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1571 ABSTRACT 
A method and system for performing pattern analysis 
with a neural network coarse-code a pattern to be ana- 
lyzed so as to form a plurality of sub-patterns collec- 
tively defined by data. Each of the sub-patterns com- 
prises sets of sub-pattern data. The neural network in- 
cludes a plurality of fields, each field being associated 
with one of the sub-patterns so as to receive the sub-pat- 
tern data therefrom. Training and testing by the neural 
network then proceeds in the usual way, with one modi- 
fication: the transfer function thresholds the value ob- 
tained from summing the weighted products of each 
field over all sub-patterns associated with each pattern 
being analyzed by the system. 

V O ~ .  1, NO. 1, pp.,6111-121, MU. 1990. 
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METHOD AND SYSTEM FOR PATTERN 

NETWORK 

ORIGIN OF THE INVENTION 
The invention described herein was made by employ- 

ees of the U.S. government and may be manufactured 
and used by or for the government without the payment 
of any royalties thereon or therefor. 

ANALYSIS USING A COARSE-CODED NEURAL 

5 

BACKGROUND OF THE INVENTION 
The present invention is directed to methods and 

systems for pattern analysis using neural networks and, 15 
more particularly, to methods and systems for pattern 
analysis using neural networks having an increased 
resolution input field with less network interconnec- 
tions. 

of distinguishing between a set of patterns invariant to 
changes in the position, size or angular orientation of 
the patterns. These techniques include statistical, sym- 
bolic, optical and neural network techniques. 

based on a two-step process of feature extraction fol- 
lowed by classification. For the feature extraction step, 
the system designer is required to specify a set of attri- 
butes capable of separating a set of training patterns into 
subgroups containing all distorted (Le., translated, 30 
scaled and/or in-plane rotated) views of each distinct 
pattern. The system then organizes these features and 
uses them to classify incoming patterns. 

There are at least three major disadvantages of these 
two-step approaches: 

(1) It is not always obvious which features are suffi- 
cient for separating the set of training patterns such that 
all distorted views of a pattern will be classified as be- 

Various techniques have been applied to the problem 20 

The statistical, symbolic, and optical techniques are 25 

35 

L 

neural network can generalize rather than memorize 
what features to look for. 

(2) The training time increases with the size of the 
training set and thus these systems are also fairly slow. 

Furthermore, these first order neural networks 
achieve only 80%-90% recognition accuracy. 

Progress in higher-order neural networks (HONNs) 
has been more promising. Reid et al. (M. B. Reid, L. 
Spirkovska, and E. Ochoa, “Simultaneous Position, 
Scale, and Rotation Invariant Pattern Classification 
Using Third-Order Neural Networks”, Int. J. of Neural 
Networks, 1, 1989, pp. 154-159; and M. B. Reid, L. 
Spirkovska, and E. Ochoa, “Rapid Training of Higher- 
Order Neural Networks for Invariant Pattern Recogni- 
tion”, Proc. of Joint Int. Conf. on Neural Networks, 
Wash., D.C., Jun. 18-22, 1989, vol. 1, pp. 689-692, the 
disclosures of which are incorporated herein by refer- 
ence in their entireties) have demonstrated that a third- 
order neural network is capable of achieving 100% 
accuracy in distinguishing between two patterns in a 
9 x 9  pixel input field regardless of position, scale or 
in-plane rotation changes. The network needed to be 
trained on only one view of each object, and required 
only 10 to 20 passes to learn to distinguish between the 
objects in any in-plane rotational orientation, scale, or 
translated position. Thus, for pattern recognition, 
HONNs are superior to multi-layered first-order back- 
prop trained networks in terms of training time, training 
set size and accuracy. 

As an example, the use of a HONN for recognizing 
two-dimensional views of objects will first be discussed. 
FIG. 1A is a view of an object 20 (the space shuttle 
orbiter) in a two-dimensional input field 30. FIG. 1B is 
a view of object 20 after it has been translated across 
input field 30. FIG. 1C is a view of object 20 after it has 
been reduced in size (scaled) in input field 30. FIG. 1D 
is a view of object 20 after it has been rotated in-plane 
in input field 30. The output of an output node, denoted 
by y,, for output node i in a general HONN is given by: 40 longing to the same group. 

(2) These approaches require a fairly large, if not 

the features such that novel views of the patterns will be 
exhaustive, set of training patterns to correctly organize Y + w j  W v X j + z j x k  Wijk X j X k - b x j z k  W v k / X j X k  

XI+. . f ) (1) 

tures and the training set size increase. Thus, these sys- 
tems tend to be very slow. 

A different approach to the problem of distortion 
invariant pattern recognition uses neural networks. Un- 
like the methods discussed above, in the neural network 
approach, the system is provided only with a set of 
distorted views of a set of distinct patterns (Le., a set of 
translated, scaled, and/or in-plane rotated views of each 
distinct pattern) and, through training, learns what the 
relevant features are as well as how to distinguish be- 
tween the distinct patterns. 

Multi-layer, fix’st-order neural networks using the 
backward error propagation (backprop) algorithm for 
training have been shown to be effective for distortion 
invariant pattern recognition. Using this method, the 
neural network is provided with a large set of distorted 
views of a set of patterns. The neural network weights 
are then adjusted using the back propagation learning 
rule such that the neural network correctly classifies a 
specified percentage of the training set patterns. The 
major disadvantages of this system are: 

(1) The training set needs to be large enough and 
fairly indicative of the expected distortions so that the 

correctly classified. 
(3) The training time increases as the number of fea- where (30 is a non-linear threshold function such as, 

45 for example, the hard limiting transfer function given 
by: 

50 
yi=O, otherwise; 

the lower case x’s are the excitation values of the input 
nodes; and the interconnection matrix elements, w, 

55 determine the weight that each input is given in the 
summation. 

Using information about relationships expected be- 
tween the input nodes under various distortions, the 
interconnection weights can be constrained such that 

60 invariance to given distortions is built directly into the 
network architecture. See Giles et al. (G. L. Giles and 
T. Maxwell, “Learning, Invariances, and Generaliza- 
tion in High-Order Neural Networks”, Applied Optics, 
26, 1987, pp. 4972-4978; and G. L. Giles, R. D. Griffin 

65 and T. Maxwell, “Encoding Geometric Invariances in 
Higher-Order Neural Networks”, Neural Information 
Processing Systems, American Institute of Physics Con- 
ference Proceedings, 1988, pp. 301-309, the disclosures 
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of which are incorporated herein by reference in their 
entireties) for a discussion of building invariance into 
HONNs. 

As an example, in a second-order neural network 40 
as illustrated in FIG. 2, the inputs (xi-xq) are first com- 
bined in pairs at product points 42 (denoted by an X) to 
determine intermediate values, the intermediate values 
are weighted and summed at summation point 44, and 
then the output from output node yiis determined from 
the weighted sum of these intermediate values (Le., the 
value determined at summation point 44) by applying 
the threshold function to the value determined at sum- 
mation point 44. In accordance with equation (1) above, 
the output for a strictly second-order network is given 
by the function: 

Y l = 8  (z>k wgk XjXk). (3) 

The invariances achieved using this architecture de- 
pend on the constraints placed on the weights. 

In an example, each pair of input pixels combined in 
a second-order network define a line with a certain 
slope. As shown in FIGS. 3A and 3B, when an object 21 
is moved (translated) or scaled in an input field 30, the 
two points in the same relative positions within the 
object still form the end points of a line having the same 
slope. Thus, provided that all pairs of points which 
define the same slope are connected to the output node 
using the same weight, the network will be invariant to 
distortions in scale and translation. In particular, for 
two pairs of pixels (i, k) and (1, m), with coordinates (xj, 
yj), (xk, yk), (xr, yr), and (xm, ~ m )  respectively, the 
weights are constrained according to: 

(4) 

Alternatively, the pair of points combined in a se- 
cond-order network may define d distance. As shown in 
FIGS. 4A and 4B, when an object 22 is moved (trans- 
lated) across input field 30 or rotated within a plane, the 
distance between a pair of points in the same relative 
positions on the object does not change. Thus, as long as 
ail pairs of points which are separated by equal dis- 
tances are connected to the output with the same 
weight, the network will be invariant to translation and 
in-plane rotation distortions. The weights for this set of 
invariances are constrained according to: 

wgL= Wi/rn ,  If @h-Yj)/ (xk-x,)=@m-Y/) / (xm-x/)  

wgk=wi/m.  if I ldlkl I = I  ld/ml I. (5) 

That is, the magnitude of the vector defined by pixels j 
and k (d,k) is equal to the magnitude of the vector de- 
fined by pixels 1 and m (dim). 

Thus, when invariance to translation and scale (with- 
out invariance to rotation) or to translation and rotation 
(without invariance to scale) is desired, a second order 
neural network is appropriate. 

To achieve invariance to translation, scale, and in- 
plane rotation simultaneously, a third order neural net- 
work 60, as shown in FIG. 5, can be used. The third 
order neural network 60 illustrated in FIG. 5 includes 
input nodes xi-xq, connected in triplets to product 
points 62 (which are similar to product points 42 in the 
second-order neural network of FIG. 2 except that the 
excitation values of three input nodes are multiplied 
thereat), where intermediate values are determined. 
The intermediate values determined at product points 

4 
62 are weighted and summed at summation point 64, 
and the summation is supplied to a single output node yj. 

The output for a strictly third-order neural network 
shown in FIG. 5, in accordance with equation (1) is 

5 given by the function: 

Yi=e (x>kZ/ w#kl x j x k  X/f .  (6) 

That is, when the input field 30 is a matrix of pixels, as 
10 is commonly used for object recognition, all sets of 

input pixel triplets in object 24 are used to form triangles 
having included angles (a, /3,y). As shown in FIGS. 6A , 
and 6B, when object 24 is translated, scaled, or rotated 
in-plane, the three points in the same relative positions 

15 on the object 24 still form the included angles (a, /3,y). 
In order to achieve invariance to all three distortions, 
all sets of triplets forming similar triangles are con- 
nected to the output node of the neural network with 
the same weight. That is, the weight for the triplet of 

20 inputs (j, k, 1) is constrained to be a function of the 
associated included angles (a, /3, y )  such that all ele- 
ments of the alternating group on three elements are 
equal: 

25 Wek/'W(I,a.B,y)=W(i,B,y, a F W ( , y . a , B ) .  (7) 

Note that the order of the angles matters, but not which 
angle is measured first. 

Because HONNs are capable of providing non - 1' inear 
30 separation using only a single layer, once invariances 

are incorporated into the architecture, the neural net- 
work can be trained (i.e., values assigned to the weights) 
using a simple rule of the form: 

35 Awgk=(C-yi) x jxk?  (8) 

for a second-orde'r neural network, or 

AWgkl=(ri-Yi) x j x k  X/s (9) 

for a third-order neural network, where the expected 
training output, t, the actual output, y, and the inputs, x, 
are all binary. Prior to training, the weights, w, can be 
set to 0, or some other random number. 

Second and third order neural networks as described 
above are disclosed in the above incorporated refer- 
ences of Reid et al. 

The main advantage of building invariance to geo- 
metric distortions directly into the architecture of the 

50 HONN is that the network is forced to treat all dis- 
torted views of an object as the same object. Distortion 
invariance is achieved before any input vectors (train- 
ing patterns) are presented to the network. Thus, the 
network needs to learn to distinguish between just one 

55 view of each object, not numerous distorted views of 
each object. 

While building invariances into the network greatly 
reduces the number of independent weights which must 
be learned, some storage must still be used to associate 

A disadvantage of HONNs is that as their order and 
the number of input nodes increases, the number of 
interconnections required (Le., interconnections be- 
tween the input nodes,  XI-^ and the product points 42 

65 or 62) becomes excessive. For example, a network with 
M inputs and one output using rth order terms requires 
M-choose-r interconnections. For higher orders, this 
number, which is on the order of M'is clearly excessive. 

40 

45 

60 each triplet of inputs to a set of included angles. 
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In the field of two-dimensional object recognition, 
for example, wherein an N x N pixel input field is used, 
combinations of three pixels (i.e., in a third order neural 
network) can be chosen in N2-choose-3 ways. Thus, for 
a 9 x 9  pixel input field, the number of possible triplet 
combinations (for a third-order neural network) is 81- 
choose-3 or 85,320. Increasing the resolution to 
128 x 128 pixels increases the number of possible inter- 
connections to 1282-choose-3 or 7 . 3 ~  1011, a number 
too great to store on most machines. For example, on a 
Sun 3/60 with 30 MB of swap space, a maximum of 5.6 
million (integer) interconnections can be stored, limit- 
ing the input field size for fully connected third-order 
neural networks to about 18 X 18 pixels. Furthermore, 
the number of interconnections required to fully con- 
nect a 128X 128 pixel input field (about 1012) is far too 
large to allow a parallel implementation in any hard- 
ware technology that will be commonly available in the 
foreseeable future. 

Spirkovska et al. (L. Spirkovska and M. B. Reid, 
“Connectivity Strategies for Higher-Order Neural Net- 
works Applied to Pattern Recognition”, Int. Joint 
Conf. on Neural Networks, June, 1990, Vol. 1, pp. 
21-26, the disclosure of which is incorporated herein by 
reference in its entirety) discusses techniques for reduc- 
ing the number of interconnections in a HONN, so that 
the number of input nodes can be increased. In particu- 
lar, regional connectivity was evaluated, in which tnp- 

‘ lets of pixels are connected to the output node only if 
the distances between all of the pixels comprising the 
triplet fell within a set of preselected regions. Using this 
strategy, the input field size was increased to 64x64 
while still retaining many of the advantages shown 
previously, such as a small number of training passes, 
training on only one view of each object, and successful 
recognition invariant to in-plane rotation and transla- 
tion. 

However, using regional connectivity, images invari- 
ant to changes in scale could not be recognized. Also, as 
the input field size increased, the amount of time for 
each pass on a sequential machine increased dramati- 
cally. The 6 4 ~  64 pixel input field network required on 
the order of days on a Sun 3/60 to learn to distinguish 
between two objects. This is despite the fact that the 
number of interconnections was greatly reduced from 
the fully connected version. The number of logical 
comparisons required to determine whether the dis- 
tances between pixels fall within the preselected regions 
was still huge. 

SUMMARY OF THE INVENTION 
An object of the present invention is to provide meth- 

ods and systems for pattern analysis using neural net- 
works having high resolution input fields. 

Another object of the present invention is to reduce 
the number of interconnections required in a neural 
network having a high resolution input field. 

To achieve the foregoing and other objects and ad- 
vantages, and to overcome the shortcomings discussed 
above, a pattern analysis system and method which use 

6 
size than the number and size of the units in the coarse- 
code fields. Input values are assigned to each of the 
coarse-code units in the coarse-code fields in accor- 
dance with the input pattern over which the coarse- 
code fields are overlaid. That is, for example, a unit is 
turned ON if it overlies part of the pattern; otherwise 
the unit remains OFF. 

The neural network includes a plurality of fields, 
,o equal in number to the plurality of sub-patterns, so that 

each field corresponds to one of the sub-patterns. Each 
field includes a plurality of input nodes, and at least one 
summation point where weighted products of predeter- 
mined combinations of the input nodes are summed SO 

15 as to determine a sub-pattern value for each summation 
point. The neural network also includes at least one 
output node, coupled to corresponding summation 
points from a plurality of the fields, which performs a 
threshold function on a pattern value received at that 

The input nodes from each field receive the sub-pat- 
tern data of the sub-pattern which corresponds to that 
field. Each field of the neural network then summarizes 

25 the weighted products of the predetermined combina- 
tions of its input nodes to determine a sub-pattern value 
at each summation point for each field. The sub-pattern 
values at the corresponding summation points from a 
plurality of fields are then summarized to produce a 

30 pattern value, which is supplied to the output node 
coupled to these corresponding summation points. The 
output node then performs its threshold function on the 
pattern value received thereat to produce an output 
signal. The output signal from the output node is used to 

When the pattern analysis system and method are 
used to recognize patterns, the system is first trained by 
supplying sub-patterns from one or more coarse-coded 
training patterns to the input nodes of the neural net- 
work for subsequent evaluation by the neural network. 
The values of the weights for the products of predeter- 
mined combinations of input nodes are then assigned so 
that a unique output signal will be produced by the 

45 output node(s) of the neural network for each training 
pattern. A pattern to be tested is then coarse-coded, and 
the sub-patterns representative of the test pattern are 
received by the input nodes of respective fields of the 
trained neural network. Based on the output signal@) 

50 produced for the test pattern, a determination as to 
which of the plurality of training images corresponds to 
the test pattern can be made. 

The present invention is particularly useful with 
HONNs in that the number of input nodes in each field 

55 of the neural network is equal to the number of units in 
each corresponding sub-pattern. Accordingly, since the 
number of neural network interconnections is related to 
the number of input nodes in each field, which number 

6o is much less than the total number of units in the high 
resolution input pattern formed by the plurality of offset 

2o output node to provide an output signal. 

35 classify the pattern. 

, a neural network coarse-code pattern to be analyzed sa 
as to form a plurality of sub-patterns represented as overlapping coarse-code data representative of 
respective sets of sub-pattern data. The plurality of the high resolution input pattern is provided without 
sub-patterns are formed by overlaying a of the combinatoric explosion Of interconnections that 
offset overlapping coarse-code fields, comprised of 65 would be associated with the high resolution input pat- 
coarse-code units having a predetermined size, Over the tern without coarse-coding. That is, a large input field is 
pattern SO as to represent an input pattern comprised of broken into a plurality of smaller fields, each of which 
a matrix of units having a greater number and smaller can be analyzed by the neural network. 
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BRIEF DESCRIPTION OF THE DRAWINGS 
The invention will be described in detail with refer- 

ence to the following drawings in which like reference 
numerals refer to like elements and wherein: 

FIGS. 1A-1D are views of an object and distortions 
of the object in an input field; 

FIG. 2 illustrates a second-order neural network; 
FIGS. 3A and 3B are views of an object and of a 

FIGS. 4A and 4B are views of an object and of a 

FIG. 5 illustrates a third-order neural network; 
FIGS. 6A and 6B are views of an object and of a 

translated, scaled, rotated view of the object; 
FIG. 7A illustrates an input field containing two ON 

pixels; 
FIG. 7B illustrates two coarse-code fields which are 

offset and overlaid to form the higher resolution input 
field of FIG. 7A; 

FIG. 8A illustrates an 8x8 input field containing a 
pattern in the shape of a T; 

FIG. 8B illustrates two 4 x 4  coarse-code fields which 
can be used to coarse-code the 8 X 8 field of FIG. 8A; 

FIG. 9A illustrates an 8x8 input field containing a 
pattern in the shape of a C; 

FIG. 9B illustrates four 2x2 coarse-code fields 
which can be used to coarse-code the 8 X 8 input field of 
FIG. 9A; 

FIG. 10 illustrates the lower resolution sub-patterns 
formed when the coarse-code fields of FIG. 8B are used 
to coarse code the patterns illustrated in FIGS. 8A and 
9A; 

FIG. 11 illustrates a third-order neural network hav- 
ing two fields and a single output node which can be 
used to analyze a coarse-coded pattern in accordance 
with the present invention; 

FIG. 12 is a block diagram of an automated tool 
selection system to which the present invention can be 
applied; 

FIG. 13 is a flowchart illustrating a training proce- 
dure for use with a HONN according to the present 
invention; 

FIG. 14 is a flowchart illustrating a testing procedure 
for use with a HONN according to the present inven- 
tion; and 

FIGS. 15A and 15B are patterns of aircraft which can 
be recognized using a HONN in accordance with the 
present invention. 

DETAILED DESCRIPTION OF PREFERRED 
EMBODIMENTS 

The references to Reid et al., Spirkovska et al. and 
Giles et al., discussed above, are incorporated herein by 
reference. These references disclose neural networks, 
including HONNs of the second and third order, which 
can be used (with modifications to be discussed below) 
in the present invention. Although the present invention 
is particularly suited for HONNs because it is in 
HONNs that the explosion of interconnections is most 
extreme, the present invention has use in other neural 
networks, and especially in neural networks where the 
number of input nodes and network interconnections 
are such that the memory of the hardware used there- 
with becomes taxed. Accordingly, while specific exam- 
ples involving HONNs will be discussed, these exam- 
ples are not meant to be limiting. 

translated, scaled view of the object; 

translated, rotated view of the object; 
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8 
As used herein, the terminology “sub-pattern data” 

refers to data (usually binary in form) which is orga- 
nized in sets, such as, for example, matrices. The sets of 
sub-pattern data can be square, or can have different 
dimensions in the x, y (and possibly z) directions. Addi- 
tionally, while a Cartesian coordinate system is used in 
the examples, it is also known, and thus possible, to use 
a polar coordinate system to define patterns for use by 
neural networks. 

Pattern data can be used to represent objects, charac- 
ters and other visible items (in which case the pattern 
data is also referred to as “pixel data”), and further can 
comprise non-visible items such as, for example, voice 
data, or other information. 

As is known, neural networks can be used to perfom 
a variety of different types of analyses on pattern data. 
One type of analysis, described in the above references 
and in the following description, is pattern recognition. 
Other types of analysis include, for example, classifica- 
tion of pattern-data and determining relationships be- 
tween sets of pattern data. 

An example of the manner in which the present in- 
vention can be applied to image patterns will now be 
described. 

In accordance with this illustrative use of the present 
invention, an image pattern is coarse-coded to form a 
plurality of sub-patterns represented as sets of sub-pat- 
tern data (pixel data), and then each set of sub-pattern 
data is supplied to a corresponding field of the neural 
network. The output node(s) of the neural network then 
perform(s) a threshold function such as, for example, 
the hard limiting transfer function described above in 
equation (1) on a summation of the values determined 
for all fields in the network, instead of on each field 
individually. 

Coarse coding of the pattern results in a plurality of 
sets of sub-pattern data representing sub-patterns of the 
original pattern, each sub-pattern having a resolution 
less than that of the pattern represented by all of said 
sub-patterns combined. Accordingly, a neural network 
having small fields (optimally, all having the same ar- 
chitecture) can be used to receive the sub-pattern data 
from each sub-pattern. Accordingly, the number of 
interconnections is reduced even when the pattern rep- 
resented by all of the sub-pattern data has a high resolu- 
tion. 

The coarse coding procedure used in the present 
invention involves overlaying fields (coarse-code fields) 
of coarser units (in this image recognition example the 
units correspond to pixels) in order to represent an input 
field comprised of smaller pixels, as shown in FIGS. 7A 
and 7B. FIG. 7A shows an input field 50 of size lox 10 
pixels. FIG. 7B shows two offset but overlapping 
coarse-code fields 52,54, each of size 5 X 5 coarse pixels. 
In this case, each coarse-code field 52, 54 is comprised 
of pixels which are twice as large (in both dimensions) 
as in FIG. 7A. To reference an input pixel using the two 
coarse-code fields requires two sets of coordinates. For 
example, pixel (x=7, y=6) on the original image of 
FIG. 7A would be referenced as the set of coarse pixels 
((x=D, y=C) & (x=III, y=III)) in FIG. 7B, assuming 
a coordinate system of (A, B, C, D, E) for coarse-code 
field 52 and (I, 11, 111, IV, V) for coarse-code field 54. 
This is a one-to-one transformation. That is, each pixel 
on the original image can be represented by a unique set 
of coarse pixels. 

The above transformation of an image (pattern) to a 
set of smaller images (sub-patterns) can be used to 
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greatly increase the resolution possible in a neural net-. 
work, especially in a HONN. For example, a fully-con- 
nected third-order neural network for a 10x10 pixel 
input field requires 10khoose-3 or 161,700 intercon- 
nections. Using two fields of 5 x 5 coarse pixels requires 
just 52-choose-3 or 2300 interconnections, accessed 
once for each coarse-code field. The number of re- 
quired interconnections is reduced by a factor of about 
70. For a larger input field, the savings are even greater. 
For example, with a 1 0 0 ~  100 pixel input field, a fully 
connected third-order neural network requires 
1 . 6 ~  1011 interconnections. If this field is represented as 
10 fields of 1OX 10 coarse pixels, only 161,700 intercon- 
nections are necessary. The number of interconnections 
is decreased by a factor of about 100,OOO. 

One aspect of coarse coding which needs to be ad- 
dressed is how the part of the image which is not inter- 
sected by all coarsecode fields is handled. That is, how 
is pixel (1, 5) in the original image shown in FIG. 7A 
represented using the two coarse-code fields 52, 54 in 
FIG. 7B. There are‘at least two ways to implement 
coarse coding: (1) with wrap around; or (2) by using 
only the intersection of the fields. If coarse coding is 
implemented using wrap around, pixel (1, 5) could be 
represented as the set of coarse pixels ((A, C) & (V, 11)). 
Alternatively, if coarse coding is implemented as the 
intersection of the coarse-code fields, the two coarse- 
code fields 52, 54 shown in FIG. 7B would be able to 
uniquely describe an input field of 9 x 9  pixels, not 
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Using wrap around, the relationship between the 

number of coarse-code fields (n), input field size (IFS), 
and coarse-code field size (CFS) in each dimension is 
given by: 

35 
IFS=(CFS n) (10) 

On the other hand, usine the intersection of fields imele- 

10 
In the present example, the coarse-code fields 67a and 

676 illustrated in FIG. 8B are used. Applying coarse 
coding by using two coarse-code fields of 4 x 4  coarse 
pixels, as illustrated in FIG. 8B, the two images shown 
in FIGS. 8A and 9A are transformed into the four im- 
ages TI, T2 and CI, C2 shown in FIG. 10. 

Note that the sub-patterns when combined do not 
form the actual original image. The sub-patterns are 
coarse-coded representations of an image. This is be- 
cause an entire pixel in a coarse-code field is turned ON 
even if only a portion of that pixel overlies an ON por- 
tion of the original image. However, the combination of 
sub-patterns for each original image is distinct for its 
respective image, and therefore, can be used to distin- 
guish between different images. 

The sub-pattern defined by each coarse-code field 
can be represented as sets of sub-pattern data such as by 
the following vectors: 

TI: ( ~ 1 1 0 0 0 1 0 )  
T2: ( O O O O O l l O O l ~ )  
c1: (ooooooooooloool0) 
c2: (OOOOOllOOllooooo). 
Training of the network then proceeds in the usual 

way (described in more detail below), with one modifi- 
cation: the transfer function thresholds the value ob- 
tained from summing the weighted products (triangles 
in the illustrative third-order neural network) over all 
coarse images associated with each training object. 
That is, 

Y=l, i f ( z , ( ~ j P k z / ~ , k / X j X k X / ) ) > o , Y = o ,  
otherwise, (12) 

where j, k and 1 range from 1 to the coarsecode field 
size squared (which in the above example would be 16), 
n ranges from 1 to the number of coarse fields, the x’s 
represent coarse pixel values, and Wjk1 represents the 
weights associated with the triplet of inputs 6, k, 1). 

The architecture of the network is illustrated in FIG. ” 
mentation, the relationship between number of coarse- 
code fields, input field size, and coarse-code field size in 40 11. The neural network 70 of FIG. 11 is a third-order 
each dimension is given by: neural network, somewhat similar to the neural net- 

work of FIG. 5. The neural network of FIG. 11 differs 
from that of FIG. 5, in that the FIG. 11 neural network 
includes a plurality of fields (600, 606) the summation 

The effect of input field size, IFS, is not significantly 45 points (640, 646) of which are attached to output node 
different with either implementation for small n. As yj. This is in accordance with the relationship defined 
discussed above, coding an image as a set of coarser by equation (12). Each coarse-code field (containing the 
images greatly increases the size of the input field possi- sub-pattern data) is associated with a corresponding one 
ble in, for example, a higher-order neural network. of the fields 60u, 60b, etc. Thus, for the two coarse-code 

As an example of how coarse coding can be applied 50 fields 67n and 67b shown in FIG. 8B, the neural net- 
to HONNs, refer to FIGS. 8A-11. In order to train the work would be provided with two fields, each field 
neural network to distinguish between a “T” and a “C” having 16 input nodes ( X ~ ~ X I Q  for one field and 
in an 8 X 8 pixel input field 65, a neural network could be Xlb-X](jbfOr the other field). The neural network of FIG. 
trained on the two images shown in FIGS. 8A and 9A 11 illustrates the first four input nodes for both fields 
directly, or by applying coarse coding. If, for example, 55  60a and 60b needed to receive inputs from coarse-code 
a second or third order neural network were trained on fields 67a and 67b. 
the 8 x 8  input fields illustrated in FIGS. 8A and 9A, In order to train the network, the values (vectors 
HONNs having an architecture similar to that shown in containing Is and Os) of patterns Ti and T2 are supplied 
FIGS. 2 and 5 could be used. However, these HONNs to the input nodes of fields 600 and 60b respectively, 
would require 64 (82) input nodes and the appropriate 60 and are associated with an output node signal of, for 
number of interconnections to represent all possible example 1. The same is done with values of patterns C1 
pairs or triplets of pixel combinations. and C2, except this combination of values are associated 

With coarse coding implemented using wrap around, with an output node signal of, for example 0. Initially 
as explained above, there are two possible combinations the weights, w, are all initialized to some random num- 
which will provide an effective input field of 8 x 8  pix- 65 ber such as, for example, 0. Then the network trains 
els: two coarse-code fields 670, 67b of 4 x 4  coarse pix- itself (i.e., assigns values to the respective weights using, 
els, illustrated in FIG. 8B, or four coarse-code fields for example, equation (9) with the constraints of equa- 
690-69d of 2 x 2  coarse pixels, illustrated in FIG. 9B. tion (7) until equation (12) is satisfied). 

IFS=(CFS n) - (n -  1). (11) 
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Within each field of the neural network, the excita- system. FIG. 14 is a flowchart of the testing procedure 
tion value received by each triplet (or pair in a second performed by the automated tool selection system of 
order neural network) are multiplied together to form FIG. 12. 
an intermediate value at product points 62a, 626. Then The illustrative embodiment, shown in FIG. 12, illus- 
the intermediate values obtained at the product points 5 trates how the present invention can be applied to the 
for each respective field are weighted and summed to common robotics manufacturing task of “bin picking”. 
produce a sub-pattern value at the summation point 64u, This system includes a robot 80 having a camera 82 
646 of each field. These sub-pattern values are summed mounted on an arm thereof so as to observe the work 
at output node y1 to produce a pattern value, and then space 84 below it. Work space 84 comprises a bin con- 
the transfer function is applied to the pattern value by 10 taining tools to be identified, with the tools being indi- 
output node yl to produce an output signal (1 or 0 in the vidually located in a bin space within the work area. 
present example). Robot 80 is directed to look at each bin space in the 

During testing, an input image is again transformed work area and to identify the tool located there. The 
into a set of coarse sub-patterns. Each of these coarser tool could be located at any location within the bin, and 
sub-patterns, represented, for example, as vectors are 15 could be rotated in-plane. Additionally, the camera 
then presented to the network and the output value is height is not held constant so the tools could vary in 
determined using, for example, equation (12). The input apparent size. Accordingly, a third-order neural net- 
pattern is recognized as the training pattern to which its work is appropriate. When the desired tool is found, the 
output signal corresponds. user is notified and a grappling operation is initiated. 

The robot is controlled via a communications link 86 
illustrated in FIGS. 7B, 8B and 9B, the architecture of by a computer 90. Computer 90 includes a mouse 92 
each field (60a, 606. . . ) in the neural network is the which, for example, functions as one means for input- 
same. Moreover, the weights assigned to each weighted ting data to computer 90. A conventional frame grabber 
interconnection across all fields is the same for all corre- 94 is also coupled to computer 90, and will be discussed 
sponding weighted interconnections- For example, in 25 in more detail below. 
FIG. 11, the value (wijk~(~)) of each weighted intercon- Prior to directing the robot to begin identifying tools 
nection in field 60a is equal to the value (Wok/@)) of each found in work space 84, computer 90 runs the training 
weighted interconnection in field 606, for ail similar procedure. Finally, as each object in the work space is 
values of i, i, k and 1. This further reduces the number of observed, it is transmitted (via communications link 86) 

When each coarse-code field has the same size, as 20 

interconnections which must be stored in memory. 
Thus, optimally, only a single field architecture needs to 
be stored, and is provided with the sub-pattern data 
from each coarse-code field. 

If coarse-code fields having different sizes are used, 
all the neural network fields would not have the same 
architecture and would have to be separately stored. 
However this choice depends on the particular problem 
being addressed, and the network designer. 

Additionally, as is known, when more than two dis- 
tinct patterns are to be recognized, more than one out- 
put node yi.is usually required. For example, neural 
networks having two output nodes (and using a thresh- 
old function that outputs either a 1 or a 0) can be used 
to distinguish between four patterns by combining the 
binary output of each output node to represent four 
different values such as (00, 01, 10, 11). In this case, 
referring to the example where similarly sized coarse- 
code fields are used, each neural network field would 
have a similar architecture including a plurality of sum- 
mation points 64, each corresponding to a respective 
output node yj. The plurality of fields would be com- 
bined (this can be visualized by stacking the fields on 
top of each other as is done in FIG. 11) so that each 
summation point in each field corresponds to a summa- 

30 to computer 90 which runs the testing procedure to be 
described below. 

FIG. 13 shows the training procedure 100. The train- 
ing procedure begins with an assumed (programmer set) 
input field size, N X N, number of coarse-code fields, n, 

35 and coarse-code field size, M X M  (step 102). The fol- 
lowing step (104) determines the included angles a, /3, 
and y (to some granularity), for all triangles which are 
formed by connecting all possible combinations of three 
pixels in a given coarse-code input field (i.e., having the 

Since this computation is expensive, and the combina- 
tion of triplets for a given field size does not depend on 
the objects to be distinguished, these angles can be pre- 
determined and stored in a file. Step 104 would then be 

45 modified to read the included angles corresponding to 
each combination of three pixels from a file, rather than 
determining them in real time. 

Step 106 then sets up the correspondence between the 
’ angles, a, /?, and y (using the same granularity as in step 

50 104), for example, using equation (7) such that all trip- 
lets of the angles which are members of the alternating 
group (Le., the order of the angles matters, but not 
which angle comes first) point to a single memory loca- 
tion. This assures that all similar triangles will manipu- 

40 size MxM). 

tion point in each of the other field;, defining a set of 55 
common summation points. (For example, summation 
points 640 and 646 define a set of common summation 
points.) Each set of common summation points is associ- 
ated with an output node, which performs an appropri- 
ate threshold function on the pattern value (determined 60 
by summing the sub-pattern values of the summation 
points in the set) received by the output node. 

One illustrative embodiment of the present invention 
will now be described. In this embodiment, the present 
invention is applied to an automated tool selection sys- 65 
tem. FIG. 12 is a block diagram of the automated tool 
selection system. FIG. 13 is a flow chart of the training 
procedure performed by the automated tool selecting 

late the same weight value as described above. 
One possible implementation of step 106 is to use 

three matrices (w, w a n g l e  and winva r )  linked with 
pointers. Each location in w (indexed by the triplet i,j,k 
representing the input pixels) points to a location in 
w-angle (indexed by the triplet a,&y representing the 
angles formed by the triplet i,j,k). Similarly, each loca- 
tion in w a n g l e  points to a location in w-invar, also 
indexed by a triplet of angles a,/?,y such that the small- 
est angle is assigned to a. That is, w a n g l e  [80] [60] [@] 
points to w-invar [@] [80] [60], as do the elements 
w-angle [60] [@I [80] and w a n g l e  [MI [80] [60]. 

In step 108, the number of training samples can be 
either user input or programmer set. If two different 
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types of tools are contained in bin 84, NUM-SAM- craft. Moreover, coarse-coding can be used whenever 
PLES=2, and only a single output node is required for coded data is input to a neural network for recognition 
the neural network. Steps 110 to 116 read in the training purposes or for other analysis, in order to reduce the 
data (breaking the input image into the sub-pattern data number of interconnections required in the neural net- 
for each coarse-code field) and assign the expected 5 work. 
output value t[I] to each training pattern. The expected The coarse coding technique described above was 
output value t[I] is user determined, and is based upon evaluated using the expanded version of the T/C prob- 
the number of objects being distinguished. For example, lem. (See the above-incorporated references by Reid et 
if the network is distinguishing between two different al. and Spirkovska et al. for a more detailed description 
objects in a manner which is invariant to translation, 10 of the T/C problem.) Implementing coarse coding 
scaling, and in-plane rotation, a single-layer, third-order using the intersection of fields described above, the 
neural network having a single output node as illus- input image resolution for the T/C problem was in- 
trated in FIG. 11 can be used. If the hard limiting trans- creased to 127X 127 pixels using 9 coarse-code fields of 
fer function illustrated by equation (12) is used, one of 1 5 ~  15 coarse pixels. The network was trained on just 
the training patterns would be assigned the value of 15 two images: the largest T and the largest C possible 
t=O, while the other training pattern would be assigned within the 1 2 7 ~  127 input field. Training took just 5 
the value t = 1. passes. 

Training, as described above, begins in step 118. Steps A complete test set of translated, scaled and 1" ro- 
118 to 128 determine the output, y, (by summing the tated views of the two objects in a 127X 127 pixel input 
weights for all triangles which are ON in the current 20 field consists of about 135 million images. Assuming a 
training object in accordance with equation (12)) and test rate of 200 images per hour, it would take about 940 
compare the output, y, to the expected output value, t, computer months to test all possible views. Accord- 
for each training object. The weights, w, for each link ingly, testing was limited to a representative subset 
are initially set to 0 or some other random number. The consisting of four sets: 
network is fully trained when it correctly recognizes all 25 (1) All translated views, but with the same orientation 
of the training images (step UO=yes), and then the and scale as the training images. 
testing procedure can be initiated. Otherwise, the (2) All views rotated in-plane at 1' intervals, centered 
weights are adjusted in step 132 by adding in the differ- at the same position as the training images but only 60% 
ence between the expected and generated output in of the size of the training images. 
accordance with, for example, equation (9), and going 30 (3) All scaled views of the objects, in the same orien- 
back to step 118. tation and centered at the same position as the training 

The last procedure, the testing procedure illustrated images. 
in FIG. 14 is called each time the robot observes a new (4) A representative subset of approximately 100 
object. An image is grabbed in step 202 via a frame simultaneously translated, rotated, and scaled views of 
grabber 94 connected to the camera 82 which is 35 the two objects. 
mounted onto the arm of robot 80. The image is then The network achieved 100% accuracy on test images 
binarized via thresholding in step 204, and its edges are in sets (1) and (2). Furthermore, the network recog- 
extracted in step 206. The thresholding and edge extrac- nized, with 100% accuracy, all scaled views, from test 
tion can be performed by conventional means. Steps 204 set (3), down to 38% of the original size. Objects 
and 206 are usually necessary in a real-time vision sys- 40 smaller than 38% were classified as Cs. Finally, for test 
tem since the pattern is supplied directly from a camera. set (4), the network correctly recognized all images 
However, in other applications, steps 204 and 206 may larger than 38% of the original size, regardless of the 
not be required if the pattern is supplied as a binary orientation or position of the test image. 
edge-only pattern. A third-order network also learned to distinguish 

It is preferable to input patterns comprised of only 45 between practical images, such as a space shuttle orbiter 
pixels located along the edge of the object so as to im- 20 versus an F-15 aircraft 25 (see FIG. 15A and 15B) in 
prove the network's invariance to scaling. This applies up to a 127 X 127 pixel input field. In this case, training 
to both the training patterns utilized in step 112 and the took just six passes through the training set, which con- 
test patterns utilized in the testing procedure. The use of sisted of just one (binary, edge only) view of each air- 
outlines of the pattern (instead of the entire pattern) 50 craft. As with the T/C problem, the network achieved 
reduces the number of new pixel triplets which are 100% recognition accuracy of translated and in-plane 
introduced when the pattern is enlarged. However, if rotated views of the two images. Additionally, the net- 
invariance to scale is not important, edge extraction is work recognized images scaled to almost half the size of 
not necessary. the training images, regardless of their position or orien- 

the coarse images (sub-patterns) for the object to be The minimum possible coarse-code field size is de- 
tested, which are then supplied to the input nodes of the pendent on the training images. The network is unable 
corresponding fields of the neural network in accor- to distinguish between the training images when the size 
dance with equation (12) to determine the output y. of each coarse pixel is increased to the point where the 
Step 210, in essence, produces the network's hypothesis 60 training images no longer produced unique coarse- 
about what the object in the camera's field of view is. coded representations. As an example, with the T/C 
This hypothesis, for example, is displayed 212 (or the problem, the minimum coarse-code field size which still 
robot is directed to grapple the object) and the testing produces unique representations is 3 X 3 pixels. 
procedure is repeated for the next image 214. In contrast, the maximum limit is determined by the 

The present invention is applicable to many other 65 HONN architecture and the memory available for its 
applications in addition to the tool selecting application implementation, and not by the coarse-coding tech- 
described above. The present invention can be used to nique itself. The number of possible triplet combinations 
recognize patterns of, for example, characters or air- in a third-order network is N2-choose-3 for an NXN 

Steps 208 and 210 are performed so as to determine 55 tation. 
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16 
pixel input field. Thus, given the memory constraints of which performs a threshold function on a summa- 
the sun 3/60 discussed above, the maximum possible tion of said sub-pattern values received at said at 
coarse-code field size was 18 X 18 pixels. least one output node to produce an output signal 

Regarding the number of coarse-code fields which said weights have values obtained by training the 
can be used and still achieve object recognition invari- 5 network to distinguish between a plurality of dif- 
ant to translation, scaling, and in-plane rotation, the ferent training images which have been assigned 
minimum is one field whereas the maximum has not respective output signals for said threshold func- 
been reached. A minimum of one coarse-code field tion performed at said at least one output node, 
represents the non-coarse-coded HONN case discussed whereby said system can determine which of said 
with respect to FIGS. 2 and 5. In order to determine the 10 plurality of training images corresponds to said 
limit for the maximum number of coarse-code fields input pattern by providing said output signal for 
possible, simulations were run on the T/C problem said input pattern. 
coded with a variable number of 3 x 3  coarse-code 2. The system of claim 1, wherein said means for ' 
fields. A third-order network was able to distinguish 
between the two characters in less than 10 passes in an I5 (a) overlaying each of a plurality of coarse-code fields 
input field size up to 4095x4095 pixels using 2,047 over said entire pattern, each coarse-code field 
fields. An input field resolution of 4096x4096 was also being comprised of a matrix of coarse-code units, 
achieved using 273 fields of 16X 16 coarse pixels. In- each coarse-code unit having a predetermined field 
creasing the number of fields beyond this was not at- size; and 
tempted because 4096x4096 is the maximum resolution 20 @) assigning input values to the coarse-code units in 
available on most image processing hardware which each coarse-code field in accordance with a por- 
would be used in a complete HONN-based vision sys- tion of said pattern over which said coarse-code 
tem. unit is overlayed to define said sub-pattern data, 

The weighting techniques and threshold functions wherein each coarse-code field overlaps said entire 
usable in a HONN constructed according to the present 25 pattern, and said coarse-code fields are offset from 
invention are not limited to the two exatnples provided each other so that the effect of each coarse-code 
above in equations (9) and (12). For example, see the field overlay adds to the effect of each other so as 
above-incorporated references to Reid et al., Spirkov- to cumulatively define said pattern as a high-reso- 
ska et al., and Giles et al., which disclose different lution pattern having a matrix of pattern units, each 
weight determination procedures (with or without in- 30 pattern unit having a size less than said predeter- 
variance constraints) and different threshold functions mined size of said coarse-code units, said high-reso- 
(which, for example, produce output signals from the lution pattern having a greater number of said pat- 
sets (1, - 1) or (- 1, 0, 1) instead of (0, 1) as described tern units than each coarse-code field has coarse- 
above). code units. 

3. The system of claim 2, wherein the coarse-code 
tion with specific embodiments thereof, many alterna- units in all of said,coarse-code fields have the same size. 
tives, modifications and variations will be apparent to 4. The system of claim 3, wherein said means for 
those skilled in the art. Accordingly, the preferred em- coarse-coding forms n sub-patterns of equally sized 
bodiments of the invention as set forth herein are in- matrices of sub-pattern data having a size MXM, and 
tended to be illustrative, not limiting. Various changes 40 said neural network includes n fields, each having 
may be made without departing from the spirit and MXM input nodes and an equal number of summation 
scope of the invention as defined in the following points, each summation point of each field correspond- 
claims. ing to a summation point in each of the other fields to 

What is claimed is: define at least one set of common summation points, 
1. A pattern analysis system comprising: 45 each set of common summation points being coupled to 
means for coarse-coding an input pattern to form a a respective one of said at least one output nodes. 

plurality of sub-patterns collectively defining the 5. The system of claim 1, wherein said neural network 
input pattern, each of said sub-patterns comprising is a higher order neural network such that each field has 
respective sets of sub-pattern data, each sub-pattern an architecture including said interconnections between 
having a resolution less than a resolution of said 50 said plurality of input nodes and said at least one sum- 
pattern and corresponding to a low-resolution pat- mation point so that outputs of a plurality of said input 
tern of said entire pattern; nodes are multiplied together to produce intermediate 

a neural network having a plurality of fields equal in values prior to being summed at said at least one sum- 
number to said plurality of sub-patterns, so that mation point, said intermediate values being weighted 
each field corresponds to one of said sub-patterns, 55 prior to being summed. 
each field including: 6. The system of claim 5, wherein the outputs of said 

a plurality of input nodes receiving the set of sub-pat- input nodes are multiplied together in pairs so that said 
tern data from its corresponding sub-pattern; network is a second order neural network. 

at least one summation point where weighted prod- 7. The system of claim 5, wherein the outputs of said 
ucts of predetermined combinations of said input 60 input nodes are multiplied together in triplets so that 
nodes are summed to determine a sub-pattern said network is a third order neural network. 
value; and 8. The system of claim 5, wherein said intermediate 

interconnections between said input nodes and said at values are weighted with constraints corresponding to 
least one summation point defining said products known relationships between said combination of input 
and the weights associated with said products; said 65 nodes to provide said neural network with invariance. 
neural network also including: 9. The system of claim 5, wherein said coarse-code 

at least one output node, coupled to corresponding 
summation points from a plurality of said fields, 10. A pattern recognition system comprising: 

coarse-coding forms said sub-patterns by: 

While this invention has been described in conjunc- 35 

units correspond to pixels of an image. 
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means for coarse-coding a test pattern to form n sub- 15. The system of claim 13, wherein said weights are 
patterns collectively defining the test pattern, each constrained to provide invariance to translation and 
of said n sub-patterns comprising M X M matrices in-plane rotation. 
of sub-pattern pixel data, each sub-pattern having a 16. The system of claim 10, wherein said input nodes 
resolution less than a resolution of said test pattern 5 are interconnected in triplets so that said network is a 
and corresponding to a low-resolution pattern of third order neural network. 
said entire test pattern; 17. The system of claim 16, wherein said weights are 

a higher order neural network having n fields, each constrained to provide invariance to translation, scale, 
field corresponding to one of said sub-patterns and and in-plane rotation. 
having a common architecture including: 18. The system of claim 10, wherein said weights are 

M X M input nodes receiving said sub-pattern pixel constrained to provide said neural network with invari- 
data from its corresponding sub-pattern; ance. 

10 

at least one summation pointwhere weighted prod- 
ucts of predetermined combinations of said input 
nodes are summed to provide a sub-pattern value; l5 
and 

interconnections between said input nodes and said at 
least one summation point defining said products 
and the weights associated with said products, each 
summation point corresponding to a common sum- 
mation point in each of the other fields to define at 
least one set of common summation points; said 
neural network also including: 

at least one output node, corresponding to a respec- 
tive one of said at least one set of common summa- 
tion points, which performs a threshold function on 
a summation of the sub-pattern values produced by 
the set of common summation points correspond- 
ing to said output node, said weights having values 3o 
obtained by training said network to distinguish 
between a plurality of different training patterns 
which have been assigned respective output signals 
for said threshold function performed at said at 
least one output node whereby said system can 35 
determine which of said plurality of training im- 
ages corresponds to said test pattern by providing 
said output signal for said test pattern. 

11. The system of claim 10, wherein said means for 

(a) overlaying each of a plurality of coarse-code fields 
over said entire test pattern, each coarse-code field 
being comprised of a matrix of coarse-code pixels, 
each coarse-code pixel having a predetermined 

(b) assigning input values to the coarse-code pixels in 
each coarse-code in accordance with a portion of 

20 

25 

coarse-coding forms said sub-patterns by: 40 

field size; 45 

19. A method of analyzing a pattern comprising: 
coarse-coding an input pattern to form a plurality of 

sub-patterns collectively defining the input pattern, 
each of said sub-patterns comprising respective sets 
of sub-pattern data, each sub-pattern having a reso- 
lution less than a resolution of said pattern and 
corresponding to a low-resolution pattern of all of 
said pattern; 

supplying said sub-pattern data to input nodes of a 
neural network having a plurality of fields equal in 
number to said plurality of sub-patterns, so that 
input nodes of each field receive the sub-pattern 
data from a corresponding one of said sub-patterns; 

within each field, summing weighted products of 
predetermined combinations of said input nodes at 
summation points to produce at least one sub-pat- 
tern value for each field; and 

supplying a summation of the sub-pattern values from 
a plurality of said fields to an output node of the 
neural network, coupled to corresponding summa- 
tion points from a plurality of said fields, said out- 
put node performing a threshold function on said 
summation of sub-pattern values to produce an 
output signal 

the weights associated with said products have values 
obtained by training the network to distinguish 
between a plurality of different training images 
which have been assigned respective output signals 
for said threshold function performed at said at 
least one output node, whereby said system can 
determine which of said plurality of training im- 
ages corresponds to said input pattern by providing 
said output signal for said input pattern. 

20. The method of claim 19, wherein said coarse-cod- 
said test oattern over which said coarse-code oixel h a  includes forming said sub-oatterns by: 
is overlaied to define said sub-pattern data; 

wherein each coarse-code field overlaps said entire 50 
test pattern, and said coarse-code fields are offset 
from each other so that the effect of each coarse- 
code field overlay adds to the effect of each other 
so as to cumulatively define said test pattern as a 
high-resolution pattern having a matrix of pattern 55 
pixels, each pattern pixel of said matrix having a 
size less than said predetermined size of said coarse- 
code pixels, said high-resolution pattern having a 
greater number of said pattern pixels than each 
coarse-code field has coarse-code pixels. 

12. The system of claim 11, wherein the coarse-code 
pixels in all of said coarse-code fields have the same size. 
13. The system of claim 10, wherein said input nodes 

are interconnected in pairs so that said network is a 
second order neural network. 65 
14. The system of claim 13, wherein said weights are 

constrained to provide invariance to translation and 
scale. 

60 

overlaying each of a plurality of coarse-code fields 
over said entire pattern, each coarse-code field 
being comprised of a matrix of coarse-code units, 
each coarse-code unit having a predetermined field 
size; and 

assigning input values to the coarse-code units in each 
coarse-code field in accordance with a portion of 
said pattern over which said coarse-code unit is 
overiayed to define said sub-pattern data; 

wherein each coarse-code field overlaps said entire 
pattern, and said coarse-code fields are offset from 
each other so that the effect of each coarse-code 
field overlay adds to the effect of each other so as 
to cumulatively define said pattern as a high-reso- 
lution pattern having a matrix of pattern units, each 
pattern unit having a size less than said predeter- 
mined size of said coarse-code units, said high-reso- 
lution pattern having a greater number of said pat- 
tern units than each coarse-code field has coarse- 
code units. 
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21. The method of claim 20, wherein the coarse-code 
units in all of said coarse-code fields have the Same size. 

22. The method of claim 21, wherein said co~se-cod- 
ing forms sub-patterns of equally sized matrices of 
sub-pattern data having a size MXM, and said neural 
network includes n fields, each having a common archi- 

ber of said summation points, each summation point of 
each,field corresponding to a summation point in each 10 in-plane rotation of said pattern. 
of the other fields to define at least one set of corre- 
sponding summation points, the summation of each set 
of corresponding summation points being supplied to a 
corresponding output node. 

network is a higher order neural network such that each 
field has an architecture including interconnections 
between said plurality of input nodes and said at least 

25. The method of claim 24, wherein said pattern is an 
image SO that said sub-pattern data is pixel data, and said 
intermediate values are weighted with constraints to 
provide said network with invariance to translation and 

26. The method of claim 24, wherein said pattern is an 
image so that said sub-pattern data is pixel data, and said 

Of said pattern* 

tecture M X M  input nodes and an equal num- intermediate values are weighted with constraints to 
network with invariance to translation 

27. The system of claim 23, wherein the outputs of 
said input nodes are multiplied together in triplets so 
that said network is a third order neural network. 

28. The method of claim 24, wherein said pattern is an 
23. The method of claim 19, wherein said neural 15 image SO that said sub-pattern data is pixel data, and said 

intermediate are weighted with constraints to 
provide said network with invariance to translation, 
scaling, and in-plane rotation of said pattern. 

29. The system of claim 23, wherein said intermediate 
One summation point so that Outputs Of a plurality Of 20 values are weighted with constraints corresponding to 
said input nodes are multiplied together to produce known relationships between said combinations of input 
intermediate values which are weighted prior to being nodes to provide said network with invariance to said 
summed to produce said sub-pattern value. known relationships. 

24. The system of claim 23, wherein the outputs of 30. The system of claim 23, wherein said pattern is an 
said input nodes are multiplied together in pairs so that 25 image, and said coarse-code units correspond to pixels. 
said network is a second order neural network. * * * * *  
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