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ABSTRACT

This dissertation focuses on the signal processing problems associated with the

detection of hazardous windshears using airborne Doppler radar when weak weather

returns are in the presence of strong clutter returns. In light of the frequent inade-

quacy of spectral-processing oriented clutter suppression methods, we model a clutter

signal as multiple sinusoids plus Gaussian noise, and propose adaptive filtering ap-

proaches that better capture the temporal characteristics of the signal process. This

idea leads to two research topics in signal processing: (1) signal modeling and pa-

rameter estimation, and (2) adaptive filtering in this particular signal environment.

A high-resolution, low SNR threshold ML frequency estimation and signal modeling

algorithm is devised and proves capable of delineating both the spectral and tem-

poral nature of the clutter return. Furthermore, the LMS-based adaptive filter's

performance for the proposed signal model is investigated, and promising simulation

results have testified to its potential for clutter rejection leading to more accurate

estimation of windspeed thus obtaining a better assessment of the windshear hazard.
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CHAPTER 1

INTRODUCTION

1.1 Modeling Discrete-Time Signal

Though conventional time series(signal) analysis is heavily dependent on the

twin assumptionsof linearity and stationarity, since the late 1960s, parametric mod-

eling of nonstationary signals has received a great deal of attention [1]. However, the

definitions of signal nonstationarity are still diversified among engineering researchers

and mathematical statisticians. As opposed to statisticians' interest in the tempo-

ral characteristics of an observed data record, signal processors are generally more

absorbed in analyzing its spectral content [2, 3]. In Section 1.1.1, we give a brief intro-

duction of some commonly used time-domain approaches for modeling nonstationary

signals.

1.1.1 Time Series Analysis Approach

It is generally recognized by statisticians that nonstationary processes may arise

in several ways [1, 4].

The first is the "trend plus stationary residual" model

where/_(n) is a deterministic function, and a(n) is a zero-mean stationary processes.

An extension of this model, i.e., the "trend-seasonal-irregular" model,

z(n) = T(n) + S(n) + R(n)

with T(n) as the trend, S(n) the seasonal term, and R(n) an irregular component, is

often encountered in econometric time series analysis [5].

The second is the the autoregressive integrated moving average (ARIMA) process

Cp(B)(1 - B)dx(n) = tg_( B)e(n)



where B is a backshiff operator such that Bkx(n) = x(n -- k), the stationary AR

operator Cp(B) = 1 - a_B ..... apB p and the invertible MA operator Oq(B) =

1 - biB ..... bqB q share no common factor, and e(n) is a white noise process of zero

mean and constant variance. This model postulates that differencing the x(n) process

d times will result in a stationary ARMA process. Furthermore, one should notice

that the nonstationary characteristics of this model may be seen by interpreting x(n)

as the result of passing the white noise process e(n) through an "unstable" IIR filter

whose transfer function Oq(z-1) has d overlapping poles on the unit circle.
¢_,(z-')(1 - z-') a

The third is the ARMA process with freely varying time-dependent parameters

which is a more general class of nonstationary processes in which the time-dependent

nature of the processes can be delineated in various ways [1, 6].

Many common signals analyzed in practice are indeed not stationary, and their

time-domain characteristics may be captured by the models proposed above. How-

ever, in the development of various spectrum estimation algorithms, as addressed by

Marple [2] and Kay [3], short data segments from the longer data record may be con-

sidered to be locally stationary, availing those estimation methods to many real world

applications. Assuming the data record x(n) is from a stationary process, the formal

definition of the spectrum shows that it is a function strictly of the second-order

statistics [2]. The second-order statistics are also assumed to remain unchanged, or

stationary, over time. Thus, the spectrum is not a complete statistical picture of a

random process that may have other information in third- and higher-order statistics.

Section 1.1.2 deals with another modeling approach particularly suitable for a nar-

rowband signal process, where the signal's features over both the time-domain and

the frequency-domain are simultaneously retained.

1.1.2 Sinusoidal Parameter Estimation Approach

The estimation of the frequencies of sinusoidal components embedded in white

noise is a problem that arises in many fields such as communications, radar, and sonar
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applications, where enhancement (suppression) of narrowband signals (interferences)

is among the signal processors' major concerns [3, 7]. In this model, given as

P

z(n) = _ a, exp(j2zrfin + _bi) + w(n)
i=1

where w(n) is complex white Gaussian noise of zero mean and constant variance

[8], the signal amplitudes are usually assumed to be constants, whereas the phases

are either constants or random variables dependent on the frequency estimation ap-

proaches: the approximate maximum likelihood techniques regard the sinusoidal pro-

cess as a deterministic signal with unknown frequencies, while the eigenanalysis ap-

proaches employ a WSS random process model so that the frequencies appear as

unknown parameters in an autocorrelation matrix. It should be pointed out that

when the sinusoids are of constant phase, this model belongs to the first category of

nonstationary processes discussed in the previous section.

As will be addressed in next two chapters, this dissertation focuses on the maxi-

mum likelihood frequency estimation problems with the idea of modeling the observed

data as a deterministic sinusoidal signal with unknown parameters plus noise, though

the data itself may be a partial realization of a nonstationary process [3, 9].

1.2 Motivation for Adaptive Processing Scheme

One of the most challenging problems facing modern signal processors is the de-

tection and estimation of weather information using airborne Doppler radar [10, 11].

This application is associated with the development of a new generation airborne

Doppler weather radar for detecting windshear which is particularly hazardous to

aircraft operating at low altitudes [11, 12, 13]. For an aircraft in a landing mode,

with an antenna scanning the airspace along the intended flight path, the radar re-

turn represents a sample function of a nonstationary process which in the presence

of weather can consist of two slowly time-varying components. A signal component

is due to the weather return and a noise component is due to the ground clutter re-

turn. Furthermore, in situations where the signal-to-clutter ratio (SCR) is extremely

3



low, it becomes a very difficult task to suppress the clutter component so that the

radar return can be processed to determine windfield characteristics within the search

volume.

The general approach in reducing the effects of ground clutter on windspeed

estimates made from the Doppler radar return sequences is to use some form of

frequency selective filtering [10]. Fixed-notch clutter rejection filters are commonly

used to separate the two processes on the basis of spectral content. Moreover, in most

spectral analysis oriented approaches, two inherent problems are unavoidable. First,

good spectrum estimation can only be attained when the signal-to-noise ratio (SNR)

is above a certain threshold; Secondly, the signal's temporal information (e.g., phase)

is often discarded. Accordingly, approaches of this sort will fail to enhance the weak

weather return in the presence of strong clutter returns.

An adaptive filter, on the other hand, is an active system that will make appro-

priate parametric adjustments to the unknown signal environment or its time-varying

temporal statistics, by following some type of optimization criterion. For the applica-

tion of clutter rejection and weather information extraction associated with airborne

Doppler radar, some promising results obtained by LMS-based adaptive filtering have

been reported by Lai and Baxa [14]. This dissertation serves as an in-depth study of

their work. Major contributions are summarized in the following section.

1.3 Contribution and Organization of This Dissertation

The contributions of this dissertation include three aspects. First, as noted

in Chapter 2, the major difficulty in ML frequency estimation is that the likelihood

function is highly nonlinear with respect to the frequency parameters. Moreover, given

a short data record under low SNR conditions, the presence of spectrally close signals

makes correct detection a very tough task. Chapter 2 formulates this ML frequency

estimation problem, briefly surveys its solutions proposed by the signal processing

community, and provides the basic ideas in Wiener filtering and the adaptive LMS

4



algorithm. All the discussions therein serve as a theoretical basis for the chapters to

follow.

In Chapter 3, we devise a high-resolution frequency estimation and signal detec-

tion scheme utilizing the expectation-maximization (EM) algorithm. This method

efficiently solves the problem of multi-dimensional optimization, and through the in-

clusion of MDL criterion or Fisher's To statistic, attains high probability of correct

detection in low SNR situations.

Secondly, convergence responses of the LMS-based adaptive noise canceler to

sinusoidal signal processes are investigated in Chapter 4, through extensive simula-

tion. Though the approach taken is somewhat more experimental than analytical,

our simulation results provide valuable insights regarding different adaptive filter

configurations and design considerations, under a very realistic signal environment

encountered in many applications.

Thirdly in Chapter 5 the adaptive filter is investigated through simulation as

a process decorrelator to suppress the clutter return and thus enhance the weather

return. Results from Chapter 4 have been used as a design guideline for these adaptive

filtering schemes, whereas the algorithms in Chapter 3 are employed to model the

Doppler weather radar clutter return process. As our simulation results show, even

in a low SCR signal scenario, an adaptive signal processing scheme can significantly

outperform traditional fixed filtering approaches. In light of all these analysis and

simulation results, a concise conclusion and some suggestions for future work are

provided in Chapter 6.



CHAPTER 2

ML FREQUENCY ESTIMATION AND ADAPTIVE FILTER

In this chapter,wegive abrief overviewof two important researchtopics in signal

processing: spectral estimation and adaptive filtering. All the discussionshere will

serveas the theoretical basisfor Chapters3 and 4 and their applications in Chapter

5. Traditionally, power spectral density estimation has very much relied upon the

Fourier transform, the theories of random processes and filter theory. Specifically,

classical estimation methods like periodogram and the Blackman-Tukey spectral es-

timator are Fourier-transform-based, whereas "modern" spectral estimation, which is

a parametric modeling approach, mainly depends on random process (e.g., ARMA)

and filter theories [2, 3]. Our attention will be directed to the problem of parameter

estimation of sinusoids corrupted by noise, a research issue still challenging many

signal processors, especially when a short data record is available and high frequency

resolution is required [3, 15, 16]. An adaptive filter is an active system that will

make appropriate parametric adjustments to the unknown signal environment or its

time-varying statistics, by following some type of optimization criterion [7, 17]. Ac-

cording to Haykin [7], to derive the recursive algorithms for the operation of adaptive

filters, one can identify three distinct methods: (1) an approach based on Wiener

filter theory, (2) an approach based on Kalman filter theory, and (3) the method of

least squares. We will focus on the first approach, Wiener filtering.

2.1 Basic Assumptions in Signal Model

To begin the discussion of maximum likelihood estimation (MLE) of frequency

parameters, specifically assume that the received data vector y = Iv(0)y(1) ..- y(N-

1)] r consists of p complex sinusoids in complex white Gaussian noise (CWGN)

P

y(n) = _] A_exp(j2_rf_n) + w(n) (2.1)
i=1



where Ai = [Ai[e j¢_ is the complex amplitude of the ith sinusoidal component, and

w(n) is complex white Gaussian noise with zero mean and variance a 2. The sinu-

soidal parameters {[A_[, IA2[,..., [Av[, ¢_, ¢2,'"", ¢v, fl, f2,'"", fp}, which consists of

amplitudes (0 < [Ai[ < oo), phases (0 _< ¢i < 27r), and frequencies (0 _ fi < 1), are

assumed to be constant but unknown and are to be estimated. The idea here is to

model the observed data as a deterministic sinusoidal signal with unknown param-

eters plus white noise, though the data itself may be a snapshot of a nonstationary

process [3, 9]. It is also important to remember that the discussion to follow assumes

that the number of sinusoids, p, is known. Methods to estimate p are discussed in

Section 2.3.

2.2 Problem Formulation and Implementation of MLE

2.2.1 Single Sinusoid

To help formulate the ML estimation problem, let us first look at the case of

a single sinusoid. Let el = [1 e j2'_l' e j2_r/'2 "'" eJ2_rl'(N-1)] T. It is well known in the

literature that the MLE of the frequency and amplitude of a single complex sinu-

sold in complex white Gaussian noise is found by minimizing the scoring function,

S(A_,fl) = [[y- Ale1[[ 2 = (y- Alel)H(y- Ale_), where g denotes the nermitian

transposition and [[. [[ the Euclidean norm. This is equivalent to choosing the fre-

quency at which the periodogram attains its maximum [3]. The MLE of {]AI[, ¢1, fl }

is given as

]1 = argmax e 1 y = argmax y(n)exp(-j2zrfln)

1 _-i [IAII = _ _ y(n)exp(-j2_]in)

[Im (_,_g__-o' y(n)exp(--j2_r liT/.) ] (2.2)
_1 = arctan

Re (EnN_-o 1 y(n)exp(-j2rfln) J

Note that the frequency estimate is found as the result of a one-dimensional search.

To achieve this goal, a coarse FFT followed by a Newton-Raphson search can be

implemented. Please refer to the Appendix for details.

7



as

2.2.2 Multiple Sinusoids

In vector form, the observed data y = [y(0)y(1) • • • y(N- 1)] T can be represented

square problem [3]:

S(A, f)

= arg minS(A, f)
A,f

= [[y - EAI[ 2 = (y- EA)H(y - EA)

= ,_=o y(n)- "= A_exp(j2_rf_n) .

(2.4)

(2.5)

Fixing f and thus assuming E to be a known matrix, S(A, f) is minimized over A by

,£, = (EHE)-IEHy. (2.6)

It is well known that if f is replaced by its MLE f, then ,_. will be the MLE of A [3].

Substituting (2.6) into (2.5) yields the scoring function

S(A,f) = yH(y_ E,h,)

= yHy_ yHE(EHE)-IEHy" (2.7)

Therefore, the MLE t"of the frequencies can be found as

f" = arg na_x L(y; f)

where L(y;f) = yttE(EHE)-IEHy. (2.8)

L(y; f) is a highly nonlinear function of the unknown frequencies and therein lies the

central problem of ML estimation. We refer to L(y; f) as the log-likelihood of y given

f since it is In fu(y; f) with terms not associated with f discarded.

8

P

y = y_ A; ei + w = EA + w (2.3)
i=l

where e_ = [1 e j2"l' e j2"_I'2.., eJ2'_l'(Y-1)] T, E = [ea e2"-'ep], A = [A_ A_...Ap] T,

and w = [w(0)w(2)...w(g- 1)] T. For notational simplicity we have concealed the

dependence of matrix E on the frequency parameter vector f = [fl ]'2"" fn].

Based on the white Gaussian assumption, it has been shown that the MLE of

.4. and f, denoted as .& and f, can be found by solving the following nonlinear least



2.2.3 Implementation of MLE

Modern methods for ML frequency estimation generally fall within two classes:

linear prediction based methods and eigenstructure-based methods [3, 16]. In the

• 1980s, the modified forward-backward linear prediction (MFBLP) approach developed

by Tufts and Kumaresan [15] achieves great success in that it outperforms other

eigendecomposition-based methods in terms of its good frequency resolution at low

SNR conditions.

However, since Ziskind and Wax [9] proposed the alternating projection (AP)

algorithm in the late 1980s, several AP-oriented approaches that show even better

performances than that of the MFBLP method have been developed by signal proces-

sors [16, 18, 19]. In Chapter 3, we will devise a new class of high-resolution frequency

estimation algorithm that not only possesses some nice computational and statis-

tical features, but also demonstrates performances favorably compared with those

advanced methods.

2.3 Order Selection

In this section, we consider two information theoretic criteria [20] found favorable

in both time series analysis and signal processing for model order selection, and give

their modified versions for deciding the number of sinusoids buried in complex white

Gaussian noise. Let f(y; O) denote the PDF of data y given the true parameter vector

O of p components. Assuming we have an MLE 6 of O for each model of order k (i.e.,

the number of independently adjusted parameters in the model) in question, Akaike's

information criterion (AIC) [21] is defined as

AIC(k) = -21n f(y; 6) + 2k, (2.9)

and according to Wax and Kailath [20], the minimum description length (MDL)

principle originally proposed by Rissanen [22] is given as

1

MDL(k) = -In f(y; 6) + _k In N. (2.10)



To tailor AIC for modeling the signal describedby (2.3), Kay [3] suggeststhat we

can choosethe number of sinusoidsby minimizing

AIC(i) = 2NlnSi(A,f) + 6i (2.11)

where i is the number of sinusoids, and k in (2.9) has been replaced by 3i to account

for the three parameters (amplitude, phase, and frequency) associated with each

sinusoid. Before using MDL, we need to remember that Rissanen's basic idea behind

this order selection principle is to find the shortest code length (number of bits) to

encode an observed data set y, assuming the parameter (_ is a vector of k real-valued

components [22]. As expressed in (2.5), the parameters to be estimated are associated

with the complex-valued multiple sinusoidal signal vector EA. Therefore, replacing k

in (2.10) by 2k, and following the same rationale used by Kay to account for the three

parameters associated with each sinusoid, the MDL criterion can be presented as

MDL(i) = Nln S_(h, f) + 3ilnN (2.12)

where i is the number of sinusoids. Notice that the first terms in (2.11) and (2.12)

involve the negative of the log-likelihood of an ML estimate, and the second terms

represent the "cost" for the selected model order (correspondingly the number of

parameters). However, as observed in (2.12), the MDL criterion will "penalize" more

for redundancy in modeling than the AIC. Performance comparison of these two

model-order estimators will be given in Section 3.4 through simulation.

2.4 Wiener Filtering and Widrow-Hoff LMS Algorithm

Adaptive filters are mainly derived from linear optimum filter theory for wide-

sense stationary stochastic processes [7, 17]. Regarding the filter specification, two

choices have to be made clear. First, the choice of a finite impulse response (FIR) or

an infinite impulse response (IIR) for the filter is dictated by practical considerations.

Secondly, the type of statistical criterion used for the optimization is often influenced

10



by mathematical tractability [7]. Our attention will be confined to the more well-

developedFIR filter theory and the least-mean-square (LMS) algorithm, a simplified

criterion derived from the method of steepest descent.

2.4.1 Wiener Filter

This section begins with the discussion of a class of optimum linear discrete-time

filters known collectively as Wiener filters. Consider the block diagram of Figure 2.1

for this specific filtering problem. The filter input consists of a time series y(O), y(1),

y(2) ..., and the filter is itself characterized by the impulse response wo, wl, w2 " ".

At some time instant n, the filter produces an output denoted by v(n). This output is

used to provide an estimate of a desired response d(n). With the filter input and the

desired response representing single realizations of respective stochastic processes, the

estimation is accompanied by an error with statistical characteristics of its own. In

particular, the estimation error, denoted by e(n), is defined as the difference between

the desired response d(n) and the filter output v(n). The basic requirement is to

make the estimation error "as small as possible".

input

y(n)

desired d(n)

response

Linear discrete-time filter

w - [ wo wIw2

output +

v(n) _=(

estunation

error

r

e (n)

Figure 2.1. Structure for the Wiener filtering problem.

Generally speaking, the filter design can be optimized in the sense of minimizing

a cost function, or indez of performance. Among others, the possible choices are the

11



mean-squarevalue, the expectedabsolute value, or the third (or higher) power of

the absolutevalueof the estimationerror [7, 17]. The choiceof the minimum mean-

square-error(MSE) criterion hasattracted more researchattention than the others,

becauseit has the advantageof leading to tractable mathematics [7]. In particular,

the MSE criterion results in a second-orderdependencefor the cost function on the

unknown coefficientsw in the impulseresponseof the filter. Moreover, the cost func-

tion has a distinct minimum that uniquely definesthe statistically optimum design

of the filter.

Assume that the filter input and the desired response are single realizations of

jointly wide-sense stationary stochastic processes, and denote the FIR coefficient vec-

tor of the filter as w = [w0 wl ... WM-1] T. The filter output v(n) and the estimation

error e(n) at discrete time n are defined as

M-1

v(n) = _ w,,,y(n - m) = wTy(n),
rn=O

and e(n) = d(n) - v(n) (2.13)

where y(n) = [y(n) y(n- 1)... y(n- M + 1)] T. To optimize the filter design, we

choose to minimize the mean-square value of the estimation error, J = E[e(n)e'(n)] =

E[le(n)12]. For the cost function J(w) to attain its minimum value, all the elements

of the complex gradient vector VJ must be simultaneously equal to zero. (For a

detail treatment of the concept of a complex gradient operator, please refer to Kay

[23], Haykin [7], and Brandwood [24].) Under this condition, the filter is said to be

optimum in the mean-square-error sense.

Let R denote the M-by-M correlation matrix of the tap input vector y(n) =

[y(n) y(n - 1) ... y(n - M + 1)] T in the transversal (FIR) filter of Figure 2.1: R =

E[y(n)yg(n)]. Correspondingly, let P denote the M-by-1 cross-correlation vector

between the tap input vector and the desired response d(n): P = E[y(n)d'(n)]. Let

Vo(n) denote the output produced by the filter optimized in the MSE sense, with eo(n)

as the corresponding estimation error. The essential idea of Wiener filtering hinges

12



on two important results. First, the necessary and sufficient condition for minimizing

the cost function J is that the corresponding value of the estimation error eo(n) is

orthogonal to each input sample y(n) contributing to the estimation of the desired

response at time n. Furthermore, it can be shown that under the same optimum

condition, eo(n) and the estimate of the desired response vo(n) are orthogonal to each

other. These statements constitute the principle of orthogonality and its corollary [7],

which in mathematical terms are given as

E[y(n-m)eo(n)] =

and E[vo(n)eo(n)] =

0, m=0,1,2,.-.,M-1,

0. (2.14)

Secondly, the optimum tap-weight vector (impulse response) of the transversal filter,

denoted as Wo = [woo Wol "'" WoM-l] T, can be obtained by solving the Wiener-Hopf

equations

Rw: = P. (2.15)

Therefore, w; = R-1P, assuming the correlation matrix R is nonsingular.

2.4.2 LMS Algorithm

When the filter's performance index J = E[[e(n)l 2] is a known function of w,

Newton's search method can be applied to minimize the required number of iterations.

However, in many practical adaptive system applications the cost function J(.) is

unknown and must be measured or estimated on the basis of stochastic input data.

Among others, the method of steepest descent, which adjusts the filter weight vector

in the direction of the gradient _TJ at each iteration step, has thus far proven to be

the most widely applicable. If it were possible to make exact measurements of the

gradient vector _7J(n) at each iteration, and if the step size # is suitably chosen, then

the tap-weight vector computed by using the steepest-descent algorithm would indeed

converge to the optimum Wiener solution. In realty, however, exact measurements

of the gradient vector are not possible, since this would require prior knowledge of
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both the correlation matrix R of the tap inputs and the cross-correlation vector P

[7]. Consequently, the gradient vector of J = E[le(n)l 2] must be estimated from the

available data. To simplify this problem, Widrow et al. [17, 25] use le(n)l itself

as an estimate of J, and suggest that the required direction in which the weight

vector should be changed is the opposite (or negative) direction of the maximum

instantaneous rate of increase of the error power le(n)l 2 with the weight vector. They

come up with the LMS algorithm, which updates the filter coefficients according to

e(n) = d(n)- wT(n)y(n)

w(n-4- I) = w(n) -4- #e(n)y*(n) (2.16)

where w(n) = [w0(n) w,(n)... WM_l(n)] T is the filter coefficients estimate at time

instant n and/t the adaptation gain or step size.

In the LMS algorithm, the correction term #e(n)y*(n) applied to the tap-weight

vector w(n) at time n + 1 is directly proportional to the tap-input vector y(n). There-

fore, when y(n) is large, the LMS algorithm experiences a gradient noise amplification

problem [7]. To overcome this problem, we may use the normalized least-mean-square

(NLMS) algorithm [26], a specific form of the LMS algorithm with a reparameterized

step size, viz.,

e(n) = d(n)- wT(n)y(n)

w(n + 1) = w(n) + ily_n)][ie(n)y*(n) (2.17)

where/_ is the real positive step size. Using the idea of the projection algorithm [27]

in the control literature, Slock [28] indicates that the NLMS algorithm is a potentially

faster converging algorithm compared to the LMS algorithm, when the design of the

adaptive filter is based on the usually quite limited knowledge of its input statistics.

This performance advantage of the NLMS algorithm over its LMS precedent is also

observed in the area of adaptive radar signal processing [29].
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Although the applications of adaptive filtering are quite different in nature, nev-

ertheless, they have one basic common feature, i.e., an input vector and a desired

response are used to compute an estimation error, which is in turn employed to con-

trol the values of a set of adjustable filter coefficients. Dependent on the manner

in which the desired response is extracted, the functions of the four basic classes of

adaptive filtering applications can be categorized as: (1) system identification; (2)

inverse modeling; (3)linear prediction; (4)interference (noise) canceling [7, 17].

Figure 2.2 shows the block diagram of a system identification configuration where

an adaptive filter is used to provide a linear model that represents the best fit (in

some sense) to an unknown plant characterized by its impulse response h. The plant

and the adaptive filter are driven by the same input. The plant output supplies the

desired response for the adaptive filter. If the plant is dynamic in nature, the model

will be time-varying. Since the 1970s, many published papers have contributed to

the understanding and confirmation of the LMS algorithm's performance in tracking

an unknown system, especially in the nonstationary signal environment [30, 31, 32].

In Chapter 4, through extensive simulations, we will evaluate the capability of adap-

tive noise canceler (ANC) for the rejection of sinusoidal interference, following the

configuration in Figure 2.2. Performance comparison between the LMS and NLMS

algorithms will also be presented.
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CHAPTER 3

HIGH-RESOLUTION FREQUENCY ESTIMATION VIA EM

The essential ideas underlying the expectation maximization (EM) algorithm

have been presented in special cases by many authors [33, 34, 35]. Dempster, Laird

and Rubin [36] first recognized the expectation step (E-step) and the maximization

step (M-step) in their general forms, and introduced it for computing maximum

likelihood estimates from incomplete data. Since the late 1980s, the EM algorithm has

attracted signal processors' attention, and its significant contributions particularly to

the area of sensor-array signal processing have been found in the literature [37, 38, 39].

In light of the frequency estimation problems addressed in the previous chapter,

we develop a computationally efficient scheme for joint ML estimation of the signal

spectral parameters, based on the iterative EM algorithm. This chapter begins with

an overview of the data model and the basic ideas behind the EM algorithm, and then

shows how this algorithm can be utilized to implement the ML frequency estimator.

The important problem of determining the number of signals (order selection) is also

addressed. To achieve the goal of correct order selection, we come up with an order

recursive combined signal detection and estimation scheme via the EM algorithm. Fi-

nally, through intensive simulation, we show how this algorithm attains high spectral

resolution capability, low SNR threshold 1, and high correct detection probability, a

set of performance indices required of most modern signal processors.

1SNR threshold is the lowest SNR level above which a frequency estimator approximately attains

the performance of an ML estimator.



3.1 Signal Model for the EM Algorithm

3.1.1 Complete and Incomplete Data

The EM algorithm, developed in [36], is a general approach to iterative com-

putation of maximum-likelihood estimates when the observed signal samples can be

viewed as incomplete data. The term "incomplete data" in its general form implies

the existence of two sample spaces 3" and X' and a many-to-one mapping x _ y(x)

from X to y. Instead of observing the "complete data" x in X', we observe the "in-

complete data" y in Y. Let the density function of x be fx(x; 0) with parameters

0 E f_ and let the density function of y be given by

fu(Y; 0) = Jx_y)A(x;O)dx (3.1)

where X(y) = {x: y(x) = y}.

3.1.2 Definition of EM Algorithm

Given the observations Y = y, the MLE of 0 can be obtained by maximizing

f_(y; 0). However, in many statistical problems, maximization of the complete-data

specification f_(x; 0) is simpler than that of the incomplete-data specification fu(Y; 0).

Following Dempster et al. [36], take logarithms of each side of

f_(y; 0)= f_(x; 0)/f_ly(x; 01y )

and then take conditional expectations given Y = y, under a parameter value Ok, to

obtain

L(y; 0) = lnfu(y; 0)

= E_[lnf_(x;O)lY = y;Ok]- E_lu[lnf_lv=u(x;O)lY= y;Ok]

- Q(OIO_)-H(OlOk). (3.2)

It is a well-known consequence of Jensen's inequality that H(OlOk) < H(OklO,)[36, 40],

and thus implies

VO --+ Q(OlOk ) > Q(OklOk), L(y;O) > L(y;Ok). (3.3)
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Letting Ok denote the kth guess of the MLE of 0, we then have this iterative EM

algorithm.

Expectation (E-step): Determine the average log-likelihood of the complete

data

Q(OlOk) = E_[lnf_(x;O)lY = y;0k]

= /lnf_(x;a)f_lu(xly;Okldx. (3.4)

Maximization (M-step): Maximize the average log-likelihood of the complete

data

0k+a = arg %ax Q(Ol0k). (3.5)

At convergence we hopefully will have the MLE. This issue will be discussed later in

Section 3.4.

3.2 ML Frequency Estimator via EM Algorithm

3.2.1 A Model for Signal Decompositions

Consider again the observed signal y(n) in Section 2.1 which consists of p complex

sinusoids corrupted by complex white Gaussian noise

P

y(n) = _ A, exp(j2_rfin) + w(n), n = 0,1,..-,N- 1 (3.6)
i=l

where Ai = IAile j¢_ is the complex amplitude of the ith sinusoidal component, and

w(n) is complex white Gaussian noise with zero mean and variance a 2. In the EM

formulation, we call {y(n)} incomplete data. Suppose there exists the unobservable

complete data {x,(n),x2(n),...,xp(n)}

xi(n)=Aiexp(j2_rfin)+vi(n), n=0,1,.-.,g-1; i=l...p (3.7)

where vi(n) is complex white Gaussian noise with zero mean and variance _ri2, and

vi(n) is independent of vj(n)whenever/# j. Let {y(n)} and {xl(n),x2(n),..., xp(n)}

be related through the following noninvertible many-to-one mapping

P

y(n) = x,(n), (3.8)
i----I
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which implies
P P

w(n) = _-_v,(n) and cr_ =
i=l i=l

P P O'?

or equivalently, _ fl, = _ _- = 1.
i=l i=1

(3.9)

3.2.2 Frequency Estimation via EM: a Brief Derivation

Let xl = [xi(0) x;(1) ... xi(N-_)IT, e, = ei(fi) = [1 e j2'q' ej2,q'2.. "e'i2'q'(N-O] T,

0, = {/i, Ai}, X = [x, x2 ... xvl, O = {0,,02,..-0p}, and Ok = {0,h,02k,'''0,,}, the

kth guess of the MLE of O. From (3.7) we have, upon noting the independent data

set assumption,

InL(x; o)
P

= y_Inf(xi,0/)
i=1

= _'-_ln (rai2) N
i=1

exp [1 1 ]}-o.--_ _-' Iz'(n) - A'exp(j2rf_n)12
n=0

_-_'_ 1N-._.._
= g- __ Ixi(n)- Aiexp(j2zrf_n)l 2

i=1 O'? =

= g- --IIx, - A,e,II
i=1 (7"?

(3.10)

where g is a constant independent of the parameter set (9.

Given the observed signal y and previous parameter estimates Ok, by taking the

expectation of (3.10) we find

Q(O[Ok) = E_[lnf_(X;O)[y;Ok]

= E(glY;Ok)-_ IlE(xdy;Ok) - Aieil[ z
i=1

= E(gly;Ok )- _ .S_(A,,f_) (3.11)
i=l

where 0ik = {fik,Aik} is the kth MLE guess of 0i. Using the standard result for

conditional expectations of jointly Gaussian random vectors, and following the similar

derivation by Kay [23] for the case of real sinusoidal signal, it can be shown that

xi = E(xiJy;Ok)

y_ A,ke,k (3.12)= Aikeik +'fi Y--
i=1
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whereeik = e,k(fi,) = [leJ2"_/'*eJ2'_l'k2 ... ej2_rfik(N-1}] T, and S¢_-- [:_,(0)3:_(1) ... i_(N-

1)] T. Note that E(x_]y; Ok) can be thought of as an estimate of x_(n) in the complete

data set since from (3.12),

3ci(n) = Aik exp(j2rfikn) + "_ y(n)- , )A,, exp(j2rfi, n) . (3.13)
i=1

Obviously, in (3.11), to maximize Q(OIOD with respect to O is to minimize each

S_(A_, f_) individually, knowing that E(gly; Ok) is independent of O. According to

Section 2.2.1, minimization of Si(Ai, fi), the scoring function for single sinusoidal

parameter estimation, can be achieved by choosing

1 H. 2

fik+l = argmax ]eix, I

and Z,,÷l = for i=l,.., p. (3.14)
N

Up to this point, it can be clearly recognized that (3.13) (E-step) and (3.14) (M-step)

constitute the iterative EM algorithm for ML frequency estimation.

Notice that (3.14) represents a one-dimensional MLE processor producing its by-

product Ai_+_ as the ML amplitude estimate of the single-sinusoid in _ri(n). According

to Section 2.1.2, given the current frequency estimate fk+_ = [f_k+l f2k+_ "'" fpk+a],

Ak+1 = (EH+,Ek+I)-IEH+ly

is the amplitude estimate that will maximize the joint log-likelihood L(y; fk+l), where

Ek+l = [elk+l e_k+_ "'" epk+_]. In other words, using this amplitude estimate instead

of that produced by (3.14) will lead to a more generalized EM (GEM) algorithm as

described in Dempster et al. [36].

Finally, since the a2's are not unique, they can be chosen arbitrarily as long as

(3.9) is satisfied. Recognizing that after the kth iteration, rhh = _ is the SNR

estimate of the expected ith sinusoidal component _i(n), it is quite reasonable to

choose or/_such that

r/lk = r/2_ = ... = r/pk = constant
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for each MLE processorin (3.14). Consideringthis choiceof cr_in (3.9), it is very

straightforward to show

Hi --
_2 E_'=t lA;k['

for i = 1,2,...,p.

Now, the generalized EM frequency estimation algorithm is summarized below.

• Initialization: Given the initial frequency estimate fo = [fl0 f20 "'" fpo], and thus

the initial amplitude estimate Ao = (EoHE0)-IE_y, continue the following EM iter-

ation until Ilfk+,- fklloo< _,where Ilhlloo= maxi Ih_l.

• Expectation (E-step): Decompose y(n) into a set of ezpected sinusoidal compo-

nents {&i(n), i= 1...p}

( p )&dn) = A,k exp(j2_rfi_n) + p[Aik[ y(n)-- _ A, k exp(j2_rfi_n)
E_=a IA_ I i=l

( )or _, - A,,e,_ + ZT=_lA,kl Y--_Aike" "
i=1

(3.15)

• Maximization (M-step): Maximize the log-likelihood of each expected sinusoidal

component separately by finding

and

1 HA 2

fik+, = argm/ax_- e i xi , i= 1,2,...,p (3.16)

Ak+, = (EH+,Ek+x)-'EH+lY. (3.17)

At its convergence, denote the final frequency and amplitude estimates as fp =

[]1 f2"'" ]p] and/i,p = [-41,3,2"" _v]r. Define the pth-order model residual zp as

P
A

zv = y - _ Ai6i (3.18)
i=1

where 6; = 6_(];) = [1 e j2"]' e j2'_1'2.., eJ2"q"(N-U] T. From now on, for the sake

of notational clarity, we will refer to this EM frequency estimator by the following

formula:

{fp,.h.v, zp} = £.M(y,p, {fo, Ao}).
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3.3 CombinedSignalDetection and Estimation

Like most iterative frequencyestimation algorithms, the EM algorithm requires

a reasonablyaccurate initial parameter estimate @0to begin with. Taking a closer

look at (3.15), (3.16) and (3.18), it is not difficult to observesome inherent "order-

recursive" features associatedwith this algorithm. Let p be the true model order

(number of sinusoidal signals), and m be the order we pick. First notice that when

m = 1, xl = Y according to (3.15), and fl is the frequency at which the periodogram

of y attains its maximum. Secondly, the model residual z_ defined by (3.18) reveals

to us the signal's structural remnant yet to be modeled, when m < p. Based upon the

above observations, we present the order-recursive EM algorithm for ML frequency

estimation as follows:

• Let m = 1, and ;¢,,, = y. Find ]1, ¢il and z, using (3.16),-_(3.18). t'1 = []1].

• For m = 2 top

do

1. initialization:

11 Ifmo= arg max-- eHz,,,__ . Let fo = [f',,,-1 f,,,ol-
lm N

Calculate Ao = (Eo_Eo)-IEHy, where Eo = Eo(fo).

2. EM iteration:

{_',, X,_, zm} = $.M(y, m, {f0, Ao}).

end.

At this point, one can see that an interesting feature this algorithm possesses is its

built-in initialization procedure. For each model order rn < p, the initial frequency

estimate is the optimal (in the ML sense) estimate of previous order (m - 1) plus one

additional estimate extracted from the model residual z,,,-1.

When the true model order p is unknown, some sort of "stopping rule" has to be

applied to the order-recursive EM algorithm. Apart from the information theoretic

criteria mentioned in Section 2.3 for order selection, a natural way to stop modeling
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the sinusoids-plus-noisetime series is to test the whiteness of the model residual

z,_. Since order increment and frequency estimation in this algorithm hinge on the

periodogram of the model residual, periodogram-based methods might be used to

construct statistical tests for departure from white noise. If the suspected source of

departure is the presence of a single sinusoidal component at unknown frequency f, a

natural test statistic is the maximum periodogram ordinate [41], T = max! _leHyl 2.

_lekyl for k = 1,2,..-,N.Let {Ik} be the periodogram ordinates, where Ik = 1 hr 2

Under the hypothesis that y is white noise, the distribution function of T requires

the knowledge of the noise variance cr2. However, in most real world applications, _r2

is unknown. To solve this problem, Fisher [42] devised the exact distribution function

r the ratio of the maximum to average periodogram ordinate. In
of T0 = _r .

particular, he showed that

a [ N! (-l)k-'(l -- kq) N-1 (3.19)P(To > Nq)= _ k[(N-k)[
k=l

where R is the largest integer less than q-t. Based upon the above arguments, a

reasonable way to decide whether to increase the model order is to test the whiteness

of model residual z,_ using (3.19). In other words, if the model order we pick is correct,

the residual series zp is approximately a partial realization of white noise, and thus

passes the whiteness test. Figure 3.1(a) shows the block diagram of the EM frequency

estimator for a given order p, and Figure 3.1 (b) provides a flow-chart representation

of the order-recursive EM frequency estimator with Fisher's To statistic as the model

order selector. The comparison of order decision performances for Fisher's To statistic

and information theoretic criteria like AIC and MDL will be given in the next section.

3.4 EM Convergence Properties and Simulation Results

In general, if the log-likelihood function L(O) (i.e., L(y;O)) has several (local

or global) maxima and stationary points, convergence of the EM sequence {Ok} to

either type of point depends on the choice of starting points. This phenomenon has
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Figure 3.1. (a) Block diagram of EM frequency estimator, and (b) flow chart repre-

sentation of the combined order-recursive frequency estimation and signal detection

algorithm.
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been well recognized by statisticians and signal processors [36, 37, 38, 43]. The most

striking characteristic of the EM algorithm is that L(Ok+I) _> L(Ok) for any EM

sequence {Ok}. This implies that if L(Ok) is bounded above, then it converges to

some L*. Miller and Fuhrmann [38] suggest that in real world applications, L(Ok)

can be upper bounded by properly choosing a closed and bounded parameter space 12

for O. More specifically, Wu [43] shows that, if Q(O[(I)) in (3.11) is continuous in both

O and (I), a condition satisfied in most practical situations, then all the limit points

of any instance {Ok} of an EM algorithm are stationary points of L. Furthermore,

L(Ok) converges monotonically to L* = L(O*) for some stationary point 0% For a

rigorous treatment of EM convergence properties, please refer to Wu [43] and Boyles

[44].

In this section, we demonstrate via simulation that the EM algorithm for ML

frequency estimation will resolve signal components in situations of small sample

size and low SNR which cause other high resolution estimators to fail. We consider

two signal scenarios that consist of two or three sinusoids with different frequency

separation and SNR level. For each SNR level of interest, 200 Monte Carlo simulations

are undertaken. In the first case, the observed signal is generated as

y(n) = IAle j2"I1'_ + IAleJ°'2s% j2"f2" + w(n), n = 0,1,...,24

where IAI is the scalar amplitude, fx = 0.19, ]'2 = 0.21, and w(n) is a complex white

Gaussian sequence. To help visualize the convergence behavior of EM iterations,

Figures 3.2 and 3.3 show the log-likelihood surfaces, surface contours, and trajectories

of EM frequency estimation starting from different initial estimates. It is the result

of processing a snapshot of y(n) at both low SNR (0 dB) and high SNR (20 dB)

individually.

Similarly, in the second case, the observed signal is

y(n) = JAld _";1" + [AfeJ°'2S"e i_"I'" + [A[eJ°'SS"e j2";3" + w(n), n = 0, 1,.-. ,24

26



log-likelihood surface & trajectories of EM iterations

40t30

_2o-i

-1o__ o._4

0.22

0.15 0.22

0.2

_ 0.16
0.26 fl

f2

log-likelihood surface contours fl = 0.19, f2 = 0.21

0.24 _
o.23.- i ...... _ .........
0.22 ..... i ..............

0.21 ...... :_........... : ................

0.2 ........ i .......... : ..........

,,.- 0.19

0.16 0.18 0.2 0.22 0.24 0.26
f2
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with different initial frequency estimates and fl = 0.19, /2 = 0.21, SNEt = 0 dB,
N = 25, EM estimate : )'1 = 0.1874, ]2 = 0.2136.
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where f3 = 0.365, a frequency further away from the first two. Notice that with

a sample length of 25, the Fourier resolution bandwidth is 1/25 = 0.04, which is

larger than the frequency spacing of the first two sinusoids. Also, none of the se-

lected signal frequencies is a multiple of this Fourier resolution bandwidth. In terms

of being unbiased, small mean square error (MSE), and low SNR threshold (about

2 dB), Figures 3.4 and 3.5 reveal the excellent performance of our algorithm, where

the Cram6r-Rao bound [3, 45] is used as the benchmark for performance assessment.

Although global convergence is still an issue, we show through simulation that when

the initial frequency estimate of each component is within approximately one resolu-

tion bandwidth of of the global maximum, convergence can be achieved. In fact, the

optimal built-in initialization procedure of our algorithm, as pointed out in Section

3.3, has successfully carried out this task.

Finally, we demonstrate via simulation the modeling (detection) performances of

Fisher's To statistic, MDL and AIC, operating in conjunction with the EM frequency

estimation algorithm. The simulated signal is the three-sinusoids-plus-noise described

above. For the information theoretic criteria (MDL and AIC), model order selected

for examination ranges from 1 to 5. Therefore, we count orders 1 and 2 picked by

these criteria as underfitting, and orders 4 and 5 as overfitting. In the use of Fisher's

To statistic, H0 (noise hypothesis) is rejected at the significance level a = 0.01, which

equivalently thresholds To at 6.9547 according to (3.19) with N -- 25. Figure 3.6

shows the model selection capabilities of these criteria, based upon 100 Monte Carlo

simulations at each SNR level of 0 dB, 3 dB, 5 dB and 10 dB. Notice that at all SNR

levels of interest, MDL consistently outperforms Fisher's To statistic with higher

probability of correct modeling, and AIC completely overfits the signal model in all

simulations.
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SNR = 0 dB

criterion underfitting correct fit overfitting

Fisher's To 37 58 5

MDL 27 70 3

AIC 0 0 100

SNR = 3 dB

criterion underfitting correct fit overfitting

Fisher's To 6 86 8

MDL 1 95 4

AIC 0 0 100

SNR = 5 dB

criterion underfitting correct fit overfitting

Fisher's To 0 88 12

MDL 0 96 4

AIC 0 0 100

SNR = 10 dB

criterion underfitting correct fit overfitting

Fisher's To 0 91 9

MDL 0 97 3

AIC 0 0 100

Figure 3.6. Comparison of detection performances for Fisher's To statistic (level of

significance a = 0.01), MDL, and AIC.
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CHAPTER 4

LMS ADAPTIVE FILTER FOR SINUSOIDAL PROCESS

The suppressionof a sinusoidal interferencecorrupting an information-bearing

signal is a problem often encounteredin many signal processingapplications. The

traditional way of dealing with this problem is to designa fixed notch filter tuned

to the frequency of the interference. To design the filter, precise knowledge of the

interfering signal's frequency is always required. When the notch is desired to be

very sharp and the sinusoidal interference is known to drift slowly, a fixed filtering

approach may have difficulty solving the problem. It has been shown by Widrow et

al. [46] and Glover [47] that a notch filter realized by an adaptive noise canceler can

offer advantages such as easy control of notch bandwidth, an infinite null, and the

capability of adaptively tracking the exact frequency and phase of the interference.

In this chapter, we will investigate the performance of the adaptive noise canceler

in the suppression of multiple complex sinusoidal interferences. Different functions

of the adaptive noise canceler, e.g., notch filter, a process decorrelator and a line

enhancer, as well as the convergence properties associated with various model orders

of both the signal and system will also be addressed.

4.1 Notch Filter Realized by Adaptive Noise Canceler

Figure 4.1(a) shows the block diagram of a dual-input adaptive noise canceler

(ANC). The primary input supplies an information-bearing signal and an interfering

noise of multiple sinusoids that are uncorrelated from each other. The reference input

consists of a correlated version of the sinusoidal interferences. For the adaptive filter,

we use a transversal filter whose weights are adapted by means of the LMS algorithm.

The reference input and the primary input are given respectively as

P

y(n) = _ A_ exp(jwin), (4.1)
i=1



Primary input

d(n)

Reference

input

Y(_ Adaptivefilter

/t
I

•o .......................................................................... ,

Transfer function G(z)

System output

e(n)

)
v(n)

(a)

D(z) E(z)

.......................................................................... m

H(z)

co)

Figure 4.1. (a) Schematic representation of adaptive noise canceler and (b) equivalent

model in the z-domain.
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P

and d(n) = s(n) + _ Bi exp(jw, n) n=0,1,2,... (4.2)
i----1

where s(n) is the information-bearing signal, ,4i and B_ are complex amplitudes, and

= (0 < < 1).

The filter will use the reference input to provide (at its output) an estimate of the

sinusoidal interfering signal contained in the primary input. Thus, by subtracting the

adaptive filter output, v(n), from the primary input d(n), the effect of the sinusoidal

interference is diminished. According to Section 2.4.2, the LMS algorithm updates

the tap-weight as follows:

M-1

wm(n) (n - m)
m---O

,(n) =

e(n)

w,,,(n + 1)

(4.3)

= d(n) - v(n) (4.4)

= w_(n)+/,y'(n-m)e(n), m-0,1,...,M-1 (4.5)

where M is the total number of tap weights (order of filter) in the transversal filter,

and It the constant step-size parameter. Let V(z) and E(z) denote the z-transform

of the filter output v(n) and the estimation error e(n), respectively. Following the

schematic representation in Figure 4.1 (a), we may lump the sinusoidal reference input

y(n), the transversal filter, and the weight-update equation of the LMS algorithm into

an open-loop system defined by a transfer function G(z) = _E(z}, as in the equivalent

model of Figure 4.1(b). Our goal is to find V(z), and thus G(z), given E(z). Starting

from the weight-updating formula in (4.5), by taking the z-transform of both sides,

we get

zW_(z)=W_(z)+#Z{y'(n-m)e(n)}, m=O, 1,...,M-1 (4.6)

where W_(z) is the z-transform of wm(n). Substituting (4.1) into (4.6), we find

Win(z)- 1 --z -1 A*ke"_kmE(ze_k) (4.7)

where E(z) is the z-transform of e(n), and thus E(z e j_') is E(z) rotated clockwise

around the unit circle through the angle wi. Furthermore, taking the z-transform of
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v(n) in (4.3), with y(n) and Win(z) replaced by (4.1) and (4.3) respectively, it can be

shown that

V(z) }= Z w_(n) Aie-J_"r_e _'i"
krn----0 i=l

M-1 p

m=O i----1

M-1 p

= Y_ _(aie-J"m)W,,,(ze -i0")
rn----O i=l

1 p #z-lejCO, Y_ A*kej_'*''E ze j(wk-_d
= Y'_(Aie-/_"_) 1 -- z-le jcai k=l

rn=O i=1

_-,P #MIAil2z-leJ_'E(z)
_" 1 -- Z- 1 e.iwi
i=1

TI component

+ EE' ' #B'k(M)AiA*_z-XeJ"E_--z-,ej_''"--_,(zej(_''-_°'))
i=1 k=l

k¢i

TV component

(4.8)

where

/3ik(M)

M-1 M-1

= e
m=O rn=O

= sin((fk- f_)M_')ej(.t,_f,)(M_U,_

sin((A -- f_)Tr)
i,k= 1,2,.--,M. (4.9)

Taking a closer look at the expression for V(z) in (4.8), we consider the first

term as a time-invariant (TI) component, and the second term as a time-varying

(TV) component [47]. According to (4.8), the effect of the time-varying component

depends on the factor 13ik(M) defined by (4.9). Particularly, when _M _ 0, G(z)

is determined by retaining only the time-invariant component of V(z), and the ANC

behaves like a fixed multiple-notch filter. Letting 6! = minkei Ilk -- f_l, the minimum

frequency spacing between the interfering sinusoids in the reference input, the time-

invariance condition of the ANC can be satisfied by choosing M > #. The open-loop

transfer function G(z) is therefore

G(z) = E(z----yV(z)._ _ #MIAi[2z-leJ_' (4.10)
i=1 1 -- z-le jwi '
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and the notch filter realizedby Figure 4.1(a) canbe recognizedas a closed-loop feed-

back system with transfer function

H(z) = E(z) 1 1 (4.11)
D(z) 1 + G(z) _ P _MIA, l_z-'e _'"

1 + _ 1 - z-le j'_
i=1

From Equation (4.11), the zeros (notches) of H(z) are at the poles of G(z); that

is, they are located on the unit circle at ejw_. Furthermore, if a small value of the

step-size parameter # is chosen, such that I_MIAiI 2 << 1, i = 1,2,...,p, the poles of

H(z) can be approximately located at

z, ,_ (1 - _MIA, I_)e j_'.

This fact implies that the poles of H(z) lie inside the unit circle, and thus that the

ANC is stable, as it should be for practical use in real time [7].

Following Equation (4.11), Figures 4.2(a) and 4.2(b) give the time-invariant por-

tion of an adaptive notch filter's frequency response and its corresponding pole-zero

plot, with IAll = IA2] = IA31 = 1, []'1 ]'2 f3] = [0.38 0.45 0.76], M = 32, and a

very small adaptation rate/_ = 0.0002 to narrow the notch bandwidths. Due to this

choice of lzMIA, I_, as can be seen in Figure 4.2(b), poles and zeros of g(z) tend to

overlap each other on the unit circle. Furthermore, Figure 4.2(c) provides the result

of an experiment performed to characterize the adaptive notch filter's response to a

complex unit impulse function as the primary input, i.e., d(n) = 1_7_(1 + j),5(n). In

Figures 4.2(a) and 4.2(c), the frequency response of H(z) and the spectrum of e(n)

are evaluated at 500 normalized digital frequencies from 0 to 1.

4.2 Adaptive Noise Canceler as Process Decorrelator

In Section 4.1, we assume that the reference signal is deterministic while trying

to implement a multiple-notch filter via ANC. However, to deal with signals encoun-

tered in real world applications, it is more often the random nature associated with
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the signals that necessitates adaptive approaches. Assuming that all the signals con-

sidered are realizations of some random processes, and only limited knowledge of the

correlation properties among the signals is available, we can use the ANC as a process

decorrelator to extract the information-bearing signal. Let the reference signal y(n)

in Figure 4.1(a) be represented as

P

y(n)=__A, exp(j2_rf_n+¢,)+a(n), n=O, 1,...,N-1 (4.12)
i=1

where Ai are constant amplitudes, phases ¢i are independent random variables uni-

formly distributed over [0 2zr), and a(n) is an independent CWGN with zero mean and

2 It has been shown that y(n) is a wide-sense stationary (WSS) processvariance a a .

with autocorrelation function (ACF) given as [3]

P

rye(k) = _ A_ exp(j2_rfik) + a_6(k). (4.13)
i=1

Denote S as the diagonal matrix with the power of the ith sinusoid, S_ = A/2, as its

ith diagonal element so that the M x M autocorrelation matrix for y(n) is

P

P%v = _ Sielei n + a_I = ESE H + a_I (4.14)
i=1

where E = [el e2... %] with el = [1 e j2_'ti e j21rfi2 ''' *j2_rfi(M-1)] T. Notice also that

P_v is Hermitian.

Suppose that the primary input d(n) and the reference input y(n) are related as

follows:

d(n) = s(n) + x(n)
L-1

x(n) = Y_ hky(n - k) = hTyL(n)
k=0

(4.15)

where h = [h0 hi ... hL-_] T characterizes the linear correlation between x(n) and

y(n), s(n) is an information-bearing signal process uncorrelated with x(n), and YL(n) =

Iv(n) y(n -- 1) ..- y(n -- L + 1)] T. We call L the order of correlation between the

39



primary input and the referencesignal. Letting P = E[yM(n)d'(n)], the M × 1 cross-

correlation vector between the tap input vector and the primary input, and based

upon the above assumptions, it is straightforward to show that

P = RMLh"

where RML = E[yM(n)yl_(n)]. Therefore, assuming that the autocorrelation matrix

l_y is nonsingular, the optimum Wiener solution described by (2.15) can be obtained

as

w: -i t= Ryu R_Lh .

Up to this point, it is quite obvious that when M = L, l_t ,

(4.16)

= RML, and thus Wo = h.

To show the performance of the ANC functioning as a process decorrelator,

we undertake another experiment of 1000 Monte Carlo simulations. The reference

signal is generated according to (4.12) with If1 f2 f3] = [0.38 0.56 0.75] and 10 dB of

sinusoids-to-noise power ratio. For each realization of y(n), d(n) is correspondingly

generated by (4.15), where s(n) is replaced by a white Gaussian noise z(n) with power

30 dB below that of x(n). We choose the correlation vector h as

h ____ [e(-0.2+j0.6048'r) 0 e(-O.2+jO.6048r)l e(-0.2+j0.6048,r)2]T

= [1.0000 -4-j0 - 0.2647 + j0.7748 - 0.5302 - j0.4102] T,

and assume that the number of filter taps is equal to the order of correlation, i.e.,

M = L = 3. If z(n) is taken as the "plant noise", we are equivalently facing a system

identification problem as depicted in Figure 2.2.

Figure 4.3 demonstrates the ensemble averages of both the filter's tap weight

vectors and the power of the estimation error e(n). At the end of all simulations, we

obtain the filter's tap weight vector estimate

q¢o = [0.9979 - j0.0005 - 0.2679 + j0.7746 - 0.5324 - j0.4096] T,
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which is almostequal to Wo= h, the Wiener solution of this case. Under such an opti-

mum condition, only the plant noise is expected to be left at the process decorrelator's

output, i.e., e(n) _ z(n). In other words, by examining the "learning curve" at the

bottom of Figure 4.3, one can find that the mean-squared error sequence, E[le(n)12],

converges to about -30 dB, a phenomenon in agreement with the assumption made

for the primary input signal.

4.3 Adaptive Filter Design Considerations

In Section 4.2, we assume that the reference signal y(n) and its linearly correlated

signal x(n) are random-phased sinusoids mixed with white Gaussian noise, as modeled

by (4.12) and (4.15). Due to the presence of the noise's autocorrelation matrix, cr_I,

at the right-hand side of (4.14), R_ is of full rank and nonsingular. These facts

justify the existence of a nontrivial solution to the Wiener-Hopf equation, as expressed

by (4.16): w o = R__RMLh*. Moreover, an adaptive noise canceler is expected to

suppress the unwanted interference x(n) by adaptively tracking its tap weight vector

w(n) to this optimum Wo. As pointed out before, when M = L, we have Wo = h.

However, in most applications, the order of correlation L is unknown to the signal

processors. In this section, we will discuss the issue regarding the choices of two

important design parameters: the filter's number of taps, M, and the LMS (NLMS)

algorithm's adaptation rate #.

4.3.1 Choice of Filter's Number of Taps M

According to Orfanidis [48], the rule of choosing M with respect to L is that

the adaptive filter must have at least as many delays as that part of d(n) which is

correlated with y(n), in other words, M > L. Taking a closer look at Equation (4.16)

can help us see why it is so. First, consider the case of overmodeling, i.e., M > L,

then partition Ruy and its inverse matrix R_ as

Ryy=[RML B] and R_-_= [ I_.:]
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where B is an M × (M - L) matrix, P_., an L x M matrix, and Rit an (M - L) x M

matrix. Since R_-_R_u = I, it is straightforward to show that R.,RML = I and

R.RML = 0, thus the Wiener solution can be found as

where 0 is the (M - L) x 1 zero vector. Therefore, according to (4.3) ,(4.4), (4.15),

and (4.17), if w(n) -- Wo - [h0 hi." hL-1 0... O]r,

L-1

e(.) = a(_) - wory(_)= d(n) - _ hky(n - k) = a(n) - x(_) = _(n).
k=0

This implies the complete cancelation of the y(n)-dependent part of d(n).

When the adaptive filter is undermodeling the correlation between y(n) and d(n),

i.e., M < L, following (4.15) we can express d(n) as

d(n) = hTy,(n) -4-hTy2(n) -t- s(n)

where 51 = [hohl "" hM-1] T, 52 = [hMhM+l "" ht,-1] T, yl(n) = [y(n) y(n-

1)..-y(n - M + 1)] T, and y2(n) = [y(n- M) y(n- M- 1)...y(n - L + 1)] T.

Furthermore, it can be shown that

[ h_] =h_+Rl_Rl_h_,w o = R_-_RMLh" = RI?[RII R121 h;

and the optimum estimate of d(n) given y,(n) is

d(n) = E[d(n)[yl(n)] = E[d(n)yH(n)]R_yl(n) = w/yl(n)

(4.18)

where ltvv = Rn = E[y,(n)y HI and R,2 = E[y,(n)yH]. More specifically, as w(n)

converges to wo,

d(n) = v(n)= WoTy,(n)

= hTy,(n) + hTRH(R_'_)Hy,(n) = hTyl(n) + hTR21R_-(y,(n),

and thus the estimated information-bearing signal

e(n) = d(n) - d(n) = hT[y2(n) -- _'2/1(n)] + s(n)
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where _'2/,(n) = E[y_(n)yH(n)]E[y,(n)yg(n)]-'yt(n) ---- R21R_-)y1(n) is the opti-

mum estimate of y2(n) based on yl(n). This analysis shows that the yl(n) part

is completely removed from the primary input, and the y2(n) part is suppressed as

much as possible.

4.3.2 Choice of Adaptation Rate # and Signal Statistics

In designing adaptive filters via the LMS algorithm, a problem of many concerns

is the convergence behavior in tracking the optimum Wiener solution, where the

adaptation rate/_ plays a very critical role. Before delving into this issue, we need to

know that the LMS algorithm is an example of a multivariable nonlinear stochastic

feedback system, and such combined presence of nonlinearity and randomness makes

its convergence (stability) analysis a difficult mathematical task [7, 17]. To alleviate

the mathematical intractability in the convergence analysis of the LMS algorithm, a

set of fundamental assumptions needs to be followed:

1. The tap-input vectors y(1), y(2),..., y(n) are statistically independent.

2. At time n, the tap-input vector y(n) and the desired response d(n) are

statistically dependent, but independent of their previous counterparts.

3. y(n) and d(n) are jointly Gaussian-distributed random variables for all n.

The statistical analysis of the LMS algorithm based on the fundamental assumptions

is called the independence theory. Please refer to Gardner [49] and Haykin [7] for

a detail account. Our discussion regarding the choice of # and its corresponding

mean-squared error J(n) = E[le(n)l _] will rely on the independence theory.

Letting Ai, i = 1,2,--., M, denote the eigenvalues of the correlation matrix 1_,,

the mean-squared error J(n) converges to a steady-state value J(_) if, and only if,

the adaptation rate # satisfies

2

0 < _ < A,_,-"-'_ (4.19)

M ]2)t i

2 - .A, < 1 (4.20)
i=1

and
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whereM is the number of filter taps, and Am_,x is the largest eigenvalue of P_. Since

Ruu is usually unavailable to the ANC designers, when # is small compared to
'_max '

(4.20) can be simplified to a rule of thumb as

2

0 < # < total input power (4.21)

where the total input power is an estimate of E[yH(n)y(n)] = tr[l_u]. When these

conditions are satisfied, the LMS algorithm is expected to converge in the mean-

square sense. Furthermore, define the minimum mean-squared error Jmin as the MSE

produced by the optimum Wiener filter, i.e., J_n = E[Id(n) - wory(n)l_]. According

to the independence theory, the mean-squared error produced by the LMS algorithm

has the final value

Jllqtin

:
pAi1 -

(4.22)

which is always in excess of the minimum value dmi_ due to the variance of w(n) with

respect to the optimum Wiener solution Wo. A quantitative measure of this cost of

adaptability is the misadjustment .M, defined as

M

A4 _ J(oo)- J_n _=1
= (4.23)

j,_n M
1 - _HA,/(2 - pAi)

i=l

In Section 4.3.1 we see the effect of choosing M in general Wiener filtering.

So far as the LMS algorithm is concerned, Equations (4.20) and (4.23) show that

three principal factors affect the convergence behavior of this algorithm: the step-

size parameter #, the number of filter taps M, and the eigenvalue distribution of the

correlation matrix Ruy. The condition number of 1_,, defined as

is a good indicator of the signal statistics. This ratio is commonly referred to as the

eigenvalue spread (ES} or the eigenvalue disparity, a factor that controls the LMS
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algorithm's convergencespeed[7, 48]. A large eigenvaluespread in the correlation

matrix Ruucorrespondsto a highly self-correlated signal y(n). While a reference signal

y(n) of such nature tends to slow down the LMS algorithm's convergence process, the

tracking dynamics of the NLMS algorithm appear to be significantly less sensitive to

a variety of input signal distribution aspects than holds for its precedent [28, 50]. This

point can be partially validated by the principle that the NLMS algorithm converges

if and only if

0 </_ < 2 (4.24)

which is a condition on the step size parameter that is independent of the signal

statistics. The fastest convergence occurs for

/]_--1,

corresponding to the projection interpretation discussed in [27]. In next section, we

will demonstrate the effect of these design parameters, and the performance compar-

ison for the LMS and NLMS algorithms through simulation.

4.3.3 Simulation Results

Clearly, there are many practical problems for which the reference input process

and the desired response do not satisfy the fundamental assumptions. An example will

be the signal model assumed in Section 4.2 for the process decorrelator. Nevertheless,

experience with the LMS algorithm has shown that the independence theory retains

sufficient information about the structure of the adaptive process for the results of

the theory to serve as reliable design guidelines, even for some problems having highly

dependent data samples [7, 51].

To demonstrate the effects of signal statistics, correlation modeling, and the

choice of #, we perform three experiments of 1000 Monte Carlo simulations. In each

experiment, the reference input and the primary input are generated according to

(4.12) and (4.15) with L = 4, N = 400, and s(n) being white Gaussian noise of power
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level 30 dB below that of the sinusoidalinterference. The sinusoid-to-noiseratio at

the referenceinput is 5 dB. Performancesof both the LMS and NLMS algorithms

are examined in every simulation. Moreover, we choosethe filter's number of taps

as M = 3, M = 4, and M = 5 for undermodeling, correct-modeling, and overmodel-

ing the correlation between both inputs, respectively. To expedite the performance

comparison, step size/5 of the NLMS algorithm is fixed at 1 for all cases.

In the first experiment, we have h = [h0 hi h2 hal T with hi, = e -a_ where

a = 0.2 -j0.60487r, and three interfering sinusoids at frequencies []'1 f2 f3] =

[0.23 0.45 0.78]. Figure 4.4 shows the LMS algorithm's convergence behavior in terms

of its time evolution of filter's weight vectors and output mean-squared errors. Notice

that in the undermodeling case (M < L), w(n) very quickly converges to the Wiener

solution, but J(n) converges to a steady level of -10 dB due to the reason addressed

in Section 4.3.1 and the inherent misadjustment associated with the LMS algorithm.

However, as M increases, the convergences of w(n) and J(n) are significantly slowed

down. When M > L, the observed J(oo) is about -28.55 dB, very close to -28.66

dB as predicted by (4.22). Similar results for the NLMS algorithm are given in Figure

4.5.

The second and third experiments are devised to compare the convergence per-

formances of the LMS and NLMS algorithms. The test scenarios for both exper-

iments are very similar to the first one except that hk = 0.5 k with k = 0,1,2,3,

[f, is ./'3] = [0.38"0.56 0.75] for the second one, [A ]'2 f3 .f4] = [0.38 0.56 0.75 0.57] for

0.4

the third one, and each one has two choices of/_ (LMS) for comparison: /aa = _[R,d

0.s where the total input power tr[P_u I is estimated assuming M = L.and #2 = _,

Notice that in the third experiment, two spectrally close sinusoids (]'2 = 0.56 and

]'4 = 0.57) are included in the reference input to create larger eigenvalue disparity

than that of the second experiment. Results of these two experiments are given in

Figures 4.6 and 4.7, where we can see that the difference between both algorithms'
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convergence speeds increases as the eigenvalue spread of Rvu increases. This in-

dicates that the NLMS algorithm's convergence response is less susceptible to the

signal's eigenvalue disparity.

On the other hand, though the LMS algorithm shows slower convergence through-

out the simulations, it is able to settle at a smaller value of J(c_), especially in the

M >_ L cases. However, increasing/t to boost up the LMS algorithm's convergence

rate tends to induce larger misadjustment and possible divergence of J(n) sequence

when the adaptive filter is undermodeling the correlation between both filter inputs.

Such phenomena can be observed in Figures 4.6(a), 4.7(a), 4.7(e), and 4.7(d). Based

on these simulation results, with the input signal modeled as a stationary sinusoidal

process as discussed in Section 4.2, the NLMS algorithm (with/_ = 1) generally out-

performs the LMS algorithm in terms of a better tradeoff between convergence speed

and misadjustment, and stability under a more ill-conditioned signal environment.

4.4 Adaptive Noise Canceler as Line Enhancer

As we have addressed before, adaptive noise cancelation requires the presence

of a reference signal highly correlated with the noise component interfering with the

signal of interest at the primary input. However, there are several circumstances

where only one noise-contaminated signal d(n) is available. This problem occurs

particularly when a broadband signal s(n) is corrupted by a sinusoidal interference

x(n), and no external reference input free of the signal is available. In such a case,

the signal d(n) provides its own reference signal y(n), which is taken to be a delayed

replica of d(n), i.e., y(n) = d(n - A).

Figure 4.8 shows the block diagram of an adaptive line enhancer (ALE) configured

via the ANC. Suppose the signal d(n) consists of two signal components: a narrowband

component x(n) according to (4.12) that has long-range correlations, and a broadband

component s(n) which tends to have short-range correlations. To design an ALE as

depicted in Figure 4.8, the delay A is usually selected so that

E[_(n)_'(n - k)] _ 0, k > _.
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Since A is larger than the effective correlation length of the wideband component,

the delayed replica s(n - A) will be uncorrelated with s(n) in the primary signal, and

thus the adaptive filter will not be able to respond to this component. On the other

hand, since the autocorrelation of x(n) does not taper off, the delayed replica x(n-A)

that appears in the reference input will still be correlated with the narrowband part

of the primary signal, and the filter will respond to cancel it.

From our discussion and simulation result in previous sections, the tap weight

vector in the ALE using the LMS algorithm will approximately converge to the Wiener

solution when the input signal consists of random-phased sinusoids plus white noise.

However, the presence of a wideband signal can complicate the statistical character-

istics of the input autocorrelation matrix R_. In next chapter, we will investigate

the performances of LMS-ANC (ALE) in Doppler weather radar applications, where

the signal environment is very similar to what we propose here.
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CHAPTER 5

APPLICATION TO WINDSHEAR DETECTION PROBLEM

5.1 Weather Detection via Airborne Doppler Radar

PulseDoppler radar is usedfor remotedetection of windshears. With appropri-

ate signal and data processing,this radar canmap wind velocity vs. range over an

antennascan sector, enabling it to look into storm systems that may contain haz-

ardouswindshears. A form of low altitude windshearsknown as a microburst has

beenidentified asa particular hazardto aircrafts during takeoff and landing [12]. A

microburst canbequalitatively consideredaseither wet or dry, dependenton its radar

reflectivity [52]. Dry microbursts will call for more sophisticated signal processing,

sincethe primary sourcesof reflections,particles of dust and insects,exhibit a much

lower reflectivity of radar energy. Furthermore, when an aircraft is in low altitude

flight, such as during takeoff or landing, a portion of the antenna beam is likely to

illuminate objects on the ground, suchasbuildings, trees or cars on a freeway. This

scenariois depicted in Figure 5.1.

Most of the clutter energy appearsaround zero Doppler with referenceto the

aircraft ground speed,resulting from strong returns from stationary objects through

the main beamof the antenna. Additional discreteclutter dueto returns from moving

objects on the ground, or returns from large objects through antenna sidelobesmay

appearat frequenciesshifted away from zeroDoppler. The large radar cross-section

of these reflectors on the ground can backscatter enough energy to mask out any

returns due to weather [53]. This complicatesthe detection of low-reflectivity weather

phenomena,where most spectrum-orientedsignal processingschemeswill operate

poorly in the presenceof a severelylow SCR.
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Figure 5.1. Microburst and wind speed profile.
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Recently, researchers have suggested that the weather return and the clutter

return be assumed statistically independent, and setting a signal processing goal of

decorrelating a nonstationary wideband process (weather) from a nonstationary nar-

rowband process (clutter) on a per-range cell basis, some preliminary analysis results

have shown the potential applicability of LMS-based adaptive filters in solving this

particular signal processing problem [14]. In the next two sections, we will try to fur-

ther understand the nature of the interfering clutter return that deteriorates weather

estimation, and to explore weather detection performances of various adaptive and

passive approaches.

5.2 Modeling Airborne Doppler Radar Clutter Return

As elaborated in Chapter 1, the motivation for using adaptive filtering techniques

in radar clutter rejection is that the separation of two signal processes can be bet-

ter achieved by exploiting their temporal characteristics. Based on our discussions

in Chapter 4 relative to the performance of adaptive filters, understanding of the

interference (or noise) characteristics is more important than knowing the nature of

the signal. Therefore, before the adaptive filtering techniques can be brought into

this particular application, the statistical nature of the clutter processes needs some

investigation.

Based upon examination of many clutter returns, especially those collected with

the antenna scan angle kept between +5 degrees, in terms of their characteristics like

dominant frequencies, spectral bandwidths, and time-domain fluctuations of average

power level, we can model the clutter return from a specific range cell as multiple

sinusoids of constant frequencies, amplitudes, and phases, mixed with complex zero

mean white Gaussian noise, i.e.,

P

y(n) = _ A_exp(j2rfin + ¢i) + w(n).
i----1

The signal detection and parameter estimation problems associated with this signal

model have been addressed in Chapter 2. As the simulation result in Chapter 3
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testifies, the order-recursive EM frequency estimation algorithm combined with the

MDL criterion demonstrates excellent performances including high spectral resolu-

tion, signal detection capability, low SNR threshold, and the statistical characteristics

possessed by ML estimators. Therefore, this algorithm is used for modeling clutter

returns.

Figures 5.2 and 5.3 show two case analyses of typical clutter returns collected

from the Denver Stapleton airport, with the antenna main beam intercepting the

ground during a level flight over an interstate highway. Figures 5.4 and 5.5 give similar

analyses of clutter returns collected from the Philadelphia airport, where the aircraft

is in a landing approach at about 300 ft above the ground. These spectra show the

presence of dominant zero Doppler ground clutter and discrete clutter returns due to

vehicles along the highway. Another two case analyses, as given in Figures 5.6 and 5.7,

are associated with zero Doppler ground clutter returns collected from the Orlando

airport. For these analyses, the model order (number of sinusoids) considered for

the MDL order selection criterion ranges from 1 to 12, and the order p thus decided

is indicated in each figure. Looking closely at these plots, one can see that our

algorithm is able to provide a signal model which captures both the spectral mode

and the temporal characteristics of the radar ground clutter returns.

5.3 Clutter Rejection via LMS-based Adaptive Filtering

5.3.1 Experiment for Performance Test

In order to independently measure the weather detection performances of differ-

ent signal processing methods, a priori knowledge of both the weather and clutter

returns should be available. To make this possible, we undertake an experiment as

depicted in Figure 5.8, where a block diagram shows how real clutter returns can be

merged with simulated weather returns to test clutter rejection capabilities of adaptive

filters and fixed-notch filters. The windshear return is regenerated by Research Trian-

gle Institute's "Airborne Windshear Doppler Radar Simulation (AWDRS)" program
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[54], assuming the same aircraft operation scenario where the near terminal ground

clutter return is collected.

The data submitted for performance test comes from 156 range cells that contain

clutter returns collected from the Denver Stapleton airport and the correspondingly

simulated windshear returns, and each range cell has 96 signal samples. To create a

specific SCR condition, the average power of the simulated weather return is adjusted

with respect to that of the real clutter return on a range-cell by range-cell basis.

After this SCR power adjustment, the weather return (signal) and the clutter return

(interference) are designated as s(n) and x(n), respectively. The weather-plus-clutter

return, d(n) = s(n) + x(n), is then submitted for the performance test of different

adaptive and fixed clutter rejection approaches.

In our simulation, two adaptive filter configurations, ANC (2nd order) and ALE

(3rd order, A = 10) implemented with either LMS or NLMS algorithms, are consid-

ered. We denote them as ANC-LMS, ANC-NLMS, ALE-LMS, and ALE-NLMS. For

the ANC, the "reference clutter" input y(n) is generated as a linear combination of

the clutter return's delayed replicas, i.e.,

L-I

k=O

where denoting H(z) and Wo(z) respectively as the z-transforms of hk and the opti-

mum Wiener solution wok, h = [h0 hi "" hL-1] and the filter's number of taps M are

1

chosen such that H(z) ,._ Wo(z'--"_" For the ALE, the number of delays A is chosen so

as to decorrelate s(n) and s(n - A), i.e., E[s(n)s'(n - A)I _ 0. Remember that the

ALE is the ANC with its reference input replaced by the delayed primary input, i.e.,

= - = ,(n - A) + - A).

Another clutter rejection filter brought into comparison is a Butterworth second order

filter with 3 m/sec notch bandwidth centered at zero Doppler velocity.
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Since the available data record in each range cell contains only 96 samples, these

LMS-based adaptive filters can not be expected to converge (e.g., refer to Figure

4.4(e)), though a certain amount of clutter interference can still be suppressed. Fur-

thermore, experience shows that to reduce the adaptation noise, smaller values of #

and/5 (compared to the upper bounds given in (4.21) and (4.24)) are necessary. In

order to alleviate this convergence problem and help stabilize the adaptive filters,

both the ANC and ALE operate on the data twice by retaining the final filter tap

weights obtained from the first processing as the initial tap weights for the second

processing.

5.3.2 Simulation Results

Figures 5.9 and 5.10 demonstrate the weather detection performance of different

clutter rejection schemes in terms of their standard deviations of post-processing wind

velocity estimates, over a wide range of SCR (-25dB ,,- 10dB) conditions. In Figure

5.9, we consider 120 range cells that contain only near zero Doppler ground clutter

return and weather return, whereas in Figure 5.10, 36 more range cells that have

both zero Doppler and discrete clutter returns are also taken into account. Based on

these simulation results, supposing the allowable standard deviation in wind velocity

estimates is about 2 m/sec, several observations can be noted:

.

e

Basically, the presence of discrete clutter does not affect the performance of

the ANC because the same amount of a priori knowledge regarding discrete

clutter returns is available, though it significantly degrades that of the fixed

Butterworth notch filter. However, when the SCR value is above a certain

level (say, 0 dB), using the Butterworth filter is still an efficient method of

clutter rejection.

On the other hand, the performance of both ALE-LMS and ALE-NLMS is

also less sensitive to the discrete clutters than the Butterworth filter's. This

can be seen in Figure 5.10 (in comparison with Figure 5.9), where the increase

in the standard deviation of the ALE windspeed estimate caused by discrete

clutter is less than 1 m/sec, whereas use of fixed notch filters increases the

standard deviation by 2 m/sec.
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3. When discrete clutter is absent, fixed notch Butterworth filters can efficiently

suppress the zero Doppler ground clutter even with the SCR down to -10

dB. However, ANC-NLMS, ALE-LMS, and ALE-NLMS can increase the pro-

cessing gain by at least 7 dB when zero Doppler ground clutter is the only

hindrance to weather estimation. Considering the effects of the discrete clut-

ter, adaptive filtering can obtain a processing gain of 7 to 15 dB.

4. For the ANC, the NLMS algorithm consistently outperforms the LMS algo-

rithm for the/_ and/_ chosen, whereas ALE-LMS and ALE-NLMS have about

the same performance. Curiously, for some SCR values, the ALE is able to

outperform ANC. It may indicate the potential applicability of the adaptive

line enhancer in windshear detection, when the collection of reference clutter

returns required of the ANC implementation is technically difficult.
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Figure 5.9. Performance comparisons for LMS-based adaptive filters and fixed-notch

Butterworth filter, considering range cells that contain zero Doppler ground clutter

and weather returns. (source of clutter: NASA test flight-dn4cls5.m18).
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Figure 5.10. Performance comparisons for LMS-based adaptive filters and fixed-

notch Butterworth filter, considering range cells that contain zero Doppler ground

clutter, discrete clutter, and weather returns. (source of clutter: NASA test flight-

dn4cls5.ml8).
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CHAPTER 6

CONCLUSIONS

This work basically deals with three research topics in signal processing and its

application: (1) signal modeling and parameter estimation, especially for narrow-

band signals modeled as multiple sinusoids plus white Gaussian noise, (2) LMS-based

adaptive filter convergence response in this particular signal environment, and (3)

application of these signal processing techniques in airborne Doppler weather radar.

Concluding remarks regarding these three areas are presented in the next section.

6.1 Discussion of Results

6.1.1 Frequency Estimation and Signal Modeling

Our focus of investigation is on signals that consist of multiple sinusoids plus

white Gaussian noise, particularly when only a short record of observations is avail-

able. Thanks to the simplicity of the complete data model and the monotonically in-

creasing conditional likelihood function, the EM algorithm is able to solve the problem

of maximizing the highly nonlinear likelihood function of the signal frequencies.

Simulation results show that even when the SNR level is very low, our algorithm

has high frequency resolution capability which most periodogram- or AR-oriented

approaches fail to possess. The building block of this algorithm is a one-dimensional

ML frequency estimator, which can be implemented via the Newton-Raphson method

or FFT, depending on the required numerical accuracy. This indicates the compu-

tational flexibility of our algorithm. Taking a closer look at Figure 3.1(a), one can

find another feature of computational parallelism in the sense that all the signal pa-

rameters (frequencies) can be simultaneously estimated. Further, according to its

order-recursiveness, for each model order m < p, the initial frequency estimate is



the optimal (in the ML sense) estimate of previous order (m - 1) plus one additional

estimate extracted from the model residual zm-1.

For order selection, we propose the use of Fisher's To statistic and the MDL

criterion tailored for complex data. High probability of correct signal detection of

these two methods has been observed in Monte Carlo simulation.

6.1.2 LMS Adaptive Filtering with the Sinusoidal Process

As an extension of Glover's work [47] for the case of the complex-valued signal,

a notch filter implemented by the adaptive noise canceler for suppressing multiple

sinusoidal interference is investigated through analysis and simulation. Results show

that a notch filter with deep and narrow spectral nulls indeed can be realized by

the ANC. Regarding the ANC's performance response to the sinusoids-plus-noise

environment, several observations can be made based on our simulation results:

It

o

°

For the LMS algorithm, to maintain stability, the step size # should be small

compared to the upper bound specified by independence theory, whereas the

NLMS algorithm with/_ = 1 generally offers improved performance in terms of

a better tradeoff between convergence speed and misadjustment, and stability

in a more ill-conditioned signal environment.

The LMS and NLMS algorithms are capable of approximately tracking the op-

timum Wiener solution and thus totally rejecting the reference-input-dependent

component present in the primary input, when the filter's number of taps is

greater than or equal to the order of correlation between both inputs. There-

fore, in most applications where the correlation property associated with the

signal and noise is unknown, filters of higher order should be employed.

The NLMS algorithm's convergence response is less sensitive to the eigenvalue

disparity associated with the signal's autocorrelation matrix than that of the

LMS algorithm, though not as significantly as claimed by Slock [28]. It should

be noted that these nice features associated with the NLMS algorithm only

come with extra computational cost.

6.1.3 Windshear Detection Application

Based upon our analysis and the simulation results, clutter returns have been

modeled as multiple sinusoids plus Gaussian noise using the EM frequency estimation
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algorithm and the MDL criterion. Thegoodnessof fit, in terms of the clutter process's

temporal and spectral characteristics, demonstrates the robustness of our algorithm.

Simulation results show that when the SCR level is sufficiently high and only

zero Doppler clutter is present to bias the estimation of weather information, the

fixed Butterworth filter is capable of removing the clutter return and thus enhancing

the weather return. However, when both zero Doppler ground clutter and discrete

clutter are present in a very low SCR situation, adaptive filtering approaches can

significantly improve the windshear detection capability. Considering the performance

of all clutter rejection methods, either adaptive or passive, Figure 5.10 showed that the

ANC-NLMS stands out as the best approach. Nevertheless, the overall performance

of the ALE demonstrates a potential applicability in this particular signal processing

problem, when the implementation of the adaptive noise canceler is impractical.

6.2 Suggestions for Future Work

Though our EM frequency estimator produces simulation results that reveal the

features of the MLE, an analytical result that guarantees the global maximization

of the likelihood function via the EM algorithm is still not available. Since the EM

algorithm is potentially capable of solving many MLE problems in signal processing,

the problems of how to simplify the computation involved for real-time application

and the analytical verification of its convergence properties in a case-specific fashion

will be an area for future work. To model clutter returns using the EM frequency

estimation algorithm and the MDL criterion, our focus is on the narrowband clutter

data collected with the antenna scan angle kept between 4-5 degrees. Clutter collected

otherwise may have broader bandwidths, and alternative modeling approaches may

be necessary.

As for the adaptive filters, though the LMS (NLMS) algorithm is popular due to

its computational efficiency and ease of implementation, its convergence is slow, and

the statistical analysis of it for many practical applications, e.g., the realistic signal
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modelproposedin Section4.2, canbemathematically intractable. The independence

theory and most analysis results can only provide a picture of this algorithm's sta-

tistical behavior from a certain perspective.Furthermore, in a radar application, the

data available in eachrangecell is usually quite limited, and the autocorrelation ma-

trix of the clutter return can be very ill-conditioned. The convergenceperformance

of the LMS-based adaptive filters in this type application is an open question. How

to design adaptive filters with real-time potential, fast convergence, and numerical

stability, indeed warrants further investigation.
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APPENDIX A

ML FREQUENCY ESTIMATOR FOR A SINUSOID PLUS CWGN

Considerthe signal y(n) of a single sinusoid plus complex white Gaussian noise

as described in Section 2.2.1, i.e. y(n) = Aexp(j27rfn) + w(n), n = 0,1,.-.,N- 1.

According to (2.2), the MLE of f is given as ]: = argmax! -_g(f) where

" )IllI,;--_=0 " 2 yTe,eTy *J(f) = y(n)exp(-j2_rfn = eHy =

Let

Q(f) = e*e T _-

1 e j2'_! e j2_r/2 • • • e j2_tI(N-1)

e -j2'_I 1 e j2"_! • .. e j_'_!(N-2)

e -j2_rf2 e -j2rf 1 • • • e j21tf(N-3)

: : : ".. :

e -j2_rl(N-1) e -j2rI(N-2) e -j2rI(N-3) "'" 1

then

d2 J ( f ) _ yTa_Q(/)dJ(f) _yTdQ.__(ff)y, and J"(f)= 7_- _ y"J'(f)-

where

dq(f)

df
- j2_r

0 -- e j2_f • • •

e-J2'_Y 0 ---

2e-J2,_12 e-j2_f ...

: ; "..

(N- 1)e -j2'_f(N-1) ... e -j2_t

-(N- 1)e j2'_f(N-t)

-(N -- 2)e j2"-t(N-2)

_ eJ2_r!

0

and

0 e.i2'_1 ... (N- 1)2e .i2r!(N-D

e -j2,_! 0 ... (N - 2)2e j2"_I(N-2)

4e-J2rf2 e-J27rf • • • :

: : • .. eJ2_!

(N- 1)2e -j2'_t(N-I) ... e -j2'_! 0

Given an initial frequency estimate fo obtained from a coarse FFT, the Newton-



Raphsoniterative schemecalculates

fk+l = f_ + --
J'(fk)

J"(fk)

until If k+, -fkl < e.
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