AERODYNAMIC DESIGN AND ANALYSIS OF A HIGHLY LOADED TURBINE EXHAUST VOLUTE MANIFOLD

F.W. Huber, X.A. Montesdeoca, R.J. Rowey
Pratt & Whitney GESP
West Palm Beach, FL

The aerodynamic design and analysis of a turbine exhaust volute manifold is described. This turbine exhaust system will be used with an advanced gas generator oxidizer turbine designed for very high specific work. The elevated turbine stage loading results in increased discharge Mach number and swirl velocity, which along with the need for minimal circumferential variation of fluid properties at the turbine exit, represent challenging volute design requirements. The design approach, candidate geometries analyzed, and steady state / unsteady CFD analysis results are presented.
MSFC Turbine Stage Technology Team

- Team consisting of turbine specialists from government, industry, and universities committed to advancing the state-of-the-art of turbine design
- Effort directed at applying advanced computational fluid dynamics (CFD) codes and capability to the turbine design process
- Team focused on turbines meeting STME requirements
- Enhanced design / analysis tools available for future application
Volute Design Process Outline

Meanline Analysis

Geometry Generation

3D Flow Analysis

Baseline Volute Geometry

Turbine Team Analysis
 - Integrated Turbine/Volute Modelling

Advanced Concept Volute Geometry
Exhaust Volute Manifold Design Requirements
High Turbine Stage Loading Creates Challenging Goals

Turbine Stage Loading Summary

- Inlet Mach No. = 0.84
- Exit Mach No. = 0.3
- Minimize Transverse Press. Gradient
- Minimize Total Press. Loss
Meanline Analysis
First Pass Estimate of Geometry and Performance

- Major Geometric Features Modeled
 - Distribution of Thru-Flow Area
 - Mean Flow Path Radius
 - Inlet and Exit Flow Paths
 - Surface Roughness

- Pressure Loss Estimate
 - Wall Friction
 - Secondary Flows in a Turning Passage
 - Diffusion
 - Tongue Incidence
 - Flow Path Dump

- Parametric Studies
 - Performance Optimization and Sensitivity
Geometry and Mesh Generation

Rules Based Design Program Used To Create Volute Geometry

INPUT:
- Number of Sections Required
- CW/CCW Development

OUTPUT:
- 3D Surfaces
- Bulkpoint File For Mesh Generator
- CAD File for Geometry Enhancements

2D Definition:
- Area Distribution
 - Area
 - Theta

2D Contours:
- Diameter
- Span
Exhaust Manifold 3D Flow Analysis
Inlet Boundary Condition Sensitivity Assessment

Effect of Inlet length on Calculated Transverse Gradient

ΔC_p vs Inlet Length / Flow Path Height

Initial Geometry
Baseline Volute
Baseline Volute 3D Flow Analysis
Circumferential Static Pressure Distribution
Steady State Model with 20:1 Inlet

Vol Inlet
Cp

Circ. Position (deg.)
Integrated CFD Modeling of Components
Circumferential Static Pressure Distribution at Turbine / Exhaust Man. Interface

Steady State Model of Inlet Volute, Turbine Stage and Exhaust Manifold

\[C_p \]

Circ. Position (deg.)
Exhaust Manifold 3D Flow Analysis
Baseline Volute Flow Vectors
Baseline Volute
Integrated CFD Modeling of Components
Computational Mesh for Inlet Volute, Turbine Stage and Exhaust Manifold
Time Accurate 3D Turbine Stage Flow Analysis
Euler (w / shear), 20 Vanes, and 42 Blades

Computational Grid

Unsteady Pressure Dist.
Integrated Time Accurate CFD Modeling of Components
Turbine Stage (20 Vanes, 42 Blades) and Exhaust Manifold (42 Elements)

Time Averaged Circ. Static Pressure Distribution at Turbine Exit
Time Accurate 3D Turbine Stage Flow Analysis
Euler (w/shear), 20 Vanes, and 42 Blades

Instantaneous Circ. Static Pressure Distribution at Turbine Exit
Integrated Time Accurate CFD Modeling of Components Turbine Stage (20 Vanes, 42 Blades) and Exhaust Manifold (36 Elements)

Instantaneous Circ. Static Pressure Distribution at Turbine Exit
Integrated Time Accurate CFD Modeling of Components

Turbine Stage (20 Vanes, 42 Blades) and Exhaust Manifold (42 Elements)

Instantaneous Circ. Static Pressure Distribution at Turbine Exit

Ps (psia)

Circ. Position (deg.)

1551
Integrated Time Accurate CFD Modeling of Components
Turbine Stage (20 Vanes, 42 Blades) and Exhaust Manifold (42 Elements)

Unsteady Pressure Distributions
Aero Design and Analysis of a Highly Loaded Turbine Exhaust Volute Manifold

SUMMARY

- Baseline Volute Geometry Defined - Performance Evaluation at MSFC
- Efforts Now Focused on Advanced Concepts for Volute Improvement
- Time Accurate 3D CFD Model of Turbine Stage / Exh. Volute Manifold Constructed & Running
- Early Results Show Large Turbine - Volute Interaction
- Results To Be Utilized In Advanced Concept Definition