TIGER: A User–Friendly Interactive Grid Generation System
For Complicated Turbomachinery And
Axis–Symmetric Configurations

Ming H. Shih
Bharat K. Soni

NSF Engineering Research Center For
Computational Field Simulation
Mississippi State University

Sponsor: NASA Lewis Research Center

April 21, 1993 CFD Workshop
Abstract

The issue of time efficiency in grid generation is addressed by developing a user-friendly graphical interface for interactive/automatic construction of structured grids around complex turbomachinery/axis–symmetric configurations. The accuracy of geometry modeling and its fidelity is accomplished by adapting the Non-Uniform Rational B-Spline (NURBS) representation.

A customized interactive grid generation code, TIGER1–6, has been developed to facilitate the grid generation process for complicated internal, external, and internal–external turbomachinery fields simulations. The FORMS Library7 is utilized to build user-friendly graphical interface (Figure 1). The algorithm allows a user to redistribute grid points interactively on curves/surfaces using NURBS formulation8 with accurate geometry definition. TIGER’s features include multi-block, multi-duct/shroud, multi-blade row, uneven blade count, and patched/overlapping block interfaces. It has been applied to generate grids for various complicated turbomachinery geometries (Figure 2), as well as to rocket and missile configurations (Figure 3).
Objectives

To develop an interactive grid generation system with user-friendly graphical user interface (GUI) customized for complicated turbomachinery configurations.

- Accurate and Efficient
- Cost Effective (Labor time in overall grid generation)
- Timely for Engineering Design

April 21, 1993 CFD Workshop
Features

- Compatible with various major industry formats for blade/shroud/duct/hub definition
- Multi-block, multi-blade row, multi-level duct/splitter uneven blade count
- CH/HH topologies with automatic domain mapping
- Journal capability
- External, internal, external–internal flow fields
- Automatic/default grid generation
- Interactive/iterative spacing specification
- User interaction for grid manipulation

April 21, 1993 CFD Workshop
Approach

- Originally developed as a module in GENIE
- Rewritten both in C and Fortran77 for better algorithm
- GUI with FORMS Library
- NURBS curve/surface for point re-distribution
- Bezier curve for grid line design/manipulation
- Weighted TFI for both surface/volume grid interpolation
- Elliptic system for surface/volume grid generation

April 21, 1993 CFD Workshop
TIGER System

Grid Module:
- Automatic/Default grid generation
- User-Interactions:
 - RULER
 - FRAME
 - 3D Manipulation

GVU Module:
- Allows any block number, any number of patches in each block
- Gouraud shading/Wireframe rendering
- General Configurations

ToolBox Module:
- Converts various alien formats for geometry definition
- 2D LE/TE circle fitting

April 21, 1993 CFD Workshop
Applications

O External flow fields:

Hamilton Standard SR-7 (10 min) GE counter-rotating Propfan (15 min)
Naval CCOSC Torpedo (1 hour) Various Missile Configurations

O Internal flow fields:

Rotor-67 (20 min)
Feul Inducer (Have not yet tested with TIGER-II)

O External–Internal flow fields:

NASA Pressure Ration 1.15 Ducted Fan (1~2 hours)
Pratt & Whitney Advanced Ducted Propfan (ADP) (1~2 hours)
GE Energy Efficiency Engine Mockup (1~2 hours with fan only)

April 21, 1993 CFD Workshop
Future Developments

Grid Module:
- Mixed Grid Topologies (CO/CC/HO/HC)
- 2D capability
- Tip Clearance Modeling

Flow Module:
- Flow Solver Coupling (Whitfield/Janus/Chen/Taylor)
- Common I/O, Data Structure

Visualization Module:
- Flow Solution Visualization (Contour/Vector/Particle Trace)
- Flow Solver BC/IC Setup Panel

ToolBox Module:
- Rotor Tip Cutter (Spherical)
- 3D Blade LE/TE Circle Fitting
- CAD Interface (CAGI)

April 21, 1993 CFD Workshop
Figure 3. Missile Configuration
Figure 4. NASA Pressure Ratio 1.15 Ducted Fan
References

