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ABSTRACT

Analytical and experimental work is presented on the damped free-vibration of delaminated laminates

and beams. A laminate theory is developed where the unknown kinematic perturbations induced by

a delamination crack are treated as additional degrees of freedom. The generalized stiffness, inertia

and damping matrices of the laminate are formulated. An analytical solution is developed for the

prediction of natural frequencies, modes and modal damping in composite beams with delamination

cracks. Evaluations of the mechanics on various cantilever beams with a central delamination are

performed. Experimental results for the modal frequencies and damping of composite beams with a

single delamination are also presented and correlations between analytical predictions and measured

data are shown. The effects of delamination vary based on crack size, laminate configuration, and

mode order. The imphcations of the mechanics in developing delamination detection techniques are

also discussed.



INTRODUCTION

Along with the continuous competing requirements for improving the weight, interdisciplinary

performance, and reliability of composite components, the development of real-time non-destructive

"health-monitoring" techniques based on the global dynamic characteristics of the composite

structures is receiving growing attention fLee et al. 1987, Tracy and Pardoen, 1989, Grady and Meyn,

1989, Raju et al., 1992). Among them, the capability to detect delaminations by monitoring changes

in the dynamic characteristics or in the dynamic response of the structure seems to be an attractive

technique. Yet, in order to realize the full benefits of such techniques, analytical models are required

which will quantify and provide valuable insight on the dynamic characterization of composites with

induced delaminations. Consequently, this paper presents recent developments in composite

mechanics for predicting the delamination effects in composite laminates and laminated beams,

together with experimental studies.

Although significant work has been reported in the general area of delamination prediction and

growth, some research has been reported on the prediction of delamination effects on structural

response. Tracy and Pardoen (1989), Nagesh Babu and I-Ianagud (1990), Paolozzi and Peroni (1990),

and Shen and Grady (1992) have analyzed the effects of a single delamination on the natural

frequendes and modes of composite beams using the "four-region" approach, that is, the delaminated

beam was divided into four regions and beam theory was applied to each region. Tenek et. al. (1993)

used a similar approach for plates. On a parallel approach, Anastasiadis and Simitses (1991) and

Simitses (1993) have addressed the buckling of delaminated beams. Barbero and Reddy (1991) have

also reported a layerwise plate theory for the analysis of delaminated laminates, which was later

extended by Lee et. al. (1992) on a finite element based buckling analysis of composite beams with

multiple delaminations. To the authors' best knowledge, no analytical or experimental work has been

reported quantifying the effects of delaminations on the damping of composite laminates/structures.



Thepresentmethod involves generalized kinematic assumptions and represents the discontinuities

in the in-plane and through-the-thickness displacements, as well as, the discontinuities in the slopes

of the in-plane displacements across each delamination crack. The induced discontinuities are treated

as additional degrees of freedom. The laminate stiffness, mass, and damping matrices are generalized

and expanded to include additional terms which represent the effects of delamination on the dynamic

properties of the delaminated composite. Hence, a unified and inclusive laminate theory is developed

which can handle either pristine, or delaminated laminates with single or multiple delaminations. The

present mechanics include both intralaminar and interlaminar effects, hence, they entail the potential

to provide accurate predictions of delamination effects on the dynamic characteristics.

To illustrate the merit of this generalized laminate theory, the dynamic equations of motion are

formulated and an exact methodology for predicting the free vibration of composite beams with a

delamination is developed. Moreover, the modal frequencies and damping of [0/90/45/..45], and [45/-

45/90/0], T300/934 cantilever beams with various sizes of simulated delamination cracks were

measured. Predicted results are correlated to these experimental data, as well as, with other reported

natural frequency measurements. Both analytical and experimental parametric studies assess the

effects of delamination size and laminate configuration on modal frequencies, shapes, and laminate

damping. The results provide valuable insight into the problem, and are envisioned to facilitate the

interpretation of future experimental results, as well as, the development of effective "health

monitoring" techniques for improved reliability in composite structures.

LAMINATE MECHANICS

The present section presents mechanics for laminates with intedaminar delamination cracks. The

kinematic assumptions are extended to represent the discontinuities in both in-plane and through-the-

thickness displacement fields (Fig. 1) induced by the presence of one or several (N_) delaminations

between the composite plies.
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where: u, v, w are the in-plane and through-the-thickness displacements; ax and ay are slopes of the

in-plane displacement along the x and y axes; H is the Heaviside's step function; superscript o

indicates midplane quantities, and superscript k indicates the new degrees of freedom describing the

kinematic discontinuities across the k-th delamination; zt is the distance of the k-th delamination from

the mid-plane. In the absence of delaminations, the theory may reduce either to classical laminate

theory, or to a discrete-layer type of laminate theory (Alam and Asnani, 1986; Barbero et. al, 1990,

Saravanos, 1993).

Based on the above kinematic assumptions, the intralaminar and interlaminar strains through the

thickness of the laminate are:
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where _ioverhat is the Dirac's impulse function. In the context of the present formulation, intedaminar

strains exist across the delamination cracks only. In the above equations the midplane strains and

curvatures {e °} and {k} are traditionally defined as
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The comma in the subscripts indicates differentiation. As seen in eq. (2), additional generalized strains

{e k} and {k _} exist which describe induced changes in the strain field as a result of the kth

delamination,
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The corresponding generalized laminate stresses are the resultant axial forces and moments per unit

depth, {N} and {M} respectively, for the whole laminate,
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and for each delaminated section
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where h is the laminate half-thickness, Nd the number of delaminations through the thickness, and

superscripts o and k indicate pristine and delaminated regions respectively. Combining eqs. (2), (5)

and (6) the generalized laminate stresses are related to the laminate strains as follows:
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The resultant laminate stiffness matrices in the above equations are,
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where N, is the number of plies and [Qj is the ply stiffness matrix. The 3 by 3 matrices [A], [13] and

[D] describe the extensional, coupling and flexural laminate stiffness of the pristine laminate. The

other six matrices are new and describe the changes in axial, coupling and flexural laminate stiffness

as a result of the delaminations. These additional stiffness matrices increase the stored strain energy

in the delaminated area resulting in a loss of the overall rigidity.

The dissipated strain energy 8W L per unit area of the laminate (excluding frictioneffects) is:

k
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where [11,.]is the damping matrix (loss factors) of each composite ply (Saravanos and Chamis, 1990).

Combining eqs. (2) and (10), then integrating through the thickness, the dissipated strain energy in

the laminate (excluding friction effects) is expressed in a separable form of strains and laminate

damping matrices
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As in the case of stiflhess matrices, the presence of a delamination crack alters the dissipated energy

in the laminate in two discrete ways: (1) by changes in the damping properties of the delaminated

sublaminates, expressed with the introduction of additional damping matrices in eq. (11); and (2) by

the simultaneous changes in the average strains and curvatures of each sublaminate. The damping

laminate matrices are:

(12)

The through-the-thickness location of the delamination is reflected in the additional stiffness, damping

and mass matrices indicated with superscripts k and kl.

In addition to changes in the hysteretic damping of the laminate, additional energy is dissipated from

friction along the interfaces of each delamination crack due to their relative motion, expressed by u k

and v _, across the interfaces of each crack. The friction effects are not included in the present paper,

however, the mechanics have certain provisions and related work will be reported in future work.

Nevertheless, the significance of interracial friction is assessed in the applications sections via

comparisons with experimental results.



COMPOSITE BEAMS WITH DELAMINATION

The present section describes the application of the laminate mechanics in developing an analytical

solution to model the dynamic characteristics of general composite beams with a single

delamination. This exact, yet computationally inexpensive model provides valuable insight into the

effects ofdelaminations on the dynamic characteristics of composite structures. Moreover, it is timely

appropriate because most efforts in this area have been focused on composite beam specimens. The

development of structural mechanics for other configurations will be addressed in the near future.

Considering a beam with k delaminations extending through the whole depth as shown in Fig. 2, in

free flexure conditions (only the axial forces/moments Nx, M_, Nx_, M_k are nonzero), effective

constitutive equations may be derived by inverting eqs. (7-8), then imposing the free-flexure

conditions (Ny= My= Ny_- MyL__ N_y-- M_= N_ L= M,y_-0). Inverting once more the remaining

equations, the equivalent laminate relations take the form:

t-I ....,Nd

(13)

where, the superscript * indicates the effective laminate stiffnesses in free-flexure conditions. It is

pointed out that the laminate stiffness terms in the above equations include condensed effects from

all stiffness terms. In the case of pure (cylindrical) bending, the resultant constitutive equations are

similar to eq. (13) but superscript * should be omitted.

Integrating the stress equilibrium equations through the thickness of the delaminated beam in the

context of the described mechanics, the following equations of motion result:
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where: q= o_(h)-o_(-h) and qL._O_(h)-o_(zk) are the normal surface tractions applied on the upper and

lower fi'ee surfaces; the overdot indicates differentiation with respect to time; p, pk and pU are the

specific masses per unit area of the laminate and the delaminated sublaminates which are defined as

follows:
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Combining eqs. (3-4), (13), and (14) the following system of differential equations results which

describes the dynamic response of the delaminated beam:
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Note that eq. (16) may be applied to pristine laminates by setting u_ w_-0, Na=0. In the following

paragraphs, attention is focused on the case of a single delamination (k=l=l), however, the

extension to multiple delaminations is straight forward. In either case, the fundamental solution for

the above system of differential equations (16) has the form,

{-, °,w °,u _,w*} . {u °,w°,u _,w*}e%s_ (17)



For a nontrivial solution of the previous form to exist in eqs. (16), the determinant of the resultant

system should be zero which ultimately results in three characteristic equations relating the

characteristic wavelength with the corresponding natural frequency of each mode. The first

characteristic equation corresponds to the pristine sections (subscript o), and the remaining two to

the delaminated segment of the beam (subscripts 1 and 2) respectively, and all have the following

form:

o (lS)

where L_, In, Iq are strictly functions of the laminate stiffness terms and Mo, M 1, M 2 are functions of

both the sfit_ess and mass terms in eq. (16). Two important conclusions are derived from eqs. (17)

and (I 8). First, the admissible mode shapes of the beam for both pristine and delaminated sections

have the form

Iff

n

W

_/_..x,._2 (19)

where superscripts j=o, 1,2 represent the various sections in the pristine and delaminated beam (see

Fig. 2). Second, eqs. (19) indicate two types of admissible mode shapes, either global or local (in the

delaminated region) modes. Due to space limitations, the paper is mostly restricted to global modes.

The 24 coefficients in eq. (19) are calculated from: boundary conditions at the proximal and distal end

of the beam; continuity conditions for w*, w_ °, u °, Nx °, M_*, and N= ° at the proximal and distal tips

of the delamination crack, that is,

* * *(x3-_ *(,')
w *(x-).w °(x3, w_,(x-).w_(:_'), - (20)

0 0 . 0 0 , 0 0

Mx (x')-Mx (x),.Vffi(x')._V, (x),
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andrequirementsthattherelative interracial motion diminishes (w k=- v:',:-uL--O) at the proximal and

distal tips of the delamination.

- w_(x) - u - - (21)

The axial location of the delamination is reflected in these boundary conditions. For a single crack,

the above conditions together with the supporting conditions of the beam result in a linear system of

24 equations:

[F().o.,tp).:)]{C}. 0 (22)

where {C} is the vector of the 24 unknown coefficients. For a nonzero solution, the determinant

of the linear system (22) should be zero,

dct[F(X_X1,_.:)] . 0 (23)

Combination ofeqs. (18) and (23) provides the characteristic equation in terms of to. The roots are

the natural frequencies to,. Because of its size, the determinant in eq. (23) is numerically calculated

using Cholesky decomposition. The characteristic eq. (23) is numerically solved for to using a

bisection technique, to find the natural frequencies. Then the corresponding characteristic

wavelengths _,o,,, _,_,, _ are determined from eq. (18). Subsequent substitution of the modal

wavelengths _m into the system of linear equations (22), and solution of the system provides the

coefficients for the mode shapes in the context ofeq. (19). The axial location of the delamination is

depicted in eqs. (19-21).

The modal damping of the beam is calculated as the ratio of the dissipated and maximum strain energy

of the delaminated beam. The mode shapes and the corresponding generalized strains are calculated

from eqs. (3), (4) and (19). The modal damping of the beam corresponding to the n-th mode is

calculated from the ratio of the dissipated and maximum stored strain energy in the beam,

11
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where the dissipated strain energy at a point of the beam may involve a viscoelastic damping

component provided by eq. (11), and a friction component 8Wf_ from interracial friction damping

along the kth delamination. The maximum strain energy is provided by an analogous expression to

eq. (11) involving the laminate stiffness matrices. However, the inclusion of the friction component

due to the relative motion ukrequires additional work and development which exceeds the scope and

space of this paper, and will be included in future work. Hence, the above formulation includes the

effects of material, lamination, crack size and location on the viscoelastic damping of the beam, and

the damping predictions in the following section correspond to changes in the viscoelastic damping

of the beam in the presence of a delamination.

EXPERIMENTS AND MATERIALS

Because only limited experimental data are available in the open literature regarding the variation of

natural frequencies and modal damping in delaminated composites, composite beam specimens with

a simulated delamination crack were fabricated and tested. The beams had [0/90/45/-45], and [45/-

45/90/0], laminate configurations respectively, with T300/934 graphite/epoxy plies with fiber volume

ratio in the range of 0.57-0.63, and 0.005 in nominal thickness. A single delamination was artificially

induced at the mid-plane of the composite using a teflon tape during the lay-up. Specimens with full-

width delaminations and sizes of 0 (pristine), 1.2, 2.4 and 4.8 inches were fabricated. Two specimens

were tested for each delamination length and laminate configuration type.

The beams were tested in a cantilever configuration, such that their free length was l 1 in and the

centers of the delamination cracks were always located at 5.0 in fi'om the clamped end. The beam was

12



excited randomly with a "white" noise signal via an electromagnetic coil and a metallic chip (of

practically negligible mass) adhered at the free-end of the beam. A miniature piezoelectric

accelerometer was attached either near the clamped end, or near the mid-span at the free surface of

the upper delaminated sublaminate. The voltage input to the coil and the output voltage of the

accelerometer were supplied to a high-speed digital frequency analyzer, where they were digitally

processed using FFT soRware to obtain the frequency response functions of the beam. The frequency

response functions were further correlated in a least squares sense to a series of complex exponential

terms (each one approximating an individual mode). Through this correlation, the modal frequencies

and modal damping coefficients of the beam were extracted. The obtained experimental results are

shown in the next section.

RESULTS AND DISCUSSION

This section presents predicted dynamic characteristics of delaminated composite beams and

correlations with experimental data reported herein, as well as, with data reported by other

researchers (Shen and Grady, 1992; Tracy and Pardoen, 1989).

Assumptions

The elastic properties and the density of the T300/934 composite, which were used in the

calculations are shown in Table 1. Some of the elastic composite properties were directly provided

by the manufacturers' datasheet, the remaining ones were calculated from the properties of the

constituent materials, as they were provided by the manufacturer, using micromechanics (Chamis,

1984). The longitudinal, transverse and in-plane shear damping (loss factors) of the composite (see

Table 1) were extracted from unpublished damping measurements on off-axis specimens of the

T300/934 composite 3 using damping mechanics (Saravanos and Chamis, 1990). The mechanical

Private communication with Dr. J. M. Pereira, Structural Mechanics Branch,

NASA Lewis Research Center, Cleveland, Ohio.
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properties for the AS4/3501-6 graphite/epoxy composite (Tracy and Pardoen, 1989) where taken

from the manufacturers datasheet.

[o/9oh. Cantilever Beam

The predicted fundamental natural frequency of a [0190],. T300/934 graphite/epoxy cantilever beam

is shown in Fig. 3 together with reported measurements by Shen and Grady (1992). The beam had

a central delamination of varying length (61) located at the midplane, symmetrically about the mid-

span of the beam. As seen in Fig. 3, excellent agreement was obtained between predicted and

measured naturalfrequencies.

[90/45/-45/0]2, Simply-Supported Beam

The fast four natural frequencies of a [90/45/-45/0]2, simply-supported AS4/3501-6 graphite/epoxy

beam with a central delamination were also calculated and compared with average measured values

reported by Tracy and Pardoen (1989). The variation of the natural frequencies as function of the

crack length (81) is shown in Fig. 4. Excellent agreement was obtained for all modes. These

correlations validate further the capability of the method to provide reliable natural frequency

predictions of delaminated beams.

[0/90145/-45], Cantilever Beam

The previous cases involved doubly syaunetdc laminate configurations which result in negligible

extension-flexure and flexure-twisting effects in the delaminated sublaminates. The subsequent cases

investigate the free-vibration of delaminated composite beams with more general laminate

configurations. The pristine laminate is symmetric and balanced, but the presence ofa delamination

produces unsymmetric and unbalanced sublaminates. Consequently, the following two cases entail

dual objectives: to provide more severe testing of the developed mechanics; and to investigate

14



additional effects on the dynamic characteristics from the resultant asymmetries in the delaminated

sublaminates.

The predicted and measured modal fi-equencies and damping of the pristine beam are shown in Table

2. Fig. 5 shows both the predicted and measured variations from the respective natural frequencies

of the pristine beam as the crack length/_1 increases. In this and the remaining figures the solid line

corresponds to the predicted results, while the symbols indicate the measured data corresponding to

acceleration measurements at the root and the midspan of the beam. With the slight exception of the

second bending mode, there is excellent agreement between predicted and measured results. The

measured data of the fast bending mode have shown consistent scatter in all experiments, which was

attributed to imperfections in the supports. Similarly to the previous cases, the natural frequencies

decrease as the delamination size increases.

The measured and predicted variations in the modal damping values for increasing delamination sizes

are shown in Fig. 6. There is substantial scatter in the damping measurements for the first two

bending modes, possibly because of imperfections and friction at the clamped end. There is also

substantial scatter at large delamination cracks which may be attributed to losses occurring by

interracial friction and impacts (collisions) between the surfaces of the crack. However, the results

for the third and fourth mode show good agreement between predictions and measurements. This

indicates that the damping change at _na/l and medium delamination sizes (approximately do/l < 0.3)

is caused by the combined reductions in the flexural rigidity (matrix D), increases in the flexural

laminate damping D d and development of extension-flexure coupling, while the contribution of

friction seems secondary. Friction effects at delarnination interfaces seem to dominate the damping

at high crack lengths (approximately do/l > 0.3).

The results also show that the damping of higher modes is more sensitive to the delamination

presence, indicating that damping may be a better indicator of delamination damage especially in

small and medium crack lengths.

15



[45/-45/90/0], Cantilever Beam

Predicted and measured natural frequencies and the corresponding modal damping for this laminate

configuration are shown in Figs. 7 and 8 respectively. The modal frequencies and damping of the

pristine beam are shown in Table 3. Contrary to the previous case, the effect of delamination on the

modal damping magnitude change is modest. Again, excellent agreement between the developed

mechanics and experiments was obtained for the natural frequencies with the exception of the second

bending mode. The predicted changes in modal damping for the third and fourth mode exhibit fair

agreement with the measured data, considering that friction effects are not included.

An interesting observation is that the viscoelastic damping may be also reduced depending on the

mode order (see Fig. 8d). Such decreases may offset the friction damping and result in insignificant

overall damping changes, thus complicating the crack detection. In order to explain the predicted and

measured results, it is recalled that this (pristine) laminate configuration has low flexural rigidity but

high damping. Therefore, the delamination induces smaller changes in the flexural rigidity which

justify the modest changes in natural frequencies. The delaminated sublaminates have also lower

flexural damping than the pristine configuration, because each has a 0 ° outer ply, which explains the

observed modest damping changes and the decrease in the damping of the fourth mode.

Similarly to the previous case, the changes in the viscoelastic damping due to the presense of the

delamination were shown to be significant. Thus, the present mechanics provide valuable

understanding of the damping behavior of delaminated composite structures. Finally, in both laminate

configurations small delamination cracks (less than 10% of beam span) may not be detectable by

monitoring global modal characteristics of the beam, in such cases, other local parameters should be

monitored via distributed sensors.
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CONCLUSIONS

Novel mechanics for the dynamic response of composite laminates with delamination cracks were

developed and described in this paper. The kinematic assumptions allow for in-plane and out-of-plane

relative motion between the delaminated sublaminates, and are applicable to general laminate

configurations. Based on this generalized laminate theory, an exact methodology was developed for

predicting and relating the natural frequencies, mode shapes and modal damping of composite beams

of general laminations and boundary conditions with the delamination damage. The mechanics

described herein were encoded and integrated with micromechanical models to provided an unified

computer code for the analysis ofdelaminated composite beams.

The effects of delaminations on the dynamic characteristics of composite laminates, including

damping, were investigated analytically and experimentally. Experiments were conducted on

composite beams with induced delaminations and measured natural frequencies and modal damping

were reported. The correlations between predicted and measured data have shown excellent

agreement for the case of natural frequencies and fair agreements for the case of modal damping. This

agreement illustrates the accuracy and versatility of the mechanics.

Both analytical and experimental results provided valuable insight to the interactions between

structural response and delamination damage. The effects of delamination on the dynamic

characteristics are very dependent on the laminate configuration, and should be more profound in

laminates with complex laminations. In such cases, rapid and significant damping changes may

provide reliable indication of delamination damage and growth, in connection with decreases in

natural frequencies. It was also found that natural frequencies are rather insensitive to inteffacial

friction. At small delamination sizes changes in damping were caused primarily from changes in the

viscoelastic laminate damping of the structure, while inteffacial friction damping became important

at large delamination cracks. Future work will be focused on the inclusion of friction effects to the

mechanics.
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Table 1. Mechanical properties of T300/934 composite (0.57 FVR).

Moduli Density Loss Factors (%)

Etn = 18.5 Mpsi p = 0.057 lb/in 3 rhl I = 0.255

E m = 1.7 Mpsi rim= 0.80

Ga2 = 0.7 Mpsi ¢h12= 1.35

vn2 = 0.24

Table 2. Natural frequencies and modal damping of pristine [0/90/45/-45]s Beam

Mode 1 Mode 2 Mode 3 Mode 4

Natural Frequency, Hz
"{

Measured 17.75 110.3 318.7 611.7

(Stand. Deviation) (0.233) (3.34) (2.79) (15.2)

Predicted 18.17 113.8 318.7 624.2

Loss Factor (_)

Measured 2.350 0.634 0.302 0.489

(Stand. Deviation) (0.110) (0.102) (0.020) (0.085)

Predicted 0.288 0.288 0.288 0.288
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Table 3. Natural frequencies and modal damping of pristine [45/-45/90/0]s Beam.

Natural Frequency, Hz

Measured

(Stand. Deviation)

Mode 1 Mode 2 Mode 3 Mode 4

10.29

(0.159)

65.4

(1.87)

367.2

(8.23)

Predicted 9.70 60.7 170.2 333.8

Loss Factor (o/_)

Measured 5.48 1.56 1.01 1.006

(Stand. Deviation) (1.38) (0.674) (0.032) (0.020)

Predicted 0.648 0.648 0.648 0.648
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LAMINATE DISPLACEMENTS
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Fig. l Kinematic assumptions of generalized laminate theory.

X

Fig. 2 Typical composite beam with interply delamination cracks.
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