning of the ligament with 390 channels is more
pronounced than that with 540 channels as seen in Figs. 4.25 and 4.26. In other words, the
mechanical design with 540 channels will yield a longer service life of the main thrust chamber
than that for 390 channels under identical thermo-mechanical loading.

4.3.3 Effects of Mechanical Loading

Since the main thrust chamber coolant walls are subjected to severe cyclic loading of
pressure and temperature, the resulting stresses and plastic strains cause incremental bulging out.
To assess the role that pressure loading plays on the so-called doghouse effect (Hannum et al.,
1976), the coolant ligament was analyzed for different pressure (mechanical) loading under
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identical ligament configuration, temperature (thermal) loading, and operational cycle duration.
The time history of the mechanical loading, namely, pressure difference acting on the ligament,

AP(t) = [P (t) — P,(t)], is shown in Fig. 4.27 where the magnitude of pressure difference acting

on the ligament, AP, is increased twofold. The temperature loading history is shown in Fig. 4.1
for OFHC copper and the ligament dimensions are listed in Table 4.2.

Creep ratcheting which is largely induced by the pressure difference is discussed by
Porowski et al., (1985). Bending stresses due to the cyclic pressure loading cause a plastic
deformation and bulging-out of the ligament during each firing cycle. The time history of the
average stress/strain hysteresis loop at the ligament center are plotted in Figs. 4.28 and Fig. 4.29
for OFHC copper and NARloy-Z ligaments during the first three cycles. As the pressure
difference is increased twofold, plastic strain and creep ratcheting rate per cycle for OFHC
copper change much more significantly than those for NARloy-Z which is less ductile material.

Normalized thinning of the ligament for twofold increase in pressure loading is shown in
Figs. 4.30 and 4.31 for OFHC copper and NARIoy-Z, respectively. The thinning rate is
increased about two times for both OFHC copper and NARloy-Z. The resulting "doghouse”
effect predicted here is a result of pressure difference across the coolant channel wall which is
also observed in the experiments (Hannum et al., 1976)

4.3.4 Effects of Thermal Loading

Hannum et al (1976) and Quentmeyer (1977) reported that the cycles to failure could be
correlated with either hot-side wall temperature, or the difference between hot-side wall and
closeout wall temperatures. In order to determine the effects of different temperature (thermal)
loading on the thrust chamber life, the following four sets of different temperature loading as
depicted in Figs. 4.32 and 4.33 were investigated under identical pressure loading, ligament
dimension, and operational cycle. The time history of the pressure (mechanical) loading is
shown in Fig. 4.1b and the geometric dimension is listed in Table 4.2. For each of the following

four cases, the closeout wall temperature, Tg, was kept unchanged.

» Case A in Fig. 4.32a serving as the baseline case in which the superscript * indicates the
reference profile for the hot-side wall temperature, T,, and the cold-side wall temperature,
T,.

+ Case B in Fig. 4.32b representing a increased average wall temperature situation where T,

is increased by about 1500K over T; during the hot phase of the firing cycle, and T, is
kept equal to TT.
+ Case C in Fig. 4.33a representing a increased average wall temperature situation with no

temperature difference across the ligament where T, is increased to T; during the hot

phase of the firing cycle, and T, is kept equal to T;
« Case D in Fig. 4.33b representing a decreased average wall temperature situation where

T, decreased by about 150°K from TT during the hot phase of the firing cycle, and T is
kept equal to T;.

Figs 4.34 and 4.35 plot the stress/strain hysteresis loops for OFHC copper and NARloy-Z,
respectively, under four different temperature loading. For Case D, which is the only case where
the average ligament temperature is decreased during the hot phase of the firing cycle, the
magnitude of both tensile and compressive stresses are reduced and the initial plastic strain is
less compressive. This observation is more pronounced for OFHC copper as seen in Fig. 4.34
due to its ductility. The plastic strain range in the ligament is largely dependent on the thermal

strain range which is a function of the transient difference between the average ligament
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temperature and the closeout wall temperature. Therefore, each of Case B and Case C yields
higher effective plastic strain range than Case A due to increased average temperature of the
ligament. In contrast, Case D yields smaller effective plastic strain range and compressive mean
plastic strain than Case A due to decreased average temperature of the ligament.

However, for both Case B and Case C, where average ligament temperature is increased, the
magnitude of the compressive mean plastic strain in Case C is lager than that for Case B as seen
in Figs 4.34 and 4.35. The difference between these two cases is that there is no temperature
difference across the ligament in Case C whereas there is a temperature difference in Case B.
The rationale is that the ligament is subjected to thermally induced bending for Case B due to the
constraints at the two ends imposed by the relatively cool closeout wall. This thermally induced
bending partially compensates the bulging-out effect resulting from the pressure loading (Arya
and Amold, 1992). However, there is no such effects for Case C since there is no temperature
difference across the ligament.

Therefore, the resultant bulging-out due to both pressure and thermally induced bending for
Case B are less pronounced than that for Case C as seen in Figs. 4.36 and 4.37 for both OFHC
copper and NARIoy-Z, respectively. Figs 4.36 and 4.37 also show that Case D has the longest
service life for both materials since the average ligament temperature is the lowest among all
four cases. This observation reveals that service life of the coolant wall can be improved not
only by lowering the ligament temperature but also by increasing the temperature difference
across the ligament. The latter phenomena is more significant for OFHC copper than for
NARIloy-Z because that the beneficial effects of thermally induced bending is more effective for
the ductile OFHC copper than NARloy-Z.

4.3.5 Effects of Loading Cycle Duration

The effects of different loading cycle duration on the service life of the combustor wall of
rocket engines have been investigated for two types of thermo-mechanical loading cycle
duration. The short cycle of 3.5 sec duration, as reported by Arya and Arnold (1992),
corresponds to the laboratory tests on the cylindrical thrust chambers whereas the extended cycle
of 485 sec duration corresponds to the loading cycle experienced by the SSME. A comparison of
the hoop stress distributions for the short and extended loading cycles shows that the stresses for
the extended loading cycles are, in general, lower in magnitude than those for the short loading
cycles. The rationale is that the extended loading cycle has a longer explosion time which
enhances the stress relaxation. The plastic strain range for the extended cycle is also larger than
that for the short cycle.

Fig. 4.38 depicts the normalized thinning, T, of the OFHC copper ligament as a function of
the number of cycles for both the short and extended loading cycles. A comparison of the 7
curves for these two loading cycles reveals that thinning is larger for the extended cycle. This
happens because that the plastic strain obtained from the viscoplastic model increases as the hold
time is increased for the extended cycle. Therefore, the irreversible or permanent deformation of
the coolant channel ligament would increase more for the extended cycle than that for the short
cycle. A similar behavior is observed for NARloy-Z in Fig. 4.39 as discussed by Arya and
Arnold (1992). In summary, the bulging-out and thinning phenomena of the coolant channel
ligament increase for both OFHC copper and NARIloy-Z as the duration of the loading cycle is
increased.
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CHAPTER §
INTEGRATED LIFE EXTENSION AND CONTROL OF THE REUSABLE ROCKET ENGINE

The general structure of the damage mitigating control system is briefly described in Section
1.3.4 of Chapter 1. The major tasks in the synthesis of the damage mitigating control system in
Fig. 5.1 are:

(i) Formulation of an appropriate dynamic model of the plant (e.g., the Space Shuttle Main
Engine);

(i) Formulation of the structural model and damage model of the critical plant components
(e.g., turbine blades and main thrust chamber coolant channel ligament);

(iif) Synthesis of a feedforward control policy with the objective of achieving structural
durability and high performance; and

(iv) Synthesis of a feedback control policy for intelligent decision-making such as damage
prognosis and risk analysis via on-line feedback of the plant and damage monitoring -
information.

The first and the second tasks are addressed in Chapter 2 and Chapter 3, respectively. The
third task is described in this chapter. The fourth task is not within the scope of this research
report.

User-Specified
Damage Constraints

FEEDBACK CONTROL

Linear Robust
Output Feedback Control

FEEDFORWARD CONTROL

Optimal Open
Loop Control
Policy {u ff} {y ff

Optimal performance
under Damage Constraints
by nonlinear programming

Y(t)T X(UT

- Plant
Output y(t) u(t)

STRUCTURAL AND
DAMAGE MODELS

PLANT MODEL

Nonlinear Thermo-Fluid
Dynamic Model
of the Rocket Engine

Damage Information: v(t) and v(t)

State
Variables x(t) Structural »| Damage
Model Load Model

Vector q(t)

Initial Fatigue Damage
Initial Creep Damage

Fig. 5.1 Schematic diagram of the damage mitigating control system

5.1 Feedforward Optimal Control Policy

The feedforward control policy is obtained via nonlinear programming (Luenberger, 1984)
by optimizing a specified cost functional of the plant dynamic performance without violating
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preassigned constraints on the damage rate and accumulation. The optimal control problem is
stated in the following three subsections.

5.1.1 Process to Be Controlled

The rocket engine under consideration is similar to the Space Shuttle Main Engine (SSME),
and the critical components that are prone to damage are the fuel and oxidizer turbine blades and
main thrust chamber coolant channel ligament. A general structure of the plant and its damage
dynamics is represented in the deterministic continuous-time setting as:

Plant dynamics: X= id’tf = f(x(t),u(t)); x(ty) =X, (5.1)
Plant outputs: y(t) = g(x(t),u(t)) (5.2)
Damage dynamics: = %:- = h(v(1),q(x,1)); V(t,) = vo; h 2 0 Vt e[t,, t(] (5.3)
;Structura:l outputs: q(t) =h(x(),ut)) 7 (5.4)

where t, is the initial time and t; is the final time; X € R" is the plant state vector; y€ R is
the plant output vector, ueR™ is the control input vector; q € RP is the structural output

vector; veR' is the damage state vector. The dimensions of these vectors in the damage
mitigating control system are: n=20, 1=10, m=2, p=7, and r=3 based on the plant dynamic model -
derived in Chapter 2 and the structural and damage models presented in Chapter 3. The
nonlinear differential equations (5.1) and (5.3) are assumed to satisfy the local Lipschitz
condition (Vidyasagar, 1992) within the domain of the plant operating range.

The state-variable representation of the damage model in Eq. (5.3) allows the instantaneous .
damage rate ¥(t) to be dependent on the current level v(t) of accumulated damage. The physical
interpretation of the above statement is that a given test specimen or a plant component, under
identical stress-strain hysteresis, shall have different damage rates for different initial damage.
For example, if the initial crack length is 100 mm, the crack propagation rate will be different
from that for an initial crack length of 20 mm under identical stress excursions. Therefore, the

initial damage v,, is important due to its effects on the dynamics of damage accumulation.

5.1.2 System Constraints -

Constraints on allowable values of the control variables u(t) represent the actuator
saturation, and preassigned limits of the damage rate and damage accumulation are imposed for
assuring structural durability as follows:

Natural bounds: 0<u(t)<o (5.5)
Nonlinear constraints: 0 < h(v(t),q(x(t),1)) < B(t) (5.6)
Nonlinear constraints: (v(tg)-vy) < 5.7

where o € R™ is the natural bound vector of the control valve positions; B(t) € R’ is specified

tolerances for the damage rate vector; and e R is specified tolerances for damage
accumulation vector, which need to be appropriately chosen by considering the mission
objectives, the time interval between maintenance actions, service life and allowable risk.
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5.1.3 Cost Functional

The task to be accomplished is the up-thrust transient process which transfers the plant state
from a known initial state x(t,) to the specified final steady state x;; and the corresponding

control effort ug at the specified final time t;. The quadratic cost functional is chosen to be the

square of the weighted £,-norm of the plant states, a selected plant output, control efforts and
final state errors. The task is to minimize this cost functional:

T = (x(tr) = ) TM(te) = X0 )+ [{S((1) =y, et

IR = Xg6) T QUX(D) — X) + (u(t) — uyg) R (u(t) — ug,)Jdt

where the penalty matrices M, Q, S, and R are symmetric positive semi-definite and have
compatible dimensions. The purpose of including the plant output y(t) in the cost functional is
to inhibit any large deviation of this output variable from its desired value. In this specific case,
the output variable of interest is the oxygen/fuel (O, / H,) mixture ratio because the rocket
engine performance and propellant utilization are very sensitive to the mixture ratio which
should be maintained at the desired value of 6.02 during the transients. Note that S is a (1x1)
matrix in this case because only one output vector has been selected.

(5.8)

The cost functional J is to be chosen in an appropriate form representing a weighted trade-
off between the following three criteria of system performance. The matrix M is the cost or
penalty associated with the terminal error. The matrices Q and S are the cost or loss function
associated with the transient error of the plant state and the selected plant output of interest. The
matrix R is the cost or loss function associated with the control sequence. Therefore, the
weighting matrices M, Q, S, and R in the cost functional J must be selected by the system
designer to put appropriate emphasis on the terminal accuracy, transient behavior of the plant,
damage dynamics, and the expended control effort, respectively.

If the plant model is completely controllable, there is at least one control sequence which
will transfer any initial state to the desired final state. However, controllability does not
guarantee that a solution exists for every optimal control problem. Whenever the admissible
controls are restricted to the feasible set, certain final states may not be attainable for some
constraints. In this research, a general purpose nonlinear programming software, namely,
NPSOL by Gill et al. (1991) has been adopted for solving the feedforward optimal control
problem. Details are reported by Ray et al. (1994c) and Ray and Wu (1994a).

5.2 Problem Formulation

The problem is to generate an optimal control sequence for up-thrust transient operations of
a reusable rocket engine such as the SSME such that the optimal control will not only make a
trade-off between the performance and damage but also strike a balance between potentially
conflicting requirements of damage mitigation at the individual critical points. This optimization

problem is represented in the discrete-time setting to find an optimal control sequence {u,} for

given initial and terminal conditions, which minimizes the specified cost functional J of Eq. (5.8)
subject to the following constraints:

» The discretized dynamic system constraints in Egs. (5.1) to (5.4);
* The natural bounds of the control input sequence in Eq. (5.5);

* The constraints on the damage rate in Eq. (5.6); and

* The constraints on the accumulated damage of in Eq. (5.7).

The steps for generating the optimal control policy are as follows:
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. N-1
Minimize: I, ) = kMR + 3 [%,TQ%, +S7 2+, TR, JAt (5.9)

k=0
Subject to: Xpol = Xi + Jt‘:“ f(x(t),u(t))dt; Xk = X(ty) (5.10)
Yi = 8(Xy,ug); uy =u(ty) (5.11)
Vial = Vi + [R(VO,q(0)dt Vie= V) (5.12)
g, = E(xymy); (5.13)
and the constraints are:
0<ii, <@y (5.14)
0 < h(v,,q(X;,ty)) < By k=1,2, --,N (5.15)
(Vn=Vo)<T (5.16)

where N is the total number of discretized steps which represent the period from the initial time
t, to the final time t;; At is the (possibly) non-uniform time interval, Aty =ty —ty, for

RN s the plant output vector;

k=1, 2, to N, xi e R™N is the plant state vector; ¥, €
u, € R™N s the control input vector; vy € R™N is the damage state vector; q, € RPN is the
structural output vector; Oy e R™N is the normalized natural bound vector of the valve
positions; By € RN s specified tolerances for the damage rate vector; I'e R’ is specified
tolerances for accumulated damage vector; Xy € RN is the normalized deviations of plant

state vector; yy € RN is the normalized deviations of selected plant output scalar which is
oxygen/fuel (O, / H,) mixture ratio, the second component of the plant output vector yy as seen

below in Eq. (5.17c); Uy € R™N is the normalized deviations of control input vector. The
definition of the above normalized vectors for k=1, 2, to N are given as:

&k = ock - xdg) 7 xdg X, = Xk, XE, XD i=1,2, -0 (5.17a)
Sk = ¥ — ¥ Vi =Yk Y. yh. k] (5.17b)
i = ul - uly) 7l uy = [ug,ui,u] i=1,2, -, m (5.17¢)

For simplicity, the matrices M, Q, S and R are chosen to be diagonal and constant.
Furthermore, the matrices M, Q and R are normalized according to the non-dimensional vectors

Xy, and i1 in the cost functional J as described in Eq. (5.9).

Qunxn = (ﬁj)Diag([l,l,C33,l,--~,1]) such that trace(Q) = 1 (5.18a)
S=Cgq (5.18b)
Rixm = (%‘%—)I such that trace(R) = Crq (5.18¢c)
M xn = CmQ X Qnuxn such that trace(M) = Cpmq (5.184d)
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where the scalar constants, Cyq, Csg and Cgq in the weighting matrices M, S and R

represent their respective importance relative to the weighting matrix Q. This approach reduces
the variety of choices for weighting matrices. The diagonal elements of the weighting matrix Q
should be different because they correspond to the respective plant state variables which are not
equally important for performance. In the present model, the main combustor pressure which is
the third plant state variable is strongly related to the rocket engine performance. Therefore, the

third diagonal element of Q is chosen to be larger than others, i.e., C33 21 in Eq. (5.18a).

For solving the nonlinear optimization problem, the scalar weighting parameters in matrices
M, Q, S and R are chosen as C33 =30; Cgq = 0.06; Crq = 0.002 and Cpg =0. The optimal

decision variables to be identified are the control inputs sequence {uk} having the dimension of

mXN for k=1, 2, ..., N. To accurately capture the fast dynamic response at an early stage of
the transients, time steps At, are chosen to be non-uniform as follows:
Aty =cAty (5.19)

where constant ¢>1 is the incremental ratio of two consecutive time steps. This setting of non-
uniform time steps enhances the computational efficiency of numerical optimization process by
reducing the total number steps of N (i.e., the dimension of the decision vector in optimization)

for the same period (t; — t,) without any significant loss of solution accuracy.

5.3 Optimization Results And Discussion

The purpose of these optimization studies is to examine the dynamic performance of
reusable rocket engines and the fatigue and creep damage in the critical components. Based on
the optimal control policy, the transients of the process variables and the resulting damage in the
critical components were obtained by manipulating the two oxidizer valves in Fig. 2.1. The
rocket engine is maneuvered from the initial equilibrium state of chamber pressure at 2700 psi
and mixture ratio of 6.02 to the new equilibrium state of chamber pressure at 3000 psi and the
same mixture ratio of 6.02 in 300 ms. The control commands to the two preburner oxidizer
valves are updated at 37 discrete time instants (i.e., N=37) in which the parameters in Eq. (5.19)
were selected as: ¢=1.035 and At,=0.3 ms. The cost functional to be minimized is based on the

deviations from the final equilibrium state at 3000 psi.

Optimization was carried out under different damage rate constraints and different initial
damage in the critical plant components, namely, fuel turbine blades, oxidizer turbine blades, and
the coolant channel ligament in the main thrust chamber. Pertinent results are presented in this
section for four scenarios:

(i) Different creep damage constraints and a fixed initial creep damage in the ligament;
(ii) Different initial creep damage and a fixed creep damage constraint on the ligament;

(iii) Different fatigue damage constraints and a fixed initial fatigue damage on the fuel and
oxidizer turbine blades; and

(iv) Different initial fatigue damage and a fixed fatigue damage constraint on the fuel and
oxidizer turbine blades.

In the first two scenarios, no fatigue damage constraints were imposed on the fuel and oxidizer
turbine blades, and the initial fatigue damage therein was held fixed. Optimization studies were
also conducted under different fatigue damage constraints and initial fatigue damage in the fuel
and oxidizer turbine blades. These results, corresponding to the last two scenarios, are extension
of those reported in a previous publication (Dai and Ray, 1994b) where no creep damage
constraints were imposed on the coolant channel, and the initial creep damage was held fixed.
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Visco-elasto-plastic parameters of oxygen-free high-conductivity copper (Freed and Verrilli,
1988), which is a material for the coolant channel ligament, have been used in these optimization
studies. However, the fatigue damage parameters of the turbine blades are based on the
properties of AISI 4340 steel due to unavailability of the parameters of an appropriate turbine
blade material such as Inconel 718 or MAR-M-246. Therefore, precise conclusions regarding
the blade fatigue damage cannot be made based on these optimization results unless the actual
damage parameters are used.

5.3.1 Different Creep Damage Constraints on the Coolant Channel Ligament

For a given initial creep damage, three cases with different creep damage rate constraints in
the coolant channel ligament are presented in this section. The initial fatigue damage in the fuel

and oxidizer turbine blades are set to Do,H, = Do,0,=0.1 in €ach of these three cases, and no

fatigue damage constraints are imposed. The initial damage and constrained damage rates for
both coolant channel ligament and turbines blades are listed in Table 5.1.

Table 5.1 Damage rate constraints B(t) and initial damage D, under Simulation Condition 1

Simulation Hj Turbine O3 Turbine Coolant Channel Ligament
Condition 1 BHz(t) ; Do, Bo ,(® 7 Doo, Bee(t) 7 Docr
Case 1A Unconstrained / 0.1 Unconstrained / 0.1 Unconstrained / 0.008759
Case 1B Unconstrained / 0.1 Unconstrained / 0.1 1.3x10-3 sec-1/0.008759
Case 1C Unconstrained / 0.1 Unconstrained / 0.1 0.6x10-3 sec-1/0.008759

The transients in Figs. 5.2 to 5.7 exhibit the dynamics of various engine variables and the
damage resulting from optimization over the time period of 0 to 300 ms where the control action
is updated at the thirty seven non-uniformly spaced discrete instants of time. Fig. 5.2 shows the
transients of the creep damage rate and accumulation in the coolant channel ligament
corresponding to the constraints laid out in Table 5.1. The creep damage rate is restrained within
the prescribed constraints, and the accumulated creep damage in the coolant channel ligament is
monotonically decreased as the constraint is made stronger. Therefore, the service life of main
thrust chamber can be extended by imposing the constraints on the creep damage rate. For the
same initial creep damage in the ligament, the creep damage rates near the final equilibrium state
are almost identical for all three cases in Table 5.1; and the growth rates of creep damage
accumulation are not much different except during the initial transition period. The peak of the
creep damage rate occurs between about 10 ms and 30 ms, which follows the dynamic response
of input variables to the creep damage life prediction model, i.e., the temperature and pressure
loading on the coolant channel ligament.

Fig. 5.3 presents the input variables to the creep damage model, namely, the hot-side wall
temperature, cold-side wall temperature, and pressure difference acting on the ligament. It is the
temperature and pressure variations that cause the creep ratcheting and progressive thinning of
the ligament as discussed in Chapter 4. To reduce the creep damage accumulation in the
ligament, the transient oscillations of the thermo-mechanical loading (i.e., wall temperatures and
pressures) need to be controlled by constraining the creep damage rate. The oscillations in the
cold-side wall temperature are indeed reduced for the constrained cases as seen in Fig. 5.3, and
similar effects are observed for the pressure difference and the hot-side wall temperature.

The transients of the mean stress, fatigue damage rate, and fatigue damage accumulation for
the fuel and oxidizer turbine blades are shown in Figs. 5.4 and 5.5, respectively, under different
creep damage constraints on the ligament. The peak of mean stress in the fuel turbine blades
occur at about 15 ms for the unconstrained case 1A, and at about 35 ms and 90 ms for the
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constrained cases 1B and 1C as shown in Fig. 5.4. Similar results are observed for the oxidizer
turbine in Fig. 5.5. The rationale is that the mean stress and stress amplitude in the blades are
directly related to the turbine torque and turbine shaft speed. Since the fatigue damage rate in the
turbine blades is largely determined by instantaneous values of the mean stress and stress
amplitude, peaks of the fatigue damage rate occur in synchronism with the peaks of the mean
stress. Following the mean stress transients, the accumulated fatigue damage is reduced and
slowed down for the constrained cases as seen in Figs. 5.4. and 5.5. The optimization results
also indicate that constraining the creep damage rate in the coolant channel ligament has a direct
effect on the fatigue damage in the fuel and oxidizer turbine blades although no fatigue damage
constraints are imposed on the turbine blades. By imposing a constraint on the creep damage
rate, the service life of the coolant channel is increased along with simultaneous increase in the
service lives of both the fuel and oxidizer turbines. The fatigue damage accumulation in the
turbine blades under the creep damage constraint in the ligament (Case 1C) are about one-sixth
and one-third of that under the unconstrained case respectively (Case 1A).

Figs. 5.6 and 5.7 show how the plant dynamic performance is influenced by different creep
damage constraints in the ligament. The transients of the oxygen flow rates into the main thrust
chamber, fuel preburner, and oxidizer preburner are presented in Fig. 5.6. The overall system
response becomes more sluggish as the damage rate constraint is made stronger. The resulting
transients of the key process variables, namely, O, / H, mixture ratio and the hot-gas pressure
and temperature in the main thrust chamber, are shown in Fig. 5.7. As expected, for a given
initial damage, both pressure and temperature dynamics tend to become slower as the service
lives of the main thrust chamber and turbines are increased. The thrust chamber pressure is seen
to rise monotonically in all cases except for a small dip during early transients. For a given
preburner pressure, a reduction in the thrust chamber pressure causes an increase in the turbine
torque which, in turn, increases the pressure load acting on the turbine blades. Therefore, the dip
in the thrust chamber pressure at about 10 ms in Fig. 5.7 is also responsible for the peak mean
stress in the fuel turbine blades for the unconstrained case. Furthermore, the net excursion of the
O, / H, ratio is in the range of 5.9 to 6.4 for the unconstrained case, and is improved to 5.9 to
6.04 for the constrained case during the up-thrust transients of the rocket engine. The overshoot
in the thrust chamber hot-gas temperature at about 10 ms for the unconstrained case is reduced
and shifted to about 40 ms and 90 ms for the constrained cases 1B and 1C.

5.3.2 Different Initial Values of Creep Damage in the Coolant Channel Ligament

This section presents three cases with different initial creep damage under the same
constraint of the creep damage rate in the coolant channel ligament. The initial fatigue damage
and the damage rate constraints for the fuel and oxidizer turbine blades are kept the same for all

three cases. The initial values of creep darﬁnage’ apcqmulation in the ligament, D, cr, represent
the damage conditions at the end of the Ist, 100th, and 200th firing cycles, respectively, as
discussed in Chapter 4. These constraints are listed in Table 5.2.

Table 5.2. Damage rate constraints 3(t) and initial damage D, under Simulation Condition 2

Simulation H3 Turbine O3 Turbine Coolant Channel Ligament
Condition 2 Pu,®) ; Do, Bo, ) ; Dop, Ber (1) 7 Docr
Case 2A | Unconstrained /0.1 | Unconstrained /0.1 1.3x10-3 sec-1/0.008759
Case 2B | Unconstrained /0.1 | Unconstrained /0.1 1.3x10-3 sec-1/0.189305
Case 2C Unconstrained / 0.1 Unconstrained / 0.1 1.3x10-3 sec-1/0.459618
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The results generated under the simulation condition 2 in Table 5.2 are presented in Figs. 5.8
to 5.13. The creep damage rate and accumulation in the ligament is shown in Fig. 5.8 for
different initial creep damage. The growth of creep damage accumulation for a larger initial
damage is faster than that for a smaller initial damage under a given constraint of the creep
damage rate. The rationale is that, under a severe thermo-mechanical loading condition,
structural behavior of the ligament is nonlinear due to a combination of geometric deformation
and viscoplasticity. Specifically, initial conditions of the inelastic strain state vector and initial
creep damage based on the current shape of the ligament are responsible for this nonlinear creep
damage behavior. The above results indicate that the ligament shape is a critical factor for the
creep damage model developed in the Chapter 3 and Chapter 4.

Figs. 5.9 and 5.10 exhibit the transients of mean stress and fatigue damage in the fuel and
oxidizer turbine blades for different initial creep damage in the ligament. The accumulated
fatigue damage in the turbine blades for larger initial creep damage (Case 2C) is about half of
that for a smaller initial damage (Case 2A) under the identical constraint. The reason for this
behavior is that, for a given creep damage rate constraint, the plant response shown in Figs. 5.11
to 5.13 become more restricted due to the increasing creep damage rate for a larger initial
damage as seen in Fig. 5.8. Consequently, the fatigue damage accumulation in the turbine blades
are reduced due to the restricted plant operations as seen in Figs. 5.9 and 5.10. The transients of
the key plant variables are shown in Figs. 5.11 to 5.13 for different initial creep damage under
the same creep damage rate constraints in the ligament. In general, the plant response becomes
more sluggish for larger initial creep damage in the ligament, which is similar to what was
discussed for the constrained cases in the previous simulation.

The above observations suggest that both initial damage and constraints are critical factors
in the synthesis of a damage mitigating control law. The damage constraints in the critical
components should be selected based on the corresponding initial damage. For example, if the
goal is to maintain the plant performance at a constant level, then the damage constraints have to
relaxed as the initial damage increases. In that case, the remaining service life will be depleted
faster as the damage accumulates. On the other hand, if the goal is to maintain a constant
depletion rate of the service life, the constraints need to be made stronger as the initial damage
increases. In that case, the plant performance will be degraded as the damage accumulates.

5.3.3 Different Fatigue Damage Constraints on the Fuel and Oxidizer Turbine Blades

Ray et al. (1994c) have reported the simulation results using a similar rocket engine model
for different fatigue damage rate constraints on the fuel and oxidizer turbine blades without
considering the creep damage in the coolant channel ligament. This section expands these
previous results by including the effects of ligament creep damage. The initial creep damage and
constraints on the creep damage rate of the ligament are identical for all three cases. The
constrained damage rates and initial damage are listed in Table 5.3.

Table 5.3. Damage rate constraints (t) and initial damage D, under Simulation Condition 3

Simulation Hj Turbine O2 Turbine Coolant Channel Ligament
Condition 3 BH2 (t) / DO,H2 B02 t) / Do’o2 Ber(t) 7 Docr
"Case 3A | Unconstrained /0.1 | Unconstrained /0.1 Unconstrained / 0.008759
"Case 3B | 5.0x10-4sec1/0.1 | 5.0x10-4sec-170.1 |  Unconstrained / 0.008759
Case 3C | 1.0x10"4sec1/0.1 | 1.0x10-4sec-1/0.1 Unconstrained / 0.008759

The transients in Figs. 5.14 to 5.19 show the plant performance and damage characteristics
corresponding to the different fatigue damage rate constraints in the turbine blades. The plant
dynamic response in Figs. 5.14 and 5.15 become slightly slower as the damage rate constraints in
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both the fuel and oxidizer turbine blades are imposed. Transients of individual process variables
under different constraints are largely similar except for the initial transients. Fig. 5.15 shows the
transients of the mixture ratio, gas pressure and temperature in the main thrust chamber for the
simulation condition 3 in Table 5.3. These results are qualitatively similar to those under
different creep damage rate constraints on the ligament for the simulation condition 1 in Table
5.1. The overshoot in the mixture ratio occurs at about 10 ms when the oxidizer turbopump
demands more torque to increase its speed so that the pump pressure can be elevated to generate
a higher value of oxygen flow for the desired mixture ratio.

Figs. 5.16 and 5.17 show the transients of the mean stress, maximum fatigue damage rate,
and accumulated fatigue damage on the fuel and oxidizer turbine blades. The sharp increase in
the blade mean stress is the cause of enhanced damage in the turbine blades. The fatigue damage
accumulation in the turbine blades virtually takes place during this short interval (about 0 to 40
ms). The damage accumulation in both the turbine blades for the unconstrained case is seen to
be about five times larger than that for the constrained case.

The transients of the creep damage model inputs, namely, wall temperature and pressure
difference, and outputs, namely, creep damage rate and accumulation, are shown in Figs. 5.18
and 5.19, respectively. The constraints on turbine blade fatigue damage apparently have no
significant bearing on the ligament creep damage.

5.3.4 Different Initial Values of Fatigue Damage in the Fuel and Oxidizer Turbine Blades

The effects of ligament creep damage are included in this section to expand the results of
different initial fatigue damage on the fuel and oxidizer turbine blades as reported by Ray et al.
(1994c). No constraints are imposed on the creep damage rate. The initial fatigue and creep and
damage and constraints on the fatigue damage are listed below in Table 5.4 for three cases.

Table 5.4 Damage rate constraints (t) and initial damage D, under Simulation Condition 4

Simulation Hz Turbine O2 Turbine Coolant Channel Ligament
Condition 4 BH2 (t) / DO,H2 Boz (t) / ])0’02 BCr(t) / DO,CI‘

Case 4A 1.0x10-4 sec-1 70.01 | 1.0x104 sec-1/0.01 Unconstrained / 0.0087589

Case 4B | 1.0x104 sec-1/0.05 | 1.0x10"4 sec-1/0.05 Unconstrained / 0.0087589

Case 4C 1.0x104 sec-1 70.1 | 1.0x104 sec'1/0.1 Unconstrained / 0.0087589

Figs. 5.20 and 5.21 show the transients of the mean stress, fatigue damage rate, and
accumulated fatigue damage in the fuel and oxidizer turbine blades. For the initial damage of
0.01, the damage rate for both turbines is less than the limit of the constraint even though the
peak of mean stress is the largest. This phenomenon is a consequence of a relatively small slope
in the nonlinear damage curve at early stages of the fatigue life in high-strength materials which
implies that, for a given stress amplitude, the fatigue damage rate increases with as the fatigue
damage accumulates. This dependence on the initial fatigue damage is due to the y-parameter in

the nonlinear fatigue damage model presented in Section 3.1.

The transients in Figs. 5.22 and 5.23 show the plant performance for different initial fatigue
damage in the fuel and oxidizer turbine blades, respectively. The overall system response
becomes slightly sluggish as the initial damage on both the turbine blades increase for the reason
stated earlier in Section 5.3.2. The transients of the wall temperature, pressure difference across
the ligament, and the creep damage rate and accumulation of the ligament are shown in Figs.
5.24 and 5.25. The observation is that different values of initial fatigue damage on turbine
blades have no significant influence on the ligament creep damage.
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5.4 Parametric Studies on Feedforward Optimal Control Policy

A series of optimization studies were conducted to examine the dynamic performance of the
rocket engine while the creep damage rate on the coolant channel ligament were constrained
under the different initial creep damage values, where no fatigue damage constraints were
imposed on the fuel and oxidizer turbine blades, and the initial fatigue damage therein was held
fixed. The selection of the weighting matrices, numerical methods, and the results are described
in detail by Dai and Ray (1994b).

The results of optimization are presented for different initial conditions and constraints of
creep damage in the coolant channel ligament while the fatigue damage in the oxidizer and fuel
turbine blades are unconstrained. Pertinent results are presented in a condensed form in Fig. 5.26
for 15 cases with five different creep damage rate constraints on the coolant channel ligament for
three different initial values of creep damage. The initial fatigue damage in the fuel and oxidizer

turbine blades are set to Dy i, = Do 0, = 0.1, and no fatigue damage constraints are imposed in
each of these cases listed in Table 3.5.

Table 5.5 The damage rate constraints B(t) and initial damage Do
for 15 cases with five different constraints and three different initial damages

Simulation H2 Turbine O, Turbine Coolant Channel Ligament
Condition Bu, (1), Dou, Bo,(®) , D0, Bereep(t) ; Do creep
Case cOA Unconstrained / 0.1 Unconstrained / 0.1 Unconstrained / 0.008759
Case clA Unconstrained / 0.1 Unconstrained / 0.1 1.65x%10-3 sec-1 7 0.008759
Case c2A Unconstrained / 0.1 Unconstrained / 0.1 1.30x 103 sec-1 7 0.008759
Case c3A Unconstrained / 0.1 Unconstrained / 0.1 0.95x% 103 sec-1 7 0.008759
Case c4A Unconstrained / 0.1 Unconstrained / 0.1 0.60% 10-3 sec-1 7 0.008759
Case cOB Unconstrained / 0.1 Unconstrained / 0.1 Unconstrained / 0.189305
Case clB Unconstrained / 0.1 Unconstrained / 0.1 1.65%10-3 sec-1/0.189305
Case c2B Unconstrained / 0.1 Unconstrained / 0.1 1.30%10-3 sec-1/0.189305
Case c3B Unconstrained / 0.1 Unconstrained / 0.1 0.95%10-3 sec-170.189305
Case c4B Unconstrained / 0.1 Unconstrained / 0.1 0.60x 10-3 sec-1 7 0.189305
Case c0C Unconstrained / 0.1 Unconstrained / 0.1 Unconstrained / 0.459618
Case clC Unconstrained / 0.1 Unconstrained / 0.1 1.65x10-3 sec-170.459618
Case ¢2C | Unconstrained / 0.1 Unconstrained / 0.1 1.30x 10-3 sec-170.459618
Case c4C Unconstrained / 0.1 Unconstrained / 0.1 0.95%10-3 sec-1/0.459618
Case c4C Unconstrained / 0.1 Unconstrained / 0.1 0.60%x10-3 sec-170.459618

Fig. 5.26 summarizes the results of synthesizing an optimal policy for open loop control of
up-thrust transients of the rocket engine in terms of normalized performance penalty, J,, =J/J i

vs. normalized creep damage, D, = (D¢ =D )/ (DZr - D:r,o) in the coolant channel ligament

of the main thrust chamber. The nominal condition, indicated by *, corresponds to the rated
design condition with no damage constraints as seen in Case cl1A of Table 5.5. The three thick
lines in Fig. 5.26 correspond to three different initial values of creep damage, 0.008759,
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0.189305 and 0.459618, respectively denoted as the cases A, B, and C listed in Table 5.5; and
the five dashed lines, denoted by c0, cl, c2, ¢3 and c4, indicate different creep damage
constraints.

As seen in Fig. 5.26, the performance penalty increases and the creep damage accumulation
decreases by making the damage constraint more tight for a given initial damage. On the other
hand, both the performance penalty and the creep damage accumulation increase for a given
damage constraint if the initial damage is larger. In essence, the engine performance is degraded
if the service life of the coolant channel ligament is extended by tightening the damage
constraint, or if the same constraints are used for a larger initial damage. However, the system
performance is optimized for the given constraints and initial damage even though the
performance may be degraded. '

E 35 F 71 T T | T | T T T [ T I | p—
Q
£ 30 |- —
o
c 25 —
£ "=
e < 2.0 |- —
(§1] o]
Q 1.5 —
L)
SY 10| .
E 05 L B Initial Damage _
Q 00 1+ | l 1 ] L | 1 ] 1 ] 1 1 | -
o 0.8 1.0 1.2 14 1.6 1.8 2.0

D cr'Do,cr)/( Dcr 'Do,cr )

—

Damage reduction/Life Extension

Fig. 5.26 Optimization results of performance vs. damage reduction/life extension

Each point, denoted by a circle in Fig. 5.26 corresponds to the optimal open-loop solutions
(i.e., optimal trajectories of control valve actions {uk}, and transients of plant state and output

variables {xk}and {yi }) for a given initial creep damage and constraints on the coolant channel

ligament for the engine acceleration from the initial state of 2700 psi to the final state of 3000
psi. This optimal law for feedforward control of the up-thrust transients can be formulated, for a
predicted initial creep damage in terms of the user-specified creep damage constraints. These
constraints, in turn, can be selected based on the mission objectives, service life, performance,
and maintenance and operational costs. For example, for meeting the mission objectives, if the
system performance is more critical than extension of the service life, then the creep damage
constraints may have to relaxed for an older engine. On the other hand, for reduction of the
engine life cycle cost, if a small sacrifice in the engine performance can be allowed, then the
creep damage constraints should be made more stringent as the engine becomes older.
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5.5 Simulation of the Damage Mitigating Control System on a Testbed

The feedforward control policy is generated in Section 5.2 to achieve optimal performance
of the rocket engine based on a nominal model of plant and damage dynamics. However,
because of modeling uncertainties, sensor noise and external disturbances, the actual response
will deviate from nominal trajectory when the plant is excited by the sequence of the feedforward
control commands. Therefore, a feedback control system can be used to compensate for these
deviations. A robust output feedback controller has been synthesized to maintain the trajectories
of the plant output variables close to the respective nominal trajectories.

Feedforward and
Robust Output

Speed

< Torque Feedback Controller ¢ I[\)/Iodeil

= Pressure and Model-based evelopment .

> [ Tm|02/H2 Damage Predictor * Control Analysis|
Tsample and Synthesis

Silicon Graphics

Time

Structural and
Damage Information
Monitoring & Display

Damafe rate Z

Plant Dynamic Model

Ethernet
Communications Link

> ] PC486

|
;

Fig. 5.27 Schematic diagram of the simulation testbed operations

A simulation testbed has been established for evaluation of damage mitigating control
systems. The testbed, at this stage, consists of an Silicon Graphics (SGI) Indigo R-4000
workstation, two 586-based and one 486-based PCs which are interconnected via ethernet as
shown in Fig. 5.27. The SGI workstation has been used for off-line computations that include
model development of both plant and structural & damage dynamics, and analysis and synthesis

of both feedforward and robust feedback control policies via nonlinear programming and -
synthesis (Packard and Doyle, 1993), respectively. The 20th nonlinear plant dynamic model of
the rocket engine is simulated on one of the PC-586s, which serves as the real plant. Both the
feedforward control policy and the linear robust output feedback control policy are implemented
in the second PC-586 along with the analytical structural and life prediction models of the critical
components (i.e., fuel and oxidizer turbine blades and main thrust chamber coolant wall). This
software for on-line life prediction and control is portable to other machines. All three machines
serve as display devices of the selected process and damage variables.
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CHAPTER 6
SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS FOR FUTURE WORK

This report investigates the feasibility of damage mitigating control of reusable rocket
engines where the objective is to achieve optimized trade-off between the system performance
and structural durability. Summary and conclusions of this interdisciplinary research are
presented in Section 6.1. Future research for transfer of this space technology to the electric
power industry is recommended in Section 6.2.

6.1 Summary and Conclusions

A unified methodology has been proposed for analysis and synthesis of damage mitigating
control systems for rocket engines by integrating the disciplines of thermo-fluid dynamics,
mechanical structures, and mechanics of materials along with control and optimization of
dynamic systems. Research work in each of these disciplines are summarized and concluded in
Sections 6.1.1 to 6.1.3.

6.1.1 Plant Dynamic Model of a Reusable Rocket Engine

Plant dynamics of a rocket engine which is similar to the Space Shuttle Main Engine
(SSME) have been modeled in Chapter 2 is to represent its steady-state and dynamic
characteristics for damage prediction and synthesis of a damage mitigating control policy. The
20th order, nonlinear, time-invariant and deterministic model is formulated in the state-space
form, and numerical results are obtained by digital simulation.

Steady-state model results agree closely with those of a more detailed nonlinear model of the
SSME reported by Rockwell (1989). Transient responses of the nonlinear plant model are
obtained at the full load by initiating independent step disturbances in two input variables. The
results show that the two control input valves, FPOV and OPOV, have significant effects on

O, / H, mixture ratio and chamber pressure as discussed by Musgrave (1990). In particular, the
chamber pressure is affected to a much greater extent due to the step change in the FPOV than
that due to the OPOV. These results are useful for:

(1) Understanding the complex and highly interactive process dynamics;

(ii) Providing the process variables (i.e., turbopump speed and torque, wall temperature and
pressure loading) for damage prediction in the critical plant components; and

(iii) Investigating both feedforward and feedback system dynamic performance under various
operating conditions.

These results can also be used for prediction of potential operational and control problems of
reusable rocket engines.

6.1.2 Structural and Damage Model of the Combustion Chamber Wall

This report presents the development of a creep damage model in the coolant channel
ligament of the main thrust chamber during transient operations of a reusable rocket engine such
as the SSME. This damage model is based upon the theories of sandwich beam and
viscoplasticity. The modeling approach consists of analyzing the incremental bulging-out and
progressive thinning of the ligament in each firing cycle by taking the effects of geometric
deformation into consideration.

A structural and damage model of the coolant channel wall for the main thrust chamber has
been analytically derived and subsequently validated in terms of single-cycle and multi-cycle
stress-strain behavior by comparison with finite element models and experimental data for two
different materials, namely, OFHC copper and NARloy-Z. The predicted results are in
agreement with those obtained from the finite element analyses and experimental observations.
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The close agreement with the finite element models indicates that the proposed life prediction
model can capture the failure mechanics (i.e., creep rupture) of the main thrust chamber wall by
calculating the mid-plane deflection of the ligament. This model has been proven to be
numerically much more efficient than the finite element model with comparable accuracy.
Validation of this model for both NARloy-Z and OFHC copper materials and its numerical
efficiency establish its credibility for on-line life prediction and damage mitigating control of a
rocket engine for which the finite-element model is not appropriate. To the best of the author's
knowledge, the proposed life prediction model is the only available model which is suitable for
both on-line life prediction and damage mitigating control.

The predicted life of the coolant channel wall is influenced by several factors including the
ligament material, configuration and design of the channel, chamber pressure, wall temperature,
and loading cycle duration. These effects have been investigated through parametric studies, and
the following conclusions are derived:

1. The failure phenomena, regardless of whether the material is OFHC copper or NARIoy-
7, are characterized by thinning of the center of the ligament. An OFHC copper ligament is
potentially more prone to damage because the thinout process accelerates leading to an abrupt
rupture. NARloy-Z materials show an improvement in cyclic life over the OFHC copper
material at a given thermo-mechanical loading. The deformation of an OFHC copper chamber is
predicted to be larger than for that for a less ductile NARIloy-Z chamber, which is in agreement
with experimental observations.

2. Increasing the number of coolant channels is one of the feasible approaches to life
extension of the main thrust chamber.

3. The pressure difference across the coolant channel ligament is a cause of the bulging-out
phenomenon, and the ligament thinning increases with the pressure difference.

4. Decreasing the coolant wall temperature is a possible solution to reduce thinning of the
main thrust chamber wall. The thermally induced bending resulting from temperature difference
across the ligament tends to retard the bulging out process due to the pressure loading, and
therefore improves the service life of the main thrust chamber, especially for the OFHC copper
material.

5. The magnitude of the bulging-out and thinning of the coolant channel ligament of both
OFHC copper and NARloy-Z materials is depended on the duration of the loading cycle. The
bulging out process is more pronounced for the extended cycle than for the short loading cycle.

6.1.3 Integrated Life Extension and Control Synthesis

The benefits derived from damage mitigating control of reusable rocket engines, as
presented in this report, are summarized below:

+ Maximum system performance of rocket engines can be achieved with increased
durability of the mechanical structures such that functional lives of critical components are
increased.

+ On-line life prediction and damage mitigation, based on the available sensory and
operational information, will allow reusable rocket engines to be inexpensively maintained, and
safely and efficiently steered under diverse operating conditions.

The feasibility of applying this control concept to rocket engines such as the SSME has been
investigated in view of fatigue and creep damage in three critical components, namely, the fuel
turbine, the oxidizer turbine, and the main thrust chamber. Based on the fatigue damage model
and the proposed creep damage model, an optimal feedforward policy has been synthesized for
open loop control of up-thrust transients of the rocket engine under the damage constraints on the
above three critical components.
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The results of optimization studies demonstrate the interactive nature of fatigue damage in
the fuel and oxidizer turbine blades, and creep damage in the coolant channel ligament of the
main thrust chamber. The damage accumulation in both coolant channel ligament and turbine
blades are seen to be significantly influenced by their respective constraints and initial damage.
It is observed that the initial damage in the critical components may have a significant impact on
service life extension of rocket engines. Therefore, in the synthesis of the control policy, both
the constraints and performance cost function need to be selected based on the knowledge of the
initial damage in the critical components.

Up-thrust transients of the rocket engine have been simulated for a brief period of 300 ms.
Complete operations of a reusable rocket engine over its life include many such transients, and
the steady-state operation in a single flight may last for several hundreds of seconds. Although
both fatigue and creep damage rates during the steady state are smaller than those during
transient operations, the total damage accumulation during steady state operations may not be
insignificant. Therefore, during one flight of a reusable rocket engine, the cumulative effects of
both transient and steady state operations need to be considered for estimation of total damage
accumulation. The optimization studies presented in this report only consider a single point in
each of the three critical components. Simultaneous control of damage at several other critical
points in the rocket engine might be necessary for damage mitigation and life extension.
However, this will make the optimization problem more complex as the dimension of the
damage vector will be large compared to the three-dimensional damage vector in the present
study.

6.2 Recommendations for Future Work

The concept of damage mitigation, presented in this report, is not restricted to control of
rocket engines. It can be applied to any system where structural durability is an important issue.
Besides rocket engines, applications of damage mitigating control include a wide spectrum of
engineering applications such as fossil and nuclear plants for electric power generation, rotating
and fixed wing aircraft, automotive and truck engine/transmission systems, and large rolling
mills. In each of these systems, damage mitigating control can enhance safety and productivity
accompanied by reduced life cycle cost.

For example, the availability of power plants often suffers from premature failures of steam
generator tubes (due to corrosion-fatigue and creep), main steam and reheater steam pipelines
(due to creep and fatigue), condenser tubes (due to stress corrosion cracking and flow-induced
vibration) and low pressure turbine blades (due to stress corrosion, erosion, and fatigue). A
continuous-time damage model will allow timely warnings of these failures, and the resulting
decision and control actions may not only avoid an early shutdown but also improve
maintainability. A more complex application of the damage mitigation concept is start-up and
scheduled shutdown of power plants, and take-off and landing of commercial aircraft, in which
the damage information can be utilized for real-time plant control either in the fully automated
mode or with human operator(s) in the loop.

The concept of damage mitigating control is of significant importance to power and
processing plants. Many components such as steam generators in conventional power and
processing plants are exposed to high loads at elevated temperatures, and have been in use
beyond the design life of 30 to 40 years. Several preliminary investigations have shown that the
cost of life extension of a typical fossil power plant may be only 20 to 30 percent of that of a new
construction (Viswanathan, 1989). Therefore, the concept of damage mitigating control is
ideally suited to life extension of aging power plants under both steady state and transient
operations. The objective is to enhance plant performance, availability and maintainability while
simultaneously reducing the structural damage to avoid unscheduled plant shutdown and repair
as much as possible. This objective can be achieved via transfer of the technology of damage
mitigating control for the rocket engines to power plant applications.
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