
N95- 23691

Very Fast Motion Planning for Highly Dexterous Articulated

Robots

Daniel J. Challou, Maria Gini, and Vipin Kumar

Department of Computer Science

University of Minnesota, Minneapolis, MN 55455

Fax: (612) 625-0572

challou@cs.umn.edu gini@cs.umn.edu kumar@cs.umn.edu

(612) 626-7503 (612) 625-5582 (612) 624-8023

KEY WORDS AND PHRASES

Collision avoidance, parallel algorithms, path plan-

ning, robot motion planning.

INTRODUCTION

Due to the inherent danger of space exploration,

the need for greater use of teleoperated and au-

tonomous robotic systems in space-based appli-

cations has long been apparent. However, the

need for such systems has intensified lately be-

cause they will be necessary to carry out a vari-

ety of important missions. Free-flying robots car-

rying multiple highly dexterous robot arms have

been proposed for aiding in the construction of the

space station Freedom, and for assisting in satellite
maintenance. Autonomous and semi-autonomous

robotic devices have been proposed for carrying
out routine functions associated with scientific ex-

periments aboard the shuttle and space station.

Finally, research into the use of such devices for

planetary exploration continues [4].

To accomplish their assigned tasks, all such au-

tonomous and semi-autonomous devices will re-

quire the ability to move themselves through space

without hitting themselves or the objects which

surround them. In space it is important to exe-

cute the necessary motions correctly when they are

first attempted because repositioning is expensive

in terms of both time and resources (e.g., fuel). Fi-

nally, such devices will have to function in a variety
of different environments. Given these constraints,

a means for fast motion planning to insure the cor-
rect movement of robotic devices would be ideal.

Unfortunately, motion planning algorithms are

rarely used in practice because of their computa-

tional complexity [6]. Fast methods have been de-

veloped for detecting imminent collisions [10, 11],

but the more general problem of motion planning

remains computationally intractable. However, in

this paper we show how the use of multicomputers

and appropriate parallel algorithms can substan-

tially reduce the time required to synthesize paths
for dexterous articulated robots with a large num-

ber of joints.

We have developed a parallel formulation of

the Randomized Path Planner proposed by Bar-

raquand and Latombe [1]. We have shown that

our parallel formulation is capable of formulating

plans in a few seconds or less on various parallel

architectures including: the nCUBE2 multicom-

puter with up to 1024 processors (nCUBE2 is a

registered trademark of the nCUBE corporation);

the CM-5 (CM-5 is a registered trademark of the

Thinking Machines Corporation), and a network of

workstations [3, 5]. (The results obtained on the

CM-5 presented in this paper are based upon a

beta version of the software and, consequently, are

not necessarily representative of the performance

of the full version of the software.)

One might argue that massively parallel ma-

chines are not a viable platform for space based ap-

plications due to their prohibitive cost. However,

due to the continuing progress in VLSI design and

economy of scale resulting from their widespread

use, the cost of processors that massively parallel

machines employ is expected to decrease. When

this occurs, it will he feasible to build large scale

pRF.C'IF.DING PAGE BLANK, NOT FILMED
99



parallel computers with substantial raw computing

performance at a relatively small cost.

Working projects that utilize embedded parallel

processing, such as the autonomous land vehicle

Navlab [8], indicate their viability. The fact that

embedded parallel systems can also perform other

tasks efficiently, such as image processing and im-

age recognition, justifies their use in planning ap-

plications as well.

RANDOMIZED PARALLEL MOTION

PLANNING

Most motion planning algorithms decompose

the search space into discrete components called

cells [9]. The motion planning problem then

becomes one of computing a decomposition and

searching through sequences of contiguous cells to

find a path through free space (i.e. a sequence of

configurations that involves no collisions with ob-

stacles).

Unfortunately, as more degrees of freedom are
added to the robot most methods become com-

putationally impractical [9]. The only existing

motion planning methods capable of synthesising

plans in reasonable time frames (i.e., times on the

order of minutes [6]), for robots with more than

three degrees of freedom utilize an approximate de-

composition of the configuration space (C-Space).

The C-space is the space defined by parameters

that uniquely specify the position of the robot. To

obtain such performance, most methods precom-

pute a significant portion of the C-space. Total

precomputation is impossible because of both the

time required to perform the computation and the

amount of memory required to store the resulting

C-Space. Unfortunately, precomputation relegates

such methods to static workspaces, and hence they

are not well suited to the space-based applications
described earlier.

Our method is a parallel formulation of the Ran-

domized Path Planner proposed by Barraquand

and Latombe [1]. Space is represented with bitmap

arrays. The configuration space is discretized and

searched using best first search with random walks.

Artificial potential fields are used as the heuristic

to guide the search. The potential fields are pre-

computed, but their computation requires at most

a few tens of seconds (and it is readily paralleliz-

able). Furthermore, the method works with dis-

crete representations of the environment, so it can

readily be coupled with fast methods of producing

such representations, such as the method proposed

by [7].

The path is constructed incrementally as fol-

lows. A new configuration is randomly generated

from the current configuration at the start of each

step. If the heuristic value of the new configu-

ration is smaller than the current value, and the

move does not cause a collision, then the new con-

figuration is added to the path and the search pro-

cess is resumed. Otherwise another neighbor is

investigated. When none of the neighbors has a

smaller value than the current configuration, a ran-

dom walk is executed and then the search process

resumes. This process is repeated until a solution
is found.

We first broadcast a bitmap representation of

the workspace and the desired goal location to all

processors, and then check for a message indicat-

ing that a processor has found a solution. Each

processor runs the same basic program. The only

interprocessor communication is the initial broad-
cast and the termination check. The search and

random walks are the means by which the search-

space is partitioned, as they insure that each pro-

cessor searches different parts of the C-Space.

Although the method is only probabilistically

complete, a large number of experimental results

indicate that with a sufficient number of processors

a solution is always found in very short time frames

[3, 2].

DISCUSSION OF RESULTS

Figure 1 shows the start and goal configurations
for one of our test cases for motions of a seven

degree of freedom Robotics Research arm oper-

ating in a 1283 cell workspace. Each cell in the

robot's workspace represents a volume of 2.1 cu-

bic centimeters. Each joint has up to 128 discrete

positions (2.8125 degrees per position). The ta-

ble shows the results on up to 256 processors on

the CM-5 multicomputer. Each processor requires

approximately 13.1 megabytes of random access

memory.

The table indicates the benefits of parallelizing

the planner. For the problem instance shown just

100



32 processors are required to cut the average solu-

tion an order of magnitude to under ten seconds,

and 64 processors cut the average solution time to

under five seconds.

In addition to delivering paths in shorter time

frames, another important property of the paral-

lel formulation is that, when it is executed with a

larger number of processors, it tends to produce

better solutions. We have observed this behavior

in all the experiments we have performed to date.

In the example, 32 processors yield a solution path

length about one fourth as long as the average so-

lution path length delivered by one processor, and

128 processors reduce the average solution path

length by an order of magnitude. The variance in

time to solution behaves similarly, that is, it falls

off as the number of processors attempting to solve

the problem increases.

The performance falls off and the average time

taken to solve the problem moves toward a con-

stant value as we increase the number of proces-

sors. This is because we hit a point where the

number of processors required to insure that one

processor will find a solution in the minimum pos-

sible time is optimal or near optimal for the prob-

lem instance. The probability that the random

component of the algorithm will ensure that dif-

ferent processors are exploring different parts of

the search space decreases as we add more proces-

sors. When we reach that point, then adding more

processors will just result in more processors doing

redundant work (in the average case).

No Processors

Avg Search TimeStd Dev

Avg Path LengthStd Dev

I Avg Speedup

102.34

108.33

4264

5196

1.00

I 32 1 64 1128 2561

5.24 I 3.26 I 2.17 1.26
1178 1351 967 531

1550 1942 1277 476

I 12.02] 19.09130.37144.11[

Figure 1: The figure shows the start and goal configurations for a seven degree of freedom Robotics

Research arm. The robot is reaching from the box in front of it, up and into the box on the left. The

table shows data for at least 64 runs on a CM-5 multicomputer. All times are in seconds.

lOl



We have developed fast performance prediction
methods that can be used to determine whether

the number of processors available is adequate or

excessive [2]. Because of the way the random plan-

ner escapes local minima and generates successors,

as the minimum solution length and the degrees
of freedom of the robot increase the number of

different (not necessarily optimal) solution paths

increases dramatically. The number of solution

paths with similar lengths increases dramatically

as well. This increased solution density enables

the planner to perform well in instances where de-

terministic methods would encounter difficulty.

If a priori knowledge about obstacles allows a

coarser discretization of C-space, (such as the 64

discrete positions used by [11]), then our exper-

imental results [2] indicate that we can cut the

planning time by at least a factor of three. Thus,

coarser discretizations coupled with faster pro-

cessors, such as Digital Equipment's alpha chip,

would enable our system to deliver sub-second per-

formance using a reasonable number of processors.

We are currently in the process of parallelizing

the computation of the 3D artificial potential field

maps. Preliminary results indicate that it is possi-

ble to complete the heuristic computation process

in real-time. As a result, given a discrete 3D pic-

ture of an environment, our planner will be able to

formulate motion plans in very fast time frames.

ACKNOWLEDGMENTS

This work was supported in part by Contract

Number DAAL03-89-C-0038 between the Army

Research Office and the University of Minnesota

for the Army High Performance Computing Re-

search Center. Additional support was furnished

by NSF/CDA-9022509, DA/DAAH04-93-6-0800,

NSG/IRI-9216941, and the Center for Advanced

Manufacturing, Design and Control of the Univer-
sity of Minnesota.

We would like to sincerely acknowledge Mike

Hennessey and Max Donath for helping us model

the Robotics Research arm; Jean Claude Latombe

at Stanford University for providing access to im-

plementations of the Random Path Planner; David

Strip and Robert Benner at Sandia National Lab-

oratories for providing access to the nCUBE2.

REFERENCES

[1] J. Barraquand and J. C. Latombe. Robot mo-

tion planning: A distributed representation

approach. Int'l Journal of Robotics Research,

10(6):628-649,1991.

[2] D. Challou. Parallel search algorithms for

robot motion planning. Ph.D. dissertation.,

The University of Minnesota, 1994.

[3] D. Challou, M. Gini, and V. Kumar. Parallel

search algorithms for robot motion planning.

In Proc. IEEE Int'l Conf. on Robotics and Au-

tomation, volume 2, pages 46-51, 1993.

[4] S. Dubowski and E. Papadopoulos. The kine-

matics, dynamics, and control of free-flying

and free floating space robotic systems. IEEE

Trans. Robotics and Automation, 9(2):541-
543, 1994.

[5] M. Gini, D. Challou, V. Kumar, and

B. Camel. Parallel algorithms for path plan-

ning. In Pro(:. Virtual Reality Systems '93,

Teleoperation '93, and Beyond Speech Recog-

nition '93. Sig-Advanced Applications, Inc.,

New York, 1993.

[6] Y. Hwang and N. Ahuja. Gross motion plan-

ning - a survey. ACM Computing Surveys,

24(3):219-291, 1992.

[7] J. P. Jones. Real-time construction of three-

dimensional occupancy maps. In Proc. IEEE

Int'l Conf. on Robotics and Automation, 1993.

[8] T. Kanade, M. L. Reed, and L. E. Weiss.

New technologies and applications in robotics.

Communications of the ACM, 37(3):58-67,
March 1994.

[9] J. C. Latombe. Robot Motion Planning.

Kluwer Academic Publ., Norwell, MA, 1991.

[10] C. A. Shaffer. A real-time robot arm collision

avoidance system. IEEE Trans. Robotics and

Automation, RA-8(2):149-160, 1992.

[11] T. S. Wikman, M. Branicky, and W. S. New-

man. Reflexive collision avoidance: a gener-

alized approach. In Proc. IEEE Int'l Conf.

on Robotics and Automation, volume 3, pages
31-36, 1993.

102


