A GENERIC EFFICIENT ADAPTIVE GRID SCHEME FOR ROCKET PROPULSION MODELING

J. D. Mo
Mechanical Engineering Department
Memphis State University
Memphis, TN 38152

Alan S. Chow
Combustion Science Branch
NASA/MSFC
Huntsville, Al 35812

Abstract

The objective of this research is to develop an efficient, time-accurate numerical algorithm to discretize the Navier-Stokes equations for the predictions of internal one-, two-dimensional and axisymmetric flows. A generic, efficient, elliptic adaptive grid generator is implicitly coupled with the Lower-Upper factorization scheme in the development of ALUNS computer code. The calculations of one-dimensional shock tube wave propagation and two-dimensional shock wave capture, wave-wave interactions, shock wave-boundary interactions show that the developed scheme is stable, accurate and extremely robust. The adaptive grid generator produced a very favorable grid network by a grid speed technique. This generic adaptive grid generator is also applied in the PARC and FDNS codes and the computational results for solid rocket nozzle flow field and crystal growth modeling by those codes will be presented in the conference, too. This research work is being supported by NASA/MSFC.
A GENERIC EFFICIENT ADAPTIVE GRID SCHEME FOR ROCKET PROPULSION MODELING

Alan S. Chow
NASA/ Marshall Space Flight Center
Huntsville, AL 35812

J. D. Mo
Memphis State University
Memphis, TN 38152

NASA/MSFC
Workshop for CFD Applications in Rocket Propulsion
April 20-22, 1993
MOTIVATION

- Time-dependent sharp gradient region
  - shock wave propagation
  - shedding vortex
- Moving boundary
  - time-dependent geometrical boundary
    (solid rocket chamber, etc.)
  - time-dependent free surface
- Unknown sharp region for steady solution
  - shock capture
  - boundary layer
OBJECTIVES

* To develop an adaptive grid generator
  - efficient
  - robust
  - easy to be embodied in computer codes
  - numerically stable with most schemes
<table>
<thead>
<tr>
<th>Table of Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. One-dimensional shock wave propagation (L-U scheme)</td>
</tr>
<tr>
<td>-Time accurate</td>
</tr>
<tr>
<td>-Moving grids</td>
</tr>
<tr>
<td>2. Supersonic flow in a ramp inlet (L-U scheme)</td>
</tr>
<tr>
<td>-Two-dimensional multi-shocks simulation</td>
</tr>
<tr>
<td>-Shock-shock wave interaction</td>
</tr>
<tr>
<td>3. Incompressible flow in a cavity (FDNS)</td>
</tr>
<tr>
<td>-Moving interface</td>
</tr>
<tr>
<td>-Free surface</td>
</tr>
<tr>
<td>4. Solid rocket nozzle flow modeling (PARC)</td>
</tr>
</tbody>
</table>
Elliptic PDEs for Grid Generation

\[ \zeta_{xx} + \zeta_{yy} = P \]
\[ \eta_{xx} + \eta_{yy} = Q \]

where \( P \) and \( Q \) are the control functions, and they could be

\[ P = P_g + P_w + \ldots \]
\[ Q = Q_g + Q_w + \ldots \]
CASE 1. SHOCK TUBE

$P_1$ (high pressure) $\quad P_2$ (low pressure)
Time-accurate adaptive grid in one-dimensional shock tube simulation
CASE 2. SUPERSONIC RAMP INLET
Pressure contour plot inside a two-dimensional duct.
Adapted grid of a two-dimensional duct.
CASE 3. CAVITY FLOW SIMULATION

solid
An adapted grid
CONCLUSIONS

* Versatile grid generator
* Robust to general schemes (LU, FDNS, PARC)
* Efficient and compact